1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13 #include <linux/dcbnl.h>
14 #include <net/xfrm.h>
15
16 #include "otx2_reg.h"
17 #include "otx2_common.h"
18 #include "otx2_struct.h"
19 #include "cn10k.h"
20 #include "otx2_xsk.h"
21
otx2_is_pfc_enabled(struct otx2_nic * pfvf)22 static bool otx2_is_pfc_enabled(struct otx2_nic *pfvf)
23 {
24 return IS_ENABLED(CONFIG_DCB) && !!pfvf->pfc_en;
25 }
26
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)27 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
28 struct otx2_nic *pfvf, int qidx)
29 {
30 u64 incr = (u64)qidx << 32;
31 void __iomem *ptr;
32
33 ptr = otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
34 stats->bytes = otx2_atomic64_add(incr, ptr);
35
36 ptr = otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
37 stats->pkts = otx2_atomic64_add(incr, ptr);
38 }
39
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)40 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
41 struct otx2_nic *pfvf, int qidx)
42 {
43 u64 incr = (u64)qidx << 32;
44 void __iomem *ptr;
45
46 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
47 stats->bytes = otx2_atomic64_add(incr, ptr);
48
49 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
50 stats->pkts = otx2_atomic64_add(incr, ptr);
51 }
52
otx2_update_lmac_stats(struct otx2_nic * pfvf)53 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
54 {
55 struct msg_req *req;
56
57 if (!netif_running(pfvf->netdev))
58 return;
59
60 mutex_lock(&pfvf->mbox.lock);
61 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
62 if (!req) {
63 mutex_unlock(&pfvf->mbox.lock);
64 return;
65 }
66
67 otx2_sync_mbox_msg(&pfvf->mbox);
68 mutex_unlock(&pfvf->mbox.lock);
69 }
70
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)71 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
72 {
73 struct msg_req *req;
74
75 if (!netif_running(pfvf->netdev))
76 return;
77 mutex_lock(&pfvf->mbox.lock);
78 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
79 if (req)
80 otx2_sync_mbox_msg(&pfvf->mbox);
81 mutex_unlock(&pfvf->mbox.lock);
82 }
83
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)84 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
85 {
86 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
87
88 if (!pfvf->qset.rq)
89 return 0;
90
91 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
92 return 1;
93 }
94 EXPORT_SYMBOL(otx2_update_rq_stats);
95
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)96 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
97 {
98 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
99
100 if (!pfvf->qset.sq)
101 return 0;
102
103 if (qidx >= pfvf->hw.non_qos_queues) {
104 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
105 return 0;
106 }
107
108 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
109 return 1;
110 }
111 EXPORT_SYMBOL(otx2_update_sq_stats);
112
otx2_get_dev_stats(struct otx2_nic * pfvf)113 void otx2_get_dev_stats(struct otx2_nic *pfvf)
114 {
115 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
116
117 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
118 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
119 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
120 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
121 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
122 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
123 dev_stats->rx_mcast_frames +
124 dev_stats->rx_ucast_frames;
125
126 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
127 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
128 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
129 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
130 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
131 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
132 dev_stats->tx_mcast_frames +
133 dev_stats->tx_ucast_frames;
134 }
135
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)136 void otx2_get_stats64(struct net_device *netdev,
137 struct rtnl_link_stats64 *stats)
138 {
139 struct otx2_nic *pfvf = netdev_priv(netdev);
140 struct otx2_dev_stats *dev_stats;
141
142 otx2_get_dev_stats(pfvf);
143
144 dev_stats = &pfvf->hw.dev_stats;
145 stats->rx_bytes = dev_stats->rx_bytes;
146 stats->rx_packets = dev_stats->rx_frames;
147 stats->rx_dropped = dev_stats->rx_drops;
148 stats->multicast = dev_stats->rx_mcast_frames;
149
150 stats->tx_bytes = dev_stats->tx_bytes;
151 stats->tx_packets = dev_stats->tx_frames;
152 stats->tx_dropped = dev_stats->tx_drops;
153 }
154 EXPORT_SYMBOL(otx2_get_stats64);
155
156 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)157 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
158 {
159 struct nix_set_mac_addr *req;
160 int err;
161
162 mutex_lock(&pfvf->mbox.lock);
163 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
164 if (!req) {
165 mutex_unlock(&pfvf->mbox.lock);
166 return -ENOMEM;
167 }
168
169 ether_addr_copy(req->mac_addr, mac);
170
171 err = otx2_sync_mbox_msg(&pfvf->mbox);
172 mutex_unlock(&pfvf->mbox.lock);
173 return err;
174 }
175
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)176 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
177 struct net_device *netdev)
178 {
179 struct nix_get_mac_addr_rsp *rsp;
180 struct mbox_msghdr *msghdr;
181 struct msg_req *req;
182 int err;
183
184 mutex_lock(&pfvf->mbox.lock);
185 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
186 if (!req) {
187 mutex_unlock(&pfvf->mbox.lock);
188 return -ENOMEM;
189 }
190
191 err = otx2_sync_mbox_msg(&pfvf->mbox);
192 if (err) {
193 mutex_unlock(&pfvf->mbox.lock);
194 return err;
195 }
196
197 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
198 if (IS_ERR(msghdr)) {
199 mutex_unlock(&pfvf->mbox.lock);
200 return PTR_ERR(msghdr);
201 }
202 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
203 eth_hw_addr_set(netdev, rsp->mac_addr);
204 mutex_unlock(&pfvf->mbox.lock);
205
206 return 0;
207 }
208
otx2_set_mac_address(struct net_device * netdev,void * p)209 int otx2_set_mac_address(struct net_device *netdev, void *p)
210 {
211 struct otx2_nic *pfvf = netdev_priv(netdev);
212 struct sockaddr *addr = p;
213
214 if (!is_valid_ether_addr(addr->sa_data))
215 return -EADDRNOTAVAIL;
216
217 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
218 eth_hw_addr_set(netdev, addr->sa_data);
219 /* update dmac field in vlan offload rule */
220 if (netif_running(netdev) &&
221 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
222 otx2_install_rxvlan_offload_flow(pfvf);
223 /* update dmac address in ntuple and DMAC filter list */
224 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
225 otx2_dmacflt_update_pfmac_flow(pfvf);
226 } else {
227 return -EPERM;
228 }
229
230 return 0;
231 }
232 EXPORT_SYMBOL(otx2_set_mac_address);
233
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)234 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
235 {
236 struct nix_frs_cfg *req;
237 u16 maxlen;
238 int err;
239
240 maxlen = pfvf->hw.max_mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
241
242 mutex_lock(&pfvf->mbox.lock);
243 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
244 if (!req) {
245 mutex_unlock(&pfvf->mbox.lock);
246 return -ENOMEM;
247 }
248
249 req->maxlen = mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
250
251 /* Use max receive length supported by hardware for loopback devices */
252 if (is_otx2_lbkvf(pfvf->pdev))
253 req->maxlen = maxlen;
254
255 err = otx2_sync_mbox_msg(&pfvf->mbox);
256 mutex_unlock(&pfvf->mbox.lock);
257 return err;
258 }
259 EXPORT_SYMBOL(otx2_hw_set_mtu);
260
otx2_config_pause_frm(struct otx2_nic * pfvf)261 int otx2_config_pause_frm(struct otx2_nic *pfvf)
262 {
263 struct cgx_pause_frm_cfg *req;
264 int err;
265
266 if (is_otx2_lbkvf(pfvf->pdev) || is_otx2_sdp_rep(pfvf->pdev))
267 return 0;
268
269 mutex_lock(&pfvf->mbox.lock);
270 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
271 if (!req) {
272 err = -ENOMEM;
273 goto unlock;
274 }
275
276 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
277 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
278 req->set = 1;
279
280 err = otx2_sync_mbox_msg(&pfvf->mbox);
281 unlock:
282 mutex_unlock(&pfvf->mbox.lock);
283 return err;
284 }
285 EXPORT_SYMBOL(otx2_config_pause_frm);
286
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)287 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
288 {
289 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
290 struct nix_rss_flowkey_cfg_rsp *rsp;
291 struct nix_rss_flowkey_cfg *req;
292 int err;
293
294 mutex_lock(&pfvf->mbox.lock);
295 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
296 if (!req) {
297 mutex_unlock(&pfvf->mbox.lock);
298 return -ENOMEM;
299 }
300 req->mcam_index = -1; /* Default or reserved index */
301 req->flowkey_cfg = rss->flowkey_cfg;
302 req->group = DEFAULT_RSS_CONTEXT_GROUP;
303
304 err = otx2_sync_mbox_msg(&pfvf->mbox);
305 if (err)
306 goto fail;
307
308 rsp = (struct nix_rss_flowkey_cfg_rsp *)
309 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
310 if (IS_ERR(rsp)) {
311 err = PTR_ERR(rsp);
312 goto fail;
313 }
314
315 pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
316 fail:
317 mutex_unlock(&pfvf->mbox.lock);
318 return err;
319 }
320
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id,const u32 * ind_tbl)321 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id, const u32 *ind_tbl)
322 {
323 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
324 const int index = rss->rss_size * ctx_id;
325 struct mbox *mbox = &pfvf->mbox;
326 struct nix_aq_enq_req *aq;
327 int idx, err;
328
329 mutex_lock(&mbox->lock);
330 ind_tbl = ind_tbl ?: rss->ind_tbl;
331 /* Get memory to put this msg */
332 for (idx = 0; idx < rss->rss_size; idx++) {
333 /* Ignore the queue if AF_XDP zero copy is enabled */
334 if (test_bit(ind_tbl[idx], pfvf->af_xdp_zc_qidx))
335 continue;
336
337 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
338 if (!aq) {
339 /* The shared memory buffer can be full.
340 * Flush it and retry
341 */
342 err = otx2_sync_mbox_msg(mbox);
343 if (err) {
344 mutex_unlock(&mbox->lock);
345 return err;
346 }
347 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
348 if (!aq) {
349 mutex_unlock(&mbox->lock);
350 return -ENOMEM;
351 }
352 }
353
354 aq->rss.rq = ind_tbl[idx];
355
356 /* Fill AQ info */
357 aq->qidx = index + idx;
358 aq->ctype = NIX_AQ_CTYPE_RSS;
359 aq->op = NIX_AQ_INSTOP_INIT;
360 }
361 err = otx2_sync_mbox_msg(mbox);
362 mutex_unlock(&mbox->lock);
363 return err;
364 }
365
otx2_set_rss_key(struct otx2_nic * pfvf)366 void otx2_set_rss_key(struct otx2_nic *pfvf)
367 {
368 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
369 u64 *key = (u64 *)&rss->key[4];
370 int idx;
371
372 /* 352bit or 44byte key needs to be configured as below
373 * NIX_LF_RX_SECRETX0 = key<351:288>
374 * NIX_LF_RX_SECRETX1 = key<287:224>
375 * NIX_LF_RX_SECRETX2 = key<223:160>
376 * NIX_LF_RX_SECRETX3 = key<159:96>
377 * NIX_LF_RX_SECRETX4 = key<95:32>
378 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
379 */
380 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
381 (u64)(*((u32 *)&rss->key)) << 32);
382 idx = sizeof(rss->key) / sizeof(u64);
383 while (idx > 0) {
384 idx--;
385 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
386 }
387 }
388
otx2_rss_init(struct otx2_nic * pfvf)389 int otx2_rss_init(struct otx2_nic *pfvf)
390 {
391 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
392 int idx, ret = 0;
393
394 rss->rss_size = sizeof(*rss->ind_tbl);
395
396 /* Init RSS key if it is not setup already */
397 if (!rss->enable)
398 netdev_rss_key_fill(rss->key, sizeof(rss->key));
399 otx2_set_rss_key(pfvf);
400
401 if (!netif_is_rxfh_configured(pfvf->netdev))
402 for (idx = 0; idx < rss->rss_size; idx++)
403 rss->ind_tbl[idx] =
404 ethtool_rxfh_indir_default(idx,
405 pfvf->hw.rx_queues);
406
407 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP, NULL);
408 if (ret)
409 return ret;
410
411 /* Flowkey or hash config to be used for generating flow tag */
412 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
413 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
414 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
415 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
416 NIX_FLOW_KEY_TYPE_IPV4_PROTO;
417
418 ret = otx2_set_flowkey_cfg(pfvf);
419 if (ret)
420 return ret;
421
422 rss->enable = true;
423 return 0;
424 }
425
426 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)427 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
428 {
429 struct nix_lso_format *field;
430
431 field = (struct nix_lso_format *)&lso->fields[0];
432 lso->field_mask = GENMASK(18, 0);
433
434 /* IP's Length field */
435 field->layer = NIX_TXLAYER_OL3;
436 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
437 field->offset = v4 ? 2 : 4;
438 field->sizem1 = 1; /* i.e 2 bytes */
439 field->alg = NIX_LSOALG_ADD_PAYLEN;
440 field++;
441
442 /* No ID field in IPv6 header */
443 if (v4) {
444 /* Increment IPID */
445 field->layer = NIX_TXLAYER_OL3;
446 field->offset = 4;
447 field->sizem1 = 1; /* i.e 2 bytes */
448 field->alg = NIX_LSOALG_ADD_SEGNUM;
449 field++;
450 }
451
452 /* Update length in UDP header */
453 field->layer = NIX_TXLAYER_OL4;
454 field->offset = 4;
455 field->sizem1 = 1;
456 field->alg = NIX_LSOALG_ADD_PAYLEN;
457 }
458
459 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)460 void otx2_setup_segmentation(struct otx2_nic *pfvf)
461 {
462 struct nix_lso_format_cfg_rsp *rsp;
463 struct nix_lso_format_cfg *lso;
464 struct otx2_hw *hw = &pfvf->hw;
465 int err;
466
467 mutex_lock(&pfvf->mbox.lock);
468
469 /* UDPv4 segmentation */
470 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
471 if (!lso)
472 goto fail;
473
474 /* Setup UDP/IP header fields that HW should update per segment */
475 otx2_setup_udp_segmentation(lso, true);
476
477 err = otx2_sync_mbox_msg(&pfvf->mbox);
478 if (err)
479 goto fail;
480
481 rsp = (struct nix_lso_format_cfg_rsp *)
482 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
483 if (IS_ERR(rsp))
484 goto fail;
485
486 hw->lso_udpv4_idx = rsp->lso_format_idx;
487
488 /* UDPv6 segmentation */
489 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
490 if (!lso)
491 goto fail;
492
493 /* Setup UDP/IP header fields that HW should update per segment */
494 otx2_setup_udp_segmentation(lso, false);
495
496 err = otx2_sync_mbox_msg(&pfvf->mbox);
497 if (err)
498 goto fail;
499
500 rsp = (struct nix_lso_format_cfg_rsp *)
501 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
502 if (IS_ERR(rsp))
503 goto fail;
504
505 hw->lso_udpv6_idx = rsp->lso_format_idx;
506 mutex_unlock(&pfvf->mbox.lock);
507 return;
508 fail:
509 mutex_unlock(&pfvf->mbox.lock);
510 netdev_info(pfvf->netdev,
511 "Failed to get LSO index for UDP GSO offload, disabling\n");
512 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
513 }
514
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)515 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
516 {
517 /* Configure CQE interrupt coalescing parameters
518 *
519 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
520 * set 1 less than cq_ecount_wait. And cq_time_wait is in
521 * usecs, convert that to 100ns count.
522 */
523 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
524 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
525 ((u64)pfvf->hw.cq_qcount_wait << 32) |
526 (pfvf->hw.cq_ecount_wait - 1));
527 }
528
otx2_alloc_pool_buf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)529 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
530 dma_addr_t *dma)
531 {
532 unsigned int offset = 0;
533 struct page *page;
534 size_t sz;
535
536 sz = SKB_DATA_ALIGN(pool->rbsize);
537 sz = ALIGN(sz, OTX2_ALIGN);
538
539 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
540 if (unlikely(!page))
541 return -ENOMEM;
542
543 *dma = page_pool_get_dma_addr(page) + offset;
544 return 0;
545 }
546
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma,int qidx,int idx)547 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
548 dma_addr_t *dma, int qidx, int idx)
549 {
550 u8 *buf;
551
552 if (pool->xsk_pool)
553 return otx2_xsk_pool_alloc_buf(pfvf, pool, dma, idx);
554
555 if (pool->page_pool)
556 return otx2_alloc_pool_buf(pfvf, pool, dma);
557
558 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
559 if (unlikely(!buf))
560 return -ENOMEM;
561
562 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
563 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
564 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
565 page_frag_free(buf);
566 return -ENOMEM;
567 }
568
569 return 0;
570 }
571
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma,int qidx,int idx)572 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
573 dma_addr_t *dma, int qidx, int idx)
574 {
575 int ret;
576
577 local_bh_disable();
578 ret = __otx2_alloc_rbuf(pfvf, pool, dma, qidx, idx);
579 local_bh_enable();
580 return ret;
581 }
582
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)583 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
584 dma_addr_t *dma)
585 {
586 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma,
587 cq->cq_idx, cq->pool_ptrs - 1)))
588 return -ENOMEM;
589 return 0;
590 }
591
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)592 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
593 {
594 struct otx2_nic *pfvf = netdev_priv(netdev);
595
596 schedule_work(&pfvf->reset_task);
597 }
598 EXPORT_SYMBOL(otx2_tx_timeout);
599
otx2_get_mac_from_af(struct net_device * netdev)600 void otx2_get_mac_from_af(struct net_device *netdev)
601 {
602 struct otx2_nic *pfvf = netdev_priv(netdev);
603 int err;
604
605 err = otx2_hw_get_mac_addr(pfvf, netdev);
606 if (err)
607 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
608
609 /* If AF doesn't provide a valid MAC, generate a random one */
610 if (!is_valid_ether_addr(netdev->dev_addr))
611 eth_hw_addr_random(netdev);
612 }
613 EXPORT_SYMBOL(otx2_get_mac_from_af);
614
otx2_txschq_config(struct otx2_nic * pfvf,int lvl,int prio,bool txschq_for_pfc)615 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
616 {
617 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
618 struct otx2_hw *hw = &pfvf->hw;
619 struct nix_txschq_config *req;
620 u64 schq, parent;
621 u64 dwrr_val;
622
623 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
624
625 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
626 if (!req)
627 return -ENOMEM;
628
629 req->lvl = lvl;
630 req->num_regs = 1;
631
632 schq_list = hw->txschq_list;
633 #ifdef CONFIG_DCB
634 if (txschq_for_pfc)
635 schq_list = pfvf->pfc_schq_list;
636 #endif
637
638 schq = schq_list[lvl][prio];
639 /* Set topology e.t.c configuration */
640 if (lvl == NIX_TXSCH_LVL_SMQ) {
641 req->reg[0] = NIX_AF_SMQX_CFG(schq);
642 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
643 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
644 (0x2ULL << 36);
645 /* Set link type for DWRR MTU selection on CN10K silicons */
646 if (!is_dev_otx2(pfvf->pdev))
647 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
648 (u64)hw->smq_link_type);
649 req->num_regs++;
650 /* MDQ config */
651 parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
652 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
653 req->regval[1] = parent << 16;
654 req->num_regs++;
655 /* Set DWRR quantum */
656 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
657 req->regval[2] = dwrr_val;
658 } else if (lvl == NIX_TXSCH_LVL_TL4) {
659 int sdp_chan = hw->tx_chan_base + prio;
660
661 if (is_otx2_sdp_rep(pfvf->pdev))
662 prio = 0;
663 parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
664 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
665 req->regval[0] = (u64)parent << 16;
666 req->num_regs++;
667 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
668 req->regval[1] = dwrr_val;
669 if (is_otx2_sdp_rep(pfvf->pdev)) {
670 req->num_regs++;
671 req->reg[2] = NIX_AF_TL4X_SDP_LINK_CFG(schq);
672 req->regval[2] = BIT_ULL(12) | BIT_ULL(13) |
673 (sdp_chan & 0xff);
674 }
675 } else if (lvl == NIX_TXSCH_LVL_TL3) {
676 parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
677 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
678 req->regval[0] = (u64)parent << 16;
679 req->num_regs++;
680 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
681 req->regval[1] = dwrr_val;
682 if (lvl == hw->txschq_link_cfg_lvl &&
683 !is_otx2_sdp_rep(pfvf->pdev)) {
684 req->num_regs++;
685 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
686 /* Enable this queue and backpressure
687 * and set relative channel
688 */
689 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
690 }
691 } else if (lvl == NIX_TXSCH_LVL_TL2) {
692 parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
693 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
694 req->regval[0] = (u64)parent << 16;
695
696 req->num_regs++;
697 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
698 req->regval[1] = (u64)hw->txschq_aggr_lvl_rr_prio << 24 | dwrr_val;
699
700 if (lvl == hw->txschq_link_cfg_lvl &&
701 !is_otx2_sdp_rep(pfvf->pdev)) {
702 req->num_regs++;
703 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
704 /* Enable this queue and backpressure
705 * and set relative channel
706 */
707 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
708 }
709 } else if (lvl == NIX_TXSCH_LVL_TL1) {
710 /* Default config for TL1.
711 * For VF this is always ignored.
712 */
713
714 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will
715 * clip it to 16384, so configuring a 24bit max value
716 * will work on both OTx2 and CN10K.
717 */
718 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
719 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
720
721 req->num_regs++;
722 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
723 req->regval[1] = hw->txschq_aggr_lvl_rr_prio << 1;
724
725 req->num_regs++;
726 req->reg[2] = NIX_AF_TL1X_CIR(schq);
727 req->regval[2] = 0;
728 }
729
730 return otx2_sync_mbox_msg(&pfvf->mbox);
731 }
732 EXPORT_SYMBOL(otx2_txschq_config);
733
otx2_smq_flush(struct otx2_nic * pfvf,int smq)734 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
735 {
736 struct nix_txschq_config *req;
737 int rc;
738
739 mutex_lock(&pfvf->mbox.lock);
740
741 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
742 if (!req) {
743 mutex_unlock(&pfvf->mbox.lock);
744 return -ENOMEM;
745 }
746
747 req->lvl = NIX_TXSCH_LVL_SMQ;
748 req->reg[0] = NIX_AF_SMQX_CFG(smq);
749 req->regval[0] |= BIT_ULL(49);
750 req->num_regs++;
751
752 rc = otx2_sync_mbox_msg(&pfvf->mbox);
753 mutex_unlock(&pfvf->mbox.lock);
754 return rc;
755 }
756 EXPORT_SYMBOL(otx2_smq_flush);
757
otx2_txsch_alloc(struct otx2_nic * pfvf)758 int otx2_txsch_alloc(struct otx2_nic *pfvf)
759 {
760 int chan_cnt = pfvf->hw.tx_chan_cnt;
761 struct nix_txsch_alloc_req *req;
762 struct nix_txsch_alloc_rsp *rsp;
763 int lvl, schq, rc;
764
765 /* Get memory to put this msg */
766 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
767 if (!req)
768 return -ENOMEM;
769
770 /* Request one schq per level */
771 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
772 req->schq[lvl] = 1;
773
774 if (is_otx2_sdp_rep(pfvf->pdev) && chan_cnt > 1) {
775 req->schq[NIX_TXSCH_LVL_SMQ] = chan_cnt;
776 req->schq[NIX_TXSCH_LVL_TL4] = chan_cnt;
777 }
778
779 rc = otx2_sync_mbox_msg(&pfvf->mbox);
780 if (rc)
781 return rc;
782
783 rsp = (struct nix_txsch_alloc_rsp *)
784 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
785 if (IS_ERR(rsp))
786 return PTR_ERR(rsp);
787
788 /* Setup transmit scheduler list */
789 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
790 pfvf->hw.txschq_cnt[lvl] = rsp->schq[lvl];
791 for (schq = 0; schq < rsp->schq[lvl]; schq++)
792 pfvf->hw.txschq_list[lvl][schq] =
793 rsp->schq_list[lvl][schq];
794 }
795
796 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
797 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
798
799 return 0;
800 }
801
otx2_txschq_free_one(struct otx2_nic * pfvf,u16 lvl,u16 schq)802 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
803 {
804 struct nix_txsch_free_req *free_req;
805 int err;
806
807 mutex_lock(&pfvf->mbox.lock);
808
809 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
810 if (!free_req) {
811 mutex_unlock(&pfvf->mbox.lock);
812 netdev_err(pfvf->netdev,
813 "Failed alloc txschq free req\n");
814 return;
815 }
816
817 free_req->schq_lvl = lvl;
818 free_req->schq = schq;
819
820 err = otx2_sync_mbox_msg(&pfvf->mbox);
821 if (err) {
822 netdev_err(pfvf->netdev,
823 "Failed stop txschq %d at level %d\n", schq, lvl);
824 }
825
826 mutex_unlock(&pfvf->mbox.lock);
827 }
828 EXPORT_SYMBOL(otx2_txschq_free_one);
829
otx2_txschq_stop(struct otx2_nic * pfvf)830 void otx2_txschq_stop(struct otx2_nic *pfvf)
831 {
832 int lvl, schq, idx;
833
834 /* free non QOS TLx nodes */
835 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
836 for (idx = 0; idx < pfvf->hw.txschq_cnt[lvl]; idx++) {
837 otx2_txschq_free_one(pfvf, lvl,
838 pfvf->hw.txschq_list[lvl][idx]);
839 }
840 }
841
842 /* Clear the txschq list */
843 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
844 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
845 pfvf->hw.txschq_list[lvl][schq] = 0;
846 }
847
848 }
849
otx2_sqb_flush(struct otx2_nic * pfvf)850 void otx2_sqb_flush(struct otx2_nic *pfvf)
851 {
852 int qidx, sqe_tail, sqe_head;
853 struct otx2_snd_queue *sq;
854 void __iomem *ptr;
855 u64 incr, val;
856
857 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
858 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
859 sq = &pfvf->qset.sq[qidx];
860 if (!sq->sqb_ptrs)
861 continue;
862
863 incr = (u64)qidx << 32;
864 val = otx2_atomic64_add(incr, ptr);
865 sqe_head = (val >> 20) & 0x3F;
866 sqe_tail = (val >> 28) & 0x3F;
867 if (sqe_head != sqe_tail)
868 usleep_range(50, 60);
869 }
870 }
871
872 /* RED and drop levels of CQ on packet reception.
873 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
874 */
875 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
876 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
877
878 /* RED and drop levels of AURA for packet reception.
879 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
880 * Eg: For RQ length 1K, for pass/drop level 204/230.
881 * RED accepts pkts if free pointers > 102 & <= 205.
882 * Drops pkts if free pointers < 102.
883 */
884 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
885 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
886 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
887
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)888 int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
889 {
890 struct otx2_qset *qset = &pfvf->qset;
891 struct nix_aq_enq_req *aq;
892
893 /* Get memory to put this msg */
894 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
895 if (!aq)
896 return -ENOMEM;
897
898 aq->rq.cq = qidx;
899 aq->rq.ena = 1;
900 aq->rq.pb_caching = 1;
901 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
902 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
903 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
904 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
905 aq->rq.qint_idx = 0;
906 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
907 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
908 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
909 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
910 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
911 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
912
913 /* Fill AQ info */
914 aq->qidx = qidx;
915 aq->ctype = NIX_AQ_CTYPE_RQ;
916 aq->op = NIX_AQ_INSTOP_INIT;
917
918 return otx2_sync_mbox_msg(&pfvf->mbox);
919 }
920
otx2_sq_aq_init(void * dev,u16 qidx,u8 chan_offset,u16 sqb_aura)921 int otx2_sq_aq_init(void *dev, u16 qidx, u8 chan_offset, u16 sqb_aura)
922 {
923 struct otx2_nic *pfvf = dev;
924 struct otx2_snd_queue *sq;
925 struct nix_aq_enq_req *aq;
926
927 sq = &pfvf->qset.sq[qidx];
928 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
929 /* Get memory to put this msg */
930 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
931 if (!aq)
932 return -ENOMEM;
933
934 aq->sq.cq = pfvf->hw.rx_queues + qidx;
935 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
936 aq->sq.cq_ena = 1;
937 aq->sq.ena = 1;
938 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
939 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
940 aq->sq.default_chan = pfvf->hw.tx_chan_base + chan_offset;
941 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
942 aq->sq.sqb_aura = sqb_aura;
943 aq->sq.sq_int_ena = NIX_SQINT_BITS;
944 aq->sq.qint_idx = 0;
945 /* Due pipelining impact minimum 2000 unused SQ CQE's
946 * need to maintain to avoid CQ overflow.
947 */
948 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
949
950 /* Fill AQ info */
951 aq->qidx = qidx;
952 aq->ctype = NIX_AQ_CTYPE_SQ;
953 aq->op = NIX_AQ_INSTOP_INIT;
954
955 return otx2_sync_mbox_msg(&pfvf->mbox);
956 }
957
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)958 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
959 {
960 struct otx2_qset *qset = &pfvf->qset;
961 struct otx2_snd_queue *sq;
962 struct otx2_pool *pool;
963 u8 chan_offset;
964 int err;
965
966 pool = &pfvf->qset.pool[sqb_aura];
967 sq = &qset->sq[qidx];
968 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
969 sq->sqe_cnt = qset->sqe_cnt;
970
971 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
972 if (err)
973 return err;
974
975 /* Allocate memory for NIX SQE (which includes NIX SG) and CPT SG.
976 * SG of NIX and CPT are same in size. Allocate memory for CPT SG
977 * same as NIX SQE for base address alignment.
978 * Layout of a NIX SQE and CPT SG entry:
979 * -----------------------------
980 * | CPT Scatter Gather |
981 * | (SQE SIZE) |
982 * | |
983 * -----------------------------
984 * | NIX SQE |
985 * | (SQE SIZE) |
986 * | |
987 * -----------------------------
988 */
989 err = qmem_alloc(pfvf->dev, &sq->sqe_ring, qset->sqe_cnt,
990 sq->sqe_size * 2);
991 if (err)
992 return err;
993
994 err = qmem_alloc(pfvf->dev, &sq->cpt_resp, qset->sqe_cnt, 64);
995 if (err)
996 return err;
997
998 if (qidx < pfvf->hw.tx_queues) {
999 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
1000 TSO_HEADER_SIZE);
1001 if (err)
1002 return err;
1003 }
1004
1005 sq->sqe_base = sq->sqe->base;
1006 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
1007 if (!sq->sg)
1008 return -ENOMEM;
1009
1010 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
1011 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
1012 sizeof(*sq->timestamps));
1013 if (err) {
1014 kfree(sq->sg);
1015 sq->sg = NULL;
1016 return err;
1017 }
1018 }
1019
1020 sq->head = 0;
1021 sq->cons_head = 0;
1022 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
1023 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
1024 /* Set SQE threshold to 10% of total SQEs */
1025 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
1026 sq->aura_id = sqb_aura;
1027 sq->aura_fc_addr = pool->fc_addr->base;
1028 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
1029
1030 sq->stats.bytes = 0;
1031 sq->stats.pkts = 0;
1032 /* Attach XSK_BUFF_POOL to XDP queue */
1033 if (qidx > pfvf->hw.xdp_queues)
1034 otx2_attach_xsk_buff(pfvf, sq, (qidx - pfvf->hw.xdp_queues));
1035
1036
1037 chan_offset = qidx % pfvf->hw.tx_chan_cnt;
1038 err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, chan_offset, sqb_aura);
1039 if (err) {
1040 kfree(sq->sg);
1041 sq->sg = NULL;
1042 return err;
1043 }
1044
1045 return 0;
1046
1047 }
1048
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)1049 int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
1050 {
1051 struct otx2_qset *qset = &pfvf->qset;
1052 int err, pool_id, non_xdp_queues;
1053 struct nix_aq_enq_req *aq;
1054 struct otx2_cq_queue *cq;
1055 struct otx2_pool *pool;
1056
1057 cq = &qset->cq[qidx];
1058 cq->cq_idx = qidx;
1059 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
1060 if (qidx < pfvf->hw.rx_queues) {
1061 cq->cq_type = CQ_RX;
1062 cq->cint_idx = qidx;
1063 cq->cqe_cnt = qset->rqe_cnt;
1064 if (pfvf->xdp_prog) {
1065 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
1066 pool = &qset->pool[qidx];
1067 if (pool->xsk_pool) {
1068 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1069 MEM_TYPE_XSK_BUFF_POOL,
1070 NULL);
1071 xsk_pool_set_rxq_info(pool->xsk_pool, &cq->xdp_rxq);
1072 } else if (pool->page_pool) {
1073 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1074 MEM_TYPE_PAGE_POOL,
1075 pool->page_pool);
1076 }
1077 }
1078 } else if (qidx < non_xdp_queues) {
1079 cq->cq_type = CQ_TX;
1080 cq->cint_idx = qidx - pfvf->hw.rx_queues;
1081 cq->cqe_cnt = qset->sqe_cnt;
1082 } else {
1083 if (pfvf->hw.xdp_queues &&
1084 qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1085 cq->cq_type = CQ_XDP;
1086 cq->cint_idx = qidx - non_xdp_queues;
1087 cq->cqe_cnt = qset->sqe_cnt;
1088 } else {
1089 cq->cq_type = CQ_QOS;
1090 cq->cint_idx = qidx - non_xdp_queues -
1091 pfvf->hw.xdp_queues;
1092 cq->cqe_cnt = qset->sqe_cnt;
1093 }
1094 }
1095 cq->cqe_size = pfvf->qset.xqe_size;
1096
1097 /* Allocate memory for CQEs */
1098 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1099 if (err)
1100 return err;
1101
1102 /* Save CQE CPU base for faster reference */
1103 cq->cqe_base = cq->cqe->base;
1104 /* In case where all RQs auras point to single pool,
1105 * all CQs receive buffer pool also point to same pool.
1106 */
1107 pool_id = ((cq->cq_type == CQ_RX) &&
1108 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1109 cq->rbpool = &qset->pool[pool_id];
1110 cq->refill_task_sched = false;
1111
1112 /* Get memory to put this msg */
1113 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1114 if (!aq)
1115 return -ENOMEM;
1116
1117 aq->cq.ena = 1;
1118 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1119 aq->cq.caching = 1;
1120 aq->cq.base = cq->cqe->iova;
1121 aq->cq.cint_idx = cq->cint_idx;
1122 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1123 aq->cq.qint_idx = 0;
1124 aq->cq.avg_level = 255;
1125
1126 if (qidx < pfvf->hw.rx_queues) {
1127 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1128 aq->cq.drop_ena = 1;
1129
1130 if (!is_otx2_lbkvf(pfvf->pdev)) {
1131 /* Enable receive CQ backpressure */
1132 aq->cq.bp_ena = 1;
1133 #ifdef CONFIG_DCB
1134 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1135 #else
1136 aq->cq.bpid = pfvf->bpid[0];
1137 #endif
1138
1139 /* Set backpressure level is same as cq pass level */
1140 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1141 }
1142 }
1143
1144 /* Fill AQ info */
1145 aq->qidx = qidx;
1146 aq->ctype = NIX_AQ_CTYPE_CQ;
1147 aq->op = NIX_AQ_INSTOP_INIT;
1148
1149 return otx2_sync_mbox_msg(&pfvf->mbox);
1150 }
1151
otx2_pool_refill_task(struct work_struct * work)1152 static void otx2_pool_refill_task(struct work_struct *work)
1153 {
1154 struct otx2_cq_queue *cq;
1155 struct refill_work *wrk;
1156 struct otx2_nic *pfvf;
1157 int qidx;
1158
1159 wrk = container_of(work, struct refill_work, pool_refill_work.work);
1160 pfvf = wrk->pf;
1161 qidx = wrk - pfvf->refill_wrk;
1162 cq = &pfvf->qset.cq[qidx];
1163
1164 cq->refill_task_sched = false;
1165
1166 local_bh_disable();
1167 napi_schedule(wrk->napi);
1168 local_bh_enable();
1169 }
1170
otx2_config_nix_queues(struct otx2_nic * pfvf)1171 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1172 {
1173 int qidx, err;
1174
1175 /* Initialize RX queues */
1176 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1177 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1178
1179 err = otx2_rq_init(pfvf, qidx, lpb_aura);
1180 if (err)
1181 return err;
1182 }
1183
1184 /* Initialize TX queues */
1185 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1186 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1187
1188 err = otx2_sq_init(pfvf, qidx, sqb_aura);
1189 if (err)
1190 return err;
1191 }
1192
1193 /* Initialize completion queues */
1194 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1195 err = otx2_cq_init(pfvf, qidx);
1196 if (err)
1197 return err;
1198 }
1199
1200 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1201 NIX_LF_CQ_OP_STATUS);
1202
1203 /* Initialize work queue for receive buffer refill */
1204 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1205 sizeof(struct refill_work), GFP_KERNEL);
1206 if (!pfvf->refill_wrk)
1207 return -ENOMEM;
1208
1209 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1210 pfvf->refill_wrk[qidx].pf = pfvf;
1211 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1212 otx2_pool_refill_task);
1213 }
1214 return 0;
1215 }
1216
otx2_config_nix(struct otx2_nic * pfvf)1217 int otx2_config_nix(struct otx2_nic *pfvf)
1218 {
1219 struct nix_lf_alloc_req *nixlf;
1220 struct nix_lf_alloc_rsp *rsp;
1221 int err;
1222
1223 pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1224
1225 /* Get memory to put this msg */
1226 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1227 if (!nixlf)
1228 return -ENOMEM;
1229
1230 /* Set RQ/SQ/CQ counts */
1231 nixlf->rq_cnt = pfvf->hw.rx_queues;
1232 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1233 nixlf->cq_cnt = pfvf->qset.cq_cnt;
1234 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1235 nixlf->rss_grps = MAX_RSS_GROUPS;
1236 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1237 /* We don't know absolute NPA LF idx attached.
1238 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1239 * NPA LF attached to this RVU PF/VF.
1240 */
1241 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1242 /* Disable alignment pad, enable L2 length check,
1243 * enable L4 TCP/UDP checksum verification.
1244 */
1245 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1246
1247 err = otx2_sync_mbox_msg(&pfvf->mbox);
1248 if (err)
1249 return err;
1250
1251 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1252 &nixlf->hdr);
1253 if (IS_ERR(rsp))
1254 return PTR_ERR(rsp);
1255
1256 if (rsp->qints < 1)
1257 return -ENXIO;
1258
1259 return rsp->hdr.rc;
1260 }
1261
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1262 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1263 {
1264 struct otx2_qset *qset = &pfvf->qset;
1265 struct otx2_hw *hw = &pfvf->hw;
1266 struct otx2_snd_queue *sq;
1267 int sqb, qidx;
1268 u64 iova, pa;
1269
1270 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1271 sq = &qset->sq[qidx];
1272 if (!sq->sqb_ptrs)
1273 continue;
1274 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1275 if (!sq->sqb_ptrs[sqb])
1276 continue;
1277 iova = sq->sqb_ptrs[sqb];
1278 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1279 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1280 DMA_FROM_DEVICE,
1281 DMA_ATTR_SKIP_CPU_SYNC);
1282 put_page(virt_to_page(phys_to_virt(pa)));
1283 }
1284 sq->sqb_count = 0;
1285 }
1286 }
1287
otx2_free_bufs(struct otx2_nic * pfvf,struct otx2_pool * pool,u64 iova,int size)1288 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1289 u64 iova, int size)
1290 {
1291 struct page *page;
1292 u64 pa;
1293
1294 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1295 page = virt_to_head_page(phys_to_virt(pa));
1296 if (pool->page_pool) {
1297 page_pool_put_full_page(pool->page_pool, page, true);
1298 } else if (pool->xsk_pool) {
1299 /* Note: No way of identifying xdp_buff */
1300 } else {
1301 dma_unmap_page_attrs(pfvf->dev, iova, size,
1302 DMA_FROM_DEVICE,
1303 DMA_ATTR_SKIP_CPU_SYNC);
1304
1305 put_page(page);
1306 }
1307 }
1308
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1309 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1310 {
1311 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1312 struct otx2_pool *pool;
1313 u64 iova;
1314 int idx;
1315
1316 if (type == AURA_NIX_SQ) {
1317 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1318 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1319 size = pfvf->hw.sqb_size;
1320 }
1321 if (type == AURA_NIX_RQ) {
1322 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1323 pool_end = pfvf->hw.rqpool_cnt;
1324 size = pfvf->rbsize;
1325 }
1326
1327 /* Free SQB and RQB pointers from the aura pool */
1328 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1329 pool = &pfvf->qset.pool[pool_id];
1330 iova = otx2_aura_allocptr(pfvf, pool_id);
1331 while (iova) {
1332 if (type == AURA_NIX_RQ)
1333 iova -= OTX2_HEAD_ROOM;
1334 otx2_free_bufs(pfvf, pool, iova, size);
1335 iova = otx2_aura_allocptr(pfvf, pool_id);
1336 }
1337
1338 for (idx = 0 ; idx < pool->xdp_cnt; idx++) {
1339 if (!pool->xdp[idx])
1340 continue;
1341
1342 xsk_buff_free(pool->xdp[idx]);
1343 }
1344 }
1345 }
1346
otx2_aura_pool_free(struct otx2_nic * pfvf)1347 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1348 {
1349 struct otx2_pool *pool;
1350 int pool_id;
1351
1352 if (!pfvf->qset.pool)
1353 return;
1354
1355 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1356 pool = &pfvf->qset.pool[pool_id];
1357 qmem_free(pfvf->dev, pool->stack);
1358 qmem_free(pfvf->dev, pool->fc_addr);
1359 page_pool_destroy(pool->page_pool);
1360 devm_kfree(pfvf->dev, pool->xdp);
1361 pool->xsk_pool = NULL;
1362 }
1363 devm_kfree(pfvf->dev, pfvf->qset.pool);
1364 pfvf->qset.pool = NULL;
1365 }
1366
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1367 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1368 int pool_id, int numptrs)
1369 {
1370 struct npa_aq_enq_req *aq;
1371 struct otx2_pool *pool;
1372 int err;
1373
1374 pool = &pfvf->qset.pool[pool_id];
1375
1376 /* Allocate memory for HW to update Aura count.
1377 * Alloc one cache line, so that it fits all FC_STYPE modes.
1378 */
1379 if (!pool->fc_addr) {
1380 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1381 if (err)
1382 return err;
1383 }
1384
1385 /* Initialize this aura's context via AF */
1386 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1387 if (!aq) {
1388 /* Shared mbox memory buffer is full, flush it and retry */
1389 err = otx2_sync_mbox_msg(&pfvf->mbox);
1390 if (err)
1391 return err;
1392 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1393 if (!aq)
1394 return -ENOMEM;
1395 }
1396
1397 aq->aura_id = aura_id;
1398 /* Will be filled by AF with correct pool context address */
1399 aq->aura.pool_addr = pool_id;
1400 aq->aura.pool_caching = 1;
1401 aq->aura.shift = ilog2(numptrs) - 8;
1402 aq->aura.count = numptrs;
1403 aq->aura.limit = numptrs;
1404 aq->aura.avg_level = 255;
1405 aq->aura.ena = 1;
1406 aq->aura.fc_ena = 1;
1407 aq->aura.fc_addr = pool->fc_addr->iova;
1408 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1409
1410 /* Enable backpressure for RQ aura */
1411 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1412 aq->aura.bp_ena = 0;
1413 /* If NIX1 LF is attached then specify NIX1_RX.
1414 *
1415 * Below NPA_AURA_S[BP_ENA] is set according to the
1416 * NPA_BPINTF_E enumeration given as:
1417 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1418 * NIX0_RX is 0x0 + 0*0x1 = 0
1419 * NIX1_RX is 0x0 + 1*0x1 = 1
1420 * But in HRM it is given that
1421 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1422 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1423 * enumerated by NPA_BPINTF_E."
1424 */
1425 if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1426 aq->aura.bp_ena = 1;
1427 #ifdef CONFIG_DCB
1428 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1429 #else
1430 aq->aura.nix0_bpid = pfvf->bpid[0];
1431 #endif
1432
1433 /* Set backpressure level for RQ's Aura */
1434 aq->aura.bp = RQ_BP_LVL_AURA;
1435 }
1436
1437 /* Fill AQ info */
1438 aq->ctype = NPA_AQ_CTYPE_AURA;
1439 aq->op = NPA_AQ_INSTOP_INIT;
1440
1441 return 0;
1442 }
1443
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1444 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1445 int stack_pages, int numptrs, int buf_size, int type)
1446 {
1447 struct page_pool_params pp_params = { 0 };
1448 struct xsk_buff_pool *xsk_pool;
1449 struct npa_aq_enq_req *aq;
1450 struct otx2_pool *pool;
1451 int err;
1452
1453 pool = &pfvf->qset.pool[pool_id];
1454 /* Alloc memory for stack which is used to store buffer pointers */
1455 err = qmem_alloc(pfvf->dev, &pool->stack,
1456 stack_pages, pfvf->hw.stack_pg_bytes);
1457 if (err)
1458 return err;
1459
1460 pool->rbsize = buf_size;
1461
1462 /* Initialize this pool's context via AF */
1463 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1464 if (!aq) {
1465 /* Shared mbox memory buffer is full, flush it and retry */
1466 err = otx2_sync_mbox_msg(&pfvf->mbox);
1467 if (err) {
1468 qmem_free(pfvf->dev, pool->stack);
1469 return err;
1470 }
1471 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1472 if (!aq) {
1473 qmem_free(pfvf->dev, pool->stack);
1474 return -ENOMEM;
1475 }
1476 }
1477
1478 aq->aura_id = pool_id;
1479 aq->pool.stack_base = pool->stack->iova;
1480 aq->pool.stack_caching = 1;
1481 aq->pool.ena = 1;
1482 aq->pool.buf_size = buf_size / 128;
1483 aq->pool.stack_max_pages = stack_pages;
1484 aq->pool.shift = ilog2(numptrs) - 8;
1485 aq->pool.ptr_start = 0;
1486 aq->pool.ptr_end = ~0ULL;
1487
1488 /* Fill AQ info */
1489 aq->ctype = NPA_AQ_CTYPE_POOL;
1490 aq->op = NPA_AQ_INSTOP_INIT;
1491
1492 if (type != AURA_NIX_RQ)
1493 return 0;
1494
1495 if (!test_bit(pool_id, pfvf->af_xdp_zc_qidx)) {
1496 pp_params.order = get_order(buf_size);
1497 pp_params.flags = PP_FLAG_DMA_MAP;
1498 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1499 pp_params.nid = NUMA_NO_NODE;
1500 pp_params.dev = pfvf->dev;
1501 pp_params.dma_dir = DMA_FROM_DEVICE;
1502 pool->page_pool = page_pool_create(&pp_params);
1503 if (IS_ERR(pool->page_pool)) {
1504 netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1505 return PTR_ERR(pool->page_pool);
1506 }
1507 return 0;
1508 }
1509
1510 /* Set XSK pool to support AF_XDP zero-copy */
1511 xsk_pool = xsk_get_pool_from_qid(pfvf->netdev, pool_id);
1512 if (xsk_pool) {
1513 pool->xsk_pool = xsk_pool;
1514 pool->xdp_cnt = numptrs;
1515 pool->xdp = devm_kcalloc(pfvf->dev,
1516 numptrs, sizeof(struct xdp_buff *), GFP_KERNEL);
1517 if (IS_ERR(pool->xdp)) {
1518 netdev_err(pfvf->netdev, "Creation of xsk pool failed\n");
1519 return PTR_ERR(pool->xdp);
1520 }
1521 }
1522
1523 return 0;
1524 }
1525
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1526 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1527 {
1528 int qidx, pool_id, stack_pages, num_sqbs;
1529 struct otx2_qset *qset = &pfvf->qset;
1530 struct otx2_hw *hw = &pfvf->hw;
1531 struct otx2_snd_queue *sq;
1532 struct otx2_pool *pool;
1533 dma_addr_t bufptr;
1534 int err, ptr;
1535
1536 /* Calculate number of SQBs needed.
1537 *
1538 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1539 * Last SQE is used for pointing to next SQB.
1540 */
1541 num_sqbs = (hw->sqb_size / 128) - 1;
1542 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1543
1544 /* Get no of stack pages needed */
1545 stack_pages =
1546 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1547
1548 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1549 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1550 /* Initialize aura context */
1551 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1552 if (err)
1553 goto fail;
1554
1555 /* Initialize pool context */
1556 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1557 num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1558 if (err)
1559 goto fail;
1560 }
1561
1562 /* Flush accumulated messages */
1563 err = otx2_sync_mbox_msg(&pfvf->mbox);
1564 if (err)
1565 goto fail;
1566
1567 /* Allocate pointers and free them to aura/pool */
1568 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1569 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1570 pool = &pfvf->qset.pool[pool_id];
1571
1572 sq = &qset->sq[qidx];
1573 sq->sqb_count = 0;
1574 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1575 if (!sq->sqb_ptrs) {
1576 err = -ENOMEM;
1577 goto err_mem;
1578 }
1579
1580 for (ptr = 0; ptr < num_sqbs; ptr++) {
1581 err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr);
1582 if (err) {
1583 if (pool->xsk_pool) {
1584 ptr--;
1585 while (ptr >= 0) {
1586 xsk_buff_free(pool->xdp[ptr]);
1587 ptr--;
1588 }
1589 }
1590 goto err_mem;
1591 }
1592
1593 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1594 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1595 }
1596 }
1597
1598 err_mem:
1599 return err ? -ENOMEM : 0;
1600
1601 fail:
1602 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1603 otx2_aura_pool_free(pfvf);
1604 return err;
1605 }
1606
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1607 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1608 {
1609 struct otx2_hw *hw = &pfvf->hw;
1610 int stack_pages, pool_id, rq;
1611 struct otx2_pool *pool;
1612 int err, ptr, num_ptrs;
1613 dma_addr_t bufptr;
1614
1615 num_ptrs = pfvf->qset.rqe_cnt;
1616
1617 stack_pages =
1618 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1619
1620 for (rq = 0; rq < hw->rx_queues; rq++) {
1621 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1622 /* Initialize aura context */
1623 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1624 if (err)
1625 goto fail;
1626 }
1627 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1628 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1629 num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1630 if (err)
1631 goto fail;
1632 }
1633
1634 /* Flush accumulated messages */
1635 err = otx2_sync_mbox_msg(&pfvf->mbox);
1636 if (err)
1637 goto fail;
1638
1639 /* Allocate pointers and free them to aura/pool */
1640 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1641 pool = &pfvf->qset.pool[pool_id];
1642
1643 for (ptr = 0; ptr < num_ptrs; ptr++) {
1644 err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr);
1645 if (err) {
1646 if (pool->xsk_pool) {
1647 while (ptr)
1648 xsk_buff_free(pool->xdp[--ptr]);
1649 }
1650 return -ENOMEM;
1651 }
1652
1653 pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1654 pool->xsk_pool ? bufptr :
1655 bufptr + OTX2_HEAD_ROOM);
1656 }
1657 }
1658 return 0;
1659 fail:
1660 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1661 otx2_aura_pool_free(pfvf);
1662 return err;
1663 }
1664
otx2_config_npa(struct otx2_nic * pfvf)1665 int otx2_config_npa(struct otx2_nic *pfvf)
1666 {
1667 struct otx2_qset *qset = &pfvf->qset;
1668 struct npa_lf_alloc_req *npalf;
1669 struct otx2_hw *hw = &pfvf->hw;
1670 int aura_cnt;
1671
1672 /* Pool - Stack of free buffer pointers
1673 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1674 */
1675
1676 if (!hw->pool_cnt)
1677 return -EINVAL;
1678
1679 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1680 sizeof(struct otx2_pool), GFP_KERNEL);
1681 if (!qset->pool)
1682 return -ENOMEM;
1683
1684 /* Get memory to put this msg */
1685 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1686 if (!npalf)
1687 return -ENOMEM;
1688
1689 /* Set aura and pool counts */
1690 npalf->nr_pools = hw->pool_cnt;
1691 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1692 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1693
1694 return otx2_sync_mbox_msg(&pfvf->mbox);
1695 }
1696
otx2_detach_resources(struct mbox * mbox)1697 int otx2_detach_resources(struct mbox *mbox)
1698 {
1699 struct rsrc_detach *detach;
1700
1701 mutex_lock(&mbox->lock);
1702 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1703 if (!detach) {
1704 mutex_unlock(&mbox->lock);
1705 return -ENOMEM;
1706 }
1707
1708 /* detach all */
1709 detach->partial = false;
1710
1711 /* Send detach request to AF */
1712 otx2_sync_mbox_msg(mbox);
1713 mutex_unlock(&mbox->lock);
1714 return 0;
1715 }
1716 EXPORT_SYMBOL(otx2_detach_resources);
1717
otx2_attach_npa_nix(struct otx2_nic * pfvf)1718 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1719 {
1720 struct rsrc_attach *attach;
1721 struct msg_req *msix;
1722 int err;
1723
1724 mutex_lock(&pfvf->mbox.lock);
1725 /* Get memory to put this msg */
1726 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1727 if (!attach) {
1728 mutex_unlock(&pfvf->mbox.lock);
1729 return -ENOMEM;
1730 }
1731
1732 attach->npalf = true;
1733 attach->nixlf = true;
1734
1735 /* Send attach request to AF */
1736 err = otx2_sync_mbox_msg(&pfvf->mbox);
1737 if (err) {
1738 mutex_unlock(&pfvf->mbox.lock);
1739 return err;
1740 }
1741
1742 pfvf->nix_blkaddr = BLKADDR_NIX0;
1743
1744 /* If the platform has two NIX blocks then LF may be
1745 * allocated from NIX1.
1746 */
1747 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1748 pfvf->nix_blkaddr = BLKADDR_NIX1;
1749
1750 /* Get NPA and NIX MSIX vector offsets */
1751 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1752 if (!msix) {
1753 mutex_unlock(&pfvf->mbox.lock);
1754 return -ENOMEM;
1755 }
1756
1757 err = otx2_sync_mbox_msg(&pfvf->mbox);
1758 if (err) {
1759 mutex_unlock(&pfvf->mbox.lock);
1760 return err;
1761 }
1762 mutex_unlock(&pfvf->mbox.lock);
1763
1764 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1765 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1766 dev_err(pfvf->dev,
1767 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1768 return -EINVAL;
1769 }
1770
1771 return 0;
1772 }
1773 EXPORT_SYMBOL(otx2_attach_npa_nix);
1774
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1775 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1776 {
1777 struct hwctx_disable_req *req;
1778
1779 mutex_lock(&mbox->lock);
1780 /* Request AQ to disable this context */
1781 if (npa)
1782 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1783 else
1784 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1785
1786 if (!req) {
1787 mutex_unlock(&mbox->lock);
1788 return;
1789 }
1790
1791 req->ctype = type;
1792
1793 if (otx2_sync_mbox_msg(mbox))
1794 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1795 __func__);
1796
1797 mutex_unlock(&mbox->lock);
1798 }
1799
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1800 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1801 {
1802 struct nix_bp_cfg_req *req;
1803
1804 if (enable)
1805 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1806 else
1807 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1808
1809 if (!req)
1810 return -ENOMEM;
1811
1812 req->chan_base = 0;
1813 if (otx2_is_pfc_enabled(pfvf)) {
1814 req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1815 req->bpid_per_chan = 1;
1816 } else {
1817 req->chan_cnt = pfvf->hw.rx_chan_cnt;
1818 req->bpid_per_chan = 0;
1819 }
1820
1821 return otx2_sync_mbox_msg(&pfvf->mbox);
1822 }
1823 EXPORT_SYMBOL(otx2_nix_config_bp);
1824
otx2_nix_cpt_config_bp(struct otx2_nic * pfvf,bool enable)1825 int otx2_nix_cpt_config_bp(struct otx2_nic *pfvf, bool enable)
1826 {
1827 struct nix_bp_cfg_req *req;
1828
1829 if (enable)
1830 req = otx2_mbox_alloc_msg_nix_cpt_bp_enable(&pfvf->mbox);
1831 else
1832 req = otx2_mbox_alloc_msg_nix_cpt_bp_disable(&pfvf->mbox);
1833
1834 if (!req)
1835 return -ENOMEM;
1836
1837 req->chan_base = 0;
1838 if (otx2_is_pfc_enabled(pfvf)) {
1839 req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1840 req->bpid_per_chan = 1;
1841 } else {
1842 req->chan_cnt = pfvf->hw.rx_chan_cnt;
1843 req->bpid_per_chan = 0;
1844 }
1845
1846 return otx2_sync_mbox_msg(&pfvf->mbox);
1847 }
1848 EXPORT_SYMBOL(otx2_nix_cpt_config_bp);
1849
1850 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1851 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1852 struct cgx_stats_rsp *rsp)
1853 {
1854 int id;
1855
1856 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1857 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1858 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1859 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1860 }
1861
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1862 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1863 struct cgx_fec_stats_rsp *rsp)
1864 {
1865 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1866 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1867 }
1868
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1869 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1870 struct npa_lf_alloc_rsp *rsp)
1871 {
1872 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1873 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1874 }
1875 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1876
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1877 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1878 struct nix_lf_alloc_rsp *rsp)
1879 {
1880 pfvf->hw.sqb_size = rsp->sqb_size;
1881 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1882 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1883 pfvf->hw.rx_chan_cnt = rsp->rx_chan_cnt;
1884 pfvf->hw.tx_chan_cnt = rsp->tx_chan_cnt;
1885 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1886 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1887 pfvf->hw.cgx_links = rsp->cgx_links;
1888 pfvf->hw.lbk_links = rsp->lbk_links;
1889 pfvf->hw.tx_link = rsp->tx_link;
1890 }
1891 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1892
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1893 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1894 struct msix_offset_rsp *rsp)
1895 {
1896 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1897 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1898 }
1899 EXPORT_SYMBOL(mbox_handler_msix_offset);
1900
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1901 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1902 struct nix_bp_cfg_rsp *rsp)
1903 {
1904 int chan, chan_id;
1905
1906 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1907 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1908 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1909 }
1910 }
1911 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1912
otx2_free_cints(struct otx2_nic * pfvf,int n)1913 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1914 {
1915 struct otx2_qset *qset = &pfvf->qset;
1916 struct otx2_hw *hw = &pfvf->hw;
1917 int irq, qidx;
1918
1919 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1920 qidx < n;
1921 qidx++, irq++) {
1922 int vector = pci_irq_vector(pfvf->pdev, irq);
1923
1924 irq_set_affinity_hint(vector, NULL);
1925 free_cpumask_var(hw->affinity_mask[irq]);
1926 free_irq(vector, &qset->napi[qidx]);
1927 }
1928 }
1929 EXPORT_SYMBOL(otx2_free_cints);
1930
otx2_set_cints_affinity(struct otx2_nic * pfvf)1931 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1932 {
1933 struct otx2_hw *hw = &pfvf->hw;
1934 int vec, cpu, irq, cint;
1935
1936 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1937 cpu = cpumask_first(cpu_online_mask);
1938
1939 /* CQ interrupts */
1940 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1941 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1942 return;
1943
1944 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1945
1946 irq = pci_irq_vector(pfvf->pdev, vec);
1947 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1948
1949 cpu = cpumask_next(cpu, cpu_online_mask);
1950 if (unlikely(cpu >= nr_cpu_ids))
1951 cpu = 0;
1952 }
1953 }
1954
get_dwrr_mtu(struct otx2_nic * pfvf,struct nix_hw_info * hw)1955 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1956 {
1957 if (is_otx2_lbkvf(pfvf->pdev)) {
1958 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1959 return hw->lbk_dwrr_mtu;
1960 }
1961
1962 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1963 return hw->rpm_dwrr_mtu;
1964 }
1965
otx2_get_max_mtu(struct otx2_nic * pfvf)1966 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1967 {
1968 struct nix_hw_info *rsp;
1969 struct msg_req *req;
1970 u16 max_mtu;
1971 int rc;
1972
1973 mutex_lock(&pfvf->mbox.lock);
1974
1975 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1976 if (!req) {
1977 rc = -ENOMEM;
1978 goto out;
1979 }
1980
1981 rc = otx2_sync_mbox_msg(&pfvf->mbox);
1982 if (!rc) {
1983 rsp = (struct nix_hw_info *)
1984 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1985 if (IS_ERR(rsp)) {
1986 rc = PTR_ERR(rsp);
1987 goto out;
1988 }
1989
1990 /* HW counts VLAN insertion bytes (8 for double tag)
1991 * irrespective of whether SQE is requesting to insert VLAN
1992 * in the packet or not. Hence these 8 bytes have to be
1993 * discounted from max packet size otherwise HW will throw
1994 * SMQ errors
1995 */
1996 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1997
1998 /* Also save DWRR MTU, needed for DWRR weight calculation */
1999 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
2000 if (!pfvf->hw.dwrr_mtu)
2001 pfvf->hw.dwrr_mtu = 1;
2002 }
2003
2004 out:
2005 mutex_unlock(&pfvf->mbox.lock);
2006 if (rc) {
2007 dev_warn(pfvf->dev,
2008 "Failed to get MTU from hardware setting default value(1500)\n");
2009 max_mtu = 1500;
2010 }
2011 return max_mtu;
2012 }
2013 EXPORT_SYMBOL(otx2_get_max_mtu);
2014
otx2_handle_ntuple_tc_features(struct net_device * netdev,netdev_features_t features)2015 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
2016 {
2017 netdev_features_t changed = features ^ netdev->features;
2018 struct otx2_nic *pfvf = netdev_priv(netdev);
2019 bool ntuple = !!(features & NETIF_F_NTUPLE);
2020 bool tc = !!(features & NETIF_F_HW_TC);
2021
2022 if ((changed & NETIF_F_NTUPLE) && !ntuple)
2023 otx2_destroy_ntuple_flows(pfvf);
2024
2025 if ((changed & NETIF_F_NTUPLE) && ntuple) {
2026 if (!pfvf->flow_cfg->max_flows) {
2027 netdev_err(netdev,
2028 "Can't enable NTUPLE, MCAM entries not allocated\n");
2029 return -EINVAL;
2030 }
2031 }
2032
2033 if ((changed & NETIF_F_HW_TC) && !tc &&
2034 otx2_tc_flower_rule_cnt(pfvf)) {
2035 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
2036 return -EBUSY;
2037 }
2038
2039 if ((changed & NETIF_F_NTUPLE) && ntuple &&
2040 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
2041 netdev_err(netdev,
2042 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
2043 return -EINVAL;
2044 }
2045
2046 return 0;
2047 }
2048 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
2049
otx2_set_hw_capabilities(struct otx2_nic * pfvf)2050 int otx2_set_hw_capabilities(struct otx2_nic *pfvf)
2051 {
2052 struct mbox *mbox = &pfvf->mbox;
2053 struct otx2_hw *hw = &pfvf->hw;
2054 struct get_hw_cap_rsp *rsp;
2055 struct msg_req *req;
2056 int ret = -ENOMEM;
2057
2058 mutex_lock(&mbox->lock);
2059
2060 req = otx2_mbox_alloc_msg_get_hw_cap(mbox);
2061 if (!req)
2062 goto fail;
2063
2064 ret = otx2_sync_mbox_msg(mbox);
2065 if (ret)
2066 goto fail;
2067
2068 rsp = (struct get_hw_cap_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox,
2069 0, &req->hdr);
2070 if (IS_ERR(rsp)) {
2071 ret = -EINVAL;
2072 goto fail;
2073 }
2074
2075 if (rsp->hw_caps & HW_CAP_MACSEC)
2076 __set_bit(CN10K_HW_MACSEC, &hw->cap_flag);
2077
2078 mutex_unlock(&mbox->lock);
2079
2080 return 0;
2081 fail:
2082 dev_err(pfvf->dev, "Cannot get MACSEC capability from AF\n");
2083 mutex_unlock(&mbox->lock);
2084 return ret;
2085 }
2086
2087 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
2088 int __weak \
2089 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
2090 struct _req_type *req, \
2091 struct _rsp_type *rsp) \
2092 { \
2093 /* Nothing to do here */ \
2094 return 0; \
2095 } \
2096 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
2097 MBOX_UP_CGX_MESSAGES
2098 MBOX_UP_MCS_MESSAGES
2099 #undef M
2100
otx2_dma_map_skb_frag(struct otx2_nic * pfvf,struct sk_buff * skb,int seg,int * len)2101 dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
2102 struct sk_buff *skb, int seg, int *len)
2103 {
2104 enum dma_data_direction dir = DMA_TO_DEVICE;
2105 const skb_frag_t *frag;
2106 struct page *page;
2107 int offset;
2108
2109 /* Crypto hardware need write permission for ipsec crypto offload */
2110 if (unlikely(xfrm_offload(skb))) {
2111 dir = DMA_BIDIRECTIONAL;
2112 skb = skb_unshare(skb, GFP_ATOMIC);
2113 }
2114
2115 /* First segment is always skb->data */
2116 if (!seg) {
2117 page = virt_to_page(skb->data);
2118 offset = offset_in_page(skb->data);
2119 *len = skb_headlen(skb);
2120 } else {
2121 frag = &skb_shinfo(skb)->frags[seg - 1];
2122 page = skb_frag_page(frag);
2123 offset = skb_frag_off(frag);
2124 *len = skb_frag_size(frag);
2125 }
2126 return otx2_dma_map_page(pfvf, page, offset, *len, dir);
2127 }
2128
otx2_dma_unmap_skb_frags(struct otx2_nic * pfvf,struct sg_list * sg)2129 void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
2130 {
2131 enum dma_data_direction dir = DMA_TO_DEVICE;
2132 struct sk_buff *skb = NULL;
2133 int seg;
2134
2135 skb = (struct sk_buff *)sg->skb;
2136 if (unlikely(xfrm_offload(skb)))
2137 dir = DMA_BIDIRECTIONAL;
2138
2139 for (seg = 0; seg < sg->num_segs; seg++) {
2140 otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
2141 sg->size[seg], dir);
2142 }
2143 sg->num_segs = 0;
2144 }
2145