1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13 #include <linux/dcbnl.h>
14 #include <net/xfrm.h>
15
16 #include "otx2_reg.h"
17 #include "otx2_common.h"
18 #include "otx2_struct.h"
19 #include "cn10k.h"
20 #include "otx2_xsk.h"
21
otx2_is_pfc_enabled(struct otx2_nic * pfvf)22 static bool otx2_is_pfc_enabled(struct otx2_nic *pfvf)
23 {
24 return IS_ENABLED(CONFIG_DCB) && !!pfvf->pfc_en;
25 }
26
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)27 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
28 struct otx2_nic *pfvf, int qidx)
29 {
30 u64 incr = (u64)qidx << 32;
31 void __iomem *ptr;
32
33 ptr = otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
34 stats->bytes = otx2_atomic64_add(incr, ptr);
35
36 ptr = otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
37 stats->pkts = otx2_atomic64_add(incr, ptr);
38 }
39
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)40 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
41 struct otx2_nic *pfvf, int qidx)
42 {
43 u64 incr = (u64)qidx << 32;
44 void __iomem *ptr;
45
46 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
47 stats->bytes = otx2_atomic64_add(incr, ptr);
48
49 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
50 stats->pkts = otx2_atomic64_add(incr, ptr);
51 }
52
otx2_update_lmac_stats(struct otx2_nic * pfvf)53 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
54 {
55 struct msg_req *req;
56
57 if (!netif_running(pfvf->netdev))
58 return;
59
60 mutex_lock(&pfvf->mbox.lock);
61 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
62 if (!req) {
63 mutex_unlock(&pfvf->mbox.lock);
64 return;
65 }
66
67 otx2_sync_mbox_msg(&pfvf->mbox);
68 mutex_unlock(&pfvf->mbox.lock);
69 }
70
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)71 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
72 {
73 struct msg_req *req;
74
75 if (!netif_running(pfvf->netdev))
76 return;
77 mutex_lock(&pfvf->mbox.lock);
78 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
79 if (req)
80 otx2_sync_mbox_msg(&pfvf->mbox);
81 mutex_unlock(&pfvf->mbox.lock);
82 }
83
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)84 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
85 {
86 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
87
88 if (!pfvf->qset.rq)
89 return 0;
90
91 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
92 return 1;
93 }
94 EXPORT_SYMBOL(otx2_update_rq_stats);
95
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)96 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
97 {
98 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
99
100 if (!pfvf->qset.sq)
101 return 0;
102
103 if (qidx >= pfvf->hw.non_qos_queues) {
104 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
105 return 0;
106 }
107
108 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
109 return 1;
110 }
111 EXPORT_SYMBOL(otx2_update_sq_stats);
112
otx2_get_dev_stats(struct otx2_nic * pfvf)113 void otx2_get_dev_stats(struct otx2_nic *pfvf)
114 {
115 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
116
117 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
118 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
119 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
120 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
121 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
122 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
123 dev_stats->rx_mcast_frames +
124 dev_stats->rx_ucast_frames;
125
126 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
127 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP) +
128 (unsigned long)atomic_long_read(&dev_stats->tx_discards);
129
130 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
131 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
132 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
133 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
134 dev_stats->tx_mcast_frames +
135 dev_stats->tx_ucast_frames;
136 }
137
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)138 void otx2_get_stats64(struct net_device *netdev,
139 struct rtnl_link_stats64 *stats)
140 {
141 struct otx2_nic *pfvf = netdev_priv(netdev);
142 struct otx2_dev_stats *dev_stats;
143
144 otx2_get_dev_stats(pfvf);
145
146 dev_stats = &pfvf->hw.dev_stats;
147 stats->rx_bytes = dev_stats->rx_bytes;
148 stats->rx_packets = dev_stats->rx_frames;
149 stats->rx_dropped = dev_stats->rx_drops;
150 stats->multicast = dev_stats->rx_mcast_frames;
151
152 stats->tx_bytes = dev_stats->tx_bytes;
153 stats->tx_packets = dev_stats->tx_frames;
154 stats->tx_dropped = dev_stats->tx_drops;
155 }
156 EXPORT_SYMBOL(otx2_get_stats64);
157
158 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)159 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
160 {
161 struct nix_set_mac_addr *req;
162 int err;
163
164 mutex_lock(&pfvf->mbox.lock);
165 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
166 if (!req) {
167 mutex_unlock(&pfvf->mbox.lock);
168 return -ENOMEM;
169 }
170
171 ether_addr_copy(req->mac_addr, mac);
172
173 err = otx2_sync_mbox_msg(&pfvf->mbox);
174 mutex_unlock(&pfvf->mbox.lock);
175 return err;
176 }
177
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)178 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
179 struct net_device *netdev)
180 {
181 struct nix_get_mac_addr_rsp *rsp;
182 struct mbox_msghdr *msghdr;
183 struct msg_req *req;
184 int err;
185
186 mutex_lock(&pfvf->mbox.lock);
187 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
188 if (!req) {
189 mutex_unlock(&pfvf->mbox.lock);
190 return -ENOMEM;
191 }
192
193 err = otx2_sync_mbox_msg(&pfvf->mbox);
194 if (err) {
195 mutex_unlock(&pfvf->mbox.lock);
196 return err;
197 }
198
199 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
200 if (IS_ERR(msghdr)) {
201 mutex_unlock(&pfvf->mbox.lock);
202 return PTR_ERR(msghdr);
203 }
204 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
205 eth_hw_addr_set(netdev, rsp->mac_addr);
206 mutex_unlock(&pfvf->mbox.lock);
207
208 return 0;
209 }
210
otx2_set_mac_address(struct net_device * netdev,void * p)211 int otx2_set_mac_address(struct net_device *netdev, void *p)
212 {
213 struct otx2_nic *pfvf = netdev_priv(netdev);
214 struct sockaddr *addr = p;
215
216 if (!is_valid_ether_addr(addr->sa_data))
217 return -EADDRNOTAVAIL;
218
219 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
220 eth_hw_addr_set(netdev, addr->sa_data);
221 /* update dmac field in vlan offload rule */
222 if (netif_running(netdev) &&
223 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
224 otx2_install_rxvlan_offload_flow(pfvf);
225 /* update dmac address in ntuple and DMAC filter list */
226 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
227 otx2_dmacflt_update_pfmac_flow(pfvf);
228 } else {
229 return -EPERM;
230 }
231
232 return 0;
233 }
234 EXPORT_SYMBOL(otx2_set_mac_address);
235
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)236 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
237 {
238 struct nix_frs_cfg *req;
239 u16 maxlen;
240 int err;
241
242 maxlen = pfvf->hw.max_mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
243
244 mutex_lock(&pfvf->mbox.lock);
245 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
246 if (!req) {
247 mutex_unlock(&pfvf->mbox.lock);
248 return -ENOMEM;
249 }
250
251 req->maxlen = mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
252
253 /* Use max receive length supported by hardware for loopback devices */
254 if (is_otx2_lbkvf(pfvf->pdev))
255 req->maxlen = maxlen;
256
257 err = otx2_sync_mbox_msg(&pfvf->mbox);
258 mutex_unlock(&pfvf->mbox.lock);
259 return err;
260 }
261 EXPORT_SYMBOL(otx2_hw_set_mtu);
262
otx2_config_pause_frm(struct otx2_nic * pfvf)263 int otx2_config_pause_frm(struct otx2_nic *pfvf)
264 {
265 struct cgx_pause_frm_cfg *req;
266 int err;
267
268 if (is_otx2_lbkvf(pfvf->pdev) || is_otx2_sdp_rep(pfvf->pdev))
269 return 0;
270
271 mutex_lock(&pfvf->mbox.lock);
272 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
273 if (!req) {
274 err = -ENOMEM;
275 goto unlock;
276 }
277
278 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
279 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
280 req->set = 1;
281
282 err = otx2_sync_mbox_msg(&pfvf->mbox);
283 unlock:
284 mutex_unlock(&pfvf->mbox.lock);
285 return err;
286 }
287 EXPORT_SYMBOL(otx2_config_pause_frm);
288
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)289 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
290 {
291 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
292 struct nix_rss_flowkey_cfg_rsp *rsp;
293 struct nix_rss_flowkey_cfg *req;
294 int err;
295
296 mutex_lock(&pfvf->mbox.lock);
297 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
298 if (!req) {
299 mutex_unlock(&pfvf->mbox.lock);
300 return -ENOMEM;
301 }
302 req->mcam_index = -1; /* Default or reserved index */
303 req->flowkey_cfg = rss->flowkey_cfg;
304 req->group = DEFAULT_RSS_CONTEXT_GROUP;
305
306 err = otx2_sync_mbox_msg(&pfvf->mbox);
307 if (err)
308 goto fail;
309
310 rsp = (struct nix_rss_flowkey_cfg_rsp *)
311 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
312 if (IS_ERR(rsp)) {
313 err = PTR_ERR(rsp);
314 goto fail;
315 }
316
317 pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
318 fail:
319 mutex_unlock(&pfvf->mbox.lock);
320 return err;
321 }
322
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id,const u32 * ind_tbl)323 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id, const u32 *ind_tbl)
324 {
325 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
326 const int index = rss->rss_size * ctx_id;
327 struct mbox *mbox = &pfvf->mbox;
328 struct nix_aq_enq_req *aq;
329 int idx, err;
330
331 mutex_lock(&mbox->lock);
332 ind_tbl = ind_tbl ?: rss->ind_tbl;
333 /* Get memory to put this msg */
334 for (idx = 0; idx < rss->rss_size; idx++) {
335 /* Ignore the queue if AF_XDP zero copy is enabled */
336 if (test_bit(ind_tbl[idx], pfvf->af_xdp_zc_qidx))
337 continue;
338
339 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
340 if (!aq) {
341 /* The shared memory buffer can be full.
342 * Flush it and retry
343 */
344 err = otx2_sync_mbox_msg(mbox);
345 if (err) {
346 mutex_unlock(&mbox->lock);
347 return err;
348 }
349 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
350 if (!aq) {
351 mutex_unlock(&mbox->lock);
352 return -ENOMEM;
353 }
354 }
355
356 aq->rss.rq = ind_tbl[idx];
357
358 /* Fill AQ info */
359 aq->qidx = index + idx;
360 aq->ctype = NIX_AQ_CTYPE_RSS;
361 aq->op = NIX_AQ_INSTOP_INIT;
362 }
363 err = otx2_sync_mbox_msg(mbox);
364 mutex_unlock(&mbox->lock);
365 return err;
366 }
367
otx2_set_rss_key(struct otx2_nic * pfvf)368 void otx2_set_rss_key(struct otx2_nic *pfvf)
369 {
370 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
371 u64 *key = (u64 *)&rss->key[4];
372 int idx;
373
374 /* 352bit or 44byte key needs to be configured as below
375 * NIX_LF_RX_SECRETX0 = key<351:288>
376 * NIX_LF_RX_SECRETX1 = key<287:224>
377 * NIX_LF_RX_SECRETX2 = key<223:160>
378 * NIX_LF_RX_SECRETX3 = key<159:96>
379 * NIX_LF_RX_SECRETX4 = key<95:32>
380 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
381 */
382 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
383 (u64)(*((u32 *)&rss->key)) << 32);
384 idx = sizeof(rss->key) / sizeof(u64);
385 while (idx > 0) {
386 idx--;
387 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
388 }
389 }
390
otx2_rss_init(struct otx2_nic * pfvf)391 int otx2_rss_init(struct otx2_nic *pfvf)
392 {
393 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
394 int idx, ret = 0;
395
396 rss->rss_size = sizeof(*rss->ind_tbl);
397
398 /* Init RSS key if it is not setup already */
399 if (!rss->enable)
400 netdev_rss_key_fill(rss->key, sizeof(rss->key));
401 otx2_set_rss_key(pfvf);
402
403 if (!netif_is_rxfh_configured(pfvf->netdev))
404 for (idx = 0; idx < rss->rss_size; idx++)
405 rss->ind_tbl[idx] =
406 ethtool_rxfh_indir_default(idx,
407 pfvf->hw.rx_queues);
408
409 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP, NULL);
410 if (ret)
411 return ret;
412
413 /* Flowkey or hash config to be used for generating flow tag */
414 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
415 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
416 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
417 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
418 NIX_FLOW_KEY_TYPE_IPV4_PROTO;
419
420 ret = otx2_set_flowkey_cfg(pfvf);
421 if (ret)
422 return ret;
423
424 rss->enable = true;
425 return 0;
426 }
427
428 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)429 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
430 {
431 struct nix_lso_format *field;
432
433 field = (struct nix_lso_format *)&lso->fields[0];
434 lso->field_mask = GENMASK(18, 0);
435
436 /* IP's Length field */
437 field->layer = NIX_TXLAYER_OL3;
438 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
439 field->offset = v4 ? 2 : 4;
440 field->sizem1 = 1; /* i.e 2 bytes */
441 field->alg = NIX_LSOALG_ADD_PAYLEN;
442 field++;
443
444 /* No ID field in IPv6 header */
445 if (v4) {
446 /* Increment IPID */
447 field->layer = NIX_TXLAYER_OL3;
448 field->offset = 4;
449 field->sizem1 = 1; /* i.e 2 bytes */
450 field->alg = NIX_LSOALG_ADD_SEGNUM;
451 field++;
452 }
453
454 /* Update length in UDP header */
455 field->layer = NIX_TXLAYER_OL4;
456 field->offset = 4;
457 field->sizem1 = 1;
458 field->alg = NIX_LSOALG_ADD_PAYLEN;
459 }
460
461 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)462 void otx2_setup_segmentation(struct otx2_nic *pfvf)
463 {
464 struct nix_lso_format_cfg_rsp *rsp;
465 struct nix_lso_format_cfg *lso;
466 struct otx2_hw *hw = &pfvf->hw;
467 int err;
468
469 mutex_lock(&pfvf->mbox.lock);
470
471 /* UDPv4 segmentation */
472 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
473 if (!lso)
474 goto fail;
475
476 /* Setup UDP/IP header fields that HW should update per segment */
477 otx2_setup_udp_segmentation(lso, true);
478
479 err = otx2_sync_mbox_msg(&pfvf->mbox);
480 if (err)
481 goto fail;
482
483 rsp = (struct nix_lso_format_cfg_rsp *)
484 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
485 if (IS_ERR(rsp))
486 goto fail;
487
488 hw->lso_udpv4_idx = rsp->lso_format_idx;
489
490 /* UDPv6 segmentation */
491 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
492 if (!lso)
493 goto fail;
494
495 /* Setup UDP/IP header fields that HW should update per segment */
496 otx2_setup_udp_segmentation(lso, false);
497
498 err = otx2_sync_mbox_msg(&pfvf->mbox);
499 if (err)
500 goto fail;
501
502 rsp = (struct nix_lso_format_cfg_rsp *)
503 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
504 if (IS_ERR(rsp))
505 goto fail;
506
507 hw->lso_udpv6_idx = rsp->lso_format_idx;
508 mutex_unlock(&pfvf->mbox.lock);
509 return;
510 fail:
511 mutex_unlock(&pfvf->mbox.lock);
512 netdev_info(pfvf->netdev,
513 "Failed to get LSO index for UDP GSO offload, disabling\n");
514 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
515 }
516
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)517 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
518 {
519 /* Configure CQE interrupt coalescing parameters
520 *
521 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
522 * set 1 less than cq_ecount_wait. And cq_time_wait is in
523 * usecs, convert that to 100ns count.
524 */
525 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
526 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
527 ((u64)pfvf->hw.cq_qcount_wait << 32) |
528 (pfvf->hw.cq_ecount_wait - 1));
529 }
530
otx2_alloc_pool_buf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)531 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
532 dma_addr_t *dma)
533 {
534 unsigned int offset = 0;
535 struct page *page;
536 size_t sz;
537
538 sz = SKB_DATA_ALIGN(pool->rbsize);
539 sz = ALIGN(sz, OTX2_ALIGN);
540
541 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
542 if (unlikely(!page))
543 return -ENOMEM;
544
545 *dma = page_pool_get_dma_addr(page) + offset;
546 return 0;
547 }
548
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma,int qidx,int idx)549 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
550 dma_addr_t *dma, int qidx, int idx)
551 {
552 u8 *buf;
553
554 if (pool->xsk_pool)
555 return otx2_xsk_pool_alloc_buf(pfvf, pool, dma, idx);
556
557 if (pool->page_pool)
558 return otx2_alloc_pool_buf(pfvf, pool, dma);
559
560 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
561 if (unlikely(!buf))
562 return -ENOMEM;
563
564 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
565 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
566 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
567 page_frag_free(buf);
568 return -ENOMEM;
569 }
570
571 return 0;
572 }
573
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma,int qidx,int idx)574 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
575 dma_addr_t *dma, int qidx, int idx)
576 {
577 int ret;
578
579 local_bh_disable();
580 ret = __otx2_alloc_rbuf(pfvf, pool, dma, qidx, idx);
581 local_bh_enable();
582 return ret;
583 }
584
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)585 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
586 dma_addr_t *dma)
587 {
588 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma,
589 cq->cq_idx, cq->pool_ptrs - 1)))
590 return -ENOMEM;
591 return 0;
592 }
593
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)594 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
595 {
596 struct otx2_nic *pfvf = netdev_priv(netdev);
597
598 schedule_work(&pfvf->reset_task);
599 }
600 EXPORT_SYMBOL(otx2_tx_timeout);
601
otx2_get_mac_from_af(struct net_device * netdev)602 void otx2_get_mac_from_af(struct net_device *netdev)
603 {
604 struct otx2_nic *pfvf = netdev_priv(netdev);
605 int err;
606
607 err = otx2_hw_get_mac_addr(pfvf, netdev);
608 if (err)
609 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
610
611 /* If AF doesn't provide a valid MAC, generate a random one */
612 if (!is_valid_ether_addr(netdev->dev_addr))
613 eth_hw_addr_random(netdev);
614 }
615 EXPORT_SYMBOL(otx2_get_mac_from_af);
616
otx2_txschq_config(struct otx2_nic * pfvf,int lvl,int prio,bool txschq_for_pfc)617 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
618 {
619 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
620 struct otx2_hw *hw = &pfvf->hw;
621 struct nix_txschq_config *req;
622 u64 schq, parent;
623 u64 dwrr_val;
624
625 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
626
627 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
628 if (!req)
629 return -ENOMEM;
630
631 req->lvl = lvl;
632 req->num_regs = 1;
633
634 schq_list = hw->txschq_list;
635 #ifdef CONFIG_DCB
636 if (txschq_for_pfc)
637 schq_list = pfvf->pfc_schq_list;
638 #endif
639
640 schq = schq_list[lvl][prio];
641 /* Set topology e.t.c configuration */
642 if (lvl == NIX_TXSCH_LVL_SMQ) {
643 req->reg[0] = NIX_AF_SMQX_CFG(schq);
644 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
645 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
646 (0x2ULL << 36);
647 /* Set link type for DWRR MTU selection on CN10K silicons */
648 if (!is_dev_otx2(pfvf->pdev))
649 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
650 (u64)hw->smq_link_type);
651 req->num_regs++;
652 /* MDQ config */
653 parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
654 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
655 req->regval[1] = parent << 16;
656 req->num_regs++;
657 /* Set DWRR quantum */
658 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
659 req->regval[2] = dwrr_val;
660 } else if (lvl == NIX_TXSCH_LVL_TL4) {
661 int sdp_chan = hw->tx_chan_base + prio;
662
663 if (is_otx2_sdp_rep(pfvf->pdev))
664 prio = 0;
665 parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
666 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
667 req->regval[0] = (u64)parent << 16;
668 req->num_regs++;
669 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
670 req->regval[1] = dwrr_val;
671 if (is_otx2_sdp_rep(pfvf->pdev)) {
672 req->num_regs++;
673 req->reg[2] = NIX_AF_TL4X_SDP_LINK_CFG(schq);
674 req->regval[2] = BIT_ULL(12) | BIT_ULL(13) |
675 (sdp_chan & 0xff);
676 }
677 } else if (lvl == NIX_TXSCH_LVL_TL3) {
678 parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
679 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
680 req->regval[0] = (u64)parent << 16;
681 req->num_regs++;
682 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
683 req->regval[1] = dwrr_val;
684 if (lvl == hw->txschq_link_cfg_lvl &&
685 !is_otx2_sdp_rep(pfvf->pdev)) {
686 req->num_regs++;
687 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
688 /* Enable this queue and backpressure
689 * and set relative channel
690 */
691 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
692 }
693 } else if (lvl == NIX_TXSCH_LVL_TL2) {
694 parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
695 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
696 req->regval[0] = (u64)parent << 16;
697
698 req->num_regs++;
699 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
700 req->regval[1] = (u64)hw->txschq_aggr_lvl_rr_prio << 24 | dwrr_val;
701
702 if (lvl == hw->txschq_link_cfg_lvl &&
703 !is_otx2_sdp_rep(pfvf->pdev)) {
704 req->num_regs++;
705 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
706 /* Enable this queue and backpressure
707 * and set relative channel
708 */
709 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
710 }
711 } else if (lvl == NIX_TXSCH_LVL_TL1) {
712 /* Default config for TL1.
713 * For VF this is always ignored.
714 */
715
716 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will
717 * clip it to 16384, so configuring a 24bit max value
718 * will work on both OTx2 and CN10K.
719 */
720 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
721 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
722
723 req->num_regs++;
724 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
725 req->regval[1] = hw->txschq_aggr_lvl_rr_prio << 1;
726
727 req->num_regs++;
728 req->reg[2] = NIX_AF_TL1X_CIR(schq);
729 req->regval[2] = 0;
730 }
731
732 return otx2_sync_mbox_msg(&pfvf->mbox);
733 }
734 EXPORT_SYMBOL(otx2_txschq_config);
735
otx2_smq_flush(struct otx2_nic * pfvf,int smq)736 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
737 {
738 struct nix_txschq_config *req;
739 int rc;
740
741 mutex_lock(&pfvf->mbox.lock);
742
743 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
744 if (!req) {
745 mutex_unlock(&pfvf->mbox.lock);
746 return -ENOMEM;
747 }
748
749 req->lvl = NIX_TXSCH_LVL_SMQ;
750 req->reg[0] = NIX_AF_SMQX_CFG(smq);
751 req->regval[0] |= BIT_ULL(49);
752 req->num_regs++;
753
754 rc = otx2_sync_mbox_msg(&pfvf->mbox);
755 mutex_unlock(&pfvf->mbox.lock);
756 return rc;
757 }
758 EXPORT_SYMBOL(otx2_smq_flush);
759
otx2_txsch_alloc(struct otx2_nic * pfvf)760 int otx2_txsch_alloc(struct otx2_nic *pfvf)
761 {
762 int chan_cnt = pfvf->hw.tx_chan_cnt;
763 struct nix_txsch_alloc_req *req;
764 struct nix_txsch_alloc_rsp *rsp;
765 int lvl, schq, rc;
766
767 /* Get memory to put this msg */
768 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
769 if (!req)
770 return -ENOMEM;
771
772 /* Request one schq per level */
773 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
774 req->schq[lvl] = 1;
775
776 if (is_otx2_sdp_rep(pfvf->pdev) && chan_cnt > 1) {
777 req->schq[NIX_TXSCH_LVL_SMQ] = chan_cnt;
778 req->schq[NIX_TXSCH_LVL_TL4] = chan_cnt;
779 }
780
781 rc = otx2_sync_mbox_msg(&pfvf->mbox);
782 if (rc)
783 return rc;
784
785 rsp = (struct nix_txsch_alloc_rsp *)
786 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
787 if (IS_ERR(rsp))
788 return PTR_ERR(rsp);
789
790 /* Setup transmit scheduler list */
791 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
792 pfvf->hw.txschq_cnt[lvl] = rsp->schq[lvl];
793 for (schq = 0; schq < rsp->schq[lvl]; schq++)
794 pfvf->hw.txschq_list[lvl][schq] =
795 rsp->schq_list[lvl][schq];
796 }
797
798 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
799 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
800
801 return 0;
802 }
803
otx2_txschq_free_one(struct otx2_nic * pfvf,u16 lvl,u16 schq)804 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
805 {
806 struct nix_txsch_free_req *free_req;
807 int err;
808
809 mutex_lock(&pfvf->mbox.lock);
810
811 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
812 if (!free_req) {
813 mutex_unlock(&pfvf->mbox.lock);
814 netdev_err(pfvf->netdev,
815 "Failed alloc txschq free req\n");
816 return;
817 }
818
819 free_req->schq_lvl = lvl;
820 free_req->schq = schq;
821
822 err = otx2_sync_mbox_msg(&pfvf->mbox);
823 if (err) {
824 netdev_err(pfvf->netdev,
825 "Failed stop txschq %d at level %d\n", schq, lvl);
826 }
827
828 mutex_unlock(&pfvf->mbox.lock);
829 }
830 EXPORT_SYMBOL(otx2_txschq_free_one);
831
otx2_txschq_stop(struct otx2_nic * pfvf)832 void otx2_txschq_stop(struct otx2_nic *pfvf)
833 {
834 int lvl, schq, idx;
835
836 /* free non QOS TLx nodes */
837 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
838 for (idx = 0; idx < pfvf->hw.txschq_cnt[lvl]; idx++) {
839 otx2_txschq_free_one(pfvf, lvl,
840 pfvf->hw.txschq_list[lvl][idx]);
841 }
842 }
843
844 /* Clear the txschq list */
845 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
846 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
847 pfvf->hw.txschq_list[lvl][schq] = 0;
848 }
849
850 }
851
otx2_sqb_flush(struct otx2_nic * pfvf)852 void otx2_sqb_flush(struct otx2_nic *pfvf)
853 {
854 int qidx, sqe_tail, sqe_head;
855 struct otx2_snd_queue *sq;
856 void __iomem *ptr;
857 u64 incr, val;
858
859 ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
860 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
861 sq = &pfvf->qset.sq[qidx];
862 if (!sq->sqb_ptrs)
863 continue;
864
865 incr = (u64)qidx << 32;
866 val = otx2_atomic64_add(incr, ptr);
867 sqe_head = (val >> 20) & 0x3F;
868 sqe_tail = (val >> 28) & 0x3F;
869 if (sqe_head != sqe_tail)
870 usleep_range(50, 60);
871 }
872 }
873
874 /* RED and drop levels of CQ on packet reception.
875 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
876 */
877 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
878 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
879
880 /* RED and drop levels of AURA for packet reception.
881 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
882 * Eg: For RQ length 1K, for pass/drop level 204/230.
883 * RED accepts pkts if free pointers > 102 & <= 205.
884 * Drops pkts if free pointers < 102.
885 */
886 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
887 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
888 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
889
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)890 int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
891 {
892 struct otx2_qset *qset = &pfvf->qset;
893 struct nix_aq_enq_req *aq;
894
895 /* Get memory to put this msg */
896 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
897 if (!aq)
898 return -ENOMEM;
899
900 aq->rq.cq = qidx;
901 aq->rq.ena = 1;
902 aq->rq.pb_caching = 1;
903 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
904 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
905 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
906 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
907 aq->rq.qint_idx = 0;
908 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
909 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
910 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
911 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
912 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
913 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
914
915 /* Fill AQ info */
916 aq->qidx = qidx;
917 aq->ctype = NIX_AQ_CTYPE_RQ;
918 aq->op = NIX_AQ_INSTOP_INIT;
919
920 return otx2_sync_mbox_msg(&pfvf->mbox);
921 }
922
otx2_sq_aq_init(void * dev,u16 qidx,u8 chan_offset,u16 sqb_aura)923 int otx2_sq_aq_init(void *dev, u16 qidx, u8 chan_offset, u16 sqb_aura)
924 {
925 struct otx2_nic *pfvf = dev;
926 struct otx2_snd_queue *sq;
927 struct nix_aq_enq_req *aq;
928
929 sq = &pfvf->qset.sq[qidx];
930 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
931 /* Get memory to put this msg */
932 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
933 if (!aq)
934 return -ENOMEM;
935
936 aq->sq.cq = pfvf->hw.rx_queues + qidx;
937 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
938 aq->sq.cq_ena = 1;
939 aq->sq.ena = 1;
940 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
941 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
942 aq->sq.default_chan = pfvf->hw.tx_chan_base + chan_offset;
943 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
944 aq->sq.sqb_aura = sqb_aura;
945 aq->sq.sq_int_ena = NIX_SQINT_BITS;
946 aq->sq.qint_idx = 0;
947 /* Due pipelining impact minimum 2000 unused SQ CQE's
948 * need to maintain to avoid CQ overflow.
949 */
950 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
951
952 /* Fill AQ info */
953 aq->qidx = qidx;
954 aq->ctype = NIX_AQ_CTYPE_SQ;
955 aq->op = NIX_AQ_INSTOP_INIT;
956
957 return otx2_sync_mbox_msg(&pfvf->mbox);
958 }
959
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)960 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
961 {
962 struct otx2_qset *qset = &pfvf->qset;
963 struct otx2_snd_queue *sq;
964 struct otx2_pool *pool;
965 u8 chan_offset;
966 int err;
967
968 pool = &pfvf->qset.pool[sqb_aura];
969 sq = &qset->sq[qidx];
970 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
971 sq->sqe_cnt = qset->sqe_cnt;
972
973 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
974 if (err)
975 return err;
976
977 /* Allocate memory for NIX SQE (which includes NIX SG) and CPT SG.
978 * SG of NIX and CPT are same in size. Allocate memory for CPT SG
979 * same as NIX SQE for base address alignment.
980 * Layout of a NIX SQE and CPT SG entry:
981 * -----------------------------
982 * | CPT Scatter Gather |
983 * | (SQE SIZE) |
984 * | |
985 * -----------------------------
986 * | NIX SQE |
987 * | (SQE SIZE) |
988 * | |
989 * -----------------------------
990 */
991 err = qmem_alloc(pfvf->dev, &sq->sqe_ring, qset->sqe_cnt,
992 sq->sqe_size * 2);
993 if (err)
994 return err;
995
996 err = qmem_alloc(pfvf->dev, &sq->cpt_resp, qset->sqe_cnt, 64);
997 if (err)
998 return err;
999
1000 if (qidx < pfvf->hw.tx_queues) {
1001 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
1002 TSO_HEADER_SIZE);
1003 if (err)
1004 return err;
1005 }
1006
1007 sq->sqe_base = sq->sqe->base;
1008 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
1009 if (!sq->sg)
1010 return -ENOMEM;
1011
1012 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
1013 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
1014 sizeof(*sq->timestamps));
1015 if (err) {
1016 kfree(sq->sg);
1017 sq->sg = NULL;
1018 return err;
1019 }
1020 }
1021
1022 sq->head = 0;
1023 sq->cons_head = 0;
1024 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
1025 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
1026 /* Set SQE threshold to 10% of total SQEs */
1027 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
1028 sq->aura_id = sqb_aura;
1029 sq->aura_fc_addr = pool->fc_addr->base;
1030 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
1031
1032 sq->stats.bytes = 0;
1033 sq->stats.pkts = 0;
1034 /* Attach XSK_BUFF_POOL to XDP queue */
1035 if (qidx > pfvf->hw.xdp_queues)
1036 otx2_attach_xsk_buff(pfvf, sq, (qidx - pfvf->hw.xdp_queues));
1037
1038
1039 chan_offset = qidx % pfvf->hw.tx_chan_cnt;
1040 err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, chan_offset, sqb_aura);
1041 if (err) {
1042 kfree(sq->sg);
1043 sq->sg = NULL;
1044 return err;
1045 }
1046
1047 return 0;
1048
1049 }
1050
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)1051 int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
1052 {
1053 struct otx2_qset *qset = &pfvf->qset;
1054 int err, pool_id, non_xdp_queues;
1055 struct nix_aq_enq_req *aq;
1056 struct otx2_cq_queue *cq;
1057 struct otx2_pool *pool;
1058
1059 cq = &qset->cq[qidx];
1060 cq->cq_idx = qidx;
1061 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
1062 if (qidx < pfvf->hw.rx_queues) {
1063 cq->cq_type = CQ_RX;
1064 cq->cint_idx = qidx;
1065 cq->cqe_cnt = qset->rqe_cnt;
1066 if (pfvf->xdp_prog) {
1067 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
1068 pool = &qset->pool[qidx];
1069 if (pool->xsk_pool) {
1070 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1071 MEM_TYPE_XSK_BUFF_POOL,
1072 NULL);
1073 xsk_pool_set_rxq_info(pool->xsk_pool, &cq->xdp_rxq);
1074 } else if (pool->page_pool) {
1075 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1076 MEM_TYPE_PAGE_POOL,
1077 pool->page_pool);
1078 }
1079 }
1080 } else if (qidx < non_xdp_queues) {
1081 cq->cq_type = CQ_TX;
1082 cq->cint_idx = qidx - pfvf->hw.rx_queues;
1083 cq->cqe_cnt = qset->sqe_cnt;
1084 } else {
1085 if (pfvf->hw.xdp_queues &&
1086 qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1087 cq->cq_type = CQ_XDP;
1088 cq->cint_idx = qidx - non_xdp_queues;
1089 cq->cqe_cnt = qset->sqe_cnt;
1090 } else {
1091 cq->cq_type = CQ_QOS;
1092 cq->cint_idx = qidx - non_xdp_queues -
1093 pfvf->hw.xdp_queues;
1094 cq->cqe_cnt = qset->sqe_cnt;
1095 }
1096 }
1097 cq->cqe_size = pfvf->qset.xqe_size;
1098
1099 /* Allocate memory for CQEs */
1100 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1101 if (err)
1102 return err;
1103
1104 /* Save CQE CPU base for faster reference */
1105 cq->cqe_base = cq->cqe->base;
1106 /* In case where all RQs auras point to single pool,
1107 * all CQs receive buffer pool also point to same pool.
1108 */
1109 pool_id = ((cq->cq_type == CQ_RX) &&
1110 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1111 cq->rbpool = &qset->pool[pool_id];
1112 cq->refill_task_sched = false;
1113
1114 /* Get memory to put this msg */
1115 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1116 if (!aq)
1117 return -ENOMEM;
1118
1119 aq->cq.ena = 1;
1120 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1121 aq->cq.caching = 1;
1122 aq->cq.base = cq->cqe->iova;
1123 aq->cq.cint_idx = cq->cint_idx;
1124 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1125 aq->cq.qint_idx = 0;
1126 aq->cq.avg_level = 255;
1127
1128 if (qidx < pfvf->hw.rx_queues) {
1129 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1130 aq->cq.drop_ena = 1;
1131
1132 if (!is_otx2_lbkvf(pfvf->pdev)) {
1133 /* Enable receive CQ backpressure */
1134 aq->cq.bp_ena = 1;
1135 #ifdef CONFIG_DCB
1136 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1137 #else
1138 aq->cq.bpid = pfvf->bpid[0];
1139 #endif
1140
1141 /* Set backpressure level is same as cq pass level */
1142 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1143 }
1144 }
1145
1146 /* Fill AQ info */
1147 aq->qidx = qidx;
1148 aq->ctype = NIX_AQ_CTYPE_CQ;
1149 aq->op = NIX_AQ_INSTOP_INIT;
1150
1151 return otx2_sync_mbox_msg(&pfvf->mbox);
1152 }
1153
otx2_pool_refill_task(struct work_struct * work)1154 static void otx2_pool_refill_task(struct work_struct *work)
1155 {
1156 struct otx2_cq_queue *cq;
1157 struct refill_work *wrk;
1158 struct otx2_nic *pfvf;
1159 int qidx;
1160
1161 wrk = container_of(work, struct refill_work, pool_refill_work.work);
1162 pfvf = wrk->pf;
1163 qidx = wrk - pfvf->refill_wrk;
1164 cq = &pfvf->qset.cq[qidx];
1165
1166 cq->refill_task_sched = false;
1167
1168 local_bh_disable();
1169 napi_schedule(wrk->napi);
1170 local_bh_enable();
1171 }
1172
otx2_config_nix_queues(struct otx2_nic * pfvf)1173 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1174 {
1175 int qidx, err;
1176
1177 /* Initialize RX queues */
1178 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1179 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1180
1181 err = otx2_rq_init(pfvf, qidx, lpb_aura);
1182 if (err)
1183 return err;
1184 }
1185
1186 /* Initialize TX queues */
1187 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1188 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1189
1190 err = otx2_sq_init(pfvf, qidx, sqb_aura);
1191 if (err)
1192 return err;
1193 }
1194
1195 /* Initialize completion queues */
1196 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1197 err = otx2_cq_init(pfvf, qidx);
1198 if (err)
1199 return err;
1200 }
1201
1202 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1203 NIX_LF_CQ_OP_STATUS);
1204
1205 /* Initialize work queue for receive buffer refill */
1206 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1207 sizeof(struct refill_work), GFP_KERNEL);
1208 if (!pfvf->refill_wrk)
1209 return -ENOMEM;
1210
1211 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1212 pfvf->refill_wrk[qidx].pf = pfvf;
1213 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1214 otx2_pool_refill_task);
1215 }
1216 return 0;
1217 }
1218
otx2_config_nix(struct otx2_nic * pfvf)1219 int otx2_config_nix(struct otx2_nic *pfvf)
1220 {
1221 struct nix_lf_alloc_req *nixlf;
1222 struct nix_lf_alloc_rsp *rsp;
1223 int err;
1224
1225 pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1226
1227 /* Get memory to put this msg */
1228 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1229 if (!nixlf)
1230 return -ENOMEM;
1231
1232 /* Set RQ/SQ/CQ counts */
1233 nixlf->rq_cnt = pfvf->hw.rx_queues;
1234 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1235 nixlf->cq_cnt = pfvf->qset.cq_cnt;
1236 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1237 nixlf->rss_grps = MAX_RSS_GROUPS;
1238 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1239 /* We don't know absolute NPA LF idx attached.
1240 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1241 * NPA LF attached to this RVU PF/VF.
1242 */
1243 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1244 /* Disable alignment pad, enable L2 length check,
1245 * enable L4 TCP/UDP checksum verification.
1246 */
1247 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1248
1249 err = otx2_sync_mbox_msg(&pfvf->mbox);
1250 if (err)
1251 return err;
1252
1253 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1254 &nixlf->hdr);
1255 if (IS_ERR(rsp))
1256 return PTR_ERR(rsp);
1257
1258 if (rsp->qints < 1)
1259 return -ENXIO;
1260
1261 return rsp->hdr.rc;
1262 }
1263
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1264 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1265 {
1266 struct otx2_qset *qset = &pfvf->qset;
1267 struct otx2_hw *hw = &pfvf->hw;
1268 struct otx2_snd_queue *sq;
1269 int sqb, qidx;
1270 u64 iova, pa;
1271
1272 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1273 sq = &qset->sq[qidx];
1274 if (!sq->sqb_ptrs)
1275 continue;
1276 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1277 if (!sq->sqb_ptrs[sqb])
1278 continue;
1279 iova = sq->sqb_ptrs[sqb];
1280 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1281 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1282 DMA_FROM_DEVICE,
1283 DMA_ATTR_SKIP_CPU_SYNC);
1284 put_page(virt_to_page(phys_to_virt(pa)));
1285 }
1286 sq->sqb_count = 0;
1287 }
1288 }
1289
otx2_free_bufs(struct otx2_nic * pfvf,struct otx2_pool * pool,u64 iova,int size)1290 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1291 u64 iova, int size)
1292 {
1293 struct page *page;
1294 u64 pa;
1295
1296 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1297 page = virt_to_head_page(phys_to_virt(pa));
1298 if (pool->page_pool) {
1299 page_pool_put_full_page(pool->page_pool, page, true);
1300 } else if (pool->xsk_pool) {
1301 /* Note: No way of identifying xdp_buff */
1302 } else {
1303 dma_unmap_page_attrs(pfvf->dev, iova, size,
1304 DMA_FROM_DEVICE,
1305 DMA_ATTR_SKIP_CPU_SYNC);
1306
1307 put_page(page);
1308 }
1309 }
1310
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1311 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1312 {
1313 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1314 struct otx2_pool *pool;
1315 u64 iova;
1316 int idx;
1317
1318 if (type == AURA_NIX_SQ) {
1319 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1320 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1321 size = pfvf->hw.sqb_size;
1322 }
1323 if (type == AURA_NIX_RQ) {
1324 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1325 pool_end = pfvf->hw.rqpool_cnt;
1326 size = pfvf->rbsize;
1327 }
1328
1329 /* Free SQB and RQB pointers from the aura pool */
1330 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1331 pool = &pfvf->qset.pool[pool_id];
1332 iova = otx2_aura_allocptr(pfvf, pool_id);
1333 while (iova) {
1334 if (type == AURA_NIX_RQ)
1335 iova -= OTX2_HEAD_ROOM;
1336 otx2_free_bufs(pfvf, pool, iova, size);
1337 iova = otx2_aura_allocptr(pfvf, pool_id);
1338 }
1339
1340 for (idx = 0 ; idx < pool->xdp_cnt; idx++) {
1341 if (!pool->xdp[idx])
1342 continue;
1343
1344 xsk_buff_free(pool->xdp[idx]);
1345 }
1346 }
1347 }
1348
otx2_aura_pool_free(struct otx2_nic * pfvf)1349 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1350 {
1351 struct otx2_pool *pool;
1352 int pool_id;
1353
1354 if (!pfvf->qset.pool)
1355 return;
1356
1357 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1358 pool = &pfvf->qset.pool[pool_id];
1359 qmem_free(pfvf->dev, pool->stack);
1360 qmem_free(pfvf->dev, pool->fc_addr);
1361 page_pool_destroy(pool->page_pool);
1362 devm_kfree(pfvf->dev, pool->xdp);
1363 pool->xsk_pool = NULL;
1364 }
1365 devm_kfree(pfvf->dev, pfvf->qset.pool);
1366 pfvf->qset.pool = NULL;
1367 }
1368
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1369 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1370 int pool_id, int numptrs)
1371 {
1372 struct npa_aq_enq_req *aq;
1373 struct otx2_pool *pool;
1374 int err;
1375
1376 pool = &pfvf->qset.pool[pool_id];
1377
1378 /* Allocate memory for HW to update Aura count.
1379 * Alloc one cache line, so that it fits all FC_STYPE modes.
1380 */
1381 if (!pool->fc_addr) {
1382 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1383 if (err)
1384 return err;
1385 }
1386
1387 /* Initialize this aura's context via AF */
1388 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1389 if (!aq) {
1390 /* Shared mbox memory buffer is full, flush it and retry */
1391 err = otx2_sync_mbox_msg(&pfvf->mbox);
1392 if (err)
1393 return err;
1394 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1395 if (!aq)
1396 return -ENOMEM;
1397 }
1398
1399 aq->aura_id = aura_id;
1400 /* Will be filled by AF with correct pool context address */
1401 aq->aura.pool_addr = pool_id;
1402 aq->aura.pool_caching = 1;
1403 aq->aura.shift = ilog2(numptrs) - 8;
1404 aq->aura.count = numptrs;
1405 aq->aura.limit = numptrs;
1406 aq->aura.avg_level = 255;
1407 aq->aura.ena = 1;
1408 aq->aura.fc_ena = 1;
1409 aq->aura.fc_addr = pool->fc_addr->iova;
1410 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1411
1412 /* Enable backpressure for RQ aura */
1413 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1414 aq->aura.bp_ena = 0;
1415 /* If NIX1 LF is attached then specify NIX1_RX.
1416 *
1417 * Below NPA_AURA_S[BP_ENA] is set according to the
1418 * NPA_BPINTF_E enumeration given as:
1419 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1420 * NIX0_RX is 0x0 + 0*0x1 = 0
1421 * NIX1_RX is 0x0 + 1*0x1 = 1
1422 * But in HRM it is given that
1423 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1424 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1425 * enumerated by NPA_BPINTF_E."
1426 */
1427 if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1428 aq->aura.bp_ena = 1;
1429 #ifdef CONFIG_DCB
1430 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1431 #else
1432 aq->aura.nix0_bpid = pfvf->bpid[0];
1433 #endif
1434
1435 /* Set backpressure level for RQ's Aura */
1436 aq->aura.bp = RQ_BP_LVL_AURA;
1437 }
1438
1439 /* Fill AQ info */
1440 aq->ctype = NPA_AQ_CTYPE_AURA;
1441 aq->op = NPA_AQ_INSTOP_INIT;
1442
1443 return 0;
1444 }
1445
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1446 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1447 int stack_pages, int numptrs, int buf_size, int type)
1448 {
1449 struct page_pool_params pp_params = { 0 };
1450 struct xsk_buff_pool *xsk_pool;
1451 struct npa_aq_enq_req *aq;
1452 struct otx2_pool *pool;
1453 int err;
1454
1455 pool = &pfvf->qset.pool[pool_id];
1456 /* Alloc memory for stack which is used to store buffer pointers */
1457 err = qmem_alloc(pfvf->dev, &pool->stack,
1458 stack_pages, pfvf->hw.stack_pg_bytes);
1459 if (err)
1460 return err;
1461
1462 pool->rbsize = buf_size;
1463
1464 /* Initialize this pool's context via AF */
1465 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1466 if (!aq) {
1467 /* Shared mbox memory buffer is full, flush it and retry */
1468 err = otx2_sync_mbox_msg(&pfvf->mbox);
1469 if (err) {
1470 qmem_free(pfvf->dev, pool->stack);
1471 return err;
1472 }
1473 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1474 if (!aq) {
1475 qmem_free(pfvf->dev, pool->stack);
1476 return -ENOMEM;
1477 }
1478 }
1479
1480 aq->aura_id = pool_id;
1481 aq->pool.stack_base = pool->stack->iova;
1482 aq->pool.stack_caching = 1;
1483 aq->pool.ena = 1;
1484 aq->pool.buf_size = buf_size / 128;
1485 aq->pool.stack_max_pages = stack_pages;
1486 aq->pool.shift = ilog2(numptrs) - 8;
1487 aq->pool.ptr_start = 0;
1488 aq->pool.ptr_end = ~0ULL;
1489
1490 /* Fill AQ info */
1491 aq->ctype = NPA_AQ_CTYPE_POOL;
1492 aq->op = NPA_AQ_INSTOP_INIT;
1493
1494 if (type != AURA_NIX_RQ)
1495 return 0;
1496
1497 if (!test_bit(pool_id, pfvf->af_xdp_zc_qidx)) {
1498 pp_params.order = get_order(buf_size);
1499 pp_params.flags = PP_FLAG_DMA_MAP;
1500 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1501 pp_params.nid = NUMA_NO_NODE;
1502 pp_params.dev = pfvf->dev;
1503 pp_params.dma_dir = DMA_FROM_DEVICE;
1504 pool->page_pool = page_pool_create(&pp_params);
1505 if (IS_ERR(pool->page_pool)) {
1506 netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1507 return PTR_ERR(pool->page_pool);
1508 }
1509 return 0;
1510 }
1511
1512 /* Set XSK pool to support AF_XDP zero-copy */
1513 xsk_pool = xsk_get_pool_from_qid(pfvf->netdev, pool_id);
1514 if (xsk_pool) {
1515 pool->xsk_pool = xsk_pool;
1516 pool->xdp_cnt = numptrs;
1517 pool->xdp = devm_kcalloc(pfvf->dev,
1518 numptrs, sizeof(struct xdp_buff *), GFP_KERNEL);
1519 if (IS_ERR(pool->xdp)) {
1520 netdev_err(pfvf->netdev, "Creation of xsk pool failed\n");
1521 return PTR_ERR(pool->xdp);
1522 }
1523 }
1524
1525 return 0;
1526 }
1527
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1528 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1529 {
1530 int qidx, pool_id, stack_pages, num_sqbs;
1531 struct otx2_qset *qset = &pfvf->qset;
1532 struct otx2_hw *hw = &pfvf->hw;
1533 struct otx2_snd_queue *sq;
1534 struct otx2_pool *pool;
1535 dma_addr_t bufptr;
1536 int err, ptr;
1537
1538 /* Calculate number of SQBs needed.
1539 *
1540 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1541 * Last SQE is used for pointing to next SQB.
1542 */
1543 num_sqbs = (hw->sqb_size / 128) - 1;
1544 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1545
1546 /* Get no of stack pages needed */
1547 stack_pages =
1548 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1549
1550 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1551 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1552 /* Initialize aura context */
1553 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1554 if (err)
1555 goto fail;
1556
1557 /* Initialize pool context */
1558 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1559 num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1560 if (err)
1561 goto fail;
1562 }
1563
1564 /* Flush accumulated messages */
1565 err = otx2_sync_mbox_msg(&pfvf->mbox);
1566 if (err)
1567 goto fail;
1568
1569 /* Allocate pointers and free them to aura/pool */
1570 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1571 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1572 pool = &pfvf->qset.pool[pool_id];
1573
1574 sq = &qset->sq[qidx];
1575 sq->sqb_count = 0;
1576 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1577 if (!sq->sqb_ptrs) {
1578 err = -ENOMEM;
1579 goto err_mem;
1580 }
1581
1582 for (ptr = 0; ptr < num_sqbs; ptr++) {
1583 err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr);
1584 if (err) {
1585 if (pool->xsk_pool) {
1586 ptr--;
1587 while (ptr >= 0) {
1588 xsk_buff_free(pool->xdp[ptr]);
1589 ptr--;
1590 }
1591 }
1592 goto err_mem;
1593 }
1594
1595 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1596 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1597 }
1598 }
1599
1600 err_mem:
1601 return err ? -ENOMEM : 0;
1602
1603 fail:
1604 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1605 otx2_aura_pool_free(pfvf);
1606 return err;
1607 }
1608
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1609 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1610 {
1611 struct otx2_hw *hw = &pfvf->hw;
1612 int stack_pages, pool_id, rq;
1613 struct otx2_pool *pool;
1614 int err, ptr, num_ptrs;
1615 dma_addr_t bufptr;
1616
1617 num_ptrs = pfvf->qset.rqe_cnt;
1618
1619 stack_pages =
1620 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1621
1622 for (rq = 0; rq < hw->rx_queues; rq++) {
1623 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1624 /* Initialize aura context */
1625 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1626 if (err)
1627 goto fail;
1628 }
1629 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1630 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1631 num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1632 if (err)
1633 goto fail;
1634 }
1635
1636 /* Flush accumulated messages */
1637 err = otx2_sync_mbox_msg(&pfvf->mbox);
1638 if (err)
1639 goto fail;
1640
1641 /* Allocate pointers and free them to aura/pool */
1642 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1643 pool = &pfvf->qset.pool[pool_id];
1644
1645 for (ptr = 0; ptr < num_ptrs; ptr++) {
1646 err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr);
1647 if (err) {
1648 if (pool->xsk_pool) {
1649 while (ptr)
1650 xsk_buff_free(pool->xdp[--ptr]);
1651 }
1652 return -ENOMEM;
1653 }
1654
1655 pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1656 pool->xsk_pool ? bufptr :
1657 bufptr + OTX2_HEAD_ROOM);
1658 }
1659 }
1660 return 0;
1661 fail:
1662 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1663 otx2_aura_pool_free(pfvf);
1664 return err;
1665 }
1666
otx2_config_npa(struct otx2_nic * pfvf)1667 int otx2_config_npa(struct otx2_nic *pfvf)
1668 {
1669 struct otx2_qset *qset = &pfvf->qset;
1670 struct npa_lf_alloc_req *npalf;
1671 struct otx2_hw *hw = &pfvf->hw;
1672 int aura_cnt;
1673
1674 /* Pool - Stack of free buffer pointers
1675 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1676 */
1677
1678 if (!hw->pool_cnt)
1679 return -EINVAL;
1680
1681 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1682 sizeof(struct otx2_pool), GFP_KERNEL);
1683 if (!qset->pool)
1684 return -ENOMEM;
1685
1686 /* Get memory to put this msg */
1687 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1688 if (!npalf)
1689 return -ENOMEM;
1690
1691 /* Set aura and pool counts */
1692 npalf->nr_pools = hw->pool_cnt;
1693 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1694 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1695
1696 return otx2_sync_mbox_msg(&pfvf->mbox);
1697 }
1698
otx2_detach_resources(struct mbox * mbox)1699 int otx2_detach_resources(struct mbox *mbox)
1700 {
1701 struct rsrc_detach *detach;
1702
1703 mutex_lock(&mbox->lock);
1704 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1705 if (!detach) {
1706 mutex_unlock(&mbox->lock);
1707 return -ENOMEM;
1708 }
1709
1710 /* detach all */
1711 detach->partial = false;
1712
1713 /* Send detach request to AF */
1714 otx2_sync_mbox_msg(mbox);
1715 mutex_unlock(&mbox->lock);
1716 return 0;
1717 }
1718 EXPORT_SYMBOL(otx2_detach_resources);
1719
otx2_attach_npa_nix(struct otx2_nic * pfvf)1720 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1721 {
1722 struct rsrc_attach *attach;
1723 struct msg_req *msix;
1724 int err;
1725
1726 mutex_lock(&pfvf->mbox.lock);
1727 /* Get memory to put this msg */
1728 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1729 if (!attach) {
1730 mutex_unlock(&pfvf->mbox.lock);
1731 return -ENOMEM;
1732 }
1733
1734 attach->npalf = true;
1735 attach->nixlf = true;
1736
1737 /* Send attach request to AF */
1738 err = otx2_sync_mbox_msg(&pfvf->mbox);
1739 if (err) {
1740 mutex_unlock(&pfvf->mbox.lock);
1741 return err;
1742 }
1743
1744 pfvf->nix_blkaddr = BLKADDR_NIX0;
1745
1746 /* If the platform has two NIX blocks then LF may be
1747 * allocated from NIX1.
1748 */
1749 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1750 pfvf->nix_blkaddr = BLKADDR_NIX1;
1751
1752 /* Get NPA and NIX MSIX vector offsets */
1753 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1754 if (!msix) {
1755 mutex_unlock(&pfvf->mbox.lock);
1756 return -ENOMEM;
1757 }
1758
1759 err = otx2_sync_mbox_msg(&pfvf->mbox);
1760 if (err) {
1761 mutex_unlock(&pfvf->mbox.lock);
1762 return err;
1763 }
1764 mutex_unlock(&pfvf->mbox.lock);
1765
1766 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1767 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1768 dev_err(pfvf->dev,
1769 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1770 return -EINVAL;
1771 }
1772
1773 return 0;
1774 }
1775 EXPORT_SYMBOL(otx2_attach_npa_nix);
1776
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1777 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1778 {
1779 struct hwctx_disable_req *req;
1780
1781 mutex_lock(&mbox->lock);
1782 /* Request AQ to disable this context */
1783 if (npa)
1784 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1785 else
1786 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1787
1788 if (!req) {
1789 mutex_unlock(&mbox->lock);
1790 return;
1791 }
1792
1793 req->ctype = type;
1794
1795 if (otx2_sync_mbox_msg(mbox))
1796 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1797 __func__);
1798
1799 mutex_unlock(&mbox->lock);
1800 }
1801
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1802 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1803 {
1804 struct nix_bp_cfg_req *req;
1805
1806 if (enable)
1807 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1808 else
1809 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1810
1811 if (!req)
1812 return -ENOMEM;
1813
1814 req->chan_base = 0;
1815 if (otx2_is_pfc_enabled(pfvf)) {
1816 req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1817 req->bpid_per_chan = 1;
1818 } else {
1819 req->chan_cnt = pfvf->hw.rx_chan_cnt;
1820 req->bpid_per_chan = 0;
1821 }
1822
1823 return otx2_sync_mbox_msg(&pfvf->mbox);
1824 }
1825 EXPORT_SYMBOL(otx2_nix_config_bp);
1826
otx2_nix_cpt_config_bp(struct otx2_nic * pfvf,bool enable)1827 int otx2_nix_cpt_config_bp(struct otx2_nic *pfvf, bool enable)
1828 {
1829 struct nix_bp_cfg_req *req;
1830
1831 if (enable)
1832 req = otx2_mbox_alloc_msg_nix_cpt_bp_enable(&pfvf->mbox);
1833 else
1834 req = otx2_mbox_alloc_msg_nix_cpt_bp_disable(&pfvf->mbox);
1835
1836 if (!req)
1837 return -ENOMEM;
1838
1839 req->chan_base = 0;
1840 if (otx2_is_pfc_enabled(pfvf)) {
1841 req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1842 req->bpid_per_chan = 1;
1843 } else {
1844 req->chan_cnt = pfvf->hw.rx_chan_cnt;
1845 req->bpid_per_chan = 0;
1846 }
1847
1848 return otx2_sync_mbox_msg(&pfvf->mbox);
1849 }
1850 EXPORT_SYMBOL(otx2_nix_cpt_config_bp);
1851
1852 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1853 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1854 struct cgx_stats_rsp *rsp)
1855 {
1856 int id;
1857
1858 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1859 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1860 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1861 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1862 }
1863
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1864 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1865 struct cgx_fec_stats_rsp *rsp)
1866 {
1867 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1868 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1869 }
1870
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1871 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1872 struct npa_lf_alloc_rsp *rsp)
1873 {
1874 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1875 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1876 }
1877 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1878
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1879 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1880 struct nix_lf_alloc_rsp *rsp)
1881 {
1882 pfvf->hw.sqb_size = rsp->sqb_size;
1883 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1884 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1885 pfvf->hw.rx_chan_cnt = rsp->rx_chan_cnt;
1886 pfvf->hw.tx_chan_cnt = rsp->tx_chan_cnt;
1887 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1888 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1889 pfvf->hw.cgx_links = rsp->cgx_links;
1890 pfvf->hw.lbk_links = rsp->lbk_links;
1891 pfvf->hw.tx_link = rsp->tx_link;
1892 }
1893 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1894
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1895 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1896 struct msix_offset_rsp *rsp)
1897 {
1898 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1899 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1900 }
1901 EXPORT_SYMBOL(mbox_handler_msix_offset);
1902
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1903 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1904 struct nix_bp_cfg_rsp *rsp)
1905 {
1906 int chan, chan_id;
1907
1908 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1909 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1910 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1911 }
1912 }
1913 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1914
otx2_free_cints(struct otx2_nic * pfvf,int n)1915 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1916 {
1917 struct otx2_qset *qset = &pfvf->qset;
1918 struct otx2_hw *hw = &pfvf->hw;
1919 int irq, qidx;
1920
1921 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1922 qidx < n;
1923 qidx++, irq++) {
1924 int vector = pci_irq_vector(pfvf->pdev, irq);
1925
1926 irq_set_affinity_hint(vector, NULL);
1927 free_cpumask_var(hw->affinity_mask[irq]);
1928 free_irq(vector, &qset->napi[qidx]);
1929 }
1930 }
1931 EXPORT_SYMBOL(otx2_free_cints);
1932
otx2_set_cints_affinity(struct otx2_nic * pfvf)1933 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1934 {
1935 struct otx2_hw *hw = &pfvf->hw;
1936 int vec, cpu, irq, cint;
1937
1938 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1939 cpu = cpumask_first(cpu_online_mask);
1940
1941 /* CQ interrupts */
1942 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1943 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1944 return;
1945
1946 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1947
1948 irq = pci_irq_vector(pfvf->pdev, vec);
1949 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1950
1951 cpu = cpumask_next(cpu, cpu_online_mask);
1952 if (unlikely(cpu >= nr_cpu_ids))
1953 cpu = 0;
1954 }
1955 }
1956
get_dwrr_mtu(struct otx2_nic * pfvf,struct nix_hw_info * hw)1957 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1958 {
1959 if (is_otx2_lbkvf(pfvf->pdev)) {
1960 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1961 return hw->lbk_dwrr_mtu;
1962 }
1963
1964 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1965 return hw->rpm_dwrr_mtu;
1966 }
1967
otx2_get_max_mtu(struct otx2_nic * pfvf)1968 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1969 {
1970 struct nix_hw_info *rsp;
1971 struct msg_req *req;
1972 u16 max_mtu;
1973 int rc;
1974
1975 mutex_lock(&pfvf->mbox.lock);
1976
1977 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1978 if (!req) {
1979 rc = -ENOMEM;
1980 goto out;
1981 }
1982
1983 rc = otx2_sync_mbox_msg(&pfvf->mbox);
1984 if (!rc) {
1985 rsp = (struct nix_hw_info *)
1986 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1987 if (IS_ERR(rsp)) {
1988 rc = PTR_ERR(rsp);
1989 goto out;
1990 }
1991
1992 /* HW counts VLAN insertion bytes (8 for double tag)
1993 * irrespective of whether SQE is requesting to insert VLAN
1994 * in the packet or not. Hence these 8 bytes have to be
1995 * discounted from max packet size otherwise HW will throw
1996 * SMQ errors
1997 */
1998 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1999
2000 /* Also save DWRR MTU, needed for DWRR weight calculation */
2001 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
2002 if (!pfvf->hw.dwrr_mtu)
2003 pfvf->hw.dwrr_mtu = 1;
2004 }
2005
2006 out:
2007 mutex_unlock(&pfvf->mbox.lock);
2008 if (rc) {
2009 dev_warn(pfvf->dev,
2010 "Failed to get MTU from hardware setting default value(1500)\n");
2011 max_mtu = 1500;
2012 }
2013 return max_mtu;
2014 }
2015 EXPORT_SYMBOL(otx2_get_max_mtu);
2016
otx2_handle_ntuple_tc_features(struct net_device * netdev,netdev_features_t features)2017 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
2018 {
2019 netdev_features_t changed = features ^ netdev->features;
2020 struct otx2_nic *pfvf = netdev_priv(netdev);
2021 bool ntuple = !!(features & NETIF_F_NTUPLE);
2022 bool tc = !!(features & NETIF_F_HW_TC);
2023
2024 if ((changed & NETIF_F_NTUPLE) && !ntuple)
2025 otx2_destroy_ntuple_flows(pfvf);
2026
2027 if ((changed & NETIF_F_NTUPLE) && ntuple) {
2028 if (!pfvf->flow_cfg->max_flows) {
2029 netdev_err(netdev,
2030 "Can't enable NTUPLE, MCAM entries not allocated\n");
2031 return -EINVAL;
2032 }
2033 }
2034
2035 if ((changed & NETIF_F_HW_TC) && !tc &&
2036 otx2_tc_flower_rule_cnt(pfvf)) {
2037 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
2038 return -EBUSY;
2039 }
2040
2041 if ((changed & NETIF_F_NTUPLE) && ntuple &&
2042 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
2043 netdev_err(netdev,
2044 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
2045 return -EINVAL;
2046 }
2047
2048 return 0;
2049 }
2050 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
2051
otx2_set_hw_capabilities(struct otx2_nic * pfvf)2052 int otx2_set_hw_capabilities(struct otx2_nic *pfvf)
2053 {
2054 struct mbox *mbox = &pfvf->mbox;
2055 struct otx2_hw *hw = &pfvf->hw;
2056 struct get_hw_cap_rsp *rsp;
2057 struct msg_req *req;
2058 int ret = -ENOMEM;
2059
2060 mutex_lock(&mbox->lock);
2061
2062 req = otx2_mbox_alloc_msg_get_hw_cap(mbox);
2063 if (!req)
2064 goto fail;
2065
2066 ret = otx2_sync_mbox_msg(mbox);
2067 if (ret)
2068 goto fail;
2069
2070 rsp = (struct get_hw_cap_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox,
2071 0, &req->hdr);
2072 if (IS_ERR(rsp)) {
2073 ret = -EINVAL;
2074 goto fail;
2075 }
2076
2077 if (rsp->hw_caps & HW_CAP_MACSEC)
2078 __set_bit(CN10K_HW_MACSEC, &hw->cap_flag);
2079
2080 mutex_unlock(&mbox->lock);
2081
2082 return 0;
2083 fail:
2084 dev_err(pfvf->dev, "Cannot get MACSEC capability from AF\n");
2085 mutex_unlock(&mbox->lock);
2086 return ret;
2087 }
2088
2089 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
2090 int __weak \
2091 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
2092 struct _req_type *req, \
2093 struct _rsp_type *rsp) \
2094 { \
2095 /* Nothing to do here */ \
2096 return 0; \
2097 } \
2098 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
2099 MBOX_UP_CGX_MESSAGES
2100 MBOX_UP_MCS_MESSAGES
2101 #undef M
2102
otx2_dma_map_skb_frag(struct otx2_nic * pfvf,struct sk_buff * skb,int seg,int * len)2103 dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
2104 struct sk_buff *skb, int seg, int *len)
2105 {
2106 enum dma_data_direction dir = DMA_TO_DEVICE;
2107 const skb_frag_t *frag;
2108 struct page *page;
2109 int offset;
2110
2111 /* Crypto hardware need write permission for ipsec crypto offload */
2112 if (unlikely(xfrm_offload(skb))) {
2113 dir = DMA_BIDIRECTIONAL;
2114 skb = skb_unshare(skb, GFP_ATOMIC);
2115 }
2116
2117 /* First segment is always skb->data */
2118 if (!seg) {
2119 page = virt_to_page(skb->data);
2120 offset = offset_in_page(skb->data);
2121 *len = skb_headlen(skb);
2122 } else {
2123 frag = &skb_shinfo(skb)->frags[seg - 1];
2124 page = skb_frag_page(frag);
2125 offset = skb_frag_off(frag);
2126 *len = skb_frag_size(frag);
2127 }
2128 return otx2_dma_map_page(pfvf, page, offset, *len, dir);
2129 }
2130
otx2_dma_unmap_skb_frags(struct otx2_nic * pfvf,struct sg_list * sg)2131 void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
2132 {
2133 enum dma_data_direction dir = DMA_TO_DEVICE;
2134 struct sk_buff *skb = NULL;
2135 int seg;
2136
2137 skb = (struct sk_buff *)sg->skb;
2138 if (unlikely(xfrm_offload(skb)))
2139 dir = DMA_BIDIRECTIONAL;
2140
2141 for (seg = 0; seg < sg->num_segs; seg++) {
2142 otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
2143 sg->size[seg], dir);
2144 }
2145 sg->num_segs = 0;
2146 }
2147