xref: /linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_common.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13 #include <linux/dcbnl.h>
14 #include <net/xfrm.h>
15 
16 #include "otx2_reg.h"
17 #include "otx2_common.h"
18 #include "otx2_struct.h"
19 #include "cn10k.h"
20 #include "otx2_xsk.h"
21 
otx2_is_pfc_enabled(struct otx2_nic * pfvf)22 static bool otx2_is_pfc_enabled(struct otx2_nic *pfvf)
23 {
24 	return IS_ENABLED(CONFIG_DCB) && !!pfvf->pfc_en;
25 }
26 
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)27 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
28 				 struct otx2_nic *pfvf, int qidx)
29 {
30 	u64 incr = (u64)qidx << 32;
31 	void __iomem *ptr;
32 
33 	ptr = otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
34 	stats->bytes = otx2_atomic64_add(incr, ptr);
35 
36 	ptr = otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
37 	stats->pkts = otx2_atomic64_add(incr, ptr);
38 }
39 
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)40 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
41 				 struct otx2_nic *pfvf, int qidx)
42 {
43 	u64 incr = (u64)qidx << 32;
44 	void __iomem *ptr;
45 
46 	ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
47 	stats->bytes = otx2_atomic64_add(incr, ptr);
48 
49 	ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
50 	stats->pkts = otx2_atomic64_add(incr, ptr);
51 }
52 
otx2_update_lmac_stats(struct otx2_nic * pfvf)53 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
54 {
55 	struct msg_req *req;
56 
57 	if (!netif_running(pfvf->netdev))
58 		return;
59 
60 	mutex_lock(&pfvf->mbox.lock);
61 	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
62 	if (!req) {
63 		mutex_unlock(&pfvf->mbox.lock);
64 		return;
65 	}
66 
67 	otx2_sync_mbox_msg(&pfvf->mbox);
68 	mutex_unlock(&pfvf->mbox.lock);
69 }
70 
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)71 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
72 {
73 	struct msg_req *req;
74 
75 	if (!netif_running(pfvf->netdev))
76 		return;
77 	mutex_lock(&pfvf->mbox.lock);
78 	req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
79 	if (req)
80 		otx2_sync_mbox_msg(&pfvf->mbox);
81 	mutex_unlock(&pfvf->mbox.lock);
82 }
83 
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)84 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
85 {
86 	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
87 
88 	if (!pfvf->qset.rq)
89 		return 0;
90 
91 	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
92 	return 1;
93 }
94 EXPORT_SYMBOL(otx2_update_rq_stats);
95 
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)96 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
97 {
98 	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
99 
100 	if (!pfvf->qset.sq)
101 		return 0;
102 
103 	if (qidx >= pfvf->hw.non_qos_queues) {
104 		if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
105 			return 0;
106 	}
107 
108 	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
109 	return 1;
110 }
111 EXPORT_SYMBOL(otx2_update_sq_stats);
112 
otx2_get_dev_stats(struct otx2_nic * pfvf)113 void otx2_get_dev_stats(struct otx2_nic *pfvf)
114 {
115 	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
116 
117 	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
118 	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
119 	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
120 	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
121 	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
122 	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
123 			       dev_stats->rx_mcast_frames +
124 			       dev_stats->rx_ucast_frames;
125 
126 	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
127 	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP) +
128 			       (unsigned long)atomic_long_read(&dev_stats->tx_discards);
129 
130 	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
131 	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
132 	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
133 	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
134 			       dev_stats->tx_mcast_frames +
135 			       dev_stats->tx_ucast_frames;
136 }
137 
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)138 void otx2_get_stats64(struct net_device *netdev,
139 		      struct rtnl_link_stats64 *stats)
140 {
141 	struct otx2_nic *pfvf = netdev_priv(netdev);
142 	struct otx2_dev_stats *dev_stats;
143 
144 	otx2_get_dev_stats(pfvf);
145 
146 	dev_stats = &pfvf->hw.dev_stats;
147 	stats->rx_bytes = dev_stats->rx_bytes;
148 	stats->rx_packets = dev_stats->rx_frames;
149 	stats->rx_dropped = dev_stats->rx_drops;
150 	stats->multicast = dev_stats->rx_mcast_frames;
151 
152 	stats->tx_bytes = dev_stats->tx_bytes;
153 	stats->tx_packets = dev_stats->tx_frames;
154 	stats->tx_dropped = dev_stats->tx_drops;
155 }
156 EXPORT_SYMBOL(otx2_get_stats64);
157 
158 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)159 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
160 {
161 	struct nix_set_mac_addr *req;
162 	int err;
163 
164 	mutex_lock(&pfvf->mbox.lock);
165 	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
166 	if (!req) {
167 		mutex_unlock(&pfvf->mbox.lock);
168 		return -ENOMEM;
169 	}
170 
171 	ether_addr_copy(req->mac_addr, mac);
172 
173 	err = otx2_sync_mbox_msg(&pfvf->mbox);
174 	mutex_unlock(&pfvf->mbox.lock);
175 	return err;
176 }
177 
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)178 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
179 				struct net_device *netdev)
180 {
181 	struct nix_get_mac_addr_rsp *rsp;
182 	struct mbox_msghdr *msghdr;
183 	struct msg_req *req;
184 	int err;
185 
186 	mutex_lock(&pfvf->mbox.lock);
187 	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
188 	if (!req) {
189 		mutex_unlock(&pfvf->mbox.lock);
190 		return -ENOMEM;
191 	}
192 
193 	err = otx2_sync_mbox_msg(&pfvf->mbox);
194 	if (err) {
195 		mutex_unlock(&pfvf->mbox.lock);
196 		return err;
197 	}
198 
199 	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
200 	if (IS_ERR(msghdr)) {
201 		mutex_unlock(&pfvf->mbox.lock);
202 		return PTR_ERR(msghdr);
203 	}
204 	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
205 	eth_hw_addr_set(netdev, rsp->mac_addr);
206 	mutex_unlock(&pfvf->mbox.lock);
207 
208 	return 0;
209 }
210 
otx2_set_mac_address(struct net_device * netdev,void * p)211 int otx2_set_mac_address(struct net_device *netdev, void *p)
212 {
213 	struct otx2_nic *pfvf = netdev_priv(netdev);
214 	struct sockaddr *addr = p;
215 
216 	if (!is_valid_ether_addr(addr->sa_data))
217 		return -EADDRNOTAVAIL;
218 
219 	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
220 		eth_hw_addr_set(netdev, addr->sa_data);
221 		/* update dmac field in vlan offload rule */
222 		if (netif_running(netdev) &&
223 		    pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
224 			otx2_install_rxvlan_offload_flow(pfvf);
225 		/* update dmac address in ntuple and DMAC filter list */
226 		if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
227 			otx2_dmacflt_update_pfmac_flow(pfvf);
228 	} else {
229 		return -EPERM;
230 	}
231 
232 	return 0;
233 }
234 EXPORT_SYMBOL(otx2_set_mac_address);
235 
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)236 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
237 {
238 	struct nix_frs_cfg *req;
239 	u16 maxlen;
240 	int err;
241 
242 	maxlen = pfvf->hw.max_mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
243 
244 	mutex_lock(&pfvf->mbox.lock);
245 	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
246 	if (!req) {
247 		mutex_unlock(&pfvf->mbox.lock);
248 		return -ENOMEM;
249 	}
250 
251 	req->maxlen = mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
252 
253 	/* Use max receive length supported by hardware for loopback devices */
254 	if (is_otx2_lbkvf(pfvf->pdev))
255 		req->maxlen = maxlen;
256 
257 	err = otx2_sync_mbox_msg(&pfvf->mbox);
258 	mutex_unlock(&pfvf->mbox.lock);
259 	return err;
260 }
261 EXPORT_SYMBOL(otx2_hw_set_mtu);
262 
otx2_config_pause_frm(struct otx2_nic * pfvf)263 int otx2_config_pause_frm(struct otx2_nic *pfvf)
264 {
265 	struct cgx_pause_frm_cfg *req;
266 	int err;
267 
268 	if (is_otx2_lbkvf(pfvf->pdev) || is_otx2_sdp_rep(pfvf->pdev))
269 		return 0;
270 
271 	mutex_lock(&pfvf->mbox.lock);
272 	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
273 	if (!req) {
274 		err = -ENOMEM;
275 		goto unlock;
276 	}
277 
278 	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
279 	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
280 	req->set = 1;
281 
282 	err = otx2_sync_mbox_msg(&pfvf->mbox);
283 unlock:
284 	mutex_unlock(&pfvf->mbox.lock);
285 	return err;
286 }
287 EXPORT_SYMBOL(otx2_config_pause_frm);
288 
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)289 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
290 {
291 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
292 	struct nix_rss_flowkey_cfg_rsp *rsp;
293 	struct nix_rss_flowkey_cfg *req;
294 	int err;
295 
296 	mutex_lock(&pfvf->mbox.lock);
297 	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
298 	if (!req) {
299 		mutex_unlock(&pfvf->mbox.lock);
300 		return -ENOMEM;
301 	}
302 	req->mcam_index = -1; /* Default or reserved index */
303 	req->flowkey_cfg = rss->flowkey_cfg;
304 	req->group = DEFAULT_RSS_CONTEXT_GROUP;
305 
306 	err = otx2_sync_mbox_msg(&pfvf->mbox);
307 	if (err)
308 		goto fail;
309 
310 	rsp = (struct nix_rss_flowkey_cfg_rsp *)
311 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
312 	if (IS_ERR(rsp)) {
313 		err = PTR_ERR(rsp);
314 		goto fail;
315 	}
316 
317 	pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
318 fail:
319 	mutex_unlock(&pfvf->mbox.lock);
320 	return err;
321 }
322 
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id,const u32 * ind_tbl)323 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id, const u32 *ind_tbl)
324 {
325 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
326 	const int index = rss->rss_size * ctx_id;
327 	struct mbox *mbox = &pfvf->mbox;
328 	struct nix_aq_enq_req *aq;
329 	int idx, err;
330 
331 	mutex_lock(&mbox->lock);
332 	ind_tbl = ind_tbl ?: rss->ind_tbl;
333 	/* Get memory to put this msg */
334 	for (idx = 0; idx < rss->rss_size; idx++) {
335 		/* Ignore the queue if AF_XDP zero copy is enabled */
336 		if (test_bit(ind_tbl[idx], pfvf->af_xdp_zc_qidx))
337 			continue;
338 
339 		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
340 		if (!aq) {
341 			/* The shared memory buffer can be full.
342 			 * Flush it and retry
343 			 */
344 			err = otx2_sync_mbox_msg(mbox);
345 			if (err) {
346 				mutex_unlock(&mbox->lock);
347 				return err;
348 			}
349 			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
350 			if (!aq) {
351 				mutex_unlock(&mbox->lock);
352 				return -ENOMEM;
353 			}
354 		}
355 
356 		aq->rss.rq = ind_tbl[idx];
357 
358 		/* Fill AQ info */
359 		aq->qidx = index + idx;
360 		aq->ctype = NIX_AQ_CTYPE_RSS;
361 		aq->op = NIX_AQ_INSTOP_INIT;
362 	}
363 	err = otx2_sync_mbox_msg(mbox);
364 	mutex_unlock(&mbox->lock);
365 	return err;
366 }
367 
otx2_set_rss_key(struct otx2_nic * pfvf)368 void otx2_set_rss_key(struct otx2_nic *pfvf)
369 {
370 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
371 	u64 *key = (u64 *)&rss->key[4];
372 	int idx;
373 
374 	/* 352bit or 44byte key needs to be configured as below
375 	 * NIX_LF_RX_SECRETX0 = key<351:288>
376 	 * NIX_LF_RX_SECRETX1 = key<287:224>
377 	 * NIX_LF_RX_SECRETX2 = key<223:160>
378 	 * NIX_LF_RX_SECRETX3 = key<159:96>
379 	 * NIX_LF_RX_SECRETX4 = key<95:32>
380 	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
381 	 */
382 	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
383 		     (u64)(*((u32 *)&rss->key)) << 32);
384 	idx = sizeof(rss->key) / sizeof(u64);
385 	while (idx > 0) {
386 		idx--;
387 		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
388 	}
389 }
390 
otx2_rss_init(struct otx2_nic * pfvf)391 int otx2_rss_init(struct otx2_nic *pfvf)
392 {
393 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
394 	int idx, ret = 0;
395 
396 	rss->rss_size = sizeof(*rss->ind_tbl);
397 
398 	/* Init RSS key if it is not setup already */
399 	if (!rss->enable)
400 		netdev_rss_key_fill(rss->key, sizeof(rss->key));
401 	otx2_set_rss_key(pfvf);
402 
403 	if (!netif_is_rxfh_configured(pfvf->netdev))
404 		for (idx = 0; idx < rss->rss_size; idx++)
405 			rss->ind_tbl[idx] =
406 				ethtool_rxfh_indir_default(idx,
407 							   pfvf->hw.rx_queues);
408 
409 	ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP, NULL);
410 	if (ret)
411 		return ret;
412 
413 	/* Flowkey or hash config to be used for generating flow tag */
414 	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
415 			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
416 			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
417 			   NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
418 			   NIX_FLOW_KEY_TYPE_IPV4_PROTO;
419 
420 	ret = otx2_set_flowkey_cfg(pfvf);
421 	if (ret)
422 		return ret;
423 
424 	rss->enable = true;
425 	return 0;
426 }
427 
428 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)429 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
430 {
431 	struct nix_lso_format *field;
432 
433 	field = (struct nix_lso_format *)&lso->fields[0];
434 	lso->field_mask = GENMASK(18, 0);
435 
436 	/* IP's Length field */
437 	field->layer = NIX_TXLAYER_OL3;
438 	/* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
439 	field->offset = v4 ? 2 : 4;
440 	field->sizem1 = 1; /* i.e 2 bytes */
441 	field->alg = NIX_LSOALG_ADD_PAYLEN;
442 	field++;
443 
444 	/* No ID field in IPv6 header */
445 	if (v4) {
446 		/* Increment IPID */
447 		field->layer = NIX_TXLAYER_OL3;
448 		field->offset = 4;
449 		field->sizem1 = 1; /* i.e 2 bytes */
450 		field->alg = NIX_LSOALG_ADD_SEGNUM;
451 		field++;
452 	}
453 
454 	/* Update length in UDP header */
455 	field->layer = NIX_TXLAYER_OL4;
456 	field->offset = 4;
457 	field->sizem1 = 1;
458 	field->alg = NIX_LSOALG_ADD_PAYLEN;
459 }
460 
461 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)462 void otx2_setup_segmentation(struct otx2_nic *pfvf)
463 {
464 	struct nix_lso_format_cfg_rsp *rsp;
465 	struct nix_lso_format_cfg *lso;
466 	struct otx2_hw *hw = &pfvf->hw;
467 	int err;
468 
469 	mutex_lock(&pfvf->mbox.lock);
470 
471 	/* UDPv4 segmentation */
472 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
473 	if (!lso)
474 		goto fail;
475 
476 	/* Setup UDP/IP header fields that HW should update per segment */
477 	otx2_setup_udp_segmentation(lso, true);
478 
479 	err = otx2_sync_mbox_msg(&pfvf->mbox);
480 	if (err)
481 		goto fail;
482 
483 	rsp = (struct nix_lso_format_cfg_rsp *)
484 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
485 	if (IS_ERR(rsp))
486 		goto fail;
487 
488 	hw->lso_udpv4_idx = rsp->lso_format_idx;
489 
490 	/* UDPv6 segmentation */
491 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
492 	if (!lso)
493 		goto fail;
494 
495 	/* Setup UDP/IP header fields that HW should update per segment */
496 	otx2_setup_udp_segmentation(lso, false);
497 
498 	err = otx2_sync_mbox_msg(&pfvf->mbox);
499 	if (err)
500 		goto fail;
501 
502 	rsp = (struct nix_lso_format_cfg_rsp *)
503 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
504 	if (IS_ERR(rsp))
505 		goto fail;
506 
507 	hw->lso_udpv6_idx = rsp->lso_format_idx;
508 	mutex_unlock(&pfvf->mbox.lock);
509 	return;
510 fail:
511 	mutex_unlock(&pfvf->mbox.lock);
512 	netdev_info(pfvf->netdev,
513 		    "Failed to get LSO index for UDP GSO offload, disabling\n");
514 	pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
515 }
516 
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)517 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
518 {
519 	/* Configure CQE interrupt coalescing parameters
520 	 *
521 	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
522 	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
523 	 * usecs, convert that to 100ns count.
524 	 */
525 	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
526 		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
527 		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
528 		     (pfvf->hw.cq_ecount_wait - 1));
529 }
530 
otx2_alloc_pool_buf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)531 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
532 			       dma_addr_t *dma)
533 {
534 	unsigned int offset = 0;
535 	struct page *page;
536 	size_t sz;
537 
538 	sz = SKB_DATA_ALIGN(pool->rbsize);
539 	sz = ALIGN(sz, OTX2_ALIGN);
540 
541 	page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
542 	if (unlikely(!page))
543 		return -ENOMEM;
544 
545 	*dma = page_pool_get_dma_addr(page) + offset;
546 	return 0;
547 }
548 
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma,int qidx,int idx)549 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
550 			     dma_addr_t *dma, int qidx, int idx)
551 {
552 	u8 *buf;
553 
554 	if (pool->xsk_pool)
555 		return otx2_xsk_pool_alloc_buf(pfvf, pool, dma, idx);
556 
557 	if (pool->page_pool)
558 		return otx2_alloc_pool_buf(pfvf, pool, dma);
559 
560 	buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
561 	if (unlikely(!buf))
562 		return -ENOMEM;
563 
564 	*dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
565 				    DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
566 	if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
567 		page_frag_free(buf);
568 		return -ENOMEM;
569 	}
570 
571 	return 0;
572 }
573 
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma,int qidx,int idx)574 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
575 		    dma_addr_t *dma, int qidx, int idx)
576 {
577 	int ret;
578 
579 	local_bh_disable();
580 	ret = __otx2_alloc_rbuf(pfvf, pool, dma, qidx, idx);
581 	local_bh_enable();
582 	return ret;
583 }
584 
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)585 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
586 		      dma_addr_t *dma)
587 {
588 	if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma,
589 				       cq->cq_idx, cq->pool_ptrs - 1)))
590 		return -ENOMEM;
591 	return 0;
592 }
593 
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)594 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
595 {
596 	struct otx2_nic *pfvf = netdev_priv(netdev);
597 
598 	schedule_work(&pfvf->reset_task);
599 }
600 EXPORT_SYMBOL(otx2_tx_timeout);
601 
otx2_get_mac_from_af(struct net_device * netdev)602 void otx2_get_mac_from_af(struct net_device *netdev)
603 {
604 	struct otx2_nic *pfvf = netdev_priv(netdev);
605 	int err;
606 
607 	err = otx2_hw_get_mac_addr(pfvf, netdev);
608 	if (err)
609 		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
610 
611 	/* If AF doesn't provide a valid MAC, generate a random one */
612 	if (!is_valid_ether_addr(netdev->dev_addr))
613 		eth_hw_addr_random(netdev);
614 }
615 EXPORT_SYMBOL(otx2_get_mac_from_af);
616 
otx2_txschq_config(struct otx2_nic * pfvf,int lvl,int prio,bool txschq_for_pfc)617 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
618 {
619 	u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
620 	struct otx2_hw *hw = &pfvf->hw;
621 	struct nix_txschq_config *req;
622 	u64 schq, parent;
623 	u64 dwrr_val;
624 
625 	dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
626 
627 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
628 	if (!req)
629 		return -ENOMEM;
630 
631 	req->lvl = lvl;
632 	req->num_regs = 1;
633 
634 	schq_list = hw->txschq_list;
635 #ifdef CONFIG_DCB
636 	if (txschq_for_pfc)
637 		schq_list = pfvf->pfc_schq_list;
638 #endif
639 
640 	schq = schq_list[lvl][prio];
641 	/* Set topology e.t.c configuration */
642 	if (lvl == NIX_TXSCH_LVL_SMQ) {
643 		req->reg[0] = NIX_AF_SMQX_CFG(schq);
644 		req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
645 		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
646 				  (0x2ULL << 36);
647 		/* Set link type for DWRR MTU selection on CN10K silicons */
648 		if (!is_dev_otx2(pfvf->pdev))
649 			req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
650 						(u64)hw->smq_link_type);
651 		req->num_regs++;
652 		/* MDQ config */
653 		parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
654 		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
655 		req->regval[1] = parent << 16;
656 		req->num_regs++;
657 		/* Set DWRR quantum */
658 		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
659 		req->regval[2] =  dwrr_val;
660 	} else if (lvl == NIX_TXSCH_LVL_TL4) {
661 		int sdp_chan =  hw->tx_chan_base + prio;
662 
663 		if (is_otx2_sdp_rep(pfvf->pdev))
664 			prio = 0;
665 		parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
666 		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
667 		req->regval[0] = (u64)parent << 16;
668 		req->num_regs++;
669 		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
670 		req->regval[1] = dwrr_val;
671 		if (is_otx2_sdp_rep(pfvf->pdev)) {
672 			req->num_regs++;
673 			req->reg[2] = NIX_AF_TL4X_SDP_LINK_CFG(schq);
674 			req->regval[2] = BIT_ULL(12) | BIT_ULL(13) |
675 					 (sdp_chan & 0xff);
676 		}
677 	} else if (lvl == NIX_TXSCH_LVL_TL3) {
678 		parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
679 		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
680 		req->regval[0] = (u64)parent << 16;
681 		req->num_regs++;
682 		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
683 		req->regval[1] = dwrr_val;
684 		if (lvl == hw->txschq_link_cfg_lvl &&
685 		    !is_otx2_sdp_rep(pfvf->pdev)) {
686 			req->num_regs++;
687 			req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
688 			/* Enable this queue and backpressure
689 			 * and set relative channel
690 			 */
691 			req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
692 		}
693 	} else if (lvl == NIX_TXSCH_LVL_TL2) {
694 		parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
695 		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
696 		req->regval[0] = (u64)parent << 16;
697 
698 		req->num_regs++;
699 		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
700 		req->regval[1] = (u64)hw->txschq_aggr_lvl_rr_prio << 24 | dwrr_val;
701 
702 		if (lvl == hw->txschq_link_cfg_lvl &&
703 		    !is_otx2_sdp_rep(pfvf->pdev)) {
704 			req->num_regs++;
705 			req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
706 			/* Enable this queue and backpressure
707 			 * and set relative channel
708 			 */
709 			req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
710 		}
711 	} else if (lvl == NIX_TXSCH_LVL_TL1) {
712 		/* Default config for TL1.
713 		 * For VF this is always ignored.
714 		 */
715 
716 		/* On CN10K, if RR_WEIGHT is greater than 16384, HW will
717 		 * clip it to 16384, so configuring a 24bit max value
718 		 * will work on both OTx2 and CN10K.
719 		 */
720 		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
721 		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
722 
723 		req->num_regs++;
724 		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
725 		req->regval[1] = hw->txschq_aggr_lvl_rr_prio << 1;
726 
727 		req->num_regs++;
728 		req->reg[2] = NIX_AF_TL1X_CIR(schq);
729 		req->regval[2] = 0;
730 	}
731 
732 	return otx2_sync_mbox_msg(&pfvf->mbox);
733 }
734 EXPORT_SYMBOL(otx2_txschq_config);
735 
otx2_smq_flush(struct otx2_nic * pfvf,int smq)736 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
737 {
738 	struct nix_txschq_config *req;
739 	int rc;
740 
741 	mutex_lock(&pfvf->mbox.lock);
742 
743 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
744 	if (!req) {
745 		mutex_unlock(&pfvf->mbox.lock);
746 		return -ENOMEM;
747 	}
748 
749 	req->lvl = NIX_TXSCH_LVL_SMQ;
750 	req->reg[0] = NIX_AF_SMQX_CFG(smq);
751 	req->regval[0] |= BIT_ULL(49);
752 	req->num_regs++;
753 
754 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
755 	mutex_unlock(&pfvf->mbox.lock);
756 	return rc;
757 }
758 EXPORT_SYMBOL(otx2_smq_flush);
759 
otx2_txsch_alloc(struct otx2_nic * pfvf)760 int otx2_txsch_alloc(struct otx2_nic *pfvf)
761 {
762 	int chan_cnt = pfvf->hw.tx_chan_cnt;
763 	struct nix_txsch_alloc_req *req;
764 	struct nix_txsch_alloc_rsp *rsp;
765 	int lvl, schq, rc;
766 
767 	/* Get memory to put this msg */
768 	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
769 	if (!req)
770 		return -ENOMEM;
771 
772 	/* Request one schq per level */
773 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
774 		req->schq[lvl] = 1;
775 
776 	if (is_otx2_sdp_rep(pfvf->pdev) && chan_cnt > 1) {
777 		req->schq[NIX_TXSCH_LVL_SMQ] = chan_cnt;
778 		req->schq[NIX_TXSCH_LVL_TL4] = chan_cnt;
779 	}
780 
781 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
782 	if (rc)
783 		return rc;
784 
785 	rsp = (struct nix_txsch_alloc_rsp *)
786 	      otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
787 	if (IS_ERR(rsp))
788 		return PTR_ERR(rsp);
789 
790 	/* Setup transmit scheduler list */
791 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
792 		pfvf->hw.txschq_cnt[lvl] = rsp->schq[lvl];
793 		for (schq = 0; schq < rsp->schq[lvl]; schq++)
794 			pfvf->hw.txschq_list[lvl][schq] =
795 				rsp->schq_list[lvl][schq];
796 	}
797 
798 	pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
799 	pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
800 
801 	return 0;
802 }
803 
otx2_txschq_free_one(struct otx2_nic * pfvf,u16 lvl,u16 schq)804 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
805 {
806 	struct nix_txsch_free_req *free_req;
807 	int err;
808 
809 	mutex_lock(&pfvf->mbox.lock);
810 
811 	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
812 	if (!free_req) {
813 		mutex_unlock(&pfvf->mbox.lock);
814 		netdev_err(pfvf->netdev,
815 			   "Failed alloc txschq free req\n");
816 		return;
817 	}
818 
819 	free_req->schq_lvl = lvl;
820 	free_req->schq = schq;
821 
822 	err = otx2_sync_mbox_msg(&pfvf->mbox);
823 	if (err) {
824 		netdev_err(pfvf->netdev,
825 			   "Failed stop txschq %d at level %d\n", schq, lvl);
826 	}
827 
828 	mutex_unlock(&pfvf->mbox.lock);
829 }
830 EXPORT_SYMBOL(otx2_txschq_free_one);
831 
otx2_txschq_stop(struct otx2_nic * pfvf)832 void otx2_txschq_stop(struct otx2_nic *pfvf)
833 {
834 	int lvl, schq, idx;
835 
836 	/* free non QOS TLx nodes */
837 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
838 		for (idx = 0; idx < pfvf->hw.txschq_cnt[lvl]; idx++) {
839 			otx2_txschq_free_one(pfvf, lvl,
840 					     pfvf->hw.txschq_list[lvl][idx]);
841 		}
842 	}
843 
844 	/* Clear the txschq list */
845 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
846 		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
847 			pfvf->hw.txschq_list[lvl][schq] = 0;
848 	}
849 
850 }
851 
otx2_sqb_flush(struct otx2_nic * pfvf)852 void otx2_sqb_flush(struct otx2_nic *pfvf)
853 {
854 	int qidx, sqe_tail, sqe_head;
855 	struct otx2_snd_queue *sq;
856 	void __iomem *ptr;
857 	u64 incr, val;
858 
859 	ptr = otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
860 	for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
861 		sq = &pfvf->qset.sq[qidx];
862 		if (!sq->sqb_ptrs)
863 			continue;
864 
865 		incr = (u64)qidx << 32;
866 		val = otx2_atomic64_add(incr, ptr);
867 		sqe_head = (val >> 20) & 0x3F;
868 		sqe_tail = (val >> 28) & 0x3F;
869 		if (sqe_head != sqe_tail)
870 			usleep_range(50, 60);
871 	}
872 }
873 
874 /* RED and drop levels of CQ on packet reception.
875  * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
876  */
877 #define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
878 #define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))
879 
880 /* RED and drop levels of AURA for packet reception.
881  * For AURA level is measure of fullness (0x0 = empty, 255 = full).
882  * Eg: For RQ length 1K, for pass/drop level 204/230.
883  * RED accepts pkts if free pointers > 102 & <= 205.
884  * Drops pkts if free pointers < 102.
885  */
886 #define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
887 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
888 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
889 
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)890 int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
891 {
892 	struct otx2_qset *qset = &pfvf->qset;
893 	struct nix_aq_enq_req *aq;
894 
895 	/* Get memory to put this msg */
896 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
897 	if (!aq)
898 		return -ENOMEM;
899 
900 	aq->rq.cq = qidx;
901 	aq->rq.ena = 1;
902 	aq->rq.pb_caching = 1;
903 	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
904 	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
905 	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
906 	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
907 	aq->rq.qint_idx = 0;
908 	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
909 	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
910 	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
911 	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
912 	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
913 	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
914 
915 	/* Fill AQ info */
916 	aq->qidx = qidx;
917 	aq->ctype = NIX_AQ_CTYPE_RQ;
918 	aq->op = NIX_AQ_INSTOP_INIT;
919 
920 	return otx2_sync_mbox_msg(&pfvf->mbox);
921 }
922 
otx2_sq_aq_init(void * dev,u16 qidx,u8 chan_offset,u16 sqb_aura)923 int otx2_sq_aq_init(void *dev, u16 qidx, u8 chan_offset, u16 sqb_aura)
924 {
925 	struct otx2_nic *pfvf = dev;
926 	struct otx2_snd_queue *sq;
927 	struct nix_aq_enq_req *aq;
928 
929 	sq = &pfvf->qset.sq[qidx];
930 	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
931 	/* Get memory to put this msg */
932 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
933 	if (!aq)
934 		return -ENOMEM;
935 
936 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
937 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
938 	aq->sq.cq_ena = 1;
939 	aq->sq.ena = 1;
940 	aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
941 	aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
942 	aq->sq.default_chan = pfvf->hw.tx_chan_base + chan_offset;
943 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
944 	aq->sq.sqb_aura = sqb_aura;
945 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
946 	aq->sq.qint_idx = 0;
947 	/* Due pipelining impact minimum 2000 unused SQ CQE's
948 	 * need to maintain to avoid CQ overflow.
949 	 */
950 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
951 
952 	/* Fill AQ info */
953 	aq->qidx = qidx;
954 	aq->ctype = NIX_AQ_CTYPE_SQ;
955 	aq->op = NIX_AQ_INSTOP_INIT;
956 
957 	return otx2_sync_mbox_msg(&pfvf->mbox);
958 }
959 
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)960 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
961 {
962 	struct otx2_qset *qset = &pfvf->qset;
963 	struct otx2_snd_queue *sq;
964 	struct otx2_pool *pool;
965 	u8 chan_offset;
966 	int err;
967 
968 	pool = &pfvf->qset.pool[sqb_aura];
969 	sq = &qset->sq[qidx];
970 	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
971 	sq->sqe_cnt = qset->sqe_cnt;
972 
973 	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
974 	if (err)
975 		return err;
976 
977 	/* Allocate memory for NIX SQE (which includes NIX SG) and CPT SG.
978 	 * SG of NIX and CPT are same in size. Allocate memory for CPT SG
979 	 * same as NIX SQE for base address alignment.
980 	 * Layout of a NIX SQE and CPT SG entry:
981 	 *      -----------------------------
982 	 *     |     CPT Scatter Gather      |
983 	 *     |       (SQE SIZE)            |
984 	 *     |                             |
985 	 *      -----------------------------
986 	 *     |       NIX SQE               |
987 	 *     |       (SQE SIZE)            |
988 	 *     |                             |
989 	 *      -----------------------------
990 	 */
991 	err = qmem_alloc(pfvf->dev, &sq->sqe_ring, qset->sqe_cnt,
992 			 sq->sqe_size * 2);
993 	if (err)
994 		return err;
995 
996 	err = qmem_alloc(pfvf->dev, &sq->cpt_resp, qset->sqe_cnt, 64);
997 	if (err)
998 		return err;
999 
1000 	if (qidx < pfvf->hw.tx_queues) {
1001 		err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
1002 				 TSO_HEADER_SIZE);
1003 		if (err)
1004 			return err;
1005 	}
1006 
1007 	sq->sqe_base = sq->sqe->base;
1008 	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
1009 	if (!sq->sg)
1010 		return -ENOMEM;
1011 
1012 	if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
1013 		err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
1014 				 sizeof(*sq->timestamps));
1015 		if (err) {
1016 			kfree(sq->sg);
1017 			sq->sg = NULL;
1018 			return err;
1019 		}
1020 	}
1021 
1022 	sq->head = 0;
1023 	sq->cons_head = 0;
1024 	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
1025 	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
1026 	/* Set SQE threshold to 10% of total SQEs */
1027 	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
1028 	sq->aura_id = sqb_aura;
1029 	sq->aura_fc_addr = pool->fc_addr->base;
1030 	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
1031 
1032 	sq->stats.bytes = 0;
1033 	sq->stats.pkts = 0;
1034 	/* Attach XSK_BUFF_POOL to XDP queue */
1035 	if (qidx > pfvf->hw.xdp_queues)
1036 		otx2_attach_xsk_buff(pfvf, sq, (qidx - pfvf->hw.xdp_queues));
1037 
1038 
1039 	chan_offset = qidx % pfvf->hw.tx_chan_cnt;
1040 	err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, chan_offset, sqb_aura);
1041 	if (err) {
1042 		kfree(sq->sg);
1043 		sq->sg = NULL;
1044 		return err;
1045 	}
1046 
1047 	return 0;
1048 
1049 }
1050 
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)1051 int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
1052 {
1053 	struct otx2_qset *qset = &pfvf->qset;
1054 	int err, pool_id, non_xdp_queues;
1055 	struct nix_aq_enq_req *aq;
1056 	struct otx2_cq_queue *cq;
1057 	struct otx2_pool *pool;
1058 
1059 	cq = &qset->cq[qidx];
1060 	cq->cq_idx = qidx;
1061 	non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
1062 	if (qidx < pfvf->hw.rx_queues) {
1063 		cq->cq_type = CQ_RX;
1064 		cq->cint_idx = qidx;
1065 		cq->cqe_cnt = qset->rqe_cnt;
1066 		if (pfvf->xdp_prog) {
1067 			xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
1068 			pool = &qset->pool[qidx];
1069 			if (pool->xsk_pool) {
1070 				xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1071 							   MEM_TYPE_XSK_BUFF_POOL,
1072 							   NULL);
1073 				xsk_pool_set_rxq_info(pool->xsk_pool, &cq->xdp_rxq);
1074 			} else if (pool->page_pool) {
1075 				xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1076 							   MEM_TYPE_PAGE_POOL,
1077 							   pool->page_pool);
1078 			}
1079 		}
1080 	} else if (qidx < non_xdp_queues) {
1081 		cq->cq_type = CQ_TX;
1082 		cq->cint_idx = qidx - pfvf->hw.rx_queues;
1083 		cq->cqe_cnt = qset->sqe_cnt;
1084 	} else {
1085 		if (pfvf->hw.xdp_queues &&
1086 		    qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1087 			cq->cq_type = CQ_XDP;
1088 			cq->cint_idx = qidx - non_xdp_queues;
1089 			cq->cqe_cnt = qset->sqe_cnt;
1090 		} else {
1091 			cq->cq_type = CQ_QOS;
1092 			cq->cint_idx = qidx - non_xdp_queues -
1093 				       pfvf->hw.xdp_queues;
1094 			cq->cqe_cnt = qset->sqe_cnt;
1095 		}
1096 	}
1097 	cq->cqe_size = pfvf->qset.xqe_size;
1098 
1099 	/* Allocate memory for CQEs */
1100 	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1101 	if (err)
1102 		return err;
1103 
1104 	/* Save CQE CPU base for faster reference */
1105 	cq->cqe_base = cq->cqe->base;
1106 	/* In case where all RQs auras point to single pool,
1107 	 * all CQs receive buffer pool also point to same pool.
1108 	 */
1109 	pool_id = ((cq->cq_type == CQ_RX) &&
1110 		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1111 	cq->rbpool = &qset->pool[pool_id];
1112 	cq->refill_task_sched = false;
1113 
1114 	/* Get memory to put this msg */
1115 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1116 	if (!aq)
1117 		return -ENOMEM;
1118 
1119 	aq->cq.ena = 1;
1120 	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1121 	aq->cq.caching = 1;
1122 	aq->cq.base = cq->cqe->iova;
1123 	aq->cq.cint_idx = cq->cint_idx;
1124 	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1125 	aq->cq.qint_idx = 0;
1126 	aq->cq.avg_level = 255;
1127 
1128 	if (qidx < pfvf->hw.rx_queues) {
1129 		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1130 		aq->cq.drop_ena = 1;
1131 
1132 		if (!is_otx2_lbkvf(pfvf->pdev)) {
1133 			/* Enable receive CQ backpressure */
1134 			aq->cq.bp_ena = 1;
1135 #ifdef CONFIG_DCB
1136 			aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1137 #else
1138 			aq->cq.bpid = pfvf->bpid[0];
1139 #endif
1140 
1141 			/* Set backpressure level is same as cq pass level */
1142 			aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1143 		}
1144 	}
1145 
1146 	/* Fill AQ info */
1147 	aq->qidx = qidx;
1148 	aq->ctype = NIX_AQ_CTYPE_CQ;
1149 	aq->op = NIX_AQ_INSTOP_INIT;
1150 
1151 	return otx2_sync_mbox_msg(&pfvf->mbox);
1152 }
1153 
otx2_pool_refill_task(struct work_struct * work)1154 static void otx2_pool_refill_task(struct work_struct *work)
1155 {
1156 	struct otx2_cq_queue *cq;
1157 	struct refill_work *wrk;
1158 	struct otx2_nic *pfvf;
1159 	int qidx;
1160 
1161 	wrk = container_of(work, struct refill_work, pool_refill_work.work);
1162 	pfvf = wrk->pf;
1163 	qidx = wrk - pfvf->refill_wrk;
1164 	cq = &pfvf->qset.cq[qidx];
1165 
1166 	cq->refill_task_sched = false;
1167 
1168 	local_bh_disable();
1169 	napi_schedule(wrk->napi);
1170 	local_bh_enable();
1171 }
1172 
otx2_config_nix_queues(struct otx2_nic * pfvf)1173 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1174 {
1175 	int qidx, err;
1176 
1177 	/* Initialize RX queues */
1178 	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1179 		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1180 
1181 		err = otx2_rq_init(pfvf, qidx, lpb_aura);
1182 		if (err)
1183 			return err;
1184 	}
1185 
1186 	/* Initialize TX queues */
1187 	for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1188 		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1189 
1190 		err = otx2_sq_init(pfvf, qidx, sqb_aura);
1191 		if (err)
1192 			return err;
1193 	}
1194 
1195 	/* Initialize completion queues */
1196 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1197 		err = otx2_cq_init(pfvf, qidx);
1198 		if (err)
1199 			return err;
1200 	}
1201 
1202 	pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1203 							   NIX_LF_CQ_OP_STATUS);
1204 
1205 	/* Initialize work queue for receive buffer refill */
1206 	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1207 					sizeof(struct refill_work), GFP_KERNEL);
1208 	if (!pfvf->refill_wrk)
1209 		return -ENOMEM;
1210 
1211 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1212 		pfvf->refill_wrk[qidx].pf = pfvf;
1213 		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1214 				  otx2_pool_refill_task);
1215 	}
1216 	return 0;
1217 }
1218 
otx2_config_nix(struct otx2_nic * pfvf)1219 int otx2_config_nix(struct otx2_nic *pfvf)
1220 {
1221 	struct nix_lf_alloc_req  *nixlf;
1222 	struct nix_lf_alloc_rsp *rsp;
1223 	int err;
1224 
1225 	pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1226 
1227 	/* Get memory to put this msg */
1228 	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1229 	if (!nixlf)
1230 		return -ENOMEM;
1231 
1232 	/* Set RQ/SQ/CQ counts */
1233 	nixlf->rq_cnt = pfvf->hw.rx_queues;
1234 	nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1235 	nixlf->cq_cnt = pfvf->qset.cq_cnt;
1236 	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1237 	nixlf->rss_grps = MAX_RSS_GROUPS;
1238 	nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1239 	/* We don't know absolute NPA LF idx attached.
1240 	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1241 	 * NPA LF attached to this RVU PF/VF.
1242 	 */
1243 	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1244 	/* Disable alignment pad, enable L2 length check,
1245 	 * enable L4 TCP/UDP checksum verification.
1246 	 */
1247 	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1248 
1249 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1250 	if (err)
1251 		return err;
1252 
1253 	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1254 							   &nixlf->hdr);
1255 	if (IS_ERR(rsp))
1256 		return PTR_ERR(rsp);
1257 
1258 	if (rsp->qints < 1)
1259 		return -ENXIO;
1260 
1261 	return rsp->hdr.rc;
1262 }
1263 
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1264 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1265 {
1266 	struct otx2_qset *qset = &pfvf->qset;
1267 	struct otx2_hw *hw = &pfvf->hw;
1268 	struct otx2_snd_queue *sq;
1269 	int sqb, qidx;
1270 	u64 iova, pa;
1271 
1272 	for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1273 		sq = &qset->sq[qidx];
1274 		if (!sq->sqb_ptrs)
1275 			continue;
1276 		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1277 			if (!sq->sqb_ptrs[sqb])
1278 				continue;
1279 			iova = sq->sqb_ptrs[sqb];
1280 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1281 			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1282 					     DMA_FROM_DEVICE,
1283 					     DMA_ATTR_SKIP_CPU_SYNC);
1284 			put_page(virt_to_page(phys_to_virt(pa)));
1285 		}
1286 		sq->sqb_count = 0;
1287 	}
1288 }
1289 
otx2_free_bufs(struct otx2_nic * pfvf,struct otx2_pool * pool,u64 iova,int size)1290 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1291 		    u64 iova, int size)
1292 {
1293 	struct page *page;
1294 	u64 pa;
1295 
1296 	pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1297 	page = virt_to_head_page(phys_to_virt(pa));
1298 	if (pool->page_pool) {
1299 		page_pool_put_full_page(pool->page_pool, page, true);
1300 	} else if (pool->xsk_pool) {
1301 		/* Note: No way of identifying xdp_buff */
1302 	} else {
1303 		dma_unmap_page_attrs(pfvf->dev, iova, size,
1304 				     DMA_FROM_DEVICE,
1305 				     DMA_ATTR_SKIP_CPU_SYNC);
1306 
1307 		put_page(page);
1308 	}
1309 }
1310 
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1311 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1312 {
1313 	int pool_id, pool_start = 0, pool_end = 0, size = 0;
1314 	struct otx2_pool *pool;
1315 	u64 iova;
1316 	int idx;
1317 
1318 	if (type == AURA_NIX_SQ) {
1319 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1320 		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
1321 		size = pfvf->hw.sqb_size;
1322 	}
1323 	if (type == AURA_NIX_RQ) {
1324 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1325 		pool_end = pfvf->hw.rqpool_cnt;
1326 		size = pfvf->rbsize;
1327 	}
1328 
1329 	/* Free SQB and RQB pointers from the aura pool */
1330 	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1331 		pool = &pfvf->qset.pool[pool_id];
1332 		iova = otx2_aura_allocptr(pfvf, pool_id);
1333 		while (iova) {
1334 			if (type == AURA_NIX_RQ)
1335 				iova -= OTX2_HEAD_ROOM;
1336 			otx2_free_bufs(pfvf, pool, iova, size);
1337 			iova = otx2_aura_allocptr(pfvf, pool_id);
1338 		}
1339 
1340 		for (idx = 0 ; idx < pool->xdp_cnt; idx++) {
1341 			if (!pool->xdp[idx])
1342 				continue;
1343 
1344 			xsk_buff_free(pool->xdp[idx]);
1345 		}
1346 	}
1347 }
1348 
otx2_aura_pool_free(struct otx2_nic * pfvf)1349 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1350 {
1351 	struct otx2_pool *pool;
1352 	int pool_id;
1353 
1354 	if (!pfvf->qset.pool)
1355 		return;
1356 
1357 	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1358 		pool = &pfvf->qset.pool[pool_id];
1359 		qmem_free(pfvf->dev, pool->stack);
1360 		qmem_free(pfvf->dev, pool->fc_addr);
1361 		page_pool_destroy(pool->page_pool);
1362 		devm_kfree(pfvf->dev, pool->xdp);
1363 		pool->xsk_pool = NULL;
1364 	}
1365 	devm_kfree(pfvf->dev, pfvf->qset.pool);
1366 	pfvf->qset.pool = NULL;
1367 }
1368 
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1369 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1370 		   int pool_id, int numptrs)
1371 {
1372 	return pfvf->hw_ops->aura_aq_init(pfvf, aura_id, pool_id,
1373 					  numptrs);
1374 }
1375 
otx2_aura_aq_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1376 int otx2_aura_aq_init(struct otx2_nic *pfvf, int aura_id,
1377 		      int pool_id, int numptrs)
1378 {
1379 	struct npa_aq_enq_req *aq;
1380 	struct otx2_pool *pool;
1381 	int err;
1382 
1383 	pool = &pfvf->qset.pool[pool_id];
1384 
1385 	/* Allocate memory for HW to update Aura count.
1386 	 * Alloc one cache line, so that it fits all FC_STYPE modes.
1387 	 */
1388 	if (!pool->fc_addr) {
1389 		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1390 		if (err)
1391 			return err;
1392 	}
1393 
1394 	/* Initialize this aura's context via AF */
1395 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1396 	if (!aq) {
1397 		/* Shared mbox memory buffer is full, flush it and retry */
1398 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1399 		if (err)
1400 			return err;
1401 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1402 		if (!aq)
1403 			return -ENOMEM;
1404 	}
1405 
1406 	aq->aura_id = aura_id;
1407 	/* Will be filled by AF with correct pool context address */
1408 	aq->aura.pool_addr = pool_id;
1409 	aq->aura.pool_caching = 1;
1410 	aq->aura.shift = ilog2(numptrs) - 8;
1411 	aq->aura.count = numptrs;
1412 	aq->aura.limit = numptrs;
1413 	aq->aura.avg_level = 255;
1414 	aq->aura.ena = 1;
1415 	aq->aura.fc_ena = 1;
1416 	aq->aura.fc_addr = pool->fc_addr->iova;
1417 	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1418 
1419 	/* Enable backpressure for RQ aura */
1420 	if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1421 		aq->aura.bp_ena = 0;
1422 		/* If NIX1 LF is attached then specify NIX1_RX.
1423 		 *
1424 		 * Below NPA_AURA_S[BP_ENA] is set according to the
1425 		 * NPA_BPINTF_E enumeration given as:
1426 		 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1427 		 * NIX0_RX is 0x0 + 0*0x1 = 0
1428 		 * NIX1_RX is 0x0 + 1*0x1 = 1
1429 		 * But in HRM it is given that
1430 		 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1431 		 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1432 		 * enumerated by NPA_BPINTF_E."
1433 		 */
1434 		if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1435 			aq->aura.bp_ena = 1;
1436 #ifdef CONFIG_DCB
1437 		aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1438 #else
1439 		aq->aura.nix0_bpid = pfvf->bpid[0];
1440 #endif
1441 
1442 		/* Set backpressure level for RQ's Aura */
1443 		aq->aura.bp = RQ_BP_LVL_AURA;
1444 	}
1445 
1446 	/* Fill AQ info */
1447 	aq->ctype = NPA_AQ_CTYPE_AURA;
1448 	aq->op = NPA_AQ_INSTOP_INIT;
1449 
1450 	return 0;
1451 }
1452 
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1453 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1454 		   int stack_pages, int numptrs, int buf_size, int type)
1455 {
1456 	return pfvf->hw_ops->pool_aq_init(pfvf, pool_id, stack_pages, numptrs,
1457 					  buf_size, type);
1458 }
1459 
otx2_pool_aq_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1460 int otx2_pool_aq_init(struct otx2_nic *pfvf, u16 pool_id,
1461 		      int stack_pages, int numptrs, int buf_size, int type)
1462 {
1463 	struct page_pool_params pp_params = { 0 };
1464 	struct xsk_buff_pool *xsk_pool;
1465 	struct npa_aq_enq_req *aq;
1466 	struct otx2_pool *pool;
1467 	int err;
1468 
1469 	pool = &pfvf->qset.pool[pool_id];
1470 	/* Alloc memory for stack which is used to store buffer pointers */
1471 	err = qmem_alloc(pfvf->dev, &pool->stack,
1472 			 stack_pages, pfvf->hw.stack_pg_bytes);
1473 	if (err)
1474 		return err;
1475 
1476 	pool->rbsize = buf_size;
1477 
1478 	/* Initialize this pool's context via AF */
1479 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1480 	if (!aq) {
1481 		/* Shared mbox memory buffer is full, flush it and retry */
1482 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1483 		if (err) {
1484 			qmem_free(pfvf->dev, pool->stack);
1485 			return err;
1486 		}
1487 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1488 		if (!aq) {
1489 			qmem_free(pfvf->dev, pool->stack);
1490 			return -ENOMEM;
1491 		}
1492 	}
1493 
1494 	aq->aura_id = pool_id;
1495 	aq->pool.stack_base = pool->stack->iova;
1496 	aq->pool.stack_caching = 1;
1497 	aq->pool.ena = 1;
1498 	aq->pool.buf_size = buf_size / 128;
1499 	aq->pool.stack_max_pages = stack_pages;
1500 	aq->pool.shift = ilog2(numptrs) - 8;
1501 	aq->pool.ptr_start = 0;
1502 	aq->pool.ptr_end = ~0ULL;
1503 
1504 	/* Fill AQ info */
1505 	aq->ctype = NPA_AQ_CTYPE_POOL;
1506 	aq->op = NPA_AQ_INSTOP_INIT;
1507 
1508 	if (type != AURA_NIX_RQ)
1509 		return 0;
1510 
1511 	if (!test_bit(pool_id, pfvf->af_xdp_zc_qidx)) {
1512 		pp_params.order = get_order(buf_size);
1513 		pp_params.flags = PP_FLAG_DMA_MAP;
1514 		pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1515 		pp_params.nid = NUMA_NO_NODE;
1516 		pp_params.dev = pfvf->dev;
1517 		pp_params.dma_dir = DMA_FROM_DEVICE;
1518 		pool->page_pool = page_pool_create(&pp_params);
1519 		if (IS_ERR(pool->page_pool)) {
1520 			netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1521 			return PTR_ERR(pool->page_pool);
1522 		}
1523 		return 0;
1524 	}
1525 
1526 	/* Set XSK pool to support AF_XDP zero-copy */
1527 	xsk_pool = xsk_get_pool_from_qid(pfvf->netdev, pool_id);
1528 	if (xsk_pool) {
1529 		pool->xsk_pool = xsk_pool;
1530 		pool->xdp_cnt = numptrs;
1531 		pool->xdp = devm_kcalloc(pfvf->dev,
1532 					 numptrs, sizeof(struct xdp_buff *), GFP_KERNEL);
1533 		if (!pool->xdp)
1534 			return -ENOMEM;
1535 	}
1536 
1537 	return 0;
1538 }
1539 
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1540 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1541 {
1542 	int qidx, pool_id, stack_pages, num_sqbs;
1543 	struct otx2_qset *qset = &pfvf->qset;
1544 	struct otx2_hw *hw = &pfvf->hw;
1545 	struct otx2_snd_queue *sq;
1546 	struct otx2_pool *pool;
1547 	dma_addr_t bufptr;
1548 	int err, ptr;
1549 
1550 	/* Calculate number of SQBs needed.
1551 	 *
1552 	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1553 	 * Last SQE is used for pointing to next SQB.
1554 	 */
1555 	num_sqbs = (hw->sqb_size / 128) - 1;
1556 	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1557 
1558 	/* Get no of stack pages needed */
1559 	stack_pages =
1560 		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1561 
1562 	for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1563 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1564 		/* Initialize aura context */
1565 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1566 		if (err)
1567 			goto fail;
1568 
1569 		/* Initialize pool context */
1570 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1571 				     num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1572 		if (err)
1573 			goto fail;
1574 	}
1575 
1576 	/* Flush accumulated messages */
1577 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1578 	if (err)
1579 		goto fail;
1580 
1581 	/* Allocate pointers and free them to aura/pool */
1582 	for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1583 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1584 		pool = &pfvf->qset.pool[pool_id];
1585 
1586 		sq = &qset->sq[qidx];
1587 		sq->sqb_count = 0;
1588 		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1589 		if (!sq->sqb_ptrs) {
1590 			err = -ENOMEM;
1591 			goto err_mem;
1592 		}
1593 
1594 		for (ptr = 0; ptr < num_sqbs; ptr++) {
1595 			err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr);
1596 			if (err) {
1597 				if (pool->xsk_pool) {
1598 					ptr--;
1599 					while (ptr >= 0) {
1600 						xsk_buff_free(pool->xdp[ptr]);
1601 						ptr--;
1602 					}
1603 				}
1604 				goto err_mem;
1605 			}
1606 
1607 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1608 			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1609 		}
1610 	}
1611 
1612 err_mem:
1613 	return err ? -ENOMEM : 0;
1614 
1615 fail:
1616 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1617 	otx2_aura_pool_free(pfvf);
1618 	return err;
1619 }
1620 
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1621 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1622 {
1623 	struct otx2_hw *hw = &pfvf->hw;
1624 	int stack_pages, pool_id, rq;
1625 	struct otx2_pool *pool;
1626 	int err, ptr, num_ptrs;
1627 	dma_addr_t bufptr;
1628 
1629 	num_ptrs = pfvf->qset.rqe_cnt;
1630 
1631 	stack_pages =
1632 		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1633 
1634 	for (rq = 0; rq < hw->rx_queues; rq++) {
1635 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1636 		/* Initialize aura context */
1637 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1638 		if (err)
1639 			goto fail;
1640 	}
1641 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1642 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1643 				     num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1644 		if (err)
1645 			goto fail;
1646 	}
1647 
1648 	/* Flush accumulated messages */
1649 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1650 	if (err)
1651 		goto fail;
1652 
1653 	/* Allocate pointers and free them to aura/pool */
1654 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1655 		pool = &pfvf->qset.pool[pool_id];
1656 
1657 		for (ptr = 0; ptr < num_ptrs; ptr++) {
1658 			err = otx2_alloc_rbuf(pfvf, pool, &bufptr, pool_id, ptr);
1659 			if (err) {
1660 				if (pool->xsk_pool) {
1661 					while (ptr)
1662 						xsk_buff_free(pool->xdp[--ptr]);
1663 				}
1664 				return -ENOMEM;
1665 			}
1666 
1667 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1668 						   pool->xsk_pool ? bufptr :
1669 						   bufptr + OTX2_HEAD_ROOM);
1670 		}
1671 	}
1672 	return 0;
1673 fail:
1674 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1675 	otx2_aura_pool_free(pfvf);
1676 	return err;
1677 }
1678 
otx2_config_npa(struct otx2_nic * pfvf)1679 int otx2_config_npa(struct otx2_nic *pfvf)
1680 {
1681 	struct otx2_qset *qset = &pfvf->qset;
1682 	struct npa_lf_alloc_req  *npalf;
1683 	struct otx2_hw *hw = &pfvf->hw;
1684 	int aura_cnt;
1685 
1686 	/* Pool - Stack of free buffer pointers
1687 	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1688 	 */
1689 
1690 	if (!hw->pool_cnt)
1691 		return -EINVAL;
1692 
1693 	qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1694 				  sizeof(struct otx2_pool), GFP_KERNEL);
1695 	if (!qset->pool)
1696 		return -ENOMEM;
1697 
1698 	/* Get memory to put this msg */
1699 	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1700 	if (!npalf)
1701 		return -ENOMEM;
1702 
1703 	/* Set aura and pool counts */
1704 	npalf->nr_pools = hw->pool_cnt;
1705 	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1706 	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1707 
1708 	return otx2_sync_mbox_msg(&pfvf->mbox);
1709 }
1710 
otx2_detach_resources(struct mbox * mbox)1711 int otx2_detach_resources(struct mbox *mbox)
1712 {
1713 	struct rsrc_detach *detach;
1714 
1715 	mutex_lock(&mbox->lock);
1716 	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1717 	if (!detach) {
1718 		mutex_unlock(&mbox->lock);
1719 		return -ENOMEM;
1720 	}
1721 
1722 	/* detach all */
1723 	detach->partial = false;
1724 
1725 	/* Send detach request to AF */
1726 	otx2_sync_mbox_msg(mbox);
1727 	mutex_unlock(&mbox->lock);
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL(otx2_detach_resources);
1731 
otx2_attach_npa_nix(struct otx2_nic * pfvf)1732 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1733 {
1734 	struct rsrc_attach *attach;
1735 	struct msg_req *msix;
1736 	int err;
1737 
1738 	mutex_lock(&pfvf->mbox.lock);
1739 	/* Get memory to put this msg */
1740 	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1741 	if (!attach) {
1742 		mutex_unlock(&pfvf->mbox.lock);
1743 		return -ENOMEM;
1744 	}
1745 
1746 	attach->npalf = true;
1747 	attach->nixlf = true;
1748 
1749 	/* Send attach request to AF */
1750 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1751 	if (err) {
1752 		mutex_unlock(&pfvf->mbox.lock);
1753 		return err;
1754 	}
1755 
1756 	pfvf->nix_blkaddr = BLKADDR_NIX0;
1757 
1758 	/* If the platform has two NIX blocks then LF may be
1759 	 * allocated from NIX1.
1760 	 */
1761 	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1762 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1763 
1764 	/* Get NPA and NIX MSIX vector offsets */
1765 	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1766 	if (!msix) {
1767 		mutex_unlock(&pfvf->mbox.lock);
1768 		return -ENOMEM;
1769 	}
1770 
1771 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1772 	if (err) {
1773 		mutex_unlock(&pfvf->mbox.lock);
1774 		return err;
1775 	}
1776 	mutex_unlock(&pfvf->mbox.lock);
1777 
1778 	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1779 	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1780 		dev_err(pfvf->dev,
1781 			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1782 		return -EINVAL;
1783 	}
1784 
1785 	return 0;
1786 }
1787 EXPORT_SYMBOL(otx2_attach_npa_nix);
1788 
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1789 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1790 {
1791 	struct hwctx_disable_req *req;
1792 
1793 	mutex_lock(&mbox->lock);
1794 	/* Request AQ to disable this context */
1795 	if (npa)
1796 		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1797 	else
1798 		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1799 
1800 	if (!req) {
1801 		mutex_unlock(&mbox->lock);
1802 		return;
1803 	}
1804 
1805 	req->ctype = type;
1806 
1807 	if (otx2_sync_mbox_msg(mbox))
1808 		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1809 			__func__);
1810 
1811 	mutex_unlock(&mbox->lock);
1812 }
1813 
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1814 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1815 {
1816 	struct nix_bp_cfg_req *req;
1817 
1818 	if (enable)
1819 		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1820 	else
1821 		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1822 
1823 	if (!req)
1824 		return -ENOMEM;
1825 
1826 	req->chan_base = 0;
1827 	if (otx2_is_pfc_enabled(pfvf)) {
1828 		req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1829 		req->bpid_per_chan = 1;
1830 	} else {
1831 		req->chan_cnt = pfvf->hw.rx_chan_cnt;
1832 		req->bpid_per_chan = 0;
1833 	}
1834 
1835 	return otx2_sync_mbox_msg(&pfvf->mbox);
1836 }
1837 EXPORT_SYMBOL(otx2_nix_config_bp);
1838 
otx2_nix_cpt_config_bp(struct otx2_nic * pfvf,bool enable)1839 int otx2_nix_cpt_config_bp(struct otx2_nic *pfvf, bool enable)
1840 {
1841 	struct nix_bp_cfg_req *req;
1842 
1843 	if (enable)
1844 		req = otx2_mbox_alloc_msg_nix_cpt_bp_enable(&pfvf->mbox);
1845 	else
1846 		req = otx2_mbox_alloc_msg_nix_cpt_bp_disable(&pfvf->mbox);
1847 
1848 	if (!req)
1849 		return -ENOMEM;
1850 
1851 	req->chan_base = 0;
1852 	if (otx2_is_pfc_enabled(pfvf)) {
1853 		req->chan_cnt = IEEE_8021QAZ_MAX_TCS;
1854 		req->bpid_per_chan = 1;
1855 	} else {
1856 		req->chan_cnt = pfvf->hw.rx_chan_cnt;
1857 		req->bpid_per_chan = 0;
1858 	}
1859 
1860 	return otx2_sync_mbox_msg(&pfvf->mbox);
1861 }
1862 EXPORT_SYMBOL(otx2_nix_cpt_config_bp);
1863 
1864 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1865 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1866 			    struct cgx_stats_rsp *rsp)
1867 {
1868 	int id;
1869 
1870 	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1871 		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1872 	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1873 		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1874 }
1875 
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1876 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1877 				struct cgx_fec_stats_rsp *rsp)
1878 {
1879 	pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1880 	pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1881 }
1882 
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1883 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1884 			       struct npa_lf_alloc_rsp *rsp)
1885 {
1886 	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1887 	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1888 }
1889 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1890 
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1891 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1892 			       struct nix_lf_alloc_rsp *rsp)
1893 {
1894 	pfvf->hw.sqb_size = rsp->sqb_size;
1895 	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1896 	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1897 	pfvf->hw.rx_chan_cnt = rsp->rx_chan_cnt;
1898 	pfvf->hw.tx_chan_cnt = rsp->tx_chan_cnt;
1899 	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1900 	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1901 	pfvf->hw.cgx_links = rsp->cgx_links;
1902 	pfvf->hw.lbk_links = rsp->lbk_links;
1903 	pfvf->hw.tx_link = rsp->tx_link;
1904 }
1905 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1906 
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1907 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1908 			      struct msix_offset_rsp *rsp)
1909 {
1910 	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1911 	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1912 }
1913 EXPORT_SYMBOL(mbox_handler_msix_offset);
1914 
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1915 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1916 				struct nix_bp_cfg_rsp *rsp)
1917 {
1918 	int chan, chan_id;
1919 
1920 	for (chan = 0; chan < rsp->chan_cnt; chan++) {
1921 		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1922 		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1923 	}
1924 }
1925 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1926 
otx2_free_cints(struct otx2_nic * pfvf,int n)1927 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1928 {
1929 	struct otx2_qset *qset = &pfvf->qset;
1930 	struct otx2_hw *hw = &pfvf->hw;
1931 	int irq, qidx;
1932 
1933 	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1934 	     qidx < n;
1935 	     qidx++, irq++) {
1936 		int vector = pci_irq_vector(pfvf->pdev, irq);
1937 
1938 		irq_set_affinity_hint(vector, NULL);
1939 		free_cpumask_var(hw->affinity_mask[irq]);
1940 		free_irq(vector, &qset->napi[qidx]);
1941 	}
1942 }
1943 EXPORT_SYMBOL(otx2_free_cints);
1944 
otx2_set_cints_affinity(struct otx2_nic * pfvf)1945 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1946 {
1947 	struct otx2_hw *hw = &pfvf->hw;
1948 	int vec, cpu, irq, cint;
1949 
1950 	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1951 	cpu = cpumask_first(cpu_online_mask);
1952 
1953 	/* CQ interrupts */
1954 	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1955 		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1956 			return;
1957 
1958 		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1959 
1960 		irq = pci_irq_vector(pfvf->pdev, vec);
1961 		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1962 
1963 		cpu = cpumask_next(cpu, cpu_online_mask);
1964 		if (unlikely(cpu >= nr_cpu_ids))
1965 			cpu = 0;
1966 	}
1967 }
1968 
get_dwrr_mtu(struct otx2_nic * pfvf,struct nix_hw_info * hw)1969 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1970 {
1971 	if (is_otx2_lbkvf(pfvf->pdev)) {
1972 		pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1973 		return hw->lbk_dwrr_mtu;
1974 	}
1975 
1976 	pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1977 	return hw->rpm_dwrr_mtu;
1978 }
1979 
otx2_get_max_mtu(struct otx2_nic * pfvf)1980 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1981 {
1982 	struct nix_hw_info *rsp;
1983 	struct msg_req *req;
1984 	u16 max_mtu;
1985 	int rc;
1986 
1987 	mutex_lock(&pfvf->mbox.lock);
1988 
1989 	req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1990 	if (!req) {
1991 		rc =  -ENOMEM;
1992 		goto out;
1993 	}
1994 
1995 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
1996 	if (!rc) {
1997 		rsp = (struct nix_hw_info *)
1998 		       otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1999 		if (IS_ERR(rsp)) {
2000 			rc = PTR_ERR(rsp);
2001 			goto out;
2002 		}
2003 
2004 		/* HW counts VLAN insertion bytes (8 for double tag)
2005 		 * irrespective of whether SQE is requesting to insert VLAN
2006 		 * in the packet or not. Hence these 8 bytes have to be
2007 		 * discounted from max packet size otherwise HW will throw
2008 		 * SMQ errors
2009 		 */
2010 		max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
2011 
2012 		/* Also save DWRR MTU, needed for DWRR weight calculation */
2013 		pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
2014 		if (!pfvf->hw.dwrr_mtu)
2015 			pfvf->hw.dwrr_mtu = 1;
2016 	}
2017 
2018 out:
2019 	mutex_unlock(&pfvf->mbox.lock);
2020 	if (rc) {
2021 		dev_warn(pfvf->dev,
2022 			 "Failed to get MTU from hardware setting default value(1500)\n");
2023 		max_mtu = 1500;
2024 	}
2025 	return max_mtu;
2026 }
2027 EXPORT_SYMBOL(otx2_get_max_mtu);
2028 
otx2_handle_ntuple_tc_features(struct net_device * netdev,netdev_features_t features)2029 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
2030 {
2031 	netdev_features_t changed = features ^ netdev->features;
2032 	struct otx2_nic *pfvf = netdev_priv(netdev);
2033 	bool ntuple = !!(features & NETIF_F_NTUPLE);
2034 	bool tc = !!(features & NETIF_F_HW_TC);
2035 
2036 	if ((changed & NETIF_F_NTUPLE) && !ntuple)
2037 		otx2_destroy_ntuple_flows(pfvf);
2038 
2039 	if ((changed & NETIF_F_NTUPLE) && ntuple) {
2040 		if (!pfvf->flow_cfg->max_flows) {
2041 			netdev_err(netdev,
2042 				   "Can't enable NTUPLE, MCAM entries not allocated\n");
2043 			return -EINVAL;
2044 		}
2045 	}
2046 
2047 	if ((changed & NETIF_F_HW_TC) && !tc &&
2048 	    otx2_tc_flower_rule_cnt(pfvf)) {
2049 		netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
2050 		return -EBUSY;
2051 	}
2052 
2053 	if ((changed & NETIF_F_NTUPLE) && ntuple &&
2054 	    otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
2055 		netdev_err(netdev,
2056 			   "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
2057 		return -EINVAL;
2058 	}
2059 
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
2063 
otx2_set_hw_capabilities(struct otx2_nic * pfvf)2064 int otx2_set_hw_capabilities(struct otx2_nic *pfvf)
2065 {
2066 	struct mbox *mbox = &pfvf->mbox;
2067 	struct otx2_hw *hw = &pfvf->hw;
2068 	struct get_hw_cap_rsp *rsp;
2069 	struct msg_req *req;
2070 	int ret = -ENOMEM;
2071 
2072 	mutex_lock(&mbox->lock);
2073 
2074 	req = otx2_mbox_alloc_msg_get_hw_cap(mbox);
2075 	if (!req)
2076 		goto fail;
2077 
2078 	ret = otx2_sync_mbox_msg(mbox);
2079 	if (ret)
2080 		goto fail;
2081 
2082 	rsp = (struct get_hw_cap_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox,
2083 							 0, &req->hdr);
2084 	if (IS_ERR(rsp)) {
2085 		ret = -EINVAL;
2086 		goto fail;
2087 	}
2088 
2089 	if (rsp->hw_caps & HW_CAP_MACSEC)
2090 		__set_bit(CN10K_HW_MACSEC, &hw->cap_flag);
2091 
2092 	mutex_unlock(&mbox->lock);
2093 
2094 	return 0;
2095 fail:
2096 	dev_err(pfvf->dev, "Cannot get MACSEC capability from AF\n");
2097 	mutex_unlock(&mbox->lock);
2098 	return ret;
2099 }
2100 
2101 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2102 int __weak								\
2103 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
2104 				struct _req_type *req,			\
2105 				struct _rsp_type *rsp)			\
2106 {									\
2107 	/* Nothing to do here */					\
2108 	return 0;							\
2109 }									\
2110 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
2111 MBOX_UP_CGX_MESSAGES
2112 MBOX_UP_MCS_MESSAGES
2113 #undef M
2114 
otx2_dma_map_skb_frag(struct otx2_nic * pfvf,struct sk_buff * skb,int seg,int * len)2115 dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
2116 				 struct sk_buff *skb, int seg, int *len)
2117 {
2118 	enum dma_data_direction dir = DMA_TO_DEVICE;
2119 	const skb_frag_t *frag;
2120 	struct page *page;
2121 	int offset;
2122 
2123 	/* Crypto hardware need write permission for ipsec crypto offload */
2124 	if (unlikely(xfrm_offload(skb))) {
2125 		dir = DMA_BIDIRECTIONAL;
2126 		skb = skb_unshare(skb, GFP_ATOMIC);
2127 	}
2128 
2129 	/* First segment is always skb->data */
2130 	if (!seg) {
2131 		page = virt_to_page(skb->data);
2132 		offset = offset_in_page(skb->data);
2133 		*len = skb_headlen(skb);
2134 	} else {
2135 		frag = &skb_shinfo(skb)->frags[seg - 1];
2136 		page = skb_frag_page(frag);
2137 		offset = skb_frag_off(frag);
2138 		*len = skb_frag_size(frag);
2139 	}
2140 	return otx2_dma_map_page(pfvf, page, offset, *len, dir);
2141 }
2142 
otx2_dma_unmap_skb_frags(struct otx2_nic * pfvf,struct sg_list * sg)2143 void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
2144 {
2145 	enum dma_data_direction dir = DMA_TO_DEVICE;
2146 	struct sk_buff *skb = NULL;
2147 	int seg;
2148 
2149 	skb = (struct sk_buff *)sg->skb;
2150 	if (unlikely(xfrm_offload(skb)))
2151 		dir = DMA_BIDIRECTIONAL;
2152 
2153 	for (seg = 0; seg < sg->num_segs; seg++) {
2154 		otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
2155 				    sg->size[seg], dir);
2156 	}
2157 	sg->num_segs = 0;
2158 }
2159