1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32
33 #include <asm/apic.h>
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/spec-ctrl.h>
41 #include <asm/cpu_device_id.h>
42 #include <asm/traps.h>
43 #include <asm/reboot.h>
44 #include <asm/fpu/api.h>
45
46 #include <trace/events/ipi.h>
47
48 #include "trace.h"
49
50 #include "svm.h"
51 #include "svm_ops.h"
52
53 #include "kvm_onhyperv.h"
54 #include "svm_onhyperv.h"
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
58 MODULE_LICENSE("GPL");
59
60 #ifdef MODULE
61 static const struct x86_cpu_id svm_cpu_id[] = {
62 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
63 {}
64 };
65 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
66 #endif
67
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
70
71 static bool erratum_383_found __read_mostly;
72
73 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
74
75 /*
76 * Set osvw_len to higher value when updated Revision Guides
77 * are published and we know what the new status bits are
78 */
79 static uint64_t osvw_len = 4, osvw_status;
80
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82
83 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
84
85 static const struct svm_direct_access_msrs {
86 u32 index; /* Index of the MSR */
87 bool always; /* True if intercept is initially cleared */
88 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
89 { .index = MSR_STAR, .always = true },
90 { .index = MSR_IA32_SYSENTER_CS, .always = true },
91 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
92 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
93 #ifdef CONFIG_X86_64
94 { .index = MSR_GS_BASE, .always = true },
95 { .index = MSR_FS_BASE, .always = true },
96 { .index = MSR_KERNEL_GS_BASE, .always = true },
97 { .index = MSR_LSTAR, .always = true },
98 { .index = MSR_CSTAR, .always = true },
99 { .index = MSR_SYSCALL_MASK, .always = true },
100 #endif
101 { .index = MSR_IA32_SPEC_CTRL, .always = false },
102 { .index = MSR_IA32_PRED_CMD, .always = false },
103 { .index = MSR_IA32_FLUSH_CMD, .always = false },
104 { .index = MSR_IA32_DEBUGCTLMSR, .always = false },
105 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
106 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
107 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
108 { .index = MSR_IA32_LASTINTTOIP, .always = false },
109 { .index = MSR_IA32_XSS, .always = false },
110 { .index = MSR_EFER, .always = false },
111 { .index = MSR_IA32_CR_PAT, .always = false },
112 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
113 { .index = MSR_TSC_AUX, .always = false },
114 { .index = X2APIC_MSR(APIC_ID), .always = false },
115 { .index = X2APIC_MSR(APIC_LVR), .always = false },
116 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
117 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
118 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
119 { .index = X2APIC_MSR(APIC_EOI), .always = false },
120 { .index = X2APIC_MSR(APIC_RRR), .always = false },
121 { .index = X2APIC_MSR(APIC_LDR), .always = false },
122 { .index = X2APIC_MSR(APIC_DFR), .always = false },
123 { .index = X2APIC_MSR(APIC_SPIV), .always = false },
124 { .index = X2APIC_MSR(APIC_ISR), .always = false },
125 { .index = X2APIC_MSR(APIC_TMR), .always = false },
126 { .index = X2APIC_MSR(APIC_IRR), .always = false },
127 { .index = X2APIC_MSR(APIC_ESR), .always = false },
128 { .index = X2APIC_MSR(APIC_ICR), .always = false },
129 { .index = X2APIC_MSR(APIC_ICR2), .always = false },
130
131 /*
132 * Note:
133 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
134 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
135 * the AVIC hardware would generate GP fault. Therefore, always
136 * intercept the MSR 0x832, and do not setup direct_access_msr.
137 */
138 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
139 { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
140 { .index = X2APIC_MSR(APIC_LVT0), .always = false },
141 { .index = X2APIC_MSR(APIC_LVT1), .always = false },
142 { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
143 { .index = X2APIC_MSR(APIC_TMICT), .always = false },
144 { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
145 { .index = X2APIC_MSR(APIC_TDCR), .always = false },
146 { .index = MSR_INVALID, .always = false },
147 };
148
149 /*
150 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
151 * pause_filter_count: On processors that support Pause filtering(indicated
152 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
153 * count value. On VMRUN this value is loaded into an internal counter.
154 * Each time a pause instruction is executed, this counter is decremented
155 * until it reaches zero at which time a #VMEXIT is generated if pause
156 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
157 * Intercept Filtering for more details.
158 * This also indicate if ple logic enabled.
159 *
160 * pause_filter_thresh: In addition, some processor families support advanced
161 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
162 * the amount of time a guest is allowed to execute in a pause loop.
163 * In this mode, a 16-bit pause filter threshold field is added in the
164 * VMCB. The threshold value is a cycle count that is used to reset the
165 * pause counter. As with simple pause filtering, VMRUN loads the pause
166 * count value from VMCB into an internal counter. Then, on each pause
167 * instruction the hardware checks the elapsed number of cycles since
168 * the most recent pause instruction against the pause filter threshold.
169 * If the elapsed cycle count is greater than the pause filter threshold,
170 * then the internal pause count is reloaded from the VMCB and execution
171 * continues. If the elapsed cycle count is less than the pause filter
172 * threshold, then the internal pause count is decremented. If the count
173 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
174 * triggered. If advanced pause filtering is supported and pause filter
175 * threshold field is set to zero, the filter will operate in the simpler,
176 * count only mode.
177 */
178
179 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
180 module_param(pause_filter_thresh, ushort, 0444);
181
182 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
183 module_param(pause_filter_count, ushort, 0444);
184
185 /* Default doubles per-vcpu window every exit. */
186 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
187 module_param(pause_filter_count_grow, ushort, 0444);
188
189 /* Default resets per-vcpu window every exit to pause_filter_count. */
190 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
191 module_param(pause_filter_count_shrink, ushort, 0444);
192
193 /* Default is to compute the maximum so we can never overflow. */
194 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
195 module_param(pause_filter_count_max, ushort, 0444);
196
197 /*
198 * Use nested page tables by default. Note, NPT may get forced off by
199 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
200 */
201 bool npt_enabled = true;
202 module_param_named(npt, npt_enabled, bool, 0444);
203
204 /* allow nested virtualization in KVM/SVM */
205 static int nested = true;
206 module_param(nested, int, 0444);
207
208 /* enable/disable Next RIP Save */
209 int nrips = true;
210 module_param(nrips, int, 0444);
211
212 /* enable/disable Virtual VMLOAD VMSAVE */
213 static int vls = true;
214 module_param(vls, int, 0444);
215
216 /* enable/disable Virtual GIF */
217 int vgif = true;
218 module_param(vgif, int, 0444);
219
220 /* enable/disable LBR virtualization */
221 int lbrv = true;
222 module_param(lbrv, int, 0444);
223
224 static int tsc_scaling = true;
225 module_param(tsc_scaling, int, 0444);
226
227 /*
228 * enable / disable AVIC. Because the defaults differ for APICv
229 * support between VMX and SVM we cannot use module_param_named.
230 */
231 static bool avic;
232 module_param(avic, bool, 0444);
233
234 bool __read_mostly dump_invalid_vmcb;
235 module_param(dump_invalid_vmcb, bool, 0644);
236
237
238 bool intercept_smi = true;
239 module_param(intercept_smi, bool, 0444);
240
241 bool vnmi = true;
242 module_param(vnmi, bool, 0444);
243
244 static bool svm_gp_erratum_intercept = true;
245
246 static u8 rsm_ins_bytes[] = "\x0f\xaa";
247
248 static unsigned long iopm_base;
249
250 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
251
252 /*
253 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
254 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
255 *
256 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
257 * defer the restoration of TSC_AUX until the CPU returns to userspace.
258 */
259 static int tsc_aux_uret_slot __read_mostly = -1;
260
261 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
262
263 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
264 #define MSRS_RANGE_SIZE 2048
265 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
266
svm_msrpm_offset(u32 msr)267 u32 svm_msrpm_offset(u32 msr)
268 {
269 u32 offset;
270 int i;
271
272 for (i = 0; i < NUM_MSR_MAPS; i++) {
273 if (msr < msrpm_ranges[i] ||
274 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
275 continue;
276
277 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
278 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
279
280 /* Now we have the u8 offset - but need the u32 offset */
281 return offset / 4;
282 }
283
284 /* MSR not in any range */
285 return MSR_INVALID;
286 }
287
get_npt_level(void)288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293 return PT32E_ROOT_LEVEL;
294 #endif
295 }
296
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299 struct vcpu_svm *svm = to_svm(vcpu);
300 u64 old_efer = vcpu->arch.efer;
301 vcpu->arch.efer = efer;
302
303 if (!npt_enabled) {
304 /* Shadow paging assumes NX to be available. */
305 efer |= EFER_NX;
306
307 if (!(efer & EFER_LMA))
308 efer &= ~EFER_LME;
309 }
310
311 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312 if (!(efer & EFER_SVME)) {
313 svm_leave_nested(vcpu);
314 svm_set_gif(svm, true);
315 /* #GP intercept is still needed for vmware backdoor */
316 if (!enable_vmware_backdoor)
317 clr_exception_intercept(svm, GP_VECTOR);
318
319 /*
320 * Free the nested guest state, unless we are in SMM.
321 * In this case we will return to the nested guest
322 * as soon as we leave SMM.
323 */
324 if (!is_smm(vcpu))
325 svm_free_nested(svm);
326
327 } else {
328 int ret = svm_allocate_nested(svm);
329
330 if (ret) {
331 vcpu->arch.efer = old_efer;
332 return ret;
333 }
334
335 /*
336 * Never intercept #GP for SEV guests, KVM can't
337 * decrypt guest memory to workaround the erratum.
338 */
339 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340 set_exception_intercept(svm, GP_VECTOR);
341 }
342 }
343
344 svm->vmcb->save.efer = efer | EFER_SVME;
345 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346 return 0;
347 }
348
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
350 {
351 struct vcpu_svm *svm = to_svm(vcpu);
352 u32 ret = 0;
353
354 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
355 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
356 return ret;
357 }
358
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
360 {
361 struct vcpu_svm *svm = to_svm(vcpu);
362
363 if (mask == 0)
364 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
365 else
366 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
367
368 }
369
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
371 bool commit_side_effects)
372 {
373 struct vcpu_svm *svm = to_svm(vcpu);
374 unsigned long old_rflags;
375
376 /*
377 * SEV-ES does not expose the next RIP. The RIP update is controlled by
378 * the type of exit and the #VC handler in the guest.
379 */
380 if (sev_es_guest(vcpu->kvm))
381 goto done;
382
383 if (nrips && svm->vmcb->control.next_rip != 0) {
384 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
385 svm->next_rip = svm->vmcb->control.next_rip;
386 }
387
388 if (!svm->next_rip) {
389 if (unlikely(!commit_side_effects))
390 old_rflags = svm->vmcb->save.rflags;
391
392 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
393 return 0;
394
395 if (unlikely(!commit_side_effects))
396 svm->vmcb->save.rflags = old_rflags;
397 } else {
398 kvm_rip_write(vcpu, svm->next_rip);
399 }
400
401 done:
402 if (likely(commit_side_effects))
403 svm_set_interrupt_shadow(vcpu, 0);
404
405 return 1;
406 }
407
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)408 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
409 {
410 return __svm_skip_emulated_instruction(vcpu, true);
411 }
412
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)413 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
414 {
415 unsigned long rip, old_rip = kvm_rip_read(vcpu);
416 struct vcpu_svm *svm = to_svm(vcpu);
417
418 /*
419 * Due to architectural shortcomings, the CPU doesn't always provide
420 * NextRIP, e.g. if KVM intercepted an exception that occurred while
421 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
422 * the instruction even if NextRIP is supported to acquire the next
423 * RIP so that it can be shoved into the NextRIP field, otherwise
424 * hardware will fail to advance guest RIP during event injection.
425 * Drop the exception/interrupt if emulation fails and effectively
426 * retry the instruction, it's the least awful option. If NRIPS is
427 * in use, the skip must not commit any side effects such as clearing
428 * the interrupt shadow or RFLAGS.RF.
429 */
430 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
431 return -EIO;
432
433 rip = kvm_rip_read(vcpu);
434
435 /*
436 * Save the injection information, even when using next_rip, as the
437 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
438 * doesn't complete due to a VM-Exit occurring while the CPU is
439 * vectoring the event. Decoding the instruction isn't guaranteed to
440 * work as there may be no backing instruction, e.g. if the event is
441 * being injected by L1 for L2, or if the guest is patching INT3 into
442 * a different instruction.
443 */
444 svm->soft_int_injected = true;
445 svm->soft_int_csbase = svm->vmcb->save.cs.base;
446 svm->soft_int_old_rip = old_rip;
447 svm->soft_int_next_rip = rip;
448
449 if (nrips)
450 kvm_rip_write(vcpu, old_rip);
451
452 if (static_cpu_has(X86_FEATURE_NRIPS))
453 svm->vmcb->control.next_rip = rip;
454
455 return 0;
456 }
457
svm_inject_exception(struct kvm_vcpu * vcpu)458 static void svm_inject_exception(struct kvm_vcpu *vcpu)
459 {
460 struct kvm_queued_exception *ex = &vcpu->arch.exception;
461 struct vcpu_svm *svm = to_svm(vcpu);
462
463 kvm_deliver_exception_payload(vcpu, ex);
464
465 if (kvm_exception_is_soft(ex->vector) &&
466 svm_update_soft_interrupt_rip(vcpu))
467 return;
468
469 svm->vmcb->control.event_inj = ex->vector
470 | SVM_EVTINJ_VALID
471 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
472 | SVM_EVTINJ_TYPE_EXEPT;
473 svm->vmcb->control.event_inj_err = ex->error_code;
474 }
475
svm_init_erratum_383(void)476 static void svm_init_erratum_383(void)
477 {
478 u32 low, high;
479 int err;
480 u64 val;
481
482 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
483 return;
484
485 /* Use _safe variants to not break nested virtualization */
486 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
487 if (err)
488 return;
489
490 val |= (1ULL << 47);
491
492 low = lower_32_bits(val);
493 high = upper_32_bits(val);
494
495 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
496
497 erratum_383_found = true;
498 }
499
svm_init_osvw(struct kvm_vcpu * vcpu)500 static void svm_init_osvw(struct kvm_vcpu *vcpu)
501 {
502 /*
503 * Guests should see errata 400 and 415 as fixed (assuming that
504 * HLT and IO instructions are intercepted).
505 */
506 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
507 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
508
509 /*
510 * By increasing VCPU's osvw.length to 3 we are telling the guest that
511 * all osvw.status bits inside that length, including bit 0 (which is
512 * reserved for erratum 298), are valid. However, if host processor's
513 * osvw_len is 0 then osvw_status[0] carries no information. We need to
514 * be conservative here and therefore we tell the guest that erratum 298
515 * is present (because we really don't know).
516 */
517 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
518 vcpu->arch.osvw.status |= 1;
519 }
520
__kvm_is_svm_supported(void)521 static bool __kvm_is_svm_supported(void)
522 {
523 int cpu = smp_processor_id();
524 struct cpuinfo_x86 *c = &cpu_data(cpu);
525
526 if (c->x86_vendor != X86_VENDOR_AMD &&
527 c->x86_vendor != X86_VENDOR_HYGON) {
528 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
529 return false;
530 }
531
532 if (!cpu_has(c, X86_FEATURE_SVM)) {
533 pr_err("SVM not supported by CPU %d\n", cpu);
534 return false;
535 }
536
537 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
538 pr_info("KVM is unsupported when running as an SEV guest\n");
539 return false;
540 }
541
542 return true;
543 }
544
kvm_is_svm_supported(void)545 static bool kvm_is_svm_supported(void)
546 {
547 bool supported;
548
549 migrate_disable();
550 supported = __kvm_is_svm_supported();
551 migrate_enable();
552
553 return supported;
554 }
555
svm_check_processor_compat(void)556 static int svm_check_processor_compat(void)
557 {
558 if (!__kvm_is_svm_supported())
559 return -EIO;
560
561 return 0;
562 }
563
__svm_write_tsc_multiplier(u64 multiplier)564 static void __svm_write_tsc_multiplier(u64 multiplier)
565 {
566 if (multiplier == __this_cpu_read(current_tsc_ratio))
567 return;
568
569 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
570 __this_cpu_write(current_tsc_ratio, multiplier);
571 }
572
sev_es_host_save_area(struct svm_cpu_data * sd)573 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
574 {
575 return &sd->save_area->host_sev_es_save;
576 }
577
kvm_cpu_svm_disable(void)578 static inline void kvm_cpu_svm_disable(void)
579 {
580 uint64_t efer;
581
582 wrmsrl(MSR_VM_HSAVE_PA, 0);
583 rdmsrl(MSR_EFER, efer);
584 if (efer & EFER_SVME) {
585 /*
586 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
587 * NMI aren't blocked.
588 */
589 stgi();
590 wrmsrl(MSR_EFER, efer & ~EFER_SVME);
591 }
592 }
593
svm_emergency_disable_virtualization_cpu(void)594 static void svm_emergency_disable_virtualization_cpu(void)
595 {
596 kvm_rebooting = true;
597
598 kvm_cpu_svm_disable();
599 }
600
svm_disable_virtualization_cpu(void)601 static void svm_disable_virtualization_cpu(void)
602 {
603 /* Make sure we clean up behind us */
604 if (tsc_scaling)
605 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
606
607 kvm_cpu_svm_disable();
608
609 amd_pmu_disable_virt();
610 }
611
svm_enable_virtualization_cpu(void)612 static int svm_enable_virtualization_cpu(void)
613 {
614
615 struct svm_cpu_data *sd;
616 uint64_t efer;
617 int me = raw_smp_processor_id();
618
619 rdmsrl(MSR_EFER, efer);
620 if (efer & EFER_SVME)
621 return -EBUSY;
622
623 sd = per_cpu_ptr(&svm_data, me);
624 sd->asid_generation = 1;
625 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
626 sd->next_asid = sd->max_asid + 1;
627 sd->min_asid = max_sev_asid + 1;
628
629 wrmsrl(MSR_EFER, efer | EFER_SVME);
630
631 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
632
633 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
634 /*
635 * Set the default value, even if we don't use TSC scaling
636 * to avoid having stale value in the msr
637 */
638 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
639 }
640
641
642 /*
643 * Get OSVW bits.
644 *
645 * Note that it is possible to have a system with mixed processor
646 * revisions and therefore different OSVW bits. If bits are not the same
647 * on different processors then choose the worst case (i.e. if erratum
648 * is present on one processor and not on another then assume that the
649 * erratum is present everywhere).
650 */
651 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
652 uint64_t len, status = 0;
653 int err;
654
655 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
656 if (!err)
657 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
658 &err);
659
660 if (err)
661 osvw_status = osvw_len = 0;
662 else {
663 if (len < osvw_len)
664 osvw_len = len;
665 osvw_status |= status;
666 osvw_status &= (1ULL << osvw_len) - 1;
667 }
668 } else
669 osvw_status = osvw_len = 0;
670
671 svm_init_erratum_383();
672
673 amd_pmu_enable_virt();
674
675 /*
676 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
677 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
678 * Since Linux does not change the value of TSC_AUX once set, prime the
679 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
680 */
681 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
682 u32 __maybe_unused msr_hi;
683
684 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
685 }
686
687 return 0;
688 }
689
svm_cpu_uninit(int cpu)690 static void svm_cpu_uninit(int cpu)
691 {
692 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
693
694 if (!sd->save_area)
695 return;
696
697 kfree(sd->sev_vmcbs);
698 __free_page(__sme_pa_to_page(sd->save_area_pa));
699 sd->save_area_pa = 0;
700 sd->save_area = NULL;
701 }
702
svm_cpu_init(int cpu)703 static int svm_cpu_init(int cpu)
704 {
705 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
706 struct page *save_area_page;
707 int ret = -ENOMEM;
708
709 memset(sd, 0, sizeof(struct svm_cpu_data));
710 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
711 if (!save_area_page)
712 return ret;
713
714 ret = sev_cpu_init(sd);
715 if (ret)
716 goto free_save_area;
717
718 sd->save_area = page_address(save_area_page);
719 sd->save_area_pa = __sme_page_pa(save_area_page);
720 return 0;
721
722 free_save_area:
723 __free_page(save_area_page);
724 return ret;
725
726 }
727
set_dr_intercepts(struct vcpu_svm * svm)728 static void set_dr_intercepts(struct vcpu_svm *svm)
729 {
730 struct vmcb *vmcb = svm->vmcb01.ptr;
731
732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
748
749 recalc_intercepts(svm);
750 }
751
clr_dr_intercepts(struct vcpu_svm * svm)752 static void clr_dr_intercepts(struct vcpu_svm *svm)
753 {
754 struct vmcb *vmcb = svm->vmcb01.ptr;
755
756 vmcb->control.intercepts[INTERCEPT_DR] = 0;
757
758 recalc_intercepts(svm);
759 }
760
direct_access_msr_slot(u32 msr)761 static int direct_access_msr_slot(u32 msr)
762 {
763 u32 i;
764
765 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
766 if (direct_access_msrs[i].index == msr)
767 return i;
768
769 return -ENOENT;
770 }
771
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)772 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
773 int write)
774 {
775 struct vcpu_svm *svm = to_svm(vcpu);
776 int slot = direct_access_msr_slot(msr);
777
778 if (slot == -ENOENT)
779 return;
780
781 /* Set the shadow bitmaps to the desired intercept states */
782 if (read)
783 set_bit(slot, svm->shadow_msr_intercept.read);
784 else
785 clear_bit(slot, svm->shadow_msr_intercept.read);
786
787 if (write)
788 set_bit(slot, svm->shadow_msr_intercept.write);
789 else
790 clear_bit(slot, svm->shadow_msr_intercept.write);
791 }
792
valid_msr_intercept(u32 index)793 static bool valid_msr_intercept(u32 index)
794 {
795 return direct_access_msr_slot(index) != -ENOENT;
796 }
797
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
799 {
800 u8 bit_write;
801 unsigned long tmp;
802 u32 offset;
803 u32 *msrpm;
804
805 /*
806 * For non-nested case:
807 * If the L01 MSR bitmap does not intercept the MSR, then we need to
808 * save it.
809 *
810 * For nested case:
811 * If the L02 MSR bitmap does not intercept the MSR, then we need to
812 * save it.
813 */
814 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
815 to_svm(vcpu)->msrpm;
816
817 offset = svm_msrpm_offset(msr);
818 bit_write = 2 * (msr & 0x0f) + 1;
819 tmp = msrpm[offset];
820
821 BUG_ON(offset == MSR_INVALID);
822
823 return test_bit(bit_write, &tmp);
824 }
825
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)826 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
827 u32 msr, int read, int write)
828 {
829 struct vcpu_svm *svm = to_svm(vcpu);
830 u8 bit_read, bit_write;
831 unsigned long tmp;
832 u32 offset;
833
834 /*
835 * If this warning triggers extend the direct_access_msrs list at the
836 * beginning of the file
837 */
838 WARN_ON(!valid_msr_intercept(msr));
839
840 /* Enforce non allowed MSRs to trap */
841 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
842 read = 0;
843
844 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
845 write = 0;
846
847 offset = svm_msrpm_offset(msr);
848 bit_read = 2 * (msr & 0x0f);
849 bit_write = 2 * (msr & 0x0f) + 1;
850 tmp = msrpm[offset];
851
852 BUG_ON(offset == MSR_INVALID);
853
854 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
855 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
856
857 msrpm[offset] = tmp;
858
859 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
860 svm->nested.force_msr_bitmap_recalc = true;
861 }
862
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)863 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
864 int read, int write)
865 {
866 set_shadow_msr_intercept(vcpu, msr, read, write);
867 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
868 }
869
svm_vcpu_alloc_msrpm(void)870 u32 *svm_vcpu_alloc_msrpm(void)
871 {
872 unsigned int order = get_order(MSRPM_SIZE);
873 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
874 u32 *msrpm;
875
876 if (!pages)
877 return NULL;
878
879 msrpm = page_address(pages);
880 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
881
882 return msrpm;
883 }
884
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)885 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
886 {
887 int i;
888
889 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
890 if (!direct_access_msrs[i].always)
891 continue;
892 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
893 }
894 }
895
svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)896 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
897 {
898 int i;
899
900 if (intercept == svm->x2avic_msrs_intercepted)
901 return;
902
903 if (!x2avic_enabled)
904 return;
905
906 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
907 int index = direct_access_msrs[i].index;
908
909 if ((index < APIC_BASE_MSR) ||
910 (index > APIC_BASE_MSR + 0xff))
911 continue;
912 set_msr_interception(&svm->vcpu, svm->msrpm, index,
913 !intercept, !intercept);
914 }
915
916 svm->x2avic_msrs_intercepted = intercept;
917 }
918
svm_vcpu_free_msrpm(u32 * msrpm)919 void svm_vcpu_free_msrpm(u32 *msrpm)
920 {
921 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
922 }
923
svm_msr_filter_changed(struct kvm_vcpu * vcpu)924 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
925 {
926 struct vcpu_svm *svm = to_svm(vcpu);
927 u32 i;
928
929 /*
930 * Set intercept permissions for all direct access MSRs again. They
931 * will automatically get filtered through the MSR filter, so we are
932 * back in sync after this.
933 */
934 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
935 u32 msr = direct_access_msrs[i].index;
936 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
937 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
938
939 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
940 }
941 }
942
add_msr_offset(u32 offset)943 static void add_msr_offset(u32 offset)
944 {
945 int i;
946
947 for (i = 0; i < MSRPM_OFFSETS; ++i) {
948
949 /* Offset already in list? */
950 if (msrpm_offsets[i] == offset)
951 return;
952
953 /* Slot used by another offset? */
954 if (msrpm_offsets[i] != MSR_INVALID)
955 continue;
956
957 /* Add offset to list */
958 msrpm_offsets[i] = offset;
959
960 return;
961 }
962
963 /*
964 * If this BUG triggers the msrpm_offsets table has an overflow. Just
965 * increase MSRPM_OFFSETS in this case.
966 */
967 BUG();
968 }
969
init_msrpm_offsets(void)970 static void init_msrpm_offsets(void)
971 {
972 int i;
973
974 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
975
976 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
977 u32 offset;
978
979 offset = svm_msrpm_offset(direct_access_msrs[i].index);
980 BUG_ON(offset == MSR_INVALID);
981
982 add_msr_offset(offset);
983 }
984 }
985
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)986 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
987 {
988 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
989 to_vmcb->save.br_from = from_vmcb->save.br_from;
990 to_vmcb->save.br_to = from_vmcb->save.br_to;
991 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
992 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
993
994 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
995 }
996
svm_enable_lbrv(struct kvm_vcpu * vcpu)997 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
998 {
999 struct vcpu_svm *svm = to_svm(vcpu);
1000
1001 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1005 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1006
1007 if (sev_es_guest(vcpu->kvm))
1008 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1009
1010 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1011 if (is_guest_mode(vcpu))
1012 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1013 }
1014
svm_disable_lbrv(struct kvm_vcpu * vcpu)1015 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1016 {
1017 struct vcpu_svm *svm = to_svm(vcpu);
1018
1019 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1020
1021 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1022 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1025 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1026
1027 /*
1028 * Move the LBR msrs back to the vmcb01 to avoid copying them
1029 * on nested guest entries.
1030 */
1031 if (is_guest_mode(vcpu))
1032 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1033 }
1034
svm_get_lbr_vmcb(struct vcpu_svm * svm)1035 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1036 {
1037 /*
1038 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1039 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of
1040 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1041 */
1042 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1043 svm->vmcb01.ptr;
1044 }
1045
svm_update_lbrv(struct kvm_vcpu * vcpu)1046 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1047 {
1048 struct vcpu_svm *svm = to_svm(vcpu);
1049 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1050 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1051 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
1052 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1053
1054 if (enable_lbrv == current_enable_lbrv)
1055 return;
1056
1057 if (enable_lbrv)
1058 svm_enable_lbrv(vcpu);
1059 else
1060 svm_disable_lbrv(vcpu);
1061 }
1062
disable_nmi_singlestep(struct vcpu_svm * svm)1063 void disable_nmi_singlestep(struct vcpu_svm *svm)
1064 {
1065 svm->nmi_singlestep = false;
1066
1067 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1068 /* Clear our flags if they were not set by the guest */
1069 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1070 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1071 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1072 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1073 }
1074 }
1075
grow_ple_window(struct kvm_vcpu * vcpu)1076 static void grow_ple_window(struct kvm_vcpu *vcpu)
1077 {
1078 struct vcpu_svm *svm = to_svm(vcpu);
1079 struct vmcb_control_area *control = &svm->vmcb->control;
1080 int old = control->pause_filter_count;
1081
1082 if (kvm_pause_in_guest(vcpu->kvm))
1083 return;
1084
1085 control->pause_filter_count = __grow_ple_window(old,
1086 pause_filter_count,
1087 pause_filter_count_grow,
1088 pause_filter_count_max);
1089
1090 if (control->pause_filter_count != old) {
1091 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1092 trace_kvm_ple_window_update(vcpu->vcpu_id,
1093 control->pause_filter_count, old);
1094 }
1095 }
1096
shrink_ple_window(struct kvm_vcpu * vcpu)1097 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1098 {
1099 struct vcpu_svm *svm = to_svm(vcpu);
1100 struct vmcb_control_area *control = &svm->vmcb->control;
1101 int old = control->pause_filter_count;
1102
1103 if (kvm_pause_in_guest(vcpu->kvm))
1104 return;
1105
1106 control->pause_filter_count =
1107 __shrink_ple_window(old,
1108 pause_filter_count,
1109 pause_filter_count_shrink,
1110 pause_filter_count);
1111 if (control->pause_filter_count != old) {
1112 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1113 trace_kvm_ple_window_update(vcpu->vcpu_id,
1114 control->pause_filter_count, old);
1115 }
1116 }
1117
svm_hardware_unsetup(void)1118 static void svm_hardware_unsetup(void)
1119 {
1120 int cpu;
1121
1122 sev_hardware_unsetup();
1123
1124 for_each_possible_cpu(cpu)
1125 svm_cpu_uninit(cpu);
1126
1127 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
1128 iopm_base = 0;
1129 }
1130
init_seg(struct vmcb_seg * seg)1131 static void init_seg(struct vmcb_seg *seg)
1132 {
1133 seg->selector = 0;
1134 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1135 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1136 seg->limit = 0xffff;
1137 seg->base = 0;
1138 }
1139
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1140 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1141 {
1142 seg->selector = 0;
1143 seg->attrib = SVM_SELECTOR_P_MASK | type;
1144 seg->limit = 0xffff;
1145 seg->base = 0;
1146 }
1147
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1148 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1149 {
1150 struct vcpu_svm *svm = to_svm(vcpu);
1151
1152 return svm->nested.ctl.tsc_offset;
1153 }
1154
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1155 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1156 {
1157 struct vcpu_svm *svm = to_svm(vcpu);
1158
1159 return svm->tsc_ratio_msr;
1160 }
1161
svm_write_tsc_offset(struct kvm_vcpu * vcpu)1162 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1163 {
1164 struct vcpu_svm *svm = to_svm(vcpu);
1165
1166 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1167 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1168 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1169 }
1170
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1171 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1172 {
1173 preempt_disable();
1174 if (to_svm(vcpu)->guest_state_loaded)
1175 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1176 preempt_enable();
1177 }
1178
1179 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)1180 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1181 struct vcpu_svm *svm)
1182 {
1183 /*
1184 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1185 * roots, or if INVPCID is disabled in the guest to inject #UD.
1186 */
1187 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1188 if (!npt_enabled ||
1189 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
1190 svm_set_intercept(svm, INTERCEPT_INVPCID);
1191 else
1192 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1193 }
1194
1195 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1196 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
1197 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1198 else
1199 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1200 }
1201 }
1202
init_vmcb_after_set_cpuid(struct kvm_vcpu * vcpu)1203 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1204 {
1205 struct vcpu_svm *svm = to_svm(vcpu);
1206
1207 if (guest_cpuid_is_intel_compatible(vcpu)) {
1208 /*
1209 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1210 * accesses because the processor only stores 32 bits.
1211 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1212 */
1213 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1214 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1215 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1216
1217 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1218 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1219 } else {
1220 /*
1221 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1222 * in VMCB and clear intercepts to avoid #VMEXIT.
1223 */
1224 if (vls) {
1225 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1226 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1227 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1228 }
1229 /* No need to intercept these MSRs */
1230 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1231 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1232 }
1233 }
1234
init_vmcb(struct kvm_vcpu * vcpu)1235 static void init_vmcb(struct kvm_vcpu *vcpu)
1236 {
1237 struct vcpu_svm *svm = to_svm(vcpu);
1238 struct vmcb *vmcb = svm->vmcb01.ptr;
1239 struct vmcb_control_area *control = &vmcb->control;
1240 struct vmcb_save_area *save = &vmcb->save;
1241
1242 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1243 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1244 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1245 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1246 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1247 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1248 if (!kvm_vcpu_apicv_active(vcpu))
1249 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1250
1251 set_dr_intercepts(svm);
1252
1253 set_exception_intercept(svm, PF_VECTOR);
1254 set_exception_intercept(svm, UD_VECTOR);
1255 set_exception_intercept(svm, MC_VECTOR);
1256 set_exception_intercept(svm, AC_VECTOR);
1257 set_exception_intercept(svm, DB_VECTOR);
1258 /*
1259 * Guest access to VMware backdoor ports could legitimately
1260 * trigger #GP because of TSS I/O permission bitmap.
1261 * We intercept those #GP and allow access to them anyway
1262 * as VMware does.
1263 */
1264 if (enable_vmware_backdoor)
1265 set_exception_intercept(svm, GP_VECTOR);
1266
1267 svm_set_intercept(svm, INTERCEPT_INTR);
1268 svm_set_intercept(svm, INTERCEPT_NMI);
1269
1270 if (intercept_smi)
1271 svm_set_intercept(svm, INTERCEPT_SMI);
1272
1273 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1274 svm_set_intercept(svm, INTERCEPT_RDPMC);
1275 svm_set_intercept(svm, INTERCEPT_CPUID);
1276 svm_set_intercept(svm, INTERCEPT_INVD);
1277 svm_set_intercept(svm, INTERCEPT_INVLPG);
1278 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1279 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1280 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1281 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1282 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1283 svm_set_intercept(svm, INTERCEPT_VMRUN);
1284 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1285 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1286 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1287 svm_set_intercept(svm, INTERCEPT_STGI);
1288 svm_set_intercept(svm, INTERCEPT_CLGI);
1289 svm_set_intercept(svm, INTERCEPT_SKINIT);
1290 svm_set_intercept(svm, INTERCEPT_WBINVD);
1291 svm_set_intercept(svm, INTERCEPT_XSETBV);
1292 svm_set_intercept(svm, INTERCEPT_RDPRU);
1293 svm_set_intercept(svm, INTERCEPT_RSM);
1294
1295 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1296 svm_set_intercept(svm, INTERCEPT_MONITOR);
1297 svm_set_intercept(svm, INTERCEPT_MWAIT);
1298 }
1299
1300 if (!kvm_hlt_in_guest(vcpu->kvm))
1301 svm_set_intercept(svm, INTERCEPT_HLT);
1302
1303 control->iopm_base_pa = iopm_base;
1304 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1305 control->int_ctl = V_INTR_MASKING_MASK;
1306
1307 init_seg(&save->es);
1308 init_seg(&save->ss);
1309 init_seg(&save->ds);
1310 init_seg(&save->fs);
1311 init_seg(&save->gs);
1312
1313 save->cs.selector = 0xf000;
1314 save->cs.base = 0xffff0000;
1315 /* Executable/Readable Code Segment */
1316 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1317 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1318 save->cs.limit = 0xffff;
1319
1320 save->gdtr.base = 0;
1321 save->gdtr.limit = 0xffff;
1322 save->idtr.base = 0;
1323 save->idtr.limit = 0xffff;
1324
1325 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1326 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1327
1328 if (npt_enabled) {
1329 /* Setup VMCB for Nested Paging */
1330 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1331 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1332 clr_exception_intercept(svm, PF_VECTOR);
1333 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1334 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1335 save->g_pat = vcpu->arch.pat;
1336 save->cr3 = 0;
1337 }
1338 svm->current_vmcb->asid_generation = 0;
1339 svm->asid = 0;
1340
1341 svm->nested.vmcb12_gpa = INVALID_GPA;
1342 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1343
1344 if (!kvm_pause_in_guest(vcpu->kvm)) {
1345 control->pause_filter_count = pause_filter_count;
1346 if (pause_filter_thresh)
1347 control->pause_filter_thresh = pause_filter_thresh;
1348 svm_set_intercept(svm, INTERCEPT_PAUSE);
1349 } else {
1350 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1351 }
1352
1353 svm_recalc_instruction_intercepts(vcpu, svm);
1354
1355 /*
1356 * If the host supports V_SPEC_CTRL then disable the interception
1357 * of MSR_IA32_SPEC_CTRL.
1358 */
1359 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1360 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1361
1362 if (kvm_vcpu_apicv_active(vcpu))
1363 avic_init_vmcb(svm, vmcb);
1364
1365 if (vnmi)
1366 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1367
1368 if (vgif) {
1369 svm_clr_intercept(svm, INTERCEPT_STGI);
1370 svm_clr_intercept(svm, INTERCEPT_CLGI);
1371 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1372 }
1373
1374 if (sev_guest(vcpu->kvm))
1375 sev_init_vmcb(svm);
1376
1377 svm_hv_init_vmcb(vmcb);
1378 init_vmcb_after_set_cpuid(vcpu);
1379
1380 vmcb_mark_all_dirty(vmcb);
1381
1382 enable_gif(svm);
1383 }
1384
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1385 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1386 {
1387 struct vcpu_svm *svm = to_svm(vcpu);
1388
1389 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1390
1391 svm_init_osvw(vcpu);
1392
1393 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1394 vcpu->arch.microcode_version = 0x01000065;
1395 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1396
1397 svm->nmi_masked = false;
1398 svm->awaiting_iret_completion = false;
1399
1400 if (sev_es_guest(vcpu->kvm))
1401 sev_es_vcpu_reset(svm);
1402 }
1403
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1404 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1405 {
1406 struct vcpu_svm *svm = to_svm(vcpu);
1407
1408 svm->spec_ctrl = 0;
1409 svm->virt_spec_ctrl = 0;
1410
1411 if (init_event)
1412 sev_snp_init_protected_guest_state(vcpu);
1413
1414 init_vmcb(vcpu);
1415
1416 if (!init_event)
1417 __svm_vcpu_reset(vcpu);
1418 }
1419
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1420 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1421 {
1422 svm->current_vmcb = target_vmcb;
1423 svm->vmcb = target_vmcb->ptr;
1424 }
1425
svm_vcpu_create(struct kvm_vcpu * vcpu)1426 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1427 {
1428 struct vcpu_svm *svm;
1429 struct page *vmcb01_page;
1430 struct page *vmsa_page = NULL;
1431 int err;
1432
1433 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1434 svm = to_svm(vcpu);
1435
1436 err = -ENOMEM;
1437 vmcb01_page = snp_safe_alloc_page();
1438 if (!vmcb01_page)
1439 goto out;
1440
1441 if (sev_es_guest(vcpu->kvm)) {
1442 /*
1443 * SEV-ES guests require a separate VMSA page used to contain
1444 * the encrypted register state of the guest.
1445 */
1446 vmsa_page = snp_safe_alloc_page();
1447 if (!vmsa_page)
1448 goto error_free_vmcb_page;
1449 }
1450
1451 err = avic_init_vcpu(svm);
1452 if (err)
1453 goto error_free_vmsa_page;
1454
1455 svm->msrpm = svm_vcpu_alloc_msrpm();
1456 if (!svm->msrpm) {
1457 err = -ENOMEM;
1458 goto error_free_vmsa_page;
1459 }
1460
1461 svm->x2avic_msrs_intercepted = true;
1462
1463 svm->vmcb01.ptr = page_address(vmcb01_page);
1464 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1465 svm_switch_vmcb(svm, &svm->vmcb01);
1466
1467 if (vmsa_page)
1468 svm->sev_es.vmsa = page_address(vmsa_page);
1469
1470 svm->guest_state_loaded = false;
1471
1472 return 0;
1473
1474 error_free_vmsa_page:
1475 if (vmsa_page)
1476 __free_page(vmsa_page);
1477 error_free_vmcb_page:
1478 __free_page(vmcb01_page);
1479 out:
1480 return err;
1481 }
1482
svm_clear_current_vmcb(struct vmcb * vmcb)1483 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1484 {
1485 int i;
1486
1487 for_each_online_cpu(i)
1488 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1489 }
1490
svm_vcpu_free(struct kvm_vcpu * vcpu)1491 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1492 {
1493 struct vcpu_svm *svm = to_svm(vcpu);
1494
1495 /*
1496 * The vmcb page can be recycled, causing a false negative in
1497 * svm_vcpu_load(). So, ensure that no logical CPU has this
1498 * vmcb page recorded as its current vmcb.
1499 */
1500 svm_clear_current_vmcb(svm->vmcb);
1501
1502 svm_leave_nested(vcpu);
1503 svm_free_nested(svm);
1504
1505 sev_free_vcpu(vcpu);
1506
1507 __free_page(__sme_pa_to_page(svm->vmcb01.pa));
1508 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1509 }
1510
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1511 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1512 {
1513 struct vcpu_svm *svm = to_svm(vcpu);
1514 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1515
1516 if (sev_es_guest(vcpu->kvm))
1517 sev_es_unmap_ghcb(svm);
1518
1519 if (svm->guest_state_loaded)
1520 return;
1521
1522 /*
1523 * Save additional host state that will be restored on VMEXIT (sev-es)
1524 * or subsequent vmload of host save area.
1525 */
1526 vmsave(sd->save_area_pa);
1527 if (sev_es_guest(vcpu->kvm))
1528 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1529
1530 if (tsc_scaling)
1531 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1532
1533 /*
1534 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1535 * available. The user return MSR support is not required in this case
1536 * because TSC_AUX is restored on #VMEXIT from the host save area
1537 * (which has been initialized in svm_enable_virtualization_cpu()).
1538 */
1539 if (likely(tsc_aux_uret_slot >= 0) &&
1540 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1541 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1542
1543 svm->guest_state_loaded = true;
1544 }
1545
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1546 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1547 {
1548 to_svm(vcpu)->guest_state_loaded = false;
1549 }
1550
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1551 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1552 {
1553 struct vcpu_svm *svm = to_svm(vcpu);
1554 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1555
1556 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1557 shrink_ple_window(vcpu);
1558
1559 if (sd->current_vmcb != svm->vmcb) {
1560 sd->current_vmcb = svm->vmcb;
1561
1562 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1563 indirect_branch_prediction_barrier();
1564 }
1565 if (kvm_vcpu_apicv_active(vcpu))
1566 avic_vcpu_load(vcpu, cpu);
1567 }
1568
svm_vcpu_put(struct kvm_vcpu * vcpu)1569 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1570 {
1571 if (kvm_vcpu_apicv_active(vcpu))
1572 avic_vcpu_put(vcpu);
1573
1574 svm_prepare_host_switch(vcpu);
1575
1576 ++vcpu->stat.host_state_reload;
1577 }
1578
svm_get_rflags(struct kvm_vcpu * vcpu)1579 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1580 {
1581 struct vcpu_svm *svm = to_svm(vcpu);
1582 unsigned long rflags = svm->vmcb->save.rflags;
1583
1584 if (svm->nmi_singlestep) {
1585 /* Hide our flags if they were not set by the guest */
1586 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1587 rflags &= ~X86_EFLAGS_TF;
1588 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1589 rflags &= ~X86_EFLAGS_RF;
1590 }
1591 return rflags;
1592 }
1593
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1594 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1595 {
1596 if (to_svm(vcpu)->nmi_singlestep)
1597 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1598
1599 /*
1600 * Any change of EFLAGS.VM is accompanied by a reload of SS
1601 * (caused by either a task switch or an inter-privilege IRET),
1602 * so we do not need to update the CPL here.
1603 */
1604 to_svm(vcpu)->vmcb->save.rflags = rflags;
1605 }
1606
svm_get_if_flag(struct kvm_vcpu * vcpu)1607 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1608 {
1609 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1610
1611 return sev_es_guest(vcpu->kvm)
1612 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1613 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1614 }
1615
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1616 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1617 {
1618 kvm_register_mark_available(vcpu, reg);
1619
1620 switch (reg) {
1621 case VCPU_EXREG_PDPTR:
1622 /*
1623 * When !npt_enabled, mmu->pdptrs[] is already available since
1624 * it is always updated per SDM when moving to CRs.
1625 */
1626 if (npt_enabled)
1627 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1628 break;
1629 default:
1630 KVM_BUG_ON(1, vcpu->kvm);
1631 }
1632 }
1633
svm_set_vintr(struct vcpu_svm * svm)1634 static void svm_set_vintr(struct vcpu_svm *svm)
1635 {
1636 struct vmcb_control_area *control;
1637
1638 /*
1639 * The following fields are ignored when AVIC is enabled
1640 */
1641 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1642
1643 svm_set_intercept(svm, INTERCEPT_VINTR);
1644
1645 /*
1646 * Recalculating intercepts may have cleared the VINTR intercept. If
1647 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1648 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1649 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1650 * interrupts will never be unblocked while L2 is running.
1651 */
1652 if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1653 return;
1654
1655 /*
1656 * This is just a dummy VINTR to actually cause a vmexit to happen.
1657 * Actual injection of virtual interrupts happens through EVENTINJ.
1658 */
1659 control = &svm->vmcb->control;
1660 control->int_vector = 0x0;
1661 control->int_ctl &= ~V_INTR_PRIO_MASK;
1662 control->int_ctl |= V_IRQ_MASK |
1663 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1664 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1665 }
1666
svm_clear_vintr(struct vcpu_svm * svm)1667 static void svm_clear_vintr(struct vcpu_svm *svm)
1668 {
1669 svm_clr_intercept(svm, INTERCEPT_VINTR);
1670
1671 /* Drop int_ctl fields related to VINTR injection. */
1672 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1673 if (is_guest_mode(&svm->vcpu)) {
1674 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1675
1676 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1677 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1678
1679 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1680 V_IRQ_INJECTION_BITS_MASK;
1681
1682 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1683 }
1684
1685 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1686 }
1687
svm_seg(struct kvm_vcpu * vcpu,int seg)1688 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1689 {
1690 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1691 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1692
1693 switch (seg) {
1694 case VCPU_SREG_CS: return &save->cs;
1695 case VCPU_SREG_DS: return &save->ds;
1696 case VCPU_SREG_ES: return &save->es;
1697 case VCPU_SREG_FS: return &save01->fs;
1698 case VCPU_SREG_GS: return &save01->gs;
1699 case VCPU_SREG_SS: return &save->ss;
1700 case VCPU_SREG_TR: return &save01->tr;
1701 case VCPU_SREG_LDTR: return &save01->ldtr;
1702 }
1703 BUG();
1704 return NULL;
1705 }
1706
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1707 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1708 {
1709 struct vmcb_seg *s = svm_seg(vcpu, seg);
1710
1711 return s->base;
1712 }
1713
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1714 static void svm_get_segment(struct kvm_vcpu *vcpu,
1715 struct kvm_segment *var, int seg)
1716 {
1717 struct vmcb_seg *s = svm_seg(vcpu, seg);
1718
1719 var->base = s->base;
1720 var->limit = s->limit;
1721 var->selector = s->selector;
1722 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1723 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1724 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1725 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1726 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1727 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1728 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1729
1730 /*
1731 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1732 * However, the SVM spec states that the G bit is not observed by the
1733 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1734 * So let's synthesize a legal G bit for all segments, this helps
1735 * running KVM nested. It also helps cross-vendor migration, because
1736 * Intel's vmentry has a check on the 'G' bit.
1737 */
1738 var->g = s->limit > 0xfffff;
1739
1740 /*
1741 * AMD's VMCB does not have an explicit unusable field, so emulate it
1742 * for cross vendor migration purposes by "not present"
1743 */
1744 var->unusable = !var->present;
1745
1746 switch (seg) {
1747 case VCPU_SREG_TR:
1748 /*
1749 * Work around a bug where the busy flag in the tr selector
1750 * isn't exposed
1751 */
1752 var->type |= 0x2;
1753 break;
1754 case VCPU_SREG_DS:
1755 case VCPU_SREG_ES:
1756 case VCPU_SREG_FS:
1757 case VCPU_SREG_GS:
1758 /*
1759 * The accessed bit must always be set in the segment
1760 * descriptor cache, although it can be cleared in the
1761 * descriptor, the cached bit always remains at 1. Since
1762 * Intel has a check on this, set it here to support
1763 * cross-vendor migration.
1764 */
1765 if (!var->unusable)
1766 var->type |= 0x1;
1767 break;
1768 case VCPU_SREG_SS:
1769 /*
1770 * On AMD CPUs sometimes the DB bit in the segment
1771 * descriptor is left as 1, although the whole segment has
1772 * been made unusable. Clear it here to pass an Intel VMX
1773 * entry check when cross vendor migrating.
1774 */
1775 if (var->unusable)
1776 var->db = 0;
1777 /* This is symmetric with svm_set_segment() */
1778 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1779 break;
1780 }
1781 }
1782
svm_get_cpl(struct kvm_vcpu * vcpu)1783 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1784 {
1785 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1786
1787 return save->cpl;
1788 }
1789
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1790 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1791 {
1792 struct kvm_segment cs;
1793
1794 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1795 *db = cs.db;
1796 *l = cs.l;
1797 }
1798
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1799 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1800 {
1801 struct vcpu_svm *svm = to_svm(vcpu);
1802
1803 dt->size = svm->vmcb->save.idtr.limit;
1804 dt->address = svm->vmcb->save.idtr.base;
1805 }
1806
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1807 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1808 {
1809 struct vcpu_svm *svm = to_svm(vcpu);
1810
1811 svm->vmcb->save.idtr.limit = dt->size;
1812 svm->vmcb->save.idtr.base = dt->address ;
1813 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1814 }
1815
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1816 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1817 {
1818 struct vcpu_svm *svm = to_svm(vcpu);
1819
1820 dt->size = svm->vmcb->save.gdtr.limit;
1821 dt->address = svm->vmcb->save.gdtr.base;
1822 }
1823
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1824 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1825 {
1826 struct vcpu_svm *svm = to_svm(vcpu);
1827
1828 svm->vmcb->save.gdtr.limit = dt->size;
1829 svm->vmcb->save.gdtr.base = dt->address ;
1830 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1831 }
1832
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1833 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1834 {
1835 struct vcpu_svm *svm = to_svm(vcpu);
1836
1837 /*
1838 * For guests that don't set guest_state_protected, the cr3 update is
1839 * handled via kvm_mmu_load() while entering the guest. For guests
1840 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1841 * VMCB save area now, since the save area will become the initial
1842 * contents of the VMSA, and future VMCB save area updates won't be
1843 * seen.
1844 */
1845 if (sev_es_guest(vcpu->kvm)) {
1846 svm->vmcb->save.cr3 = cr3;
1847 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1848 }
1849 }
1850
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1851 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1852 {
1853 return true;
1854 }
1855
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1856 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1857 {
1858 struct vcpu_svm *svm = to_svm(vcpu);
1859 u64 hcr0 = cr0;
1860 bool old_paging = is_paging(vcpu);
1861
1862 #ifdef CONFIG_X86_64
1863 if (vcpu->arch.efer & EFER_LME) {
1864 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1865 vcpu->arch.efer |= EFER_LMA;
1866 if (!vcpu->arch.guest_state_protected)
1867 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1868 }
1869
1870 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1871 vcpu->arch.efer &= ~EFER_LMA;
1872 if (!vcpu->arch.guest_state_protected)
1873 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1874 }
1875 }
1876 #endif
1877 vcpu->arch.cr0 = cr0;
1878
1879 if (!npt_enabled) {
1880 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1881 if (old_paging != is_paging(vcpu))
1882 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1883 }
1884
1885 /*
1886 * re-enable caching here because the QEMU bios
1887 * does not do it - this results in some delay at
1888 * reboot
1889 */
1890 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1891 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1892
1893 svm->vmcb->save.cr0 = hcr0;
1894 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1895
1896 /*
1897 * SEV-ES guests must always keep the CR intercepts cleared. CR
1898 * tracking is done using the CR write traps.
1899 */
1900 if (sev_es_guest(vcpu->kvm))
1901 return;
1902
1903 if (hcr0 == cr0) {
1904 /* Selective CR0 write remains on. */
1905 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1906 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1907 } else {
1908 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1909 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1910 }
1911 }
1912
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1913 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1914 {
1915 return true;
1916 }
1917
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1918 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1919 {
1920 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1921 unsigned long old_cr4 = vcpu->arch.cr4;
1922
1923 vcpu->arch.cr4 = cr4;
1924 if (!npt_enabled) {
1925 cr4 |= X86_CR4_PAE;
1926
1927 if (!is_paging(vcpu))
1928 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1929 }
1930 cr4 |= host_cr4_mce;
1931 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1932 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1933
1934 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1935 kvm_update_cpuid_runtime(vcpu);
1936 }
1937
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1938 static void svm_set_segment(struct kvm_vcpu *vcpu,
1939 struct kvm_segment *var, int seg)
1940 {
1941 struct vcpu_svm *svm = to_svm(vcpu);
1942 struct vmcb_seg *s = svm_seg(vcpu, seg);
1943
1944 s->base = var->base;
1945 s->limit = var->limit;
1946 s->selector = var->selector;
1947 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1948 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1949 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1950 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1951 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1952 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1953 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1954 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1955
1956 /*
1957 * This is always accurate, except if SYSRET returned to a segment
1958 * with SS.DPL != 3. Intel does not have this quirk, and always
1959 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1960 * would entail passing the CPL to userspace and back.
1961 */
1962 if (seg == VCPU_SREG_SS)
1963 /* This is symmetric with svm_get_segment() */
1964 svm->vmcb->save.cpl = (var->dpl & 3);
1965
1966 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1967 }
1968
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1969 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1970 {
1971 struct vcpu_svm *svm = to_svm(vcpu);
1972
1973 clr_exception_intercept(svm, BP_VECTOR);
1974
1975 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1976 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1977 set_exception_intercept(svm, BP_VECTOR);
1978 }
1979 }
1980
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1981 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1982 {
1983 if (sd->next_asid > sd->max_asid) {
1984 ++sd->asid_generation;
1985 sd->next_asid = sd->min_asid;
1986 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1987 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1988 }
1989
1990 svm->current_vmcb->asid_generation = sd->asid_generation;
1991 svm->asid = sd->next_asid++;
1992 }
1993
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1994 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1995 {
1996 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1997
1998 if (vcpu->arch.guest_state_protected)
1999 return;
2000
2001 if (unlikely(value != vmcb->save.dr6)) {
2002 vmcb->save.dr6 = value;
2003 vmcb_mark_dirty(vmcb, VMCB_DR);
2004 }
2005 }
2006
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2007 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2008 {
2009 struct vcpu_svm *svm = to_svm(vcpu);
2010
2011 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2012 return;
2013
2014 get_debugreg(vcpu->arch.db[0], 0);
2015 get_debugreg(vcpu->arch.db[1], 1);
2016 get_debugreg(vcpu->arch.db[2], 2);
2017 get_debugreg(vcpu->arch.db[3], 3);
2018 /*
2019 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2020 * because db_interception might need it. We can do it before vmentry.
2021 */
2022 vcpu->arch.dr6 = svm->vmcb->save.dr6;
2023 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2024 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2025 set_dr_intercepts(svm);
2026 }
2027
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2028 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2029 {
2030 struct vcpu_svm *svm = to_svm(vcpu);
2031
2032 if (vcpu->arch.guest_state_protected)
2033 return;
2034
2035 svm->vmcb->save.dr7 = value;
2036 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2037 }
2038
pf_interception(struct kvm_vcpu * vcpu)2039 static int pf_interception(struct kvm_vcpu *vcpu)
2040 {
2041 struct vcpu_svm *svm = to_svm(vcpu);
2042
2043 u64 fault_address = svm->vmcb->control.exit_info_2;
2044 u64 error_code = svm->vmcb->control.exit_info_1;
2045
2046 return kvm_handle_page_fault(vcpu, error_code, fault_address,
2047 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2048 svm->vmcb->control.insn_bytes : NULL,
2049 svm->vmcb->control.insn_len);
2050 }
2051
npf_interception(struct kvm_vcpu * vcpu)2052 static int npf_interception(struct kvm_vcpu *vcpu)
2053 {
2054 struct vcpu_svm *svm = to_svm(vcpu);
2055 int rc;
2056
2057 u64 fault_address = svm->vmcb->control.exit_info_2;
2058 u64 error_code = svm->vmcb->control.exit_info_1;
2059
2060 /*
2061 * WARN if hardware generates a fault with an error code that collides
2062 * with KVM-defined sythentic flags. Clear the flags and continue on,
2063 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
2064 * flag that KVM doesn't know about.
2065 */
2066 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
2067 error_code &= ~PFERR_SYNTHETIC_MASK;
2068
2069 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
2070 error_code |= PFERR_PRIVATE_ACCESS;
2071
2072 trace_kvm_page_fault(vcpu, fault_address, error_code);
2073 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
2074 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2075 svm->vmcb->control.insn_bytes : NULL,
2076 svm->vmcb->control.insn_len);
2077
2078 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
2079 sev_handle_rmp_fault(vcpu, fault_address, error_code);
2080
2081 return rc;
2082 }
2083
db_interception(struct kvm_vcpu * vcpu)2084 static int db_interception(struct kvm_vcpu *vcpu)
2085 {
2086 struct kvm_run *kvm_run = vcpu->run;
2087 struct vcpu_svm *svm = to_svm(vcpu);
2088
2089 if (!(vcpu->guest_debug &
2090 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2091 !svm->nmi_singlestep) {
2092 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2093 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2094 return 1;
2095 }
2096
2097 if (svm->nmi_singlestep) {
2098 disable_nmi_singlestep(svm);
2099 /* Make sure we check for pending NMIs upon entry */
2100 kvm_make_request(KVM_REQ_EVENT, vcpu);
2101 }
2102
2103 if (vcpu->guest_debug &
2104 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2105 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2106 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2107 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2108 kvm_run->debug.arch.pc =
2109 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2110 kvm_run->debug.arch.exception = DB_VECTOR;
2111 return 0;
2112 }
2113
2114 return 1;
2115 }
2116
bp_interception(struct kvm_vcpu * vcpu)2117 static int bp_interception(struct kvm_vcpu *vcpu)
2118 {
2119 struct vcpu_svm *svm = to_svm(vcpu);
2120 struct kvm_run *kvm_run = vcpu->run;
2121
2122 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2123 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2124 kvm_run->debug.arch.exception = BP_VECTOR;
2125 return 0;
2126 }
2127
ud_interception(struct kvm_vcpu * vcpu)2128 static int ud_interception(struct kvm_vcpu *vcpu)
2129 {
2130 return handle_ud(vcpu);
2131 }
2132
ac_interception(struct kvm_vcpu * vcpu)2133 static int ac_interception(struct kvm_vcpu *vcpu)
2134 {
2135 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2136 return 1;
2137 }
2138
is_erratum_383(void)2139 static bool is_erratum_383(void)
2140 {
2141 int err, i;
2142 u64 value;
2143
2144 if (!erratum_383_found)
2145 return false;
2146
2147 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2148 if (err)
2149 return false;
2150
2151 /* Bit 62 may or may not be set for this mce */
2152 value &= ~(1ULL << 62);
2153
2154 if (value != 0xb600000000010015ULL)
2155 return false;
2156
2157 /* Clear MCi_STATUS registers */
2158 for (i = 0; i < 6; ++i)
2159 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2160
2161 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2162 if (!err) {
2163 u32 low, high;
2164
2165 value &= ~(1ULL << 2);
2166 low = lower_32_bits(value);
2167 high = upper_32_bits(value);
2168
2169 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2170 }
2171
2172 /* Flush tlb to evict multi-match entries */
2173 __flush_tlb_all();
2174
2175 return true;
2176 }
2177
svm_handle_mce(struct kvm_vcpu * vcpu)2178 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2179 {
2180 if (is_erratum_383()) {
2181 /*
2182 * Erratum 383 triggered. Guest state is corrupt so kill the
2183 * guest.
2184 */
2185 pr_err("Guest triggered AMD Erratum 383\n");
2186
2187 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2188
2189 return;
2190 }
2191
2192 /*
2193 * On an #MC intercept the MCE handler is not called automatically in
2194 * the host. So do it by hand here.
2195 */
2196 kvm_machine_check();
2197 }
2198
mc_interception(struct kvm_vcpu * vcpu)2199 static int mc_interception(struct kvm_vcpu *vcpu)
2200 {
2201 return 1;
2202 }
2203
shutdown_interception(struct kvm_vcpu * vcpu)2204 static int shutdown_interception(struct kvm_vcpu *vcpu)
2205 {
2206 struct kvm_run *kvm_run = vcpu->run;
2207 struct vcpu_svm *svm = to_svm(vcpu);
2208
2209
2210 /*
2211 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2212 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2213 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2214 * userspace. At a platform view, INIT is acceptable behavior as
2215 * there exist bare metal platforms that automatically INIT the CPU
2216 * in response to shutdown.
2217 *
2218 * The VM save area for SEV-ES guests has already been encrypted so it
2219 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2220 */
2221 if (!sev_es_guest(vcpu->kvm)) {
2222 clear_page(svm->vmcb);
2223 kvm_vcpu_reset(vcpu, true);
2224 }
2225
2226 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2227 return 0;
2228 }
2229
io_interception(struct kvm_vcpu * vcpu)2230 static int io_interception(struct kvm_vcpu *vcpu)
2231 {
2232 struct vcpu_svm *svm = to_svm(vcpu);
2233 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2234 int size, in, string;
2235 unsigned port;
2236
2237 ++vcpu->stat.io_exits;
2238 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2239 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2240 port = io_info >> 16;
2241 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2242
2243 if (string) {
2244 if (sev_es_guest(vcpu->kvm))
2245 return sev_es_string_io(svm, size, port, in);
2246 else
2247 return kvm_emulate_instruction(vcpu, 0);
2248 }
2249
2250 svm->next_rip = svm->vmcb->control.exit_info_2;
2251
2252 return kvm_fast_pio(vcpu, size, port, in);
2253 }
2254
nmi_interception(struct kvm_vcpu * vcpu)2255 static int nmi_interception(struct kvm_vcpu *vcpu)
2256 {
2257 return 1;
2258 }
2259
smi_interception(struct kvm_vcpu * vcpu)2260 static int smi_interception(struct kvm_vcpu *vcpu)
2261 {
2262 return 1;
2263 }
2264
intr_interception(struct kvm_vcpu * vcpu)2265 static int intr_interception(struct kvm_vcpu *vcpu)
2266 {
2267 ++vcpu->stat.irq_exits;
2268 return 1;
2269 }
2270
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2271 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2272 {
2273 struct vcpu_svm *svm = to_svm(vcpu);
2274 struct vmcb *vmcb12;
2275 struct kvm_host_map map;
2276 int ret;
2277
2278 if (nested_svm_check_permissions(vcpu))
2279 return 1;
2280
2281 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2282 if (ret) {
2283 if (ret == -EINVAL)
2284 kvm_inject_gp(vcpu, 0);
2285 return 1;
2286 }
2287
2288 vmcb12 = map.hva;
2289
2290 ret = kvm_skip_emulated_instruction(vcpu);
2291
2292 if (vmload) {
2293 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2294 svm->sysenter_eip_hi = 0;
2295 svm->sysenter_esp_hi = 0;
2296 } else {
2297 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2298 }
2299
2300 kvm_vcpu_unmap(vcpu, &map);
2301
2302 return ret;
2303 }
2304
vmload_interception(struct kvm_vcpu * vcpu)2305 static int vmload_interception(struct kvm_vcpu *vcpu)
2306 {
2307 return vmload_vmsave_interception(vcpu, true);
2308 }
2309
vmsave_interception(struct kvm_vcpu * vcpu)2310 static int vmsave_interception(struct kvm_vcpu *vcpu)
2311 {
2312 return vmload_vmsave_interception(vcpu, false);
2313 }
2314
vmrun_interception(struct kvm_vcpu * vcpu)2315 static int vmrun_interception(struct kvm_vcpu *vcpu)
2316 {
2317 if (nested_svm_check_permissions(vcpu))
2318 return 1;
2319
2320 return nested_svm_vmrun(vcpu);
2321 }
2322
2323 enum {
2324 NONE_SVM_INSTR,
2325 SVM_INSTR_VMRUN,
2326 SVM_INSTR_VMLOAD,
2327 SVM_INSTR_VMSAVE,
2328 };
2329
2330 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2331 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2332 {
2333 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2334
2335 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2336 return NONE_SVM_INSTR;
2337
2338 switch (ctxt->modrm) {
2339 case 0xd8: /* VMRUN */
2340 return SVM_INSTR_VMRUN;
2341 case 0xda: /* VMLOAD */
2342 return SVM_INSTR_VMLOAD;
2343 case 0xdb: /* VMSAVE */
2344 return SVM_INSTR_VMSAVE;
2345 default:
2346 break;
2347 }
2348
2349 return NONE_SVM_INSTR;
2350 }
2351
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2352 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2353 {
2354 const int guest_mode_exit_codes[] = {
2355 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2356 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2357 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2358 };
2359 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2360 [SVM_INSTR_VMRUN] = vmrun_interception,
2361 [SVM_INSTR_VMLOAD] = vmload_interception,
2362 [SVM_INSTR_VMSAVE] = vmsave_interception,
2363 };
2364 struct vcpu_svm *svm = to_svm(vcpu);
2365 int ret;
2366
2367 if (is_guest_mode(vcpu)) {
2368 /* Returns '1' or -errno on failure, '0' on success. */
2369 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2370 if (ret)
2371 return ret;
2372 return 1;
2373 }
2374 return svm_instr_handlers[opcode](vcpu);
2375 }
2376
2377 /*
2378 * #GP handling code. Note that #GP can be triggered under the following two
2379 * cases:
2380 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2381 * some AMD CPUs when EAX of these instructions are in the reserved memory
2382 * regions (e.g. SMM memory on host).
2383 * 2) VMware backdoor
2384 */
gp_interception(struct kvm_vcpu * vcpu)2385 static int gp_interception(struct kvm_vcpu *vcpu)
2386 {
2387 struct vcpu_svm *svm = to_svm(vcpu);
2388 u32 error_code = svm->vmcb->control.exit_info_1;
2389 int opcode;
2390
2391 /* Both #GP cases have zero error_code */
2392 if (error_code)
2393 goto reinject;
2394
2395 /* Decode the instruction for usage later */
2396 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2397 goto reinject;
2398
2399 opcode = svm_instr_opcode(vcpu);
2400
2401 if (opcode == NONE_SVM_INSTR) {
2402 if (!enable_vmware_backdoor)
2403 goto reinject;
2404
2405 /*
2406 * VMware backdoor emulation on #GP interception only handles
2407 * IN{S}, OUT{S}, and RDPMC.
2408 */
2409 if (!is_guest_mode(vcpu))
2410 return kvm_emulate_instruction(vcpu,
2411 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2412 } else {
2413 /* All SVM instructions expect page aligned RAX */
2414 if (svm->vmcb->save.rax & ~PAGE_MASK)
2415 goto reinject;
2416
2417 return emulate_svm_instr(vcpu, opcode);
2418 }
2419
2420 reinject:
2421 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2422 return 1;
2423 }
2424
svm_set_gif(struct vcpu_svm * svm,bool value)2425 void svm_set_gif(struct vcpu_svm *svm, bool value)
2426 {
2427 if (value) {
2428 /*
2429 * If VGIF is enabled, the STGI intercept is only added to
2430 * detect the opening of the SMI/NMI window; remove it now.
2431 * Likewise, clear the VINTR intercept, we will set it
2432 * again while processing KVM_REQ_EVENT if needed.
2433 */
2434 if (vgif)
2435 svm_clr_intercept(svm, INTERCEPT_STGI);
2436 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2437 svm_clear_vintr(svm);
2438
2439 enable_gif(svm);
2440 if (svm->vcpu.arch.smi_pending ||
2441 svm->vcpu.arch.nmi_pending ||
2442 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2443 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2444 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2445 } else {
2446 disable_gif(svm);
2447
2448 /*
2449 * After a CLGI no interrupts should come. But if vGIF is
2450 * in use, we still rely on the VINTR intercept (rather than
2451 * STGI) to detect an open interrupt window.
2452 */
2453 if (!vgif)
2454 svm_clear_vintr(svm);
2455 }
2456 }
2457
stgi_interception(struct kvm_vcpu * vcpu)2458 static int stgi_interception(struct kvm_vcpu *vcpu)
2459 {
2460 int ret;
2461
2462 if (nested_svm_check_permissions(vcpu))
2463 return 1;
2464
2465 ret = kvm_skip_emulated_instruction(vcpu);
2466 svm_set_gif(to_svm(vcpu), true);
2467 return ret;
2468 }
2469
clgi_interception(struct kvm_vcpu * vcpu)2470 static int clgi_interception(struct kvm_vcpu *vcpu)
2471 {
2472 int ret;
2473
2474 if (nested_svm_check_permissions(vcpu))
2475 return 1;
2476
2477 ret = kvm_skip_emulated_instruction(vcpu);
2478 svm_set_gif(to_svm(vcpu), false);
2479 return ret;
2480 }
2481
invlpga_interception(struct kvm_vcpu * vcpu)2482 static int invlpga_interception(struct kvm_vcpu *vcpu)
2483 {
2484 gva_t gva = kvm_rax_read(vcpu);
2485 u32 asid = kvm_rcx_read(vcpu);
2486
2487 /* FIXME: Handle an address size prefix. */
2488 if (!is_long_mode(vcpu))
2489 gva = (u32)gva;
2490
2491 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2492
2493 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2494 kvm_mmu_invlpg(vcpu, gva);
2495
2496 return kvm_skip_emulated_instruction(vcpu);
2497 }
2498
skinit_interception(struct kvm_vcpu * vcpu)2499 static int skinit_interception(struct kvm_vcpu *vcpu)
2500 {
2501 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2502
2503 kvm_queue_exception(vcpu, UD_VECTOR);
2504 return 1;
2505 }
2506
task_switch_interception(struct kvm_vcpu * vcpu)2507 static int task_switch_interception(struct kvm_vcpu *vcpu)
2508 {
2509 struct vcpu_svm *svm = to_svm(vcpu);
2510 u16 tss_selector;
2511 int reason;
2512 int int_type = svm->vmcb->control.exit_int_info &
2513 SVM_EXITINTINFO_TYPE_MASK;
2514 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2515 uint32_t type =
2516 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2517 uint32_t idt_v =
2518 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2519 bool has_error_code = false;
2520 u32 error_code = 0;
2521
2522 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2523
2524 if (svm->vmcb->control.exit_info_2 &
2525 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2526 reason = TASK_SWITCH_IRET;
2527 else if (svm->vmcb->control.exit_info_2 &
2528 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2529 reason = TASK_SWITCH_JMP;
2530 else if (idt_v)
2531 reason = TASK_SWITCH_GATE;
2532 else
2533 reason = TASK_SWITCH_CALL;
2534
2535 if (reason == TASK_SWITCH_GATE) {
2536 switch (type) {
2537 case SVM_EXITINTINFO_TYPE_NMI:
2538 vcpu->arch.nmi_injected = false;
2539 break;
2540 case SVM_EXITINTINFO_TYPE_EXEPT:
2541 if (svm->vmcb->control.exit_info_2 &
2542 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2543 has_error_code = true;
2544 error_code =
2545 (u32)svm->vmcb->control.exit_info_2;
2546 }
2547 kvm_clear_exception_queue(vcpu);
2548 break;
2549 case SVM_EXITINTINFO_TYPE_INTR:
2550 case SVM_EXITINTINFO_TYPE_SOFT:
2551 kvm_clear_interrupt_queue(vcpu);
2552 break;
2553 default:
2554 break;
2555 }
2556 }
2557
2558 if (reason != TASK_SWITCH_GATE ||
2559 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2560 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2561 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2562 if (!svm_skip_emulated_instruction(vcpu))
2563 return 0;
2564 }
2565
2566 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2567 int_vec = -1;
2568
2569 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2570 has_error_code, error_code);
2571 }
2572
svm_clr_iret_intercept(struct vcpu_svm * svm)2573 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2574 {
2575 if (!sev_es_guest(svm->vcpu.kvm))
2576 svm_clr_intercept(svm, INTERCEPT_IRET);
2577 }
2578
svm_set_iret_intercept(struct vcpu_svm * svm)2579 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2580 {
2581 if (!sev_es_guest(svm->vcpu.kvm))
2582 svm_set_intercept(svm, INTERCEPT_IRET);
2583 }
2584
iret_interception(struct kvm_vcpu * vcpu)2585 static int iret_interception(struct kvm_vcpu *vcpu)
2586 {
2587 struct vcpu_svm *svm = to_svm(vcpu);
2588
2589 WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2590
2591 ++vcpu->stat.nmi_window_exits;
2592 svm->awaiting_iret_completion = true;
2593
2594 svm_clr_iret_intercept(svm);
2595 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2596
2597 kvm_make_request(KVM_REQ_EVENT, vcpu);
2598 return 1;
2599 }
2600
invlpg_interception(struct kvm_vcpu * vcpu)2601 static int invlpg_interception(struct kvm_vcpu *vcpu)
2602 {
2603 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2604 return kvm_emulate_instruction(vcpu, 0);
2605
2606 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2607 return kvm_skip_emulated_instruction(vcpu);
2608 }
2609
emulate_on_interception(struct kvm_vcpu * vcpu)2610 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2611 {
2612 return kvm_emulate_instruction(vcpu, 0);
2613 }
2614
rsm_interception(struct kvm_vcpu * vcpu)2615 static int rsm_interception(struct kvm_vcpu *vcpu)
2616 {
2617 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2618 }
2619
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2620 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2621 unsigned long val)
2622 {
2623 struct vcpu_svm *svm = to_svm(vcpu);
2624 unsigned long cr0 = vcpu->arch.cr0;
2625 bool ret = false;
2626
2627 if (!is_guest_mode(vcpu) ||
2628 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2629 return false;
2630
2631 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2632 val &= ~SVM_CR0_SELECTIVE_MASK;
2633
2634 if (cr0 ^ val) {
2635 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2636 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2637 }
2638
2639 return ret;
2640 }
2641
2642 #define CR_VALID (1ULL << 63)
2643
cr_interception(struct kvm_vcpu * vcpu)2644 static int cr_interception(struct kvm_vcpu *vcpu)
2645 {
2646 struct vcpu_svm *svm = to_svm(vcpu);
2647 int reg, cr;
2648 unsigned long val;
2649 int err;
2650
2651 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2652 return emulate_on_interception(vcpu);
2653
2654 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2655 return emulate_on_interception(vcpu);
2656
2657 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2658 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2659 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2660 else
2661 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2662
2663 err = 0;
2664 if (cr >= 16) { /* mov to cr */
2665 cr -= 16;
2666 val = kvm_register_read(vcpu, reg);
2667 trace_kvm_cr_write(cr, val);
2668 switch (cr) {
2669 case 0:
2670 if (!check_selective_cr0_intercepted(vcpu, val))
2671 err = kvm_set_cr0(vcpu, val);
2672 else
2673 return 1;
2674
2675 break;
2676 case 3:
2677 err = kvm_set_cr3(vcpu, val);
2678 break;
2679 case 4:
2680 err = kvm_set_cr4(vcpu, val);
2681 break;
2682 case 8:
2683 err = kvm_set_cr8(vcpu, val);
2684 break;
2685 default:
2686 WARN(1, "unhandled write to CR%d", cr);
2687 kvm_queue_exception(vcpu, UD_VECTOR);
2688 return 1;
2689 }
2690 } else { /* mov from cr */
2691 switch (cr) {
2692 case 0:
2693 val = kvm_read_cr0(vcpu);
2694 break;
2695 case 2:
2696 val = vcpu->arch.cr2;
2697 break;
2698 case 3:
2699 val = kvm_read_cr3(vcpu);
2700 break;
2701 case 4:
2702 val = kvm_read_cr4(vcpu);
2703 break;
2704 case 8:
2705 val = kvm_get_cr8(vcpu);
2706 break;
2707 default:
2708 WARN(1, "unhandled read from CR%d", cr);
2709 kvm_queue_exception(vcpu, UD_VECTOR);
2710 return 1;
2711 }
2712 kvm_register_write(vcpu, reg, val);
2713 trace_kvm_cr_read(cr, val);
2714 }
2715 return kvm_complete_insn_gp(vcpu, err);
2716 }
2717
cr_trap(struct kvm_vcpu * vcpu)2718 static int cr_trap(struct kvm_vcpu *vcpu)
2719 {
2720 struct vcpu_svm *svm = to_svm(vcpu);
2721 unsigned long old_value, new_value;
2722 unsigned int cr;
2723 int ret = 0;
2724
2725 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2726
2727 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2728 switch (cr) {
2729 case 0:
2730 old_value = kvm_read_cr0(vcpu);
2731 svm_set_cr0(vcpu, new_value);
2732
2733 kvm_post_set_cr0(vcpu, old_value, new_value);
2734 break;
2735 case 4:
2736 old_value = kvm_read_cr4(vcpu);
2737 svm_set_cr4(vcpu, new_value);
2738
2739 kvm_post_set_cr4(vcpu, old_value, new_value);
2740 break;
2741 case 8:
2742 ret = kvm_set_cr8(vcpu, new_value);
2743 break;
2744 default:
2745 WARN(1, "unhandled CR%d write trap", cr);
2746 kvm_queue_exception(vcpu, UD_VECTOR);
2747 return 1;
2748 }
2749
2750 return kvm_complete_insn_gp(vcpu, ret);
2751 }
2752
dr_interception(struct kvm_vcpu * vcpu)2753 static int dr_interception(struct kvm_vcpu *vcpu)
2754 {
2755 struct vcpu_svm *svm = to_svm(vcpu);
2756 int reg, dr;
2757 int err = 0;
2758
2759 /*
2760 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2761 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2762 */
2763 if (sev_es_guest(vcpu->kvm))
2764 return 1;
2765
2766 if (vcpu->guest_debug == 0) {
2767 /*
2768 * No more DR vmexits; force a reload of the debug registers
2769 * and reenter on this instruction. The next vmexit will
2770 * retrieve the full state of the debug registers.
2771 */
2772 clr_dr_intercepts(svm);
2773 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2774 return 1;
2775 }
2776
2777 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2778 return emulate_on_interception(vcpu);
2779
2780 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2781 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2782 if (dr >= 16) { /* mov to DRn */
2783 dr -= 16;
2784 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2785 } else {
2786 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2787 }
2788
2789 return kvm_complete_insn_gp(vcpu, err);
2790 }
2791
cr8_write_interception(struct kvm_vcpu * vcpu)2792 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2793 {
2794 int r;
2795
2796 u8 cr8_prev = kvm_get_cr8(vcpu);
2797 /* instruction emulation calls kvm_set_cr8() */
2798 r = cr_interception(vcpu);
2799 if (lapic_in_kernel(vcpu))
2800 return r;
2801 if (cr8_prev <= kvm_get_cr8(vcpu))
2802 return r;
2803 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2804 return 0;
2805 }
2806
efer_trap(struct kvm_vcpu * vcpu)2807 static int efer_trap(struct kvm_vcpu *vcpu)
2808 {
2809 struct msr_data msr_info;
2810 int ret;
2811
2812 /*
2813 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2814 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2815 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2816 * the guest doesn't have X86_FEATURE_SVM.
2817 */
2818 msr_info.host_initiated = false;
2819 msr_info.index = MSR_EFER;
2820 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2821 ret = kvm_set_msr_common(vcpu, &msr_info);
2822
2823 return kvm_complete_insn_gp(vcpu, ret);
2824 }
2825
svm_get_feature_msr(u32 msr,u64 * data)2826 static int svm_get_feature_msr(u32 msr, u64 *data)
2827 {
2828 *data = 0;
2829
2830 switch (msr) {
2831 case MSR_AMD64_DE_CFG:
2832 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2833 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2834 break;
2835 default:
2836 return KVM_MSR_RET_UNSUPPORTED;
2837 }
2838
2839 return 0;
2840 }
2841
2842 static bool
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2843 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2844 {
2845 return sev_es_guest(vcpu->kvm) &&
2846 vcpu->arch.guest_state_protected &&
2847 svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
2848 !msr_write_intercepted(vcpu, msr_info->index);
2849 }
2850
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2851 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2852 {
2853 struct vcpu_svm *svm = to_svm(vcpu);
2854
2855 if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2856 msr_info->data = 0;
2857 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2858 }
2859
2860 switch (msr_info->index) {
2861 case MSR_AMD64_TSC_RATIO:
2862 if (!msr_info->host_initiated &&
2863 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2864 return 1;
2865 msr_info->data = svm->tsc_ratio_msr;
2866 break;
2867 case MSR_STAR:
2868 msr_info->data = svm->vmcb01.ptr->save.star;
2869 break;
2870 #ifdef CONFIG_X86_64
2871 case MSR_LSTAR:
2872 msr_info->data = svm->vmcb01.ptr->save.lstar;
2873 break;
2874 case MSR_CSTAR:
2875 msr_info->data = svm->vmcb01.ptr->save.cstar;
2876 break;
2877 case MSR_GS_BASE:
2878 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2879 break;
2880 case MSR_FS_BASE:
2881 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2882 break;
2883 case MSR_KERNEL_GS_BASE:
2884 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2885 break;
2886 case MSR_SYSCALL_MASK:
2887 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2888 break;
2889 #endif
2890 case MSR_IA32_SYSENTER_CS:
2891 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2892 break;
2893 case MSR_IA32_SYSENTER_EIP:
2894 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2895 if (guest_cpuid_is_intel_compatible(vcpu))
2896 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2897 break;
2898 case MSR_IA32_SYSENTER_ESP:
2899 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2900 if (guest_cpuid_is_intel_compatible(vcpu))
2901 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2902 break;
2903 case MSR_TSC_AUX:
2904 msr_info->data = svm->tsc_aux;
2905 break;
2906 case MSR_IA32_DEBUGCTLMSR:
2907 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2908 break;
2909 case MSR_IA32_LASTBRANCHFROMIP:
2910 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2911 break;
2912 case MSR_IA32_LASTBRANCHTOIP:
2913 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2914 break;
2915 case MSR_IA32_LASTINTFROMIP:
2916 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2917 break;
2918 case MSR_IA32_LASTINTTOIP:
2919 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2920 break;
2921 case MSR_VM_HSAVE_PA:
2922 msr_info->data = svm->nested.hsave_msr;
2923 break;
2924 case MSR_VM_CR:
2925 msr_info->data = svm->nested.vm_cr_msr;
2926 break;
2927 case MSR_IA32_SPEC_CTRL:
2928 if (!msr_info->host_initiated &&
2929 !guest_has_spec_ctrl_msr(vcpu))
2930 return 1;
2931
2932 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2933 msr_info->data = svm->vmcb->save.spec_ctrl;
2934 else
2935 msr_info->data = svm->spec_ctrl;
2936 break;
2937 case MSR_AMD64_VIRT_SPEC_CTRL:
2938 if (!msr_info->host_initiated &&
2939 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2940 return 1;
2941
2942 msr_info->data = svm->virt_spec_ctrl;
2943 break;
2944 case MSR_F15H_IC_CFG: {
2945
2946 int family, model;
2947
2948 family = guest_cpuid_family(vcpu);
2949 model = guest_cpuid_model(vcpu);
2950
2951 if (family < 0 || model < 0)
2952 return kvm_get_msr_common(vcpu, msr_info);
2953
2954 msr_info->data = 0;
2955
2956 if (family == 0x15 &&
2957 (model >= 0x2 && model < 0x20))
2958 msr_info->data = 0x1E;
2959 }
2960 break;
2961 case MSR_AMD64_DE_CFG:
2962 msr_info->data = svm->msr_decfg;
2963 break;
2964 default:
2965 return kvm_get_msr_common(vcpu, msr_info);
2966 }
2967 return 0;
2968 }
2969
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2970 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2971 {
2972 struct vcpu_svm *svm = to_svm(vcpu);
2973 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2974 return kvm_complete_insn_gp(vcpu, err);
2975
2976 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2977 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2978 X86_TRAP_GP |
2979 SVM_EVTINJ_TYPE_EXEPT |
2980 SVM_EVTINJ_VALID);
2981 return 1;
2982 }
2983
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2984 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2985 {
2986 struct vcpu_svm *svm = to_svm(vcpu);
2987 int svm_dis, chg_mask;
2988
2989 if (data & ~SVM_VM_CR_VALID_MASK)
2990 return 1;
2991
2992 chg_mask = SVM_VM_CR_VALID_MASK;
2993
2994 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2995 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2996
2997 svm->nested.vm_cr_msr &= ~chg_mask;
2998 svm->nested.vm_cr_msr |= (data & chg_mask);
2999
3000 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3001
3002 /* check for svm_disable while efer.svme is set */
3003 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3004 return 1;
3005
3006 return 0;
3007 }
3008
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3009 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3010 {
3011 struct vcpu_svm *svm = to_svm(vcpu);
3012 int ret = 0;
3013
3014 u32 ecx = msr->index;
3015 u64 data = msr->data;
3016
3017 if (sev_es_prevent_msr_access(vcpu, msr))
3018 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
3019
3020 switch (ecx) {
3021 case MSR_AMD64_TSC_RATIO:
3022
3023 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
3024
3025 if (!msr->host_initiated)
3026 return 1;
3027 /*
3028 * In case TSC scaling is not enabled, always
3029 * leave this MSR at the default value.
3030 *
3031 * Due to bug in qemu 6.2.0, it would try to set
3032 * this msr to 0 if tsc scaling is not enabled.
3033 * Ignore this value as well.
3034 */
3035 if (data != 0 && data != svm->tsc_ratio_msr)
3036 return 1;
3037 break;
3038 }
3039
3040 if (data & SVM_TSC_RATIO_RSVD)
3041 return 1;
3042
3043 svm->tsc_ratio_msr = data;
3044
3045 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
3046 is_guest_mode(vcpu))
3047 nested_svm_update_tsc_ratio_msr(vcpu);
3048
3049 break;
3050 case MSR_IA32_CR_PAT:
3051 ret = kvm_set_msr_common(vcpu, msr);
3052 if (ret)
3053 break;
3054
3055 svm->vmcb01.ptr->save.g_pat = data;
3056 if (is_guest_mode(vcpu))
3057 nested_vmcb02_compute_g_pat(svm);
3058 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3059 break;
3060 case MSR_IA32_SPEC_CTRL:
3061 if (!msr->host_initiated &&
3062 !guest_has_spec_ctrl_msr(vcpu))
3063 return 1;
3064
3065 if (kvm_spec_ctrl_test_value(data))
3066 return 1;
3067
3068 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3069 svm->vmcb->save.spec_ctrl = data;
3070 else
3071 svm->spec_ctrl = data;
3072 if (!data)
3073 break;
3074
3075 /*
3076 * For non-nested:
3077 * When it's written (to non-zero) for the first time, pass
3078 * it through.
3079 *
3080 * For nested:
3081 * The handling of the MSR bitmap for L2 guests is done in
3082 * nested_svm_vmrun_msrpm.
3083 * We update the L1 MSR bit as well since it will end up
3084 * touching the MSR anyway now.
3085 */
3086 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3087 break;
3088 case MSR_AMD64_VIRT_SPEC_CTRL:
3089 if (!msr->host_initiated &&
3090 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
3091 return 1;
3092
3093 if (data & ~SPEC_CTRL_SSBD)
3094 return 1;
3095
3096 svm->virt_spec_ctrl = data;
3097 break;
3098 case MSR_STAR:
3099 svm->vmcb01.ptr->save.star = data;
3100 break;
3101 #ifdef CONFIG_X86_64
3102 case MSR_LSTAR:
3103 svm->vmcb01.ptr->save.lstar = data;
3104 break;
3105 case MSR_CSTAR:
3106 svm->vmcb01.ptr->save.cstar = data;
3107 break;
3108 case MSR_GS_BASE:
3109 svm->vmcb01.ptr->save.gs.base = data;
3110 break;
3111 case MSR_FS_BASE:
3112 svm->vmcb01.ptr->save.fs.base = data;
3113 break;
3114 case MSR_KERNEL_GS_BASE:
3115 svm->vmcb01.ptr->save.kernel_gs_base = data;
3116 break;
3117 case MSR_SYSCALL_MASK:
3118 svm->vmcb01.ptr->save.sfmask = data;
3119 break;
3120 #endif
3121 case MSR_IA32_SYSENTER_CS:
3122 svm->vmcb01.ptr->save.sysenter_cs = data;
3123 break;
3124 case MSR_IA32_SYSENTER_EIP:
3125 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3126 /*
3127 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3128 * when we spoof an Intel vendor ID (for cross vendor migration).
3129 * In this case we use this intercept to track the high
3130 * 32 bit part of these msrs to support Intel's
3131 * implementation of SYSENTER/SYSEXIT.
3132 */
3133 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3134 break;
3135 case MSR_IA32_SYSENTER_ESP:
3136 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3137 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3138 break;
3139 case MSR_TSC_AUX:
3140 /*
3141 * TSC_AUX is always virtualized for SEV-ES guests when the
3142 * feature is available. The user return MSR support is not
3143 * required in this case because TSC_AUX is restored on #VMEXIT
3144 * from the host save area (which has been initialized in
3145 * svm_enable_virtualization_cpu()).
3146 */
3147 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3148 break;
3149
3150 /*
3151 * TSC_AUX is usually changed only during boot and never read
3152 * directly. Intercept TSC_AUX instead of exposing it to the
3153 * guest via direct_access_msrs, and switch it via user return.
3154 */
3155 preempt_disable();
3156 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3157 preempt_enable();
3158 if (ret)
3159 break;
3160
3161 svm->tsc_aux = data;
3162 break;
3163 case MSR_IA32_DEBUGCTLMSR:
3164 if (!lbrv) {
3165 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3166 break;
3167 }
3168
3169 /*
3170 * AMD changed the architectural behavior of bits 5:2. On CPUs
3171 * without BusLockTrap, bits 5:2 control "external pins", but
3172 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap
3173 * and bits 5:3 are reserved-to-zero. Sadly, old KVM allowed
3174 * the guest to set bits 5:2 despite not actually virtualizing
3175 * Performance-Monitoring/Breakpoint external pins. Drop bits
3176 * 5:2 for backwards compatibility.
3177 */
3178 data &= ~GENMASK(5, 2);
3179
3180 /*
3181 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
3182 * way to communicate lack of support to the guest.
3183 */
3184 if (data & DEBUGCTLMSR_BTF) {
3185 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
3186 data &= ~DEBUGCTLMSR_BTF;
3187 }
3188
3189 if (data & DEBUGCTL_RESERVED_BITS)
3190 return 1;
3191
3192 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3193 svm_update_lbrv(vcpu);
3194 break;
3195 case MSR_VM_HSAVE_PA:
3196 /*
3197 * Old kernels did not validate the value written to
3198 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3199 * value to allow live migrating buggy or malicious guests
3200 * originating from those kernels.
3201 */
3202 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3203 return 1;
3204
3205 svm->nested.hsave_msr = data & PAGE_MASK;
3206 break;
3207 case MSR_VM_CR:
3208 return svm_set_vm_cr(vcpu, data);
3209 case MSR_VM_IGNNE:
3210 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3211 break;
3212 case MSR_AMD64_DE_CFG: {
3213 u64 supported_de_cfg;
3214
3215 if (svm_get_feature_msr(ecx, &supported_de_cfg))
3216 return 1;
3217
3218 if (data & ~supported_de_cfg)
3219 return 1;
3220
3221 svm->msr_decfg = data;
3222 break;
3223 }
3224 default:
3225 return kvm_set_msr_common(vcpu, msr);
3226 }
3227 return ret;
3228 }
3229
msr_interception(struct kvm_vcpu * vcpu)3230 static int msr_interception(struct kvm_vcpu *vcpu)
3231 {
3232 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3233 return kvm_emulate_wrmsr(vcpu);
3234 else
3235 return kvm_emulate_rdmsr(vcpu);
3236 }
3237
interrupt_window_interception(struct kvm_vcpu * vcpu)3238 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3239 {
3240 kvm_make_request(KVM_REQ_EVENT, vcpu);
3241 svm_clear_vintr(to_svm(vcpu));
3242
3243 /*
3244 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3245 * In this case AVIC was temporarily disabled for
3246 * requesting the IRQ window and we have to re-enable it.
3247 *
3248 * If running nested, still remove the VM wide AVIC inhibit to
3249 * support case in which the interrupt window was requested when the
3250 * vCPU was not running nested.
3251
3252 * All vCPUs which run still run nested, will remain to have their
3253 * AVIC still inhibited due to per-cpu AVIC inhibition.
3254 */
3255 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3256
3257 ++vcpu->stat.irq_window_exits;
3258 return 1;
3259 }
3260
pause_interception(struct kvm_vcpu * vcpu)3261 static int pause_interception(struct kvm_vcpu *vcpu)
3262 {
3263 bool in_kernel;
3264 /*
3265 * CPL is not made available for an SEV-ES guest, therefore
3266 * vcpu->arch.preempted_in_kernel can never be true. Just
3267 * set in_kernel to false as well.
3268 */
3269 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3270
3271 grow_ple_window(vcpu);
3272
3273 kvm_vcpu_on_spin(vcpu, in_kernel);
3274 return kvm_skip_emulated_instruction(vcpu);
3275 }
3276
invpcid_interception(struct kvm_vcpu * vcpu)3277 static int invpcid_interception(struct kvm_vcpu *vcpu)
3278 {
3279 struct vcpu_svm *svm = to_svm(vcpu);
3280 unsigned long type;
3281 gva_t gva;
3282
3283 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3284 kvm_queue_exception(vcpu, UD_VECTOR);
3285 return 1;
3286 }
3287
3288 /*
3289 * For an INVPCID intercept:
3290 * EXITINFO1 provides the linear address of the memory operand.
3291 * EXITINFO2 provides the contents of the register operand.
3292 */
3293 type = svm->vmcb->control.exit_info_2;
3294 gva = svm->vmcb->control.exit_info_1;
3295
3296 return kvm_handle_invpcid(vcpu, type, gva);
3297 }
3298
3299 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3300 [SVM_EXIT_READ_CR0] = cr_interception,
3301 [SVM_EXIT_READ_CR3] = cr_interception,
3302 [SVM_EXIT_READ_CR4] = cr_interception,
3303 [SVM_EXIT_READ_CR8] = cr_interception,
3304 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3305 [SVM_EXIT_WRITE_CR0] = cr_interception,
3306 [SVM_EXIT_WRITE_CR3] = cr_interception,
3307 [SVM_EXIT_WRITE_CR4] = cr_interception,
3308 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3309 [SVM_EXIT_READ_DR0] = dr_interception,
3310 [SVM_EXIT_READ_DR1] = dr_interception,
3311 [SVM_EXIT_READ_DR2] = dr_interception,
3312 [SVM_EXIT_READ_DR3] = dr_interception,
3313 [SVM_EXIT_READ_DR4] = dr_interception,
3314 [SVM_EXIT_READ_DR5] = dr_interception,
3315 [SVM_EXIT_READ_DR6] = dr_interception,
3316 [SVM_EXIT_READ_DR7] = dr_interception,
3317 [SVM_EXIT_WRITE_DR0] = dr_interception,
3318 [SVM_EXIT_WRITE_DR1] = dr_interception,
3319 [SVM_EXIT_WRITE_DR2] = dr_interception,
3320 [SVM_EXIT_WRITE_DR3] = dr_interception,
3321 [SVM_EXIT_WRITE_DR4] = dr_interception,
3322 [SVM_EXIT_WRITE_DR5] = dr_interception,
3323 [SVM_EXIT_WRITE_DR6] = dr_interception,
3324 [SVM_EXIT_WRITE_DR7] = dr_interception,
3325 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3326 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3327 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3328 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3329 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3330 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3331 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3332 [SVM_EXIT_INTR] = intr_interception,
3333 [SVM_EXIT_NMI] = nmi_interception,
3334 [SVM_EXIT_SMI] = smi_interception,
3335 [SVM_EXIT_VINTR] = interrupt_window_interception,
3336 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3337 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3338 [SVM_EXIT_IRET] = iret_interception,
3339 [SVM_EXIT_INVD] = kvm_emulate_invd,
3340 [SVM_EXIT_PAUSE] = pause_interception,
3341 [SVM_EXIT_HLT] = kvm_emulate_halt,
3342 [SVM_EXIT_INVLPG] = invlpg_interception,
3343 [SVM_EXIT_INVLPGA] = invlpga_interception,
3344 [SVM_EXIT_IOIO] = io_interception,
3345 [SVM_EXIT_MSR] = msr_interception,
3346 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3347 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3348 [SVM_EXIT_VMRUN] = vmrun_interception,
3349 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3350 [SVM_EXIT_VMLOAD] = vmload_interception,
3351 [SVM_EXIT_VMSAVE] = vmsave_interception,
3352 [SVM_EXIT_STGI] = stgi_interception,
3353 [SVM_EXIT_CLGI] = clgi_interception,
3354 [SVM_EXIT_SKINIT] = skinit_interception,
3355 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3356 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3357 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3358 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3359 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3360 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3361 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3362 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3363 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3364 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3365 [SVM_EXIT_INVPCID] = invpcid_interception,
3366 [SVM_EXIT_NPF] = npf_interception,
3367 [SVM_EXIT_RSM] = rsm_interception,
3368 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3369 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3370 #ifdef CONFIG_KVM_AMD_SEV
3371 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3372 #endif
3373 };
3374
dump_vmcb(struct kvm_vcpu * vcpu)3375 static void dump_vmcb(struct kvm_vcpu *vcpu)
3376 {
3377 struct vcpu_svm *svm = to_svm(vcpu);
3378 struct vmcb_control_area *control = &svm->vmcb->control;
3379 struct vmcb_save_area *save = &svm->vmcb->save;
3380 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3381
3382 if (!dump_invalid_vmcb) {
3383 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3384 return;
3385 }
3386
3387 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3388 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3389 pr_err("VMCB Control Area:\n");
3390 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3391 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3392 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3393 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3394 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3395 pr_err("%-20s%08x %08x\n", "intercepts:",
3396 control->intercepts[INTERCEPT_WORD3],
3397 control->intercepts[INTERCEPT_WORD4]);
3398 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3399 pr_err("%-20s%d\n", "pause filter threshold:",
3400 control->pause_filter_thresh);
3401 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3402 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3403 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3404 pr_err("%-20s%d\n", "asid:", control->asid);
3405 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3406 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3407 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3408 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3409 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3410 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3411 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3412 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3413 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3414 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3415 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3416 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3417 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3418 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3419 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3420 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3421 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3422 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3423 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3424 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3425 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3426 pr_err("VMCB State Save Area:\n");
3427 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3428 "es:",
3429 save->es.selector, save->es.attrib,
3430 save->es.limit, save->es.base);
3431 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3432 "cs:",
3433 save->cs.selector, save->cs.attrib,
3434 save->cs.limit, save->cs.base);
3435 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3436 "ss:",
3437 save->ss.selector, save->ss.attrib,
3438 save->ss.limit, save->ss.base);
3439 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3440 "ds:",
3441 save->ds.selector, save->ds.attrib,
3442 save->ds.limit, save->ds.base);
3443 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3444 "fs:",
3445 save01->fs.selector, save01->fs.attrib,
3446 save01->fs.limit, save01->fs.base);
3447 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3448 "gs:",
3449 save01->gs.selector, save01->gs.attrib,
3450 save01->gs.limit, save01->gs.base);
3451 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3452 "gdtr:",
3453 save->gdtr.selector, save->gdtr.attrib,
3454 save->gdtr.limit, save->gdtr.base);
3455 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3456 "ldtr:",
3457 save01->ldtr.selector, save01->ldtr.attrib,
3458 save01->ldtr.limit, save01->ldtr.base);
3459 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3460 "idtr:",
3461 save->idtr.selector, save->idtr.attrib,
3462 save->idtr.limit, save->idtr.base);
3463 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3464 "tr:",
3465 save01->tr.selector, save01->tr.attrib,
3466 save01->tr.limit, save01->tr.base);
3467 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3468 save->vmpl, save->cpl, save->efer);
3469 pr_err("%-15s %016llx %-13s %016llx\n",
3470 "cr0:", save->cr0, "cr2:", save->cr2);
3471 pr_err("%-15s %016llx %-13s %016llx\n",
3472 "cr3:", save->cr3, "cr4:", save->cr4);
3473 pr_err("%-15s %016llx %-13s %016llx\n",
3474 "dr6:", save->dr6, "dr7:", save->dr7);
3475 pr_err("%-15s %016llx %-13s %016llx\n",
3476 "rip:", save->rip, "rflags:", save->rflags);
3477 pr_err("%-15s %016llx %-13s %016llx\n",
3478 "rsp:", save->rsp, "rax:", save->rax);
3479 pr_err("%-15s %016llx %-13s %016llx\n",
3480 "star:", save01->star, "lstar:", save01->lstar);
3481 pr_err("%-15s %016llx %-13s %016llx\n",
3482 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3483 pr_err("%-15s %016llx %-13s %016llx\n",
3484 "kernel_gs_base:", save01->kernel_gs_base,
3485 "sysenter_cs:", save01->sysenter_cs);
3486 pr_err("%-15s %016llx %-13s %016llx\n",
3487 "sysenter_esp:", save01->sysenter_esp,
3488 "sysenter_eip:", save01->sysenter_eip);
3489 pr_err("%-15s %016llx %-13s %016llx\n",
3490 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3491 pr_err("%-15s %016llx %-13s %016llx\n",
3492 "br_from:", save->br_from, "br_to:", save->br_to);
3493 pr_err("%-15s %016llx %-13s %016llx\n",
3494 "excp_from:", save->last_excp_from,
3495 "excp_to:", save->last_excp_to);
3496 }
3497
svm_check_exit_valid(u64 exit_code)3498 static bool svm_check_exit_valid(u64 exit_code)
3499 {
3500 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3501 svm_exit_handlers[exit_code]);
3502 }
3503
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3504 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3505 {
3506 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3507 dump_vmcb(vcpu);
3508 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3509 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3510 vcpu->run->internal.ndata = 2;
3511 vcpu->run->internal.data[0] = exit_code;
3512 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3513 return 0;
3514 }
3515
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3516 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3517 {
3518 if (!svm_check_exit_valid(exit_code))
3519 return svm_handle_invalid_exit(vcpu, exit_code);
3520
3521 #ifdef CONFIG_MITIGATION_RETPOLINE
3522 if (exit_code == SVM_EXIT_MSR)
3523 return msr_interception(vcpu);
3524 else if (exit_code == SVM_EXIT_VINTR)
3525 return interrupt_window_interception(vcpu);
3526 else if (exit_code == SVM_EXIT_INTR)
3527 return intr_interception(vcpu);
3528 else if (exit_code == SVM_EXIT_HLT)
3529 return kvm_emulate_halt(vcpu);
3530 else if (exit_code == SVM_EXIT_NPF)
3531 return npf_interception(vcpu);
3532 #endif
3533 return svm_exit_handlers[exit_code](vcpu);
3534 }
3535
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3536 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3537 u64 *info1, u64 *info2,
3538 u32 *intr_info, u32 *error_code)
3539 {
3540 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3541
3542 *reason = control->exit_code;
3543 *info1 = control->exit_info_1;
3544 *info2 = control->exit_info_2;
3545 *intr_info = control->exit_int_info;
3546 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3547 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3548 *error_code = control->exit_int_info_err;
3549 else
3550 *error_code = 0;
3551 }
3552
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3553 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3554 u32 *error_code)
3555 {
3556 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3557
3558 *intr_info = control->event_inj;
3559
3560 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3561 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3562 *error_code = control->event_inj_err;
3563 else
3564 *error_code = 0;
3565
3566 }
3567
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3568 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3569 {
3570 struct vcpu_svm *svm = to_svm(vcpu);
3571 struct kvm_run *kvm_run = vcpu->run;
3572 u32 exit_code = svm->vmcb->control.exit_code;
3573
3574 /* SEV-ES guests must use the CR write traps to track CR registers. */
3575 if (!sev_es_guest(vcpu->kvm)) {
3576 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3577 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3578 if (npt_enabled)
3579 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3580 }
3581
3582 if (is_guest_mode(vcpu)) {
3583 int vmexit;
3584
3585 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3586
3587 vmexit = nested_svm_exit_special(svm);
3588
3589 if (vmexit == NESTED_EXIT_CONTINUE)
3590 vmexit = nested_svm_exit_handled(svm);
3591
3592 if (vmexit == NESTED_EXIT_DONE)
3593 return 1;
3594 }
3595
3596 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3597 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3598 kvm_run->fail_entry.hardware_entry_failure_reason
3599 = svm->vmcb->control.exit_code;
3600 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3601 dump_vmcb(vcpu);
3602 return 0;
3603 }
3604
3605 if (exit_fastpath != EXIT_FASTPATH_NONE)
3606 return 1;
3607
3608 return svm_invoke_exit_handler(vcpu, exit_code);
3609 }
3610
pre_svm_run(struct kvm_vcpu * vcpu)3611 static void pre_svm_run(struct kvm_vcpu *vcpu)
3612 {
3613 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3614 struct vcpu_svm *svm = to_svm(vcpu);
3615
3616 /*
3617 * If the previous vmrun of the vmcb occurred on a different physical
3618 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3619 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3620 */
3621 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3622 svm->current_vmcb->asid_generation = 0;
3623 vmcb_mark_all_dirty(svm->vmcb);
3624 svm->current_vmcb->cpu = vcpu->cpu;
3625 }
3626
3627 if (sev_guest(vcpu->kvm))
3628 return pre_sev_run(svm, vcpu->cpu);
3629
3630 /* FIXME: handle wraparound of asid_generation */
3631 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3632 new_asid(svm, sd);
3633 }
3634
svm_inject_nmi(struct kvm_vcpu * vcpu)3635 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3636 {
3637 struct vcpu_svm *svm = to_svm(vcpu);
3638
3639 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3640
3641 if (svm->nmi_l1_to_l2)
3642 return;
3643
3644 /*
3645 * No need to manually track NMI masking when vNMI is enabled, hardware
3646 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3647 * case where software directly injects an NMI.
3648 */
3649 if (!is_vnmi_enabled(svm)) {
3650 svm->nmi_masked = true;
3651 svm_set_iret_intercept(svm);
3652 }
3653 ++vcpu->stat.nmi_injections;
3654 }
3655
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3656 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3657 {
3658 struct vcpu_svm *svm = to_svm(vcpu);
3659
3660 if (!is_vnmi_enabled(svm))
3661 return false;
3662
3663 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3664 }
3665
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3666 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3667 {
3668 struct vcpu_svm *svm = to_svm(vcpu);
3669
3670 if (!is_vnmi_enabled(svm))
3671 return false;
3672
3673 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3674 return false;
3675
3676 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3677 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3678
3679 /*
3680 * Because the pending NMI is serviced by hardware, KVM can't know when
3681 * the NMI is "injected", but for all intents and purposes, passing the
3682 * NMI off to hardware counts as injection.
3683 */
3684 ++vcpu->stat.nmi_injections;
3685
3686 return true;
3687 }
3688
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3689 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3690 {
3691 struct vcpu_svm *svm = to_svm(vcpu);
3692 u32 type;
3693
3694 if (vcpu->arch.interrupt.soft) {
3695 if (svm_update_soft_interrupt_rip(vcpu))
3696 return;
3697
3698 type = SVM_EVTINJ_TYPE_SOFT;
3699 } else {
3700 type = SVM_EVTINJ_TYPE_INTR;
3701 }
3702
3703 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3704 vcpu->arch.interrupt.soft, reinjected);
3705 ++vcpu->stat.irq_injections;
3706
3707 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3708 SVM_EVTINJ_VALID | type;
3709 }
3710
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3711 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3712 int trig_mode, int vector)
3713 {
3714 /*
3715 * apic->apicv_active must be read after vcpu->mode.
3716 * Pairs with smp_store_release in vcpu_enter_guest.
3717 */
3718 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3719
3720 /* Note, this is called iff the local APIC is in-kernel. */
3721 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3722 /* Process the interrupt via kvm_check_and_inject_events(). */
3723 kvm_make_request(KVM_REQ_EVENT, vcpu);
3724 kvm_vcpu_kick(vcpu);
3725 return;
3726 }
3727
3728 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3729 if (in_guest_mode) {
3730 /*
3731 * Signal the doorbell to tell hardware to inject the IRQ. If
3732 * the vCPU exits the guest before the doorbell chimes, hardware
3733 * will automatically process AVIC interrupts at the next VMRUN.
3734 */
3735 avic_ring_doorbell(vcpu);
3736 } else {
3737 /*
3738 * Wake the vCPU if it was blocking. KVM will then detect the
3739 * pending IRQ when checking if the vCPU has a wake event.
3740 */
3741 kvm_vcpu_wake_up(vcpu);
3742 }
3743 }
3744
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3745 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3746 int trig_mode, int vector)
3747 {
3748 kvm_lapic_set_irr(vector, apic);
3749
3750 /*
3751 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3752 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3753 * the read of guest_mode. This guarantees that either VMRUN will see
3754 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3755 * will signal the doorbell if the CPU has already entered the guest.
3756 */
3757 smp_mb__after_atomic();
3758 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3759 }
3760
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3761 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3762 {
3763 struct vcpu_svm *svm = to_svm(vcpu);
3764
3765 /*
3766 * SEV-ES guests must always keep the CR intercepts cleared. CR
3767 * tracking is done using the CR write traps.
3768 */
3769 if (sev_es_guest(vcpu->kvm))
3770 return;
3771
3772 if (nested_svm_virtualize_tpr(vcpu))
3773 return;
3774
3775 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3776
3777 if (irr == -1)
3778 return;
3779
3780 if (tpr >= irr)
3781 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3782 }
3783
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3784 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3785 {
3786 struct vcpu_svm *svm = to_svm(vcpu);
3787
3788 if (is_vnmi_enabled(svm))
3789 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3790 else
3791 return svm->nmi_masked;
3792 }
3793
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3794 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3795 {
3796 struct vcpu_svm *svm = to_svm(vcpu);
3797
3798 if (is_vnmi_enabled(svm)) {
3799 if (masked)
3800 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3801 else
3802 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3803
3804 } else {
3805 svm->nmi_masked = masked;
3806 if (masked)
3807 svm_set_iret_intercept(svm);
3808 else
3809 svm_clr_iret_intercept(svm);
3810 }
3811 }
3812
svm_nmi_blocked(struct kvm_vcpu * vcpu)3813 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3814 {
3815 struct vcpu_svm *svm = to_svm(vcpu);
3816 struct vmcb *vmcb = svm->vmcb;
3817
3818 if (!gif_set(svm))
3819 return true;
3820
3821 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3822 return false;
3823
3824 if (svm_get_nmi_mask(vcpu))
3825 return true;
3826
3827 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3828 }
3829
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3830 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3831 {
3832 struct vcpu_svm *svm = to_svm(vcpu);
3833 if (svm->nested.nested_run_pending)
3834 return -EBUSY;
3835
3836 if (svm_nmi_blocked(vcpu))
3837 return 0;
3838
3839 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3840 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3841 return -EBUSY;
3842 return 1;
3843 }
3844
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3845 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3846 {
3847 struct vcpu_svm *svm = to_svm(vcpu);
3848 struct vmcb *vmcb = svm->vmcb;
3849
3850 if (!gif_set(svm))
3851 return true;
3852
3853 if (is_guest_mode(vcpu)) {
3854 /* As long as interrupts are being delivered... */
3855 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3856 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3857 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3858 return true;
3859
3860 /* ... vmexits aren't blocked by the interrupt shadow */
3861 if (nested_exit_on_intr(svm))
3862 return false;
3863 } else {
3864 if (!svm_get_if_flag(vcpu))
3865 return true;
3866 }
3867
3868 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3869 }
3870
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3871 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3872 {
3873 struct vcpu_svm *svm = to_svm(vcpu);
3874
3875 if (svm->nested.nested_run_pending)
3876 return -EBUSY;
3877
3878 if (svm_interrupt_blocked(vcpu))
3879 return 0;
3880
3881 /*
3882 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3883 * e.g. if the IRQ arrived asynchronously after checking nested events.
3884 */
3885 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3886 return -EBUSY;
3887
3888 return 1;
3889 }
3890
svm_enable_irq_window(struct kvm_vcpu * vcpu)3891 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3892 {
3893 struct vcpu_svm *svm = to_svm(vcpu);
3894
3895 /*
3896 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3897 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3898 * get that intercept, this function will be called again though and
3899 * we'll get the vintr intercept. However, if the vGIF feature is
3900 * enabled, the STGI interception will not occur. Enable the irq
3901 * window under the assumption that the hardware will set the GIF.
3902 */
3903 if (vgif || gif_set(svm)) {
3904 /*
3905 * IRQ window is not needed when AVIC is enabled,
3906 * unless we have pending ExtINT since it cannot be injected
3907 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3908 * and fallback to injecting IRQ via V_IRQ.
3909 *
3910 * If running nested, AVIC is already locally inhibited
3911 * on this vCPU, therefore there is no need to request
3912 * the VM wide AVIC inhibition.
3913 */
3914 if (!is_guest_mode(vcpu))
3915 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3916
3917 svm_set_vintr(svm);
3918 }
3919 }
3920
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3921 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3922 {
3923 struct vcpu_svm *svm = to_svm(vcpu);
3924
3925 /*
3926 * If NMIs are outright masked, i.e. the vCPU is already handling an
3927 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3928 * more to do at this time as KVM has already enabled IRET intercepts.
3929 * If KVM has already intercepted IRET, then single-step over the IRET,
3930 * as NMIs aren't architecturally unmasked until the IRET completes.
3931 *
3932 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3933 * are masked, as KVM allows at most one to-be-injected NMI and one
3934 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one
3935 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3936 * unmasked. KVM _will_ request an NMI window in some situations, e.g.
3937 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3938 * inject the NMI. In those situations, KVM needs to single-step over
3939 * the STI shadow or intercept STGI.
3940 */
3941 if (svm_get_nmi_mask(vcpu)) {
3942 WARN_ON_ONCE(is_vnmi_enabled(svm));
3943
3944 if (!svm->awaiting_iret_completion)
3945 return; /* IRET will cause a vm exit */
3946 }
3947
3948 /*
3949 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3950 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3951 * KVM can't intercept and single-step IRET to detect when NMIs are
3952 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
3953 *
3954 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3955 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3956 * supported NAEs in the GHCB protocol.
3957 */
3958 if (sev_es_guest(vcpu->kvm))
3959 return;
3960
3961 if (!gif_set(svm)) {
3962 if (vgif)
3963 svm_set_intercept(svm, INTERCEPT_STGI);
3964 return; /* STGI will cause a vm exit */
3965 }
3966
3967 /*
3968 * Something prevents NMI from been injected. Single step over possible
3969 * problem (IRET or exception injection or interrupt shadow)
3970 */
3971 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3972 svm->nmi_singlestep = true;
3973 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3974 }
3975
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3976 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3977 {
3978 struct vcpu_svm *svm = to_svm(vcpu);
3979
3980 /*
3981 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3982 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3983 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3984 */
3985 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3986
3987 /*
3988 * Flush only the current ASID even if the TLB flush was invoked via
3989 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3990 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3991 * unconditionally does a TLB flush on both nested VM-Enter and nested
3992 * VM-Exit (via kvm_mmu_reset_context()).
3993 */
3994 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3995 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3996 else
3997 svm->current_vmcb->asid_generation--;
3998 }
3999
svm_flush_tlb_current(struct kvm_vcpu * vcpu)4000 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
4001 {
4002 hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
4003
4004 /*
4005 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
4006 * flush the NPT mappings via hypercall as flushing the ASID only
4007 * affects virtual to physical mappings, it does not invalidate guest
4008 * physical to host physical mappings.
4009 */
4010 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
4011 hyperv_flush_guest_mapping(root_tdp);
4012
4013 svm_flush_tlb_asid(vcpu);
4014 }
4015
svm_flush_tlb_all(struct kvm_vcpu * vcpu)4016 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
4017 {
4018 /*
4019 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
4020 * flushes should be routed to hv_flush_remote_tlbs() without requesting
4021 * a "regular" remote flush. Reaching this point means either there's
4022 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
4023 * which might be fatal to the guest. Yell, but try to recover.
4024 */
4025 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
4026 hv_flush_remote_tlbs(vcpu->kvm);
4027
4028 svm_flush_tlb_asid(vcpu);
4029 }
4030
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4031 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4032 {
4033 struct vcpu_svm *svm = to_svm(vcpu);
4034
4035 invlpga(gva, svm->vmcb->control.asid);
4036 }
4037
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4038 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4039 {
4040 struct vcpu_svm *svm = to_svm(vcpu);
4041
4042 if (nested_svm_virtualize_tpr(vcpu))
4043 return;
4044
4045 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4046 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4047 kvm_set_cr8(vcpu, cr8);
4048 }
4049 }
4050
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4051 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4052 {
4053 struct vcpu_svm *svm = to_svm(vcpu);
4054 u64 cr8;
4055
4056 if (nested_svm_virtualize_tpr(vcpu) ||
4057 kvm_vcpu_apicv_active(vcpu))
4058 return;
4059
4060 cr8 = kvm_get_cr8(vcpu);
4061 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4062 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4063 }
4064
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4065 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4066 int type)
4067 {
4068 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4069 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4070 struct vcpu_svm *svm = to_svm(vcpu);
4071
4072 /*
4073 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4074 * associated with the original soft exception/interrupt. next_rip is
4075 * cleared on all exits that can occur while vectoring an event, so KVM
4076 * needs to manually set next_rip for re-injection. Unlike the !nrips
4077 * case below, this needs to be done if and only if KVM is re-injecting
4078 * the same event, i.e. if the event is a soft exception/interrupt,
4079 * otherwise next_rip is unused on VMRUN.
4080 */
4081 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4082 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4083 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4084 /*
4085 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4086 * injecting the soft exception/interrupt. That advancement needs to
4087 * be unwound if vectoring didn't complete. Note, the new event may
4088 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4089 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4090 * be the reported vectored event, but RIP still needs to be unwound.
4091 */
4092 else if (!nrips && (is_soft || is_exception) &&
4093 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4094 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4095 }
4096
svm_complete_interrupts(struct kvm_vcpu * vcpu)4097 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4098 {
4099 struct vcpu_svm *svm = to_svm(vcpu);
4100 u8 vector;
4101 int type;
4102 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4103 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4104 bool soft_int_injected = svm->soft_int_injected;
4105
4106 svm->nmi_l1_to_l2 = false;
4107 svm->soft_int_injected = false;
4108
4109 /*
4110 * If we've made progress since setting awaiting_iret_completion, we've
4111 * executed an IRET and can allow NMI injection.
4112 */
4113 if (svm->awaiting_iret_completion &&
4114 kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4115 svm->awaiting_iret_completion = false;
4116 svm->nmi_masked = false;
4117 kvm_make_request(KVM_REQ_EVENT, vcpu);
4118 }
4119
4120 vcpu->arch.nmi_injected = false;
4121 kvm_clear_exception_queue(vcpu);
4122 kvm_clear_interrupt_queue(vcpu);
4123
4124 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4125 return;
4126
4127 kvm_make_request(KVM_REQ_EVENT, vcpu);
4128
4129 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4130 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4131
4132 if (soft_int_injected)
4133 svm_complete_soft_interrupt(vcpu, vector, type);
4134
4135 switch (type) {
4136 case SVM_EXITINTINFO_TYPE_NMI:
4137 vcpu->arch.nmi_injected = true;
4138 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4139 break;
4140 case SVM_EXITINTINFO_TYPE_EXEPT:
4141 /*
4142 * Never re-inject a #VC exception.
4143 */
4144 if (vector == X86_TRAP_VC)
4145 break;
4146
4147 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4148 u32 err = svm->vmcb->control.exit_int_info_err;
4149 kvm_requeue_exception_e(vcpu, vector, err);
4150
4151 } else
4152 kvm_requeue_exception(vcpu, vector);
4153 break;
4154 case SVM_EXITINTINFO_TYPE_INTR:
4155 kvm_queue_interrupt(vcpu, vector, false);
4156 break;
4157 case SVM_EXITINTINFO_TYPE_SOFT:
4158 kvm_queue_interrupt(vcpu, vector, true);
4159 break;
4160 default:
4161 break;
4162 }
4163
4164 }
4165
svm_cancel_injection(struct kvm_vcpu * vcpu)4166 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4167 {
4168 struct vcpu_svm *svm = to_svm(vcpu);
4169 struct vmcb_control_area *control = &svm->vmcb->control;
4170
4171 control->exit_int_info = control->event_inj;
4172 control->exit_int_info_err = control->event_inj_err;
4173 control->event_inj = 0;
4174 svm_complete_interrupts(vcpu);
4175 }
4176
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4177 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4178 {
4179 if (to_kvm_sev_info(vcpu->kvm)->need_init)
4180 return -EINVAL;
4181
4182 return 1;
4183 }
4184
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4185 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4186 {
4187 struct vcpu_svm *svm = to_svm(vcpu);
4188
4189 if (is_guest_mode(vcpu))
4190 return EXIT_FASTPATH_NONE;
4191
4192 switch (svm->vmcb->control.exit_code) {
4193 case SVM_EXIT_MSR:
4194 if (!svm->vmcb->control.exit_info_1)
4195 break;
4196 return handle_fastpath_set_msr_irqoff(vcpu);
4197 case SVM_EXIT_HLT:
4198 return handle_fastpath_hlt(vcpu);
4199 default:
4200 break;
4201 }
4202
4203 return EXIT_FASTPATH_NONE;
4204 }
4205
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4206 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4207 {
4208 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4209 struct vcpu_svm *svm = to_svm(vcpu);
4210
4211 guest_state_enter_irqoff();
4212
4213 /*
4214 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4215 * VMRUN controls whether or not physical IRQs are masked (KVM always
4216 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the
4217 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4218 * into guest state if delivery of an event during VMRUN triggers a
4219 * #VMEXIT, and the guest_state transitions already tell lockdep that
4220 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of
4221 * this path, so IRQs aren't actually unmasked while running host code.
4222 */
4223 raw_local_irq_enable();
4224
4225 amd_clear_divider();
4226
4227 if (sev_es_guest(vcpu->kvm))
4228 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4229 sev_es_host_save_area(sd));
4230 else
4231 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4232
4233 raw_local_irq_disable();
4234
4235 guest_state_exit_irqoff();
4236 }
4237
svm_vcpu_run(struct kvm_vcpu * vcpu,bool force_immediate_exit)4238 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
4239 bool force_immediate_exit)
4240 {
4241 struct vcpu_svm *svm = to_svm(vcpu);
4242 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4243
4244 trace_kvm_entry(vcpu, force_immediate_exit);
4245
4246 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4247 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4248 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4249
4250 /*
4251 * Disable singlestep if we're injecting an interrupt/exception.
4252 * We don't want our modified rflags to be pushed on the stack where
4253 * we might not be able to easily reset them if we disabled NMI
4254 * singlestep later.
4255 */
4256 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4257 /*
4258 * Event injection happens before external interrupts cause a
4259 * vmexit and interrupts are disabled here, so smp_send_reschedule
4260 * is enough to force an immediate vmexit.
4261 */
4262 disable_nmi_singlestep(svm);
4263 force_immediate_exit = true;
4264 }
4265
4266 if (force_immediate_exit)
4267 smp_send_reschedule(vcpu->cpu);
4268
4269 pre_svm_run(vcpu);
4270
4271 sync_lapic_to_cr8(vcpu);
4272
4273 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4274 svm->vmcb->control.asid = svm->asid;
4275 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4276 }
4277 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4278
4279 svm_hv_update_vp_id(svm->vmcb, vcpu);
4280
4281 /*
4282 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4283 * of a #DB.
4284 */
4285 if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4286 svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4287
4288 clgi();
4289 kvm_load_guest_xsave_state(vcpu);
4290
4291 /*
4292 * Hardware only context switches DEBUGCTL if LBR virtualization is
4293 * enabled. Manually load DEBUGCTL if necessary (and restore it after
4294 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4295 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4296 */
4297 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4298 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4299 update_debugctlmsr(svm->vmcb->save.dbgctl);
4300
4301 kvm_wait_lapic_expire(vcpu);
4302
4303 /*
4304 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4305 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4306 * is no need to worry about the conditional branch over the wrmsr
4307 * being speculatively taken.
4308 */
4309 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4310 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4311
4312 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4313
4314 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4315 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4316
4317 if (!sev_es_guest(vcpu->kvm)) {
4318 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4319 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4320 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4321 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4322 }
4323 vcpu->arch.regs_dirty = 0;
4324
4325 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4326 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4327
4328 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4329 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4330 update_debugctlmsr(vcpu->arch.host_debugctl);
4331
4332 kvm_load_host_xsave_state(vcpu);
4333 stgi();
4334
4335 /* Any pending NMI will happen here */
4336
4337 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4338 kvm_after_interrupt(vcpu);
4339
4340 sync_cr8_to_lapic(vcpu);
4341
4342 svm->next_rip = 0;
4343 if (is_guest_mode(vcpu)) {
4344 nested_sync_control_from_vmcb02(svm);
4345
4346 /* Track VMRUNs that have made past consistency checking */
4347 if (svm->nested.nested_run_pending &&
4348 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4349 ++vcpu->stat.nested_run;
4350
4351 svm->nested.nested_run_pending = 0;
4352 }
4353
4354 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4355 vmcb_mark_all_clean(svm->vmcb);
4356
4357 /* if exit due to PF check for async PF */
4358 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4359 vcpu->arch.apf.host_apf_flags =
4360 kvm_read_and_reset_apf_flags();
4361
4362 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4363
4364 /*
4365 * We need to handle MC intercepts here before the vcpu has a chance to
4366 * change the physical cpu
4367 */
4368 if (unlikely(svm->vmcb->control.exit_code ==
4369 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4370 svm_handle_mce(vcpu);
4371
4372 trace_kvm_exit(vcpu, KVM_ISA_SVM);
4373
4374 svm_complete_interrupts(vcpu);
4375
4376 return svm_exit_handlers_fastpath(vcpu);
4377 }
4378
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4379 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4380 int root_level)
4381 {
4382 struct vcpu_svm *svm = to_svm(vcpu);
4383 unsigned long cr3;
4384
4385 if (npt_enabled) {
4386 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4387 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4388
4389 hv_track_root_tdp(vcpu, root_hpa);
4390
4391 cr3 = vcpu->arch.cr3;
4392 } else if (root_level >= PT64_ROOT_4LEVEL) {
4393 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4394 } else {
4395 /* PCID in the guest should be impossible with a 32-bit MMU. */
4396 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4397 cr3 = root_hpa;
4398 }
4399
4400 svm->vmcb->save.cr3 = cr3;
4401 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4402 }
4403
4404 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4405 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4406 {
4407 /*
4408 * Patch in the VMMCALL instruction:
4409 */
4410 hypercall[0] = 0x0f;
4411 hypercall[1] = 0x01;
4412 hypercall[2] = 0xd9;
4413 }
4414
4415 /*
4416 * The kvm parameter can be NULL (module initialization, or invocation before
4417 * VM creation). Be sure to check the kvm parameter before using it.
4418 */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4419 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4420 {
4421 switch (index) {
4422 case MSR_IA32_MCG_EXT_CTL:
4423 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4424 return false;
4425 case MSR_IA32_SMBASE:
4426 if (!IS_ENABLED(CONFIG_KVM_SMM))
4427 return false;
4428 /* SEV-ES guests do not support SMM, so report false */
4429 if (kvm && sev_es_guest(kvm))
4430 return false;
4431 break;
4432 default:
4433 break;
4434 }
4435
4436 return true;
4437 }
4438
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4439 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4440 {
4441 struct vcpu_svm *svm = to_svm(vcpu);
4442
4443 /*
4444 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4445 * can only disable all variants of by disallowing CR4.OSXSAVE from
4446 * being set. As a result, if the host has XSAVE and XSAVES, and the
4447 * guest has XSAVE enabled, the guest can execute XSAVES without
4448 * faulting. Treat XSAVES as enabled in this case regardless of
4449 * whether it's advertised to the guest so that KVM context switches
4450 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
4451 * the guest read/write access to the host's XSS.
4452 */
4453 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4454 boot_cpu_has(X86_FEATURE_XSAVES) &&
4455 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4456
4457 /*
4458 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4459 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4460 * SVM on Intel is bonkers and extremely unlikely to work).
4461 */
4462 if (guest_cpuid_is_intel_compatible(vcpu))
4463 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4464
4465 svm_recalc_instruction_intercepts(vcpu, svm);
4466
4467 if (boot_cpu_has(X86_FEATURE_IBPB))
4468 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4469 !!guest_has_pred_cmd_msr(vcpu));
4470
4471 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4472 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4473 !!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4474
4475 if (sev_guest(vcpu->kvm))
4476 sev_vcpu_after_set_cpuid(svm);
4477
4478 init_vmcb_after_set_cpuid(vcpu);
4479 }
4480
svm_has_wbinvd_exit(void)4481 static bool svm_has_wbinvd_exit(void)
4482 {
4483 return true;
4484 }
4485
4486 #define PRE_EX(exit) { .exit_code = (exit), \
4487 .stage = X86_ICPT_PRE_EXCEPT, }
4488 #define POST_EX(exit) { .exit_code = (exit), \
4489 .stage = X86_ICPT_POST_EXCEPT, }
4490 #define POST_MEM(exit) { .exit_code = (exit), \
4491 .stage = X86_ICPT_POST_MEMACCESS, }
4492
4493 static const struct __x86_intercept {
4494 u32 exit_code;
4495 enum x86_intercept_stage stage;
4496 } x86_intercept_map[] = {
4497 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4498 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4499 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4500 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4501 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4502 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4503 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4504 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4505 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4506 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4507 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4508 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4509 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4510 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4511 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4512 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4513 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4514 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4515 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4516 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4517 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4518 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4519 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4520 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4521 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4522 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4523 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4524 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4525 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4526 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4527 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4528 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4529 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4530 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4531 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4532 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4533 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4534 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4535 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4536 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4537 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4538 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4539 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4540 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4541 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4542 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4543 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4544 };
4545
4546 #undef PRE_EX
4547 #undef POST_EX
4548 #undef POST_MEM
4549
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4550 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4551 struct x86_instruction_info *info,
4552 enum x86_intercept_stage stage,
4553 struct x86_exception *exception)
4554 {
4555 struct vcpu_svm *svm = to_svm(vcpu);
4556 int vmexit, ret = X86EMUL_CONTINUE;
4557 struct __x86_intercept icpt_info;
4558 struct vmcb *vmcb = svm->vmcb;
4559
4560 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4561 goto out;
4562
4563 icpt_info = x86_intercept_map[info->intercept];
4564
4565 if (stage != icpt_info.stage)
4566 goto out;
4567
4568 switch (icpt_info.exit_code) {
4569 case SVM_EXIT_READ_CR0:
4570 if (info->intercept == x86_intercept_cr_read)
4571 icpt_info.exit_code += info->modrm_reg;
4572 break;
4573 case SVM_EXIT_WRITE_CR0: {
4574 unsigned long cr0, val;
4575
4576 if (info->intercept == x86_intercept_cr_write)
4577 icpt_info.exit_code += info->modrm_reg;
4578
4579 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4580 info->intercept == x86_intercept_clts)
4581 break;
4582
4583 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4584 INTERCEPT_SELECTIVE_CR0)))
4585 break;
4586
4587 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4588 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4589
4590 if (info->intercept == x86_intercept_lmsw) {
4591 cr0 &= 0xfUL;
4592 val &= 0xfUL;
4593 /* lmsw can't clear PE - catch this here */
4594 if (cr0 & X86_CR0_PE)
4595 val |= X86_CR0_PE;
4596 }
4597
4598 if (cr0 ^ val)
4599 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4600
4601 break;
4602 }
4603 case SVM_EXIT_READ_DR0:
4604 case SVM_EXIT_WRITE_DR0:
4605 icpt_info.exit_code += info->modrm_reg;
4606 break;
4607 case SVM_EXIT_MSR:
4608 if (info->intercept == x86_intercept_wrmsr)
4609 vmcb->control.exit_info_1 = 1;
4610 else
4611 vmcb->control.exit_info_1 = 0;
4612 break;
4613 case SVM_EXIT_PAUSE:
4614 /*
4615 * We get this for NOP only, but pause
4616 * is rep not, check this here
4617 */
4618 if (info->rep_prefix != REPE_PREFIX)
4619 goto out;
4620 break;
4621 case SVM_EXIT_IOIO: {
4622 u64 exit_info;
4623 u32 bytes;
4624
4625 if (info->intercept == x86_intercept_in ||
4626 info->intercept == x86_intercept_ins) {
4627 exit_info = ((info->src_val & 0xffff) << 16) |
4628 SVM_IOIO_TYPE_MASK;
4629 bytes = info->dst_bytes;
4630 } else {
4631 exit_info = (info->dst_val & 0xffff) << 16;
4632 bytes = info->src_bytes;
4633 }
4634
4635 if (info->intercept == x86_intercept_outs ||
4636 info->intercept == x86_intercept_ins)
4637 exit_info |= SVM_IOIO_STR_MASK;
4638
4639 if (info->rep_prefix)
4640 exit_info |= SVM_IOIO_REP_MASK;
4641
4642 bytes = min(bytes, 4u);
4643
4644 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4645
4646 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4647
4648 vmcb->control.exit_info_1 = exit_info;
4649 vmcb->control.exit_info_2 = info->next_rip;
4650
4651 break;
4652 }
4653 default:
4654 break;
4655 }
4656
4657 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4658 if (static_cpu_has(X86_FEATURE_NRIPS))
4659 vmcb->control.next_rip = info->next_rip;
4660 vmcb->control.exit_code = icpt_info.exit_code;
4661 vmexit = nested_svm_exit_handled(svm);
4662
4663 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4664 : X86EMUL_CONTINUE;
4665
4666 out:
4667 return ret;
4668 }
4669
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4670 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4671 {
4672 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4673 vcpu->arch.at_instruction_boundary = true;
4674 }
4675
svm_setup_mce(struct kvm_vcpu * vcpu)4676 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4677 {
4678 /* [63:9] are reserved. */
4679 vcpu->arch.mcg_cap &= 0x1ff;
4680 }
4681
4682 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4683 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4684 {
4685 struct vcpu_svm *svm = to_svm(vcpu);
4686
4687 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4688 if (!gif_set(svm))
4689 return true;
4690
4691 return is_smm(vcpu);
4692 }
4693
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4694 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4695 {
4696 struct vcpu_svm *svm = to_svm(vcpu);
4697 if (svm->nested.nested_run_pending)
4698 return -EBUSY;
4699
4700 if (svm_smi_blocked(vcpu))
4701 return 0;
4702
4703 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4704 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4705 return -EBUSY;
4706
4707 return 1;
4708 }
4709
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4710 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4711 {
4712 struct vcpu_svm *svm = to_svm(vcpu);
4713 struct kvm_host_map map_save;
4714 int ret;
4715
4716 if (!is_guest_mode(vcpu))
4717 return 0;
4718
4719 /*
4720 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4721 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4722 */
4723
4724 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4725 return 1;
4726
4727 smram->smram64.svm_guest_flag = 1;
4728 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4729
4730 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4731 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4732 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4733
4734 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4735 if (ret)
4736 return ret;
4737
4738 /*
4739 * KVM uses VMCB01 to store L1 host state while L2 runs but
4740 * VMCB01 is going to be used during SMM and thus the state will
4741 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4742 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4743 * format of the area is identical to guest save area offsetted
4744 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4745 * within 'struct vmcb'). Note: HSAVE area may also be used by
4746 * L1 hypervisor to save additional host context (e.g. KVM does
4747 * that, see svm_prepare_switch_to_guest()) which must be
4748 * preserved.
4749 */
4750 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4751 return 1;
4752
4753 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4754
4755 svm_copy_vmrun_state(map_save.hva + 0x400,
4756 &svm->vmcb01.ptr->save);
4757
4758 kvm_vcpu_unmap(vcpu, &map_save);
4759 return 0;
4760 }
4761
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4762 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4763 {
4764 struct vcpu_svm *svm = to_svm(vcpu);
4765 struct kvm_host_map map, map_save;
4766 struct vmcb *vmcb12;
4767 int ret;
4768
4769 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4770
4771 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4772 return 0;
4773
4774 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4775 if (!smram64->svm_guest_flag)
4776 return 0;
4777
4778 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4779 return 1;
4780
4781 if (!(smram64->efer & EFER_SVME))
4782 return 1;
4783
4784 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4785 return 1;
4786
4787 ret = 1;
4788 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4789 goto unmap_map;
4790
4791 if (svm_allocate_nested(svm))
4792 goto unmap_save;
4793
4794 /*
4795 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4796 * used during SMM (see svm_enter_smm())
4797 */
4798
4799 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4800
4801 /*
4802 * Enter the nested guest now
4803 */
4804
4805 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4806
4807 vmcb12 = map.hva;
4808 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4809 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4810 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4811
4812 if (ret)
4813 goto unmap_save;
4814
4815 svm->nested.nested_run_pending = 1;
4816
4817 unmap_save:
4818 kvm_vcpu_unmap(vcpu, &map_save);
4819 unmap_map:
4820 kvm_vcpu_unmap(vcpu, &map);
4821 return ret;
4822 }
4823
svm_enable_smi_window(struct kvm_vcpu * vcpu)4824 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4825 {
4826 struct vcpu_svm *svm = to_svm(vcpu);
4827
4828 if (!gif_set(svm)) {
4829 if (vgif)
4830 svm_set_intercept(svm, INTERCEPT_STGI);
4831 /* STGI will cause a vm exit */
4832 } else {
4833 /* We must be in SMM; RSM will cause a vmexit anyway. */
4834 }
4835 }
4836 #endif
4837
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4838 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4839 void *insn, int insn_len)
4840 {
4841 struct vcpu_svm *svm = to_svm(vcpu);
4842 bool smep, smap, is_user;
4843 u64 error_code;
4844
4845 /* Check that emulation is possible during event vectoring */
4846 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4847 !kvm_can_emulate_event_vectoring(emul_type))
4848 return X86EMUL_UNHANDLEABLE_VECTORING;
4849
4850 /* Emulation is always possible when KVM has access to all guest state. */
4851 if (!sev_guest(vcpu->kvm))
4852 return X86EMUL_CONTINUE;
4853
4854 /* #UD and #GP should never be intercepted for SEV guests. */
4855 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4856 EMULTYPE_TRAP_UD_FORCED |
4857 EMULTYPE_VMWARE_GP));
4858
4859 /*
4860 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4861 * to guest register state.
4862 */
4863 if (sev_es_guest(vcpu->kvm))
4864 return X86EMUL_RETRY_INSTR;
4865
4866 /*
4867 * Emulation is possible if the instruction is already decoded, e.g.
4868 * when completing I/O after returning from userspace.
4869 */
4870 if (emul_type & EMULTYPE_NO_DECODE)
4871 return X86EMUL_CONTINUE;
4872
4873 /*
4874 * Emulation is possible for SEV guests if and only if a prefilled
4875 * buffer containing the bytes of the intercepted instruction is
4876 * available. SEV guest memory is encrypted with a guest specific key
4877 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4878 * decode garbage.
4879 *
4880 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4881 * KVM reached this point without an instruction buffer. In practice,
4882 * this path should never be hit by a well-behaved guest, e.g. KVM
4883 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4884 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4885 * access, and needs to be handled by KVM to avoid putting the guest
4886 * into an infinite loop. Injecting #UD is somewhat arbitrary, but
4887 * its the least awful option given lack of insight into the guest.
4888 *
4889 * If KVM is trying to skip an instruction, simply resume the guest.
4890 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4891 * will attempt to re-inject the INT3/INTO and skip the instruction.
4892 * In that scenario, retrying the INT3/INTO and hoping the guest will
4893 * make forward progress is the only option that has a chance of
4894 * success (and in practice it will work the vast majority of the time).
4895 */
4896 if (unlikely(!insn)) {
4897 if (emul_type & EMULTYPE_SKIP)
4898 return X86EMUL_UNHANDLEABLE;
4899
4900 kvm_queue_exception(vcpu, UD_VECTOR);
4901 return X86EMUL_PROPAGATE_FAULT;
4902 }
4903
4904 /*
4905 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4906 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4907 * the faulting instruction because the code fetch itself faulted, e.g.
4908 * the guest attempted to fetch from emulated MMIO or a guest page
4909 * table used to translate CS:RIP resides in emulated MMIO.
4910 */
4911 if (likely(insn_len))
4912 return X86EMUL_CONTINUE;
4913
4914 /*
4915 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4916 *
4917 * Errata:
4918 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4919 * possible that CPU microcode implementing DecodeAssist will fail to
4920 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4921 * be '0'. This happens because microcode reads CS:RIP using a _data_
4922 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4923 * gives up and does not fill the instruction bytes buffer.
4924 *
4925 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4926 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4927 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4928 * GuestIntrBytes field of the VMCB.
4929 *
4930 * This does _not_ mean that the erratum has been encountered, as the
4931 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4932 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4933 * encountered a reserved/not-present #PF.
4934 *
4935 * To hit the erratum, the following conditions must be true:
4936 * 1. CR4.SMAP=1 (obviously).
4937 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4938 * have been hit as the guest would have encountered a SMEP
4939 * violation #PF, not a #NPF.
4940 * 3. The #NPF is not due to a code fetch, in which case failure to
4941 * retrieve the instruction bytes is legitimate (see abvoe).
4942 *
4943 * In addition, don't apply the erratum workaround if the #NPF occurred
4944 * while translating guest page tables (see below).
4945 */
4946 error_code = svm->vmcb->control.exit_info_1;
4947 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4948 goto resume_guest;
4949
4950 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4951 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4952 is_user = svm_get_cpl(vcpu) == 3;
4953 if (smap && (!smep || is_user)) {
4954 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4955
4956 /*
4957 * If the fault occurred in userspace, arbitrarily inject #GP
4958 * to avoid killing the guest and to hopefully avoid confusing
4959 * the guest kernel too much, e.g. injecting #PF would not be
4960 * coherent with respect to the guest's page tables. Request
4961 * triple fault if the fault occurred in the kernel as there's
4962 * no fault that KVM can inject without confusing the guest.
4963 * In practice, the triple fault is moot as no sane SEV kernel
4964 * will execute from user memory while also running with SMAP=1.
4965 */
4966 if (is_user)
4967 kvm_inject_gp(vcpu, 0);
4968 else
4969 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4970 return X86EMUL_PROPAGATE_FAULT;
4971 }
4972
4973 resume_guest:
4974 /*
4975 * If the erratum was not hit, simply resume the guest and let it fault
4976 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4977 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4978 * userspace will kill the guest, and letting the emulator read garbage
4979 * will yield random behavior and potentially corrupt the guest.
4980 *
4981 * Simply resuming the guest is technically not a violation of the SEV
4982 * architecture. AMD's APM states that all code fetches and page table
4983 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4984 * APM also states that encrypted accesses to MMIO are "ignored", but
4985 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4986 * the guest spin is technically "ignoring" the access.
4987 */
4988 return X86EMUL_RETRY_INSTR;
4989 }
4990
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4991 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4992 {
4993 struct vcpu_svm *svm = to_svm(vcpu);
4994
4995 return !gif_set(svm);
4996 }
4997
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4998 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4999 {
5000 if (!sev_es_guest(vcpu->kvm))
5001 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
5002
5003 sev_vcpu_deliver_sipi_vector(vcpu, vector);
5004 }
5005
svm_vm_destroy(struct kvm * kvm)5006 static void svm_vm_destroy(struct kvm *kvm)
5007 {
5008 avic_vm_destroy(kvm);
5009 sev_vm_destroy(kvm);
5010 }
5011
svm_vm_init(struct kvm * kvm)5012 static int svm_vm_init(struct kvm *kvm)
5013 {
5014 int type = kvm->arch.vm_type;
5015
5016 if (type != KVM_X86_DEFAULT_VM &&
5017 type != KVM_X86_SW_PROTECTED_VM) {
5018 kvm->arch.has_protected_state =
5019 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
5020 to_kvm_sev_info(kvm)->need_init = true;
5021
5022 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
5023 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
5024 }
5025
5026 if (!pause_filter_count || !pause_filter_thresh)
5027 kvm->arch.pause_in_guest = true;
5028
5029 if (enable_apicv) {
5030 int ret = avic_vm_init(kvm);
5031 if (ret)
5032 return ret;
5033 }
5034
5035 return 0;
5036 }
5037
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)5038 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
5039 {
5040 struct page *page = snp_safe_alloc_page();
5041
5042 if (!page)
5043 return NULL;
5044
5045 return page_address(page);
5046 }
5047
5048 static struct kvm_x86_ops svm_x86_ops __initdata = {
5049 .name = KBUILD_MODNAME,
5050
5051 .check_processor_compatibility = svm_check_processor_compat,
5052
5053 .hardware_unsetup = svm_hardware_unsetup,
5054 .enable_virtualization_cpu = svm_enable_virtualization_cpu,
5055 .disable_virtualization_cpu = svm_disable_virtualization_cpu,
5056 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5057 .has_emulated_msr = svm_has_emulated_msr,
5058
5059 .vcpu_create = svm_vcpu_create,
5060 .vcpu_free = svm_vcpu_free,
5061 .vcpu_reset = svm_vcpu_reset,
5062
5063 .vm_size = sizeof(struct kvm_svm),
5064 .vm_init = svm_vm_init,
5065 .vm_destroy = svm_vm_destroy,
5066
5067 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
5068 .vcpu_load = svm_vcpu_load,
5069 .vcpu_put = svm_vcpu_put,
5070 .vcpu_blocking = avic_vcpu_blocking,
5071 .vcpu_unblocking = avic_vcpu_unblocking,
5072
5073 .update_exception_bitmap = svm_update_exception_bitmap,
5074 .get_feature_msr = svm_get_feature_msr,
5075 .get_msr = svm_get_msr,
5076 .set_msr = svm_set_msr,
5077 .get_segment_base = svm_get_segment_base,
5078 .get_segment = svm_get_segment,
5079 .set_segment = svm_set_segment,
5080 .get_cpl = svm_get_cpl,
5081 .get_cpl_no_cache = svm_get_cpl,
5082 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
5083 .is_valid_cr0 = svm_is_valid_cr0,
5084 .set_cr0 = svm_set_cr0,
5085 .post_set_cr3 = sev_post_set_cr3,
5086 .is_valid_cr4 = svm_is_valid_cr4,
5087 .set_cr4 = svm_set_cr4,
5088 .set_efer = svm_set_efer,
5089 .get_idt = svm_get_idt,
5090 .set_idt = svm_set_idt,
5091 .get_gdt = svm_get_gdt,
5092 .set_gdt = svm_set_gdt,
5093 .set_dr6 = svm_set_dr6,
5094 .set_dr7 = svm_set_dr7,
5095 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5096 .cache_reg = svm_cache_reg,
5097 .get_rflags = svm_get_rflags,
5098 .set_rflags = svm_set_rflags,
5099 .get_if_flag = svm_get_if_flag,
5100
5101 .flush_tlb_all = svm_flush_tlb_all,
5102 .flush_tlb_current = svm_flush_tlb_current,
5103 .flush_tlb_gva = svm_flush_tlb_gva,
5104 .flush_tlb_guest = svm_flush_tlb_asid,
5105
5106 .vcpu_pre_run = svm_vcpu_pre_run,
5107 .vcpu_run = svm_vcpu_run,
5108 .handle_exit = svm_handle_exit,
5109 .skip_emulated_instruction = svm_skip_emulated_instruction,
5110 .update_emulated_instruction = NULL,
5111 .set_interrupt_shadow = svm_set_interrupt_shadow,
5112 .get_interrupt_shadow = svm_get_interrupt_shadow,
5113 .patch_hypercall = svm_patch_hypercall,
5114 .inject_irq = svm_inject_irq,
5115 .inject_nmi = svm_inject_nmi,
5116 .is_vnmi_pending = svm_is_vnmi_pending,
5117 .set_vnmi_pending = svm_set_vnmi_pending,
5118 .inject_exception = svm_inject_exception,
5119 .cancel_injection = svm_cancel_injection,
5120 .interrupt_allowed = svm_interrupt_allowed,
5121 .nmi_allowed = svm_nmi_allowed,
5122 .get_nmi_mask = svm_get_nmi_mask,
5123 .set_nmi_mask = svm_set_nmi_mask,
5124 .enable_nmi_window = svm_enable_nmi_window,
5125 .enable_irq_window = svm_enable_irq_window,
5126 .update_cr8_intercept = svm_update_cr8_intercept,
5127
5128 .x2apic_icr_is_split = true,
5129 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5130 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5131 .apicv_post_state_restore = avic_apicv_post_state_restore,
5132 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5133
5134 .get_exit_info = svm_get_exit_info,
5135 .get_entry_info = svm_get_entry_info,
5136
5137 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5138
5139 .has_wbinvd_exit = svm_has_wbinvd_exit,
5140
5141 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5142 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5143 .write_tsc_offset = svm_write_tsc_offset,
5144 .write_tsc_multiplier = svm_write_tsc_multiplier,
5145
5146 .load_mmu_pgd = svm_load_mmu_pgd,
5147
5148 .check_intercept = svm_check_intercept,
5149 .handle_exit_irqoff = svm_handle_exit_irqoff,
5150
5151 .nested_ops = &svm_nested_ops,
5152
5153 .deliver_interrupt = svm_deliver_interrupt,
5154 .pi_update_irte = avic_pi_update_irte,
5155 .setup_mce = svm_setup_mce,
5156
5157 #ifdef CONFIG_KVM_SMM
5158 .smi_allowed = svm_smi_allowed,
5159 .enter_smm = svm_enter_smm,
5160 .leave_smm = svm_leave_smm,
5161 .enable_smi_window = svm_enable_smi_window,
5162 #endif
5163
5164 #ifdef CONFIG_KVM_AMD_SEV
5165 .dev_get_attr = sev_dev_get_attr,
5166 .mem_enc_ioctl = sev_mem_enc_ioctl,
5167 .mem_enc_register_region = sev_mem_enc_register_region,
5168 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5169 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5170
5171 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5172 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5173 #endif
5174 .check_emulate_instruction = svm_check_emulate_instruction,
5175
5176 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5177
5178 .msr_filter_changed = svm_msr_filter_changed,
5179 .complete_emulated_msr = svm_complete_emulated_msr,
5180
5181 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5182 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5183 .alloc_apic_backing_page = svm_alloc_apic_backing_page,
5184
5185 .gmem_prepare = sev_gmem_prepare,
5186 .gmem_invalidate = sev_gmem_invalidate,
5187 .private_max_mapping_level = sev_private_max_mapping_level,
5188 };
5189
5190 /*
5191 * The default MMIO mask is a single bit (excluding the present bit),
5192 * which could conflict with the memory encryption bit. Check for
5193 * memory encryption support and override the default MMIO mask if
5194 * memory encryption is enabled.
5195 */
svm_adjust_mmio_mask(void)5196 static __init void svm_adjust_mmio_mask(void)
5197 {
5198 unsigned int enc_bit, mask_bit;
5199 u64 msr, mask;
5200
5201 /* If there is no memory encryption support, use existing mask */
5202 if (cpuid_eax(0x80000000) < 0x8000001f)
5203 return;
5204
5205 /* If memory encryption is not enabled, use existing mask */
5206 rdmsrl(MSR_AMD64_SYSCFG, msr);
5207 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5208 return;
5209
5210 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5211 mask_bit = boot_cpu_data.x86_phys_bits;
5212
5213 /* Increment the mask bit if it is the same as the encryption bit */
5214 if (enc_bit == mask_bit)
5215 mask_bit++;
5216
5217 /*
5218 * If the mask bit location is below 52, then some bits above the
5219 * physical addressing limit will always be reserved, so use the
5220 * rsvd_bits() function to generate the mask. This mask, along with
5221 * the present bit, will be used to generate a page fault with
5222 * PFER.RSV = 1.
5223 *
5224 * If the mask bit location is 52 (or above), then clear the mask.
5225 */
5226 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5227
5228 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5229 }
5230
svm_set_cpu_caps(void)5231 static __init void svm_set_cpu_caps(void)
5232 {
5233 kvm_set_cpu_caps();
5234
5235 kvm_caps.supported_perf_cap = 0;
5236 kvm_caps.supported_xss = 0;
5237
5238 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5239 if (nested) {
5240 kvm_cpu_cap_set(X86_FEATURE_SVM);
5241 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5242
5243 /*
5244 * KVM currently flushes TLBs on *every* nested SVM transition,
5245 * and so for all intents and purposes KVM supports flushing by
5246 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5247 */
5248 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5249
5250 if (nrips)
5251 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5252
5253 if (npt_enabled)
5254 kvm_cpu_cap_set(X86_FEATURE_NPT);
5255
5256 if (tsc_scaling)
5257 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5258
5259 if (vls)
5260 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5261 if (lbrv)
5262 kvm_cpu_cap_set(X86_FEATURE_LBRV);
5263
5264 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5265 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5266
5267 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5268 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5269
5270 if (vgif)
5271 kvm_cpu_cap_set(X86_FEATURE_VGIF);
5272
5273 if (vnmi)
5274 kvm_cpu_cap_set(X86_FEATURE_VNMI);
5275
5276 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5277 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5278 }
5279
5280 /* CPUID 0x80000008 */
5281 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5282 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5283 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5284
5285 if (enable_pmu) {
5286 /*
5287 * Enumerate support for PERFCTR_CORE if and only if KVM has
5288 * access to enough counters to virtualize "core" support,
5289 * otherwise limit vPMU support to the legacy number of counters.
5290 */
5291 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5292 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5293 kvm_pmu_cap.num_counters_gp);
5294 else
5295 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5296
5297 if (kvm_pmu_cap.version != 2 ||
5298 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5299 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5300 }
5301
5302 /* CPUID 0x8000001F (SME/SEV features) */
5303 sev_set_cpu_caps();
5304
5305 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5306 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5307 }
5308
svm_hardware_setup(void)5309 static __init int svm_hardware_setup(void)
5310 {
5311 int cpu;
5312 struct page *iopm_pages;
5313 void *iopm_va;
5314 int r;
5315 unsigned int order = get_order(IOPM_SIZE);
5316
5317 /*
5318 * NX is required for shadow paging and for NPT if the NX huge pages
5319 * mitigation is enabled.
5320 */
5321 if (!boot_cpu_has(X86_FEATURE_NX)) {
5322 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5323 return -EOPNOTSUPP;
5324 }
5325 kvm_enable_efer_bits(EFER_NX);
5326
5327 iopm_pages = alloc_pages(GFP_KERNEL, order);
5328
5329 if (!iopm_pages)
5330 return -ENOMEM;
5331
5332 iopm_va = page_address(iopm_pages);
5333 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5334 iopm_base = __sme_page_pa(iopm_pages);
5335
5336 init_msrpm_offsets();
5337
5338 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5339 XFEATURE_MASK_BNDCSR);
5340
5341 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5342 kvm_enable_efer_bits(EFER_FFXSR);
5343
5344 if (tsc_scaling) {
5345 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5346 tsc_scaling = false;
5347 } else {
5348 pr_info("TSC scaling supported\n");
5349 kvm_caps.has_tsc_control = true;
5350 }
5351 }
5352 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5353 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5354
5355 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5356
5357 if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5358 kvm_enable_efer_bits(EFER_AUTOIBRS);
5359
5360 /* Check for pause filtering support */
5361 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5362 pause_filter_count = 0;
5363 pause_filter_thresh = 0;
5364 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5365 pause_filter_thresh = 0;
5366 }
5367
5368 if (nested) {
5369 pr_info("Nested Virtualization enabled\n");
5370 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5371 }
5372
5373 /*
5374 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5375 * NPT isn't supported if the host is using 2-level paging since host
5376 * CR4 is unchanged on VMRUN.
5377 */
5378 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5379 npt_enabled = false;
5380
5381 if (!boot_cpu_has(X86_FEATURE_NPT))
5382 npt_enabled = false;
5383
5384 /* Force VM NPT level equal to the host's paging level */
5385 kvm_configure_mmu(npt_enabled, get_npt_level(),
5386 get_npt_level(), PG_LEVEL_1G);
5387 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5388
5389 /* Setup shadow_me_value and shadow_me_mask */
5390 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5391
5392 svm_adjust_mmio_mask();
5393
5394 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5395
5396 if (lbrv) {
5397 if (!boot_cpu_has(X86_FEATURE_LBRV))
5398 lbrv = false;
5399 else
5400 pr_info("LBR virtualization supported\n");
5401 }
5402 /*
5403 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5404 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5405 */
5406 sev_hardware_setup();
5407
5408 svm_hv_hardware_setup();
5409
5410 for_each_possible_cpu(cpu) {
5411 r = svm_cpu_init(cpu);
5412 if (r)
5413 goto err;
5414 }
5415
5416 enable_apicv = avic = avic && avic_hardware_setup();
5417
5418 if (!enable_apicv) {
5419 svm_x86_ops.vcpu_blocking = NULL;
5420 svm_x86_ops.vcpu_unblocking = NULL;
5421 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5422 } else if (!x2avic_enabled) {
5423 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5424 }
5425
5426 if (vls) {
5427 if (!npt_enabled ||
5428 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5429 !IS_ENABLED(CONFIG_X86_64)) {
5430 vls = false;
5431 } else {
5432 pr_info("Virtual VMLOAD VMSAVE supported\n");
5433 }
5434 }
5435
5436 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5437 svm_gp_erratum_intercept = false;
5438
5439 if (vgif) {
5440 if (!boot_cpu_has(X86_FEATURE_VGIF))
5441 vgif = false;
5442 else
5443 pr_info("Virtual GIF supported\n");
5444 }
5445
5446 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5447 if (vnmi)
5448 pr_info("Virtual NMI enabled\n");
5449
5450 if (!vnmi) {
5451 svm_x86_ops.is_vnmi_pending = NULL;
5452 svm_x86_ops.set_vnmi_pending = NULL;
5453 }
5454
5455 if (!enable_pmu)
5456 pr_info("PMU virtualization is disabled\n");
5457
5458 svm_set_cpu_caps();
5459
5460 /*
5461 * It seems that on AMD processors PTE's accessed bit is
5462 * being set by the CPU hardware before the NPF vmexit.
5463 * This is not expected behaviour and our tests fail because
5464 * of it.
5465 * A workaround here is to disable support for
5466 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5467 * In this case userspace can know if there is support using
5468 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5469 * it
5470 * If future AMD CPU models change the behaviour described above,
5471 * this variable can be changed accordingly
5472 */
5473 allow_smaller_maxphyaddr = !npt_enabled;
5474
5475 return 0;
5476
5477 err:
5478 svm_hardware_unsetup();
5479 return r;
5480 }
5481
5482
5483 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5484 .hardware_setup = svm_hardware_setup,
5485
5486 .runtime_ops = &svm_x86_ops,
5487 .pmu_ops = &amd_pmu_ops,
5488 };
5489
__svm_exit(void)5490 static void __svm_exit(void)
5491 {
5492 kvm_x86_vendor_exit();
5493 }
5494
svm_init(void)5495 static int __init svm_init(void)
5496 {
5497 int r;
5498
5499 __unused_size_checks();
5500
5501 if (!kvm_is_svm_supported())
5502 return -EOPNOTSUPP;
5503
5504 r = kvm_x86_vendor_init(&svm_init_ops);
5505 if (r)
5506 return r;
5507
5508 /*
5509 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5510 * exposed to userspace!
5511 */
5512 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5513 THIS_MODULE);
5514 if (r)
5515 goto err_kvm_init;
5516
5517 return 0;
5518
5519 err_kvm_init:
5520 __svm_exit();
5521 return r;
5522 }
5523
svm_exit(void)5524 static void __exit svm_exit(void)
5525 {
5526 kvm_exit();
5527 __svm_exit();
5528 }
5529
5530 module_init(svm_init)
5531 module_exit(svm_exit)
5532