1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2010 IBM Corporation
4 * Copyright (C) 2010 Politecnico di Torino, Italy
5 * TORSEC group -- https://security.polito.it
6 *
7 * Authors:
8 * Mimi Zohar <zohar@us.ibm.com>
9 * Roberto Sassu <roberto.sassu@polito.it>
10 *
11 * See Documentation/security/keys/trusted-encrypted.rst
12 */
13
14 #include <linux/uaccess.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/parser.h>
19 #include <linux/string.h>
20 #include <linux/err.h>
21 #include <keys/user-type.h>
22 #include <keys/trusted-type.h>
23 #include <keys/encrypted-type.h>
24 #include <linux/key-type.h>
25 #include <linux/random.h>
26 #include <linux/rcupdate.h>
27 #include <linux/scatterlist.h>
28 #include <linux/ctype.h>
29 #include <crypto/aes.h>
30 #include <crypto/sha2.h>
31 #include <crypto/skcipher.h>
32 #include <crypto/utils.h>
33
34 #include "encrypted.h"
35 #include "ecryptfs_format.h"
36
37 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
38 static const char KEY_USER_PREFIX[] = "user:";
39 static const char blkcipher_alg[] = "cbc(aes)";
40 static const char key_format_default[] = "default";
41 static const char key_format_ecryptfs[] = "ecryptfs";
42 static const char key_format_enc32[] = "enc32";
43 static unsigned int ivsize;
44 static int blksize;
45
46 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
47 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
48 #define KEY_ECRYPTFS_DESC_LEN 16
49 #define HASH_SIZE SHA256_DIGEST_SIZE
50 #define MAX_DATA_SIZE 4096
51 #define MIN_DATA_SIZE 20
52 #define KEY_ENC32_PAYLOAD_LEN 32
53
54 enum {
55 Opt_new, Opt_load, Opt_update, Opt_err
56 };
57
58 enum {
59 Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
60 };
61
62 static const match_table_t key_format_tokens = {
63 {Opt_default, "default"},
64 {Opt_ecryptfs, "ecryptfs"},
65 {Opt_enc32, "enc32"},
66 {Opt_error, NULL}
67 };
68
69 static const match_table_t key_tokens = {
70 {Opt_new, "new"},
71 {Opt_load, "load"},
72 {Opt_update, "update"},
73 {Opt_err, NULL}
74 };
75
76 static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA);
77 module_param(user_decrypted_data, bool, 0);
78 MODULE_PARM_DESC(user_decrypted_data,
79 "Allow instantiation of encrypted keys using provided decrypted data");
80
aes_get_sizes(void)81 static int aes_get_sizes(void)
82 {
83 struct crypto_skcipher *tfm;
84
85 tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
86 if (IS_ERR(tfm)) {
87 pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
88 PTR_ERR(tfm));
89 return PTR_ERR(tfm);
90 }
91 ivsize = crypto_skcipher_ivsize(tfm);
92 blksize = crypto_skcipher_blocksize(tfm);
93 crypto_free_skcipher(tfm);
94 return 0;
95 }
96
97 /*
98 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
99 *
100 * The description of a encrypted key with format 'ecryptfs' must contain
101 * exactly 16 hexadecimal characters.
102 *
103 */
valid_ecryptfs_desc(const char * ecryptfs_desc)104 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
105 {
106 int i;
107
108 if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
109 pr_err("encrypted_key: key description must be %d hexadecimal "
110 "characters long\n", KEY_ECRYPTFS_DESC_LEN);
111 return -EINVAL;
112 }
113
114 for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
115 if (!isxdigit(ecryptfs_desc[i])) {
116 pr_err("encrypted_key: key description must contain "
117 "only hexadecimal characters\n");
118 return -EINVAL;
119 }
120 }
121
122 return 0;
123 }
124
125 /*
126 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
127 *
128 * key-type:= "trusted:" | "user:"
129 * desc:= master-key description
130 *
131 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
132 * only the master key description is permitted to change, not the key-type.
133 * The key-type remains constant.
134 *
135 * On success returns 0, otherwise -EINVAL.
136 */
valid_master_desc(const char * new_desc,const char * orig_desc)137 static int valid_master_desc(const char *new_desc, const char *orig_desc)
138 {
139 int prefix_len;
140
141 if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
142 prefix_len = KEY_TRUSTED_PREFIX_LEN;
143 else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
144 prefix_len = KEY_USER_PREFIX_LEN;
145 else
146 return -EINVAL;
147
148 if (!new_desc[prefix_len])
149 return -EINVAL;
150
151 if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
152 return -EINVAL;
153
154 return 0;
155 }
156
157 /*
158 * datablob_parse - parse the keyctl data
159 *
160 * datablob format:
161 * new [<format>] <master-key name> <decrypted data length> [<decrypted data>]
162 * load [<format>] <master-key name> <decrypted data length>
163 * <encrypted iv + data>
164 * update <new-master-key name>
165 *
166 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
167 * which is null terminated.
168 *
169 * On success returns 0, otherwise -EINVAL.
170 */
datablob_parse(char * datablob,const char ** format,char ** master_desc,char ** decrypted_datalen,char ** hex_encoded_iv,char ** decrypted_data)171 static int datablob_parse(char *datablob, const char **format,
172 char **master_desc, char **decrypted_datalen,
173 char **hex_encoded_iv, char **decrypted_data)
174 {
175 substring_t args[MAX_OPT_ARGS];
176 int ret = -EINVAL;
177 int key_cmd;
178 int key_format;
179 char *p, *keyword;
180
181 keyword = strsep(&datablob, " \t");
182 if (!keyword) {
183 pr_info("encrypted_key: insufficient parameters specified\n");
184 return ret;
185 }
186 key_cmd = match_token(keyword, key_tokens, args);
187
188 /* Get optional format: default | ecryptfs */
189 p = strsep(&datablob, " \t");
190 if (!p) {
191 pr_err("encrypted_key: insufficient parameters specified\n");
192 return ret;
193 }
194
195 key_format = match_token(p, key_format_tokens, args);
196 switch (key_format) {
197 case Opt_ecryptfs:
198 case Opt_enc32:
199 case Opt_default:
200 *format = p;
201 *master_desc = strsep(&datablob, " \t");
202 break;
203 case Opt_error:
204 *master_desc = p;
205 break;
206 }
207
208 if (!*master_desc) {
209 pr_info("encrypted_key: master key parameter is missing\n");
210 goto out;
211 }
212
213 if (valid_master_desc(*master_desc, NULL) < 0) {
214 pr_info("encrypted_key: master key parameter \'%s\' "
215 "is invalid\n", *master_desc);
216 goto out;
217 }
218
219 if (decrypted_datalen) {
220 *decrypted_datalen = strsep(&datablob, " \t");
221 if (!*decrypted_datalen) {
222 pr_info("encrypted_key: keylen parameter is missing\n");
223 goto out;
224 }
225 }
226
227 switch (key_cmd) {
228 case Opt_new:
229 if (!decrypted_datalen) {
230 pr_info("encrypted_key: keyword \'%s\' not allowed "
231 "when called from .update method\n", keyword);
232 break;
233 }
234 *decrypted_data = strsep(&datablob, " \t");
235 ret = 0;
236 break;
237 case Opt_load:
238 if (!decrypted_datalen) {
239 pr_info("encrypted_key: keyword \'%s\' not allowed "
240 "when called from .update method\n", keyword);
241 break;
242 }
243 *hex_encoded_iv = strsep(&datablob, " \t");
244 if (!*hex_encoded_iv) {
245 pr_info("encrypted_key: hex blob is missing\n");
246 break;
247 }
248 ret = 0;
249 break;
250 case Opt_update:
251 if (decrypted_datalen) {
252 pr_info("encrypted_key: keyword \'%s\' not allowed "
253 "when called from .instantiate method\n",
254 keyword);
255 break;
256 }
257 ret = 0;
258 break;
259 case Opt_err:
260 pr_info("encrypted_key: keyword \'%s\' not recognized\n",
261 keyword);
262 break;
263 }
264 out:
265 return ret;
266 }
267
268 /*
269 * datablob_format - format as an ascii string, before copying to userspace
270 */
datablob_format(struct encrypted_key_payload * epayload,size_t asciiblob_len)271 static char *datablob_format(struct encrypted_key_payload *epayload,
272 size_t asciiblob_len)
273 {
274 char *ascii_buf, *bufp;
275 u8 *iv = epayload->iv;
276 int len;
277 int i;
278
279 ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
280 if (!ascii_buf)
281 goto out;
282
283 ascii_buf[asciiblob_len] = '\0';
284
285 /* copy datablob master_desc and datalen strings */
286 len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
287 epayload->master_desc, epayload->datalen);
288
289 /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
290 bufp = &ascii_buf[len];
291 for (i = 0; i < (asciiblob_len - len) / 2; i++)
292 bufp = hex_byte_pack(bufp, iv[i]);
293 out:
294 return ascii_buf;
295 }
296
297 /*
298 * request_user_key - request the user key
299 *
300 * Use a user provided key to encrypt/decrypt an encrypted-key.
301 */
request_user_key(const char * master_desc,const u8 ** master_key,size_t * master_keylen)302 static struct key *request_user_key(const char *master_desc, const u8 **master_key,
303 size_t *master_keylen)
304 {
305 const struct user_key_payload *upayload;
306 struct key *ukey;
307
308 ukey = request_key(&key_type_user, master_desc, NULL);
309 if (IS_ERR(ukey))
310 goto error;
311
312 down_read(&ukey->sem);
313 upayload = user_key_payload_locked(ukey);
314 if (!upayload) {
315 /* key was revoked before we acquired its semaphore */
316 up_read(&ukey->sem);
317 key_put(ukey);
318 ukey = ERR_PTR(-EKEYREVOKED);
319 goto error;
320 }
321 *master_key = upayload->data;
322 *master_keylen = upayload->datalen;
323 error:
324 return ukey;
325 }
326
327 enum derived_key_type { ENC_KEY, AUTH_KEY };
328
329 /* Derive authentication/encryption key from trusted key */
get_derived_key(u8 * derived_key,enum derived_key_type key_type,const u8 * master_key,size_t master_keylen)330 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
331 const u8 *master_key, size_t master_keylen)
332 {
333 u8 *derived_buf;
334 unsigned int derived_buf_len;
335
336 derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
337 if (derived_buf_len < HASH_SIZE)
338 derived_buf_len = HASH_SIZE;
339
340 derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
341 if (!derived_buf)
342 return -ENOMEM;
343
344 if (key_type)
345 strcpy(derived_buf, "AUTH_KEY");
346 else
347 strcpy(derived_buf, "ENC_KEY");
348
349 memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
350 master_keylen);
351 sha256(derived_buf, derived_buf_len, derived_key);
352 kfree_sensitive(derived_buf);
353 return 0;
354 }
355
init_skcipher_req(const u8 * key,unsigned int key_len)356 static struct skcipher_request *init_skcipher_req(const u8 *key,
357 unsigned int key_len)
358 {
359 struct skcipher_request *req;
360 struct crypto_skcipher *tfm;
361 int ret;
362
363 tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
364 if (IS_ERR(tfm)) {
365 pr_err("encrypted_key: failed to load %s transform (%ld)\n",
366 blkcipher_alg, PTR_ERR(tfm));
367 return ERR_CAST(tfm);
368 }
369
370 ret = crypto_skcipher_setkey(tfm, key, key_len);
371 if (ret < 0) {
372 pr_err("encrypted_key: failed to setkey (%d)\n", ret);
373 crypto_free_skcipher(tfm);
374 return ERR_PTR(ret);
375 }
376
377 req = skcipher_request_alloc(tfm, GFP_KERNEL);
378 if (!req) {
379 pr_err("encrypted_key: failed to allocate request for %s\n",
380 blkcipher_alg);
381 crypto_free_skcipher(tfm);
382 return ERR_PTR(-ENOMEM);
383 }
384
385 skcipher_request_set_callback(req, 0, NULL, NULL);
386 return req;
387 }
388
request_master_key(struct encrypted_key_payload * epayload,const u8 ** master_key,size_t * master_keylen)389 static struct key *request_master_key(struct encrypted_key_payload *epayload,
390 const u8 **master_key, size_t *master_keylen)
391 {
392 struct key *mkey = ERR_PTR(-EINVAL);
393
394 if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
395 KEY_TRUSTED_PREFIX_LEN)) {
396 mkey = request_trusted_key(epayload->master_desc +
397 KEY_TRUSTED_PREFIX_LEN,
398 master_key, master_keylen);
399 } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
400 KEY_USER_PREFIX_LEN)) {
401 mkey = request_user_key(epayload->master_desc +
402 KEY_USER_PREFIX_LEN,
403 master_key, master_keylen);
404 } else
405 goto out;
406
407 if (IS_ERR(mkey)) {
408 int ret = PTR_ERR(mkey);
409
410 if (ret == -ENOTSUPP)
411 pr_info("encrypted_key: key %s not supported",
412 epayload->master_desc);
413 else
414 pr_info("encrypted_key: key %s not found",
415 epayload->master_desc);
416 goto out;
417 }
418
419 dump_master_key(*master_key, *master_keylen);
420 out:
421 return mkey;
422 }
423
424 /* Before returning data to userspace, encrypt decrypted data. */
derived_key_encrypt(struct encrypted_key_payload * epayload,const u8 * derived_key,unsigned int derived_keylen)425 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
426 const u8 *derived_key,
427 unsigned int derived_keylen)
428 {
429 struct scatterlist sg_in[2];
430 struct scatterlist sg_out[1];
431 struct crypto_skcipher *tfm;
432 struct skcipher_request *req;
433 unsigned int encrypted_datalen;
434 u8 iv[AES_BLOCK_SIZE];
435 int ret;
436
437 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
438
439 req = init_skcipher_req(derived_key, derived_keylen);
440 ret = PTR_ERR(req);
441 if (IS_ERR(req))
442 goto out;
443 dump_decrypted_data(epayload);
444
445 sg_init_table(sg_in, 2);
446 sg_set_buf(&sg_in[0], epayload->decrypted_data,
447 epayload->decrypted_datalen);
448 sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
449
450 sg_init_table(sg_out, 1);
451 sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
452
453 memcpy(iv, epayload->iv, sizeof(iv));
454 skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
455 ret = crypto_skcipher_encrypt(req);
456 tfm = crypto_skcipher_reqtfm(req);
457 skcipher_request_free(req);
458 crypto_free_skcipher(tfm);
459 if (ret < 0)
460 pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
461 else
462 dump_encrypted_data(epayload, encrypted_datalen);
463 out:
464 return ret;
465 }
466
datablob_hmac_append(struct encrypted_key_payload * epayload,const u8 * master_key,size_t master_keylen)467 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
468 const u8 *master_key, size_t master_keylen)
469 {
470 u8 derived_key[HASH_SIZE];
471 u8 *digest;
472 int ret;
473
474 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
475 if (ret < 0)
476 goto out;
477
478 digest = epayload->format + epayload->datablob_len;
479 hmac_sha256_usingrawkey(derived_key, sizeof(derived_key),
480 epayload->format, epayload->datablob_len,
481 digest);
482 dump_hmac(NULL, digest, HASH_SIZE);
483 out:
484 memzero_explicit(derived_key, sizeof(derived_key));
485 return ret;
486 }
487
488 /* verify HMAC before decrypting encrypted key */
datablob_hmac_verify(struct encrypted_key_payload * epayload,const u8 * format,const u8 * master_key,size_t master_keylen)489 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
490 const u8 *format, const u8 *master_key,
491 size_t master_keylen)
492 {
493 u8 derived_key[HASH_SIZE];
494 u8 digest[HASH_SIZE];
495 int ret;
496 char *p;
497 unsigned short len;
498
499 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
500 if (ret < 0)
501 goto out;
502
503 len = epayload->datablob_len;
504 if (!format) {
505 p = epayload->master_desc;
506 len -= strlen(epayload->format) + 1;
507 } else
508 p = epayload->format;
509
510 hmac_sha256_usingrawkey(derived_key, sizeof(derived_key), p, len,
511 digest);
512 ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
513 sizeof(digest));
514 if (ret) {
515 ret = -EINVAL;
516 dump_hmac("datablob",
517 epayload->format + epayload->datablob_len,
518 HASH_SIZE);
519 dump_hmac("calc", digest, HASH_SIZE);
520 }
521 out:
522 memzero_explicit(derived_key, sizeof(derived_key));
523 return ret;
524 }
525
derived_key_decrypt(struct encrypted_key_payload * epayload,const u8 * derived_key,unsigned int derived_keylen)526 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
527 const u8 *derived_key,
528 unsigned int derived_keylen)
529 {
530 struct scatterlist sg_in[1];
531 struct scatterlist sg_out[2];
532 struct crypto_skcipher *tfm;
533 struct skcipher_request *req;
534 unsigned int encrypted_datalen;
535 u8 iv[AES_BLOCK_SIZE];
536 u8 *pad;
537 int ret;
538
539 /* Throwaway buffer to hold the unused zero padding at the end */
540 pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
541 if (!pad)
542 return -ENOMEM;
543
544 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
545 req = init_skcipher_req(derived_key, derived_keylen);
546 ret = PTR_ERR(req);
547 if (IS_ERR(req))
548 goto out;
549 dump_encrypted_data(epayload, encrypted_datalen);
550
551 sg_init_table(sg_in, 1);
552 sg_init_table(sg_out, 2);
553 sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
554 sg_set_buf(&sg_out[0], epayload->decrypted_data,
555 epayload->decrypted_datalen);
556 sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
557
558 memcpy(iv, epayload->iv, sizeof(iv));
559 skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
560 ret = crypto_skcipher_decrypt(req);
561 tfm = crypto_skcipher_reqtfm(req);
562 skcipher_request_free(req);
563 crypto_free_skcipher(tfm);
564 if (ret < 0)
565 goto out;
566 dump_decrypted_data(epayload);
567 out:
568 kfree(pad);
569 return ret;
570 }
571
572 /* Allocate memory for decrypted key and datablob. */
encrypted_key_alloc(struct key * key,const char * format,const char * master_desc,const char * datalen,const char * decrypted_data)573 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
574 const char *format,
575 const char *master_desc,
576 const char *datalen,
577 const char *decrypted_data)
578 {
579 struct encrypted_key_payload *epayload = NULL;
580 unsigned short datablob_len;
581 unsigned short decrypted_datalen;
582 unsigned short payload_datalen;
583 unsigned int encrypted_datalen;
584 unsigned int format_len;
585 long dlen;
586 int i;
587 int ret;
588
589 ret = kstrtol(datalen, 10, &dlen);
590 if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
591 return ERR_PTR(-EINVAL);
592
593 format_len = (!format) ? strlen(key_format_default) : strlen(format);
594 decrypted_datalen = dlen;
595 payload_datalen = decrypted_datalen;
596
597 if (decrypted_data) {
598 if (!user_decrypted_data) {
599 pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n");
600 return ERR_PTR(-EINVAL);
601 }
602 if (strlen(decrypted_data) != decrypted_datalen * 2) {
603 pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n");
604 return ERR_PTR(-EINVAL);
605 }
606 for (i = 0; i < strlen(decrypted_data); i++) {
607 if (!isxdigit(decrypted_data[i])) {
608 pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n");
609 return ERR_PTR(-EINVAL);
610 }
611 }
612 }
613
614 if (format) {
615 if (!strcmp(format, key_format_ecryptfs)) {
616 if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
617 pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
618 ECRYPTFS_MAX_KEY_BYTES);
619 return ERR_PTR(-EINVAL);
620 }
621 decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
622 payload_datalen = sizeof(struct ecryptfs_auth_tok);
623 } else if (!strcmp(format, key_format_enc32)) {
624 if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
625 pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
626 decrypted_datalen);
627 return ERR_PTR(-EINVAL);
628 }
629 }
630 }
631
632 encrypted_datalen = roundup(decrypted_datalen, blksize);
633
634 datablob_len = format_len + 1 + strlen(master_desc) + 1
635 + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
636
637 ret = key_payload_reserve(key, payload_datalen + datablob_len
638 + HASH_SIZE + 1);
639 if (ret < 0)
640 return ERR_PTR(ret);
641
642 epayload = kzalloc(sizeof(*epayload) + payload_datalen +
643 datablob_len + HASH_SIZE + 1, GFP_KERNEL);
644 if (!epayload)
645 return ERR_PTR(-ENOMEM);
646
647 epayload->payload_datalen = payload_datalen;
648 epayload->decrypted_datalen = decrypted_datalen;
649 epayload->datablob_len = datablob_len;
650 return epayload;
651 }
652
encrypted_key_decrypt(struct encrypted_key_payload * epayload,const char * format,const char * hex_encoded_iv)653 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
654 const char *format, const char *hex_encoded_iv)
655 {
656 struct key *mkey;
657 u8 derived_key[HASH_SIZE];
658 const u8 *master_key;
659 u8 *hmac;
660 const char *hex_encoded_data;
661 unsigned int encrypted_datalen;
662 size_t master_keylen;
663 size_t asciilen;
664 int ret;
665
666 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
667 asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
668 if (strlen(hex_encoded_iv) != asciilen)
669 return -EINVAL;
670
671 hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
672 ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
673 if (ret < 0)
674 return -EINVAL;
675 ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
676 encrypted_datalen);
677 if (ret < 0)
678 return -EINVAL;
679
680 hmac = epayload->format + epayload->datablob_len;
681 ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
682 HASH_SIZE);
683 if (ret < 0)
684 return -EINVAL;
685
686 mkey = request_master_key(epayload, &master_key, &master_keylen);
687 if (IS_ERR(mkey))
688 return PTR_ERR(mkey);
689
690 ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
691 if (ret < 0) {
692 pr_err("encrypted_key: bad hmac (%d)\n", ret);
693 goto out;
694 }
695
696 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
697 if (ret < 0)
698 goto out;
699
700 ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
701 if (ret < 0)
702 pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
703 out:
704 up_read(&mkey->sem);
705 key_put(mkey);
706 memzero_explicit(derived_key, sizeof(derived_key));
707 return ret;
708 }
709
__ekey_init(struct encrypted_key_payload * epayload,const char * format,const char * master_desc,const char * datalen)710 static void __ekey_init(struct encrypted_key_payload *epayload,
711 const char *format, const char *master_desc,
712 const char *datalen)
713 {
714 unsigned int format_len;
715
716 format_len = (!format) ? strlen(key_format_default) : strlen(format);
717 epayload->format = epayload->payload_data + epayload->payload_datalen;
718 epayload->master_desc = epayload->format + format_len + 1;
719 epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
720 epayload->iv = epayload->datalen + strlen(datalen) + 1;
721 epayload->encrypted_data = epayload->iv + ivsize + 1;
722 epayload->decrypted_data = epayload->payload_data;
723
724 if (!format)
725 memcpy(epayload->format, key_format_default, format_len);
726 else {
727 if (!strcmp(format, key_format_ecryptfs))
728 epayload->decrypted_data =
729 ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
730
731 memcpy(epayload->format, format, format_len);
732 }
733
734 memcpy(epayload->master_desc, master_desc, strlen(master_desc));
735 memcpy(epayload->datalen, datalen, strlen(datalen));
736 }
737
738 /*
739 * encrypted_init - initialize an encrypted key
740 *
741 * For a new key, use either a random number or user-provided decrypted data in
742 * case it is provided. A random number is used for the iv in both cases. For
743 * an old key, decrypt the hex encoded data.
744 */
encrypted_init(struct encrypted_key_payload * epayload,const char * key_desc,const char * format,const char * master_desc,const char * datalen,const char * hex_encoded_iv,const char * decrypted_data)745 static int encrypted_init(struct encrypted_key_payload *epayload,
746 const char *key_desc, const char *format,
747 const char *master_desc, const char *datalen,
748 const char *hex_encoded_iv, const char *decrypted_data)
749 {
750 int ret = 0;
751
752 if (format && !strcmp(format, key_format_ecryptfs)) {
753 ret = valid_ecryptfs_desc(key_desc);
754 if (ret < 0)
755 return ret;
756
757 ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
758 key_desc);
759 }
760
761 __ekey_init(epayload, format, master_desc, datalen);
762 if (hex_encoded_iv) {
763 ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
764 } else if (decrypted_data) {
765 get_random_bytes(epayload->iv, ivsize);
766 ret = hex2bin(epayload->decrypted_data, decrypted_data,
767 epayload->decrypted_datalen);
768 } else {
769 get_random_bytes(epayload->iv, ivsize);
770 get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen);
771 }
772 return ret;
773 }
774
775 /*
776 * encrypted_instantiate - instantiate an encrypted key
777 *
778 * Instantiates the key:
779 * - by decrypting an existing encrypted datablob, or
780 * - by creating a new encrypted key based on a kernel random number, or
781 * - using provided decrypted data.
782 *
783 * On success, return 0. Otherwise return errno.
784 */
encrypted_instantiate(struct key * key,struct key_preparsed_payload * prep)785 static int encrypted_instantiate(struct key *key,
786 struct key_preparsed_payload *prep)
787 {
788 struct encrypted_key_payload *epayload = NULL;
789 char *datablob = NULL;
790 const char *format = NULL;
791 char *master_desc = NULL;
792 char *decrypted_datalen = NULL;
793 char *hex_encoded_iv = NULL;
794 char *decrypted_data = NULL;
795 size_t datalen = prep->datalen;
796 int ret;
797
798 if (datalen == 0 || datalen > 32767 || !prep->data)
799 return -EINVAL;
800
801 datablob = kmalloc(datalen + 1, GFP_KERNEL);
802 if (!datablob)
803 return -ENOMEM;
804 datablob[datalen] = 0;
805 memcpy(datablob, prep->data, datalen);
806 ret = datablob_parse(datablob, &format, &master_desc,
807 &decrypted_datalen, &hex_encoded_iv, &decrypted_data);
808 if (ret < 0)
809 goto out;
810
811 epayload = encrypted_key_alloc(key, format, master_desc,
812 decrypted_datalen, decrypted_data);
813 if (IS_ERR(epayload)) {
814 ret = PTR_ERR(epayload);
815 goto out;
816 }
817 ret = encrypted_init(epayload, key->description, format, master_desc,
818 decrypted_datalen, hex_encoded_iv, decrypted_data);
819 if (ret < 0) {
820 kfree_sensitive(epayload);
821 goto out;
822 }
823
824 rcu_assign_keypointer(key, epayload);
825 out:
826 kfree_sensitive(datablob);
827 return ret;
828 }
829
encrypted_rcu_free(struct rcu_head * rcu)830 static void encrypted_rcu_free(struct rcu_head *rcu)
831 {
832 struct encrypted_key_payload *epayload;
833
834 epayload = container_of(rcu, struct encrypted_key_payload, rcu);
835 kfree_sensitive(epayload);
836 }
837
838 /*
839 * encrypted_update - update the master key description
840 *
841 * Change the master key description for an existing encrypted key.
842 * The next read will return an encrypted datablob using the new
843 * master key description.
844 *
845 * On success, return 0. Otherwise return errno.
846 */
encrypted_update(struct key * key,struct key_preparsed_payload * prep)847 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
848 {
849 struct encrypted_key_payload *epayload = key->payload.data[0];
850 struct encrypted_key_payload *new_epayload;
851 char *buf;
852 char *new_master_desc = NULL;
853 const char *format = NULL;
854 size_t datalen = prep->datalen;
855 int ret = 0;
856
857 if (key_is_negative(key))
858 return -ENOKEY;
859 if (datalen == 0 || datalen > 32767 || !prep->data)
860 return -EINVAL;
861
862 buf = kmalloc(datalen + 1, GFP_KERNEL);
863 if (!buf)
864 return -ENOMEM;
865
866 buf[datalen] = 0;
867 memcpy(buf, prep->data, datalen);
868 ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL);
869 if (ret < 0)
870 goto out;
871
872 ret = valid_master_desc(new_master_desc, epayload->master_desc);
873 if (ret < 0)
874 goto out;
875
876 new_epayload = encrypted_key_alloc(key, epayload->format,
877 new_master_desc, epayload->datalen, NULL);
878 if (IS_ERR(new_epayload)) {
879 ret = PTR_ERR(new_epayload);
880 goto out;
881 }
882
883 __ekey_init(new_epayload, epayload->format, new_master_desc,
884 epayload->datalen);
885
886 memcpy(new_epayload->iv, epayload->iv, ivsize);
887 memcpy(new_epayload->payload_data, epayload->payload_data,
888 epayload->payload_datalen);
889
890 rcu_assign_keypointer(key, new_epayload);
891 call_rcu(&epayload->rcu, encrypted_rcu_free);
892 out:
893 kfree_sensitive(buf);
894 return ret;
895 }
896
897 /*
898 * encrypted_read - format and copy out the encrypted data
899 *
900 * The resulting datablob format is:
901 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
902 *
903 * On success, return to userspace the encrypted key datablob size.
904 */
encrypted_read(const struct key * key,char * buffer,size_t buflen)905 static long encrypted_read(const struct key *key, char *buffer,
906 size_t buflen)
907 {
908 struct encrypted_key_payload *epayload;
909 struct key *mkey;
910 const u8 *master_key;
911 size_t master_keylen;
912 char derived_key[HASH_SIZE];
913 char *ascii_buf;
914 size_t asciiblob_len;
915 int ret;
916
917 epayload = dereference_key_locked(key);
918
919 /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
920 asciiblob_len = epayload->datablob_len + ivsize + 1
921 + roundup(epayload->decrypted_datalen, blksize)
922 + (HASH_SIZE * 2);
923
924 if (!buffer || buflen < asciiblob_len)
925 return asciiblob_len;
926
927 mkey = request_master_key(epayload, &master_key, &master_keylen);
928 if (IS_ERR(mkey))
929 return PTR_ERR(mkey);
930
931 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
932 if (ret < 0)
933 goto out;
934
935 ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
936 if (ret < 0)
937 goto out;
938
939 ret = datablob_hmac_append(epayload, master_key, master_keylen);
940 if (ret < 0)
941 goto out;
942
943 ascii_buf = datablob_format(epayload, asciiblob_len);
944 if (!ascii_buf) {
945 ret = -ENOMEM;
946 goto out;
947 }
948
949 up_read(&mkey->sem);
950 key_put(mkey);
951 memzero_explicit(derived_key, sizeof(derived_key));
952
953 memcpy(buffer, ascii_buf, asciiblob_len);
954 kfree_sensitive(ascii_buf);
955
956 return asciiblob_len;
957 out:
958 up_read(&mkey->sem);
959 key_put(mkey);
960 memzero_explicit(derived_key, sizeof(derived_key));
961 return ret;
962 }
963
964 /*
965 * encrypted_destroy - clear and free the key's payload
966 */
encrypted_destroy(struct key * key)967 static void encrypted_destroy(struct key *key)
968 {
969 kfree_sensitive(key->payload.data[0]);
970 }
971
972 struct key_type key_type_encrypted = {
973 .name = "encrypted",
974 .instantiate = encrypted_instantiate,
975 .update = encrypted_update,
976 .destroy = encrypted_destroy,
977 .describe = user_describe,
978 .read = encrypted_read,
979 };
980 EXPORT_SYMBOL_GPL(key_type_encrypted);
981
init_encrypted(void)982 static int __init init_encrypted(void)
983 {
984 int ret;
985
986 ret = aes_get_sizes();
987 if (ret < 0)
988 return ret;
989 return register_key_type(&key_type_encrypted);
990 }
991
cleanup_encrypted(void)992 static void __exit cleanup_encrypted(void)
993 {
994 unregister_key_type(&key_type_encrypted);
995 }
996
997 late_initcall(init_encrypted);
998 module_exit(cleanup_encrypted);
999
1000 MODULE_DESCRIPTION("Encrypted key type");
1001 MODULE_LICENSE("GPL");
1002