xref: /linux/rust/kernel/sync/atomic.rs (revision 309e49039f124a9dcb99c05651af8eb8fa05bc29)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Atomic primitives.
4 //!
5 //! These primitives have the same semantics as their C counterparts: and the precise definitions of
6 //! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the
7 //! only model for Rust code in kernel, and Rust's own atomics should be avoided.
8 //!
9 //! # Data races
10 //!
11 //! [`LKMM`] atomics have different rules regarding data races:
12 //!
13 //! - A normal write from C side is treated as an atomic write if
14 //!   CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y.
15 //! - Mixed-size atomic accesses don't cause data races.
16 //!
17 //! [`LKMM`]: srctree/tools/memory-model/
18 
19 mod internal;
20 pub mod ordering;
21 mod predefine;
22 
23 pub use internal::AtomicImpl;
24 pub use ordering::{Acquire, Full, Relaxed, Release};
25 
26 pub(crate) use internal::{AtomicArithmeticOps, AtomicBasicOps, AtomicExchangeOps};
27 
28 use crate::build_error;
29 use internal::AtomicRepr;
30 use ordering::OrderingType;
31 
32 /// A memory location which can be safely modified from multiple execution contexts.
33 ///
34 /// This has the same size, alignment and bit validity as the underlying type `T`. And it disables
35 /// niche optimization for the same reason as [`UnsafeCell`].
36 ///
37 /// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel
38 /// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding
39 /// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and
40 /// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations]
41 /// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`,
42 /// `smp_load_acquire()` and `smp_store_release()`).
43 ///
44 /// # Invariants
45 ///
46 /// `self.0` is a valid `T`.
47 ///
48 /// [`UnsafeCell`]: core::cell::UnsafeCell
49 /// [LKMM]: srctree/tools/memory-model/
50 /// [C-side atomic operations]: srctree/Documentation/atomic_t.txt
51 #[repr(transparent)]
52 pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>);
53 
54 // SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic.
55 unsafe impl<T: AtomicType> Sync for Atomic<T> {}
56 
57 /// Types that support basic atomic operations.
58 ///
59 /// # Round-trip transmutability
60 ///
61 /// `T` is round-trip transmutable to `U` if and only if both of these properties hold:
62 ///
63 /// - Any valid bit pattern for `T` is also a valid bit pattern for `U`.
64 /// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again
65 ///   yields a value that is in all aspects equivalent to the original value.
66 ///
67 /// # Safety
68 ///
69 /// - [`Self`] must have the same size and alignment as [`Self::Repr`].
70 /// - [`Self`] must be [round-trip transmutable] to  [`Self::Repr`].
71 ///
72 /// Note that this is more relaxed than requiring the bi-directional transmutability (i.e.
73 /// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic
74 /// variables over unit-only enums, see [Examples].
75 ///
76 /// # Limitations
77 ///
78 /// Because C primitives are used to implement the atomic operations, and a C function requires a
79 /// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C
80 /// surface, only types with all the bits initialized can be passed. As a result, types like `(u8,
81 /// u16)` (padding bytes are uninitialized) are currently not supported.
82 ///
83 /// # Examples
84 ///
85 /// A unit-only enum that implements [`AtomicType`]:
86 ///
87 /// ```
88 /// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed};
89 ///
90 /// #[derive(Clone, Copy, PartialEq, Eq)]
91 /// #[repr(i32)]
92 /// enum State {
93 ///     Uninit = 0,
94 ///     Working = 1,
95 ///     Done = 2,
96 /// };
97 ///
98 /// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip
99 /// // transmutable to `i32`.
100 /// unsafe impl AtomicType for State {
101 ///     type Repr = i32;
102 /// }
103 ///
104 /// let s = Atomic::new(State::Uninit);
105 ///
106 /// assert_eq!(State::Uninit, s.load(Relaxed));
107 /// ```
108 /// [`transmute()`]: core::mem::transmute
109 /// [round-trip transmutable]: AtomicType#round-trip-transmutability
110 /// [Examples]: AtomicType#examples
111 pub unsafe trait AtomicType: Sized + Send + Copy {
112     /// The backing atomic implementation type.
113     type Repr: AtomicImpl;
114 }
115 
116 /// Types that support atomic add operations.
117 ///
118 /// # Safety
119 ///
120 // TODO: Properly defines `wrapping_add` in the following comment.
121 /// `wrapping_add` any value of type `Self::Repr::Delta` obtained by [`Self::rhs_into_delta()`] to
122 /// any value of type `Self::Repr` obtained through transmuting a value of type `Self` to must
123 /// yield a value with a bit pattern also valid for `Self`.
124 pub unsafe trait AtomicAdd<Rhs = Self>: AtomicType {
125     /// Converts `Rhs` into the `Delta` type of the atomic implementation.
rhs_into_delta(rhs: Rhs) -> <Self::Repr as AtomicImpl>::Delta126     fn rhs_into_delta(rhs: Rhs) -> <Self::Repr as AtomicImpl>::Delta;
127 }
128 
129 #[inline(always)]
into_repr<T: AtomicType>(v: T) -> T::Repr130 const fn into_repr<T: AtomicType>(v: T) -> T::Repr {
131     // SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to
132     // `T::Repr`, therefore the transmute operation is sound.
133     unsafe { core::mem::transmute_copy(&v) }
134 }
135 
136 /// # Safety
137 ///
138 /// `r` must be a valid bit pattern of `T`.
139 #[inline(always)]
from_repr<T: AtomicType>(r: T::Repr) -> T140 const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T {
141     // SAFETY: Per the safety requirement of the function, the transmute operation is sound.
142     unsafe { core::mem::transmute_copy(&r) }
143 }
144 
145 impl<T: AtomicType> Atomic<T> {
146     /// Creates a new atomic `T`.
new(v: T) -> Self147     pub const fn new(v: T) -> Self {
148         // INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`.
149         Self(AtomicRepr::new(into_repr(v)))
150     }
151 
152     /// Creates a reference to an atomic `T` from a pointer of `T`.
153     ///
154     /// This usually is used when communicating with C side or manipulating a C struct, see
155     /// examples below.
156     ///
157     /// # Safety
158     ///
159     /// - `ptr` is aligned to `align_of::<T>()`.
160     /// - `ptr` is valid for reads and writes for `'a`.
161     /// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined
162     ///   by [`LKMM`]) against atomic operations on the returned reference. Note that if all other
163     ///   accesses are atomic, then this safety requirement is trivially fulfilled.
164     ///
165     /// [`LKMM`]: srctree/tools/memory-model
166     ///
167     /// # Examples
168     ///
169     /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can
170     /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or
171     /// `WRITE_ONCE()`/`smp_store_release()` in C side:
172     ///
173     /// ```
174     /// # use kernel::types::Opaque;
175     /// use kernel::sync::atomic::{Atomic, Relaxed, Release};
176     ///
177     /// // Assume there is a C struct `foo`.
178     /// mod cbindings {
179     ///     #[repr(C)]
180     ///     pub(crate) struct foo {
181     ///         pub(crate) a: i32,
182     ///         pub(crate) b: i32
183     ///     }
184     /// }
185     ///
186     /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 });
187     ///
188     /// // struct foo *foo_ptr = ..;
189     /// let foo_ptr = tmp.get();
190     ///
191     /// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds.
192     /// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a };
193     ///
194     /// // a = READ_ONCE(foo_ptr->a);
195     /// //
196     /// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no
197     /// // data race.
198     /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed);
199     /// # assert_eq!(a, 1);
200     ///
201     /// // smp_store_release(&foo_ptr->a, 2);
202     /// //
203     /// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so
204     /// // no data race.
205     /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release);
206     /// ```
from_ptr<'a>(ptr: *mut T) -> &'a Self where T: Sync,207     pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self
208     where
209         T: Sync,
210     {
211         // CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity.
212         // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will
213         // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement
214         // guarantees other accesses won't cause data races.
215         unsafe { &*ptr.cast::<Self>() }
216     }
217 
218     /// Returns a pointer to the underlying atomic `T`.
219     ///
220     /// Note that use of the return pointer must not cause data races defined by [`LKMM`].
221     ///
222     /// # Guarantees
223     ///
224     /// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]).
225     ///
226     /// [`LKMM`]: srctree/tools/memory-model
227     /// [`align_of::<T>()`]: core::mem::align_of
as_ptr(&self) -> *mut T228     pub const fn as_ptr(&self) -> *mut T {
229         // GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()`
230         // must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee
231         // of `AtomicType`, it's a valid and properly aligned pointer of `T`.
232         self.0.as_ptr().cast()
233     }
234 
235     /// Returns a mutable reference to the underlying atomic `T`.
236     ///
237     /// This is safe because the mutable reference of the atomic `T` guarantees exclusive access.
get_mut(&mut self) -> &mut T238     pub fn get_mut(&mut self) -> &mut T {
239         // CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of
240         // `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting
241         // result is a valid pointer of `T`.
242         // SAFETY: The pointer is valid per the CAST comment above, and the mutable reference
243         // guarantees exclusive access.
244         unsafe { &mut *self.0.as_ptr().cast() }
245     }
246 }
247 
248 impl<T: AtomicType> Atomic<T>
249 where
250     T::Repr: AtomicBasicOps,
251 {
252     /// Loads the value from the atomic `T`.
253     ///
254     /// # Examples
255     ///
256     /// ```
257     /// use kernel::sync::atomic::{Atomic, Relaxed};
258     ///
259     /// let x = Atomic::new(42i32);
260     ///
261     /// assert_eq!(42, x.load(Relaxed));
262     ///
263     /// let x = Atomic::new(42i64);
264     ///
265     /// assert_eq!(42, x.load(Relaxed));
266     /// ```
267     #[doc(alias("atomic_read", "atomic64_read"))]
268     #[inline(always)]
load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T269     pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T {
270         let v = {
271             match Ordering::TYPE {
272                 OrderingType::Relaxed => T::Repr::atomic_read(&self.0),
273                 OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0),
274                 _ => build_error!("Wrong ordering"),
275             }
276         };
277 
278         // SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants.
279         unsafe { from_repr(v) }
280     }
281 
282     /// Stores a value to the atomic `T`.
283     ///
284     /// # Examples
285     ///
286     /// ```
287     /// use kernel::sync::atomic::{Atomic, Relaxed};
288     ///
289     /// let x = Atomic::new(42i32);
290     ///
291     /// assert_eq!(42, x.load(Relaxed));
292     ///
293     /// x.store(43, Relaxed);
294     ///
295     /// assert_eq!(43, x.load(Relaxed));
296     /// ```
297     #[doc(alias("atomic_set", "atomic64_set"))]
298     #[inline(always)]
store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering)299     pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) {
300         let v = into_repr(v);
301 
302         // INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`.
303         match Ordering::TYPE {
304             OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v),
305             OrderingType::Release => T::Repr::atomic_set_release(&self.0, v),
306             _ => build_error!("Wrong ordering"),
307         }
308     }
309 }
310 
311 impl<T: AtomicType + core::fmt::Debug> core::fmt::Debug for Atomic<T>
312 where
313     T::Repr: AtomicBasicOps,
314 {
fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result315     fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
316         core::fmt::Debug::fmt(&self.load(Relaxed), f)
317     }
318 }
319 
320 impl<T: AtomicType> Atomic<T>
321 where
322     T::Repr: AtomicExchangeOps,
323 {
324     /// Atomic exchange.
325     ///
326     /// Atomically updates `*self` to `v` and returns the old value of `*self`.
327     ///
328     /// # Examples
329     ///
330     /// ```
331     /// use kernel::sync::atomic::{Atomic, Acquire, Relaxed};
332     ///
333     /// let x = Atomic::new(42);
334     ///
335     /// assert_eq!(42, x.xchg(52, Acquire));
336     /// assert_eq!(52, x.load(Relaxed));
337     /// ```
338     #[doc(alias("atomic_xchg", "atomic64_xchg", "swap"))]
339     #[inline(always)]
xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T340     pub fn xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T {
341         let v = into_repr(v);
342 
343         // INVARIANT: `self.0` is a valid `T` after `atomic_xchg*()` because `v` is transmutable to
344         // `T`.
345         let ret = {
346             match Ordering::TYPE {
347                 OrderingType::Full => T::Repr::atomic_xchg(&self.0, v),
348                 OrderingType::Acquire => T::Repr::atomic_xchg_acquire(&self.0, v),
349                 OrderingType::Release => T::Repr::atomic_xchg_release(&self.0, v),
350                 OrderingType::Relaxed => T::Repr::atomic_xchg_relaxed(&self.0, v),
351             }
352         };
353 
354         // SAFETY: `ret` comes from reading `*self`, which is a valid `T` per type invariants.
355         unsafe { from_repr(ret) }
356     }
357 
358     /// Atomic compare and exchange.
359     ///
360     /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
361     /// modified.
362     ///
363     /// Compare: The comparison is done via the byte level comparison between `*self` and `old`.
364     ///
365     /// Ordering: When succeeds, provides the corresponding ordering as the `Ordering` type
366     /// parameter indicates, and a failed one doesn't provide any ordering, the load part of a
367     /// failed cmpxchg is a [`Relaxed`] load.
368     ///
369     /// Returns `Ok(value)` if cmpxchg succeeds, and `value` is guaranteed to be equal to `old`,
370     /// otherwise returns `Err(value)`, and `value` is the current value of `*self`.
371     ///
372     /// # Examples
373     ///
374     /// ```
375     /// use kernel::sync::atomic::{Atomic, Full, Relaxed};
376     ///
377     /// let x = Atomic::new(42);
378     ///
379     /// // Checks whether cmpxchg succeeded.
380     /// let success = x.cmpxchg(52, 64, Relaxed).is_ok();
381     /// # assert!(!success);
382     ///
383     /// // Checks whether cmpxchg failed.
384     /// let failure = x.cmpxchg(52, 64, Relaxed).is_err();
385     /// # assert!(failure);
386     ///
387     /// // Uses the old value if failed, probably re-try cmpxchg.
388     /// match x.cmpxchg(52, 64, Relaxed) {
389     ///     Ok(_) => { },
390     ///     Err(old) => {
391     ///         // do something with `old`.
392     ///         # assert_eq!(old, 42);
393     ///     }
394     /// }
395     ///
396     /// // Uses the latest value regardlessly, same as atomic_cmpxchg() in C.
397     /// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
398     /// # assert_eq!(42, latest);
399     /// assert_eq!(64, x.load(Relaxed));
400     /// ```
401     ///
402     /// [`Relaxed`]: ordering::Relaxed
403     #[doc(alias(
404         "atomic_cmpxchg",
405         "atomic64_cmpxchg",
406         "atomic_try_cmpxchg",
407         "atomic64_try_cmpxchg",
408         "compare_exchange"
409     ))]
410     #[inline(always)]
cmpxchg<Ordering: ordering::Ordering>( &self, mut old: T, new: T, o: Ordering, ) -> Result<T, T>411     pub fn cmpxchg<Ordering: ordering::Ordering>(
412         &self,
413         mut old: T,
414         new: T,
415         o: Ordering,
416     ) -> Result<T, T> {
417         // Note on code generation:
418         //
419         // try_cmpxchg() is used to implement cmpxchg(), and if the helper functions are inlined,
420         // the compiler is able to figure out that branch is not needed if the users don't care
421         // about whether the operation succeeds or not. One exception is on x86, due to commit
422         // 44fe84459faf ("locking/atomic: Fix atomic_try_cmpxchg() semantics"), the
423         // atomic_try_cmpxchg() on x86 has a branch even if the caller doesn't care about the
424         // success of cmpxchg and only wants to use the old value. For example, for code like:
425         //
426         //     let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
427         //
428         // It will still generate code:
429         //
430         //     movl    $0x40, %ecx
431         //     movl    $0x34, %eax
432         //     lock
433         //     cmpxchgl        %ecx, 0x4(%rsp)
434         //     jne     1f
435         //     2:
436         //     ...
437         //     1:  movl    %eax, %ecx
438         //     jmp 2b
439         //
440         // This might be "fixed" by introducing a try_cmpxchg_exclusive() that knows the "*old"
441         // location in the C function is always safe to write.
442         if self.try_cmpxchg(&mut old, new, o) {
443             Ok(old)
444         } else {
445             Err(old)
446         }
447     }
448 
449     /// Atomic compare and exchange and returns whether the operation succeeds.
450     ///
451     /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
452     /// modified, `*old` is updated to the current value of `*self`.
453     ///
454     /// "Compare" and "Ordering" part are the same as [`Atomic::cmpxchg()`].
455     ///
456     /// Returns `true` means the cmpxchg succeeds otherwise returns `false`.
457     #[inline(always)]
try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool458     fn try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool {
459         let mut tmp = into_repr(*old);
460         let new = into_repr(new);
461 
462         // INVARIANT: `self.0` is a valid `T` after `atomic_try_cmpxchg*()` because `new` is
463         // transmutable to `T`.
464         let ret = {
465             match Ordering::TYPE {
466                 OrderingType::Full => T::Repr::atomic_try_cmpxchg(&self.0, &mut tmp, new),
467                 OrderingType::Acquire => {
468                     T::Repr::atomic_try_cmpxchg_acquire(&self.0, &mut tmp, new)
469                 }
470                 OrderingType::Release => {
471                     T::Repr::atomic_try_cmpxchg_release(&self.0, &mut tmp, new)
472                 }
473                 OrderingType::Relaxed => {
474                     T::Repr::atomic_try_cmpxchg_relaxed(&self.0, &mut tmp, new)
475                 }
476             }
477         };
478 
479         // SAFETY: `tmp` comes from reading `*self`, which is a valid `T` per type invariants.
480         *old = unsafe { from_repr(tmp) };
481 
482         ret
483     }
484 }
485 
486 impl<T: AtomicType> Atomic<T>
487 where
488     T::Repr: AtomicArithmeticOps,
489 {
490     /// Atomic add.
491     ///
492     /// Atomically updates `*self` to `(*self).wrapping_add(v)`.
493     ///
494     /// # Examples
495     ///
496     /// ```
497     /// use kernel::sync::atomic::{Atomic, Relaxed};
498     ///
499     /// let x = Atomic::new(42);
500     ///
501     /// assert_eq!(42, x.load(Relaxed));
502     ///
503     /// x.add(12, Relaxed);
504     ///
505     /// assert_eq!(54, x.load(Relaxed));
506     /// ```
507     #[inline(always)]
add<Rhs>(&self, v: Rhs, _: ordering::Relaxed) where T: AtomicAdd<Rhs>,508     pub fn add<Rhs>(&self, v: Rhs, _: ordering::Relaxed)
509     where
510         T: AtomicAdd<Rhs>,
511     {
512         let v = T::rhs_into_delta(v);
513 
514         // INVARIANT: `self.0` is a valid `T` after `atomic_add()` due to safety requirement of
515         // `AtomicAdd`.
516         T::Repr::atomic_add(&self.0, v);
517     }
518 
519     /// Atomic fetch and add.
520     ///
521     /// Atomically updates `*self` to `(*self).wrapping_add(v)`, and returns the value of `*self`
522     /// before the update.
523     ///
524     /// # Examples
525     ///
526     /// ```
527     /// use kernel::sync::atomic::{Atomic, Acquire, Full, Relaxed};
528     ///
529     /// let x = Atomic::new(42);
530     ///
531     /// assert_eq!(42, x.load(Relaxed));
532     ///
533     /// assert_eq!(54, { x.fetch_add(12, Acquire); x.load(Relaxed) });
534     ///
535     /// let x = Atomic::new(42);
536     ///
537     /// assert_eq!(42, x.load(Relaxed));
538     ///
539     /// assert_eq!(54, { x.fetch_add(12, Full); x.load(Relaxed) } );
540     /// ```
541     #[inline(always)]
fetch_add<Rhs, Ordering: ordering::Ordering>(&self, v: Rhs, _: Ordering) -> T where T: AtomicAdd<Rhs>,542     pub fn fetch_add<Rhs, Ordering: ordering::Ordering>(&self, v: Rhs, _: Ordering) -> T
543     where
544         T: AtomicAdd<Rhs>,
545     {
546         let v = T::rhs_into_delta(v);
547 
548         // INVARIANT: `self.0` is a valid `T` after `atomic_fetch_add*()` due to safety requirement
549         // of `AtomicAdd`.
550         let ret = {
551             match Ordering::TYPE {
552                 OrderingType::Full => T::Repr::atomic_fetch_add(&self.0, v),
553                 OrderingType::Acquire => T::Repr::atomic_fetch_add_acquire(&self.0, v),
554                 OrderingType::Release => T::Repr::atomic_fetch_add_release(&self.0, v),
555                 OrderingType::Relaxed => T::Repr::atomic_fetch_add_relaxed(&self.0, v),
556             }
557         };
558 
559         // SAFETY: `ret` comes from reading `self.0`, which is a valid `T` per type invariants.
560         unsafe { from_repr(ret) }
561     }
562 }
563