xref: /linux/arch/x86/xen/enlighten_pv.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37 
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51 
52 #include <asm/cpuid.h>
53 #include <asm/paravirt.h>
54 #include <asm/apic.h>
55 #include <asm/page.h>
56 #include <asm/xen/pci.h>
57 #include <asm/xen/hypercall.h>
58 #include <asm/xen/hypervisor.h>
59 #include <asm/xen/cpuid.h>
60 #include <asm/fixmap.h>
61 #include <asm/processor.h>
62 #include <asm/proto.h>
63 #include <asm/msr-index.h>
64 #include <asm/traps.h>
65 #include <asm/setup.h>
66 #include <asm/desc.h>
67 #include <asm/pgalloc.h>
68 #include <asm/tlbflush.h>
69 #include <asm/reboot.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mtrr.h>
73 #include <asm/mwait.h>
74 #include <asm/pci_x86.h>
75 #include <asm/cpu.h>
76 #ifdef CONFIG_X86_IOPL_IOPERM
77 #include <asm/io_bitmap.h>
78 #endif
79 
80 #ifdef CONFIG_ACPI
81 #include <linux/acpi.h>
82 #include <asm/acpi.h>
83 #include <acpi/proc_cap_intel.h>
84 #include <acpi/processor.h>
85 #include <xen/interface/platform.h>
86 #endif
87 
88 #include "xen-ops.h"
89 
90 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
91 
92 void *xen_initial_gdt;
93 
94 static int xen_cpu_up_prepare_pv(unsigned int cpu);
95 static int xen_cpu_dead_pv(unsigned int cpu);
96 
97 struct tls_descs {
98 	struct desc_struct desc[3];
99 };
100 
101 DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
102 DEFINE_PER_CPU(unsigned int, xen_lazy_nesting);
103 
xen_get_lazy_mode(void)104 enum xen_lazy_mode xen_get_lazy_mode(void)
105 {
106 	if (in_interrupt())
107 		return XEN_LAZY_NONE;
108 
109 	return this_cpu_read(xen_lazy_mode);
110 }
111 
112 /*
113  * Updating the 3 TLS descriptors in the GDT on every task switch is
114  * surprisingly expensive so we avoid updating them if they haven't
115  * changed.  Since Xen writes different descriptors than the one
116  * passed in the update_descriptor hypercall we keep shadow copies to
117  * compare against.
118  */
119 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
120 
121 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
122 
parse_xen_msr_safe(char * str)123 static int __init parse_xen_msr_safe(char *str)
124 {
125 	if (str)
126 		return kstrtobool(str, &xen_msr_safe);
127 	return -EINVAL;
128 }
129 early_param("xen_msr_safe", parse_xen_msr_safe);
130 
131 /* Get MTRR settings from Xen and put them into mtrr_state. */
xen_set_mtrr_data(void)132 static void __init xen_set_mtrr_data(void)
133 {
134 #ifdef CONFIG_MTRR
135 	struct xen_platform_op op = {
136 		.cmd = XENPF_read_memtype,
137 		.interface_version = XENPF_INTERFACE_VERSION,
138 	};
139 	unsigned int reg;
140 	unsigned long mask;
141 	uint32_t eax, width;
142 	static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
143 
144 	/* Get physical address width (only 64-bit cpus supported). */
145 	width = 36;
146 	eax = cpuid_eax(0x80000000);
147 	if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
148 		eax = cpuid_eax(0x80000008);
149 		width = eax & 0xff;
150 	}
151 
152 	for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
153 		op.u.read_memtype.reg = reg;
154 		if (HYPERVISOR_platform_op(&op))
155 			break;
156 
157 		/*
158 		 * Only called in dom0, which has all RAM PFNs mapped at
159 		 * RAM MFNs, and all PCI space etc. is identity mapped.
160 		 * This means we can treat MFN == PFN regarding MTRR settings.
161 		 */
162 		var[reg].base_lo = op.u.read_memtype.type;
163 		var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
164 		var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
165 		mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
166 		mask &= (1UL << width) - 1;
167 		if (mask)
168 			mask |= MTRR_PHYSMASK_V;
169 		var[reg].mask_lo = mask;
170 		var[reg].mask_hi = mask >> 32;
171 	}
172 
173 	/* Only overwrite MTRR state if any MTRR could be got from Xen. */
174 	if (reg)
175 		guest_force_mtrr_state(var, reg, MTRR_TYPE_UNCACHABLE);
176 #endif
177 }
178 
xen_pv_init_platform(void)179 static void __init xen_pv_init_platform(void)
180 {
181 	/* PV guests can't operate virtio devices without grants. */
182 	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
183 		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
184 
185 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
186 
187 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
188 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
189 
190 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
191 	xen_vcpu_info_reset(0);
192 
193 	/* pvclock is in shared info area */
194 	xen_init_time_ops();
195 
196 	if (xen_initial_domain())
197 		xen_set_mtrr_data();
198 	else
199 		guest_force_mtrr_state(NULL, 0, MTRR_TYPE_WRBACK);
200 
201 	/* Adjust nr_cpu_ids before "enumeration" happens */
202 	xen_smp_count_cpus();
203 }
204 
xen_pv_guest_late_init(void)205 static void __init xen_pv_guest_late_init(void)
206 {
207 #ifndef CONFIG_SMP
208 	/* Setup shared vcpu info for non-smp configurations */
209 	xen_setup_vcpu_info_placement();
210 #endif
211 }
212 
213 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
214 static __read_mostly unsigned int cpuid_leaf5_edx_val;
215 
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)216 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
217 		      unsigned int *cx, unsigned int *dx)
218 {
219 	unsigned int maskebx = ~0;
220 	unsigned int or_ebx = 0;
221 
222 	/*
223 	 * Mask out inconvenient features, to try and disable as many
224 	 * unsupported kernel subsystems as possible.
225 	 */
226 	switch (*ax) {
227 	case 0x1:
228 		/* Replace initial APIC ID in bits 24-31 of EBX. */
229 		/* See xen_pv_smp_config() for related topology preparations. */
230 		maskebx = 0x00ffffff;
231 		or_ebx = smp_processor_id() << 24;
232 		break;
233 
234 	case CPUID_LEAF_MWAIT:
235 		/* Synthesize the values.. */
236 		*ax = 0;
237 		*bx = 0;
238 		*cx = cpuid_leaf5_ecx_val;
239 		*dx = cpuid_leaf5_edx_val;
240 		return;
241 
242 	case 0xb:
243 		/* Suppress extended topology stuff */
244 		maskebx = 0;
245 		break;
246 	}
247 
248 	asm(XEN_EMULATE_PREFIX "cpuid"
249 		: "=a" (*ax),
250 		  "=b" (*bx),
251 		  "=c" (*cx),
252 		  "=d" (*dx)
253 		: "0" (*ax), "2" (*cx));
254 
255 	*bx &= maskebx;
256 	*bx |= or_ebx;
257 }
258 
xen_check_mwait(void)259 static bool __init xen_check_mwait(void)
260 {
261 #ifdef CONFIG_ACPI
262 	struct xen_platform_op op = {
263 		.cmd			= XENPF_set_processor_pminfo,
264 		.u.set_pminfo.id	= -1,
265 		.u.set_pminfo.type	= XEN_PM_PDC,
266 	};
267 	uint32_t buf[3];
268 	unsigned int ax, bx, cx, dx;
269 	unsigned int mwait_mask;
270 
271 	/* We need to determine whether it is OK to expose the MWAIT
272 	 * capability to the kernel to harvest deeper than C3 states from ACPI
273 	 * _CST using the processor_harvest_xen.c module. For this to work, we
274 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
275 	 * checks against). The hypervisor won't expose the MWAIT flag because
276 	 * it would break backwards compatibility; so we will find out directly
277 	 * from the hardware and hypercall.
278 	 */
279 	if (!xen_initial_domain())
280 		return false;
281 
282 	/*
283 	 * When running under platform earlier than Xen4.2, do not expose
284 	 * mwait, to avoid the risk of loading native acpi pad driver
285 	 */
286 	if (!xen_running_on_version_or_later(4, 2))
287 		return false;
288 
289 	ax = 1;
290 	cx = 0;
291 
292 	native_cpuid(&ax, &bx, &cx, &dx);
293 
294 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
295 		     (1 << (X86_FEATURE_MWAIT % 32));
296 
297 	if ((cx & mwait_mask) != mwait_mask)
298 		return false;
299 
300 	/* We need to emulate the MWAIT_LEAF and for that we need both
301 	 * ecx and edx. The hypercall provides only partial information.
302 	 */
303 
304 	ax = CPUID_LEAF_MWAIT;
305 	bx = 0;
306 	cx = 0;
307 	dx = 0;
308 
309 	native_cpuid(&ax, &bx, &cx, &dx);
310 
311 	/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
312 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
313 	 */
314 	buf[0] = ACPI_PDC_REVISION_ID;
315 	buf[1] = 1;
316 	buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
317 
318 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
319 
320 	if ((HYPERVISOR_platform_op(&op) == 0) &&
321 	    (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
322 		cpuid_leaf5_ecx_val = cx;
323 		cpuid_leaf5_edx_val = dx;
324 	}
325 	return true;
326 #else
327 	return false;
328 #endif
329 }
330 
xen_check_xsave(void)331 static bool __init xen_check_xsave(void)
332 {
333 	unsigned int cx, xsave_mask;
334 
335 	cx = cpuid_ecx(1);
336 
337 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
338 		     (1 << (X86_FEATURE_OSXSAVE % 32));
339 
340 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
341 	return (cx & xsave_mask) == xsave_mask;
342 }
343 
xen_init_capabilities(void)344 static void __init xen_init_capabilities(void)
345 {
346 	setup_force_cpu_cap(X86_FEATURE_XENPV);
347 	setup_clear_cpu_cap(X86_FEATURE_DCA);
348 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
349 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
350 	setup_clear_cpu_cap(X86_FEATURE_ACC);
351 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
352 	setup_clear_cpu_cap(X86_FEATURE_SME);
353 	setup_clear_cpu_cap(X86_FEATURE_LKGS);
354 
355 	/*
356 	 * Xen PV would need some work to support PCID: CR3 handling as well
357 	 * as xen_flush_tlb_others() would need updating.
358 	 */
359 	setup_clear_cpu_cap(X86_FEATURE_PCID);
360 
361 	if (!xen_initial_domain())
362 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
363 
364 	if (xen_check_mwait())
365 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
366 	else
367 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
368 
369 	if (!xen_check_xsave()) {
370 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
371 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
372 	}
373 }
374 
xen_set_debugreg(int reg,unsigned long val)375 static noinstr void xen_set_debugreg(int reg, unsigned long val)
376 {
377 	HYPERVISOR_set_debugreg(reg, val);
378 }
379 
xen_get_debugreg(int reg)380 static noinstr unsigned long xen_get_debugreg(int reg)
381 {
382 	return HYPERVISOR_get_debugreg(reg);
383 }
384 
xen_start_context_switch(struct task_struct * prev)385 static void xen_start_context_switch(struct task_struct *prev)
386 {
387 	BUG_ON(preemptible());
388 
389 	if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
390 		arch_leave_lazy_mmu_mode();
391 		set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
392 	}
393 	enter_lazy(XEN_LAZY_CPU);
394 }
395 
xen_end_context_switch(struct task_struct * next)396 static void xen_end_context_switch(struct task_struct *next)
397 {
398 	BUG_ON(preemptible());
399 
400 	xen_mc_flush();
401 	leave_lazy(XEN_LAZY_CPU);
402 	if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
403 		arch_enter_lazy_mmu_mode();
404 }
405 
xen_store_tr(void)406 static unsigned long xen_store_tr(void)
407 {
408 	return 0;
409 }
410 
411 /*
412  * Set the page permissions for a particular virtual address.  If the
413  * address is a vmalloc mapping (or other non-linear mapping), then
414  * find the linear mapping of the page and also set its protections to
415  * match.
416  */
set_aliased_prot(void * v,pgprot_t prot)417 static void set_aliased_prot(void *v, pgprot_t prot)
418 {
419 	int level;
420 	pte_t *ptep;
421 	pte_t pte;
422 	unsigned long pfn;
423 	unsigned char dummy;
424 	void *va;
425 
426 	ptep = lookup_address((unsigned long)v, &level);
427 	BUG_ON(ptep == NULL);
428 
429 	pfn = pte_pfn(*ptep);
430 	pte = pfn_pte(pfn, prot);
431 
432 	/*
433 	 * Careful: update_va_mapping() will fail if the virtual address
434 	 * we're poking isn't populated in the page tables.  We don't
435 	 * need to worry about the direct map (that's always in the page
436 	 * tables), but we need to be careful about vmap space.  In
437 	 * particular, the top level page table can lazily propagate
438 	 * entries between processes, so if we've switched mms since we
439 	 * vmapped the target in the first place, we might not have the
440 	 * top-level page table entry populated.
441 	 *
442 	 * We disable preemption because we want the same mm active when
443 	 * we probe the target and when we issue the hypercall.  We'll
444 	 * have the same nominal mm, but if we're a kernel thread, lazy
445 	 * mm dropping could change our pgd.
446 	 *
447 	 * Out of an abundance of caution, this uses __get_user() to fault
448 	 * in the target address just in case there's some obscure case
449 	 * in which the target address isn't readable.
450 	 */
451 
452 	preempt_disable();
453 
454 	copy_from_kernel_nofault(&dummy, v, 1);
455 
456 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
457 		BUG();
458 
459 	va = __va(PFN_PHYS(pfn));
460 
461 	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
462 		BUG();
463 
464 	preempt_enable();
465 }
466 
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)467 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
468 {
469 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
470 	int i;
471 
472 	/*
473 	 * We need to mark the all aliases of the LDT pages RO.  We
474 	 * don't need to call vm_flush_aliases(), though, since that's
475 	 * only responsible for flushing aliases out the TLBs, not the
476 	 * page tables, and Xen will flush the TLB for us if needed.
477 	 *
478 	 * To avoid confusing future readers: none of this is necessary
479 	 * to load the LDT.  The hypervisor only checks this when the
480 	 * LDT is faulted in due to subsequent descriptor access.
481 	 */
482 
483 	for (i = 0; i < entries; i += entries_per_page)
484 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
485 }
486 
xen_free_ldt(struct desc_struct * ldt,unsigned entries)487 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
488 {
489 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
490 	int i;
491 
492 	for (i = 0; i < entries; i += entries_per_page)
493 		set_aliased_prot(ldt + i, PAGE_KERNEL);
494 }
495 
xen_set_ldt(const void * addr,unsigned entries)496 static void xen_set_ldt(const void *addr, unsigned entries)
497 {
498 	struct mmuext_op *op;
499 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
500 
501 	trace_xen_cpu_set_ldt(addr, entries);
502 
503 	op = mcs.args;
504 	op->cmd = MMUEXT_SET_LDT;
505 	op->arg1.linear_addr = (unsigned long)addr;
506 	op->arg2.nr_ents = entries;
507 
508 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
509 
510 	xen_mc_issue(XEN_LAZY_CPU);
511 }
512 
xen_load_gdt(const struct desc_ptr * dtr)513 static void xen_load_gdt(const struct desc_ptr *dtr)
514 {
515 	unsigned long va = dtr->address;
516 	unsigned int size = dtr->size + 1;
517 	unsigned long pfn, mfn;
518 	int level;
519 	pte_t *ptep;
520 	void *virt;
521 
522 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
523 	BUG_ON(size > PAGE_SIZE);
524 	BUG_ON(va & ~PAGE_MASK);
525 
526 	/*
527 	 * The GDT is per-cpu and is in the percpu data area.
528 	 * That can be virtually mapped, so we need to do a
529 	 * page-walk to get the underlying MFN for the
530 	 * hypercall.  The page can also be in the kernel's
531 	 * linear range, so we need to RO that mapping too.
532 	 */
533 	ptep = lookup_address(va, &level);
534 	BUG_ON(ptep == NULL);
535 
536 	pfn = pte_pfn(*ptep);
537 	mfn = pfn_to_mfn(pfn);
538 	virt = __va(PFN_PHYS(pfn));
539 
540 	make_lowmem_page_readonly((void *)va);
541 	make_lowmem_page_readonly(virt);
542 
543 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
544 		BUG();
545 }
546 
547 /*
548  * load_gdt for early boot, when the gdt is only mapped once
549  */
xen_load_gdt_boot(const struct desc_ptr * dtr)550 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
551 {
552 	unsigned long va = dtr->address;
553 	unsigned int size = dtr->size + 1;
554 	unsigned long pfn, mfn;
555 	pte_t pte;
556 
557 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
558 	BUG_ON(size > PAGE_SIZE);
559 	BUG_ON(va & ~PAGE_MASK);
560 
561 	pfn = virt_to_pfn((void *)va);
562 	mfn = pfn_to_mfn(pfn);
563 
564 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
565 
566 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
567 		BUG();
568 
569 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
570 		BUG();
571 }
572 
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)573 static inline bool desc_equal(const struct desc_struct *d1,
574 			      const struct desc_struct *d2)
575 {
576 	return !memcmp(d1, d2, sizeof(*d1));
577 }
578 
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)579 static void load_TLS_descriptor(struct thread_struct *t,
580 				unsigned int cpu, unsigned int i)
581 {
582 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
583 	struct desc_struct *gdt;
584 	xmaddr_t maddr;
585 	struct multicall_space mc;
586 
587 	if (desc_equal(shadow, &t->tls_array[i]))
588 		return;
589 
590 	*shadow = t->tls_array[i];
591 
592 	gdt = get_cpu_gdt_rw(cpu);
593 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
594 	mc = __xen_mc_entry(0);
595 
596 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
597 }
598 
xen_load_tls(struct thread_struct * t,unsigned int cpu)599 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
600 {
601 	/*
602 	 * In lazy mode we need to zero %fs, otherwise we may get an
603 	 * exception between the new %fs descriptor being loaded and
604 	 * %fs being effectively cleared at __switch_to().
605 	 */
606 	if (xen_get_lazy_mode() == XEN_LAZY_CPU)
607 		loadsegment(fs, 0);
608 
609 	xen_mc_batch();
610 
611 	load_TLS_descriptor(t, cpu, 0);
612 	load_TLS_descriptor(t, cpu, 1);
613 	load_TLS_descriptor(t, cpu, 2);
614 
615 	xen_mc_issue(XEN_LAZY_CPU);
616 }
617 
xen_load_gs_index(unsigned int idx)618 static void xen_load_gs_index(unsigned int idx)
619 {
620 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
621 		BUG();
622 }
623 
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)624 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
625 				const void *ptr)
626 {
627 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
628 	u64 entry = *(u64 *)ptr;
629 
630 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
631 
632 	preempt_disable();
633 
634 	xen_mc_flush();
635 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
636 		BUG();
637 
638 	preempt_enable();
639 }
640 
641 void noist_exc_debug(struct pt_regs *regs);
642 
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)643 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
644 {
645 	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
646 	exc_nmi(regs);
647 }
648 
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)649 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
650 {
651 	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
652 	exc_double_fault(regs, error_code);
653 }
654 
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)655 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
656 {
657 	/*
658 	 * There's no IST on Xen PV, but we still need to dispatch
659 	 * to the correct handler.
660 	 */
661 	if (user_mode(regs))
662 		noist_exc_debug(regs);
663 	else
664 		exc_debug(regs);
665 }
666 
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)667 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
668 {
669 	/* This should never happen and there is no way to handle it. */
670 	instrumentation_begin();
671 	pr_err("Unknown trap in Xen PV mode.");
672 	BUG();
673 	instrumentation_end();
674 }
675 
676 #ifdef CONFIG_X86_MCE
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)677 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
678 {
679 	/*
680 	 * There's no IST on Xen PV, but we still need to dispatch
681 	 * to the correct handler.
682 	 */
683 	if (user_mode(regs))
684 		noist_exc_machine_check(regs);
685 	else
686 		exc_machine_check(regs);
687 }
688 #endif
689 
690 struct trap_array_entry {
691 	void (*orig)(void);
692 	void (*xen)(void);
693 	bool ist_okay;
694 };
695 
696 #define TRAP_ENTRY(func, ist_ok) {			\
697 	.orig		= asm_##func,			\
698 	.xen		= xen_asm_##func,		\
699 	.ist_okay	= ist_ok }
700 
701 #define TRAP_ENTRY_REDIR(func, ist_ok) {		\
702 	.orig		= asm_##func,			\
703 	.xen		= xen_asm_xenpv_##func,		\
704 	.ist_okay	= ist_ok }
705 
706 static struct trap_array_entry trap_array[] = {
707 	TRAP_ENTRY_REDIR(exc_debug,			true  ),
708 	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
709 #ifdef CONFIG_X86_MCE
710 	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
711 #endif
712 	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
713 	TRAP_ENTRY(exc_int3,				false ),
714 	TRAP_ENTRY(exc_overflow,			false ),
715 #ifdef CONFIG_IA32_EMULATION
716 	TRAP_ENTRY(int80_emulation,			false ),
717 #endif
718 	TRAP_ENTRY(exc_page_fault,			false ),
719 	TRAP_ENTRY(exc_divide_error,			false ),
720 	TRAP_ENTRY(exc_bounds,				false ),
721 	TRAP_ENTRY(exc_invalid_op,			false ),
722 	TRAP_ENTRY(exc_device_not_available,		false ),
723 	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
724 	TRAP_ENTRY(exc_invalid_tss,			false ),
725 	TRAP_ENTRY(exc_segment_not_present,		false ),
726 	TRAP_ENTRY(exc_stack_segment,			false ),
727 	TRAP_ENTRY(exc_general_protection,		false ),
728 	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
729 	TRAP_ENTRY(exc_coprocessor_error,		false ),
730 	TRAP_ENTRY(exc_alignment_check,			false ),
731 	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
732 #ifdef CONFIG_X86_CET
733 	TRAP_ENTRY(exc_control_protection,		false ),
734 #endif
735 };
736 
get_trap_addr(void ** addr,unsigned int ist)737 static bool __ref get_trap_addr(void **addr, unsigned int ist)
738 {
739 	unsigned int nr;
740 	bool ist_okay = false;
741 	bool found = false;
742 
743 	/*
744 	 * Replace trap handler addresses by Xen specific ones.
745 	 * Check for known traps using IST and whitelist them.
746 	 * The debugger ones are the only ones we care about.
747 	 * Xen will handle faults like double_fault, so we should never see
748 	 * them.  Warn if there's an unexpected IST-using fault handler.
749 	 */
750 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
751 		struct trap_array_entry *entry = trap_array + nr;
752 
753 		if (*addr == entry->orig) {
754 			*addr = entry->xen;
755 			ist_okay = entry->ist_okay;
756 			found = true;
757 			break;
758 		}
759 	}
760 
761 	if (nr == ARRAY_SIZE(trap_array) &&
762 	    *addr >= (void *)early_idt_handler_array[0] &&
763 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
764 		nr = (*addr - (void *)early_idt_handler_array[0]) /
765 		     EARLY_IDT_HANDLER_SIZE;
766 		*addr = (void *)xen_early_idt_handler_array[nr];
767 		found = true;
768 	}
769 
770 	if (!found)
771 		*addr = (void *)xen_asm_exc_xen_unknown_trap;
772 
773 	if (WARN_ON(found && ist != 0 && !ist_okay))
774 		return false;
775 
776 	return true;
777 }
778 
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)779 static int cvt_gate_to_trap(int vector, const gate_desc *val,
780 			    struct trap_info *info)
781 {
782 	unsigned long addr;
783 
784 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
785 		return 0;
786 
787 	info->vector = vector;
788 
789 	addr = gate_offset(val);
790 	if (!get_trap_addr((void **)&addr, val->bits.ist))
791 		return 0;
792 	info->address = addr;
793 
794 	info->cs = gate_segment(val);
795 	info->flags = val->bits.dpl;
796 	/* interrupt gates clear IF */
797 	if (val->bits.type == GATE_INTERRUPT)
798 		info->flags |= 1 << 2;
799 
800 	return 1;
801 }
802 
803 /* Locations of each CPU's IDT */
804 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
805 
806 /* Set an IDT entry.  If the entry is part of the current IDT, then
807    also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)808 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
809 {
810 	unsigned long p = (unsigned long)&dt[entrynum];
811 	unsigned long start, end;
812 
813 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
814 
815 	preempt_disable();
816 
817 	start = __this_cpu_read(idt_desc.address);
818 	end = start + __this_cpu_read(idt_desc.size) + 1;
819 
820 	xen_mc_flush();
821 
822 	native_write_idt_entry(dt, entrynum, g);
823 
824 	if (p >= start && (p + 8) <= end) {
825 		struct trap_info info[2];
826 
827 		info[1].address = 0;
828 
829 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
830 			if (HYPERVISOR_set_trap_table(info))
831 				BUG();
832 	}
833 
834 	preempt_enable();
835 }
836 
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)837 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
838 				      struct trap_info *traps, bool full)
839 {
840 	unsigned in, out, count;
841 
842 	count = (desc->size+1) / sizeof(gate_desc);
843 	BUG_ON(count > 256);
844 
845 	for (in = out = 0; in < count; in++) {
846 		gate_desc *entry = (gate_desc *)(desc->address) + in;
847 
848 		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
849 			out++;
850 	}
851 
852 	return out;
853 }
854 
xen_copy_trap_info(struct trap_info * traps)855 void xen_copy_trap_info(struct trap_info *traps)
856 {
857 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
858 
859 	xen_convert_trap_info(desc, traps, true);
860 }
861 
862 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
863    hold a spinlock to protect the static traps[] array (static because
864    it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)865 static void xen_load_idt(const struct desc_ptr *desc)
866 {
867 	static DEFINE_SPINLOCK(lock);
868 	static struct trap_info traps[257];
869 	static const struct trap_info zero = { };
870 	unsigned out;
871 
872 	trace_xen_cpu_load_idt(desc);
873 
874 	spin_lock(&lock);
875 
876 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
877 
878 	out = xen_convert_trap_info(desc, traps, false);
879 	traps[out] = zero;
880 
881 	xen_mc_flush();
882 	if (HYPERVISOR_set_trap_table(traps))
883 		BUG();
884 
885 	spin_unlock(&lock);
886 }
887 
888 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
889    they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)890 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
891 				const void *desc, int type)
892 {
893 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
894 
895 	preempt_disable();
896 
897 	switch (type) {
898 	case DESC_LDT:
899 	case DESC_TSS:
900 		/* ignore */
901 		break;
902 
903 	default: {
904 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
905 
906 		xen_mc_flush();
907 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
908 			BUG();
909 	}
910 
911 	}
912 
913 	preempt_enable();
914 }
915 
916 /*
917  * Version of write_gdt_entry for use at early boot-time needed to
918  * update an entry as simply as possible.
919  */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)920 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
921 					    const void *desc, int type)
922 {
923 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
924 
925 	switch (type) {
926 	case DESC_LDT:
927 	case DESC_TSS:
928 		/* ignore */
929 		break;
930 
931 	default: {
932 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
933 
934 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
935 			dt[entry] = *(struct desc_struct *)desc;
936 	}
937 
938 	}
939 }
940 
xen_load_sp0(unsigned long sp0)941 static void xen_load_sp0(unsigned long sp0)
942 {
943 	struct multicall_space mcs;
944 
945 	mcs = xen_mc_entry(0);
946 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
947 	xen_mc_issue(XEN_LAZY_CPU);
948 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
949 }
950 
951 #ifdef CONFIG_X86_IOPL_IOPERM
xen_invalidate_io_bitmap(void)952 static void xen_invalidate_io_bitmap(void)
953 {
954 	struct physdev_set_iobitmap iobitmap = {
955 		.bitmap = NULL,
956 		.nr_ports = 0,
957 	};
958 
959 	native_tss_invalidate_io_bitmap();
960 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
961 }
962 
xen_update_io_bitmap(void)963 static void xen_update_io_bitmap(void)
964 {
965 	struct physdev_set_iobitmap iobitmap;
966 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
967 
968 	native_tss_update_io_bitmap();
969 
970 	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
971 			  tss->x86_tss.io_bitmap_base;
972 	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
973 		iobitmap.nr_ports = 0;
974 	else
975 		iobitmap.nr_ports = IO_BITMAP_BITS;
976 
977 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
978 }
979 #endif
980 
xen_io_delay(void)981 static void xen_io_delay(void)
982 {
983 }
984 
985 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
986 
xen_read_cr0(void)987 static unsigned long xen_read_cr0(void)
988 {
989 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
990 
991 	if (unlikely(cr0 == 0)) {
992 		cr0 = native_read_cr0();
993 		this_cpu_write(xen_cr0_value, cr0);
994 	}
995 
996 	return cr0;
997 }
998 
xen_write_cr0(unsigned long cr0)999 static void xen_write_cr0(unsigned long cr0)
1000 {
1001 	struct multicall_space mcs;
1002 
1003 	this_cpu_write(xen_cr0_value, cr0);
1004 
1005 	/* Only pay attention to cr0.TS; everything else is
1006 	   ignored. */
1007 	mcs = xen_mc_entry(0);
1008 
1009 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1010 
1011 	xen_mc_issue(XEN_LAZY_CPU);
1012 }
1013 
xen_write_cr4(unsigned long cr4)1014 static void xen_write_cr4(unsigned long cr4)
1015 {
1016 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1017 
1018 	native_write_cr4(cr4);
1019 }
1020 
xen_do_read_msr(unsigned int msr,int * err)1021 static u64 xen_do_read_msr(unsigned int msr, int *err)
1022 {
1023 	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
1024 
1025 	if (pmu_msr_read(msr, &val, err))
1026 		return val;
1027 
1028 	if (err)
1029 		val = native_read_msr_safe(msr, err);
1030 	else
1031 		val = native_read_msr(msr);
1032 
1033 	switch (msr) {
1034 	case MSR_IA32_APICBASE:
1035 		val &= ~X2APIC_ENABLE;
1036 		if (smp_processor_id() == 0)
1037 			val |= MSR_IA32_APICBASE_BSP;
1038 		else
1039 			val &= ~MSR_IA32_APICBASE_BSP;
1040 		break;
1041 	}
1042 	return val;
1043 }
1044 
set_seg(unsigned int which,unsigned int low,unsigned int high,int * err)1045 static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1046 		    int *err)
1047 {
1048 	u64 base = ((u64)high << 32) | low;
1049 
1050 	if (HYPERVISOR_set_segment_base(which, base) == 0)
1051 		return;
1052 
1053 	if (err)
1054 		*err = -EIO;
1055 	else
1056 		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1057 }
1058 
1059 /*
1060  * Support write_msr_safe() and write_msr() semantics.
1061  * With err == NULL write_msr() semantics are selected.
1062  * Supplying an err pointer requires err to be pre-initialized with 0.
1063  */
xen_do_write_msr(unsigned int msr,unsigned int low,unsigned int high,int * err)1064 static void xen_do_write_msr(unsigned int msr, unsigned int low,
1065 			     unsigned int high, int *err)
1066 {
1067 	switch (msr) {
1068 	case MSR_FS_BASE:
1069 		set_seg(SEGBASE_FS, low, high, err);
1070 		break;
1071 
1072 	case MSR_KERNEL_GS_BASE:
1073 		set_seg(SEGBASE_GS_USER, low, high, err);
1074 		break;
1075 
1076 	case MSR_GS_BASE:
1077 		set_seg(SEGBASE_GS_KERNEL, low, high, err);
1078 		break;
1079 
1080 	case MSR_STAR:
1081 	case MSR_CSTAR:
1082 	case MSR_LSTAR:
1083 	case MSR_SYSCALL_MASK:
1084 	case MSR_IA32_SYSENTER_CS:
1085 	case MSR_IA32_SYSENTER_ESP:
1086 	case MSR_IA32_SYSENTER_EIP:
1087 		/* Fast syscall setup is all done in hypercalls, so
1088 		   these are all ignored.  Stub them out here to stop
1089 		   Xen console noise. */
1090 		break;
1091 
1092 	default:
1093 		if (!pmu_msr_write(msr, low, high, err)) {
1094 			if (err)
1095 				*err = native_write_msr_safe(msr, low, high);
1096 			else
1097 				native_write_msr(msr, low, high);
1098 		}
1099 	}
1100 }
1101 
xen_read_msr_safe(unsigned int msr,int * err)1102 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1103 {
1104 	return xen_do_read_msr(msr, err);
1105 }
1106 
xen_write_msr_safe(unsigned int msr,unsigned int low,unsigned int high)1107 static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1108 			      unsigned int high)
1109 {
1110 	int err = 0;
1111 
1112 	xen_do_write_msr(msr, low, high, &err);
1113 
1114 	return err;
1115 }
1116 
xen_read_msr(unsigned int msr)1117 static u64 xen_read_msr(unsigned int msr)
1118 {
1119 	int err;
1120 
1121 	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1122 }
1123 
xen_write_msr(unsigned int msr,unsigned low,unsigned high)1124 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1125 {
1126 	int err;
1127 
1128 	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1129 }
1130 
1131 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1132 void __init xen_setup_vcpu_info_placement(void)
1133 {
1134 	int cpu;
1135 
1136 	for_each_possible_cpu(cpu) {
1137 		/* Set up direct vCPU id mapping for PV guests. */
1138 		per_cpu(xen_vcpu_id, cpu) = cpu;
1139 		xen_vcpu_setup(cpu);
1140 	}
1141 
1142 	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1143 	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1144 	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1145 	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1146 }
1147 
1148 static const struct pv_info xen_info __initconst = {
1149 	.extra_user_64bit_cs = FLAT_USER_CS64,
1150 	.name = "Xen",
1151 };
1152 
1153 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1154 	.cpu = {
1155 		.cpuid = xen_cpuid,
1156 
1157 		.set_debugreg = xen_set_debugreg,
1158 		.get_debugreg = xen_get_debugreg,
1159 
1160 		.read_cr0 = xen_read_cr0,
1161 		.write_cr0 = xen_write_cr0,
1162 
1163 		.write_cr4 = xen_write_cr4,
1164 
1165 		.read_msr = xen_read_msr,
1166 		.write_msr = xen_write_msr,
1167 
1168 		.read_msr_safe = xen_read_msr_safe,
1169 		.write_msr_safe = xen_write_msr_safe,
1170 
1171 		.read_pmc = xen_read_pmc,
1172 
1173 		.load_tr_desc = paravirt_nop,
1174 		.set_ldt = xen_set_ldt,
1175 		.load_gdt = xen_load_gdt,
1176 		.load_idt = xen_load_idt,
1177 		.load_tls = xen_load_tls,
1178 		.load_gs_index = xen_load_gs_index,
1179 
1180 		.alloc_ldt = xen_alloc_ldt,
1181 		.free_ldt = xen_free_ldt,
1182 
1183 		.store_tr = xen_store_tr,
1184 
1185 		.write_ldt_entry = xen_write_ldt_entry,
1186 		.write_gdt_entry = xen_write_gdt_entry,
1187 		.write_idt_entry = xen_write_idt_entry,
1188 		.load_sp0 = xen_load_sp0,
1189 
1190 #ifdef CONFIG_X86_IOPL_IOPERM
1191 		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1192 		.update_io_bitmap = xen_update_io_bitmap,
1193 #endif
1194 		.io_delay = xen_io_delay,
1195 
1196 		.start_context_switch = xen_start_context_switch,
1197 		.end_context_switch = xen_end_context_switch,
1198 	},
1199 };
1200 
xen_restart(char * msg)1201 static void xen_restart(char *msg)
1202 {
1203 	xen_reboot(SHUTDOWN_reboot);
1204 }
1205 
xen_machine_halt(void)1206 static void xen_machine_halt(void)
1207 {
1208 	xen_reboot(SHUTDOWN_poweroff);
1209 }
1210 
xen_machine_power_off(void)1211 static void xen_machine_power_off(void)
1212 {
1213 	do_kernel_power_off();
1214 	xen_reboot(SHUTDOWN_poweroff);
1215 }
1216 
xen_crash_shutdown(struct pt_regs * regs)1217 static void xen_crash_shutdown(struct pt_regs *regs)
1218 {
1219 	xen_reboot(SHUTDOWN_crash);
1220 }
1221 
1222 static const struct machine_ops xen_machine_ops __initconst = {
1223 	.restart = xen_restart,
1224 	.halt = xen_machine_halt,
1225 	.power_off = xen_machine_power_off,
1226 	.shutdown = xen_machine_halt,
1227 	.crash_shutdown = xen_crash_shutdown,
1228 	.emergency_restart = xen_emergency_restart,
1229 };
1230 
xen_get_nmi_reason(void)1231 static unsigned char xen_get_nmi_reason(void)
1232 {
1233 	unsigned char reason = 0;
1234 
1235 	/* Construct a value which looks like it came from port 0x61. */
1236 	if (test_bit(_XEN_NMIREASON_io_error,
1237 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1238 		reason |= NMI_REASON_IOCHK;
1239 	if (test_bit(_XEN_NMIREASON_pci_serr,
1240 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1241 		reason |= NMI_REASON_SERR;
1242 
1243 	return reason;
1244 }
1245 
xen_boot_params_init_edd(void)1246 static void __init xen_boot_params_init_edd(void)
1247 {
1248 #if IS_ENABLED(CONFIG_EDD)
1249 	struct xen_platform_op op;
1250 	struct edd_info *edd_info;
1251 	u32 *mbr_signature;
1252 	unsigned nr;
1253 	int ret;
1254 
1255 	edd_info = boot_params.eddbuf;
1256 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1257 
1258 	op.cmd = XENPF_firmware_info;
1259 
1260 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1261 	for (nr = 0; nr < EDDMAXNR; nr++) {
1262 		struct edd_info *info = edd_info + nr;
1263 
1264 		op.u.firmware_info.index = nr;
1265 		info->params.length = sizeof(info->params);
1266 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1267 				     &info->params);
1268 		ret = HYPERVISOR_platform_op(&op);
1269 		if (ret)
1270 			break;
1271 
1272 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1273 		C(device);
1274 		C(version);
1275 		C(interface_support);
1276 		C(legacy_max_cylinder);
1277 		C(legacy_max_head);
1278 		C(legacy_sectors_per_track);
1279 #undef C
1280 	}
1281 	boot_params.eddbuf_entries = nr;
1282 
1283 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1284 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1285 		op.u.firmware_info.index = nr;
1286 		ret = HYPERVISOR_platform_op(&op);
1287 		if (ret)
1288 			break;
1289 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1290 	}
1291 	boot_params.edd_mbr_sig_buf_entries = nr;
1292 #endif
1293 }
1294 
1295 /*
1296  * Set up the GDT and segment registers for -fstack-protector.  Until
1297  * we do this, we have to be careful not to call any stack-protected
1298  * function, which is most of the kernel.
1299  */
xen_setup_gdt(int cpu)1300 static void __init xen_setup_gdt(int cpu)
1301 {
1302 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1303 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1304 
1305 	switch_gdt_and_percpu_base(cpu);
1306 
1307 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1308 	pv_ops.cpu.load_gdt = xen_load_gdt;
1309 }
1310 
xen_dom0_set_legacy_features(void)1311 static void __init xen_dom0_set_legacy_features(void)
1312 {
1313 	x86_platform.legacy.rtc = 1;
1314 }
1315 
xen_domu_set_legacy_features(void)1316 static void __init xen_domu_set_legacy_features(void)
1317 {
1318 	x86_platform.legacy.rtc = 0;
1319 }
1320 
1321 extern void early_xen_iret_patch(void);
1322 
1323 /* First C function to be called on Xen boot */
xen_start_kernel(struct start_info * si)1324 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1325 {
1326 	struct physdev_set_iopl set_iopl;
1327 	unsigned long initrd_start = 0;
1328 	int rc;
1329 
1330 	if (!si)
1331 		return;
1332 
1333 	clear_bss();
1334 
1335 	xen_start_info = si;
1336 
1337 	__text_gen_insn(&early_xen_iret_patch,
1338 			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1339 			JMP32_INSN_SIZE);
1340 
1341 	xen_domain_type = XEN_PV_DOMAIN;
1342 	xen_start_flags = xen_start_info->flags;
1343 	/* Interrupts are guaranteed to be off initially. */
1344 	early_boot_irqs_disabled = true;
1345 	static_call_update_early(xen_hypercall, xen_hypercall_pv);
1346 
1347 	xen_setup_features();
1348 
1349 	/* Install Xen paravirt ops */
1350 	pv_info = xen_info;
1351 	pv_ops.cpu = xen_cpu_ops.cpu;
1352 	xen_init_irq_ops();
1353 
1354 	/*
1355 	 * Setup xen_vcpu early because it is needed for
1356 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1357 	 *
1358 	 * Don't do the full vcpu_info placement stuff until we have
1359 	 * the cpu_possible_mask and a non-dummy shared_info.
1360 	 */
1361 	xen_vcpu_info_reset(0);
1362 
1363 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1364 	x86_platform.realmode_reserve = x86_init_noop;
1365 	x86_platform.realmode_init = x86_init_noop;
1366 
1367 	x86_init.resources.memory_setup = xen_memory_setup;
1368 	x86_init.irqs.intr_mode_select	= x86_init_noop;
1369 	x86_init.irqs.intr_mode_init	= x86_64_probe_apic;
1370 	x86_init.oem.arch_setup = xen_arch_setup;
1371 	x86_init.oem.banner = xen_banner;
1372 	x86_init.hyper.init_platform = xen_pv_init_platform;
1373 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1374 
1375 	/*
1376 	 * Set up some pagetable state before starting to set any ptes.
1377 	 */
1378 
1379 	xen_setup_machphys_mapping();
1380 	xen_init_mmu_ops();
1381 
1382 	/* Prevent unwanted bits from being set in PTEs. */
1383 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1384 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1385 
1386 	/* Get mfn list */
1387 	xen_build_dynamic_phys_to_machine();
1388 
1389 	/* Work out if we support NX */
1390 	get_cpu_cap(&boot_cpu_data);
1391 	x86_configure_nx();
1392 
1393 	/*
1394 	 * Set up kernel GDT and segment registers, mainly so that
1395 	 * -fstack-protector code can be executed.
1396 	 */
1397 	xen_setup_gdt(0);
1398 
1399 	/* Determine virtual and physical address sizes */
1400 	get_cpu_address_sizes(&boot_cpu_data);
1401 
1402 	/* Let's presume PV guests always boot on vCPU with id 0. */
1403 	per_cpu(xen_vcpu_id, 0) = 0;
1404 
1405 	idt_setup_early_handler();
1406 
1407 	xen_init_capabilities();
1408 
1409 	/*
1410 	 * set up the basic apic ops.
1411 	 */
1412 	xen_init_apic();
1413 
1414 	machine_ops = xen_machine_ops;
1415 
1416 	/*
1417 	 * The only reliable way to retain the initial address of the
1418 	 * percpu gdt_page is to remember it here, so we can go and
1419 	 * mark it RW later, when the initial percpu area is freed.
1420 	 */
1421 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1422 
1423 	xen_smp_init();
1424 
1425 #ifdef CONFIG_ACPI_NUMA
1426 	/*
1427 	 * The pages we from Xen are not related to machine pages, so
1428 	 * any NUMA information the kernel tries to get from ACPI will
1429 	 * be meaningless.  Prevent it from trying.
1430 	 */
1431 	disable_srat();
1432 #endif
1433 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1434 
1435 	local_irq_disable();
1436 
1437 	xen_raw_console_write("mapping kernel into physical memory\n");
1438 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1439 				   xen_start_info->nr_pages);
1440 	xen_reserve_special_pages();
1441 
1442 	/*
1443 	 * We used to do this in xen_arch_setup, but that is too late
1444 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1445 	 * early_amd_init which pokes 0xcf8 port.
1446 	 */
1447 	set_iopl.iopl = 1;
1448 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1449 	if (rc != 0)
1450 		xen_raw_printk("physdev_op failed %d\n", rc);
1451 
1452 
1453 	if (xen_start_info->mod_start) {
1454 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1455 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1456 	    else
1457 		initrd_start = __pa(xen_start_info->mod_start);
1458 	}
1459 
1460 	/* Poke various useful things into boot_params */
1461 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1462 	boot_params.hdr.ramdisk_image = initrd_start;
1463 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1464 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1465 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1466 
1467 	if (!xen_initial_domain()) {
1468 		if (pci_xen)
1469 			x86_init.pci.arch_init = pci_xen_init;
1470 		x86_platform.set_legacy_features =
1471 				xen_domu_set_legacy_features;
1472 	} else {
1473 		const struct dom0_vga_console_info *info =
1474 			(void *)((char *)xen_start_info +
1475 				 xen_start_info->console.dom0.info_off);
1476 		struct xen_platform_op op = {
1477 			.cmd = XENPF_firmware_info,
1478 			.interface_version = XENPF_INTERFACE_VERSION,
1479 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1480 		};
1481 
1482 		x86_platform.set_legacy_features =
1483 				xen_dom0_set_legacy_features;
1484 		xen_init_vga(info, xen_start_info->console.dom0.info_size,
1485 			     &boot_params.screen_info);
1486 		xen_start_info->console.domU.mfn = 0;
1487 		xen_start_info->console.domU.evtchn = 0;
1488 
1489 		if (HYPERVISOR_platform_op(&op) == 0)
1490 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1491 
1492 		/* Make sure ACS will be enabled */
1493 		pci_request_acs();
1494 
1495 		xen_acpi_sleep_register();
1496 
1497 		xen_boot_params_init_edd();
1498 
1499 #ifdef CONFIG_ACPI
1500 		/*
1501 		 * Disable selecting "Firmware First mode" for correctable
1502 		 * memory errors, as this is the duty of the hypervisor to
1503 		 * decide.
1504 		 */
1505 		acpi_disable_cmcff = 1;
1506 #endif
1507 	}
1508 
1509 	xen_add_preferred_consoles();
1510 
1511 #ifdef CONFIG_PCI
1512 	/* PCI BIOS service won't work from a PV guest. */
1513 	pci_probe &= ~PCI_PROBE_BIOS;
1514 #endif
1515 	xen_raw_console_write("about to get started...\n");
1516 
1517 	/* We need this for printk timestamps */
1518 	xen_setup_runstate_info(0);
1519 
1520 	xen_efi_init(&boot_params);
1521 
1522 	/* Start the world */
1523 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1524 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1525 }
1526 
xen_cpu_up_prepare_pv(unsigned int cpu)1527 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1528 {
1529 	int rc;
1530 
1531 	if (per_cpu(xen_vcpu, cpu) == NULL)
1532 		return -ENODEV;
1533 
1534 	xen_setup_timer(cpu);
1535 
1536 	rc = xen_smp_intr_init(cpu);
1537 	if (rc) {
1538 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1539 		     cpu, rc);
1540 		return rc;
1541 	}
1542 
1543 	rc = xen_smp_intr_init_pv(cpu);
1544 	if (rc) {
1545 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1546 		     cpu, rc);
1547 		return rc;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
xen_cpu_dead_pv(unsigned int cpu)1553 static int xen_cpu_dead_pv(unsigned int cpu)
1554 {
1555 	xen_smp_intr_free(cpu);
1556 	xen_smp_intr_free_pv(cpu);
1557 
1558 	xen_teardown_timer(cpu);
1559 
1560 	return 0;
1561 }
1562 
xen_platform_pv(void)1563 static uint32_t __init xen_platform_pv(void)
1564 {
1565 	if (xen_pv_domain())
1566 		return xen_cpuid_base();
1567 
1568 	return 0;
1569 }
1570 
1571 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1572 	.name                   = "Xen PV",
1573 	.detect                 = xen_platform_pv,
1574 	.type			= X86_HYPER_XEN_PV,
1575 	.runtime.pin_vcpu       = xen_pin_vcpu,
1576 	.ignore_nopv		= true,
1577 };
1578