xref: /linux/drivers/gpu/drm/amd/display/dc/optc/dcn10/dcn10_optc.c (revision 06b0a4ad7162b9dd7e52dbec320ea9d080d9e551)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30 #include "dc_trace.h"
31 
32 #define REG(reg)\
33 	optc1->tg_regs->reg
34 
35 #define CTX \
36 	optc1->base.ctx
37 
38 #undef FN
39 #define FN(reg_name, field_name) \
40 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
41 
42 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
43 
44 /**
45  * apply_front_porch_workaround() - This is a workaround for a bug that has
46  *                                  existed since R5xx and has not been fixed
47  *                                  keep Front porch at minimum 2 for Interlaced
48  *                                  mode or 1 for progressive.
49  *
50  * @timing: Timing parameters used to configure DCN blocks.
51  */
52 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
53 {
54 	if (timing->flags.INTERLACE == 1) {
55 		if (timing->v_front_porch < 2)
56 			timing->v_front_porch = 2;
57 	} else {
58 		if (timing->v_front_porch < 1)
59 			timing->v_front_porch = 1;
60 	}
61 }
62 
63 void optc1_program_global_sync(
64 		struct timing_generator *optc,
65 		int vready_offset,
66 		int vstartup_start,
67 		int vupdate_offset,
68 		int vupdate_width,
69 		int pstate_keepout)
70 {
71 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
72 
73 	optc1->vready_offset = vready_offset;
74 	optc1->vstartup_start = vstartup_start;
75 	optc1->vupdate_offset = vupdate_offset;
76 	optc1->vupdate_width = vupdate_width;
77 	optc1->pstate_keepout = pstate_keepout;
78 
79 	if (optc1->vstartup_start == 0) {
80 		BREAK_TO_DEBUGGER();
81 		return;
82 	}
83 
84 	REG_SET(OTG_VSTARTUP_PARAM, 0,
85 		VSTARTUP_START, optc1->vstartup_start);
86 
87 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
88 			VUPDATE_OFFSET, optc1->vupdate_offset,
89 			VUPDATE_WIDTH, optc1->vupdate_width);
90 
91 	REG_SET(OTG_VREADY_PARAM, 0,
92 			VREADY_OFFSET, optc1->vready_offset);
93 }
94 
95 static void optc1_disable_stereo(struct timing_generator *optc)
96 {
97 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
98 
99 	REG_SET(OTG_STEREO_CONTROL, 0,
100 		OTG_STEREO_EN, 0);
101 
102 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
103 		OTG_3D_STRUCTURE_EN, 0,
104 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
105 }
106 
107 void optc1_setup_vertical_interrupt0(
108 		struct timing_generator *optc,
109 		uint32_t start_line,
110 		uint32_t end_line)
111 {
112 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
113 
114 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
115 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
116 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
117 }
118 
119 void optc1_setup_vertical_interrupt1(
120 		struct timing_generator *optc,
121 		uint32_t start_line)
122 {
123 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
124 
125 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
126 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
127 }
128 
129 void optc1_setup_vertical_interrupt2(
130 		struct timing_generator *optc,
131 		uint32_t start_line)
132 {
133 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
134 
135 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
136 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
137 }
138 
139 /**
140  * optc1_program_timing() - used by mode timing set Program
141  *                          CRTC Timing Registers - OTG_H_*,
142  *                          OTG_V_*, Pixel repetition.
143  *                          Including SYNC. Call BIOS command table to program Timings.
144  *
145  * @optc: timing_generator instance.
146  * @dc_crtc_timing: Timing parameters used to configure DCN blocks.
147  * @vready_offset: Vready's starting position.
148  * @vstartup_start: Vstartup period.
149  * @vupdate_offset: Vupdate starting position.
150  * @vupdate_width: Vupdate duration.
151  * @pstate_keepout: determines low power mode timing during refresh
152  * @signal: DC signal types.
153  * @use_vbios: to program timings from BIOS command table.
154  *
155  */
156 void optc1_program_timing(
157 	struct timing_generator *optc,
158 	const struct dc_crtc_timing *dc_crtc_timing,
159 	int vready_offset,
160 	int vstartup_start,
161 	int vupdate_offset,
162 	int vupdate_width,
163 	int pstate_keepout,
164 	const enum signal_type signal,
165 	bool use_vbios)
166 {
167 	struct dc_crtc_timing patched_crtc_timing;
168 	uint32_t asic_blank_end;
169 	uint32_t asic_blank_start;
170 	uint32_t v_total;
171 	uint32_t v_sync_end;
172 	uint32_t h_sync_polarity, v_sync_polarity;
173 	uint32_t start_point = 0;
174 	uint32_t field_num = 0;
175 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
176 
177 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
178 
179 	optc1->signal = signal;
180 	optc1->vready_offset = vready_offset;
181 	optc1->vstartup_start = vstartup_start;
182 	optc1->vupdate_offset = vupdate_offset;
183 	optc1->vupdate_width = vupdate_width;
184 	optc1->pstate_keepout = pstate_keepout;
185 	patched_crtc_timing = *dc_crtc_timing;
186 	apply_front_porch_workaround(&patched_crtc_timing);
187 	optc1->orginal_patched_timing = patched_crtc_timing;
188 
189 	/* Load horizontal timing */
190 
191 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
192 	REG_SET(OTG_H_TOTAL, 0,
193 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
194 
195 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
196 	REG_UPDATE_2(OTG_H_SYNC_A,
197 			OTG_H_SYNC_A_START, 0,
198 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
199 
200 	/* blank_start = line end - front porch */
201 	asic_blank_start = patched_crtc_timing.h_total -
202 			patched_crtc_timing.h_front_porch;
203 
204 	/* blank_end = blank_start - active */
205 	asic_blank_end = asic_blank_start -
206 			patched_crtc_timing.h_border_right -
207 			patched_crtc_timing.h_addressable -
208 			patched_crtc_timing.h_border_left;
209 
210 	REG_UPDATE_2(OTG_H_BLANK_START_END,
211 			OTG_H_BLANK_START, asic_blank_start,
212 			OTG_H_BLANK_END, asic_blank_end);
213 
214 	/* h_sync polarity */
215 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
216 			0 : 1;
217 
218 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
219 			OTG_H_SYNC_A_POL, h_sync_polarity);
220 
221 	v_total = patched_crtc_timing.v_total - 1;
222 
223 	REG_SET(OTG_V_TOTAL, 0,
224 			OTG_V_TOTAL, v_total);
225 
226 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
227 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
228 	 */
229 	optc->funcs->set_vtotal_min_max(optc, v_total, v_total);
230 
231 	/* v_sync_start = 0, v_sync_end = v_sync_width */
232 	v_sync_end = patched_crtc_timing.v_sync_width;
233 
234 	REG_UPDATE_2(OTG_V_SYNC_A,
235 			OTG_V_SYNC_A_START, 0,
236 			OTG_V_SYNC_A_END, v_sync_end);
237 
238 	/* blank_start = frame end - front porch */
239 	asic_blank_start = patched_crtc_timing.v_total -
240 			patched_crtc_timing.v_front_porch;
241 
242 	/* blank_end = blank_start - active */
243 	asic_blank_end = asic_blank_start -
244 			patched_crtc_timing.v_border_bottom -
245 			patched_crtc_timing.v_addressable -
246 			patched_crtc_timing.v_border_top;
247 
248 	REG_UPDATE_2(OTG_V_BLANK_START_END,
249 			OTG_V_BLANK_START, asic_blank_start,
250 			OTG_V_BLANK_END, asic_blank_end);
251 
252 	/* v_sync polarity */
253 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
254 			0 : 1;
255 
256 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
257 		OTG_V_SYNC_A_POL, v_sync_polarity);
258 
259 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
260 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
261 			optc1->signal == SIGNAL_TYPE_EDP) {
262 		start_point = 1;
263 		if (patched_crtc_timing.flags.INTERLACE == 1)
264 			field_num = 1;
265 	}
266 
267 	/* Interlace */
268 	if (REG(OTG_INTERLACE_CONTROL)) {
269 		if (patched_crtc_timing.flags.INTERLACE == 1)
270 			REG_UPDATE(OTG_INTERLACE_CONTROL,
271 					OTG_INTERLACE_ENABLE, 1);
272 		else
273 			REG_UPDATE(OTG_INTERLACE_CONTROL,
274 					OTG_INTERLACE_ENABLE, 0);
275 	}
276 
277 	/* VTG enable set to 0 first VInit */
278 	REG_UPDATE(CONTROL,
279 			VTG0_ENABLE, 0);
280 
281 	/* original code is using VTG offset to address OTG reg, seems wrong */
282 	REG_UPDATE_2(OTG_CONTROL,
283 			OTG_START_POINT_CNTL, start_point,
284 			OTG_FIELD_NUMBER_CNTL, field_num);
285 
286 	optc->funcs->program_global_sync(optc,
287 			vready_offset,
288 			vstartup_start,
289 			vupdate_offset,
290 			vupdate_width,
291 			pstate_keepout);
292 
293 	optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
294 
295 	/* TODO
296 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
297 	 * program_horz_count_by_2
298 	 * for DVI 30bpp mode, 0 otherwise
299 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
300 	 */
301 
302 	/* Enable stereo - only when we need to pack 3D frame. Other types
303 	 * of stereo handled in explicit call
304 	 */
305 	if (optc->funcs->is_two_pixels_per_container(&patched_crtc_timing) || optc1->opp_count == 2)
306 		h_div = H_TIMING_DIV_BY2;
307 
308 	if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
309 		uint32_t data_fmt = 0;
310 
311 		if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
312 			data_fmt = 1;
313 		else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
314 			data_fmt = 2;
315 
316 		REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
317 	}
318 
319 	if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
320 		if (optc1->opp_count == 4)
321 			h_div = H_TIMING_DIV_BY4;
322 
323 		REG_UPDATE(OTG_H_TIMING_CNTL,
324 		OTG_H_TIMING_DIV_MODE, h_div);
325 	} else {
326 		REG_UPDATE(OTG_H_TIMING_CNTL,
327 		OTG_H_TIMING_DIV_BY2, h_div);
328 	}
329 }
330 
331 /**
332  * optc1_set_vtg_params - Set Vertical Timing Generator (VTG) parameters
333  *
334  * @optc: timing_generator struct used to extract the optc parameters
335  * @dc_crtc_timing: Timing parameters configured
336  * @program_fp2: Boolean value indicating if FP2 will be programmed or not
337  *
338  * OTG is responsible for generating the global sync signals, including
339  * vertical timing information for each HUBP in the dcfclk domain. Each VTG is
340  * associated with one OTG that provides HUBP with vertical timing information
341  * (i.e., there is 1:1 correspondence between OTG and VTG). This function is
342  * responsible for setting the OTG parameters to the VTG during the pipe
343  * programming.
344  */
345 void optc1_set_vtg_params(struct timing_generator *optc,
346 		const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
347 {
348 	struct dc_crtc_timing patched_crtc_timing;
349 	uint32_t asic_blank_end;
350 	uint32_t v_init;
351 	uint32_t v_fp2 = 0;
352 	int32_t vertical_line_start;
353 
354 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
355 
356 	patched_crtc_timing = *dc_crtc_timing;
357 	apply_front_porch_workaround(&patched_crtc_timing);
358 
359 	/* VCOUNT_INIT is the start of blank */
360 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
361 
362 	/* end of blank = v_init - active */
363 	asic_blank_end = v_init -
364 			patched_crtc_timing.v_border_bottom -
365 			patched_crtc_timing.v_addressable -
366 			patched_crtc_timing.v_border_top;
367 
368 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
369 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
370 	if (vertical_line_start < 0)
371 		v_fp2 = -vertical_line_start;
372 
373 	/* Interlace */
374 	if (REG(OTG_INTERLACE_CONTROL)) {
375 		if (patched_crtc_timing.flags.INTERLACE == 1) {
376 			v_init = v_init / 2;
377 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
378 				v_fp2 = v_fp2 / 2;
379 		}
380 	}
381 
382 	if (program_fp2)
383 		REG_UPDATE_2(CONTROL,
384 				VTG0_FP2, v_fp2,
385 				VTG0_VCOUNT_INIT, v_init);
386 	else
387 		REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
388 }
389 
390 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
391 {
392 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
393 
394 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
395 
396 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
397 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
398 }
399 
400 /**
401  * optc1_set_timing_double_buffer() - DRR double buffering control
402  *
403  * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
404  * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
405  *
406  * @optc: timing_generator instance.
407  * @enable: Enable DRR double buffering control if true, disable otherwise.
408  *
409  * Options: any time,  start of frame, dp start of frame (range timing)
410  */
411 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
412 {
413 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
414 	uint32_t mode = enable ? 2 : 0;
415 
416 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
417 		   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
418 }
419 
420 /**
421  * optc1_unblank_crtc() - Call ASIC Control Object to UnBlank CRTC.
422  *
423  * @optc: timing_generator instance.
424  */
425 static void optc1_unblank_crtc(struct timing_generator *optc)
426 {
427 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
428 
429 	REG_UPDATE_2(OTG_BLANK_CONTROL,
430 			OTG_BLANK_DATA_EN, 0,
431 			OTG_BLANK_DE_MODE, 0);
432 
433 	/* W/A for automated testing
434 	 * Automated testing will fail underflow test as there
435 	 * sporadic underflows which occur during the optc blank
436 	 * sequence.  As a w/a, clear underflow on unblank.
437 	 * This prevents the failure, but will not mask actual
438 	 * underflow that affect real use cases.
439 	 */
440 	optc1_clear_optc_underflow(optc);
441 }
442 
443 /**
444  * optc1_blank_crtc() - Call ASIC Control Object to Blank CRTC.
445  *
446  * @optc: timing_generator instance.
447  */
448 
449 static void optc1_blank_crtc(struct timing_generator *optc)
450 {
451 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
452 
453 	REG_UPDATE_2(OTG_BLANK_CONTROL,
454 			OTG_BLANK_DATA_EN, 1,
455 			OTG_BLANK_DE_MODE, 0);
456 
457 	optc1_set_blank_data_double_buffer(optc, false);
458 }
459 
460 void optc1_set_blank(struct timing_generator *optc,
461 		bool enable_blanking)
462 {
463 	if (enable_blanking)
464 		optc1_blank_crtc(optc);
465 	else
466 		optc1_unblank_crtc(optc);
467 }
468 
469 bool optc1_is_blanked(struct timing_generator *optc)
470 {
471 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
472 	uint32_t blank_en;
473 	uint32_t blank_state;
474 
475 	REG_GET_2(OTG_BLANK_CONTROL,
476 			OTG_BLANK_DATA_EN, &blank_en,
477 			OTG_CURRENT_BLANK_STATE, &blank_state);
478 
479 	return blank_en && blank_state;
480 }
481 
482 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
483 {
484 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
485 
486 	if (enable) {
487 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
488 				OPTC_INPUT_CLK_EN, 1,
489 				OPTC_INPUT_CLK_GATE_DIS, 1);
490 
491 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
492 				OPTC_INPUT_CLK_ON, 1,
493 				1, 1000);
494 
495 		/* Enable clock */
496 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
497 				OTG_CLOCK_EN, 1,
498 				OTG_CLOCK_GATE_DIS, 1);
499 		REG_WAIT(OTG_CLOCK_CONTROL,
500 				OTG_CLOCK_ON, 1,
501 				1, 1000);
502 	} else  {
503 
504 		//last chance to clear underflow, otherwise, it will always there due to clock is off.
505 		if (optc->funcs->is_optc_underflow_occurred(optc) == true)
506 			optc->funcs->clear_optc_underflow(optc);
507 
508 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
509 				OTG_CLOCK_GATE_DIS, 0,
510 				OTG_CLOCK_EN, 0);
511 
512 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
513 				OPTC_INPUT_CLK_GATE_DIS, 0,
514 				OPTC_INPUT_CLK_EN, 0);
515 	}
516 }
517 
518 /**
519  * optc1_enable_crtc() - Enable CRTC - call ASIC Control Object to enable Timing generator.
520  *
521  * @optc: timing_generator instance.
522  */
523 static bool optc1_enable_crtc(struct timing_generator *optc)
524 {
525 	/* TODO FPGA wait for answer
526 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
527 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
528 	 */
529 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
530 
531 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
532 	 * OPP and OPTC should 1:1 mapping
533 	 */
534 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
535 			OPTC_SRC_SEL, optc->inst);
536 
537 	/* VTG enable first is for HW workaround */
538 	REG_UPDATE(CONTROL,
539 			VTG0_ENABLE, 1);
540 
541 	REG_SEQ_START();
542 
543 	/* Enable CRTC */
544 	REG_UPDATE_2(OTG_CONTROL,
545 			OTG_DISABLE_POINT_CNTL, 3,
546 			OTG_MASTER_EN, 1);
547 
548 	REG_SEQ_SUBMIT();
549 	REG_SEQ_WAIT_DONE();
550 
551 	return true;
552 }
553 
554 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
555 bool optc1_disable_crtc(struct timing_generator *optc)
556 {
557 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
558 
559 	/* disable otg request until end of the first line
560 	 * in the vertical blank region
561 	 */
562 	REG_UPDATE_2(OTG_CONTROL,
563 			OTG_DISABLE_POINT_CNTL, 3,
564 			OTG_MASTER_EN, 0);
565 
566 	REG_UPDATE(CONTROL,
567 			VTG0_ENABLE, 0);
568 
569 	/* CRTC disabled, so disable  clock. */
570 	REG_WAIT(OTG_CLOCK_CONTROL,
571 			OTG_BUSY, 0,
572 			1, 100000);
573 
574 	return true;
575 }
576 
577 
578 void optc1_program_blank_color(
579 		struct timing_generator *optc,
580 		const struct tg_color *black_color)
581 {
582 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
583 
584 	REG_SET_3(OTG_BLACK_COLOR, 0,
585 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
586 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
587 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
588 }
589 
590 bool optc1_validate_timing(
591 	struct timing_generator *optc,
592 	const struct dc_crtc_timing *timing)
593 {
594 	uint32_t v_blank;
595 	uint32_t h_blank;
596 	uint32_t min_v_blank;
597 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
598 
599 	ASSERT(timing != NULL);
600 
601 	v_blank = (timing->v_total - timing->v_addressable -
602 					timing->v_border_top - timing->v_border_bottom);
603 
604 	h_blank = (timing->h_total - timing->h_addressable -
605 		timing->h_border_right -
606 		timing->h_border_left);
607 
608 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
609 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
610 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
611 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
612 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
613 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
614 		return false;
615 
616 	/* Temporarily blocking interlacing mode until it's supported */
617 	if (timing->flags.INTERLACE == 1)
618 		return false;
619 
620 	/* Check maximum number of pixels supported by Timing Generator
621 	 * (Currently will never fail, in order to fail needs display which
622 	 * needs more than 8192 horizontal and
623 	 * more than 8192 vertical total pixels)
624 	 */
625 	if (timing->h_total > optc1->max_h_total ||
626 		timing->v_total > optc1->max_v_total)
627 		return false;
628 
629 
630 	if (h_blank < optc1->min_h_blank)
631 		return false;
632 
633 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
634 		 timing->v_sync_width  < optc1->min_v_sync_width)
635 		return false;
636 
637 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
638 
639 	if (v_blank < min_v_blank)
640 		return false;
641 
642 	return true;
643 
644 }
645 
646 /*
647  * get_vblank_counter
648  *
649  * @brief
650  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
651  * holds the counter of frames.
652  *
653  * @param
654  * struct timing_generator *optc - [in] timing generator which controls the
655  * desired CRTC
656  *
657  * @return
658  * Counter of frames, which should equal to number of vblanks.
659  */
660 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
661 {
662 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
663 	uint32_t frame_count;
664 
665 	REG_GET(OTG_STATUS_FRAME_COUNT,
666 		OTG_FRAME_COUNT, &frame_count);
667 
668 	return frame_count;
669 }
670 
671 void optc1_lock(struct timing_generator *optc)
672 {
673 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
674 
675 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
676 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
677 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
678 			OTG_MASTER_UPDATE_LOCK, 1);
679 
680 	REG_WAIT(OTG_MASTER_UPDATE_LOCK,
681 			UPDATE_LOCK_STATUS, 1,
682 			1, 10);
683 
684 	TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, true);
685 }
686 
687 void optc1_unlock(struct timing_generator *optc)
688 {
689 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
690 
691 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
692 			OTG_MASTER_UPDATE_LOCK, 0);
693 
694 	TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, false);
695 }
696 
697 void optc1_get_position(struct timing_generator *optc,
698 		struct crtc_position *position)
699 {
700 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
701 
702 	REG_GET_2(OTG_STATUS_POSITION,
703 			OTG_HORZ_COUNT, &position->horizontal_count,
704 			OTG_VERT_COUNT, &position->vertical_count);
705 
706 	REG_GET(OTG_NOM_VERT_POSITION,
707 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
708 }
709 
710 bool optc1_is_counter_moving(struct timing_generator *optc)
711 {
712 	struct crtc_position position1, position2;
713 
714 	optc->funcs->get_position(optc, &position1);
715 	optc->funcs->get_position(optc, &position2);
716 
717 	if (position1.horizontal_count == position2.horizontal_count &&
718 		position1.vertical_count == position2.vertical_count)
719 		return false;
720 	else
721 		return true;
722 }
723 
724 bool optc1_did_triggered_reset_occur(
725 	struct timing_generator *optc)
726 {
727 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
728 	uint32_t occurred_force, occurred_vsync;
729 
730 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
731 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
732 
733 	REG_GET(OTG_VERT_SYNC_CONTROL,
734 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
735 
736 	return occurred_vsync != 0 || occurred_force != 0;
737 }
738 
739 void optc1_disable_reset_trigger(struct timing_generator *optc)
740 {
741 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
742 
743 	REG_WRITE(OTG_TRIGA_CNTL, 0);
744 
745 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
746 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
747 
748 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
749 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
750 }
751 
752 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
753 {
754 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
755 	uint32_t falling_edge;
756 
757 	REG_GET(OTG_V_SYNC_A_CNTL,
758 			OTG_V_SYNC_A_POL, &falling_edge);
759 
760 	if (falling_edge)
761 		REG_SET_3(OTG_TRIGA_CNTL, 0,
762 				/* vsync signal from selected OTG pipe based
763 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
764 				 */
765 				OTG_TRIGA_SOURCE_SELECT, 20,
766 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
767 				/* always detect falling edge */
768 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
769 	else
770 		REG_SET_3(OTG_TRIGA_CNTL, 0,
771 				/* vsync signal from selected OTG pipe based
772 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
773 				 */
774 				OTG_TRIGA_SOURCE_SELECT, 20,
775 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
776 				/* always detect rising edge */
777 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
778 
779 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
780 			/* force H count to H_TOTAL and V count to V_TOTAL in
781 			 * progressive mode and V_TOTAL-1 in interlaced mode
782 			 */
783 			OTG_FORCE_COUNT_NOW_MODE, 2);
784 }
785 
786 void optc1_enable_crtc_reset(
787 		struct timing_generator *optc,
788 		int source_tg_inst,
789 		struct crtc_trigger_info *crtc_tp)
790 {
791 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
792 	uint32_t falling_edge = 0;
793 	uint32_t rising_edge = 0;
794 
795 	switch (crtc_tp->event) {
796 
797 	case CRTC_EVENT_VSYNC_RISING:
798 		rising_edge = 1;
799 		break;
800 
801 	case CRTC_EVENT_VSYNC_FALLING:
802 		falling_edge = 1;
803 		break;
804 	}
805 
806 	REG_SET_4(OTG_TRIGA_CNTL, 0,
807 		 /* vsync signal from selected OTG pipe based
808 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
809 		  */
810 		  OTG_TRIGA_SOURCE_SELECT, 20,
811 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
812 		  /* always detect falling edge */
813 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
814 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
815 
816 	switch (crtc_tp->delay) {
817 	case TRIGGER_DELAY_NEXT_LINE:
818 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
819 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
820 		break;
821 	case TRIGGER_DELAY_NEXT_PIXEL:
822 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
823 			/* force H count to H_TOTAL and V count to V_TOTAL in
824 			 * progressive mode and V_TOTAL-1 in interlaced mode
825 			 */
826 			OTG_FORCE_COUNT_NOW_MODE, 2);
827 		break;
828 	}
829 }
830 
831 void optc1_wait_for_state(struct timing_generator *optc,
832 		enum crtc_state state)
833 {
834 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
835 
836 	switch (state) {
837 	case CRTC_STATE_VBLANK:
838 		REG_WAIT(OTG_STATUS,
839 				OTG_V_BLANK, 1,
840 				1, 100000); /* 1 vupdate at 10hz */
841 		break;
842 
843 	case CRTC_STATE_VACTIVE:
844 		REG_WAIT(OTG_STATUS,
845 				OTG_V_ACTIVE_DISP, 1,
846 				1, 100000); /* 1 vupdate at 10hz */
847 		break;
848 
849 	default:
850 		break;
851 	}
852 }
853 
854 void optc1_set_early_control(
855 	struct timing_generator *optc,
856 	uint32_t early_cntl)
857 {
858 	/* asic design change, do not need this control
859 	 * empty for share caller logic
860 	 */
861 }
862 
863 
864 void optc1_set_static_screen_control(
865 	struct timing_generator *optc,
866 	uint32_t event_triggers,
867 	uint32_t num_frames)
868 {
869 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
870 
871 	// By register spec, it only takes 8 bit value
872 	if (num_frames > 0xFF)
873 		num_frames = 0xFF;
874 
875 	/* Bit 8 is no longer applicable in RV for PSR case,
876 	 * set bit 8 to 0 if given
877 	 */
878 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
879 			!= 0)
880 		event_triggers = event_triggers &
881 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
882 
883 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
884 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
885 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
886 }
887 
888 static void optc1_setup_manual_trigger(struct timing_generator *optc)
889 {
890 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
891 
892 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
893 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
894 
895 	REG_SET_8(OTG_TRIGA_CNTL, 0,
896 			OTG_TRIGA_SOURCE_SELECT, 22,
897 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
898 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
899 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
900 			OTG_TRIGA_POLARITY_SELECT, 0,
901 			OTG_TRIGA_FREQUENCY_SELECT, 0,
902 			OTG_TRIGA_DELAY, 0,
903 			OTG_TRIGA_CLEAR, 1);
904 }
905 
906 static void optc1_program_manual_trigger(struct timing_generator *optc)
907 {
908 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
909 
910 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
911 			MANUAL_FLOW_CONTROL, 1);
912 
913 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
914 			MANUAL_FLOW_CONTROL, 0);
915 }
916 
917 /**
918  * optc1_set_drr() - Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
919  *
920  * @optc: timing_generator instance.
921  * @params: parameters used for Dynamic Refresh Rate.
922  */
923 void optc1_set_drr(
924 	struct timing_generator *optc,
925 	const struct drr_params *params)
926 {
927 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
928 
929 	if (params != NULL &&
930 		params->vertical_total_max > 0 &&
931 		params->vertical_total_min > 0) {
932 
933 		if (params->vertical_total_mid != 0) {
934 
935 			REG_SET(OTG_V_TOTAL_MID, 0,
936 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
937 
938 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
939 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
940 					OTG_VTOTAL_MID_FRAME_NUM,
941 					(uint8_t)params->vertical_total_mid_frame_num);
942 
943 		}
944 
945 		optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
946 
947 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
948 				OTG_V_TOTAL_MIN_SEL, 1,
949 				OTG_V_TOTAL_MAX_SEL, 1,
950 				OTG_FORCE_LOCK_ON_EVENT, 0,
951 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
952 				OTG_SET_V_TOTAL_MIN_MASK, 0);
953 	}
954 
955 	// Setup manual flow control for EOF via TRIG_A
956 	optc->funcs->setup_manual_trigger(optc);
957 }
958 
959 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
960 {
961 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
962 
963 	REG_SET(OTG_V_TOTAL_MAX, 0,
964 		OTG_V_TOTAL_MAX, vtotal_max);
965 
966 	REG_SET(OTG_V_TOTAL_MIN, 0,
967 		OTG_V_TOTAL_MIN, vtotal_min);
968 }
969 
970 static void optc1_set_test_pattern(
971 	struct timing_generator *optc,
972 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
973 	 * because this is not DP-specific (which is probably somewhere in DP
974 	 * encoder) */
975 	enum controller_dp_test_pattern test_pattern,
976 	enum dc_color_depth color_depth)
977 {
978 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
979 	enum test_pattern_color_format bit_depth;
980 	enum test_pattern_dyn_range dyn_range;
981 	enum test_pattern_mode mode;
982 	uint32_t pattern_mask;
983 	uint32_t pattern_data;
984 	/* color ramp generator mixes 16-bits color */
985 	uint32_t src_bpc = 16;
986 	/* requested bpc */
987 	uint32_t dst_bpc;
988 	uint32_t index;
989 	/* RGB values of the color bars.
990 	 * Produce two RGB colors: RGB0 - white (all Fs)
991 	 * and RGB1 - black (all 0s)
992 	 * (three RGB components for two colors)
993 	 */
994 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
995 						0x0000, 0x0000};
996 	/* dest color (converted to the specified color format) */
997 	uint16_t dst_color[6];
998 	uint32_t inc_base;
999 
1000 	/* translate to bit depth */
1001 	switch (color_depth) {
1002 	case COLOR_DEPTH_666:
1003 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
1004 	break;
1005 	case COLOR_DEPTH_888:
1006 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1007 	break;
1008 	case COLOR_DEPTH_101010:
1009 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1010 	break;
1011 	case COLOR_DEPTH_121212:
1012 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1013 	break;
1014 	default:
1015 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1016 	break;
1017 	}
1018 
1019 	switch (test_pattern) {
1020 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1021 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1022 	{
1023 		dyn_range = (test_pattern ==
1024 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1025 				TEST_PATTERN_DYN_RANGE_CEA :
1026 				TEST_PATTERN_DYN_RANGE_VESA);
1027 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1028 
1029 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1030 				OTG_TEST_PATTERN_VRES, 6,
1031 				OTG_TEST_PATTERN_HRES, 6);
1032 
1033 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1034 				OTG_TEST_PATTERN_EN, 1,
1035 				OTG_TEST_PATTERN_MODE, mode,
1036 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1037 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1038 	}
1039 	break;
1040 
1041 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1042 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1043 	{
1044 		mode = (test_pattern ==
1045 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1046 			TEST_PATTERN_MODE_VERTICALBARS :
1047 			TEST_PATTERN_MODE_HORIZONTALBARS);
1048 
1049 		switch (bit_depth) {
1050 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1051 			dst_bpc = 6;
1052 		break;
1053 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1054 			dst_bpc = 8;
1055 		break;
1056 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1057 			dst_bpc = 10;
1058 		break;
1059 		default:
1060 			dst_bpc = 8;
1061 		break;
1062 		}
1063 
1064 		/* adjust color to the required colorFormat */
1065 		for (index = 0; index < 6; index++) {
1066 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
1067 			 * (srcBpc - dstBpc);
1068 			 */
1069 			dst_color[index] =
1070 				src_color[index] >> (src_bpc - dst_bpc);
1071 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
1072 		 * lowest 6 are hardwired to ZERO
1073 		 * color bits should be left aligned to MSB
1074 		 * XXXXXXXXXX000000 for 10 bit,
1075 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1076 		 */
1077 			dst_color[index] <<= (16 - dst_bpc);
1078 		}
1079 
1080 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1081 
1082 		/* We have to write the mask before data, similar to pipeline.
1083 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
1084 		 * and RGB1 to be cyan,
1085 		 * we need to make 7 writes:
1086 		 * MASK   DATA
1087 		 * 000001 00000000 00000000                     set mask to R0
1088 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1089 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1090 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1091 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1092 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1093 		 * 100000 11111111 00000000     B1 255, 0xFF00
1094 		 *
1095 		 * we will make a loop of 6 in which we prepare the mask,
1096 		 * then write, then prepare the color for next write.
1097 		 * first iteration will write mask only,
1098 		 * but each next iteration color prepared in
1099 		 * previous iteration will be written within new mask,
1100 		 * the last component will written separately,
1101 		 * mask is not changing between 6th and 7th write
1102 		 * and color will be prepared by last iteration
1103 		 */
1104 
1105 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
1106 		 * is B1, G1, R1, B0, G0, R0
1107 		 */
1108 		pattern_data = 0;
1109 		for (index = 0; index < 6; index++) {
1110 			/* prepare color mask, first write PATTERN_DATA
1111 			 * will have all zeros
1112 			 */
1113 			pattern_mask = (1 << index);
1114 
1115 			/* write color component */
1116 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1117 					OTG_TEST_PATTERN_MASK, pattern_mask,
1118 					OTG_TEST_PATTERN_DATA, pattern_data);
1119 
1120 			/* prepare next color component,
1121 			 * will be written in the next iteration
1122 			 */
1123 			pattern_data = dst_color[index];
1124 		}
1125 		/* write last color component,
1126 		 * it's been already prepared in the loop
1127 		 */
1128 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1129 				OTG_TEST_PATTERN_MASK, pattern_mask,
1130 				OTG_TEST_PATTERN_DATA, pattern_data);
1131 
1132 		/* enable test pattern */
1133 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1134 				OTG_TEST_PATTERN_EN, 1,
1135 				OTG_TEST_PATTERN_MODE, mode,
1136 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1137 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1138 	}
1139 	break;
1140 
1141 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1142 	{
1143 		mode = (bit_depth ==
1144 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1145 			TEST_PATTERN_MODE_DUALRAMP_RGB :
1146 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
1147 
1148 		switch (bit_depth) {
1149 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1150 			dst_bpc = 6;
1151 		break;
1152 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1153 			dst_bpc = 8;
1154 		break;
1155 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1156 			dst_bpc = 10;
1157 		break;
1158 		default:
1159 			dst_bpc = 8;
1160 		break;
1161 		}
1162 
1163 		/* increment for the first ramp for one color gradation
1164 		 * 1 gradation for 6-bit color is 2^10
1165 		 * gradations in 16-bit color
1166 		 */
1167 		inc_base = (src_bpc - dst_bpc);
1168 
1169 		switch (bit_depth) {
1170 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1171 		{
1172 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1173 					OTG_TEST_PATTERN_INC0, inc_base,
1174 					OTG_TEST_PATTERN_INC1, 0,
1175 					OTG_TEST_PATTERN_HRES, 6,
1176 					OTG_TEST_PATTERN_VRES, 6,
1177 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1178 		}
1179 		break;
1180 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1181 		{
1182 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1183 					OTG_TEST_PATTERN_INC0, inc_base,
1184 					OTG_TEST_PATTERN_INC1, 0,
1185 					OTG_TEST_PATTERN_HRES, 8,
1186 					OTG_TEST_PATTERN_VRES, 6,
1187 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1188 		}
1189 		break;
1190 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1191 		{
1192 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1193 					OTG_TEST_PATTERN_INC0, inc_base,
1194 					OTG_TEST_PATTERN_INC1, inc_base + 2,
1195 					OTG_TEST_PATTERN_HRES, 8,
1196 					OTG_TEST_PATTERN_VRES, 5,
1197 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1198 		}
1199 		break;
1200 		default:
1201 		break;
1202 		}
1203 
1204 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1205 
1206 		/* enable test pattern */
1207 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1208 
1209 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1210 				OTG_TEST_PATTERN_EN, 1,
1211 				OTG_TEST_PATTERN_MODE, mode,
1212 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1213 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1214 	}
1215 	break;
1216 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1217 	{
1218 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1219 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1220 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1221 	}
1222 	break;
1223 	default:
1224 		break;
1225 
1226 	}
1227 }
1228 
1229 void optc1_get_crtc_scanoutpos(
1230 	struct timing_generator *optc,
1231 	uint32_t *v_blank_start,
1232 	uint32_t *v_blank_end,
1233 	uint32_t *h_position,
1234 	uint32_t *v_position)
1235 {
1236 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1237 	struct crtc_position position;
1238 
1239 	REG_GET_2(OTG_V_BLANK_START_END,
1240 			OTG_V_BLANK_START, v_blank_start,
1241 			OTG_V_BLANK_END, v_blank_end);
1242 
1243 	optc1_get_position(optc, &position);
1244 
1245 	*h_position = position.horizontal_count;
1246 	*v_position = position.vertical_count;
1247 }
1248 
1249 static void optc1_enable_stereo(struct timing_generator *optc,
1250 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1251 {
1252 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1253 
1254 	if (flags) {
1255 		uint32_t stereo_en;
1256 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1257 
1258 		if (flags->PROGRAM_STEREO)
1259 			REG_UPDATE_3(OTG_STEREO_CONTROL,
1260 				OTG_STEREO_EN, stereo_en,
1261 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1262 				OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1263 
1264 		if (flags->PROGRAM_POLARITY)
1265 			REG_UPDATE(OTG_STEREO_CONTROL,
1266 				OTG_STEREO_EYE_FLAG_POLARITY,
1267 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1268 
1269 		if (flags->DISABLE_STEREO_DP_SYNC)
1270 			REG_UPDATE(OTG_STEREO_CONTROL,
1271 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1272 
1273 		if (flags->PROGRAM_STEREO)
1274 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1275 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1276 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1277 
1278 	}
1279 }
1280 
1281 void optc1_program_stereo(struct timing_generator *optc,
1282 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1283 {
1284 	if (flags->PROGRAM_STEREO)
1285 		optc1_enable_stereo(optc, timing, flags);
1286 	else
1287 		optc1_disable_stereo(optc);
1288 }
1289 
1290 
1291 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1292 {
1293 	bool ret = false;
1294 	uint32_t left_eye = 0;
1295 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1296 
1297 	REG_GET(OTG_STEREO_STATUS,
1298 		OTG_STEREO_CURRENT_EYE, &left_eye);
1299 	if (left_eye == 1)
1300 		ret = true;
1301 	else
1302 		ret = false;
1303 
1304 	return ret;
1305 }
1306 
1307 bool optc1_get_hw_timing(struct timing_generator *tg,
1308 		struct dc_crtc_timing *hw_crtc_timing)
1309 {
1310 	struct dcn_otg_state s = {0};
1311 
1312 	if (tg == NULL || hw_crtc_timing == NULL)
1313 		return false;
1314 
1315 	optc1_read_otg_state(tg, &s);
1316 
1317 	hw_crtc_timing->h_total = s.h_total + 1;
1318 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1319 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1320 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1321 
1322 	hw_crtc_timing->v_total = s.v_total + 1;
1323 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1324 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1325 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1326 
1327 	return true;
1328 }
1329 
1330 
1331 void optc1_read_otg_state(struct timing_generator *optc,
1332 		struct dcn_otg_state *s)
1333 {
1334 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1335 
1336 	REG_GET(OTG_CONTROL,
1337 			OTG_MASTER_EN, &s->otg_enabled);
1338 
1339 	REG_GET_2(OTG_V_BLANK_START_END,
1340 			OTG_V_BLANK_START, &s->v_blank_start,
1341 			OTG_V_BLANK_END, &s->v_blank_end);
1342 
1343 	REG_GET(OTG_V_SYNC_A_CNTL,
1344 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1345 
1346 	REG_GET(OTG_V_TOTAL,
1347 			OTG_V_TOTAL, &s->v_total);
1348 
1349 	REG_GET(OTG_V_TOTAL_MAX,
1350 			OTG_V_TOTAL_MAX, &s->v_total_max);
1351 
1352 	REG_GET(OTG_V_TOTAL_MIN,
1353 			OTG_V_TOTAL_MIN, &s->v_total_min);
1354 
1355 	REG_GET(OTG_V_TOTAL_CONTROL,
1356 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1357 
1358 	REG_GET(OTG_V_TOTAL_CONTROL,
1359 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1360 
1361 	REG_GET_2(OTG_V_SYNC_A,
1362 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
1363 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
1364 
1365 	REG_GET_2(OTG_H_BLANK_START_END,
1366 			OTG_H_BLANK_START, &s->h_blank_start,
1367 			OTG_H_BLANK_END, &s->h_blank_end);
1368 
1369 	REG_GET_2(OTG_H_SYNC_A,
1370 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
1371 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
1372 
1373 	REG_GET(OTG_H_SYNC_A_CNTL,
1374 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1375 
1376 	REG_GET(OTG_H_TOTAL,
1377 			OTG_H_TOTAL, &s->h_total);
1378 
1379 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1380 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1381 
1382 	REG_GET(OTG_VERTICAL_INTERRUPT1_CONTROL,
1383 			OTG_VERTICAL_INTERRUPT1_INT_ENABLE, &s->vertical_interrupt1_en);
1384 
1385 	REG_GET(OTG_VERTICAL_INTERRUPT1_POSITION,
1386 				OTG_VERTICAL_INTERRUPT1_LINE_START, &s->vertical_interrupt1_line);
1387 
1388 	REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1389 			OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1390 
1391 	REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1392 			OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1393 
1394 	s->otg_master_update_lock = REG_READ(OTG_MASTER_UPDATE_LOCK);
1395 	s->otg_double_buffer_control = REG_READ(OTG_DOUBLE_BUFFER_CONTROL);
1396 }
1397 
1398 bool optc1_get_otg_active_size(struct timing_generator *optc,
1399 		uint32_t *otg_active_width,
1400 		uint32_t *otg_active_height)
1401 {
1402 	uint32_t otg_enabled;
1403 	uint32_t v_blank_start;
1404 	uint32_t v_blank_end;
1405 	uint32_t h_blank_start;
1406 	uint32_t h_blank_end;
1407 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1408 
1409 
1410 	REG_GET(OTG_CONTROL,
1411 			OTG_MASTER_EN, &otg_enabled);
1412 
1413 	if (otg_enabled == 0)
1414 		return false;
1415 
1416 	REG_GET_2(OTG_V_BLANK_START_END,
1417 			OTG_V_BLANK_START, &v_blank_start,
1418 			OTG_V_BLANK_END, &v_blank_end);
1419 
1420 	REG_GET_2(OTG_H_BLANK_START_END,
1421 			OTG_H_BLANK_START, &h_blank_start,
1422 			OTG_H_BLANK_END, &h_blank_end);
1423 
1424 	*otg_active_width = h_blank_start - h_blank_end;
1425 	*otg_active_height = v_blank_start - v_blank_end;
1426 	return true;
1427 }
1428 
1429 void optc1_clear_optc_underflow(struct timing_generator *optc)
1430 {
1431 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1432 
1433 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1434 }
1435 
1436 void optc1_tg_init(struct timing_generator *optc)
1437 {
1438 	optc1_set_blank_data_double_buffer(optc, true);
1439 	optc1_set_timing_double_buffer(optc, true);
1440 	optc1_clear_optc_underflow(optc);
1441 }
1442 
1443 bool optc1_is_tg_enabled(struct timing_generator *optc)
1444 {
1445 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1446 	uint32_t otg_enabled = 0;
1447 
1448 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1449 
1450 	return (otg_enabled != 0);
1451 
1452 }
1453 
1454 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1455 {
1456 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1457 	uint32_t underflow_occurred = 0;
1458 
1459 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1460 			OPTC_UNDERFLOW_OCCURRED_STATUS,
1461 			&underflow_occurred);
1462 
1463 	return (underflow_occurred == 1);
1464 }
1465 
1466 bool optc1_configure_crc(struct timing_generator *optc,
1467 			  const struct crc_params *params)
1468 {
1469 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1470 
1471 	/* Cannot configure crc on a CRTC that is disabled */
1472 	if (!optc1_is_tg_enabled(optc))
1473 		return false;
1474 
1475 	if (!params->enable || params->reset)
1476 		REG_WRITE(OTG_CRC_CNTL, 0);
1477 
1478 	if (!params->enable)
1479 		return true;
1480 
1481 	/* Program frame boundaries */
1482 	switch (params->crc_eng_inst) {
1483 	case 0:
1484 		/* Window A x axis start and end. */
1485 		REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1486 				OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1487 				OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1488 
1489 		/* Window A y axis start and end. */
1490 		REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1491 				OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1492 				OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1493 
1494 		/* Window B x axis start and end. */
1495 		REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1496 				OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1497 				OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1498 
1499 		/* Window B y axis start and end. */
1500 		REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1501 				OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1502 				OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1503 
1504 		/* Set crc mode and selection, and enable.*/
1505 		REG_UPDATE_3(OTG_CRC_CNTL,
1506 				OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1507 				OTG_CRC0_SELECT, params->selection,
1508 				OTG_CRC_EN, 1);
1509 		break;
1510 	case 1:
1511 		/* Window A x axis start and end. */
1512 		REG_UPDATE_2(OTG_CRC1_WINDOWA_X_CONTROL,
1513 				OTG_CRC1_WINDOWA_X_START, params->windowa_x_start,
1514 				OTG_CRC1_WINDOWA_X_END, params->windowa_x_end);
1515 
1516 		/* Window A y axis start and end. */
1517 		REG_UPDATE_2(OTG_CRC1_WINDOWA_Y_CONTROL,
1518 				OTG_CRC1_WINDOWA_Y_START, params->windowa_y_start,
1519 				OTG_CRC1_WINDOWA_Y_END, params->windowa_y_end);
1520 
1521 		/* Window B x axis start and end. */
1522 		REG_UPDATE_2(OTG_CRC1_WINDOWB_X_CONTROL,
1523 				OTG_CRC1_WINDOWB_X_START, params->windowb_x_start,
1524 				OTG_CRC1_WINDOWB_X_END, params->windowb_x_end);
1525 
1526 		/* Window B y axis start and end. */
1527 		REG_UPDATE_2(OTG_CRC1_WINDOWB_Y_CONTROL,
1528 				OTG_CRC1_WINDOWB_Y_START, params->windowb_y_start,
1529 				OTG_CRC1_WINDOWB_Y_END, params->windowb_y_end);
1530 
1531 		/* Set crc mode and selection, and enable.*/
1532 		REG_UPDATE_3(OTG_CRC_CNTL,
1533 				OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1534 				OTG_CRC1_SELECT, params->selection,
1535 				OTG_CRC_EN, 1);
1536 		break;
1537 	default:
1538 		return false;
1539 	}
1540 
1541 	return true;
1542 }
1543 
1544 /**
1545  * optc1_get_crc - Capture CRC result per component
1546  *
1547  * @optc: timing_generator instance.
1548  * @idx: index of crc engine to get CRC from
1549  * @r_cr: 16-bit primary CRC signature for red data.
1550  * @g_y: 16-bit primary CRC signature for green data.
1551  * @b_cb: 16-bit primary CRC signature for blue data.
1552  *
1553  * This function reads the CRC signature from the OPTC registers. Notice that
1554  * we have three registers to keep the CRC result per color component (RGB).
1555  *
1556  * Returns:
1557  * If CRC is disabled, return false; otherwise, return true, and the CRC
1558  * results in the parameters.
1559  */
1560 bool optc1_get_crc(struct timing_generator *optc, uint8_t idx,
1561 		   uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1562 {
1563 	uint32_t field = 0;
1564 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
1565 
1566 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1567 
1568 	/* Early return if CRC is not enabled for this CRTC */
1569 	if (!field)
1570 		return false;
1571 
1572 	switch (idx) {
1573 	case 0:
1574 		/* OTG_CRC0_DATA_RG has the CRC16 results for the red and green component */
1575 		REG_GET_2(OTG_CRC0_DATA_RG,
1576 			  CRC0_R_CR, r_cr,
1577 			  CRC0_G_Y, g_y);
1578 
1579 		/* OTG_CRC0_DATA_B has the CRC16 results for the blue component */
1580 		REG_GET(OTG_CRC0_DATA_B,
1581 			CRC0_B_CB, b_cb);
1582 		break;
1583 	case 1:
1584 		/* OTG_CRC1_DATA_RG has the CRC16 results for the red and green component */
1585 		REG_GET_2(OTG_CRC1_DATA_RG,
1586 			  CRC1_R_CR, r_cr,
1587 			  CRC1_G_Y, g_y);
1588 
1589 		/* OTG_CRC1_DATA_B has the CRC16 results for the blue component */
1590 		REG_GET(OTG_CRC1_DATA_B,
1591 			CRC1_B_CB, b_cb);
1592 		break;
1593 	default:
1594 		return false;
1595 	}
1596 
1597 	return true;
1598 }
1599 
1600 /* "Container" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1601  *
1602  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1603  *   container rate.
1604  *
1605  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1606  *   halved to maintain the correct pixel rate.
1607  *
1608  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1609  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1610  *
1611  */
1612 bool optc1_is_two_pixels_per_container(const struct dc_crtc_timing *timing)
1613 {
1614 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1615 
1616 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1617 			&& !timing->dsc_cfg.ycbcr422_simple);
1618 	return two_pix;
1619 }
1620 
1621 static const struct timing_generator_funcs dcn10_tg_funcs = {
1622 		.validate_timing = optc1_validate_timing,
1623 		.program_timing = optc1_program_timing,
1624 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1625 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1626 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1627 		.program_global_sync = optc1_program_global_sync,
1628 		.enable_crtc = optc1_enable_crtc,
1629 		.disable_crtc = optc1_disable_crtc,
1630 		/* used by enable_timing_synchronization. Not need for FPGA */
1631 		.is_counter_moving = optc1_is_counter_moving,
1632 		.get_position = optc1_get_position,
1633 		.get_frame_count = optc1_get_vblank_counter,
1634 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
1635 		.get_otg_active_size = optc1_get_otg_active_size,
1636 		.set_early_control = optc1_set_early_control,
1637 		/* used by enable_timing_synchronization. Not need for FPGA */
1638 		.wait_for_state = optc1_wait_for_state,
1639 		.set_blank = optc1_set_blank,
1640 		.is_blanked = optc1_is_blanked,
1641 		.set_blank_color = optc1_program_blank_color,
1642 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1643 		.enable_reset_trigger = optc1_enable_reset_trigger,
1644 		.enable_crtc_reset = optc1_enable_crtc_reset,
1645 		.disable_reset_trigger = optc1_disable_reset_trigger,
1646 		.lock = optc1_lock,
1647 		.unlock = optc1_unlock,
1648 		.enable_optc_clock = optc1_enable_optc_clock,
1649 		.set_drr = optc1_set_drr,
1650 		.get_last_used_drr_vtotal = NULL,
1651 		.set_vtotal_min_max = optc1_set_vtotal_min_max,
1652 		.set_static_screen_control = optc1_set_static_screen_control,
1653 		.set_test_pattern = optc1_set_test_pattern,
1654 		.program_stereo = optc1_program_stereo,
1655 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
1656 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1657 		.tg_init = optc1_tg_init,
1658 		.is_tg_enabled = optc1_is_tg_enabled,
1659 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1660 		.clear_optc_underflow = optc1_clear_optc_underflow,
1661 		.get_crc = optc1_get_crc,
1662 		.configure_crc = optc1_configure_crc,
1663 		.set_vtg_params = optc1_set_vtg_params,
1664 		.program_manual_trigger = optc1_program_manual_trigger,
1665 		.setup_manual_trigger = optc1_setup_manual_trigger,
1666 		.get_hw_timing = optc1_get_hw_timing,
1667 		.is_two_pixels_per_container = optc1_is_two_pixels_per_container,
1668 		.read_otg_state = optc1_read_otg_state,
1669 };
1670 
1671 void dcn10_timing_generator_init(struct optc *optc1)
1672 {
1673 	optc1->base.funcs = &dcn10_tg_funcs;
1674 
1675 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1676 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1677 
1678 	optc1->min_h_blank = 32;
1679 	optc1->min_v_blank = 3;
1680 	optc1->min_v_blank_interlace = 5;
1681 	optc1->min_h_sync_width = 4;
1682 	optc1->min_v_sync_width = 1;
1683 }
1684