xref: /linux/drivers/md/raid5.c (revision cd1635d844d26471c56c0a432abdee12fc9ad735)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS		\
60 	((1L << MD_FAILFAST_SUPPORTED) |	\
61 	 (1L << MD_FAILLAST_DEV) |		\
62 	 (1L << MD_SERIALIZE_POLICY))
63 
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 #define RAID5_MAX_REQ_STRIPES 256
69 
70 static bool devices_handle_discard_safely = false;
71 module_param(devices_handle_discard_safely, bool, 0644);
72 MODULE_PARM_DESC(devices_handle_discard_safely,
73 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
74 static struct workqueue_struct *raid5_wq;
75 
76 static void raid5_quiesce(struct mddev *mddev, int quiesce);
77 
78 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
79 {
80 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
81 	return &conf->stripe_hashtbl[hash];
82 }
83 
84 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
85 {
86 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
87 }
88 
89 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
90 	__acquires(&conf->device_lock)
91 {
92 	spin_lock_irq(conf->hash_locks + hash);
93 	spin_lock(&conf->device_lock);
94 }
95 
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 	__releases(&conf->device_lock)
98 {
99 	spin_unlock(&conf->device_lock);
100 	spin_unlock_irq(conf->hash_locks + hash);
101 }
102 
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 	__acquires(&conf->device_lock)
105 {
106 	int i;
107 	spin_lock_irq(conf->hash_locks);
108 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
109 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
110 	spin_lock(&conf->device_lock);
111 }
112 
113 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
114 	__releases(&conf->device_lock)
115 {
116 	int i;
117 	spin_unlock(&conf->device_lock);
118 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
119 		spin_unlock(conf->hash_locks + i);
120 	spin_unlock_irq(conf->hash_locks);
121 }
122 
123 /* Find first data disk in a raid6 stripe */
124 static inline int raid6_d0(struct stripe_head *sh)
125 {
126 	if (sh->ddf_layout)
127 		/* ddf always start from first device */
128 		return 0;
129 	/* md starts just after Q block */
130 	if (sh->qd_idx == sh->disks - 1)
131 		return 0;
132 	else
133 		return sh->qd_idx + 1;
134 }
135 static inline int raid6_next_disk(int disk, int raid_disks)
136 {
137 	disk++;
138 	return (disk < raid_disks) ? disk : 0;
139 }
140 
141 /* When walking through the disks in a raid5, starting at raid6_d0,
142  * We need to map each disk to a 'slot', where the data disks are slot
143  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
144  * is raid_disks-1.  This help does that mapping.
145  */
146 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
147 			     int *count, int syndrome_disks)
148 {
149 	int slot = *count;
150 
151 	if (sh->ddf_layout)
152 		(*count)++;
153 	if (idx == sh->pd_idx)
154 		return syndrome_disks;
155 	if (idx == sh->qd_idx)
156 		return syndrome_disks + 1;
157 	if (!sh->ddf_layout)
158 		(*count)++;
159 	return slot;
160 }
161 
162 static void print_raid5_conf(struct r5conf *conf);
163 
164 static int stripe_operations_active(struct stripe_head *sh)
165 {
166 	return sh->check_state || sh->reconstruct_state ||
167 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
168 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
169 }
170 
171 static bool stripe_is_lowprio(struct stripe_head *sh)
172 {
173 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
174 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
175 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
176 }
177 
178 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
179 	__must_hold(&sh->raid_conf->device_lock)
180 {
181 	struct r5conf *conf = sh->raid_conf;
182 	struct r5worker_group *group;
183 	int thread_cnt;
184 	int i, cpu = sh->cpu;
185 
186 	if (!cpu_online(cpu)) {
187 		cpu = cpumask_any(cpu_online_mask);
188 		sh->cpu = cpu;
189 	}
190 
191 	if (list_empty(&sh->lru)) {
192 		struct r5worker_group *group;
193 		group = conf->worker_groups + cpu_to_group(cpu);
194 		if (stripe_is_lowprio(sh))
195 			list_add_tail(&sh->lru, &group->loprio_list);
196 		else
197 			list_add_tail(&sh->lru, &group->handle_list);
198 		group->stripes_cnt++;
199 		sh->group = group;
200 	}
201 
202 	if (conf->worker_cnt_per_group == 0) {
203 		md_wakeup_thread(conf->mddev->thread);
204 		return;
205 	}
206 
207 	group = conf->worker_groups + cpu_to_group(sh->cpu);
208 
209 	group->workers[0].working = true;
210 	/* at least one worker should run to avoid race */
211 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
212 
213 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
214 	/* wakeup more workers */
215 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
216 		if (group->workers[i].working == false) {
217 			group->workers[i].working = true;
218 			queue_work_on(sh->cpu, raid5_wq,
219 				      &group->workers[i].work);
220 			thread_cnt--;
221 		}
222 	}
223 }
224 
225 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
226 			      struct list_head *temp_inactive_list)
227 	__must_hold(&conf->device_lock)
228 {
229 	int i;
230 	int injournal = 0;	/* number of date pages with R5_InJournal */
231 
232 	BUG_ON(!list_empty(&sh->lru));
233 	BUG_ON(atomic_read(&conf->active_stripes)==0);
234 
235 	if (r5c_is_writeback(conf->log))
236 		for (i = sh->disks; i--; )
237 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
238 				injournal++;
239 	/*
240 	 * In the following cases, the stripe cannot be released to cached
241 	 * lists. Therefore, we make the stripe write out and set
242 	 * STRIPE_HANDLE:
243 	 *   1. when quiesce in r5c write back;
244 	 *   2. when resync is requested fot the stripe.
245 	 */
246 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
247 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
248 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
249 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
250 			r5c_make_stripe_write_out(sh);
251 		set_bit(STRIPE_HANDLE, &sh->state);
252 	}
253 
254 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
255 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
256 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
257 			list_add_tail(&sh->lru, &conf->delayed_list);
258 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
259 			   sh->bm_seq - conf->seq_write > 0)
260 			list_add_tail(&sh->lru, &conf->bitmap_list);
261 		else {
262 			clear_bit(STRIPE_DELAYED, &sh->state);
263 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
264 			if (conf->worker_cnt_per_group == 0) {
265 				if (stripe_is_lowprio(sh))
266 					list_add_tail(&sh->lru,
267 							&conf->loprio_list);
268 				else
269 					list_add_tail(&sh->lru,
270 							&conf->handle_list);
271 			} else {
272 				raid5_wakeup_stripe_thread(sh);
273 				return;
274 			}
275 		}
276 		md_wakeup_thread(conf->mddev->thread);
277 	} else {
278 		BUG_ON(stripe_operations_active(sh));
279 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
280 			if (atomic_dec_return(&conf->preread_active_stripes)
281 			    < IO_THRESHOLD)
282 				md_wakeup_thread(conf->mddev->thread);
283 		atomic_dec(&conf->active_stripes);
284 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
285 			if (!r5c_is_writeback(conf->log))
286 				list_add_tail(&sh->lru, temp_inactive_list);
287 			else {
288 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
289 				if (injournal == 0)
290 					list_add_tail(&sh->lru, temp_inactive_list);
291 				else if (injournal == conf->raid_disks - conf->max_degraded) {
292 					/* full stripe */
293 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
294 						atomic_inc(&conf->r5c_cached_full_stripes);
295 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
296 						atomic_dec(&conf->r5c_cached_partial_stripes);
297 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
298 					r5c_check_cached_full_stripe(conf);
299 				} else
300 					/*
301 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
302 					 * r5c_try_caching_write(). No need to
303 					 * set it again.
304 					 */
305 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
306 			}
307 		}
308 	}
309 }
310 
311 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
312 			     struct list_head *temp_inactive_list)
313 	__must_hold(&conf->device_lock)
314 {
315 	if (atomic_dec_and_test(&sh->count))
316 		do_release_stripe(conf, sh, temp_inactive_list);
317 }
318 
319 /*
320  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
321  *
322  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
323  * given time. Adding stripes only takes device lock, while deleting stripes
324  * only takes hash lock.
325  */
326 static void release_inactive_stripe_list(struct r5conf *conf,
327 					 struct list_head *temp_inactive_list,
328 					 int hash)
329 {
330 	int size;
331 	bool do_wakeup = false;
332 	unsigned long flags;
333 
334 	if (hash == NR_STRIPE_HASH_LOCKS) {
335 		size = NR_STRIPE_HASH_LOCKS;
336 		hash = NR_STRIPE_HASH_LOCKS - 1;
337 	} else
338 		size = 1;
339 	while (size) {
340 		struct list_head *list = &temp_inactive_list[size - 1];
341 
342 		/*
343 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
344 		 * remove stripes from the list
345 		 */
346 		if (!list_empty_careful(list)) {
347 			spin_lock_irqsave(conf->hash_locks + hash, flags);
348 			if (list_empty(conf->inactive_list + hash) &&
349 			    !list_empty(list))
350 				atomic_dec(&conf->empty_inactive_list_nr);
351 			list_splice_tail_init(list, conf->inactive_list + hash);
352 			do_wakeup = true;
353 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
354 		}
355 		size--;
356 		hash--;
357 	}
358 
359 	if (do_wakeup) {
360 		wake_up(&conf->wait_for_stripe);
361 		if (atomic_read(&conf->active_stripes) == 0)
362 			wake_up(&conf->wait_for_quiescent);
363 		if (conf->retry_read_aligned)
364 			md_wakeup_thread(conf->mddev->thread);
365 	}
366 }
367 
368 static int release_stripe_list(struct r5conf *conf,
369 			       struct list_head *temp_inactive_list)
370 	__must_hold(&conf->device_lock)
371 {
372 	struct stripe_head *sh, *t;
373 	int count = 0;
374 	struct llist_node *head;
375 
376 	head = llist_del_all(&conf->released_stripes);
377 	head = llist_reverse_order(head);
378 	llist_for_each_entry_safe(sh, t, head, release_list) {
379 		int hash;
380 
381 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
382 		smp_mb();
383 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
384 		/*
385 		 * Don't worry the bit is set here, because if the bit is set
386 		 * again, the count is always > 1. This is true for
387 		 * STRIPE_ON_UNPLUG_LIST bit too.
388 		 */
389 		hash = sh->hash_lock_index;
390 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
391 		count++;
392 	}
393 
394 	return count;
395 }
396 
397 void raid5_release_stripe(struct stripe_head *sh)
398 {
399 	struct r5conf *conf = sh->raid_conf;
400 	unsigned long flags;
401 	struct list_head list;
402 	int hash;
403 	bool wakeup;
404 
405 	/* Avoid release_list until the last reference.
406 	 */
407 	if (atomic_add_unless(&sh->count, -1, 1))
408 		return;
409 
410 	if (unlikely(!conf->mddev->thread) ||
411 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
412 		goto slow_path;
413 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
414 	if (wakeup)
415 		md_wakeup_thread(conf->mddev->thread);
416 	return;
417 slow_path:
418 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
419 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
420 		INIT_LIST_HEAD(&list);
421 		hash = sh->hash_lock_index;
422 		do_release_stripe(conf, sh, &list);
423 		spin_unlock_irqrestore(&conf->device_lock, flags);
424 		release_inactive_stripe_list(conf, &list, hash);
425 	}
426 }
427 
428 static inline void remove_hash(struct stripe_head *sh)
429 {
430 	pr_debug("remove_hash(), stripe %llu\n",
431 		(unsigned long long)sh->sector);
432 
433 	hlist_del_init(&sh->hash);
434 }
435 
436 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
437 {
438 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
439 
440 	pr_debug("insert_hash(), stripe %llu\n",
441 		(unsigned long long)sh->sector);
442 
443 	hlist_add_head(&sh->hash, hp);
444 }
445 
446 /* find an idle stripe, make sure it is unhashed, and return it. */
447 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
448 {
449 	struct stripe_head *sh = NULL;
450 	struct list_head *first;
451 
452 	if (list_empty(conf->inactive_list + hash))
453 		goto out;
454 	first = (conf->inactive_list + hash)->next;
455 	sh = list_entry(first, struct stripe_head, lru);
456 	list_del_init(first);
457 	remove_hash(sh);
458 	atomic_inc(&conf->active_stripes);
459 	BUG_ON(hash != sh->hash_lock_index);
460 	if (list_empty(conf->inactive_list + hash))
461 		atomic_inc(&conf->empty_inactive_list_nr);
462 out:
463 	return sh;
464 }
465 
466 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
467 static void free_stripe_pages(struct stripe_head *sh)
468 {
469 	int i;
470 	struct page *p;
471 
472 	/* Have not allocate page pool */
473 	if (!sh->pages)
474 		return;
475 
476 	for (i = 0; i < sh->nr_pages; i++) {
477 		p = sh->pages[i];
478 		if (p)
479 			put_page(p);
480 		sh->pages[i] = NULL;
481 	}
482 }
483 
484 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
485 {
486 	int i;
487 	struct page *p;
488 
489 	for (i = 0; i < sh->nr_pages; i++) {
490 		/* The page have allocated. */
491 		if (sh->pages[i])
492 			continue;
493 
494 		p = alloc_page(gfp);
495 		if (!p) {
496 			free_stripe_pages(sh);
497 			return -ENOMEM;
498 		}
499 		sh->pages[i] = p;
500 	}
501 	return 0;
502 }
503 
504 static int
505 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
506 {
507 	int nr_pages, cnt;
508 
509 	if (sh->pages)
510 		return 0;
511 
512 	/* Each of the sh->dev[i] need one conf->stripe_size */
513 	cnt = PAGE_SIZE / conf->stripe_size;
514 	nr_pages = (disks + cnt - 1) / cnt;
515 
516 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
517 	if (!sh->pages)
518 		return -ENOMEM;
519 	sh->nr_pages = nr_pages;
520 	sh->stripes_per_page = cnt;
521 	return 0;
522 }
523 #endif
524 
525 static void shrink_buffers(struct stripe_head *sh)
526 {
527 	int i;
528 	int num = sh->raid_conf->pool_size;
529 
530 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
531 	for (i = 0; i < num ; i++) {
532 		struct page *p;
533 
534 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
535 		p = sh->dev[i].page;
536 		if (!p)
537 			continue;
538 		sh->dev[i].page = NULL;
539 		put_page(p);
540 	}
541 #else
542 	for (i = 0; i < num; i++)
543 		sh->dev[i].page = NULL;
544 	free_stripe_pages(sh); /* Free pages */
545 #endif
546 }
547 
548 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
549 {
550 	int i;
551 	int num = sh->raid_conf->pool_size;
552 
553 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
554 	for (i = 0; i < num; i++) {
555 		struct page *page;
556 
557 		if (!(page = alloc_page(gfp))) {
558 			return 1;
559 		}
560 		sh->dev[i].page = page;
561 		sh->dev[i].orig_page = page;
562 		sh->dev[i].offset = 0;
563 	}
564 #else
565 	if (alloc_stripe_pages(sh, gfp))
566 		return -ENOMEM;
567 
568 	for (i = 0; i < num; i++) {
569 		sh->dev[i].page = raid5_get_dev_page(sh, i);
570 		sh->dev[i].orig_page = sh->dev[i].page;
571 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
572 	}
573 #endif
574 	return 0;
575 }
576 
577 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
578 			    struct stripe_head *sh);
579 
580 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
581 {
582 	struct r5conf *conf = sh->raid_conf;
583 	int i, seq;
584 
585 	BUG_ON(atomic_read(&sh->count) != 0);
586 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
587 	BUG_ON(stripe_operations_active(sh));
588 	BUG_ON(sh->batch_head);
589 
590 	pr_debug("init_stripe called, stripe %llu\n",
591 		(unsigned long long)sector);
592 retry:
593 	seq = read_seqcount_begin(&conf->gen_lock);
594 	sh->generation = conf->generation - previous;
595 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
596 	sh->sector = sector;
597 	stripe_set_idx(sector, conf, previous, sh);
598 	sh->state = 0;
599 
600 	for (i = sh->disks; i--; ) {
601 		struct r5dev *dev = &sh->dev[i];
602 
603 		if (dev->toread || dev->read || dev->towrite || dev->written ||
604 		    test_bit(R5_LOCKED, &dev->flags)) {
605 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
606 			       (unsigned long long)sh->sector, i, dev->toread,
607 			       dev->read, dev->towrite, dev->written,
608 			       test_bit(R5_LOCKED, &dev->flags));
609 			WARN_ON(1);
610 		}
611 		dev->flags = 0;
612 		dev->sector = raid5_compute_blocknr(sh, i, previous);
613 	}
614 	if (read_seqcount_retry(&conf->gen_lock, seq))
615 		goto retry;
616 	sh->overwrite_disks = 0;
617 	insert_hash(conf, sh);
618 	sh->cpu = smp_processor_id();
619 	set_bit(STRIPE_BATCH_READY, &sh->state);
620 }
621 
622 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
623 					 short generation)
624 {
625 	struct stripe_head *sh;
626 
627 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
628 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
629 		if (sh->sector == sector && sh->generation == generation)
630 			return sh;
631 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
632 	return NULL;
633 }
634 
635 static struct stripe_head *find_get_stripe(struct r5conf *conf,
636 		sector_t sector, short generation, int hash)
637 {
638 	int inc_empty_inactive_list_flag;
639 	struct stripe_head *sh;
640 
641 	sh = __find_stripe(conf, sector, generation);
642 	if (!sh)
643 		return NULL;
644 
645 	if (atomic_inc_not_zero(&sh->count))
646 		return sh;
647 
648 	/*
649 	 * Slow path. The reference count is zero which means the stripe must
650 	 * be on a list (sh->lru). Must remove the stripe from the list that
651 	 * references it with the device_lock held.
652 	 */
653 
654 	spin_lock(&conf->device_lock);
655 	if (!atomic_read(&sh->count)) {
656 		if (!test_bit(STRIPE_HANDLE, &sh->state))
657 			atomic_inc(&conf->active_stripes);
658 		BUG_ON(list_empty(&sh->lru) &&
659 		       !test_bit(STRIPE_EXPANDING, &sh->state));
660 		inc_empty_inactive_list_flag = 0;
661 		if (!list_empty(conf->inactive_list + hash))
662 			inc_empty_inactive_list_flag = 1;
663 		list_del_init(&sh->lru);
664 		if (list_empty(conf->inactive_list + hash) &&
665 		    inc_empty_inactive_list_flag)
666 			atomic_inc(&conf->empty_inactive_list_nr);
667 		if (sh->group) {
668 			sh->group->stripes_cnt--;
669 			sh->group = NULL;
670 		}
671 	}
672 	atomic_inc(&sh->count);
673 	spin_unlock(&conf->device_lock);
674 
675 	return sh;
676 }
677 
678 /*
679  * Need to check if array has failed when deciding whether to:
680  *  - start an array
681  *  - remove non-faulty devices
682  *  - add a spare
683  *  - allow a reshape
684  * This determination is simple when no reshape is happening.
685  * However if there is a reshape, we need to carefully check
686  * both the before and after sections.
687  * This is because some failed devices may only affect one
688  * of the two sections, and some non-in_sync devices may
689  * be insync in the section most affected by failed devices.
690  *
691  * Most calls to this function hold &conf->device_lock. Calls
692  * in raid5_run() do not require the lock as no other threads
693  * have been started yet.
694  */
695 int raid5_calc_degraded(struct r5conf *conf)
696 {
697 	int degraded, degraded2;
698 	int i;
699 
700 	degraded = 0;
701 	for (i = 0; i < conf->previous_raid_disks; i++) {
702 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
703 
704 		if (rdev && test_bit(Faulty, &rdev->flags))
705 			rdev = READ_ONCE(conf->disks[i].replacement);
706 		if (!rdev || test_bit(Faulty, &rdev->flags))
707 			degraded++;
708 		else if (test_bit(In_sync, &rdev->flags))
709 			;
710 		else
711 			/* not in-sync or faulty.
712 			 * If the reshape increases the number of devices,
713 			 * this is being recovered by the reshape, so
714 			 * this 'previous' section is not in_sync.
715 			 * If the number of devices is being reduced however,
716 			 * the device can only be part of the array if
717 			 * we are reverting a reshape, so this section will
718 			 * be in-sync.
719 			 */
720 			if (conf->raid_disks >= conf->previous_raid_disks)
721 				degraded++;
722 	}
723 	if (conf->raid_disks == conf->previous_raid_disks)
724 		return degraded;
725 	degraded2 = 0;
726 	for (i = 0; i < conf->raid_disks; i++) {
727 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
728 
729 		if (rdev && test_bit(Faulty, &rdev->flags))
730 			rdev = READ_ONCE(conf->disks[i].replacement);
731 		if (!rdev || test_bit(Faulty, &rdev->flags))
732 			degraded2++;
733 		else if (test_bit(In_sync, &rdev->flags))
734 			;
735 		else
736 			/* not in-sync or faulty.
737 			 * If reshape increases the number of devices, this
738 			 * section has already been recovered, else it
739 			 * almost certainly hasn't.
740 			 */
741 			if (conf->raid_disks <= conf->previous_raid_disks)
742 				degraded2++;
743 	}
744 	if (degraded2 > degraded)
745 		return degraded2;
746 	return degraded;
747 }
748 
749 static bool has_failed(struct r5conf *conf)
750 {
751 	int degraded = conf->mddev->degraded;
752 
753 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
754 		return true;
755 
756 	if (conf->mddev->reshape_position != MaxSector)
757 		degraded = raid5_calc_degraded(conf);
758 
759 	return degraded > conf->max_degraded;
760 }
761 
762 enum stripe_result {
763 	STRIPE_SUCCESS = 0,
764 	STRIPE_RETRY,
765 	STRIPE_SCHEDULE_AND_RETRY,
766 	STRIPE_FAIL,
767 	STRIPE_WAIT_RESHAPE,
768 };
769 
770 struct stripe_request_ctx {
771 	/* a reference to the last stripe_head for batching */
772 	struct stripe_head *batch_last;
773 
774 	/* first sector in the request */
775 	sector_t first_sector;
776 
777 	/* last sector in the request */
778 	sector_t last_sector;
779 
780 	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
781 	bool do_flush;
782 
783 	/*
784 	 * bitmap to track stripe sectors that have been added to stripes
785 	 * add one to account for unaligned requests
786 	 */
787 	unsigned long sectors_to_do[];
788 };
789 
790 /*
791  * Block until another thread clears R5_INACTIVE_BLOCKED or
792  * there are fewer than 3/4 the maximum number of active stripes
793  * and there is an inactive stripe available.
794  */
795 static bool is_inactive_blocked(struct r5conf *conf, int hash)
796 {
797 	if (list_empty(conf->inactive_list + hash))
798 		return false;
799 
800 	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
801 		return true;
802 
803 	return (atomic_read(&conf->active_stripes) <
804 		(conf->max_nr_stripes * 3 / 4));
805 }
806 
807 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
808 		struct stripe_request_ctx *ctx, sector_t sector,
809 		unsigned int flags)
810 {
811 	struct stripe_head *sh;
812 	int hash = stripe_hash_locks_hash(conf, sector);
813 	int previous = !!(flags & R5_GAS_PREVIOUS);
814 
815 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
816 
817 	spin_lock_irq(conf->hash_locks + hash);
818 
819 	for (;;) {
820 		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
821 			/*
822 			 * Must release the reference to batch_last before
823 			 * waiting, on quiesce, otherwise the batch_last will
824 			 * hold a reference to a stripe and raid5_quiesce()
825 			 * will deadlock waiting for active_stripes to go to
826 			 * zero.
827 			 */
828 			if (ctx && ctx->batch_last) {
829 				raid5_release_stripe(ctx->batch_last);
830 				ctx->batch_last = NULL;
831 			}
832 
833 			wait_event_lock_irq(conf->wait_for_quiescent,
834 					    !conf->quiesce,
835 					    *(conf->hash_locks + hash));
836 		}
837 
838 		sh = find_get_stripe(conf, sector, conf->generation - previous,
839 				     hash);
840 		if (sh)
841 			break;
842 
843 		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
844 			sh = get_free_stripe(conf, hash);
845 			if (sh) {
846 				r5c_check_stripe_cache_usage(conf);
847 				init_stripe(sh, sector, previous);
848 				atomic_inc(&sh->count);
849 				break;
850 			}
851 
852 			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
853 				set_bit(R5_ALLOC_MORE, &conf->cache_state);
854 		}
855 
856 		if (flags & R5_GAS_NOBLOCK)
857 			break;
858 
859 		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
860 		r5l_wake_reclaim(conf->log, 0);
861 
862 		/* release batch_last before wait to avoid risk of deadlock */
863 		if (ctx && ctx->batch_last) {
864 			raid5_release_stripe(ctx->batch_last);
865 			ctx->batch_last = NULL;
866 		}
867 
868 		wait_event_lock_irq(conf->wait_for_stripe,
869 				    is_inactive_blocked(conf, hash),
870 				    *(conf->hash_locks + hash));
871 		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
872 	}
873 
874 	spin_unlock_irq(conf->hash_locks + hash);
875 	return sh;
876 }
877 
878 static bool is_full_stripe_write(struct stripe_head *sh)
879 {
880 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
881 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
882 }
883 
884 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
885 		__acquires(&sh1->stripe_lock)
886 		__acquires(&sh2->stripe_lock)
887 {
888 	if (sh1 > sh2) {
889 		spin_lock_irq(&sh2->stripe_lock);
890 		spin_lock_nested(&sh1->stripe_lock, 1);
891 	} else {
892 		spin_lock_irq(&sh1->stripe_lock);
893 		spin_lock_nested(&sh2->stripe_lock, 1);
894 	}
895 }
896 
897 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
898 		__releases(&sh1->stripe_lock)
899 		__releases(&sh2->stripe_lock)
900 {
901 	spin_unlock(&sh1->stripe_lock);
902 	spin_unlock_irq(&sh2->stripe_lock);
903 }
904 
905 /* Only freshly new full stripe normal write stripe can be added to a batch list */
906 static bool stripe_can_batch(struct stripe_head *sh)
907 {
908 	struct r5conf *conf = sh->raid_conf;
909 
910 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
911 		return false;
912 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
913 	       is_full_stripe_write(sh);
914 }
915 
916 /* we only do back search */
917 static void stripe_add_to_batch_list(struct r5conf *conf,
918 		struct stripe_head *sh, struct stripe_head *last_sh)
919 {
920 	struct stripe_head *head;
921 	sector_t head_sector, tmp_sec;
922 	int hash;
923 	int dd_idx;
924 
925 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
926 	tmp_sec = sh->sector;
927 	if (!sector_div(tmp_sec, conf->chunk_sectors))
928 		return;
929 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
930 
931 	if (last_sh && head_sector == last_sh->sector) {
932 		head = last_sh;
933 		atomic_inc(&head->count);
934 	} else {
935 		hash = stripe_hash_locks_hash(conf, head_sector);
936 		spin_lock_irq(conf->hash_locks + hash);
937 		head = find_get_stripe(conf, head_sector, conf->generation,
938 				       hash);
939 		spin_unlock_irq(conf->hash_locks + hash);
940 		if (!head)
941 			return;
942 		if (!stripe_can_batch(head))
943 			goto out;
944 	}
945 
946 	lock_two_stripes(head, sh);
947 	/* clear_batch_ready clear the flag */
948 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
949 		goto unlock_out;
950 
951 	if (sh->batch_head)
952 		goto unlock_out;
953 
954 	dd_idx = 0;
955 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
956 		dd_idx++;
957 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
958 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
959 		goto unlock_out;
960 
961 	if (head->batch_head) {
962 		spin_lock(&head->batch_head->batch_lock);
963 		/* This batch list is already running */
964 		if (!stripe_can_batch(head)) {
965 			spin_unlock(&head->batch_head->batch_lock);
966 			goto unlock_out;
967 		}
968 		/*
969 		 * We must assign batch_head of this stripe within the
970 		 * batch_lock, otherwise clear_batch_ready of batch head
971 		 * stripe could clear BATCH_READY bit of this stripe and
972 		 * this stripe->batch_head doesn't get assigned, which
973 		 * could confuse clear_batch_ready for this stripe
974 		 */
975 		sh->batch_head = head->batch_head;
976 
977 		/*
978 		 * at this point, head's BATCH_READY could be cleared, but we
979 		 * can still add the stripe to batch list
980 		 */
981 		list_add(&sh->batch_list, &head->batch_list);
982 		spin_unlock(&head->batch_head->batch_lock);
983 	} else {
984 		head->batch_head = head;
985 		sh->batch_head = head->batch_head;
986 		spin_lock(&head->batch_lock);
987 		list_add_tail(&sh->batch_list, &head->batch_list);
988 		spin_unlock(&head->batch_lock);
989 	}
990 
991 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
992 		if (atomic_dec_return(&conf->preread_active_stripes)
993 		    < IO_THRESHOLD)
994 			md_wakeup_thread(conf->mddev->thread);
995 
996 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
997 		int seq = sh->bm_seq;
998 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
999 		    sh->batch_head->bm_seq > seq)
1000 			seq = sh->batch_head->bm_seq;
1001 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
1002 		sh->batch_head->bm_seq = seq;
1003 	}
1004 
1005 	atomic_inc(&sh->count);
1006 unlock_out:
1007 	unlock_two_stripes(head, sh);
1008 out:
1009 	raid5_release_stripe(head);
1010 }
1011 
1012 /* Determine if 'data_offset' or 'new_data_offset' should be used
1013  * in this stripe_head.
1014  */
1015 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1016 {
1017 	sector_t progress = conf->reshape_progress;
1018 	/* Need a memory barrier to make sure we see the value
1019 	 * of conf->generation, or ->data_offset that was set before
1020 	 * reshape_progress was updated.
1021 	 */
1022 	smp_rmb();
1023 	if (progress == MaxSector)
1024 		return 0;
1025 	if (sh->generation == conf->generation - 1)
1026 		return 0;
1027 	/* We are in a reshape, and this is a new-generation stripe,
1028 	 * so use new_data_offset.
1029 	 */
1030 	return 1;
1031 }
1032 
1033 static void dispatch_bio_list(struct bio_list *tmp)
1034 {
1035 	struct bio *bio;
1036 
1037 	while ((bio = bio_list_pop(tmp)))
1038 		submit_bio_noacct(bio);
1039 }
1040 
1041 static int cmp_stripe(void *priv, const struct list_head *a,
1042 		      const struct list_head *b)
1043 {
1044 	const struct r5pending_data *da = list_entry(a,
1045 				struct r5pending_data, sibling);
1046 	const struct r5pending_data *db = list_entry(b,
1047 				struct r5pending_data, sibling);
1048 	if (da->sector > db->sector)
1049 		return 1;
1050 	if (da->sector < db->sector)
1051 		return -1;
1052 	return 0;
1053 }
1054 
1055 static void dispatch_defer_bios(struct r5conf *conf, int target,
1056 				struct bio_list *list)
1057 {
1058 	struct r5pending_data *data;
1059 	struct list_head *first, *next = NULL;
1060 	int cnt = 0;
1061 
1062 	if (conf->pending_data_cnt == 0)
1063 		return;
1064 
1065 	list_sort(NULL, &conf->pending_list, cmp_stripe);
1066 
1067 	first = conf->pending_list.next;
1068 
1069 	/* temporarily move the head */
1070 	if (conf->next_pending_data)
1071 		list_move_tail(&conf->pending_list,
1072 				&conf->next_pending_data->sibling);
1073 
1074 	while (!list_empty(&conf->pending_list)) {
1075 		data = list_first_entry(&conf->pending_list,
1076 			struct r5pending_data, sibling);
1077 		if (&data->sibling == first)
1078 			first = data->sibling.next;
1079 		next = data->sibling.next;
1080 
1081 		bio_list_merge(list, &data->bios);
1082 		list_move(&data->sibling, &conf->free_list);
1083 		cnt++;
1084 		if (cnt >= target)
1085 			break;
1086 	}
1087 	conf->pending_data_cnt -= cnt;
1088 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1089 
1090 	if (next != &conf->pending_list)
1091 		conf->next_pending_data = list_entry(next,
1092 				struct r5pending_data, sibling);
1093 	else
1094 		conf->next_pending_data = NULL;
1095 	/* list isn't empty */
1096 	if (first != &conf->pending_list)
1097 		list_move_tail(&conf->pending_list, first);
1098 }
1099 
1100 static void flush_deferred_bios(struct r5conf *conf)
1101 {
1102 	struct bio_list tmp = BIO_EMPTY_LIST;
1103 
1104 	if (conf->pending_data_cnt == 0)
1105 		return;
1106 
1107 	spin_lock(&conf->pending_bios_lock);
1108 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1109 	BUG_ON(conf->pending_data_cnt != 0);
1110 	spin_unlock(&conf->pending_bios_lock);
1111 
1112 	dispatch_bio_list(&tmp);
1113 }
1114 
1115 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1116 				struct bio_list *bios)
1117 {
1118 	struct bio_list tmp = BIO_EMPTY_LIST;
1119 	struct r5pending_data *ent;
1120 
1121 	spin_lock(&conf->pending_bios_lock);
1122 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1123 							sibling);
1124 	list_move_tail(&ent->sibling, &conf->pending_list);
1125 	ent->sector = sector;
1126 	bio_list_init(&ent->bios);
1127 	bio_list_merge(&ent->bios, bios);
1128 	conf->pending_data_cnt++;
1129 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1130 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1131 
1132 	spin_unlock(&conf->pending_bios_lock);
1133 
1134 	dispatch_bio_list(&tmp);
1135 }
1136 
1137 static void
1138 raid5_end_read_request(struct bio *bi);
1139 static void
1140 raid5_end_write_request(struct bio *bi);
1141 
1142 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1143 {
1144 	struct r5conf *conf = sh->raid_conf;
1145 	int i, disks = sh->disks;
1146 	struct stripe_head *head_sh = sh;
1147 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1148 	struct r5dev *dev;
1149 	bool should_defer;
1150 
1151 	might_sleep();
1152 
1153 	if (log_stripe(sh, s) == 0)
1154 		return;
1155 
1156 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1157 
1158 	for (i = disks; i--; ) {
1159 		enum req_op op;
1160 		blk_opf_t op_flags = 0;
1161 		int replace_only = 0;
1162 		struct bio *bi, *rbi;
1163 		struct md_rdev *rdev, *rrdev = NULL;
1164 
1165 		sh = head_sh;
1166 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1167 			op = REQ_OP_WRITE;
1168 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1169 				op_flags = REQ_FUA;
1170 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1171 				op = REQ_OP_DISCARD;
1172 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1173 			op = REQ_OP_READ;
1174 		else if (test_and_clear_bit(R5_WantReplace,
1175 					    &sh->dev[i].flags)) {
1176 			op = REQ_OP_WRITE;
1177 			replace_only = 1;
1178 		} else
1179 			continue;
1180 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1181 			op_flags |= REQ_SYNC;
1182 
1183 again:
1184 		dev = &sh->dev[i];
1185 		bi = &dev->req;
1186 		rbi = &dev->rreq; /* For writing to replacement */
1187 
1188 		rdev = conf->disks[i].rdev;
1189 		rrdev = conf->disks[i].replacement;
1190 		if (op_is_write(op)) {
1191 			if (replace_only)
1192 				rdev = NULL;
1193 			if (rdev == rrdev)
1194 				/* We raced and saw duplicates */
1195 				rrdev = NULL;
1196 		} else {
1197 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1198 				rdev = rrdev;
1199 			rrdev = NULL;
1200 		}
1201 
1202 		if (rdev && test_bit(Faulty, &rdev->flags))
1203 			rdev = NULL;
1204 		if (rdev)
1205 			atomic_inc(&rdev->nr_pending);
1206 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1207 			rrdev = NULL;
1208 		if (rrdev)
1209 			atomic_inc(&rrdev->nr_pending);
1210 
1211 		/* We have already checked bad blocks for reads.  Now
1212 		 * need to check for writes.  We never accept write errors
1213 		 * on the replacement, so we don't to check rrdev.
1214 		 */
1215 		while (op_is_write(op) && rdev &&
1216 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1217 			int bad = rdev_has_badblock(rdev, sh->sector,
1218 						    RAID5_STRIPE_SECTORS(conf));
1219 			if (!bad)
1220 				break;
1221 
1222 			if (bad < 0) {
1223 				set_bit(BlockedBadBlocks, &rdev->flags);
1224 				if (!conf->mddev->external &&
1225 				    conf->mddev->sb_flags) {
1226 					/* It is very unlikely, but we might
1227 					 * still need to write out the
1228 					 * bad block log - better give it
1229 					 * a chance*/
1230 					md_check_recovery(conf->mddev);
1231 				}
1232 				/*
1233 				 * Because md_wait_for_blocked_rdev
1234 				 * will dec nr_pending, we must
1235 				 * increment it first.
1236 				 */
1237 				atomic_inc(&rdev->nr_pending);
1238 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1239 			} else {
1240 				/* Acknowledged bad block - skip the write */
1241 				rdev_dec_pending(rdev, conf->mddev);
1242 				rdev = NULL;
1243 			}
1244 		}
1245 
1246 		if (rdev) {
1247 			set_bit(STRIPE_IO_STARTED, &sh->state);
1248 
1249 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1250 			bi->bi_end_io = op_is_write(op)
1251 				? raid5_end_write_request
1252 				: raid5_end_read_request;
1253 			bi->bi_private = sh;
1254 
1255 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1256 				__func__, (unsigned long long)sh->sector,
1257 				bi->bi_opf, i);
1258 			atomic_inc(&sh->count);
1259 			if (sh != head_sh)
1260 				atomic_inc(&head_sh->count);
1261 			if (use_new_offset(conf, sh))
1262 				bi->bi_iter.bi_sector = (sh->sector
1263 						 + rdev->new_data_offset);
1264 			else
1265 				bi->bi_iter.bi_sector = (sh->sector
1266 						 + rdev->data_offset);
1267 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1268 				bi->bi_opf |= REQ_NOMERGE;
1269 
1270 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1271 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1272 
1273 			if (!op_is_write(op) &&
1274 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1275 				/*
1276 				 * issuing read for a page in journal, this
1277 				 * must be preparing for prexor in rmw; read
1278 				 * the data into orig_page
1279 				 */
1280 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1281 			else
1282 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1283 			bi->bi_vcnt = 1;
1284 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1285 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1286 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1287 			/*
1288 			 * If this is discard request, set bi_vcnt 0. We don't
1289 			 * want to confuse SCSI because SCSI will replace payload
1290 			 */
1291 			if (op == REQ_OP_DISCARD)
1292 				bi->bi_vcnt = 0;
1293 			if (rrdev)
1294 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1295 
1296 			mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1297 			if (should_defer && op_is_write(op))
1298 				bio_list_add(&pending_bios, bi);
1299 			else
1300 				submit_bio_noacct(bi);
1301 		}
1302 		if (rrdev) {
1303 			set_bit(STRIPE_IO_STARTED, &sh->state);
1304 
1305 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1306 			BUG_ON(!op_is_write(op));
1307 			rbi->bi_end_io = raid5_end_write_request;
1308 			rbi->bi_private = sh;
1309 
1310 			pr_debug("%s: for %llu schedule op %d on "
1311 				 "replacement disc %d\n",
1312 				__func__, (unsigned long long)sh->sector,
1313 				rbi->bi_opf, i);
1314 			atomic_inc(&sh->count);
1315 			if (sh != head_sh)
1316 				atomic_inc(&head_sh->count);
1317 			if (use_new_offset(conf, sh))
1318 				rbi->bi_iter.bi_sector = (sh->sector
1319 						  + rrdev->new_data_offset);
1320 			else
1321 				rbi->bi_iter.bi_sector = (sh->sector
1322 						  + rrdev->data_offset);
1323 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1324 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1325 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1326 			rbi->bi_vcnt = 1;
1327 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1328 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1329 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1330 			/*
1331 			 * If this is discard request, set bi_vcnt 0. We don't
1332 			 * want to confuse SCSI because SCSI will replace payload
1333 			 */
1334 			if (op == REQ_OP_DISCARD)
1335 				rbi->bi_vcnt = 0;
1336 			mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1337 			if (should_defer && op_is_write(op))
1338 				bio_list_add(&pending_bios, rbi);
1339 			else
1340 				submit_bio_noacct(rbi);
1341 		}
1342 		if (!rdev && !rrdev) {
1343 			pr_debug("skip op %d on disc %d for sector %llu\n",
1344 				bi->bi_opf, i, (unsigned long long)sh->sector);
1345 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1346 			set_bit(STRIPE_HANDLE, &sh->state);
1347 		}
1348 
1349 		if (!head_sh->batch_head)
1350 			continue;
1351 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1352 				      batch_list);
1353 		if (sh != head_sh)
1354 			goto again;
1355 	}
1356 
1357 	if (should_defer && !bio_list_empty(&pending_bios))
1358 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1359 }
1360 
1361 static struct dma_async_tx_descriptor *
1362 async_copy_data(int frombio, struct bio *bio, struct page **page,
1363 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1364 	struct stripe_head *sh, int no_skipcopy)
1365 {
1366 	struct bio_vec bvl;
1367 	struct bvec_iter iter;
1368 	struct page *bio_page;
1369 	int page_offset;
1370 	struct async_submit_ctl submit;
1371 	enum async_tx_flags flags = 0;
1372 	struct r5conf *conf = sh->raid_conf;
1373 
1374 	if (bio->bi_iter.bi_sector >= sector)
1375 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1376 	else
1377 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1378 
1379 	if (frombio)
1380 		flags |= ASYNC_TX_FENCE;
1381 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1382 
1383 	bio_for_each_segment(bvl, bio, iter) {
1384 		int len = bvl.bv_len;
1385 		int clen;
1386 		int b_offset = 0;
1387 
1388 		if (page_offset < 0) {
1389 			b_offset = -page_offset;
1390 			page_offset += b_offset;
1391 			len -= b_offset;
1392 		}
1393 
1394 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1395 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1396 		else
1397 			clen = len;
1398 
1399 		if (clen > 0) {
1400 			b_offset += bvl.bv_offset;
1401 			bio_page = bvl.bv_page;
1402 			if (frombio) {
1403 				if (conf->skip_copy &&
1404 				    b_offset == 0 && page_offset == 0 &&
1405 				    clen == RAID5_STRIPE_SIZE(conf) &&
1406 				    !no_skipcopy)
1407 					*page = bio_page;
1408 				else
1409 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1410 						  b_offset, clen, &submit);
1411 			} else
1412 				tx = async_memcpy(bio_page, *page, b_offset,
1413 						  page_offset + poff, clen, &submit);
1414 		}
1415 		/* chain the operations */
1416 		submit.depend_tx = tx;
1417 
1418 		if (clen < len) /* hit end of page */
1419 			break;
1420 		page_offset +=  len;
1421 	}
1422 
1423 	return tx;
1424 }
1425 
1426 static void ops_complete_biofill(void *stripe_head_ref)
1427 {
1428 	struct stripe_head *sh = stripe_head_ref;
1429 	int i;
1430 	struct r5conf *conf = sh->raid_conf;
1431 
1432 	pr_debug("%s: stripe %llu\n", __func__,
1433 		(unsigned long long)sh->sector);
1434 
1435 	/* clear completed biofills */
1436 	for (i = sh->disks; i--; ) {
1437 		struct r5dev *dev = &sh->dev[i];
1438 
1439 		/* acknowledge completion of a biofill operation */
1440 		/* and check if we need to reply to a read request,
1441 		 * new R5_Wantfill requests are held off until
1442 		 * !STRIPE_BIOFILL_RUN
1443 		 */
1444 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1445 			struct bio *rbi, *rbi2;
1446 
1447 			BUG_ON(!dev->read);
1448 			rbi = dev->read;
1449 			dev->read = NULL;
1450 			while (rbi && rbi->bi_iter.bi_sector <
1451 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1452 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1453 				bio_endio(rbi);
1454 				rbi = rbi2;
1455 			}
1456 		}
1457 	}
1458 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1459 
1460 	set_bit(STRIPE_HANDLE, &sh->state);
1461 	raid5_release_stripe(sh);
1462 }
1463 
1464 static void ops_run_biofill(struct stripe_head *sh)
1465 {
1466 	struct dma_async_tx_descriptor *tx = NULL;
1467 	struct async_submit_ctl submit;
1468 	int i;
1469 	struct r5conf *conf = sh->raid_conf;
1470 
1471 	BUG_ON(sh->batch_head);
1472 	pr_debug("%s: stripe %llu\n", __func__,
1473 		(unsigned long long)sh->sector);
1474 
1475 	for (i = sh->disks; i--; ) {
1476 		struct r5dev *dev = &sh->dev[i];
1477 		if (test_bit(R5_Wantfill, &dev->flags)) {
1478 			struct bio *rbi;
1479 			spin_lock_irq(&sh->stripe_lock);
1480 			dev->read = rbi = dev->toread;
1481 			dev->toread = NULL;
1482 			spin_unlock_irq(&sh->stripe_lock);
1483 			while (rbi && rbi->bi_iter.bi_sector <
1484 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1485 				tx = async_copy_data(0, rbi, &dev->page,
1486 						     dev->offset,
1487 						     dev->sector, tx, sh, 0);
1488 				rbi = r5_next_bio(conf, rbi, dev->sector);
1489 			}
1490 		}
1491 	}
1492 
1493 	atomic_inc(&sh->count);
1494 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1495 	async_trigger_callback(&submit);
1496 }
1497 
1498 static void mark_target_uptodate(struct stripe_head *sh, int target)
1499 {
1500 	struct r5dev *tgt;
1501 
1502 	if (target < 0)
1503 		return;
1504 
1505 	tgt = &sh->dev[target];
1506 	set_bit(R5_UPTODATE, &tgt->flags);
1507 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1508 	clear_bit(R5_Wantcompute, &tgt->flags);
1509 }
1510 
1511 static void ops_complete_compute(void *stripe_head_ref)
1512 {
1513 	struct stripe_head *sh = stripe_head_ref;
1514 
1515 	pr_debug("%s: stripe %llu\n", __func__,
1516 		(unsigned long long)sh->sector);
1517 
1518 	/* mark the computed target(s) as uptodate */
1519 	mark_target_uptodate(sh, sh->ops.target);
1520 	mark_target_uptodate(sh, sh->ops.target2);
1521 
1522 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1523 	if (sh->check_state == check_state_compute_run)
1524 		sh->check_state = check_state_compute_result;
1525 	set_bit(STRIPE_HANDLE, &sh->state);
1526 	raid5_release_stripe(sh);
1527 }
1528 
1529 /* return a pointer to the address conversion region of the scribble buffer */
1530 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1531 {
1532 	return percpu->scribble + i * percpu->scribble_obj_size;
1533 }
1534 
1535 /* return a pointer to the address conversion region of the scribble buffer */
1536 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1537 				 struct raid5_percpu *percpu, int i)
1538 {
1539 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1540 }
1541 
1542 /*
1543  * Return a pointer to record offset address.
1544  */
1545 static unsigned int *
1546 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1547 {
1548 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1549 }
1550 
1551 static struct dma_async_tx_descriptor *
1552 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1553 {
1554 	int disks = sh->disks;
1555 	struct page **xor_srcs = to_addr_page(percpu, 0);
1556 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1557 	int target = sh->ops.target;
1558 	struct r5dev *tgt = &sh->dev[target];
1559 	struct page *xor_dest = tgt->page;
1560 	unsigned int off_dest = tgt->offset;
1561 	int count = 0;
1562 	struct dma_async_tx_descriptor *tx;
1563 	struct async_submit_ctl submit;
1564 	int i;
1565 
1566 	BUG_ON(sh->batch_head);
1567 
1568 	pr_debug("%s: stripe %llu block: %d\n",
1569 		__func__, (unsigned long long)sh->sector, target);
1570 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1571 
1572 	for (i = disks; i--; ) {
1573 		if (i != target) {
1574 			off_srcs[count] = sh->dev[i].offset;
1575 			xor_srcs[count++] = sh->dev[i].page;
1576 		}
1577 	}
1578 
1579 	atomic_inc(&sh->count);
1580 
1581 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1582 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1583 	if (unlikely(count == 1))
1584 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1585 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1586 	else
1587 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1588 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1589 
1590 	return tx;
1591 }
1592 
1593 /* set_syndrome_sources - populate source buffers for gen_syndrome
1594  * @srcs - (struct page *) array of size sh->disks
1595  * @offs - (unsigned int) array of offset for each page
1596  * @sh - stripe_head to parse
1597  *
1598  * Populates srcs in proper layout order for the stripe and returns the
1599  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1600  * destination buffer is recorded in srcs[count] and the Q destination
1601  * is recorded in srcs[count+1]].
1602  */
1603 static int set_syndrome_sources(struct page **srcs,
1604 				unsigned int *offs,
1605 				struct stripe_head *sh,
1606 				int srctype)
1607 {
1608 	int disks = sh->disks;
1609 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1610 	int d0_idx = raid6_d0(sh);
1611 	int count;
1612 	int i;
1613 
1614 	for (i = 0; i < disks; i++)
1615 		srcs[i] = NULL;
1616 
1617 	count = 0;
1618 	i = d0_idx;
1619 	do {
1620 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1621 		struct r5dev *dev = &sh->dev[i];
1622 
1623 		if (i == sh->qd_idx || i == sh->pd_idx ||
1624 		    (srctype == SYNDROME_SRC_ALL) ||
1625 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1626 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1627 		      test_bit(R5_InJournal, &dev->flags))) ||
1628 		    (srctype == SYNDROME_SRC_WRITTEN &&
1629 		     (dev->written ||
1630 		      test_bit(R5_InJournal, &dev->flags)))) {
1631 			if (test_bit(R5_InJournal, &dev->flags))
1632 				srcs[slot] = sh->dev[i].orig_page;
1633 			else
1634 				srcs[slot] = sh->dev[i].page;
1635 			/*
1636 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1637 			 * not shared page. In that case, dev[i].offset
1638 			 * is 0.
1639 			 */
1640 			offs[slot] = sh->dev[i].offset;
1641 		}
1642 		i = raid6_next_disk(i, disks);
1643 	} while (i != d0_idx);
1644 
1645 	return syndrome_disks;
1646 }
1647 
1648 static struct dma_async_tx_descriptor *
1649 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1650 {
1651 	int disks = sh->disks;
1652 	struct page **blocks = to_addr_page(percpu, 0);
1653 	unsigned int *offs = to_addr_offs(sh, percpu);
1654 	int target;
1655 	int qd_idx = sh->qd_idx;
1656 	struct dma_async_tx_descriptor *tx;
1657 	struct async_submit_ctl submit;
1658 	struct r5dev *tgt;
1659 	struct page *dest;
1660 	unsigned int dest_off;
1661 	int i;
1662 	int count;
1663 
1664 	BUG_ON(sh->batch_head);
1665 	if (sh->ops.target < 0)
1666 		target = sh->ops.target2;
1667 	else if (sh->ops.target2 < 0)
1668 		target = sh->ops.target;
1669 	else
1670 		/* we should only have one valid target */
1671 		BUG();
1672 	BUG_ON(target < 0);
1673 	pr_debug("%s: stripe %llu block: %d\n",
1674 		__func__, (unsigned long long)sh->sector, target);
1675 
1676 	tgt = &sh->dev[target];
1677 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1678 	dest = tgt->page;
1679 	dest_off = tgt->offset;
1680 
1681 	atomic_inc(&sh->count);
1682 
1683 	if (target == qd_idx) {
1684 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1685 		blocks[count] = NULL; /* regenerating p is not necessary */
1686 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1687 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1688 				  ops_complete_compute, sh,
1689 				  to_addr_conv(sh, percpu, 0));
1690 		tx = async_gen_syndrome(blocks, offs, count+2,
1691 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1692 	} else {
1693 		/* Compute any data- or p-drive using XOR */
1694 		count = 0;
1695 		for (i = disks; i-- ; ) {
1696 			if (i == target || i == qd_idx)
1697 				continue;
1698 			offs[count] = sh->dev[i].offset;
1699 			blocks[count++] = sh->dev[i].page;
1700 		}
1701 
1702 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1703 				  NULL, ops_complete_compute, sh,
1704 				  to_addr_conv(sh, percpu, 0));
1705 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1706 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1707 	}
1708 
1709 	return tx;
1710 }
1711 
1712 static struct dma_async_tx_descriptor *
1713 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1714 {
1715 	int i, count, disks = sh->disks;
1716 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1717 	int d0_idx = raid6_d0(sh);
1718 	int faila = -1, failb = -1;
1719 	int target = sh->ops.target;
1720 	int target2 = sh->ops.target2;
1721 	struct r5dev *tgt = &sh->dev[target];
1722 	struct r5dev *tgt2 = &sh->dev[target2];
1723 	struct dma_async_tx_descriptor *tx;
1724 	struct page **blocks = to_addr_page(percpu, 0);
1725 	unsigned int *offs = to_addr_offs(sh, percpu);
1726 	struct async_submit_ctl submit;
1727 
1728 	BUG_ON(sh->batch_head);
1729 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1730 		 __func__, (unsigned long long)sh->sector, target, target2);
1731 	BUG_ON(target < 0 || target2 < 0);
1732 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1733 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1734 
1735 	/* we need to open-code set_syndrome_sources to handle the
1736 	 * slot number conversion for 'faila' and 'failb'
1737 	 */
1738 	for (i = 0; i < disks ; i++) {
1739 		offs[i] = 0;
1740 		blocks[i] = NULL;
1741 	}
1742 	count = 0;
1743 	i = d0_idx;
1744 	do {
1745 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1746 
1747 		offs[slot] = sh->dev[i].offset;
1748 		blocks[slot] = sh->dev[i].page;
1749 
1750 		if (i == target)
1751 			faila = slot;
1752 		if (i == target2)
1753 			failb = slot;
1754 		i = raid6_next_disk(i, disks);
1755 	} while (i != d0_idx);
1756 
1757 	BUG_ON(faila == failb);
1758 	if (failb < faila)
1759 		swap(faila, failb);
1760 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1761 		 __func__, (unsigned long long)sh->sector, faila, failb);
1762 
1763 	atomic_inc(&sh->count);
1764 
1765 	if (failb == syndrome_disks+1) {
1766 		/* Q disk is one of the missing disks */
1767 		if (faila == syndrome_disks) {
1768 			/* Missing P+Q, just recompute */
1769 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1770 					  ops_complete_compute, sh,
1771 					  to_addr_conv(sh, percpu, 0));
1772 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1773 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1774 						  &submit);
1775 		} else {
1776 			struct page *dest;
1777 			unsigned int dest_off;
1778 			int data_target;
1779 			int qd_idx = sh->qd_idx;
1780 
1781 			/* Missing D+Q: recompute D from P, then recompute Q */
1782 			if (target == qd_idx)
1783 				data_target = target2;
1784 			else
1785 				data_target = target;
1786 
1787 			count = 0;
1788 			for (i = disks; i-- ; ) {
1789 				if (i == data_target || i == qd_idx)
1790 					continue;
1791 				offs[count] = sh->dev[i].offset;
1792 				blocks[count++] = sh->dev[i].page;
1793 			}
1794 			dest = sh->dev[data_target].page;
1795 			dest_off = sh->dev[data_target].offset;
1796 			init_async_submit(&submit,
1797 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1798 					  NULL, NULL, NULL,
1799 					  to_addr_conv(sh, percpu, 0));
1800 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1801 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1802 				       &submit);
1803 
1804 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1805 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1806 					  ops_complete_compute, sh,
1807 					  to_addr_conv(sh, percpu, 0));
1808 			return async_gen_syndrome(blocks, offs, count+2,
1809 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1810 						  &submit);
1811 		}
1812 	} else {
1813 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1814 				  ops_complete_compute, sh,
1815 				  to_addr_conv(sh, percpu, 0));
1816 		if (failb == syndrome_disks) {
1817 			/* We're missing D+P. */
1818 			return async_raid6_datap_recov(syndrome_disks+2,
1819 						RAID5_STRIPE_SIZE(sh->raid_conf),
1820 						faila,
1821 						blocks, offs, &submit);
1822 		} else {
1823 			/* We're missing D+D. */
1824 			return async_raid6_2data_recov(syndrome_disks+2,
1825 						RAID5_STRIPE_SIZE(sh->raid_conf),
1826 						faila, failb,
1827 						blocks, offs, &submit);
1828 		}
1829 	}
1830 }
1831 
1832 static void ops_complete_prexor(void *stripe_head_ref)
1833 {
1834 	struct stripe_head *sh = stripe_head_ref;
1835 
1836 	pr_debug("%s: stripe %llu\n", __func__,
1837 		(unsigned long long)sh->sector);
1838 
1839 	if (r5c_is_writeback(sh->raid_conf->log))
1840 		/*
1841 		 * raid5-cache write back uses orig_page during prexor.
1842 		 * After prexor, it is time to free orig_page
1843 		 */
1844 		r5c_release_extra_page(sh);
1845 }
1846 
1847 static struct dma_async_tx_descriptor *
1848 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1849 		struct dma_async_tx_descriptor *tx)
1850 {
1851 	int disks = sh->disks;
1852 	struct page **xor_srcs = to_addr_page(percpu, 0);
1853 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1854 	int count = 0, pd_idx = sh->pd_idx, i;
1855 	struct async_submit_ctl submit;
1856 
1857 	/* existing parity data subtracted */
1858 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1859 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1860 
1861 	BUG_ON(sh->batch_head);
1862 	pr_debug("%s: stripe %llu\n", __func__,
1863 		(unsigned long long)sh->sector);
1864 
1865 	for (i = disks; i--; ) {
1866 		struct r5dev *dev = &sh->dev[i];
1867 		/* Only process blocks that are known to be uptodate */
1868 		if (test_bit(R5_InJournal, &dev->flags)) {
1869 			/*
1870 			 * For this case, PAGE_SIZE must be equal to 4KB and
1871 			 * page offset is zero.
1872 			 */
1873 			off_srcs[count] = dev->offset;
1874 			xor_srcs[count++] = dev->orig_page;
1875 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1876 			off_srcs[count] = dev->offset;
1877 			xor_srcs[count++] = dev->page;
1878 		}
1879 	}
1880 
1881 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1882 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1883 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1884 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1885 
1886 	return tx;
1887 }
1888 
1889 static struct dma_async_tx_descriptor *
1890 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1891 		struct dma_async_tx_descriptor *tx)
1892 {
1893 	struct page **blocks = to_addr_page(percpu, 0);
1894 	unsigned int *offs = to_addr_offs(sh, percpu);
1895 	int count;
1896 	struct async_submit_ctl submit;
1897 
1898 	pr_debug("%s: stripe %llu\n", __func__,
1899 		(unsigned long long)sh->sector);
1900 
1901 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1902 
1903 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1904 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1905 	tx = async_gen_syndrome(blocks, offs, count+2,
1906 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1907 
1908 	return tx;
1909 }
1910 
1911 static struct dma_async_tx_descriptor *
1912 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1913 {
1914 	struct r5conf *conf = sh->raid_conf;
1915 	int disks = sh->disks;
1916 	int i;
1917 	struct stripe_head *head_sh = sh;
1918 
1919 	pr_debug("%s: stripe %llu\n", __func__,
1920 		(unsigned long long)sh->sector);
1921 
1922 	for (i = disks; i--; ) {
1923 		struct r5dev *dev;
1924 		struct bio *chosen;
1925 
1926 		sh = head_sh;
1927 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1928 			struct bio *wbi;
1929 
1930 again:
1931 			dev = &sh->dev[i];
1932 			/*
1933 			 * clear R5_InJournal, so when rewriting a page in
1934 			 * journal, it is not skipped by r5l_log_stripe()
1935 			 */
1936 			clear_bit(R5_InJournal, &dev->flags);
1937 			spin_lock_irq(&sh->stripe_lock);
1938 			chosen = dev->towrite;
1939 			dev->towrite = NULL;
1940 			sh->overwrite_disks = 0;
1941 			BUG_ON(dev->written);
1942 			wbi = dev->written = chosen;
1943 			spin_unlock_irq(&sh->stripe_lock);
1944 			WARN_ON(dev->page != dev->orig_page);
1945 
1946 			while (wbi && wbi->bi_iter.bi_sector <
1947 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1948 				if (wbi->bi_opf & REQ_FUA)
1949 					set_bit(R5_WantFUA, &dev->flags);
1950 				if (wbi->bi_opf & REQ_SYNC)
1951 					set_bit(R5_SyncIO, &dev->flags);
1952 				if (bio_op(wbi) == REQ_OP_DISCARD)
1953 					set_bit(R5_Discard, &dev->flags);
1954 				else {
1955 					tx = async_copy_data(1, wbi, &dev->page,
1956 							     dev->offset,
1957 							     dev->sector, tx, sh,
1958 							     r5c_is_writeback(conf->log));
1959 					if (dev->page != dev->orig_page &&
1960 					    !r5c_is_writeback(conf->log)) {
1961 						set_bit(R5_SkipCopy, &dev->flags);
1962 						clear_bit(R5_UPTODATE, &dev->flags);
1963 						clear_bit(R5_OVERWRITE, &dev->flags);
1964 					}
1965 				}
1966 				wbi = r5_next_bio(conf, wbi, dev->sector);
1967 			}
1968 
1969 			if (head_sh->batch_head) {
1970 				sh = list_first_entry(&sh->batch_list,
1971 						      struct stripe_head,
1972 						      batch_list);
1973 				if (sh == head_sh)
1974 					continue;
1975 				goto again;
1976 			}
1977 		}
1978 	}
1979 
1980 	return tx;
1981 }
1982 
1983 static void ops_complete_reconstruct(void *stripe_head_ref)
1984 {
1985 	struct stripe_head *sh = stripe_head_ref;
1986 	int disks = sh->disks;
1987 	int pd_idx = sh->pd_idx;
1988 	int qd_idx = sh->qd_idx;
1989 	int i;
1990 	bool fua = false, sync = false, discard = false;
1991 
1992 	pr_debug("%s: stripe %llu\n", __func__,
1993 		(unsigned long long)sh->sector);
1994 
1995 	for (i = disks; i--; ) {
1996 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1997 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1998 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1999 	}
2000 
2001 	for (i = disks; i--; ) {
2002 		struct r5dev *dev = &sh->dev[i];
2003 
2004 		if (dev->written || i == pd_idx || i == qd_idx) {
2005 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2006 				set_bit(R5_UPTODATE, &dev->flags);
2007 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2008 					set_bit(R5_Expanded, &dev->flags);
2009 			}
2010 			if (fua)
2011 				set_bit(R5_WantFUA, &dev->flags);
2012 			if (sync)
2013 				set_bit(R5_SyncIO, &dev->flags);
2014 		}
2015 	}
2016 
2017 	if (sh->reconstruct_state == reconstruct_state_drain_run)
2018 		sh->reconstruct_state = reconstruct_state_drain_result;
2019 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2020 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2021 	else {
2022 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2023 		sh->reconstruct_state = reconstruct_state_result;
2024 	}
2025 
2026 	set_bit(STRIPE_HANDLE, &sh->state);
2027 	raid5_release_stripe(sh);
2028 }
2029 
2030 static void
2031 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2032 		     struct dma_async_tx_descriptor *tx)
2033 {
2034 	int disks = sh->disks;
2035 	struct page **xor_srcs;
2036 	unsigned int *off_srcs;
2037 	struct async_submit_ctl submit;
2038 	int count, pd_idx = sh->pd_idx, i;
2039 	struct page *xor_dest;
2040 	unsigned int off_dest;
2041 	int prexor = 0;
2042 	unsigned long flags;
2043 	int j = 0;
2044 	struct stripe_head *head_sh = sh;
2045 	int last_stripe;
2046 
2047 	pr_debug("%s: stripe %llu\n", __func__,
2048 		(unsigned long long)sh->sector);
2049 
2050 	for (i = 0; i < sh->disks; i++) {
2051 		if (pd_idx == i)
2052 			continue;
2053 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2054 			break;
2055 	}
2056 	if (i >= sh->disks) {
2057 		atomic_inc(&sh->count);
2058 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2059 		ops_complete_reconstruct(sh);
2060 		return;
2061 	}
2062 again:
2063 	count = 0;
2064 	xor_srcs = to_addr_page(percpu, j);
2065 	off_srcs = to_addr_offs(sh, percpu);
2066 	/* check if prexor is active which means only process blocks
2067 	 * that are part of a read-modify-write (written)
2068 	 */
2069 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2070 		prexor = 1;
2071 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2072 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2073 		for (i = disks; i--; ) {
2074 			struct r5dev *dev = &sh->dev[i];
2075 			if (head_sh->dev[i].written ||
2076 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2077 				off_srcs[count] = dev->offset;
2078 				xor_srcs[count++] = dev->page;
2079 			}
2080 		}
2081 	} else {
2082 		xor_dest = sh->dev[pd_idx].page;
2083 		off_dest = sh->dev[pd_idx].offset;
2084 		for (i = disks; i--; ) {
2085 			struct r5dev *dev = &sh->dev[i];
2086 			if (i != pd_idx) {
2087 				off_srcs[count] = dev->offset;
2088 				xor_srcs[count++] = dev->page;
2089 			}
2090 		}
2091 	}
2092 
2093 	/* 1/ if we prexor'd then the dest is reused as a source
2094 	 * 2/ if we did not prexor then we are redoing the parity
2095 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2096 	 * for the synchronous xor case
2097 	 */
2098 	last_stripe = !head_sh->batch_head ||
2099 		list_first_entry(&sh->batch_list,
2100 				 struct stripe_head, batch_list) == head_sh;
2101 	if (last_stripe) {
2102 		flags = ASYNC_TX_ACK |
2103 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2104 
2105 		atomic_inc(&head_sh->count);
2106 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2107 				  to_addr_conv(sh, percpu, j));
2108 	} else {
2109 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2110 		init_async_submit(&submit, flags, tx, NULL, NULL,
2111 				  to_addr_conv(sh, percpu, j));
2112 	}
2113 
2114 	if (unlikely(count == 1))
2115 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2116 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2117 	else
2118 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2119 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2120 	if (!last_stripe) {
2121 		j++;
2122 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2123 				      batch_list);
2124 		goto again;
2125 	}
2126 }
2127 
2128 static void
2129 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2130 		     struct dma_async_tx_descriptor *tx)
2131 {
2132 	struct async_submit_ctl submit;
2133 	struct page **blocks;
2134 	unsigned int *offs;
2135 	int count, i, j = 0;
2136 	struct stripe_head *head_sh = sh;
2137 	int last_stripe;
2138 	int synflags;
2139 	unsigned long txflags;
2140 
2141 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2142 
2143 	for (i = 0; i < sh->disks; i++) {
2144 		if (sh->pd_idx == i || sh->qd_idx == i)
2145 			continue;
2146 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2147 			break;
2148 	}
2149 	if (i >= sh->disks) {
2150 		atomic_inc(&sh->count);
2151 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2152 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2153 		ops_complete_reconstruct(sh);
2154 		return;
2155 	}
2156 
2157 again:
2158 	blocks = to_addr_page(percpu, j);
2159 	offs = to_addr_offs(sh, percpu);
2160 
2161 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2162 		synflags = SYNDROME_SRC_WRITTEN;
2163 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2164 	} else {
2165 		synflags = SYNDROME_SRC_ALL;
2166 		txflags = ASYNC_TX_ACK;
2167 	}
2168 
2169 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2170 	last_stripe = !head_sh->batch_head ||
2171 		list_first_entry(&sh->batch_list,
2172 				 struct stripe_head, batch_list) == head_sh;
2173 
2174 	if (last_stripe) {
2175 		atomic_inc(&head_sh->count);
2176 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2177 				  head_sh, to_addr_conv(sh, percpu, j));
2178 	} else
2179 		init_async_submit(&submit, 0, tx, NULL, NULL,
2180 				  to_addr_conv(sh, percpu, j));
2181 	tx = async_gen_syndrome(blocks, offs, count+2,
2182 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2183 	if (!last_stripe) {
2184 		j++;
2185 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2186 				      batch_list);
2187 		goto again;
2188 	}
2189 }
2190 
2191 static void ops_complete_check(void *stripe_head_ref)
2192 {
2193 	struct stripe_head *sh = stripe_head_ref;
2194 
2195 	pr_debug("%s: stripe %llu\n", __func__,
2196 		(unsigned long long)sh->sector);
2197 
2198 	sh->check_state = check_state_check_result;
2199 	set_bit(STRIPE_HANDLE, &sh->state);
2200 	raid5_release_stripe(sh);
2201 }
2202 
2203 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2204 {
2205 	int disks = sh->disks;
2206 	int pd_idx = sh->pd_idx;
2207 	int qd_idx = sh->qd_idx;
2208 	struct page *xor_dest;
2209 	unsigned int off_dest;
2210 	struct page **xor_srcs = to_addr_page(percpu, 0);
2211 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2212 	struct dma_async_tx_descriptor *tx;
2213 	struct async_submit_ctl submit;
2214 	int count;
2215 	int i;
2216 
2217 	pr_debug("%s: stripe %llu\n", __func__,
2218 		(unsigned long long)sh->sector);
2219 
2220 	BUG_ON(sh->batch_head);
2221 	count = 0;
2222 	xor_dest = sh->dev[pd_idx].page;
2223 	off_dest = sh->dev[pd_idx].offset;
2224 	off_srcs[count] = off_dest;
2225 	xor_srcs[count++] = xor_dest;
2226 	for (i = disks; i--; ) {
2227 		if (i == pd_idx || i == qd_idx)
2228 			continue;
2229 		off_srcs[count] = sh->dev[i].offset;
2230 		xor_srcs[count++] = sh->dev[i].page;
2231 	}
2232 
2233 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2234 			  to_addr_conv(sh, percpu, 0));
2235 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2236 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2237 			   &sh->ops.zero_sum_result, &submit);
2238 
2239 	atomic_inc(&sh->count);
2240 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2241 	tx = async_trigger_callback(&submit);
2242 }
2243 
2244 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2245 {
2246 	struct page **srcs = to_addr_page(percpu, 0);
2247 	unsigned int *offs = to_addr_offs(sh, percpu);
2248 	struct async_submit_ctl submit;
2249 	int count;
2250 
2251 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2252 		(unsigned long long)sh->sector, checkp);
2253 
2254 	BUG_ON(sh->batch_head);
2255 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2256 	if (!checkp)
2257 		srcs[count] = NULL;
2258 
2259 	atomic_inc(&sh->count);
2260 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2261 			  sh, to_addr_conv(sh, percpu, 0));
2262 	async_syndrome_val(srcs, offs, count+2,
2263 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2264 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2265 }
2266 
2267 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2268 {
2269 	int overlap_clear = 0, i, disks = sh->disks;
2270 	struct dma_async_tx_descriptor *tx = NULL;
2271 	struct r5conf *conf = sh->raid_conf;
2272 	int level = conf->level;
2273 	struct raid5_percpu *percpu;
2274 
2275 	local_lock(&conf->percpu->lock);
2276 	percpu = this_cpu_ptr(conf->percpu);
2277 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2278 		ops_run_biofill(sh);
2279 		overlap_clear++;
2280 	}
2281 
2282 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2283 		if (level < 6)
2284 			tx = ops_run_compute5(sh, percpu);
2285 		else {
2286 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2287 				tx = ops_run_compute6_1(sh, percpu);
2288 			else
2289 				tx = ops_run_compute6_2(sh, percpu);
2290 		}
2291 		/* terminate the chain if reconstruct is not set to be run */
2292 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2293 			async_tx_ack(tx);
2294 	}
2295 
2296 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2297 		if (level < 6)
2298 			tx = ops_run_prexor5(sh, percpu, tx);
2299 		else
2300 			tx = ops_run_prexor6(sh, percpu, tx);
2301 	}
2302 
2303 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2304 		tx = ops_run_partial_parity(sh, percpu, tx);
2305 
2306 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2307 		tx = ops_run_biodrain(sh, tx);
2308 		overlap_clear++;
2309 	}
2310 
2311 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2312 		if (level < 6)
2313 			ops_run_reconstruct5(sh, percpu, tx);
2314 		else
2315 			ops_run_reconstruct6(sh, percpu, tx);
2316 	}
2317 
2318 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2319 		if (sh->check_state == check_state_run)
2320 			ops_run_check_p(sh, percpu);
2321 		else if (sh->check_state == check_state_run_q)
2322 			ops_run_check_pq(sh, percpu, 0);
2323 		else if (sh->check_state == check_state_run_pq)
2324 			ops_run_check_pq(sh, percpu, 1);
2325 		else
2326 			BUG();
2327 	}
2328 
2329 	if (overlap_clear && !sh->batch_head) {
2330 		for (i = disks; i--; ) {
2331 			struct r5dev *dev = &sh->dev[i];
2332 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2333 				wake_up_bit(&dev->flags, R5_Overlap);
2334 		}
2335 	}
2336 	local_unlock(&conf->percpu->lock);
2337 }
2338 
2339 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2340 {
2341 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2342 	kfree(sh->pages);
2343 #endif
2344 	if (sh->ppl_page)
2345 		__free_page(sh->ppl_page);
2346 	kmem_cache_free(sc, sh);
2347 }
2348 
2349 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2350 	int disks, struct r5conf *conf)
2351 {
2352 	struct stripe_head *sh;
2353 
2354 	sh = kmem_cache_zalloc(sc, gfp);
2355 	if (sh) {
2356 		spin_lock_init(&sh->stripe_lock);
2357 		spin_lock_init(&sh->batch_lock);
2358 		INIT_LIST_HEAD(&sh->batch_list);
2359 		INIT_LIST_HEAD(&sh->lru);
2360 		INIT_LIST_HEAD(&sh->r5c);
2361 		INIT_LIST_HEAD(&sh->log_list);
2362 		atomic_set(&sh->count, 1);
2363 		sh->raid_conf = conf;
2364 		sh->log_start = MaxSector;
2365 
2366 		if (raid5_has_ppl(conf)) {
2367 			sh->ppl_page = alloc_page(gfp);
2368 			if (!sh->ppl_page) {
2369 				free_stripe(sc, sh);
2370 				return NULL;
2371 			}
2372 		}
2373 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2374 		if (init_stripe_shared_pages(sh, conf, disks)) {
2375 			free_stripe(sc, sh);
2376 			return NULL;
2377 		}
2378 #endif
2379 	}
2380 	return sh;
2381 }
2382 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2383 {
2384 	struct stripe_head *sh;
2385 
2386 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2387 	if (!sh)
2388 		return 0;
2389 
2390 	if (grow_buffers(sh, gfp)) {
2391 		shrink_buffers(sh);
2392 		free_stripe(conf->slab_cache, sh);
2393 		return 0;
2394 	}
2395 	sh->hash_lock_index =
2396 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2397 	/* we just created an active stripe so... */
2398 	atomic_inc(&conf->active_stripes);
2399 
2400 	raid5_release_stripe(sh);
2401 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2402 	return 1;
2403 }
2404 
2405 static int grow_stripes(struct r5conf *conf, int num)
2406 {
2407 	struct kmem_cache *sc;
2408 	size_t namelen = sizeof(conf->cache_name[0]);
2409 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2410 
2411 	if (mddev_is_dm(conf->mddev))
2412 		snprintf(conf->cache_name[0], namelen,
2413 			"raid%d-%p", conf->level, conf->mddev);
2414 	else
2415 		snprintf(conf->cache_name[0], namelen,
2416 			"raid%d-%s", conf->level, mdname(conf->mddev));
2417 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2418 
2419 	conf->active_name = 0;
2420 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2421 			       struct_size_t(struct stripe_head, dev, devs),
2422 			       0, 0, NULL);
2423 	if (!sc)
2424 		return 1;
2425 	conf->slab_cache = sc;
2426 	conf->pool_size = devs;
2427 	while (num--)
2428 		if (!grow_one_stripe(conf, GFP_KERNEL))
2429 			return 1;
2430 
2431 	return 0;
2432 }
2433 
2434 /**
2435  * scribble_alloc - allocate percpu scribble buffer for required size
2436  *		    of the scribble region
2437  * @percpu: from for_each_present_cpu() of the caller
2438  * @num: total number of disks in the array
2439  * @cnt: scribble objs count for required size of the scribble region
2440  *
2441  * The scribble buffer size must be enough to contain:
2442  * 1/ a struct page pointer for each device in the array +2
2443  * 2/ room to convert each entry in (1) to its corresponding dma
2444  *    (dma_map_page()) or page (page_address()) address.
2445  *
2446  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2447  * calculate over all devices (not just the data blocks), using zeros in place
2448  * of the P and Q blocks.
2449  */
2450 static int scribble_alloc(struct raid5_percpu *percpu,
2451 			  int num, int cnt)
2452 {
2453 	size_t obj_size =
2454 		sizeof(struct page *) * (num + 2) +
2455 		sizeof(addr_conv_t) * (num + 2) +
2456 		sizeof(unsigned int) * (num + 2);
2457 	void *scribble;
2458 
2459 	/*
2460 	 * If here is in raid array suspend context, it is in memalloc noio
2461 	 * context as well, there is no potential recursive memory reclaim
2462 	 * I/Os with the GFP_KERNEL flag.
2463 	 */
2464 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2465 	if (!scribble)
2466 		return -ENOMEM;
2467 
2468 	kvfree(percpu->scribble);
2469 
2470 	percpu->scribble = scribble;
2471 	percpu->scribble_obj_size = obj_size;
2472 	return 0;
2473 }
2474 
2475 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2476 {
2477 	unsigned long cpu;
2478 	int err = 0;
2479 
2480 	/* Never shrink. */
2481 	if (conf->scribble_disks >= new_disks &&
2482 	    conf->scribble_sectors >= new_sectors)
2483 		return 0;
2484 
2485 	raid5_quiesce(conf->mddev, true);
2486 	cpus_read_lock();
2487 
2488 	for_each_present_cpu(cpu) {
2489 		struct raid5_percpu *percpu;
2490 
2491 		percpu = per_cpu_ptr(conf->percpu, cpu);
2492 		err = scribble_alloc(percpu, new_disks,
2493 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2494 		if (err)
2495 			break;
2496 	}
2497 
2498 	cpus_read_unlock();
2499 	raid5_quiesce(conf->mddev, false);
2500 
2501 	if (!err) {
2502 		conf->scribble_disks = new_disks;
2503 		conf->scribble_sectors = new_sectors;
2504 	}
2505 	return err;
2506 }
2507 
2508 static int resize_stripes(struct r5conf *conf, int newsize)
2509 {
2510 	/* Make all the stripes able to hold 'newsize' devices.
2511 	 * New slots in each stripe get 'page' set to a new page.
2512 	 *
2513 	 * This happens in stages:
2514 	 * 1/ create a new kmem_cache and allocate the required number of
2515 	 *    stripe_heads.
2516 	 * 2/ gather all the old stripe_heads and transfer the pages across
2517 	 *    to the new stripe_heads.  This will have the side effect of
2518 	 *    freezing the array as once all stripe_heads have been collected,
2519 	 *    no IO will be possible.  Old stripe heads are freed once their
2520 	 *    pages have been transferred over, and the old kmem_cache is
2521 	 *    freed when all stripes are done.
2522 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2523 	 *    we simple return a failure status - no need to clean anything up.
2524 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2525 	 *    If this fails, we don't bother trying the shrink the
2526 	 *    stripe_heads down again, we just leave them as they are.
2527 	 *    As each stripe_head is processed the new one is released into
2528 	 *    active service.
2529 	 *
2530 	 * Once step2 is started, we cannot afford to wait for a write,
2531 	 * so we use GFP_NOIO allocations.
2532 	 */
2533 	struct stripe_head *osh, *nsh;
2534 	LIST_HEAD(newstripes);
2535 	struct disk_info *ndisks;
2536 	int err = 0;
2537 	struct kmem_cache *sc;
2538 	int i;
2539 	int hash, cnt;
2540 
2541 	md_allow_write(conf->mddev);
2542 
2543 	/* Step 1 */
2544 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2545 			       struct_size_t(struct stripe_head, dev, newsize),
2546 			       0, 0, NULL);
2547 	if (!sc)
2548 		return -ENOMEM;
2549 
2550 	/* Need to ensure auto-resizing doesn't interfere */
2551 	mutex_lock(&conf->cache_size_mutex);
2552 
2553 	for (i = conf->max_nr_stripes; i; i--) {
2554 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2555 		if (!nsh)
2556 			break;
2557 
2558 		list_add(&nsh->lru, &newstripes);
2559 	}
2560 	if (i) {
2561 		/* didn't get enough, give up */
2562 		while (!list_empty(&newstripes)) {
2563 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2564 			list_del(&nsh->lru);
2565 			free_stripe(sc, nsh);
2566 		}
2567 		kmem_cache_destroy(sc);
2568 		mutex_unlock(&conf->cache_size_mutex);
2569 		return -ENOMEM;
2570 	}
2571 	/* Step 2 - Must use GFP_NOIO now.
2572 	 * OK, we have enough stripes, start collecting inactive
2573 	 * stripes and copying them over
2574 	 */
2575 	hash = 0;
2576 	cnt = 0;
2577 	list_for_each_entry(nsh, &newstripes, lru) {
2578 		lock_device_hash_lock(conf, hash);
2579 		wait_event_cmd(conf->wait_for_stripe,
2580 				    !list_empty(conf->inactive_list + hash),
2581 				    unlock_device_hash_lock(conf, hash),
2582 				    lock_device_hash_lock(conf, hash));
2583 		osh = get_free_stripe(conf, hash);
2584 		unlock_device_hash_lock(conf, hash);
2585 
2586 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2587 	for (i = 0; i < osh->nr_pages; i++) {
2588 		nsh->pages[i] = osh->pages[i];
2589 		osh->pages[i] = NULL;
2590 	}
2591 #endif
2592 		for(i=0; i<conf->pool_size; i++) {
2593 			nsh->dev[i].page = osh->dev[i].page;
2594 			nsh->dev[i].orig_page = osh->dev[i].page;
2595 			nsh->dev[i].offset = osh->dev[i].offset;
2596 		}
2597 		nsh->hash_lock_index = hash;
2598 		free_stripe(conf->slab_cache, osh);
2599 		cnt++;
2600 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2601 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2602 			hash++;
2603 			cnt = 0;
2604 		}
2605 	}
2606 	kmem_cache_destroy(conf->slab_cache);
2607 
2608 	/* Step 3.
2609 	 * At this point, we are holding all the stripes so the array
2610 	 * is completely stalled, so now is a good time to resize
2611 	 * conf->disks and the scribble region
2612 	 */
2613 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2614 	if (ndisks) {
2615 		for (i = 0; i < conf->pool_size; i++)
2616 			ndisks[i] = conf->disks[i];
2617 
2618 		for (i = conf->pool_size; i < newsize; i++) {
2619 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2620 			if (!ndisks[i].extra_page)
2621 				err = -ENOMEM;
2622 		}
2623 
2624 		if (err) {
2625 			for (i = conf->pool_size; i < newsize; i++)
2626 				if (ndisks[i].extra_page)
2627 					put_page(ndisks[i].extra_page);
2628 			kfree(ndisks);
2629 		} else {
2630 			kfree(conf->disks);
2631 			conf->disks = ndisks;
2632 		}
2633 	} else
2634 		err = -ENOMEM;
2635 
2636 	conf->slab_cache = sc;
2637 	conf->active_name = 1-conf->active_name;
2638 
2639 	/* Step 4, return new stripes to service */
2640 	while(!list_empty(&newstripes)) {
2641 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2642 		list_del_init(&nsh->lru);
2643 
2644 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2645 		for (i = 0; i < nsh->nr_pages; i++) {
2646 			if (nsh->pages[i])
2647 				continue;
2648 			nsh->pages[i] = alloc_page(GFP_NOIO);
2649 			if (!nsh->pages[i])
2650 				err = -ENOMEM;
2651 		}
2652 
2653 		for (i = conf->raid_disks; i < newsize; i++) {
2654 			if (nsh->dev[i].page)
2655 				continue;
2656 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2657 			nsh->dev[i].orig_page = nsh->dev[i].page;
2658 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2659 		}
2660 #else
2661 		for (i=conf->raid_disks; i < newsize; i++)
2662 			if (nsh->dev[i].page == NULL) {
2663 				struct page *p = alloc_page(GFP_NOIO);
2664 				nsh->dev[i].page = p;
2665 				nsh->dev[i].orig_page = p;
2666 				nsh->dev[i].offset = 0;
2667 				if (!p)
2668 					err = -ENOMEM;
2669 			}
2670 #endif
2671 		raid5_release_stripe(nsh);
2672 	}
2673 	/* critical section pass, GFP_NOIO no longer needed */
2674 
2675 	if (!err)
2676 		conf->pool_size = newsize;
2677 	mutex_unlock(&conf->cache_size_mutex);
2678 
2679 	return err;
2680 }
2681 
2682 static int drop_one_stripe(struct r5conf *conf)
2683 {
2684 	struct stripe_head *sh;
2685 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2686 
2687 	spin_lock_irq(conf->hash_locks + hash);
2688 	sh = get_free_stripe(conf, hash);
2689 	spin_unlock_irq(conf->hash_locks + hash);
2690 	if (!sh)
2691 		return 0;
2692 	BUG_ON(atomic_read(&sh->count));
2693 	shrink_buffers(sh);
2694 	free_stripe(conf->slab_cache, sh);
2695 	atomic_dec(&conf->active_stripes);
2696 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2697 	return 1;
2698 }
2699 
2700 static void shrink_stripes(struct r5conf *conf)
2701 {
2702 	while (conf->max_nr_stripes &&
2703 	       drop_one_stripe(conf))
2704 		;
2705 
2706 	kmem_cache_destroy(conf->slab_cache);
2707 	conf->slab_cache = NULL;
2708 }
2709 
2710 static void raid5_end_read_request(struct bio * bi)
2711 {
2712 	struct stripe_head *sh = bi->bi_private;
2713 	struct r5conf *conf = sh->raid_conf;
2714 	int disks = sh->disks, i;
2715 	struct md_rdev *rdev = NULL;
2716 	sector_t s;
2717 
2718 	for (i=0 ; i<disks; i++)
2719 		if (bi == &sh->dev[i].req)
2720 			break;
2721 
2722 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2723 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2724 		bi->bi_status);
2725 	if (i == disks) {
2726 		BUG();
2727 		return;
2728 	}
2729 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2730 		/* If replacement finished while this request was outstanding,
2731 		 * 'replacement' might be NULL already.
2732 		 * In that case it moved down to 'rdev'.
2733 		 * rdev is not removed until all requests are finished.
2734 		 */
2735 		rdev = conf->disks[i].replacement;
2736 	if (!rdev)
2737 		rdev = conf->disks[i].rdev;
2738 
2739 	if (use_new_offset(conf, sh))
2740 		s = sh->sector + rdev->new_data_offset;
2741 	else
2742 		s = sh->sector + rdev->data_offset;
2743 	if (!bi->bi_status) {
2744 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2745 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2746 			/* Note that this cannot happen on a
2747 			 * replacement device.  We just fail those on
2748 			 * any error
2749 			 */
2750 			pr_info_ratelimited(
2751 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2752 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2753 				(unsigned long long)s,
2754 				rdev->bdev);
2755 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2756 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2757 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2758 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2759 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2760 
2761 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2762 			/*
2763 			 * end read for a page in journal, this
2764 			 * must be preparing for prexor in rmw
2765 			 */
2766 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2767 
2768 		if (atomic_read(&rdev->read_errors))
2769 			atomic_set(&rdev->read_errors, 0);
2770 	} else {
2771 		int retry = 0;
2772 		int set_bad = 0;
2773 
2774 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2775 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2776 			atomic_inc(&rdev->read_errors);
2777 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2778 			pr_warn_ratelimited(
2779 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2780 				mdname(conf->mddev),
2781 				(unsigned long long)s,
2782 				rdev->bdev);
2783 		else if (conf->mddev->degraded >= conf->max_degraded) {
2784 			set_bad = 1;
2785 			pr_warn_ratelimited(
2786 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2787 				mdname(conf->mddev),
2788 				(unsigned long long)s,
2789 				rdev->bdev);
2790 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2791 			/* Oh, no!!! */
2792 			set_bad = 1;
2793 			pr_warn_ratelimited(
2794 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2795 				mdname(conf->mddev),
2796 				(unsigned long long)s,
2797 				rdev->bdev);
2798 		} else if (atomic_read(&rdev->read_errors)
2799 			 > conf->max_nr_stripes) {
2800 			if (!test_bit(Faulty, &rdev->flags)) {
2801 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2802 				    mdname(conf->mddev),
2803 				    atomic_read(&rdev->read_errors),
2804 				    conf->max_nr_stripes);
2805 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2806 				    mdname(conf->mddev), rdev->bdev);
2807 			}
2808 		} else
2809 			retry = 1;
2810 		if (set_bad && test_bit(In_sync, &rdev->flags)
2811 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2812 			retry = 1;
2813 		if (retry)
2814 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2815 				set_bit(R5_ReadError, &sh->dev[i].flags);
2816 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2817 				set_bit(R5_ReadError, &sh->dev[i].flags);
2818 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2819 			} else
2820 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2821 		else {
2822 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2823 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2824 			if (!(set_bad && test_bit(In_sync, &rdev->flags)))
2825 				rdev_set_badblocks(rdev, sh->sector,
2826 						   RAID5_STRIPE_SECTORS(conf), 0);
2827 		}
2828 	}
2829 	rdev_dec_pending(rdev, conf->mddev);
2830 	bio_uninit(bi);
2831 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2832 	set_bit(STRIPE_HANDLE, &sh->state);
2833 	raid5_release_stripe(sh);
2834 }
2835 
2836 static void raid5_end_write_request(struct bio *bi)
2837 {
2838 	struct stripe_head *sh = bi->bi_private;
2839 	struct r5conf *conf = sh->raid_conf;
2840 	int disks = sh->disks, i;
2841 	struct md_rdev *rdev;
2842 	int replacement = 0;
2843 
2844 	for (i = 0 ; i < disks; i++) {
2845 		if (bi == &sh->dev[i].req) {
2846 			rdev = conf->disks[i].rdev;
2847 			break;
2848 		}
2849 		if (bi == &sh->dev[i].rreq) {
2850 			rdev = conf->disks[i].replacement;
2851 			if (rdev)
2852 				replacement = 1;
2853 			else
2854 				/* rdev was removed and 'replacement'
2855 				 * replaced it.  rdev is not removed
2856 				 * until all requests are finished.
2857 				 */
2858 				rdev = conf->disks[i].rdev;
2859 			break;
2860 		}
2861 	}
2862 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2863 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2864 		bi->bi_status);
2865 	if (i == disks) {
2866 		BUG();
2867 		return;
2868 	}
2869 
2870 	if (replacement) {
2871 		if (bi->bi_status)
2872 			md_error(conf->mddev, rdev);
2873 		else if (rdev_has_badblock(rdev, sh->sector,
2874 					   RAID5_STRIPE_SECTORS(conf)))
2875 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2876 	} else {
2877 		if (bi->bi_status) {
2878 			set_bit(WriteErrorSeen, &rdev->flags);
2879 			set_bit(R5_WriteError, &sh->dev[i].flags);
2880 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2881 				set_bit(MD_RECOVERY_NEEDED,
2882 					&rdev->mddev->recovery);
2883 		} else if (rdev_has_badblock(rdev, sh->sector,
2884 					     RAID5_STRIPE_SECTORS(conf))) {
2885 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2886 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2887 				/* That was a successful write so make
2888 				 * sure it looks like we already did
2889 				 * a re-write.
2890 				 */
2891 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2892 		}
2893 	}
2894 	rdev_dec_pending(rdev, conf->mddev);
2895 
2896 	if (sh->batch_head && bi->bi_status && !replacement)
2897 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2898 
2899 	bio_uninit(bi);
2900 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2901 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2902 	set_bit(STRIPE_HANDLE, &sh->state);
2903 
2904 	if (sh->batch_head && sh != sh->batch_head)
2905 		raid5_release_stripe(sh->batch_head);
2906 	raid5_release_stripe(sh);
2907 }
2908 
2909 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2910 {
2911 	struct r5conf *conf = mddev->private;
2912 	unsigned long flags;
2913 	pr_debug("raid456: error called\n");
2914 
2915 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2916 		mdname(mddev), rdev->bdev);
2917 
2918 	spin_lock_irqsave(&conf->device_lock, flags);
2919 	set_bit(Faulty, &rdev->flags);
2920 	clear_bit(In_sync, &rdev->flags);
2921 	mddev->degraded = raid5_calc_degraded(conf);
2922 
2923 	if (has_failed(conf)) {
2924 		set_bit(MD_BROKEN, &conf->mddev->flags);
2925 
2926 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2927 			mdname(mddev), mddev->degraded, conf->raid_disks);
2928 	} else {
2929 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2930 			mdname(mddev), conf->raid_disks - mddev->degraded);
2931 	}
2932 
2933 	spin_unlock_irqrestore(&conf->device_lock, flags);
2934 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2935 
2936 	set_bit(Blocked, &rdev->flags);
2937 	set_mask_bits(&mddev->sb_flags, 0,
2938 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2939 	r5c_update_on_rdev_error(mddev, rdev);
2940 }
2941 
2942 /*
2943  * Input: a 'big' sector number,
2944  * Output: index of the data and parity disk, and the sector # in them.
2945  */
2946 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2947 			      int previous, int *dd_idx,
2948 			      struct stripe_head *sh)
2949 {
2950 	sector_t stripe, stripe2;
2951 	sector_t chunk_number;
2952 	unsigned int chunk_offset;
2953 	int pd_idx, qd_idx;
2954 	int ddf_layout = 0;
2955 	sector_t new_sector;
2956 	int algorithm = previous ? conf->prev_algo
2957 				 : conf->algorithm;
2958 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2959 					 : conf->chunk_sectors;
2960 	int raid_disks = previous ? conf->previous_raid_disks
2961 				  : conf->raid_disks;
2962 	int data_disks = raid_disks - conf->max_degraded;
2963 
2964 	/* First compute the information on this sector */
2965 
2966 	/*
2967 	 * Compute the chunk number and the sector offset inside the chunk
2968 	 */
2969 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2970 	chunk_number = r_sector;
2971 
2972 	/*
2973 	 * Compute the stripe number
2974 	 */
2975 	stripe = chunk_number;
2976 	*dd_idx = sector_div(stripe, data_disks);
2977 	stripe2 = stripe;
2978 	/*
2979 	 * Select the parity disk based on the user selected algorithm.
2980 	 */
2981 	pd_idx = qd_idx = -1;
2982 	switch(conf->level) {
2983 	case 4:
2984 		pd_idx = data_disks;
2985 		break;
2986 	case 5:
2987 		switch (algorithm) {
2988 		case ALGORITHM_LEFT_ASYMMETRIC:
2989 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2990 			if (*dd_idx >= pd_idx)
2991 				(*dd_idx)++;
2992 			break;
2993 		case ALGORITHM_RIGHT_ASYMMETRIC:
2994 			pd_idx = sector_div(stripe2, raid_disks);
2995 			if (*dd_idx >= pd_idx)
2996 				(*dd_idx)++;
2997 			break;
2998 		case ALGORITHM_LEFT_SYMMETRIC:
2999 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3000 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3001 			break;
3002 		case ALGORITHM_RIGHT_SYMMETRIC:
3003 			pd_idx = sector_div(stripe2, raid_disks);
3004 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3005 			break;
3006 		case ALGORITHM_PARITY_0:
3007 			pd_idx = 0;
3008 			(*dd_idx)++;
3009 			break;
3010 		case ALGORITHM_PARITY_N:
3011 			pd_idx = data_disks;
3012 			break;
3013 		default:
3014 			BUG();
3015 		}
3016 		break;
3017 	case 6:
3018 
3019 		switch (algorithm) {
3020 		case ALGORITHM_LEFT_ASYMMETRIC:
3021 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3022 			qd_idx = pd_idx + 1;
3023 			if (pd_idx == raid_disks-1) {
3024 				(*dd_idx)++;	/* Q D D D P */
3025 				qd_idx = 0;
3026 			} else if (*dd_idx >= pd_idx)
3027 				(*dd_idx) += 2; /* D D P Q D */
3028 			break;
3029 		case ALGORITHM_RIGHT_ASYMMETRIC:
3030 			pd_idx = sector_div(stripe2, raid_disks);
3031 			qd_idx = pd_idx + 1;
3032 			if (pd_idx == raid_disks-1) {
3033 				(*dd_idx)++;	/* Q D D D P */
3034 				qd_idx = 0;
3035 			} else if (*dd_idx >= pd_idx)
3036 				(*dd_idx) += 2; /* D D P Q D */
3037 			break;
3038 		case ALGORITHM_LEFT_SYMMETRIC:
3039 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3040 			qd_idx = (pd_idx + 1) % raid_disks;
3041 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3042 			break;
3043 		case ALGORITHM_RIGHT_SYMMETRIC:
3044 			pd_idx = sector_div(stripe2, raid_disks);
3045 			qd_idx = (pd_idx + 1) % raid_disks;
3046 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3047 			break;
3048 
3049 		case ALGORITHM_PARITY_0:
3050 			pd_idx = 0;
3051 			qd_idx = 1;
3052 			(*dd_idx) += 2;
3053 			break;
3054 		case ALGORITHM_PARITY_N:
3055 			pd_idx = data_disks;
3056 			qd_idx = data_disks + 1;
3057 			break;
3058 
3059 		case ALGORITHM_ROTATING_ZERO_RESTART:
3060 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3061 			 * of blocks for computing Q is different.
3062 			 */
3063 			pd_idx = sector_div(stripe2, raid_disks);
3064 			qd_idx = pd_idx + 1;
3065 			if (pd_idx == raid_disks-1) {
3066 				(*dd_idx)++;	/* Q D D D P */
3067 				qd_idx = 0;
3068 			} else if (*dd_idx >= pd_idx)
3069 				(*dd_idx) += 2; /* D D P Q D */
3070 			ddf_layout = 1;
3071 			break;
3072 
3073 		case ALGORITHM_ROTATING_N_RESTART:
3074 			/* Same a left_asymmetric, by first stripe is
3075 			 * D D D P Q  rather than
3076 			 * Q D D D P
3077 			 */
3078 			stripe2 += 1;
3079 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3080 			qd_idx = pd_idx + 1;
3081 			if (pd_idx == raid_disks-1) {
3082 				(*dd_idx)++;	/* Q D D D P */
3083 				qd_idx = 0;
3084 			} else if (*dd_idx >= pd_idx)
3085 				(*dd_idx) += 2; /* D D P Q D */
3086 			ddf_layout = 1;
3087 			break;
3088 
3089 		case ALGORITHM_ROTATING_N_CONTINUE:
3090 			/* Same as left_symmetric but Q is before P */
3091 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3092 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3093 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3094 			ddf_layout = 1;
3095 			break;
3096 
3097 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3098 			/* RAID5 left_asymmetric, with Q on last device */
3099 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3100 			if (*dd_idx >= pd_idx)
3101 				(*dd_idx)++;
3102 			qd_idx = raid_disks - 1;
3103 			break;
3104 
3105 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3106 			pd_idx = sector_div(stripe2, raid_disks-1);
3107 			if (*dd_idx >= pd_idx)
3108 				(*dd_idx)++;
3109 			qd_idx = raid_disks - 1;
3110 			break;
3111 
3112 		case ALGORITHM_LEFT_SYMMETRIC_6:
3113 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3114 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3115 			qd_idx = raid_disks - 1;
3116 			break;
3117 
3118 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3119 			pd_idx = sector_div(stripe2, raid_disks-1);
3120 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3121 			qd_idx = raid_disks - 1;
3122 			break;
3123 
3124 		case ALGORITHM_PARITY_0_6:
3125 			pd_idx = 0;
3126 			(*dd_idx)++;
3127 			qd_idx = raid_disks - 1;
3128 			break;
3129 
3130 		default:
3131 			BUG();
3132 		}
3133 		break;
3134 	}
3135 
3136 	if (sh) {
3137 		sh->pd_idx = pd_idx;
3138 		sh->qd_idx = qd_idx;
3139 		sh->ddf_layout = ddf_layout;
3140 	}
3141 	/*
3142 	 * Finally, compute the new sector number
3143 	 */
3144 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3145 	return new_sector;
3146 }
3147 
3148 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3149 {
3150 	struct r5conf *conf = sh->raid_conf;
3151 	int raid_disks = sh->disks;
3152 	int data_disks = raid_disks - conf->max_degraded;
3153 	sector_t new_sector = sh->sector, check;
3154 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3155 					 : conf->chunk_sectors;
3156 	int algorithm = previous ? conf->prev_algo
3157 				 : conf->algorithm;
3158 	sector_t stripe;
3159 	int chunk_offset;
3160 	sector_t chunk_number;
3161 	int dummy1, dd_idx = i;
3162 	sector_t r_sector;
3163 	struct stripe_head sh2;
3164 
3165 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3166 	stripe = new_sector;
3167 
3168 	if (i == sh->pd_idx)
3169 		return 0;
3170 	switch(conf->level) {
3171 	case 4: break;
3172 	case 5:
3173 		switch (algorithm) {
3174 		case ALGORITHM_LEFT_ASYMMETRIC:
3175 		case ALGORITHM_RIGHT_ASYMMETRIC:
3176 			if (i > sh->pd_idx)
3177 				i--;
3178 			break;
3179 		case ALGORITHM_LEFT_SYMMETRIC:
3180 		case ALGORITHM_RIGHT_SYMMETRIC:
3181 			if (i < sh->pd_idx)
3182 				i += raid_disks;
3183 			i -= (sh->pd_idx + 1);
3184 			break;
3185 		case ALGORITHM_PARITY_0:
3186 			i -= 1;
3187 			break;
3188 		case ALGORITHM_PARITY_N:
3189 			break;
3190 		default:
3191 			BUG();
3192 		}
3193 		break;
3194 	case 6:
3195 		if (i == sh->qd_idx)
3196 			return 0; /* It is the Q disk */
3197 		switch (algorithm) {
3198 		case ALGORITHM_LEFT_ASYMMETRIC:
3199 		case ALGORITHM_RIGHT_ASYMMETRIC:
3200 		case ALGORITHM_ROTATING_ZERO_RESTART:
3201 		case ALGORITHM_ROTATING_N_RESTART:
3202 			if (sh->pd_idx == raid_disks-1)
3203 				i--;	/* Q D D D P */
3204 			else if (i > sh->pd_idx)
3205 				i -= 2; /* D D P Q D */
3206 			break;
3207 		case ALGORITHM_LEFT_SYMMETRIC:
3208 		case ALGORITHM_RIGHT_SYMMETRIC:
3209 			if (sh->pd_idx == raid_disks-1)
3210 				i--; /* Q D D D P */
3211 			else {
3212 				/* D D P Q D */
3213 				if (i < sh->pd_idx)
3214 					i += raid_disks;
3215 				i -= (sh->pd_idx + 2);
3216 			}
3217 			break;
3218 		case ALGORITHM_PARITY_0:
3219 			i -= 2;
3220 			break;
3221 		case ALGORITHM_PARITY_N:
3222 			break;
3223 		case ALGORITHM_ROTATING_N_CONTINUE:
3224 			/* Like left_symmetric, but P is before Q */
3225 			if (sh->pd_idx == 0)
3226 				i--;	/* P D D D Q */
3227 			else {
3228 				/* D D Q P D */
3229 				if (i < sh->pd_idx)
3230 					i += raid_disks;
3231 				i -= (sh->pd_idx + 1);
3232 			}
3233 			break;
3234 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3235 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3236 			if (i > sh->pd_idx)
3237 				i--;
3238 			break;
3239 		case ALGORITHM_LEFT_SYMMETRIC_6:
3240 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3241 			if (i < sh->pd_idx)
3242 				i += data_disks + 1;
3243 			i -= (sh->pd_idx + 1);
3244 			break;
3245 		case ALGORITHM_PARITY_0_6:
3246 			i -= 1;
3247 			break;
3248 		default:
3249 			BUG();
3250 		}
3251 		break;
3252 	}
3253 
3254 	chunk_number = stripe * data_disks + i;
3255 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3256 
3257 	check = raid5_compute_sector(conf, r_sector,
3258 				     previous, &dummy1, &sh2);
3259 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3260 		|| sh2.qd_idx != sh->qd_idx) {
3261 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3262 			mdname(conf->mddev));
3263 		return 0;
3264 	}
3265 	return r_sector;
3266 }
3267 
3268 /*
3269  * There are cases where we want handle_stripe_dirtying() and
3270  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3271  *
3272  * This function checks whether we want to delay the towrite. Specifically,
3273  * we delay the towrite when:
3274  *
3275  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3276  *      stripe has data in journal (for other devices).
3277  *
3278  *      In this case, when reading data for the non-overwrite dev, it is
3279  *      necessary to handle complex rmw of write back cache (prexor with
3280  *      orig_page, and xor with page). To keep read path simple, we would
3281  *      like to flush data in journal to RAID disks first, so complex rmw
3282  *      is handled in the write patch (handle_stripe_dirtying).
3283  *
3284  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3285  *
3286  *      It is important to be able to flush all stripes in raid5-cache.
3287  *      Therefore, we need reserve some space on the journal device for
3288  *      these flushes. If flush operation includes pending writes to the
3289  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3290  *      for the flush out. If we exclude these pending writes from flush
3291  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3292  *      Therefore, excluding pending writes in these cases enables more
3293  *      efficient use of the journal device.
3294  *
3295  *      Note: To make sure the stripe makes progress, we only delay
3296  *      towrite for stripes with data already in journal (injournal > 0).
3297  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3298  *      no_space_stripes list.
3299  *
3300  *   3. during journal failure
3301  *      In journal failure, we try to flush all cached data to raid disks
3302  *      based on data in stripe cache. The array is read-only to upper
3303  *      layers, so we would skip all pending writes.
3304  *
3305  */
3306 static inline bool delay_towrite(struct r5conf *conf,
3307 				 struct r5dev *dev,
3308 				 struct stripe_head_state *s)
3309 {
3310 	/* case 1 above */
3311 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3312 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3313 		return true;
3314 	/* case 2 above */
3315 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3316 	    s->injournal > 0)
3317 		return true;
3318 	/* case 3 above */
3319 	if (s->log_failed && s->injournal)
3320 		return true;
3321 	return false;
3322 }
3323 
3324 static void
3325 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3326 			 int rcw, int expand)
3327 {
3328 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3329 	struct r5conf *conf = sh->raid_conf;
3330 	int level = conf->level;
3331 
3332 	if (rcw) {
3333 		/*
3334 		 * In some cases, handle_stripe_dirtying initially decided to
3335 		 * run rmw and allocates extra page for prexor. However, rcw is
3336 		 * cheaper later on. We need to free the extra page now,
3337 		 * because we won't be able to do that in ops_complete_prexor().
3338 		 */
3339 		r5c_release_extra_page(sh);
3340 
3341 		for (i = disks; i--; ) {
3342 			struct r5dev *dev = &sh->dev[i];
3343 
3344 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3345 				set_bit(R5_LOCKED, &dev->flags);
3346 				set_bit(R5_Wantdrain, &dev->flags);
3347 				if (!expand)
3348 					clear_bit(R5_UPTODATE, &dev->flags);
3349 				s->locked++;
3350 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3351 				set_bit(R5_LOCKED, &dev->flags);
3352 				s->locked++;
3353 			}
3354 		}
3355 		/* if we are not expanding this is a proper write request, and
3356 		 * there will be bios with new data to be drained into the
3357 		 * stripe cache
3358 		 */
3359 		if (!expand) {
3360 			if (!s->locked)
3361 				/* False alarm, nothing to do */
3362 				return;
3363 			sh->reconstruct_state = reconstruct_state_drain_run;
3364 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3365 		} else
3366 			sh->reconstruct_state = reconstruct_state_run;
3367 
3368 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3369 
3370 		if (s->locked + conf->max_degraded == disks)
3371 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3372 				atomic_inc(&conf->pending_full_writes);
3373 	} else {
3374 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3375 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3376 		BUG_ON(level == 6 &&
3377 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3378 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3379 
3380 		for (i = disks; i--; ) {
3381 			struct r5dev *dev = &sh->dev[i];
3382 			if (i == pd_idx || i == qd_idx)
3383 				continue;
3384 
3385 			if (dev->towrite &&
3386 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3387 			     test_bit(R5_Wantcompute, &dev->flags))) {
3388 				set_bit(R5_Wantdrain, &dev->flags);
3389 				set_bit(R5_LOCKED, &dev->flags);
3390 				clear_bit(R5_UPTODATE, &dev->flags);
3391 				s->locked++;
3392 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3393 				set_bit(R5_LOCKED, &dev->flags);
3394 				s->locked++;
3395 			}
3396 		}
3397 		if (!s->locked)
3398 			/* False alarm - nothing to do */
3399 			return;
3400 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3401 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3402 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3403 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3404 	}
3405 
3406 	/* keep the parity disk(s) locked while asynchronous operations
3407 	 * are in flight
3408 	 */
3409 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3410 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3411 	s->locked++;
3412 
3413 	if (level == 6) {
3414 		int qd_idx = sh->qd_idx;
3415 		struct r5dev *dev = &sh->dev[qd_idx];
3416 
3417 		set_bit(R5_LOCKED, &dev->flags);
3418 		clear_bit(R5_UPTODATE, &dev->flags);
3419 		s->locked++;
3420 	}
3421 
3422 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3423 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3424 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3425 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3426 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3427 
3428 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3429 		__func__, (unsigned long long)sh->sector,
3430 		s->locked, s->ops_request);
3431 }
3432 
3433 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3434 				int dd_idx, int forwrite)
3435 {
3436 	struct r5conf *conf = sh->raid_conf;
3437 	struct bio **bip;
3438 
3439 	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3440 		 bi->bi_iter.bi_sector, sh->sector);
3441 
3442 	/* Don't allow new IO added to stripes in batch list */
3443 	if (sh->batch_head)
3444 		return true;
3445 
3446 	if (forwrite)
3447 		bip = &sh->dev[dd_idx].towrite;
3448 	else
3449 		bip = &sh->dev[dd_idx].toread;
3450 
3451 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3452 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3453 			return true;
3454 		bip = &(*bip)->bi_next;
3455 	}
3456 
3457 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3458 		return true;
3459 
3460 	if (forwrite && raid5_has_ppl(conf)) {
3461 		/*
3462 		 * With PPL only writes to consecutive data chunks within a
3463 		 * stripe are allowed because for a single stripe_head we can
3464 		 * only have one PPL entry at a time, which describes one data
3465 		 * range. Not really an overlap, but R5_Overlap can be
3466 		 * used to handle this.
3467 		 */
3468 		sector_t sector;
3469 		sector_t first = 0;
3470 		sector_t last = 0;
3471 		int count = 0;
3472 		int i;
3473 
3474 		for (i = 0; i < sh->disks; i++) {
3475 			if (i != sh->pd_idx &&
3476 			    (i == dd_idx || sh->dev[i].towrite)) {
3477 				sector = sh->dev[i].sector;
3478 				if (count == 0 || sector < first)
3479 					first = sector;
3480 				if (sector > last)
3481 					last = sector;
3482 				count++;
3483 			}
3484 		}
3485 
3486 		if (first + conf->chunk_sectors * (count - 1) != last)
3487 			return true;
3488 	}
3489 
3490 	return false;
3491 }
3492 
3493 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3494 			     int dd_idx, int forwrite, int previous)
3495 {
3496 	struct r5conf *conf = sh->raid_conf;
3497 	struct bio **bip;
3498 	int firstwrite = 0;
3499 
3500 	if (forwrite) {
3501 		bip = &sh->dev[dd_idx].towrite;
3502 		if (!*bip)
3503 			firstwrite = 1;
3504 	} else {
3505 		bip = &sh->dev[dd_idx].toread;
3506 	}
3507 
3508 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3509 		bip = &(*bip)->bi_next;
3510 
3511 	if (!forwrite || previous)
3512 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3513 
3514 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3515 	if (*bip)
3516 		bi->bi_next = *bip;
3517 	*bip = bi;
3518 	bio_inc_remaining(bi);
3519 	md_write_inc(conf->mddev, bi);
3520 
3521 	if (forwrite) {
3522 		/* check if page is covered */
3523 		sector_t sector = sh->dev[dd_idx].sector;
3524 		for (bi=sh->dev[dd_idx].towrite;
3525 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3526 			     bi && bi->bi_iter.bi_sector <= sector;
3527 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3528 			if (bio_end_sector(bi) >= sector)
3529 				sector = bio_end_sector(bi);
3530 		}
3531 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3532 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3533 				sh->overwrite_disks++;
3534 	}
3535 
3536 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3537 		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3538 		 sh->dev[dd_idx].sector);
3539 
3540 	if (conf->mddev->bitmap && firstwrite && !sh->batch_head) {
3541 		sh->bm_seq = conf->seq_flush+1;
3542 		set_bit(STRIPE_BIT_DELAY, &sh->state);
3543 	}
3544 }
3545 
3546 /*
3547  * Each stripe/dev can have one or more bios attached.
3548  * toread/towrite point to the first in a chain.
3549  * The bi_next chain must be in order.
3550  */
3551 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3552 			   int dd_idx, int forwrite, int previous)
3553 {
3554 	spin_lock_irq(&sh->stripe_lock);
3555 
3556 	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3557 		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3558 		spin_unlock_irq(&sh->stripe_lock);
3559 		return false;
3560 	}
3561 
3562 	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3563 	spin_unlock_irq(&sh->stripe_lock);
3564 	return true;
3565 }
3566 
3567 static void end_reshape(struct r5conf *conf);
3568 
3569 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3570 			    struct stripe_head *sh)
3571 {
3572 	int sectors_per_chunk =
3573 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3574 	int dd_idx;
3575 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3576 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3577 
3578 	raid5_compute_sector(conf,
3579 			     stripe * (disks - conf->max_degraded)
3580 			     *sectors_per_chunk + chunk_offset,
3581 			     previous,
3582 			     &dd_idx, sh);
3583 }
3584 
3585 static void
3586 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3587 		     struct stripe_head_state *s, int disks)
3588 {
3589 	int i;
3590 	BUG_ON(sh->batch_head);
3591 	for (i = disks; i--; ) {
3592 		struct bio *bi;
3593 
3594 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3595 			struct md_rdev *rdev = conf->disks[i].rdev;
3596 
3597 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3598 			    !test_bit(Faulty, &rdev->flags))
3599 				atomic_inc(&rdev->nr_pending);
3600 			else
3601 				rdev = NULL;
3602 			if (rdev) {
3603 				rdev_set_badblocks(rdev,
3604 						   sh->sector,
3605 						   RAID5_STRIPE_SECTORS(conf),
3606 						   0);
3607 				rdev_dec_pending(rdev, conf->mddev);
3608 			}
3609 		}
3610 		spin_lock_irq(&sh->stripe_lock);
3611 		/* fail all writes first */
3612 		bi = sh->dev[i].towrite;
3613 		sh->dev[i].towrite = NULL;
3614 		sh->overwrite_disks = 0;
3615 		spin_unlock_irq(&sh->stripe_lock);
3616 
3617 		log_stripe_write_finished(sh);
3618 
3619 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3620 			wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3621 
3622 		while (bi && bi->bi_iter.bi_sector <
3623 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3624 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3625 
3626 			md_write_end(conf->mddev);
3627 			bio_io_error(bi);
3628 			bi = nextbi;
3629 		}
3630 		/* and fail all 'written' */
3631 		bi = sh->dev[i].written;
3632 		sh->dev[i].written = NULL;
3633 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3634 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3635 			sh->dev[i].page = sh->dev[i].orig_page;
3636 		}
3637 
3638 		while (bi && bi->bi_iter.bi_sector <
3639 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3640 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3641 
3642 			md_write_end(conf->mddev);
3643 			bio_io_error(bi);
3644 			bi = bi2;
3645 		}
3646 
3647 		/* fail any reads if this device is non-operational and
3648 		 * the data has not reached the cache yet.
3649 		 */
3650 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3651 		    s->failed > conf->max_degraded &&
3652 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3653 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3654 			spin_lock_irq(&sh->stripe_lock);
3655 			bi = sh->dev[i].toread;
3656 			sh->dev[i].toread = NULL;
3657 			spin_unlock_irq(&sh->stripe_lock);
3658 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3659 				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3660 			if (bi)
3661 				s->to_read--;
3662 			while (bi && bi->bi_iter.bi_sector <
3663 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3664 				struct bio *nextbi =
3665 					r5_next_bio(conf, bi, sh->dev[i].sector);
3666 
3667 				bio_io_error(bi);
3668 				bi = nextbi;
3669 			}
3670 		}
3671 		/* If we were in the middle of a write the parity block might
3672 		 * still be locked - so just clear all R5_LOCKED flags
3673 		 */
3674 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3675 	}
3676 	s->to_write = 0;
3677 	s->written = 0;
3678 
3679 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3680 		if (atomic_dec_and_test(&conf->pending_full_writes))
3681 			md_wakeup_thread(conf->mddev->thread);
3682 }
3683 
3684 static void
3685 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3686 		   struct stripe_head_state *s)
3687 {
3688 	int abort = 0;
3689 	int i;
3690 
3691 	BUG_ON(sh->batch_head);
3692 	clear_bit(STRIPE_SYNCING, &sh->state);
3693 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3694 		wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3695 	s->syncing = 0;
3696 	s->replacing = 0;
3697 	/* There is nothing more to do for sync/check/repair.
3698 	 * Don't even need to abort as that is handled elsewhere
3699 	 * if needed, and not always wanted e.g. if there is a known
3700 	 * bad block here.
3701 	 * For recover/replace we need to record a bad block on all
3702 	 * non-sync devices, or abort the recovery
3703 	 */
3704 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3705 		/* During recovery devices cannot be removed, so
3706 		 * locking and refcounting of rdevs is not needed
3707 		 */
3708 		for (i = 0; i < conf->raid_disks; i++) {
3709 			struct md_rdev *rdev = conf->disks[i].rdev;
3710 
3711 			if (rdev
3712 			    && !test_bit(Faulty, &rdev->flags)
3713 			    && !test_bit(In_sync, &rdev->flags)
3714 			    && !rdev_set_badblocks(rdev, sh->sector,
3715 						   RAID5_STRIPE_SECTORS(conf), 0))
3716 				abort = 1;
3717 			rdev = conf->disks[i].replacement;
3718 
3719 			if (rdev
3720 			    && !test_bit(Faulty, &rdev->flags)
3721 			    && !test_bit(In_sync, &rdev->flags)
3722 			    && !rdev_set_badblocks(rdev, sh->sector,
3723 						   RAID5_STRIPE_SECTORS(conf), 0))
3724 				abort = 1;
3725 		}
3726 	}
3727 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf));
3728 
3729 	if (abort)
3730 		md_sync_error(conf->mddev);
3731 }
3732 
3733 static int want_replace(struct stripe_head *sh, int disk_idx)
3734 {
3735 	struct md_rdev *rdev;
3736 	int rv = 0;
3737 
3738 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3739 	if (rdev
3740 	    && !test_bit(Faulty, &rdev->flags)
3741 	    && !test_bit(In_sync, &rdev->flags)
3742 	    && (rdev->recovery_offset <= sh->sector
3743 		|| rdev->mddev->resync_offset <= sh->sector))
3744 		rv = 1;
3745 	return rv;
3746 }
3747 
3748 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3749 			   int disk_idx, int disks)
3750 {
3751 	struct r5dev *dev = &sh->dev[disk_idx];
3752 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3753 				  &sh->dev[s->failed_num[1]] };
3754 	struct mddev *mddev = sh->raid_conf->mddev;
3755 	bool force_rcw = false;
3756 	int i;
3757 
3758 	if (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW ||
3759 	    (mddev->bitmap_ops && mddev->bitmap_ops->blocks_synced &&
3760 	     !mddev->bitmap_ops->blocks_synced(mddev, sh->sector)))
3761 		force_rcw = true;
3762 
3763 	if (test_bit(R5_LOCKED, &dev->flags) ||
3764 	    test_bit(R5_UPTODATE, &dev->flags))
3765 		/* No point reading this as we already have it or have
3766 		 * decided to get it.
3767 		 */
3768 		return 0;
3769 
3770 	if (dev->toread ||
3771 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3772 		/* We need this block to directly satisfy a request */
3773 		return 1;
3774 
3775 	if (s->syncing || s->expanding ||
3776 	    (s->replacing && want_replace(sh, disk_idx)))
3777 		/* When syncing, or expanding we read everything.
3778 		 * When replacing, we need the replaced block.
3779 		 */
3780 		return 1;
3781 
3782 	if ((s->failed >= 1 && fdev[0]->toread) ||
3783 	    (s->failed >= 2 && fdev[1]->toread))
3784 		/* If we want to read from a failed device, then
3785 		 * we need to actually read every other device.
3786 		 */
3787 		return 1;
3788 
3789 	/* Sometimes neither read-modify-write nor reconstruct-write
3790 	 * cycles can work.  In those cases we read every block we
3791 	 * can.  Then the parity-update is certain to have enough to
3792 	 * work with.
3793 	 * This can only be a problem when we need to write something,
3794 	 * and some device has failed.  If either of those tests
3795 	 * fail we need look no further.
3796 	 */
3797 	if (!s->failed || !s->to_write)
3798 		return 0;
3799 
3800 	if (test_bit(R5_Insync, &dev->flags) &&
3801 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3802 		/* Pre-reads at not permitted until after short delay
3803 		 * to gather multiple requests.  However if this
3804 		 * device is no Insync, the block could only be computed
3805 		 * and there is no need to delay that.
3806 		 */
3807 		return 0;
3808 
3809 	for (i = 0; i < s->failed && i < 2; i++) {
3810 		if (fdev[i]->towrite &&
3811 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3812 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3813 			/* If we have a partial write to a failed
3814 			 * device, then we will need to reconstruct
3815 			 * the content of that device, so all other
3816 			 * devices must be read.
3817 			 */
3818 			return 1;
3819 
3820 		if (s->failed >= 2 &&
3821 		    (fdev[i]->towrite ||
3822 		     s->failed_num[i] == sh->pd_idx ||
3823 		     s->failed_num[i] == sh->qd_idx) &&
3824 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3825 			/* In max degraded raid6, If the failed disk is P, Q,
3826 			 * or we want to read the failed disk, we need to do
3827 			 * reconstruct-write.
3828 			 */
3829 			force_rcw = true;
3830 	}
3831 
3832 	/* If we are forced to do a reconstruct-write, because parity
3833 	 * cannot be trusted and we are currently recovering it, there
3834 	 * is extra need to be careful.
3835 	 * If one of the devices that we would need to read, because
3836 	 * it is not being overwritten (and maybe not written at all)
3837 	 * is missing/faulty, then we need to read everything we can.
3838 	 */
3839 	if (!force_rcw &&
3840 	    sh->sector < sh->raid_conf->mddev->resync_offset)
3841 		/* reconstruct-write isn't being forced */
3842 		return 0;
3843 	for (i = 0; i < s->failed && i < 2; i++) {
3844 		if (s->failed_num[i] != sh->pd_idx &&
3845 		    s->failed_num[i] != sh->qd_idx &&
3846 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3847 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3848 			return 1;
3849 	}
3850 
3851 	return 0;
3852 }
3853 
3854 /* fetch_block - checks the given member device to see if its data needs
3855  * to be read or computed to satisfy a request.
3856  *
3857  * Returns 1 when no more member devices need to be checked, otherwise returns
3858  * 0 to tell the loop in handle_stripe_fill to continue
3859  */
3860 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3861 		       int disk_idx, int disks)
3862 {
3863 	struct r5dev *dev = &sh->dev[disk_idx];
3864 
3865 	/* is the data in this block needed, and can we get it? */
3866 	if (need_this_block(sh, s, disk_idx, disks)) {
3867 		/* we would like to get this block, possibly by computing it,
3868 		 * otherwise read it if the backing disk is insync
3869 		 */
3870 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3871 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3872 		BUG_ON(sh->batch_head);
3873 
3874 		/*
3875 		 * In the raid6 case if the only non-uptodate disk is P
3876 		 * then we already trusted P to compute the other failed
3877 		 * drives. It is safe to compute rather than re-read P.
3878 		 * In other cases we only compute blocks from failed
3879 		 * devices, otherwise check/repair might fail to detect
3880 		 * a real inconsistency.
3881 		 */
3882 
3883 		if ((s->uptodate == disks - 1) &&
3884 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3885 		    (s->failed && (disk_idx == s->failed_num[0] ||
3886 				   disk_idx == s->failed_num[1])))) {
3887 			/* have disk failed, and we're requested to fetch it;
3888 			 * do compute it
3889 			 */
3890 			pr_debug("Computing stripe %llu block %d\n",
3891 			       (unsigned long long)sh->sector, disk_idx);
3892 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3893 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3894 			set_bit(R5_Wantcompute, &dev->flags);
3895 			sh->ops.target = disk_idx;
3896 			sh->ops.target2 = -1; /* no 2nd target */
3897 			s->req_compute = 1;
3898 			/* Careful: from this point on 'uptodate' is in the eye
3899 			 * of raid_run_ops which services 'compute' operations
3900 			 * before writes. R5_Wantcompute flags a block that will
3901 			 * be R5_UPTODATE by the time it is needed for a
3902 			 * subsequent operation.
3903 			 */
3904 			s->uptodate++;
3905 			return 1;
3906 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3907 			/* Computing 2-failure is *very* expensive; only
3908 			 * do it if failed >= 2
3909 			 */
3910 			int other;
3911 			for (other = disks; other--; ) {
3912 				if (other == disk_idx)
3913 					continue;
3914 				if (!test_bit(R5_UPTODATE,
3915 				      &sh->dev[other].flags))
3916 					break;
3917 			}
3918 			BUG_ON(other < 0);
3919 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3920 			       (unsigned long long)sh->sector,
3921 			       disk_idx, other);
3922 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3923 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3924 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3925 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3926 			sh->ops.target = disk_idx;
3927 			sh->ops.target2 = other;
3928 			s->uptodate += 2;
3929 			s->req_compute = 1;
3930 			return 1;
3931 		} else if (test_bit(R5_Insync, &dev->flags)) {
3932 			set_bit(R5_LOCKED, &dev->flags);
3933 			set_bit(R5_Wantread, &dev->flags);
3934 			s->locked++;
3935 			pr_debug("Reading block %d (sync=%d)\n",
3936 				disk_idx, s->syncing);
3937 		}
3938 	}
3939 
3940 	return 0;
3941 }
3942 
3943 /*
3944  * handle_stripe_fill - read or compute data to satisfy pending requests.
3945  */
3946 static void handle_stripe_fill(struct stripe_head *sh,
3947 			       struct stripe_head_state *s,
3948 			       int disks)
3949 {
3950 	int i;
3951 
3952 	/* look for blocks to read/compute, skip this if a compute
3953 	 * is already in flight, or if the stripe contents are in the
3954 	 * midst of changing due to a write
3955 	 */
3956 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3957 	    !sh->reconstruct_state) {
3958 
3959 		/*
3960 		 * For degraded stripe with data in journal, do not handle
3961 		 * read requests yet, instead, flush the stripe to raid
3962 		 * disks first, this avoids handling complex rmw of write
3963 		 * back cache (prexor with orig_page, and then xor with
3964 		 * page) in the read path
3965 		 */
3966 		if (s->to_read && s->injournal && s->failed) {
3967 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3968 				r5c_make_stripe_write_out(sh);
3969 			goto out;
3970 		}
3971 
3972 		for (i = disks; i--; )
3973 			if (fetch_block(sh, s, i, disks))
3974 				break;
3975 	}
3976 out:
3977 	set_bit(STRIPE_HANDLE, &sh->state);
3978 }
3979 
3980 static void break_stripe_batch_list(struct stripe_head *head_sh,
3981 				    unsigned long handle_flags);
3982 /* handle_stripe_clean_event
3983  * any written block on an uptodate or failed drive can be returned.
3984  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3985  * never LOCKED, so we don't need to test 'failed' directly.
3986  */
3987 static void handle_stripe_clean_event(struct r5conf *conf,
3988 	struct stripe_head *sh, int disks)
3989 {
3990 	int i;
3991 	struct r5dev *dev;
3992 	int discard_pending = 0;
3993 	struct stripe_head *head_sh = sh;
3994 	bool do_endio = false;
3995 
3996 	for (i = disks; i--; )
3997 		if (sh->dev[i].written) {
3998 			dev = &sh->dev[i];
3999 			if (!test_bit(R5_LOCKED, &dev->flags) &&
4000 			    (test_bit(R5_UPTODATE, &dev->flags) ||
4001 			     test_bit(R5_Discard, &dev->flags) ||
4002 			     test_bit(R5_SkipCopy, &dev->flags))) {
4003 				/* We can return any write requests */
4004 				struct bio *wbi, *wbi2;
4005 				pr_debug("Return write for disc %d\n", i);
4006 				if (test_and_clear_bit(R5_Discard, &dev->flags))
4007 					clear_bit(R5_UPTODATE, &dev->flags);
4008 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4009 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4010 				}
4011 				do_endio = true;
4012 
4013 returnbi:
4014 				dev->page = dev->orig_page;
4015 				wbi = dev->written;
4016 				dev->written = NULL;
4017 				while (wbi && wbi->bi_iter.bi_sector <
4018 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4019 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4020 					md_write_end(conf->mddev);
4021 					bio_endio(wbi);
4022 					wbi = wbi2;
4023 				}
4024 
4025 				if (head_sh->batch_head) {
4026 					sh = list_first_entry(&sh->batch_list,
4027 							      struct stripe_head,
4028 							      batch_list);
4029 					if (sh != head_sh) {
4030 						dev = &sh->dev[i];
4031 						goto returnbi;
4032 					}
4033 				}
4034 				sh = head_sh;
4035 				dev = &sh->dev[i];
4036 			} else if (test_bit(R5_Discard, &dev->flags))
4037 				discard_pending = 1;
4038 		}
4039 
4040 	log_stripe_write_finished(sh);
4041 
4042 	if (!discard_pending &&
4043 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4044 		int hash;
4045 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4046 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4047 		if (sh->qd_idx >= 0) {
4048 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4049 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4050 		}
4051 		/* now that discard is done we can proceed with any sync */
4052 		clear_bit(STRIPE_DISCARD, &sh->state);
4053 		/*
4054 		 * SCSI discard will change some bio fields and the stripe has
4055 		 * no updated data, so remove it from hash list and the stripe
4056 		 * will be reinitialized
4057 		 */
4058 unhash:
4059 		hash = sh->hash_lock_index;
4060 		spin_lock_irq(conf->hash_locks + hash);
4061 		remove_hash(sh);
4062 		spin_unlock_irq(conf->hash_locks + hash);
4063 		if (head_sh->batch_head) {
4064 			sh = list_first_entry(&sh->batch_list,
4065 					      struct stripe_head, batch_list);
4066 			if (sh != head_sh)
4067 					goto unhash;
4068 		}
4069 		sh = head_sh;
4070 
4071 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4072 			set_bit(STRIPE_HANDLE, &sh->state);
4073 
4074 	}
4075 
4076 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4077 		if (atomic_dec_and_test(&conf->pending_full_writes))
4078 			md_wakeup_thread(conf->mddev->thread);
4079 
4080 	if (head_sh->batch_head && do_endio)
4081 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4082 }
4083 
4084 /*
4085  * For RMW in write back cache, we need extra page in prexor to store the
4086  * old data. This page is stored in dev->orig_page.
4087  *
4088  * This function checks whether we have data for prexor. The exact logic
4089  * is:
4090  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4091  */
4092 static inline bool uptodate_for_rmw(struct r5dev *dev)
4093 {
4094 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4095 		(!test_bit(R5_InJournal, &dev->flags) ||
4096 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4097 }
4098 
4099 static int handle_stripe_dirtying(struct r5conf *conf,
4100 				  struct stripe_head *sh,
4101 				  struct stripe_head_state *s,
4102 				  int disks)
4103 {
4104 	int rmw = 0, rcw = 0, i;
4105 	struct mddev *mddev = conf->mddev;
4106 	sector_t resync_offset = mddev->resync_offset;
4107 
4108 	/* Check whether resync is now happening or should start.
4109 	 * If yes, then the array is dirty (after unclean shutdown or
4110 	 * initial creation), so parity in some stripes might be inconsistent.
4111 	 * In this case, we need to always do reconstruct-write, to ensure
4112 	 * that in case of drive failure or read-error correction, we
4113 	 * generate correct data from the parity.
4114 	 */
4115 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4116 	    (resync_offset < MaxSector && sh->sector >= resync_offset &&
4117 	     s->failed == 0)) {
4118 		/* Calculate the real rcw later - for now make it
4119 		 * look like rcw is cheaper
4120 		 */
4121 		rcw = 1; rmw = 2;
4122 		pr_debug("force RCW rmw_level=%u, resync_offset=%llu sh->sector=%llu\n",
4123 			 conf->rmw_level, (unsigned long long)resync_offset,
4124 			 (unsigned long long)sh->sector);
4125 	} else if (mddev->bitmap_ops && mddev->bitmap_ops->blocks_synced &&
4126 		   !mddev->bitmap_ops->blocks_synced(mddev, sh->sector)) {
4127 		/* The initial recover is not done, must read everything */
4128 		rcw = 1; rmw = 2;
4129 		pr_debug("force RCW by lazy recovery, sh->sector=%llu\n",
4130 			 sh->sector);
4131 	} else for (i = disks; i--; ) {
4132 		/* would I have to read this buffer for read_modify_write */
4133 		struct r5dev *dev = &sh->dev[i];
4134 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4135 		     i == sh->pd_idx || i == sh->qd_idx ||
4136 		     test_bit(R5_InJournal, &dev->flags)) &&
4137 		    !test_bit(R5_LOCKED, &dev->flags) &&
4138 		    !(uptodate_for_rmw(dev) ||
4139 		      test_bit(R5_Wantcompute, &dev->flags))) {
4140 			if (test_bit(R5_Insync, &dev->flags))
4141 				rmw++;
4142 			else
4143 				rmw += 2*disks;  /* cannot read it */
4144 		}
4145 		/* Would I have to read this buffer for reconstruct_write */
4146 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4147 		    i != sh->pd_idx && i != sh->qd_idx &&
4148 		    !test_bit(R5_LOCKED, &dev->flags) &&
4149 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4150 		      test_bit(R5_Wantcompute, &dev->flags))) {
4151 			if (test_bit(R5_Insync, &dev->flags))
4152 				rcw++;
4153 			else
4154 				rcw += 2*disks;
4155 		}
4156 	}
4157 
4158 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4159 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4160 	set_bit(STRIPE_HANDLE, &sh->state);
4161 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4162 		/* prefer read-modify-write, but need to get some data */
4163 		mddev_add_trace_msg(mddev, "raid5 rmw %llu %d",
4164 				sh->sector, rmw);
4165 
4166 		for (i = disks; i--; ) {
4167 			struct r5dev *dev = &sh->dev[i];
4168 			if (test_bit(R5_InJournal, &dev->flags) &&
4169 			    dev->page == dev->orig_page &&
4170 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4171 				/* alloc page for prexor */
4172 				struct page *p = alloc_page(GFP_NOIO);
4173 
4174 				if (p) {
4175 					dev->orig_page = p;
4176 					continue;
4177 				}
4178 
4179 				/*
4180 				 * alloc_page() failed, try use
4181 				 * disk_info->extra_page
4182 				 */
4183 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4184 						      &conf->cache_state)) {
4185 					r5c_use_extra_page(sh);
4186 					break;
4187 				}
4188 
4189 				/* extra_page in use, add to delayed_list */
4190 				set_bit(STRIPE_DELAYED, &sh->state);
4191 				s->waiting_extra_page = 1;
4192 				return -EAGAIN;
4193 			}
4194 		}
4195 
4196 		for (i = disks; i--; ) {
4197 			struct r5dev *dev = &sh->dev[i];
4198 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4199 			     i == sh->pd_idx || i == sh->qd_idx ||
4200 			     test_bit(R5_InJournal, &dev->flags)) &&
4201 			    !test_bit(R5_LOCKED, &dev->flags) &&
4202 			    !(uptodate_for_rmw(dev) ||
4203 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4204 			    test_bit(R5_Insync, &dev->flags)) {
4205 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4206 					     &sh->state)) {
4207 					pr_debug("Read_old block %d for r-m-w\n",
4208 						 i);
4209 					set_bit(R5_LOCKED, &dev->flags);
4210 					set_bit(R5_Wantread, &dev->flags);
4211 					s->locked++;
4212 				} else
4213 					set_bit(STRIPE_DELAYED, &sh->state);
4214 			}
4215 		}
4216 	}
4217 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4218 		/* want reconstruct write, but need to get some data */
4219 		int qread =0;
4220 		rcw = 0;
4221 		for (i = disks; i--; ) {
4222 			struct r5dev *dev = &sh->dev[i];
4223 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4224 			    i != sh->pd_idx && i != sh->qd_idx &&
4225 			    !test_bit(R5_LOCKED, &dev->flags) &&
4226 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4227 			      test_bit(R5_Wantcompute, &dev->flags))) {
4228 				rcw++;
4229 				if (test_bit(R5_Insync, &dev->flags) &&
4230 				    test_bit(STRIPE_PREREAD_ACTIVE,
4231 					     &sh->state)) {
4232 					pr_debug("Read_old block "
4233 						"%d for Reconstruct\n", i);
4234 					set_bit(R5_LOCKED, &dev->flags);
4235 					set_bit(R5_Wantread, &dev->flags);
4236 					s->locked++;
4237 					qread++;
4238 				} else
4239 					set_bit(STRIPE_DELAYED, &sh->state);
4240 			}
4241 		}
4242 		if (rcw && !mddev_is_dm(mddev))
4243 			blk_add_trace_msg(mddev->gendisk->queue,
4244 				"raid5 rcw %llu %d %d %d",
4245 				(unsigned long long)sh->sector, rcw, qread,
4246 				test_bit(STRIPE_DELAYED, &sh->state));
4247 	}
4248 
4249 	if (rcw > disks && rmw > disks &&
4250 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4251 		set_bit(STRIPE_DELAYED, &sh->state);
4252 
4253 	/* now if nothing is locked, and if we have enough data,
4254 	 * we can start a write request
4255 	 */
4256 	/* since handle_stripe can be called at any time we need to handle the
4257 	 * case where a compute block operation has been submitted and then a
4258 	 * subsequent call wants to start a write request.  raid_run_ops only
4259 	 * handles the case where compute block and reconstruct are requested
4260 	 * simultaneously.  If this is not the case then new writes need to be
4261 	 * held off until the compute completes.
4262 	 */
4263 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4264 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4265 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4266 		schedule_reconstruction(sh, s, rcw == 0, 0);
4267 	return 0;
4268 }
4269 
4270 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4271 				struct stripe_head_state *s, int disks)
4272 {
4273 	struct r5dev *dev = NULL;
4274 
4275 	BUG_ON(sh->batch_head);
4276 	set_bit(STRIPE_HANDLE, &sh->state);
4277 
4278 	switch (sh->check_state) {
4279 	case check_state_idle:
4280 		/* start a new check operation if there are no failures */
4281 		if (s->failed == 0) {
4282 			BUG_ON(s->uptodate != disks);
4283 			sh->check_state = check_state_run;
4284 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4285 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4286 			s->uptodate--;
4287 			break;
4288 		}
4289 		dev = &sh->dev[s->failed_num[0]];
4290 		fallthrough;
4291 	case check_state_compute_result:
4292 		sh->check_state = check_state_idle;
4293 		if (!dev)
4294 			dev = &sh->dev[sh->pd_idx];
4295 
4296 		/* check that a write has not made the stripe insync */
4297 		if (test_bit(STRIPE_INSYNC, &sh->state))
4298 			break;
4299 
4300 		/* either failed parity check, or recovery is happening */
4301 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4302 		BUG_ON(s->uptodate != disks);
4303 
4304 		set_bit(R5_LOCKED, &dev->flags);
4305 		s->locked++;
4306 		set_bit(R5_Wantwrite, &dev->flags);
4307 
4308 		set_bit(STRIPE_INSYNC, &sh->state);
4309 		break;
4310 	case check_state_run:
4311 		break; /* we will be called again upon completion */
4312 	case check_state_check_result:
4313 		sh->check_state = check_state_idle;
4314 
4315 		/* if a failure occurred during the check operation, leave
4316 		 * STRIPE_INSYNC not set and let the stripe be handled again
4317 		 */
4318 		if (s->failed)
4319 			break;
4320 
4321 		/* handle a successful check operation, if parity is correct
4322 		 * we are done.  Otherwise update the mismatch count and repair
4323 		 * parity if !MD_RECOVERY_CHECK
4324 		 */
4325 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4326 			/* parity is correct (on disc,
4327 			 * not in buffer any more)
4328 			 */
4329 			set_bit(STRIPE_INSYNC, &sh->state);
4330 		else {
4331 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4332 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4333 				/* don't try to repair!! */
4334 				set_bit(STRIPE_INSYNC, &sh->state);
4335 				pr_warn_ratelimited("%s: mismatch sector in range "
4336 						    "%llu-%llu\n", mdname(conf->mddev),
4337 						    (unsigned long long) sh->sector,
4338 						    (unsigned long long) sh->sector +
4339 						    RAID5_STRIPE_SECTORS(conf));
4340 			} else {
4341 				sh->check_state = check_state_compute_run;
4342 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4343 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4344 				set_bit(R5_Wantcompute,
4345 					&sh->dev[sh->pd_idx].flags);
4346 				sh->ops.target = sh->pd_idx;
4347 				sh->ops.target2 = -1;
4348 				s->uptodate++;
4349 			}
4350 		}
4351 		break;
4352 	case check_state_compute_run:
4353 		break;
4354 	default:
4355 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4356 		       __func__, sh->check_state,
4357 		       (unsigned long long) sh->sector);
4358 		BUG();
4359 	}
4360 }
4361 
4362 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4363 				  struct stripe_head_state *s,
4364 				  int disks)
4365 {
4366 	int pd_idx = sh->pd_idx;
4367 	int qd_idx = sh->qd_idx;
4368 	struct r5dev *dev;
4369 
4370 	BUG_ON(sh->batch_head);
4371 	set_bit(STRIPE_HANDLE, &sh->state);
4372 
4373 	BUG_ON(s->failed > 2);
4374 
4375 	/* Want to check and possibly repair P and Q.
4376 	 * However there could be one 'failed' device, in which
4377 	 * case we can only check one of them, possibly using the
4378 	 * other to generate missing data
4379 	 */
4380 
4381 	switch (sh->check_state) {
4382 	case check_state_idle:
4383 		/* start a new check operation if there are < 2 failures */
4384 		if (s->failed == s->q_failed) {
4385 			/* The only possible failed device holds Q, so it
4386 			 * makes sense to check P (If anything else were failed,
4387 			 * we would have used P to recreate it).
4388 			 */
4389 			sh->check_state = check_state_run;
4390 		}
4391 		if (!s->q_failed && s->failed < 2) {
4392 			/* Q is not failed, and we didn't use it to generate
4393 			 * anything, so it makes sense to check it
4394 			 */
4395 			if (sh->check_state == check_state_run)
4396 				sh->check_state = check_state_run_pq;
4397 			else
4398 				sh->check_state = check_state_run_q;
4399 		}
4400 
4401 		/* discard potentially stale zero_sum_result */
4402 		sh->ops.zero_sum_result = 0;
4403 
4404 		if (sh->check_state == check_state_run) {
4405 			/* async_xor_zero_sum destroys the contents of P */
4406 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4407 			s->uptodate--;
4408 		}
4409 		if (sh->check_state >= check_state_run &&
4410 		    sh->check_state <= check_state_run_pq) {
4411 			/* async_syndrome_zero_sum preserves P and Q, so
4412 			 * no need to mark them !uptodate here
4413 			 */
4414 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4415 			break;
4416 		}
4417 
4418 		/* we have 2-disk failure */
4419 		BUG_ON(s->failed != 2);
4420 		fallthrough;
4421 	case check_state_compute_result:
4422 		sh->check_state = check_state_idle;
4423 
4424 		/* check that a write has not made the stripe insync */
4425 		if (test_bit(STRIPE_INSYNC, &sh->state))
4426 			break;
4427 
4428 		/* now write out any block on a failed drive,
4429 		 * or P or Q if they were recomputed
4430 		 */
4431 		dev = NULL;
4432 		if (s->failed == 2) {
4433 			dev = &sh->dev[s->failed_num[1]];
4434 			s->locked++;
4435 			set_bit(R5_LOCKED, &dev->flags);
4436 			set_bit(R5_Wantwrite, &dev->flags);
4437 		}
4438 		if (s->failed >= 1) {
4439 			dev = &sh->dev[s->failed_num[0]];
4440 			s->locked++;
4441 			set_bit(R5_LOCKED, &dev->flags);
4442 			set_bit(R5_Wantwrite, &dev->flags);
4443 		}
4444 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4445 			dev = &sh->dev[pd_idx];
4446 			s->locked++;
4447 			set_bit(R5_LOCKED, &dev->flags);
4448 			set_bit(R5_Wantwrite, &dev->flags);
4449 		}
4450 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4451 			dev = &sh->dev[qd_idx];
4452 			s->locked++;
4453 			set_bit(R5_LOCKED, &dev->flags);
4454 			set_bit(R5_Wantwrite, &dev->flags);
4455 		}
4456 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4457 			      "%s: disk%td not up to date\n",
4458 			      mdname(conf->mddev),
4459 			      dev - (struct r5dev *) &sh->dev)) {
4460 			clear_bit(R5_LOCKED, &dev->flags);
4461 			clear_bit(R5_Wantwrite, &dev->flags);
4462 			s->locked--;
4463 		}
4464 
4465 		set_bit(STRIPE_INSYNC, &sh->state);
4466 		break;
4467 	case check_state_run:
4468 	case check_state_run_q:
4469 	case check_state_run_pq:
4470 		break; /* we will be called again upon completion */
4471 	case check_state_check_result:
4472 		sh->check_state = check_state_idle;
4473 
4474 		/* handle a successful check operation, if parity is correct
4475 		 * we are done.  Otherwise update the mismatch count and repair
4476 		 * parity if !MD_RECOVERY_CHECK
4477 		 */
4478 		if (sh->ops.zero_sum_result == 0) {
4479 			/* both parities are correct */
4480 			if (!s->failed)
4481 				set_bit(STRIPE_INSYNC, &sh->state);
4482 			else {
4483 				/* in contrast to the raid5 case we can validate
4484 				 * parity, but still have a failure to write
4485 				 * back
4486 				 */
4487 				sh->check_state = check_state_compute_result;
4488 				/* Returning at this point means that we may go
4489 				 * off and bring p and/or q uptodate again so
4490 				 * we make sure to check zero_sum_result again
4491 				 * to verify if p or q need writeback
4492 				 */
4493 			}
4494 		} else {
4495 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4496 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4497 				/* don't try to repair!! */
4498 				set_bit(STRIPE_INSYNC, &sh->state);
4499 				pr_warn_ratelimited("%s: mismatch sector in range "
4500 						    "%llu-%llu\n", mdname(conf->mddev),
4501 						    (unsigned long long) sh->sector,
4502 						    (unsigned long long) sh->sector +
4503 						    RAID5_STRIPE_SECTORS(conf));
4504 			} else {
4505 				int *target = &sh->ops.target;
4506 
4507 				sh->ops.target = -1;
4508 				sh->ops.target2 = -1;
4509 				sh->check_state = check_state_compute_run;
4510 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4511 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4512 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4513 					set_bit(R5_Wantcompute,
4514 						&sh->dev[pd_idx].flags);
4515 					*target = pd_idx;
4516 					target = &sh->ops.target2;
4517 					s->uptodate++;
4518 				}
4519 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4520 					set_bit(R5_Wantcompute,
4521 						&sh->dev[qd_idx].flags);
4522 					*target = qd_idx;
4523 					s->uptodate++;
4524 				}
4525 			}
4526 		}
4527 		break;
4528 	case check_state_compute_run:
4529 		break;
4530 	default:
4531 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4532 			__func__, sh->check_state,
4533 			(unsigned long long) sh->sector);
4534 		BUG();
4535 	}
4536 }
4537 
4538 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4539 {
4540 	int i;
4541 
4542 	/* We have read all the blocks in this stripe and now we need to
4543 	 * copy some of them into a target stripe for expand.
4544 	 */
4545 	struct dma_async_tx_descriptor *tx = NULL;
4546 	BUG_ON(sh->batch_head);
4547 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4548 	for (i = 0; i < sh->disks; i++)
4549 		if (i != sh->pd_idx && i != sh->qd_idx) {
4550 			int dd_idx, j;
4551 			struct stripe_head *sh2;
4552 			struct async_submit_ctl submit;
4553 
4554 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4555 			sector_t s = raid5_compute_sector(conf, bn, 0,
4556 							  &dd_idx, NULL);
4557 			sh2 = raid5_get_active_stripe(conf, NULL, s,
4558 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4559 			if (sh2 == NULL)
4560 				/* so far only the early blocks of this stripe
4561 				 * have been requested.  When later blocks
4562 				 * get requested, we will try again
4563 				 */
4564 				continue;
4565 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4566 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4567 				/* must have already done this block */
4568 				raid5_release_stripe(sh2);
4569 				continue;
4570 			}
4571 
4572 			/* place all the copies on one channel */
4573 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4574 			tx = async_memcpy(sh2->dev[dd_idx].page,
4575 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4576 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4577 					  &submit);
4578 
4579 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4580 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4581 			for (j = 0; j < conf->raid_disks; j++)
4582 				if (j != sh2->pd_idx &&
4583 				    j != sh2->qd_idx &&
4584 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4585 					break;
4586 			if (j == conf->raid_disks) {
4587 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4588 				set_bit(STRIPE_HANDLE, &sh2->state);
4589 			}
4590 			raid5_release_stripe(sh2);
4591 
4592 		}
4593 	/* done submitting copies, wait for them to complete */
4594 	async_tx_quiesce(&tx);
4595 }
4596 
4597 /*
4598  * handle_stripe - do things to a stripe.
4599  *
4600  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4601  * state of various bits to see what needs to be done.
4602  * Possible results:
4603  *    return some read requests which now have data
4604  *    return some write requests which are safely on storage
4605  *    schedule a read on some buffers
4606  *    schedule a write of some buffers
4607  *    return confirmation of parity correctness
4608  *
4609  */
4610 
4611 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4612 {
4613 	struct r5conf *conf = sh->raid_conf;
4614 	int disks = sh->disks;
4615 	struct r5dev *dev;
4616 	int i;
4617 	int do_recovery = 0;
4618 
4619 	memset(s, 0, sizeof(*s));
4620 
4621 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4622 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4623 	s->failed_num[0] = -1;
4624 	s->failed_num[1] = -1;
4625 	s->log_failed = r5l_log_disk_error(conf);
4626 
4627 	/* Now to look around and see what can be done */
4628 	for (i=disks; i--; ) {
4629 		struct md_rdev *rdev;
4630 		int is_bad = 0;
4631 
4632 		dev = &sh->dev[i];
4633 
4634 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4635 			 i, dev->flags,
4636 			 dev->toread, dev->towrite, dev->written);
4637 		/* maybe we can reply to a read
4638 		 *
4639 		 * new wantfill requests are only permitted while
4640 		 * ops_complete_biofill is guaranteed to be inactive
4641 		 */
4642 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4643 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4644 			set_bit(R5_Wantfill, &dev->flags);
4645 
4646 		/* now count some things */
4647 		if (test_bit(R5_LOCKED, &dev->flags))
4648 			s->locked++;
4649 		if (test_bit(R5_UPTODATE, &dev->flags))
4650 			s->uptodate++;
4651 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4652 			s->compute++;
4653 			BUG_ON(s->compute > 2);
4654 		}
4655 
4656 		if (test_bit(R5_Wantfill, &dev->flags))
4657 			s->to_fill++;
4658 		else if (dev->toread)
4659 			s->to_read++;
4660 		if (dev->towrite) {
4661 			s->to_write++;
4662 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4663 				s->non_overwrite++;
4664 		}
4665 		if (dev->written)
4666 			s->written++;
4667 		/* Prefer to use the replacement for reads, but only
4668 		 * if it is recovered enough and has no bad blocks.
4669 		 */
4670 		rdev = conf->disks[i].replacement;
4671 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4672 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4673 		    !rdev_has_badblock(rdev, sh->sector,
4674 				       RAID5_STRIPE_SECTORS(conf)))
4675 			set_bit(R5_ReadRepl, &dev->flags);
4676 		else {
4677 			if (rdev && !test_bit(Faulty, &rdev->flags))
4678 				set_bit(R5_NeedReplace, &dev->flags);
4679 			else
4680 				clear_bit(R5_NeedReplace, &dev->flags);
4681 			rdev = conf->disks[i].rdev;
4682 			clear_bit(R5_ReadRepl, &dev->flags);
4683 		}
4684 		if (rdev && test_bit(Faulty, &rdev->flags))
4685 			rdev = NULL;
4686 		if (rdev) {
4687 			is_bad = rdev_has_badblock(rdev, sh->sector,
4688 						   RAID5_STRIPE_SECTORS(conf));
4689 			if (s->blocked_rdev == NULL) {
4690 				if (is_bad < 0)
4691 					set_bit(BlockedBadBlocks, &rdev->flags);
4692 				if (rdev_blocked(rdev)) {
4693 					s->blocked_rdev = rdev;
4694 					atomic_inc(&rdev->nr_pending);
4695 				}
4696 			}
4697 		}
4698 		clear_bit(R5_Insync, &dev->flags);
4699 		if (!rdev)
4700 			/* Not in-sync */;
4701 		else if (is_bad) {
4702 			/* also not in-sync */
4703 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4704 			    test_bit(R5_UPTODATE, &dev->flags)) {
4705 				/* treat as in-sync, but with a read error
4706 				 * which we can now try to correct
4707 				 */
4708 				set_bit(R5_Insync, &dev->flags);
4709 				set_bit(R5_ReadError, &dev->flags);
4710 			}
4711 		} else if (test_bit(In_sync, &rdev->flags))
4712 			set_bit(R5_Insync, &dev->flags);
4713 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <=
4714 			 rdev->recovery_offset) {
4715 			/*
4716 			 * in sync if:
4717 			 *  - normal IO, or
4718 			 *  - resync IO that is not lazy recovery
4719 			 *
4720 			 * For lazy recovery, we have to mark the rdev without
4721 			 * In_sync as failed, to build initial xor data.
4722 			 */
4723 			if (!test_bit(STRIPE_SYNCING, &sh->state) ||
4724 			    !test_bit(MD_RECOVERY_LAZY_RECOVER,
4725 				      &conf->mddev->recovery))
4726 				set_bit(R5_Insync, &dev->flags);
4727 		} else if (test_bit(R5_UPTODATE, &dev->flags) &&
4728 			 test_bit(R5_Expanded, &dev->flags))
4729 			/* If we've reshaped into here, we assume it is Insync.
4730 			 * We will shortly update recovery_offset to make
4731 			 * it official.
4732 			 */
4733 			set_bit(R5_Insync, &dev->flags);
4734 
4735 		if (test_bit(R5_WriteError, &dev->flags)) {
4736 			/* This flag does not apply to '.replacement'
4737 			 * only to .rdev, so make sure to check that*/
4738 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4739 
4740 			if (rdev2 == rdev)
4741 				clear_bit(R5_Insync, &dev->flags);
4742 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4743 				s->handle_bad_blocks = 1;
4744 				atomic_inc(&rdev2->nr_pending);
4745 			} else
4746 				clear_bit(R5_WriteError, &dev->flags);
4747 		}
4748 		if (test_bit(R5_MadeGood, &dev->flags)) {
4749 			/* This flag does not apply to '.replacement'
4750 			 * only to .rdev, so make sure to check that*/
4751 			struct md_rdev *rdev2 = conf->disks[i].rdev;
4752 
4753 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4754 				s->handle_bad_blocks = 1;
4755 				atomic_inc(&rdev2->nr_pending);
4756 			} else
4757 				clear_bit(R5_MadeGood, &dev->flags);
4758 		}
4759 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4760 			struct md_rdev *rdev2 = conf->disks[i].replacement;
4761 
4762 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4763 				s->handle_bad_blocks = 1;
4764 				atomic_inc(&rdev2->nr_pending);
4765 			} else
4766 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4767 		}
4768 		if (!test_bit(R5_Insync, &dev->flags)) {
4769 			/* The ReadError flag will just be confusing now */
4770 			clear_bit(R5_ReadError, &dev->flags);
4771 			clear_bit(R5_ReWrite, &dev->flags);
4772 		}
4773 		if (test_bit(R5_ReadError, &dev->flags))
4774 			clear_bit(R5_Insync, &dev->flags);
4775 		if (!test_bit(R5_Insync, &dev->flags)) {
4776 			if (s->failed < 2)
4777 				s->failed_num[s->failed] = i;
4778 			s->failed++;
4779 			if (rdev && !test_bit(Faulty, &rdev->flags))
4780 				do_recovery = 1;
4781 			else if (!rdev) {
4782 				rdev = conf->disks[i].replacement;
4783 				if (rdev && !test_bit(Faulty, &rdev->flags))
4784 					do_recovery = 1;
4785 			}
4786 		}
4787 
4788 		if (test_bit(R5_InJournal, &dev->flags))
4789 			s->injournal++;
4790 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4791 			s->just_cached++;
4792 	}
4793 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4794 		/* If there is a failed device being replaced,
4795 		 *     we must be recovering.
4796 		 * else if we are after resync_offset, we must be syncing
4797 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4798 		 * else we can only be replacing
4799 		 * sync and recovery both need to read all devices, and so
4800 		 * use the same flag.
4801 		 */
4802 		if (do_recovery ||
4803 		    sh->sector >= conf->mddev->resync_offset ||
4804 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4805 			s->syncing = 1;
4806 		else
4807 			s->replacing = 1;
4808 	}
4809 }
4810 
4811 /*
4812  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4813  * a head which can now be handled.
4814  */
4815 static int clear_batch_ready(struct stripe_head *sh)
4816 {
4817 	struct stripe_head *tmp;
4818 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4819 		return (sh->batch_head && sh->batch_head != sh);
4820 	spin_lock(&sh->stripe_lock);
4821 	if (!sh->batch_head) {
4822 		spin_unlock(&sh->stripe_lock);
4823 		return 0;
4824 	}
4825 
4826 	/*
4827 	 * this stripe could be added to a batch list before we check
4828 	 * BATCH_READY, skips it
4829 	 */
4830 	if (sh->batch_head != sh) {
4831 		spin_unlock(&sh->stripe_lock);
4832 		return 1;
4833 	}
4834 	spin_lock(&sh->batch_lock);
4835 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4836 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4837 	spin_unlock(&sh->batch_lock);
4838 	spin_unlock(&sh->stripe_lock);
4839 
4840 	/*
4841 	 * BATCH_READY is cleared, no new stripes can be added.
4842 	 * batch_list can be accessed without lock
4843 	 */
4844 	return 0;
4845 }
4846 
4847 static void break_stripe_batch_list(struct stripe_head *head_sh,
4848 				    unsigned long handle_flags)
4849 {
4850 	struct stripe_head *sh, *next;
4851 	int i;
4852 
4853 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4854 
4855 		list_del_init(&sh->batch_list);
4856 
4857 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4858 					  (1 << STRIPE_SYNCING) |
4859 					  (1 << STRIPE_REPLACED) |
4860 					  (1 << STRIPE_DELAYED) |
4861 					  (1 << STRIPE_BIT_DELAY) |
4862 					  (1 << STRIPE_FULL_WRITE) |
4863 					  (1 << STRIPE_BIOFILL_RUN) |
4864 					  (1 << STRIPE_COMPUTE_RUN)  |
4865 					  (1 << STRIPE_DISCARD) |
4866 					  (1 << STRIPE_BATCH_READY) |
4867 					  (1 << STRIPE_BATCH_ERR)),
4868 			"stripe state: %lx\n", sh->state);
4869 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4870 					      (1 << STRIPE_REPLACED)),
4871 			"head stripe state: %lx\n", head_sh->state);
4872 
4873 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4874 					    (1 << STRIPE_PREREAD_ACTIVE) |
4875 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4876 			      head_sh->state & (1 << STRIPE_INSYNC));
4877 
4878 		sh->check_state = head_sh->check_state;
4879 		sh->reconstruct_state = head_sh->reconstruct_state;
4880 		spin_lock_irq(&sh->stripe_lock);
4881 		sh->batch_head = NULL;
4882 		spin_unlock_irq(&sh->stripe_lock);
4883 		for (i = 0; i < sh->disks; i++) {
4884 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4885 				wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4886 			sh->dev[i].flags = head_sh->dev[i].flags &
4887 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4888 		}
4889 		if (handle_flags == 0 ||
4890 		    sh->state & handle_flags)
4891 			set_bit(STRIPE_HANDLE, &sh->state);
4892 		raid5_release_stripe(sh);
4893 	}
4894 	spin_lock_irq(&head_sh->stripe_lock);
4895 	head_sh->batch_head = NULL;
4896 	spin_unlock_irq(&head_sh->stripe_lock);
4897 	for (i = 0; i < head_sh->disks; i++)
4898 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4899 			wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4900 	if (head_sh->state & handle_flags)
4901 		set_bit(STRIPE_HANDLE, &head_sh->state);
4902 }
4903 
4904 static void handle_stripe(struct stripe_head *sh)
4905 {
4906 	struct stripe_head_state s;
4907 	struct r5conf *conf = sh->raid_conf;
4908 	int i;
4909 	int prexor;
4910 	int disks = sh->disks;
4911 	struct r5dev *pdev, *qdev;
4912 
4913 	clear_bit(STRIPE_HANDLE, &sh->state);
4914 
4915 	/*
4916 	 * handle_stripe should not continue handle the batched stripe, only
4917 	 * the head of batch list or lone stripe can continue. Otherwise we
4918 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4919 	 * is set for the batched stripe.
4920 	 */
4921 	if (clear_batch_ready(sh))
4922 		return;
4923 
4924 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4925 		/* already being handled, ensure it gets handled
4926 		 * again when current action finishes */
4927 		set_bit(STRIPE_HANDLE, &sh->state);
4928 		return;
4929 	}
4930 
4931 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4932 		break_stripe_batch_list(sh, 0);
4933 
4934 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4935 		spin_lock(&sh->stripe_lock);
4936 		/*
4937 		 * Cannot process 'sync' concurrently with 'discard'.
4938 		 * Flush data in r5cache before 'sync'.
4939 		 */
4940 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4941 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4942 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4943 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4944 			set_bit(STRIPE_SYNCING, &sh->state);
4945 			clear_bit(STRIPE_INSYNC, &sh->state);
4946 			clear_bit(STRIPE_REPLACED, &sh->state);
4947 		}
4948 		spin_unlock(&sh->stripe_lock);
4949 	}
4950 	clear_bit(STRIPE_DELAYED, &sh->state);
4951 
4952 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4953 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4954 	       (unsigned long long)sh->sector, sh->state,
4955 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4956 	       sh->check_state, sh->reconstruct_state);
4957 
4958 	analyse_stripe(sh, &s);
4959 
4960 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4961 		goto finish;
4962 
4963 	if (s.handle_bad_blocks ||
4964 	    (md_is_rdwr(conf->mddev) &&
4965 	     test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags))) {
4966 		set_bit(STRIPE_HANDLE, &sh->state);
4967 		goto finish;
4968 	}
4969 
4970 	if (unlikely(s.blocked_rdev)) {
4971 		if (s.syncing || s.expanding || s.expanded ||
4972 		    s.replacing || s.to_write || s.written) {
4973 			set_bit(STRIPE_HANDLE, &sh->state);
4974 			goto finish;
4975 		}
4976 		/* There is nothing for the blocked_rdev to block */
4977 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4978 		s.blocked_rdev = NULL;
4979 	}
4980 
4981 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4982 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4983 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4984 	}
4985 
4986 	pr_debug("locked=%d uptodate=%d to_read=%d"
4987 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4988 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4989 	       s.failed_num[0], s.failed_num[1]);
4990 	/*
4991 	 * check if the array has lost more than max_degraded devices and,
4992 	 * if so, some requests might need to be failed.
4993 	 *
4994 	 * When journal device failed (log_failed), we will only process
4995 	 * the stripe if there is data need write to raid disks
4996 	 */
4997 	if (s.failed > conf->max_degraded ||
4998 	    (s.log_failed && s.injournal == 0)) {
4999 		sh->check_state = 0;
5000 		sh->reconstruct_state = 0;
5001 		break_stripe_batch_list(sh, 0);
5002 		if (s.to_read+s.to_write+s.written)
5003 			handle_failed_stripe(conf, sh, &s, disks);
5004 		if (s.syncing + s.replacing)
5005 			handle_failed_sync(conf, sh, &s);
5006 	}
5007 
5008 	/* Now we check to see if any write operations have recently
5009 	 * completed
5010 	 */
5011 	prexor = 0;
5012 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5013 		prexor = 1;
5014 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5015 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5016 		sh->reconstruct_state = reconstruct_state_idle;
5017 
5018 		/* All the 'written' buffers and the parity block are ready to
5019 		 * be written back to disk
5020 		 */
5021 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5022 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5023 		BUG_ON(sh->qd_idx >= 0 &&
5024 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5025 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5026 		for (i = disks; i--; ) {
5027 			struct r5dev *dev = &sh->dev[i];
5028 			if (test_bit(R5_LOCKED, &dev->flags) &&
5029 				(i == sh->pd_idx || i == sh->qd_idx ||
5030 				 dev->written || test_bit(R5_InJournal,
5031 							  &dev->flags))) {
5032 				pr_debug("Writing block %d\n", i);
5033 				set_bit(R5_Wantwrite, &dev->flags);
5034 				if (prexor)
5035 					continue;
5036 				if (s.failed > 1)
5037 					continue;
5038 				if (!test_bit(R5_Insync, &dev->flags) ||
5039 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5040 				     s.failed == 0))
5041 					set_bit(STRIPE_INSYNC, &sh->state);
5042 			}
5043 		}
5044 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5045 			s.dec_preread_active = 1;
5046 	}
5047 
5048 	/*
5049 	 * might be able to return some write requests if the parity blocks
5050 	 * are safe, or on a failed drive
5051 	 */
5052 	pdev = &sh->dev[sh->pd_idx];
5053 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5054 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5055 	qdev = &sh->dev[sh->qd_idx];
5056 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5057 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5058 		|| conf->level < 6;
5059 
5060 	if (s.written &&
5061 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5062 			     && !test_bit(R5_LOCKED, &pdev->flags)
5063 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5064 				 test_bit(R5_Discard, &pdev->flags))))) &&
5065 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5066 			     && !test_bit(R5_LOCKED, &qdev->flags)
5067 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5068 				 test_bit(R5_Discard, &qdev->flags))))))
5069 		handle_stripe_clean_event(conf, sh, disks);
5070 
5071 	if (s.just_cached)
5072 		r5c_handle_cached_data_endio(conf, sh, disks);
5073 	log_stripe_write_finished(sh);
5074 
5075 	/* Now we might consider reading some blocks, either to check/generate
5076 	 * parity, or to satisfy requests
5077 	 * or to load a block that is being partially written.
5078 	 */
5079 	if (s.to_read || s.non_overwrite
5080 	    || (s.to_write && s.failed)
5081 	    || (s.syncing && (s.uptodate + s.compute < disks))
5082 	    || s.replacing
5083 	    || s.expanding)
5084 		handle_stripe_fill(sh, &s, disks);
5085 
5086 	/*
5087 	 * When the stripe finishes full journal write cycle (write to journal
5088 	 * and raid disk), this is the clean up procedure so it is ready for
5089 	 * next operation.
5090 	 */
5091 	r5c_finish_stripe_write_out(conf, sh, &s);
5092 
5093 	/*
5094 	 * Now to consider new write requests, cache write back and what else,
5095 	 * if anything should be read.  We do not handle new writes when:
5096 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5097 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5098 	 *    block.
5099 	 * 3/ A r5c cache log write is in flight.
5100 	 */
5101 
5102 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5103 		if (!r5c_is_writeback(conf->log)) {
5104 			if (s.to_write)
5105 				handle_stripe_dirtying(conf, sh, &s, disks);
5106 		} else { /* write back cache */
5107 			int ret = 0;
5108 
5109 			/* First, try handle writes in caching phase */
5110 			if (s.to_write)
5111 				ret = r5c_try_caching_write(conf, sh, &s,
5112 							    disks);
5113 			/*
5114 			 * If caching phase failed: ret == -EAGAIN
5115 			 *    OR
5116 			 * stripe under reclaim: !caching && injournal
5117 			 *
5118 			 * fall back to handle_stripe_dirtying()
5119 			 */
5120 			if (ret == -EAGAIN ||
5121 			    /* stripe under reclaim: !caching && injournal */
5122 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5123 			     s.injournal > 0)) {
5124 				ret = handle_stripe_dirtying(conf, sh, &s,
5125 							     disks);
5126 				if (ret == -EAGAIN)
5127 					goto finish;
5128 			}
5129 		}
5130 	}
5131 
5132 	/* maybe we need to check and possibly fix the parity for this stripe
5133 	 * Any reads will already have been scheduled, so we just see if enough
5134 	 * data is available.  The parity check is held off while parity
5135 	 * dependent operations are in flight.
5136 	 */
5137 	if (sh->check_state ||
5138 	    (s.syncing && s.locked == 0 &&
5139 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5140 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5141 		if (conf->level == 6)
5142 			handle_parity_checks6(conf, sh, &s, disks);
5143 		else
5144 			handle_parity_checks5(conf, sh, &s, disks);
5145 	}
5146 
5147 	if ((s.replacing || s.syncing) && s.locked == 0
5148 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5149 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5150 		/* Write out to replacement devices where possible */
5151 		for (i = 0; i < conf->raid_disks; i++)
5152 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5153 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5154 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5155 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5156 				s.locked++;
5157 			}
5158 		if (s.replacing)
5159 			set_bit(STRIPE_INSYNC, &sh->state);
5160 		set_bit(STRIPE_REPLACED, &sh->state);
5161 	}
5162 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5163 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5164 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5165 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf));
5166 		clear_bit(STRIPE_SYNCING, &sh->state);
5167 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5168 			wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5169 	}
5170 
5171 	/* If the failed drives are just a ReadError, then we might need
5172 	 * to progress the repair/check process
5173 	 */
5174 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5175 		for (i = 0; i < s.failed; i++) {
5176 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5177 			if (test_bit(R5_ReadError, &dev->flags)
5178 			    && !test_bit(R5_LOCKED, &dev->flags)
5179 			    && test_bit(R5_UPTODATE, &dev->flags)
5180 				) {
5181 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5182 					set_bit(R5_Wantwrite, &dev->flags);
5183 					set_bit(R5_ReWrite, &dev->flags);
5184 				} else
5185 					/* let's read it back */
5186 					set_bit(R5_Wantread, &dev->flags);
5187 				set_bit(R5_LOCKED, &dev->flags);
5188 				s.locked++;
5189 			}
5190 		}
5191 
5192 	/* Finish reconstruct operations initiated by the expansion process */
5193 	if (sh->reconstruct_state == reconstruct_state_result) {
5194 		struct stripe_head *sh_src
5195 			= raid5_get_active_stripe(conf, NULL, sh->sector,
5196 					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5197 					R5_GAS_NOQUIESCE);
5198 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5199 			/* sh cannot be written until sh_src has been read.
5200 			 * so arrange for sh to be delayed a little
5201 			 */
5202 			set_bit(STRIPE_DELAYED, &sh->state);
5203 			set_bit(STRIPE_HANDLE, &sh->state);
5204 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5205 					      &sh_src->state))
5206 				atomic_inc(&conf->preread_active_stripes);
5207 			raid5_release_stripe(sh_src);
5208 			goto finish;
5209 		}
5210 		if (sh_src)
5211 			raid5_release_stripe(sh_src);
5212 
5213 		sh->reconstruct_state = reconstruct_state_idle;
5214 		clear_bit(STRIPE_EXPANDING, &sh->state);
5215 		for (i = conf->raid_disks; i--; ) {
5216 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5217 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5218 			s.locked++;
5219 		}
5220 	}
5221 
5222 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5223 	    !sh->reconstruct_state) {
5224 		/* Need to write out all blocks after computing parity */
5225 		sh->disks = conf->raid_disks;
5226 		stripe_set_idx(sh->sector, conf, 0, sh);
5227 		schedule_reconstruction(sh, &s, 1, 1);
5228 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5229 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5230 		atomic_dec(&conf->reshape_stripes);
5231 		wake_up(&conf->wait_for_reshape);
5232 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf));
5233 	}
5234 
5235 	if (s.expanding && s.locked == 0 &&
5236 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5237 		handle_stripe_expansion(conf, sh);
5238 
5239 finish:
5240 	/* wait for this device to become unblocked */
5241 	if (unlikely(s.blocked_rdev)) {
5242 		if (conf->mddev->external)
5243 			md_wait_for_blocked_rdev(s.blocked_rdev,
5244 						 conf->mddev);
5245 		else
5246 			/* Internal metadata will immediately
5247 			 * be written by raid5d, so we don't
5248 			 * need to wait here.
5249 			 */
5250 			rdev_dec_pending(s.blocked_rdev,
5251 					 conf->mddev);
5252 	}
5253 
5254 	if (s.handle_bad_blocks)
5255 		for (i = disks; i--; ) {
5256 			struct md_rdev *rdev;
5257 			struct r5dev *dev = &sh->dev[i];
5258 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5259 				/* We own a safe reference to the rdev */
5260 				rdev = conf->disks[i].rdev;
5261 				rdev_set_badblocks(rdev, sh->sector,
5262 						   RAID5_STRIPE_SECTORS(conf), 0);
5263 				rdev_dec_pending(rdev, conf->mddev);
5264 			}
5265 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5266 				rdev = conf->disks[i].rdev;
5267 				rdev_clear_badblocks(rdev, sh->sector,
5268 						     RAID5_STRIPE_SECTORS(conf), 0);
5269 				rdev_dec_pending(rdev, conf->mddev);
5270 			}
5271 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5272 				rdev = conf->disks[i].replacement;
5273 				if (!rdev)
5274 					/* rdev have been moved down */
5275 					rdev = conf->disks[i].rdev;
5276 				rdev_clear_badblocks(rdev, sh->sector,
5277 						     RAID5_STRIPE_SECTORS(conf), 0);
5278 				rdev_dec_pending(rdev, conf->mddev);
5279 			}
5280 		}
5281 
5282 	if (s.ops_request)
5283 		raid_run_ops(sh, s.ops_request);
5284 
5285 	ops_run_io(sh, &s);
5286 
5287 	if (s.dec_preread_active) {
5288 		/* We delay this until after ops_run_io so that if make_request
5289 		 * is waiting on a flush, it won't continue until the writes
5290 		 * have actually been submitted.
5291 		 */
5292 		atomic_dec(&conf->preread_active_stripes);
5293 		if (atomic_read(&conf->preread_active_stripes) <
5294 		    IO_THRESHOLD)
5295 			md_wakeup_thread(conf->mddev->thread);
5296 	}
5297 
5298 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5299 }
5300 
5301 static void raid5_activate_delayed(struct r5conf *conf)
5302 	__must_hold(&conf->device_lock)
5303 {
5304 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5305 		while (!list_empty(&conf->delayed_list)) {
5306 			struct list_head *l = conf->delayed_list.next;
5307 			struct stripe_head *sh;
5308 			sh = list_entry(l, struct stripe_head, lru);
5309 			list_del_init(l);
5310 			clear_bit(STRIPE_DELAYED, &sh->state);
5311 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5312 				atomic_inc(&conf->preread_active_stripes);
5313 			list_add_tail(&sh->lru, &conf->hold_list);
5314 			raid5_wakeup_stripe_thread(sh);
5315 		}
5316 	}
5317 }
5318 
5319 static void activate_bit_delay(struct r5conf *conf,
5320 		struct list_head *temp_inactive_list)
5321 	__must_hold(&conf->device_lock)
5322 {
5323 	struct list_head head;
5324 	list_add(&head, &conf->bitmap_list);
5325 	list_del_init(&conf->bitmap_list);
5326 	while (!list_empty(&head)) {
5327 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5328 		int hash;
5329 		list_del_init(&sh->lru);
5330 		atomic_inc(&sh->count);
5331 		hash = sh->hash_lock_index;
5332 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5333 	}
5334 }
5335 
5336 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5337 {
5338 	struct r5conf *conf = mddev->private;
5339 	sector_t sector = bio->bi_iter.bi_sector;
5340 	unsigned int chunk_sectors;
5341 	unsigned int bio_sectors = bio_sectors(bio);
5342 
5343 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5344 	return  chunk_sectors >=
5345 		((sector & (chunk_sectors - 1)) + bio_sectors);
5346 }
5347 
5348 /*
5349  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5350  *  later sampled by raid5d.
5351  */
5352 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5353 {
5354 	unsigned long flags;
5355 
5356 	spin_lock_irqsave(&conf->device_lock, flags);
5357 
5358 	bi->bi_next = conf->retry_read_aligned_list;
5359 	conf->retry_read_aligned_list = bi;
5360 
5361 	spin_unlock_irqrestore(&conf->device_lock, flags);
5362 	md_wakeup_thread(conf->mddev->thread);
5363 }
5364 
5365 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5366 					 unsigned int *offset)
5367 {
5368 	struct bio *bi;
5369 
5370 	bi = conf->retry_read_aligned;
5371 	if (bi) {
5372 		*offset = conf->retry_read_offset;
5373 		conf->retry_read_aligned = NULL;
5374 		return bi;
5375 	}
5376 	bi = conf->retry_read_aligned_list;
5377 	if(bi) {
5378 		conf->retry_read_aligned_list = bi->bi_next;
5379 		bi->bi_next = NULL;
5380 		*offset = 0;
5381 	}
5382 
5383 	return bi;
5384 }
5385 
5386 /*
5387  *  The "raid5_align_endio" should check if the read succeeded and if it
5388  *  did, call bio_endio on the original bio (having bio_put the new bio
5389  *  first).
5390  *  If the read failed..
5391  */
5392 static void raid5_align_endio(struct bio *bi)
5393 {
5394 	struct bio *raid_bi = bi->bi_private;
5395 	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5396 	struct mddev *mddev = rdev->mddev;
5397 	struct r5conf *conf = mddev->private;
5398 	blk_status_t error = bi->bi_status;
5399 
5400 	bio_put(bi);
5401 	raid_bi->bi_next = NULL;
5402 	rdev_dec_pending(rdev, conf->mddev);
5403 
5404 	if (!error) {
5405 		bio_endio(raid_bi);
5406 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5407 			wake_up(&conf->wait_for_quiescent);
5408 		return;
5409 	}
5410 
5411 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5412 
5413 	add_bio_to_retry(raid_bi, conf);
5414 }
5415 
5416 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5417 {
5418 	struct r5conf *conf = mddev->private;
5419 	struct bio *align_bio;
5420 	struct md_rdev *rdev;
5421 	sector_t sector, end_sector;
5422 	int dd_idx;
5423 	bool did_inc;
5424 
5425 	if (!in_chunk_boundary(mddev, raid_bio)) {
5426 		pr_debug("%s: non aligned\n", __func__);
5427 		return 0;
5428 	}
5429 
5430 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5431 				      &dd_idx, NULL);
5432 	end_sector = sector + bio_sectors(raid_bio);
5433 
5434 	if (r5c_big_stripe_cached(conf, sector))
5435 		return 0;
5436 
5437 	rdev = conf->disks[dd_idx].replacement;
5438 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5439 	    rdev->recovery_offset < end_sector) {
5440 		rdev = conf->disks[dd_idx].rdev;
5441 		if (!rdev)
5442 			return 0;
5443 		if (test_bit(Faulty, &rdev->flags) ||
5444 		    !(test_bit(In_sync, &rdev->flags) ||
5445 		      rdev->recovery_offset >= end_sector))
5446 			return 0;
5447 	}
5448 
5449 	atomic_inc(&rdev->nr_pending);
5450 
5451 	if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5452 		rdev_dec_pending(rdev, mddev);
5453 		return 0;
5454 	}
5455 
5456 	md_account_bio(mddev, &raid_bio);
5457 	raid_bio->bi_next = (void *)rdev;
5458 
5459 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5460 				    &mddev->bio_set);
5461 	align_bio->bi_end_io = raid5_align_endio;
5462 	align_bio->bi_private = raid_bio;
5463 	align_bio->bi_iter.bi_sector = sector;
5464 
5465 	/* No reshape active, so we can trust rdev->data_offset */
5466 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5467 
5468 	did_inc = false;
5469 	if (conf->quiesce == 0) {
5470 		atomic_inc(&conf->active_aligned_reads);
5471 		did_inc = true;
5472 	}
5473 	/* need a memory barrier to detect the race with raid5_quiesce() */
5474 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5475 		/* quiesce is in progress, so we need to undo io activation and wait
5476 		 * for it to finish
5477 		 */
5478 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5479 			wake_up(&conf->wait_for_quiescent);
5480 		spin_lock_irq(&conf->device_lock);
5481 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5482 				    conf->device_lock);
5483 		atomic_inc(&conf->active_aligned_reads);
5484 		spin_unlock_irq(&conf->device_lock);
5485 	}
5486 
5487 	mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5488 	submit_bio_noacct(align_bio);
5489 	return 1;
5490 }
5491 
5492 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5493 {
5494 	sector_t sector = raid_bio->bi_iter.bi_sector;
5495 	unsigned chunk_sects = mddev->chunk_sectors;
5496 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5497 
5498 	if (sectors < bio_sectors(raid_bio)) {
5499 		struct r5conf *conf = mddev->private;
5500 
5501 		raid_bio = bio_submit_split_bioset(raid_bio, sectors,
5502 						   &conf->bio_split);
5503 		if (!raid_bio)
5504 			return NULL;
5505 	}
5506 
5507 	if (!raid5_read_one_chunk(mddev, raid_bio))
5508 		return raid_bio;
5509 
5510 	return NULL;
5511 }
5512 
5513 /* __get_priority_stripe - get the next stripe to process
5514  *
5515  * Full stripe writes are allowed to pass preread active stripes up until
5516  * the bypass_threshold is exceeded.  In general the bypass_count
5517  * increments when the handle_list is handled before the hold_list; however, it
5518  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5519  * stripe with in flight i/o.  The bypass_count will be reset when the
5520  * head of the hold_list has changed, i.e. the head was promoted to the
5521  * handle_list.
5522  */
5523 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5524 	__must_hold(&conf->device_lock)
5525 {
5526 	struct stripe_head *sh, *tmp;
5527 	struct list_head *handle_list = NULL;
5528 	struct r5worker_group *wg;
5529 	bool second_try = !r5c_is_writeback(conf->log) &&
5530 		!r5l_log_disk_error(conf);
5531 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5532 		r5l_log_disk_error(conf);
5533 
5534 again:
5535 	wg = NULL;
5536 	sh = NULL;
5537 	if (conf->worker_cnt_per_group == 0) {
5538 		handle_list = try_loprio ? &conf->loprio_list :
5539 					&conf->handle_list;
5540 	} else if (group != ANY_GROUP) {
5541 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5542 				&conf->worker_groups[group].handle_list;
5543 		wg = &conf->worker_groups[group];
5544 	} else {
5545 		int i;
5546 		for (i = 0; i < conf->group_cnt; i++) {
5547 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5548 				&conf->worker_groups[i].handle_list;
5549 			wg = &conf->worker_groups[i];
5550 			if (!list_empty(handle_list))
5551 				break;
5552 		}
5553 	}
5554 
5555 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5556 		  __func__,
5557 		  list_empty(handle_list) ? "empty" : "busy",
5558 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5559 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5560 
5561 	if (!list_empty(handle_list)) {
5562 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5563 
5564 		if (list_empty(&conf->hold_list))
5565 			conf->bypass_count = 0;
5566 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5567 			if (conf->hold_list.next == conf->last_hold)
5568 				conf->bypass_count++;
5569 			else {
5570 				conf->last_hold = conf->hold_list.next;
5571 				conf->bypass_count -= conf->bypass_threshold;
5572 				if (conf->bypass_count < 0)
5573 					conf->bypass_count = 0;
5574 			}
5575 		}
5576 	} else if (!list_empty(&conf->hold_list) &&
5577 		   ((conf->bypass_threshold &&
5578 		     conf->bypass_count > conf->bypass_threshold) ||
5579 		    atomic_read(&conf->pending_full_writes) == 0)) {
5580 
5581 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5582 			if (conf->worker_cnt_per_group == 0 ||
5583 			    group == ANY_GROUP ||
5584 			    !cpu_online(tmp->cpu) ||
5585 			    cpu_to_group(tmp->cpu) == group) {
5586 				sh = tmp;
5587 				break;
5588 			}
5589 		}
5590 
5591 		if (sh) {
5592 			conf->bypass_count -= conf->bypass_threshold;
5593 			if (conf->bypass_count < 0)
5594 				conf->bypass_count = 0;
5595 		}
5596 		wg = NULL;
5597 	}
5598 
5599 	if (!sh) {
5600 		if (second_try)
5601 			return NULL;
5602 		second_try = true;
5603 		try_loprio = !try_loprio;
5604 		goto again;
5605 	}
5606 
5607 	if (wg) {
5608 		wg->stripes_cnt--;
5609 		sh->group = NULL;
5610 	}
5611 	list_del_init(&sh->lru);
5612 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5613 	return sh;
5614 }
5615 
5616 struct raid5_plug_cb {
5617 	struct blk_plug_cb	cb;
5618 	struct list_head	list;
5619 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5620 };
5621 
5622 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5623 {
5624 	struct raid5_plug_cb *cb = container_of(
5625 		blk_cb, struct raid5_plug_cb, cb);
5626 	struct stripe_head *sh;
5627 	struct mddev *mddev = cb->cb.data;
5628 	struct r5conf *conf = mddev->private;
5629 	int cnt = 0;
5630 	int hash;
5631 
5632 	if (cb->list.next && !list_empty(&cb->list)) {
5633 		spin_lock_irq(&conf->device_lock);
5634 		while (!list_empty(&cb->list)) {
5635 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5636 			list_del_init(&sh->lru);
5637 			/*
5638 			 * avoid race release_stripe_plug() sees
5639 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5640 			 * is still in our list
5641 			 */
5642 			smp_mb__before_atomic();
5643 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5644 			/*
5645 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5646 			 * case, the count is always > 1 here
5647 			 */
5648 			hash = sh->hash_lock_index;
5649 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5650 			cnt++;
5651 		}
5652 		spin_unlock_irq(&conf->device_lock);
5653 	}
5654 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5655 				     NR_STRIPE_HASH_LOCKS);
5656 	if (!mddev_is_dm(mddev))
5657 		trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5658 	kfree(cb);
5659 }
5660 
5661 static void release_stripe_plug(struct mddev *mddev,
5662 				struct stripe_head *sh)
5663 {
5664 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5665 		raid5_unplug, mddev,
5666 		sizeof(struct raid5_plug_cb));
5667 	struct raid5_plug_cb *cb;
5668 
5669 	if (!blk_cb) {
5670 		raid5_release_stripe(sh);
5671 		return;
5672 	}
5673 
5674 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5675 
5676 	if (cb->list.next == NULL) {
5677 		int i;
5678 		INIT_LIST_HEAD(&cb->list);
5679 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5680 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5681 	}
5682 
5683 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5684 		list_add_tail(&sh->lru, &cb->list);
5685 	else
5686 		raid5_release_stripe(sh);
5687 }
5688 
5689 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5690 {
5691 	struct r5conf *conf = mddev->private;
5692 	sector_t logical_sector, last_sector;
5693 	struct stripe_head *sh;
5694 	int stripe_sectors;
5695 
5696 	/* We need to handle this when io_uring supports discard/trim */
5697 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5698 		return;
5699 
5700 	if (mddev->reshape_position != MaxSector)
5701 		/* Skip discard while reshape is happening */
5702 		return;
5703 
5704 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5705 	last_sector = bio_end_sector(bi);
5706 
5707 	bi->bi_next = NULL;
5708 
5709 	stripe_sectors = conf->chunk_sectors *
5710 		(conf->raid_disks - conf->max_degraded);
5711 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5712 					       stripe_sectors);
5713 	sector_div(last_sector, stripe_sectors);
5714 
5715 	logical_sector *= conf->chunk_sectors;
5716 	last_sector *= conf->chunk_sectors;
5717 
5718 	for (; logical_sector < last_sector;
5719 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5720 		DEFINE_WAIT(w);
5721 		int d;
5722 	again:
5723 		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5724 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5725 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5726 			raid5_release_stripe(sh);
5727 			wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5728 				    TASK_UNINTERRUPTIBLE);
5729 			goto again;
5730 		}
5731 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5732 		spin_lock_irq(&sh->stripe_lock);
5733 		for (d = 0; d < conf->raid_disks; d++) {
5734 			if (d == sh->pd_idx || d == sh->qd_idx)
5735 				continue;
5736 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5737 				set_bit(R5_Overlap, &sh->dev[d].flags);
5738 				spin_unlock_irq(&sh->stripe_lock);
5739 				raid5_release_stripe(sh);
5740 				wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5741 					    TASK_UNINTERRUPTIBLE);
5742 				goto again;
5743 			}
5744 		}
5745 		set_bit(STRIPE_DISCARD, &sh->state);
5746 		sh->overwrite_disks = 0;
5747 		for (d = 0; d < conf->raid_disks; d++) {
5748 			if (d == sh->pd_idx || d == sh->qd_idx)
5749 				continue;
5750 			sh->dev[d].towrite = bi;
5751 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5752 			bio_inc_remaining(bi);
5753 			md_write_inc(mddev, bi);
5754 			sh->overwrite_disks++;
5755 		}
5756 		spin_unlock_irq(&sh->stripe_lock);
5757 		if (conf->mddev->bitmap) {
5758 			sh->bm_seq = conf->seq_flush + 1;
5759 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5760 		}
5761 
5762 		set_bit(STRIPE_HANDLE, &sh->state);
5763 		clear_bit(STRIPE_DELAYED, &sh->state);
5764 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5765 			atomic_inc(&conf->preread_active_stripes);
5766 		release_stripe_plug(mddev, sh);
5767 	}
5768 
5769 	bio_endio(bi);
5770 }
5771 
5772 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5773 			     sector_t reshape_sector)
5774 {
5775 	return mddev->reshape_backwards ? sector < reshape_sector :
5776 					  sector >= reshape_sector;
5777 }
5778 
5779 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5780 				   sector_t max, sector_t reshape_sector)
5781 {
5782 	return mddev->reshape_backwards ? max < reshape_sector :
5783 					  min >= reshape_sector;
5784 }
5785 
5786 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5787 				    struct stripe_head *sh)
5788 {
5789 	sector_t max_sector = 0, min_sector = MaxSector;
5790 	bool ret = false;
5791 	int dd_idx;
5792 
5793 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5794 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5795 			continue;
5796 
5797 		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5798 		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5799 	}
5800 
5801 	spin_lock_irq(&conf->device_lock);
5802 
5803 	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5804 				     conf->reshape_progress))
5805 		/* mismatch, need to try again */
5806 		ret = true;
5807 
5808 	spin_unlock_irq(&conf->device_lock);
5809 
5810 	return ret;
5811 }
5812 
5813 static int add_all_stripe_bios(struct r5conf *conf,
5814 		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5815 		struct bio *bi, int forwrite, int previous)
5816 {
5817 	int dd_idx;
5818 
5819 	spin_lock_irq(&sh->stripe_lock);
5820 
5821 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5822 		struct r5dev *dev = &sh->dev[dd_idx];
5823 
5824 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5825 			continue;
5826 
5827 		if (dev->sector < ctx->first_sector ||
5828 		    dev->sector >= ctx->last_sector)
5829 			continue;
5830 
5831 		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5832 			set_bit(R5_Overlap, &dev->flags);
5833 			spin_unlock_irq(&sh->stripe_lock);
5834 			raid5_release_stripe(sh);
5835 			/* release batch_last before wait to avoid risk of deadlock */
5836 			if (ctx->batch_last) {
5837 				raid5_release_stripe(ctx->batch_last);
5838 				ctx->batch_last = NULL;
5839 			}
5840 			md_wakeup_thread(conf->mddev->thread);
5841 			wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5842 			return 0;
5843 		}
5844 	}
5845 
5846 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5847 		struct r5dev *dev = &sh->dev[dd_idx];
5848 
5849 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5850 			continue;
5851 
5852 		if (dev->sector < ctx->first_sector ||
5853 		    dev->sector >= ctx->last_sector)
5854 			continue;
5855 
5856 		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5857 		clear_bit((dev->sector - ctx->first_sector) >>
5858 			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5859 	}
5860 
5861 	spin_unlock_irq(&sh->stripe_lock);
5862 	return 1;
5863 }
5864 
5865 enum reshape_loc {
5866 	LOC_NO_RESHAPE,
5867 	LOC_AHEAD_OF_RESHAPE,
5868 	LOC_INSIDE_RESHAPE,
5869 	LOC_BEHIND_RESHAPE,
5870 };
5871 
5872 static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5873 		struct r5conf *conf, sector_t logical_sector)
5874 {
5875 	sector_t reshape_progress, reshape_safe;
5876 
5877 	if (likely(conf->reshape_progress == MaxSector))
5878 		return LOC_NO_RESHAPE;
5879 	/*
5880 	 * Spinlock is needed as reshape_progress may be
5881 	 * 64bit on a 32bit platform, and so it might be
5882 	 * possible to see a half-updated value
5883 	 * Of course reshape_progress could change after
5884 	 * the lock is dropped, so once we get a reference
5885 	 * to the stripe that we think it is, we will have
5886 	 * to check again.
5887 	 */
5888 	spin_lock_irq(&conf->device_lock);
5889 	reshape_progress = conf->reshape_progress;
5890 	reshape_safe = conf->reshape_safe;
5891 	spin_unlock_irq(&conf->device_lock);
5892 	if (reshape_progress == MaxSector)
5893 		return LOC_NO_RESHAPE;
5894 	if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5895 		return LOC_AHEAD_OF_RESHAPE;
5896 	if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5897 		return LOC_INSIDE_RESHAPE;
5898 	return LOC_BEHIND_RESHAPE;
5899 }
5900 
5901 static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset,
5902 				unsigned long *sectors)
5903 {
5904 	struct r5conf *conf = mddev->private;
5905 	sector_t start = *offset;
5906 	sector_t end = start + *sectors;
5907 	sector_t prev_start = start;
5908 	sector_t prev_end = end;
5909 	int sectors_per_chunk;
5910 	enum reshape_loc loc;
5911 	int dd_idx;
5912 
5913 	sectors_per_chunk = conf->chunk_sectors *
5914 		(conf->raid_disks - conf->max_degraded);
5915 	start = round_down(start, sectors_per_chunk);
5916 	end = round_up(end, sectors_per_chunk);
5917 
5918 	start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL);
5919 	end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL);
5920 
5921 	/*
5922 	 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make
5923 	 * progress, hence it's the same as LOC_BEHIND_RESHAPE.
5924 	 */
5925 	loc = get_reshape_loc(mddev, conf, prev_start);
5926 	if (likely(loc != LOC_AHEAD_OF_RESHAPE)) {
5927 		*offset = start;
5928 		*sectors = end - start;
5929 		return;
5930 	}
5931 
5932 	sectors_per_chunk = conf->prev_chunk_sectors *
5933 		(conf->previous_raid_disks - conf->max_degraded);
5934 	prev_start = round_down(prev_start, sectors_per_chunk);
5935 	prev_end = round_down(prev_end, sectors_per_chunk);
5936 
5937 	prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL);
5938 	prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL);
5939 
5940 	/*
5941 	 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO
5942 	 * is handled in make_stripe_request(), we can't know this here hence
5943 	 * we set bits for both.
5944 	 */
5945 	*offset = min(start, prev_start);
5946 	*sectors = max(end, prev_end) - *offset;
5947 }
5948 
5949 static enum stripe_result make_stripe_request(struct mddev *mddev,
5950 		struct r5conf *conf, struct stripe_request_ctx *ctx,
5951 		sector_t logical_sector, struct bio *bi)
5952 {
5953 	const int rw = bio_data_dir(bi);
5954 	enum stripe_result ret;
5955 	struct stripe_head *sh;
5956 	enum reshape_loc loc;
5957 	sector_t new_sector;
5958 	int previous = 0, flags = 0;
5959 	int seq, dd_idx;
5960 
5961 	seq = read_seqcount_begin(&conf->gen_lock);
5962 	loc = get_reshape_loc(mddev, conf, logical_sector);
5963 	if (loc == LOC_INSIDE_RESHAPE) {
5964 		ret = STRIPE_SCHEDULE_AND_RETRY;
5965 		goto out;
5966 	}
5967 	if (loc == LOC_AHEAD_OF_RESHAPE)
5968 		previous = 1;
5969 
5970 	new_sector = raid5_compute_sector(conf, logical_sector, previous,
5971 					  &dd_idx, NULL);
5972 	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5973 		 new_sector, logical_sector);
5974 
5975 	if (previous)
5976 		flags |= R5_GAS_PREVIOUS;
5977 	if (bi->bi_opf & REQ_RAHEAD)
5978 		flags |= R5_GAS_NOBLOCK;
5979 	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5980 	if (unlikely(!sh)) {
5981 		/* cannot get stripe, just give-up */
5982 		bi->bi_status = BLK_STS_IOERR;
5983 		return STRIPE_FAIL;
5984 	}
5985 
5986 	if (unlikely(previous) &&
5987 	    stripe_ahead_of_reshape(mddev, conf, sh)) {
5988 		/*
5989 		 * Expansion moved on while waiting for a stripe.
5990 		 * Expansion could still move past after this
5991 		 * test, but as we are holding a reference to
5992 		 * 'sh', we know that if that happens,
5993 		 *  STRIPE_EXPANDING will get set and the expansion
5994 		 * won't proceed until we finish with the stripe.
5995 		 */
5996 		ret = STRIPE_SCHEDULE_AND_RETRY;
5997 		goto out_release;
5998 	}
5999 
6000 	if (read_seqcount_retry(&conf->gen_lock, seq)) {
6001 		/* Might have got the wrong stripe_head by accident */
6002 		ret = STRIPE_RETRY;
6003 		goto out_release;
6004 	}
6005 
6006 	if (test_bit(STRIPE_EXPANDING, &sh->state)) {
6007 		md_wakeup_thread(mddev->thread);
6008 		ret = STRIPE_SCHEDULE_AND_RETRY;
6009 		goto out_release;
6010 	}
6011 
6012 	if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
6013 		ret = STRIPE_RETRY;
6014 		goto out;
6015 	}
6016 
6017 	if (stripe_can_batch(sh)) {
6018 		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6019 		if (ctx->batch_last)
6020 			raid5_release_stripe(ctx->batch_last);
6021 		atomic_inc(&sh->count);
6022 		ctx->batch_last = sh;
6023 	}
6024 
6025 	if (ctx->do_flush) {
6026 		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6027 		/* we only need flush for one stripe */
6028 		ctx->do_flush = false;
6029 	}
6030 
6031 	set_bit(STRIPE_HANDLE, &sh->state);
6032 	clear_bit(STRIPE_DELAYED, &sh->state);
6033 	if ((!sh->batch_head || sh == sh->batch_head) &&
6034 	    (bi->bi_opf & REQ_SYNC) &&
6035 	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6036 		atomic_inc(&conf->preread_active_stripes);
6037 
6038 	release_stripe_plug(mddev, sh);
6039 	return STRIPE_SUCCESS;
6040 
6041 out_release:
6042 	raid5_release_stripe(sh);
6043 out:
6044 	if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6045 		bi->bi_status = BLK_STS_RESOURCE;
6046 		ret = STRIPE_WAIT_RESHAPE;
6047 		pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6048 	}
6049 	return ret;
6050 }
6051 
6052 /*
6053  * If the bio covers multiple data disks, find sector within the bio that has
6054  * the lowest chunk offset in the first chunk.
6055  */
6056 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6057 					      struct bio *bi)
6058 {
6059 	int sectors_per_chunk = conf->chunk_sectors;
6060 	int raid_disks = conf->raid_disks;
6061 	int dd_idx;
6062 	struct stripe_head sh;
6063 	unsigned int chunk_offset;
6064 	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6065 	sector_t sector;
6066 
6067 	/* We pass in fake stripe_head to get back parity disk numbers */
6068 	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6069 	chunk_offset = sector_div(sector, sectors_per_chunk);
6070 	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6071 		return r_sector;
6072 	/*
6073 	 * Bio crosses to the next data disk. Check whether it's in the same
6074 	 * chunk.
6075 	 */
6076 	dd_idx++;
6077 	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6078 		dd_idx++;
6079 	if (dd_idx >= raid_disks)
6080 		return r_sector;
6081 	return r_sector + sectors_per_chunk - chunk_offset;
6082 }
6083 
6084 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6085 {
6086 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6087 	struct r5conf *conf = mddev->private;
6088 	const int rw = bio_data_dir(bi);
6089 	struct stripe_request_ctx *ctx;
6090 	sector_t logical_sector;
6091 	enum stripe_result res;
6092 	int s, stripe_cnt;
6093 	bool on_wq;
6094 
6095 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6096 		int ret = log_handle_flush_request(conf, bi);
6097 
6098 		if (ret == 0)
6099 			return true;
6100 		if (ret == -ENODEV) {
6101 			if (md_flush_request(mddev, bi))
6102 				return true;
6103 		}
6104 		/* ret == -EAGAIN, fallback */
6105 	}
6106 
6107 	md_write_start(mddev, bi);
6108 	/*
6109 	 * If array is degraded, better not do chunk aligned read because
6110 	 * later we might have to read it again in order to reconstruct
6111 	 * data on failed drives.
6112 	 */
6113 	if (rw == READ && mddev->degraded == 0 &&
6114 	    mddev->reshape_position == MaxSector) {
6115 		bi = chunk_aligned_read(mddev, bi);
6116 		if (!bi)
6117 			return true;
6118 	}
6119 
6120 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6121 		make_discard_request(mddev, bi);
6122 		md_write_end(mddev);
6123 		return true;
6124 	}
6125 
6126 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6127 	bi->bi_next = NULL;
6128 
6129 	ctx = mempool_alloc(conf->ctx_pool, GFP_NOIO);
6130 	memset(ctx, 0, conf->ctx_size);
6131 	ctx->first_sector = logical_sector;
6132 	ctx->last_sector = bio_end_sector(bi);
6133 	/*
6134 	 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6135 	 * we need to flush journal device
6136 	 */
6137 	if (unlikely(bi->bi_opf & REQ_PREFLUSH))
6138 		ctx->do_flush = true;
6139 
6140 	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx->last_sector - logical_sector,
6141 					   RAID5_STRIPE_SECTORS(conf));
6142 	bitmap_set(ctx->sectors_to_do, 0, stripe_cnt);
6143 
6144 	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6145 		 bi->bi_iter.bi_sector, ctx->last_sector);
6146 
6147 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6148 	if ((bi->bi_opf & REQ_NOWAIT) &&
6149 	    get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6150 		bio_wouldblock_error(bi);
6151 		if (rw == WRITE)
6152 			md_write_end(mddev);
6153 		mempool_free(ctx, conf->ctx_pool);
6154 		return true;
6155 	}
6156 	md_account_bio(mddev, &bi);
6157 
6158 	/*
6159 	 * Lets start with the stripe with the lowest chunk offset in the first
6160 	 * chunk. That has the best chances of creating IOs adjacent to
6161 	 * previous IOs in case of sequential IO and thus creates the most
6162 	 * sequential IO pattern. We don't bother with the optimization when
6163 	 * reshaping as the performance benefit is not worth the complexity.
6164 	 */
6165 	if (likely(conf->reshape_progress == MaxSector)) {
6166 		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6167 		on_wq = false;
6168 	} else {
6169 		add_wait_queue(&conf->wait_for_reshape, &wait);
6170 		on_wq = true;
6171 	}
6172 	s = (logical_sector - ctx->first_sector) >> RAID5_STRIPE_SHIFT(conf);
6173 
6174 	while (1) {
6175 		res = make_stripe_request(mddev, conf, ctx, logical_sector,
6176 					  bi);
6177 		if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6178 			break;
6179 
6180 		if (res == STRIPE_RETRY)
6181 			continue;
6182 
6183 		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6184 			WARN_ON_ONCE(!on_wq);
6185 			/*
6186 			 * Must release the reference to batch_last before
6187 			 * scheduling and waiting for work to be done,
6188 			 * otherwise the batch_last stripe head could prevent
6189 			 * raid5_activate_delayed() from making progress
6190 			 * and thus deadlocking.
6191 			 */
6192 			if (ctx->batch_last) {
6193 				raid5_release_stripe(ctx->batch_last);
6194 				ctx->batch_last = NULL;
6195 			}
6196 
6197 			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6198 				   MAX_SCHEDULE_TIMEOUT);
6199 			continue;
6200 		}
6201 
6202 		s = find_next_bit_wrap(ctx->sectors_to_do, stripe_cnt, s);
6203 		if (s == stripe_cnt)
6204 			break;
6205 
6206 		logical_sector = ctx->first_sector +
6207 			(s << RAID5_STRIPE_SHIFT(conf));
6208 	}
6209 	if (unlikely(on_wq))
6210 		remove_wait_queue(&conf->wait_for_reshape, &wait);
6211 
6212 	if (ctx->batch_last)
6213 		raid5_release_stripe(ctx->batch_last);
6214 
6215 	if (rw == WRITE)
6216 		md_write_end(mddev);
6217 
6218 	mempool_free(ctx, conf->ctx_pool);
6219 	if (res == STRIPE_WAIT_RESHAPE) {
6220 		md_free_cloned_bio(bi);
6221 		return false;
6222 	}
6223 
6224 	bio_endio(bi);
6225 	return true;
6226 }
6227 
6228 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6229 
6230 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6231 {
6232 	/* reshaping is quite different to recovery/resync so it is
6233 	 * handled quite separately ... here.
6234 	 *
6235 	 * On each call to sync_request, we gather one chunk worth of
6236 	 * destination stripes and flag them as expanding.
6237 	 * Then we find all the source stripes and request reads.
6238 	 * As the reads complete, handle_stripe will copy the data
6239 	 * into the destination stripe and release that stripe.
6240 	 */
6241 	struct r5conf *conf = mddev->private;
6242 	struct stripe_head *sh;
6243 	struct md_rdev *rdev;
6244 	sector_t first_sector, last_sector;
6245 	int raid_disks = conf->previous_raid_disks;
6246 	int data_disks = raid_disks - conf->max_degraded;
6247 	int new_data_disks = conf->raid_disks - conf->max_degraded;
6248 	int i;
6249 	int dd_idx;
6250 	sector_t writepos, readpos, safepos;
6251 	sector_t stripe_addr;
6252 	int reshape_sectors;
6253 	struct list_head stripes;
6254 	sector_t retn;
6255 
6256 	if (sector_nr == 0) {
6257 		/* If restarting in the middle, skip the initial sectors */
6258 		if (mddev->reshape_backwards &&
6259 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6260 			sector_nr = raid5_size(mddev, 0, 0)
6261 				- conf->reshape_progress;
6262 		} else if (mddev->reshape_backwards &&
6263 			   conf->reshape_progress == MaxSector) {
6264 			/* shouldn't happen, but just in case, finish up.*/
6265 			sector_nr = MaxSector;
6266 		} else if (!mddev->reshape_backwards &&
6267 			   conf->reshape_progress > 0)
6268 			sector_nr = conf->reshape_progress;
6269 		sector_div(sector_nr, new_data_disks);
6270 		if (sector_nr) {
6271 			mddev->curr_resync_completed = sector_nr;
6272 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6273 			*skipped = 1;
6274 			retn = sector_nr;
6275 			goto finish;
6276 		}
6277 	}
6278 
6279 	/* We need to process a full chunk at a time.
6280 	 * If old and new chunk sizes differ, we need to process the
6281 	 * largest of these
6282 	 */
6283 
6284 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6285 
6286 	/* We update the metadata at least every 10 seconds, or when
6287 	 * the data about to be copied would over-write the source of
6288 	 * the data at the front of the range.  i.e. one new_stripe
6289 	 * along from reshape_progress new_maps to after where
6290 	 * reshape_safe old_maps to
6291 	 */
6292 	writepos = conf->reshape_progress;
6293 	sector_div(writepos, new_data_disks);
6294 	readpos = conf->reshape_progress;
6295 	sector_div(readpos, data_disks);
6296 	safepos = conf->reshape_safe;
6297 	sector_div(safepos, data_disks);
6298 	if (mddev->reshape_backwards) {
6299 		if (WARN_ON(writepos < reshape_sectors))
6300 			return MaxSector;
6301 
6302 		writepos -= reshape_sectors;
6303 		readpos += reshape_sectors;
6304 		safepos += reshape_sectors;
6305 	} else {
6306 		writepos += reshape_sectors;
6307 		/* readpos and safepos are worst-case calculations.
6308 		 * A negative number is overly pessimistic, and causes
6309 		 * obvious problems for unsigned storage.  So clip to 0.
6310 		 */
6311 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6312 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6313 	}
6314 
6315 	/* Having calculated the 'writepos' possibly use it
6316 	 * to set 'stripe_addr' which is where we will write to.
6317 	 */
6318 	if (mddev->reshape_backwards) {
6319 		if (WARN_ON(conf->reshape_progress == 0))
6320 			return MaxSector;
6321 
6322 		stripe_addr = writepos;
6323 		if (WARN_ON((mddev->dev_sectors &
6324 		    ~((sector_t)reshape_sectors - 1)) -
6325 		    reshape_sectors - stripe_addr != sector_nr))
6326 			return MaxSector;
6327 	} else {
6328 		if (WARN_ON(writepos != sector_nr + reshape_sectors))
6329 			return MaxSector;
6330 
6331 		stripe_addr = sector_nr;
6332 	}
6333 
6334 	/* 'writepos' is the most advanced device address we might write.
6335 	 * 'readpos' is the least advanced device address we might read.
6336 	 * 'safepos' is the least address recorded in the metadata as having
6337 	 *     been reshaped.
6338 	 * If there is a min_offset_diff, these are adjusted either by
6339 	 * increasing the safepos/readpos if diff is negative, or
6340 	 * increasing writepos if diff is positive.
6341 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6342 	 * ensure safety in the face of a crash - that must be done by userspace
6343 	 * making a backup of the data.  So in that case there is no particular
6344 	 * rush to update metadata.
6345 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6346 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6347 	 * we can be safe in the event of a crash.
6348 	 * So we insist on updating metadata if safepos is behind writepos and
6349 	 * readpos is beyond writepos.
6350 	 * In any case, update the metadata every 10 seconds.
6351 	 * Maybe that number should be configurable, but I'm not sure it is
6352 	 * worth it.... maybe it could be a multiple of safemode_delay???
6353 	 */
6354 	if (conf->min_offset_diff < 0) {
6355 		safepos += -conf->min_offset_diff;
6356 		readpos += -conf->min_offset_diff;
6357 	} else
6358 		writepos += conf->min_offset_diff;
6359 
6360 	if ((mddev->reshape_backwards
6361 	     ? (safepos > writepos && readpos < writepos)
6362 	     : (safepos < writepos && readpos > writepos)) ||
6363 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6364 		/* Cannot proceed until we've updated the superblock... */
6365 		wait_event(conf->wait_for_reshape,
6366 			   atomic_read(&conf->reshape_stripes)==0
6367 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6368 		if (atomic_read(&conf->reshape_stripes) != 0)
6369 			return 0;
6370 		mddev->reshape_position = conf->reshape_progress;
6371 		mddev->curr_resync_completed = sector_nr;
6372 		if (!mddev->reshape_backwards)
6373 			/* Can update recovery_offset */
6374 			rdev_for_each(rdev, mddev)
6375 				if (rdev->raid_disk >= 0 &&
6376 				    !test_bit(Journal, &rdev->flags) &&
6377 				    !test_bit(In_sync, &rdev->flags) &&
6378 				    rdev->recovery_offset < sector_nr)
6379 					rdev->recovery_offset = sector_nr;
6380 
6381 		conf->reshape_checkpoint = jiffies;
6382 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6383 		md_wakeup_thread(mddev->thread);
6384 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6385 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6386 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6387 			return 0;
6388 		spin_lock_irq(&conf->device_lock);
6389 		conf->reshape_safe = mddev->reshape_position;
6390 		spin_unlock_irq(&conf->device_lock);
6391 		wake_up(&conf->wait_for_reshape);
6392 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6393 	}
6394 
6395 	INIT_LIST_HEAD(&stripes);
6396 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6397 		int j;
6398 		int skipped_disk = 0;
6399 		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6400 					     R5_GAS_NOQUIESCE);
6401 		set_bit(STRIPE_EXPANDING, &sh->state);
6402 		atomic_inc(&conf->reshape_stripes);
6403 		/* If any of this stripe is beyond the end of the old
6404 		 * array, then we need to zero those blocks
6405 		 */
6406 		for (j=sh->disks; j--;) {
6407 			sector_t s;
6408 			if (j == sh->pd_idx)
6409 				continue;
6410 			if (conf->level == 6 &&
6411 			    j == sh->qd_idx)
6412 				continue;
6413 			s = raid5_compute_blocknr(sh, j, 0);
6414 			if (s < raid5_size(mddev, 0, 0)) {
6415 				skipped_disk = 1;
6416 				continue;
6417 			}
6418 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6419 			set_bit(R5_Expanded, &sh->dev[j].flags);
6420 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6421 		}
6422 		if (!skipped_disk) {
6423 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6424 			set_bit(STRIPE_HANDLE, &sh->state);
6425 		}
6426 		list_add(&sh->lru, &stripes);
6427 	}
6428 	spin_lock_irq(&conf->device_lock);
6429 	if (mddev->reshape_backwards)
6430 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6431 	else
6432 		conf->reshape_progress += reshape_sectors * new_data_disks;
6433 	spin_unlock_irq(&conf->device_lock);
6434 	/* Ok, those stripe are ready. We can start scheduling
6435 	 * reads on the source stripes.
6436 	 * The source stripes are determined by mapping the first and last
6437 	 * block on the destination stripes.
6438 	 */
6439 	first_sector =
6440 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6441 				     1, &dd_idx, NULL);
6442 	last_sector =
6443 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6444 					    * new_data_disks - 1),
6445 				     1, &dd_idx, NULL);
6446 	if (last_sector >= mddev->dev_sectors)
6447 		last_sector = mddev->dev_sectors - 1;
6448 	while (first_sector <= last_sector) {
6449 		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6450 				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6451 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6452 		set_bit(STRIPE_HANDLE, &sh->state);
6453 		raid5_release_stripe(sh);
6454 		first_sector += RAID5_STRIPE_SECTORS(conf);
6455 	}
6456 	/* Now that the sources are clearly marked, we can release
6457 	 * the destination stripes
6458 	 */
6459 	while (!list_empty(&stripes)) {
6460 		sh = list_entry(stripes.next, struct stripe_head, lru);
6461 		list_del_init(&sh->lru);
6462 		raid5_release_stripe(sh);
6463 	}
6464 	/* If this takes us to the resync_max point where we have to pause,
6465 	 * then we need to write out the superblock.
6466 	 */
6467 	sector_nr += reshape_sectors;
6468 	retn = reshape_sectors;
6469 finish:
6470 	if (mddev->curr_resync_completed > mddev->resync_max ||
6471 	    (sector_nr - mddev->curr_resync_completed) * 2
6472 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6473 		/* Cannot proceed until we've updated the superblock... */
6474 		wait_event(conf->wait_for_reshape,
6475 			   atomic_read(&conf->reshape_stripes) == 0
6476 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6477 		if (atomic_read(&conf->reshape_stripes) != 0)
6478 			goto ret;
6479 		mddev->reshape_position = conf->reshape_progress;
6480 		mddev->curr_resync_completed = sector_nr;
6481 		if (!mddev->reshape_backwards)
6482 			/* Can update recovery_offset */
6483 			rdev_for_each(rdev, mddev)
6484 				if (rdev->raid_disk >= 0 &&
6485 				    !test_bit(Journal, &rdev->flags) &&
6486 				    !test_bit(In_sync, &rdev->flags) &&
6487 				    rdev->recovery_offset < sector_nr)
6488 					rdev->recovery_offset = sector_nr;
6489 		conf->reshape_checkpoint = jiffies;
6490 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6491 		md_wakeup_thread(mddev->thread);
6492 		wait_event(mddev->sb_wait,
6493 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6494 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6495 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6496 			goto ret;
6497 		spin_lock_irq(&conf->device_lock);
6498 		conf->reshape_safe = mddev->reshape_position;
6499 		spin_unlock_irq(&conf->device_lock);
6500 		wake_up(&conf->wait_for_reshape);
6501 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6502 	}
6503 ret:
6504 	return retn;
6505 }
6506 
6507 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6508 					  sector_t max_sector, int *skipped)
6509 {
6510 	struct r5conf *conf = mddev->private;
6511 	struct stripe_head *sh;
6512 	sector_t sync_blocks;
6513 	bool still_degraded = false;
6514 	int i;
6515 
6516 	if (sector_nr >= max_sector) {
6517 		/* just being told to finish up .. nothing much to do */
6518 
6519 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6520 			end_reshape(conf);
6521 			return 0;
6522 		}
6523 
6524 		if (mddev->curr_resync < max_sector) /* aborted */
6525 			md_bitmap_end_sync(mddev, mddev->curr_resync,
6526 					   &sync_blocks);
6527 		else /* completed sync */
6528 			conf->fullsync = 0;
6529 		if (md_bitmap_enabled(mddev, false))
6530 			mddev->bitmap_ops->close_sync(mddev);
6531 
6532 		return 0;
6533 	}
6534 
6535 	/* Allow raid5_quiesce to complete */
6536 	wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6537 
6538 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6539 		return reshape_request(mddev, sector_nr, skipped);
6540 
6541 	/* No need to check resync_max as we never do more than one
6542 	 * stripe, and as resync_max will always be on a chunk boundary,
6543 	 * if the check in md_do_sync didn't fire, there is no chance
6544 	 * of overstepping resync_max here
6545 	 */
6546 
6547 	/* if there is too many failed drives and we are trying
6548 	 * to resync, then assert that we are finished, because there is
6549 	 * nothing we can do.
6550 	 */
6551 	if (mddev->degraded >= conf->max_degraded &&
6552 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6553 		sector_t rv = mddev->dev_sectors - sector_nr;
6554 		*skipped = 1;
6555 		return rv;
6556 	}
6557 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6558 	    !conf->fullsync &&
6559 	    !md_bitmap_start_sync(mddev, sector_nr, &sync_blocks, true) &&
6560 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6561 		/* we can skip this block, and probably more */
6562 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6563 		*skipped = 1;
6564 		/* keep things rounded to whole stripes */
6565 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6566 	}
6567 
6568 	if (md_bitmap_enabled(mddev, false))
6569 		mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6570 
6571 	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6572 				     R5_GAS_NOBLOCK);
6573 	if (sh == NULL) {
6574 		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6575 		/* make sure we don't swamp the stripe cache if someone else
6576 		 * is trying to get access
6577 		 */
6578 		schedule_timeout_uninterruptible(1);
6579 	}
6580 	/* Need to check if array will still be degraded after recovery/resync
6581 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6582 	 * one drive while leaving another faulty drive in array.
6583 	 */
6584 	for (i = 0; i < conf->raid_disks; i++) {
6585 		struct md_rdev *rdev = conf->disks[i].rdev;
6586 
6587 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6588 			still_degraded = true;
6589 	}
6590 
6591 	md_bitmap_start_sync(mddev, sector_nr, &sync_blocks, still_degraded);
6592 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6593 	set_bit(STRIPE_HANDLE, &sh->state);
6594 
6595 	raid5_release_stripe(sh);
6596 
6597 	return RAID5_STRIPE_SECTORS(conf);
6598 }
6599 
6600 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6601 			       unsigned int offset)
6602 {
6603 	/* We may not be able to submit a whole bio at once as there
6604 	 * may not be enough stripe_heads available.
6605 	 * We cannot pre-allocate enough stripe_heads as we may need
6606 	 * more than exist in the cache (if we allow ever large chunks).
6607 	 * So we do one stripe head at a time and record in
6608 	 * ->bi_hw_segments how many have been done.
6609 	 *
6610 	 * We *know* that this entire raid_bio is in one chunk, so
6611 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6612 	 */
6613 	struct stripe_head *sh;
6614 	int dd_idx;
6615 	sector_t sector, logical_sector, last_sector;
6616 	int scnt = 0;
6617 	int handled = 0;
6618 
6619 	logical_sector = raid_bio->bi_iter.bi_sector &
6620 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6621 	sector = raid5_compute_sector(conf, logical_sector,
6622 				      0, &dd_idx, NULL);
6623 	last_sector = bio_end_sector(raid_bio);
6624 
6625 	for (; logical_sector < last_sector;
6626 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6627 		     sector += RAID5_STRIPE_SECTORS(conf),
6628 		     scnt++) {
6629 
6630 		if (scnt < offset)
6631 			/* already done this stripe */
6632 			continue;
6633 
6634 		sh = raid5_get_active_stripe(conf, NULL, sector,
6635 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6636 		if (!sh) {
6637 			/* failed to get a stripe - must wait */
6638 			conf->retry_read_aligned = raid_bio;
6639 			conf->retry_read_offset = scnt;
6640 			return handled;
6641 		}
6642 
6643 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6644 			raid5_release_stripe(sh);
6645 			conf->retry_read_aligned = raid_bio;
6646 			conf->retry_read_offset = scnt;
6647 			return handled;
6648 		}
6649 
6650 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6651 		handle_stripe(sh);
6652 		raid5_release_stripe(sh);
6653 		handled++;
6654 	}
6655 
6656 	bio_endio(raid_bio);
6657 
6658 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6659 		wake_up(&conf->wait_for_quiescent);
6660 	return handled;
6661 }
6662 
6663 static int handle_active_stripes(struct r5conf *conf, int group,
6664 				 struct r5worker *worker,
6665 				 struct list_head *temp_inactive_list)
6666 		__must_hold(&conf->device_lock)
6667 {
6668 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6669 	int i, batch_size = 0, hash;
6670 	bool release_inactive = false;
6671 
6672 	while (batch_size < MAX_STRIPE_BATCH &&
6673 			(sh = __get_priority_stripe(conf, group)) != NULL)
6674 		batch[batch_size++] = sh;
6675 
6676 	if (batch_size == 0) {
6677 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6678 			if (!list_empty(temp_inactive_list + i))
6679 				break;
6680 		if (i == NR_STRIPE_HASH_LOCKS) {
6681 			spin_unlock_irq(&conf->device_lock);
6682 			log_flush_stripe_to_raid(conf);
6683 			spin_lock_irq(&conf->device_lock);
6684 			return batch_size;
6685 		}
6686 		release_inactive = true;
6687 	}
6688 	spin_unlock_irq(&conf->device_lock);
6689 
6690 	release_inactive_stripe_list(conf, temp_inactive_list,
6691 				     NR_STRIPE_HASH_LOCKS);
6692 
6693 	r5l_flush_stripe_to_raid(conf->log);
6694 	if (release_inactive) {
6695 		spin_lock_irq(&conf->device_lock);
6696 		return 0;
6697 	}
6698 
6699 	for (i = 0; i < batch_size; i++)
6700 		handle_stripe(batch[i]);
6701 	log_write_stripe_run(conf);
6702 
6703 	cond_resched();
6704 
6705 	spin_lock_irq(&conf->device_lock);
6706 	for (i = 0; i < batch_size; i++) {
6707 		hash = batch[i]->hash_lock_index;
6708 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6709 	}
6710 	return batch_size;
6711 }
6712 
6713 static void raid5_do_work(struct work_struct *work)
6714 {
6715 	struct r5worker *worker = container_of(work, struct r5worker, work);
6716 	struct r5worker_group *group = worker->group;
6717 	struct r5conf *conf = group->conf;
6718 	struct mddev *mddev = conf->mddev;
6719 	int group_id = group - conf->worker_groups;
6720 	int handled;
6721 	struct blk_plug plug;
6722 
6723 	pr_debug("+++ raid5worker active\n");
6724 
6725 	blk_start_plug(&plug);
6726 	handled = 0;
6727 	spin_lock_irq(&conf->device_lock);
6728 	while (1) {
6729 		int batch_size, released;
6730 
6731 		released = release_stripe_list(conf, worker->temp_inactive_list);
6732 
6733 		batch_size = handle_active_stripes(conf, group_id, worker,
6734 						   worker->temp_inactive_list);
6735 		worker->working = false;
6736 		if (!batch_size && !released)
6737 			break;
6738 		handled += batch_size;
6739 		wait_event_lock_irq(mddev->sb_wait,
6740 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6741 			conf->device_lock);
6742 	}
6743 	pr_debug("%d stripes handled\n", handled);
6744 
6745 	spin_unlock_irq(&conf->device_lock);
6746 
6747 	flush_deferred_bios(conf);
6748 
6749 	r5l_flush_stripe_to_raid(conf->log);
6750 
6751 	async_tx_issue_pending_all();
6752 	blk_finish_plug(&plug);
6753 
6754 	pr_debug("--- raid5worker inactive\n");
6755 }
6756 
6757 /*
6758  * This is our raid5 kernel thread.
6759  *
6760  * We scan the hash table for stripes which can be handled now.
6761  * During the scan, completed stripes are saved for us by the interrupt
6762  * handler, so that they will not have to wait for our next wakeup.
6763  */
6764 static void raid5d(struct md_thread *thread)
6765 {
6766 	struct mddev *mddev = thread->mddev;
6767 	struct r5conf *conf = mddev->private;
6768 	int handled;
6769 	struct blk_plug plug;
6770 
6771 	pr_debug("+++ raid5d active\n");
6772 
6773 	md_check_recovery(mddev);
6774 
6775 	blk_start_plug(&plug);
6776 	handled = 0;
6777 	spin_lock_irq(&conf->device_lock);
6778 	while (1) {
6779 		struct bio *bio;
6780 		int batch_size, released;
6781 		unsigned int offset;
6782 
6783 		if (md_is_rdwr(mddev) &&
6784 		    test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6785 			break;
6786 
6787 		released = release_stripe_list(conf, conf->temp_inactive_list);
6788 		if (released)
6789 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6790 
6791 		if (
6792 		    !list_empty(&conf->bitmap_list)) {
6793 			/* Now is a good time to flush some bitmap updates */
6794 			conf->seq_flush++;
6795 			spin_unlock_irq(&conf->device_lock);
6796 			if (md_bitmap_enabled(mddev, true))
6797 				mddev->bitmap_ops->unplug(mddev, true);
6798 			spin_lock_irq(&conf->device_lock);
6799 			conf->seq_write = conf->seq_flush;
6800 			activate_bit_delay(conf, conf->temp_inactive_list);
6801 		}
6802 		raid5_activate_delayed(conf);
6803 
6804 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6805 			int ok;
6806 			spin_unlock_irq(&conf->device_lock);
6807 			ok = retry_aligned_read(conf, bio, offset);
6808 			spin_lock_irq(&conf->device_lock);
6809 			if (!ok)
6810 				break;
6811 			handled++;
6812 		}
6813 
6814 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6815 						   conf->temp_inactive_list);
6816 		if (!batch_size && !released)
6817 			break;
6818 		handled += batch_size;
6819 
6820 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6821 			spin_unlock_irq(&conf->device_lock);
6822 			md_check_recovery(mddev);
6823 			spin_lock_irq(&conf->device_lock);
6824 		}
6825 	}
6826 	pr_debug("%d stripes handled\n", handled);
6827 
6828 	spin_unlock_irq(&conf->device_lock);
6829 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6830 	    mutex_trylock(&conf->cache_size_mutex)) {
6831 		grow_one_stripe(conf, __GFP_NOWARN);
6832 		/* Set flag even if allocation failed.  This helps
6833 		 * slow down allocation requests when mem is short
6834 		 */
6835 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6836 		mutex_unlock(&conf->cache_size_mutex);
6837 	}
6838 
6839 	flush_deferred_bios(conf);
6840 
6841 	r5l_flush_stripe_to_raid(conf->log);
6842 
6843 	async_tx_issue_pending_all();
6844 	blk_finish_plug(&plug);
6845 
6846 	pr_debug("--- raid5d inactive\n");
6847 }
6848 
6849 static ssize_t
6850 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6851 {
6852 	struct r5conf *conf;
6853 	int ret = 0;
6854 	spin_lock(&mddev->lock);
6855 	conf = mddev->private;
6856 	if (conf)
6857 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6858 	spin_unlock(&mddev->lock);
6859 	return ret;
6860 }
6861 
6862 int
6863 raid5_set_cache_size(struct mddev *mddev, int size)
6864 {
6865 	int result = 0;
6866 	struct r5conf *conf = mddev->private;
6867 
6868 	if (size <= 16 || size > 32768)
6869 		return -EINVAL;
6870 
6871 	WRITE_ONCE(conf->min_nr_stripes, size);
6872 	mutex_lock(&conf->cache_size_mutex);
6873 	while (size < conf->max_nr_stripes &&
6874 	       drop_one_stripe(conf))
6875 		;
6876 	mutex_unlock(&conf->cache_size_mutex);
6877 
6878 	md_allow_write(mddev);
6879 
6880 	mutex_lock(&conf->cache_size_mutex);
6881 	while (size > conf->max_nr_stripes)
6882 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6883 			WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6884 			result = -ENOMEM;
6885 			break;
6886 		}
6887 	mutex_unlock(&conf->cache_size_mutex);
6888 
6889 	return result;
6890 }
6891 EXPORT_SYMBOL(raid5_set_cache_size);
6892 
6893 static ssize_t
6894 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6895 {
6896 	struct r5conf *conf;
6897 	unsigned long new;
6898 	int err;
6899 
6900 	if (len >= PAGE_SIZE)
6901 		return -EINVAL;
6902 	if (kstrtoul(page, 10, &new))
6903 		return -EINVAL;
6904 	err = mddev_lock(mddev);
6905 	if (err)
6906 		return err;
6907 	conf = mddev->private;
6908 	if (!conf)
6909 		err = -ENODEV;
6910 	else
6911 		err = raid5_set_cache_size(mddev, new);
6912 	mddev_unlock(mddev);
6913 
6914 	return err ?: len;
6915 }
6916 
6917 static struct md_sysfs_entry
6918 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6919 				raid5_show_stripe_cache_size,
6920 				raid5_store_stripe_cache_size);
6921 
6922 static ssize_t
6923 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6924 {
6925 	struct r5conf *conf = mddev->private;
6926 	if (conf)
6927 		return sprintf(page, "%d\n", conf->rmw_level);
6928 	else
6929 		return 0;
6930 }
6931 
6932 static ssize_t
6933 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6934 {
6935 	struct r5conf *conf = mddev->private;
6936 	unsigned long new;
6937 
6938 	if (!conf)
6939 		return -ENODEV;
6940 
6941 	if (len >= PAGE_SIZE)
6942 		return -EINVAL;
6943 
6944 	if (kstrtoul(page, 10, &new))
6945 		return -EINVAL;
6946 
6947 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6948 		return -EINVAL;
6949 
6950 	if (new != PARITY_DISABLE_RMW &&
6951 	    new != PARITY_ENABLE_RMW &&
6952 	    new != PARITY_PREFER_RMW)
6953 		return -EINVAL;
6954 
6955 	conf->rmw_level = new;
6956 	return len;
6957 }
6958 
6959 static struct md_sysfs_entry
6960 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6961 			 raid5_show_rmw_level,
6962 			 raid5_store_rmw_level);
6963 
6964 static ssize_t
6965 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6966 {
6967 	struct r5conf *conf;
6968 	int ret = 0;
6969 
6970 	spin_lock(&mddev->lock);
6971 	conf = mddev->private;
6972 	if (conf)
6973 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6974 	spin_unlock(&mddev->lock);
6975 	return ret;
6976 }
6977 
6978 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6979 static ssize_t
6980 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6981 {
6982 	struct r5conf *conf;
6983 	unsigned long new;
6984 	int err;
6985 	int size;
6986 
6987 	if (len >= PAGE_SIZE)
6988 		return -EINVAL;
6989 	if (kstrtoul(page, 10, &new))
6990 		return -EINVAL;
6991 
6992 	/*
6993 	 * The value should not be bigger than PAGE_SIZE. It requires to
6994 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6995 	 * of two.
6996 	 */
6997 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6998 			new > PAGE_SIZE || new == 0 ||
6999 			new != roundup_pow_of_two(new))
7000 		return -EINVAL;
7001 
7002 	err = mddev_suspend_and_lock(mddev);
7003 	if (err)
7004 		return err;
7005 
7006 	conf = mddev->private;
7007 	if (!conf) {
7008 		err = -ENODEV;
7009 		goto out_unlock;
7010 	}
7011 
7012 	if (new == conf->stripe_size)
7013 		goto out_unlock;
7014 
7015 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
7016 			conf->stripe_size, new);
7017 
7018 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7019 	    mddev->reshape_position != MaxSector || mddev->sysfs_active) {
7020 		err = -EBUSY;
7021 		goto out_unlock;
7022 	}
7023 
7024 	mutex_lock(&conf->cache_size_mutex);
7025 	size = conf->max_nr_stripes;
7026 
7027 	shrink_stripes(conf);
7028 
7029 	conf->stripe_size = new;
7030 	conf->stripe_shift = ilog2(new) - 9;
7031 	conf->stripe_sectors = new >> 9;
7032 	if (grow_stripes(conf, size)) {
7033 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
7034 				mdname(mddev));
7035 		err = -ENOMEM;
7036 	}
7037 	mutex_unlock(&conf->cache_size_mutex);
7038 
7039 out_unlock:
7040 	mddev_unlock_and_resume(mddev);
7041 	return err ?: len;
7042 }
7043 
7044 static struct md_sysfs_entry
7045 raid5_stripe_size = __ATTR(stripe_size, 0644,
7046 			 raid5_show_stripe_size,
7047 			 raid5_store_stripe_size);
7048 #else
7049 static struct md_sysfs_entry
7050 raid5_stripe_size = __ATTR(stripe_size, 0444,
7051 			 raid5_show_stripe_size,
7052 			 NULL);
7053 #endif
7054 
7055 static ssize_t
7056 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7057 {
7058 	struct r5conf *conf;
7059 	int ret = 0;
7060 	spin_lock(&mddev->lock);
7061 	conf = mddev->private;
7062 	if (conf)
7063 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7064 	spin_unlock(&mddev->lock);
7065 	return ret;
7066 }
7067 
7068 static ssize_t
7069 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7070 {
7071 	struct r5conf *conf;
7072 	unsigned long new;
7073 	int err;
7074 
7075 	if (len >= PAGE_SIZE)
7076 		return -EINVAL;
7077 	if (kstrtoul(page, 10, &new))
7078 		return -EINVAL;
7079 
7080 	err = mddev_lock(mddev);
7081 	if (err)
7082 		return err;
7083 	conf = mddev->private;
7084 	if (!conf)
7085 		err = -ENODEV;
7086 	else if (new > conf->min_nr_stripes)
7087 		err = -EINVAL;
7088 	else
7089 		conf->bypass_threshold = new;
7090 	mddev_unlock(mddev);
7091 	return err ?: len;
7092 }
7093 
7094 static struct md_sysfs_entry
7095 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7096 					S_IRUGO | S_IWUSR,
7097 					raid5_show_preread_threshold,
7098 					raid5_store_preread_threshold);
7099 
7100 static ssize_t
7101 raid5_show_skip_copy(struct mddev *mddev, char *page)
7102 {
7103 	struct r5conf *conf;
7104 	int ret = 0;
7105 	spin_lock(&mddev->lock);
7106 	conf = mddev->private;
7107 	if (conf)
7108 		ret = sprintf(page, "%d\n", conf->skip_copy);
7109 	spin_unlock(&mddev->lock);
7110 	return ret;
7111 }
7112 
7113 static ssize_t
7114 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7115 {
7116 	struct r5conf *conf;
7117 	unsigned long new;
7118 	int err;
7119 
7120 	if (len >= PAGE_SIZE)
7121 		return -EINVAL;
7122 	if (kstrtoul(page, 10, &new))
7123 		return -EINVAL;
7124 	new = !!new;
7125 
7126 	err = mddev_suspend_and_lock(mddev);
7127 	if (err)
7128 		return err;
7129 	conf = mddev->private;
7130 	if (!conf)
7131 		err = -ENODEV;
7132 	else if (new != conf->skip_copy) {
7133 		struct request_queue *q = mddev->gendisk->queue;
7134 		struct queue_limits lim = queue_limits_start_update(q);
7135 
7136 		conf->skip_copy = new;
7137 		if (new)
7138 			lim.features |= BLK_FEAT_STABLE_WRITES;
7139 		else
7140 			lim.features &= ~BLK_FEAT_STABLE_WRITES;
7141 		err = queue_limits_commit_update(q, &lim);
7142 	}
7143 	mddev_unlock_and_resume(mddev);
7144 	return err ?: len;
7145 }
7146 
7147 static struct md_sysfs_entry
7148 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7149 					raid5_show_skip_copy,
7150 					raid5_store_skip_copy);
7151 
7152 static ssize_t
7153 stripe_cache_active_show(struct mddev *mddev, char *page)
7154 {
7155 	struct r5conf *conf = mddev->private;
7156 	if (conf)
7157 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7158 	else
7159 		return 0;
7160 }
7161 
7162 static struct md_sysfs_entry
7163 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7164 
7165 static ssize_t
7166 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7167 {
7168 	struct r5conf *conf;
7169 	int ret = 0;
7170 	spin_lock(&mddev->lock);
7171 	conf = mddev->private;
7172 	if (conf)
7173 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7174 	spin_unlock(&mddev->lock);
7175 	return ret;
7176 }
7177 
7178 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7179 			       int *group_cnt,
7180 			       struct r5worker_group **worker_groups);
7181 static ssize_t
7182 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7183 {
7184 	struct r5conf *conf;
7185 	unsigned int new;
7186 	int err;
7187 	struct r5worker_group *new_groups, *old_groups;
7188 	int group_cnt;
7189 
7190 	if (len >= PAGE_SIZE)
7191 		return -EINVAL;
7192 	if (kstrtouint(page, 10, &new))
7193 		return -EINVAL;
7194 	/* 8192 should be big enough */
7195 	if (new > 8192)
7196 		return -EINVAL;
7197 
7198 	err = mddev_suspend_and_lock(mddev);
7199 	if (err)
7200 		return err;
7201 	conf = mddev->private;
7202 	if (!conf) {
7203 		mddev_unlock_and_resume(mddev);
7204 		return -ENODEV;
7205 	}
7206 	raid5_quiesce(mddev, true);
7207 
7208 	if (new != conf->worker_cnt_per_group) {
7209 		old_groups = conf->worker_groups;
7210 		if (old_groups)
7211 			flush_workqueue(raid5_wq);
7212 
7213 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7214 		if (!err) {
7215 			spin_lock_irq(&conf->device_lock);
7216 			conf->group_cnt = group_cnt;
7217 			conf->worker_cnt_per_group = new;
7218 			conf->worker_groups = new_groups;
7219 			spin_unlock_irq(&conf->device_lock);
7220 
7221 			if (old_groups)
7222 				kfree(old_groups[0].workers);
7223 			kfree(old_groups);
7224 		}
7225 	}
7226 
7227 	raid5_quiesce(mddev, false);
7228 	mddev_unlock_and_resume(mddev);
7229 
7230 	return err ?: len;
7231 }
7232 
7233 static struct md_sysfs_entry
7234 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7235 				raid5_show_group_thread_cnt,
7236 				raid5_store_group_thread_cnt);
7237 
7238 static struct attribute *raid5_attrs[] =  {
7239 	&raid5_stripecache_size.attr,
7240 	&raid5_stripecache_active.attr,
7241 	&raid5_preread_bypass_threshold.attr,
7242 	&raid5_group_thread_cnt.attr,
7243 	&raid5_skip_copy.attr,
7244 	&raid5_rmw_level.attr,
7245 	&raid5_stripe_size.attr,
7246 	&r5c_journal_mode.attr,
7247 	&ppl_write_hint.attr,
7248 	NULL,
7249 };
7250 static const struct attribute_group raid5_attrs_group = {
7251 	.name = NULL,
7252 	.attrs = raid5_attrs,
7253 };
7254 
7255 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7256 			       struct r5worker_group **worker_groups)
7257 {
7258 	int i, j, k;
7259 	ssize_t size;
7260 	struct r5worker *workers;
7261 
7262 	if (cnt == 0) {
7263 		*group_cnt = 0;
7264 		*worker_groups = NULL;
7265 		return 0;
7266 	}
7267 	*group_cnt = num_possible_nodes();
7268 	size = sizeof(struct r5worker) * cnt;
7269 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7270 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7271 				 GFP_NOIO);
7272 	if (!*worker_groups || !workers) {
7273 		kfree(workers);
7274 		kfree(*worker_groups);
7275 		return -ENOMEM;
7276 	}
7277 
7278 	for (i = 0; i < *group_cnt; i++) {
7279 		struct r5worker_group *group;
7280 
7281 		group = &(*worker_groups)[i];
7282 		INIT_LIST_HEAD(&group->handle_list);
7283 		INIT_LIST_HEAD(&group->loprio_list);
7284 		group->conf = conf;
7285 		group->workers = workers + i * cnt;
7286 
7287 		for (j = 0; j < cnt; j++) {
7288 			struct r5worker *worker = group->workers + j;
7289 			worker->group = group;
7290 			INIT_WORK(&worker->work, raid5_do_work);
7291 
7292 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7293 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7294 		}
7295 	}
7296 
7297 	return 0;
7298 }
7299 
7300 static void free_thread_groups(struct r5conf *conf)
7301 {
7302 	if (conf->worker_groups)
7303 		kfree(conf->worker_groups[0].workers);
7304 	kfree(conf->worker_groups);
7305 	conf->worker_groups = NULL;
7306 }
7307 
7308 static sector_t
7309 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7310 {
7311 	struct r5conf *conf = mddev->private;
7312 
7313 	if (!sectors)
7314 		sectors = mddev->dev_sectors;
7315 	if (!raid_disks)
7316 		/* size is defined by the smallest of previous and new size */
7317 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7318 
7319 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7320 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7321 	return sectors * (raid_disks - conf->max_degraded);
7322 }
7323 
7324 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7325 {
7326 	safe_put_page(percpu->spare_page);
7327 	percpu->spare_page = NULL;
7328 	kvfree(percpu->scribble);
7329 	percpu->scribble = NULL;
7330 }
7331 
7332 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7333 {
7334 	if (conf->level == 6 && !percpu->spare_page) {
7335 		percpu->spare_page = alloc_page(GFP_KERNEL);
7336 		if (!percpu->spare_page)
7337 			return -ENOMEM;
7338 	}
7339 
7340 	if (scribble_alloc(percpu,
7341 			   max(conf->raid_disks,
7342 			       conf->previous_raid_disks),
7343 			   max(conf->chunk_sectors,
7344 			       conf->prev_chunk_sectors)
7345 			   / RAID5_STRIPE_SECTORS(conf))) {
7346 		free_scratch_buffer(conf, percpu);
7347 		return -ENOMEM;
7348 	}
7349 
7350 	local_lock_init(&percpu->lock);
7351 	return 0;
7352 }
7353 
7354 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7355 {
7356 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7357 
7358 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7359 	return 0;
7360 }
7361 
7362 static void raid5_free_percpu(struct r5conf *conf)
7363 {
7364 	if (!conf->percpu)
7365 		return;
7366 
7367 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7368 	free_percpu(conf->percpu);
7369 }
7370 
7371 static void free_conf(struct r5conf *conf)
7372 {
7373 	int i;
7374 
7375 	log_exit(conf);
7376 
7377 	shrinker_free(conf->shrinker);
7378 	free_thread_groups(conf);
7379 	shrink_stripes(conf);
7380 	raid5_free_percpu(conf);
7381 	for (i = 0; i < conf->pool_size; i++)
7382 		if (conf->disks[i].extra_page)
7383 			put_page(conf->disks[i].extra_page);
7384 	kfree(conf->disks);
7385 	bioset_exit(&conf->bio_split);
7386 	kfree(conf->stripe_hashtbl);
7387 	kfree(conf->pending_data);
7388 
7389 	mempool_destroy(conf->ctx_pool);
7390 
7391 	kfree(conf);
7392 }
7393 
7394 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7395 {
7396 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7397 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7398 
7399 	if (alloc_scratch_buffer(conf, percpu)) {
7400 		pr_warn("%s: failed memory allocation for cpu%u\n",
7401 			__func__, cpu);
7402 		return -ENOMEM;
7403 	}
7404 	return 0;
7405 }
7406 
7407 static int raid5_alloc_percpu(struct r5conf *conf)
7408 {
7409 	int err = 0;
7410 
7411 	conf->percpu = alloc_percpu(struct raid5_percpu);
7412 	if (!conf->percpu)
7413 		return -ENOMEM;
7414 
7415 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7416 	if (!err) {
7417 		conf->scribble_disks = max(conf->raid_disks,
7418 			conf->previous_raid_disks);
7419 		conf->scribble_sectors = max(conf->chunk_sectors,
7420 			conf->prev_chunk_sectors);
7421 	}
7422 	return err;
7423 }
7424 
7425 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7426 				      struct shrink_control *sc)
7427 {
7428 	struct r5conf *conf = shrink->private_data;
7429 	unsigned long ret = SHRINK_STOP;
7430 
7431 	if (mutex_trylock(&conf->cache_size_mutex)) {
7432 		ret= 0;
7433 		while (ret < sc->nr_to_scan &&
7434 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7435 			if (drop_one_stripe(conf) == 0) {
7436 				ret = SHRINK_STOP;
7437 				break;
7438 			}
7439 			ret++;
7440 		}
7441 		mutex_unlock(&conf->cache_size_mutex);
7442 	}
7443 	return ret;
7444 }
7445 
7446 static unsigned long raid5_cache_count(struct shrinker *shrink,
7447 				       struct shrink_control *sc)
7448 {
7449 	struct r5conf *conf = shrink->private_data;
7450 	int max_stripes = READ_ONCE(conf->max_nr_stripes);
7451 	int min_stripes = READ_ONCE(conf->min_nr_stripes);
7452 
7453 	if (max_stripes < min_stripes)
7454 		/* unlikely, but not impossible */
7455 		return 0;
7456 	return max_stripes - min_stripes;
7457 }
7458 
7459 static struct r5conf *setup_conf(struct mddev *mddev)
7460 {
7461 	struct r5conf *conf;
7462 	int raid_disk, memory, max_disks;
7463 	struct md_rdev *rdev;
7464 	struct disk_info *disk;
7465 	char pers_name[6];
7466 	int i;
7467 	int group_cnt;
7468 	struct r5worker_group *new_group;
7469 	int ret = -ENOMEM;
7470 
7471 	if (mddev->new_level != 5
7472 	    && mddev->new_level != 4
7473 	    && mddev->new_level != 6) {
7474 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7475 			mdname(mddev), mddev->new_level);
7476 		return ERR_PTR(-EIO);
7477 	}
7478 	if ((mddev->new_level == 5
7479 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7480 	    (mddev->new_level == 6
7481 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7482 		pr_warn("md/raid:%s: layout %d not supported\n",
7483 			mdname(mddev), mddev->new_layout);
7484 		return ERR_PTR(-EIO);
7485 	}
7486 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7487 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7488 			mdname(mddev), mddev->raid_disks);
7489 		return ERR_PTR(-EINVAL);
7490 	}
7491 
7492 	if (!mddev->new_chunk_sectors ||
7493 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7494 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7495 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7496 			mdname(mddev), mddev->new_chunk_sectors << 9);
7497 		return ERR_PTR(-EINVAL);
7498 	}
7499 
7500 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7501 	if (conf == NULL)
7502 		goto abort;
7503 
7504 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7505 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7506 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7507 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7508 #endif
7509 	INIT_LIST_HEAD(&conf->free_list);
7510 	INIT_LIST_HEAD(&conf->pending_list);
7511 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7512 				     sizeof(struct r5pending_data),
7513 				     GFP_KERNEL);
7514 	if (!conf->pending_data)
7515 		goto abort;
7516 	for (i = 0; i < PENDING_IO_MAX; i++)
7517 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7518 	/* Don't enable multi-threading by default*/
7519 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7520 		conf->group_cnt = group_cnt;
7521 		conf->worker_cnt_per_group = 0;
7522 		conf->worker_groups = new_group;
7523 	} else
7524 		goto abort;
7525 	spin_lock_init(&conf->device_lock);
7526 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7527 	mutex_init(&conf->cache_size_mutex);
7528 
7529 	init_waitqueue_head(&conf->wait_for_quiescent);
7530 	init_waitqueue_head(&conf->wait_for_stripe);
7531 	init_waitqueue_head(&conf->wait_for_reshape);
7532 	INIT_LIST_HEAD(&conf->handle_list);
7533 	INIT_LIST_HEAD(&conf->loprio_list);
7534 	INIT_LIST_HEAD(&conf->hold_list);
7535 	INIT_LIST_HEAD(&conf->delayed_list);
7536 	INIT_LIST_HEAD(&conf->bitmap_list);
7537 	init_llist_head(&conf->released_stripes);
7538 	atomic_set(&conf->active_stripes, 0);
7539 	atomic_set(&conf->preread_active_stripes, 0);
7540 	atomic_set(&conf->active_aligned_reads, 0);
7541 	spin_lock_init(&conf->pending_bios_lock);
7542 	conf->batch_bio_dispatch = true;
7543 	rdev_for_each(rdev, mddev) {
7544 		if (test_bit(Journal, &rdev->flags))
7545 			continue;
7546 		if (bdev_nonrot(rdev->bdev)) {
7547 			conf->batch_bio_dispatch = false;
7548 			break;
7549 		}
7550 	}
7551 
7552 	conf->bypass_threshold = BYPASS_THRESHOLD;
7553 	conf->raid_disks = mddev->raid_disks;
7554 	if (mddev->reshape_position == MaxSector)
7555 		conf->previous_raid_disks = mddev->raid_disks;
7556 	else
7557 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7558 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7559 
7560 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7561 			      GFP_KERNEL);
7562 
7563 	if (!conf->disks)
7564 		goto abort;
7565 
7566 	for (i = 0; i < max_disks; i++) {
7567 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7568 		if (!conf->disks[i].extra_page)
7569 			goto abort;
7570 	}
7571 
7572 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7573 	if (ret)
7574 		goto abort;
7575 	conf->mddev = mddev;
7576 
7577 	ret = -ENOMEM;
7578 	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7579 	if (!conf->stripe_hashtbl)
7580 		goto abort;
7581 
7582 	/* We init hash_locks[0] separately to that it can be used
7583 	 * as the reference lock in the spin_lock_nest_lock() call
7584 	 * in lock_all_device_hash_locks_irq in order to convince
7585 	 * lockdep that we know what we are doing.
7586 	 */
7587 	spin_lock_init(conf->hash_locks);
7588 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7589 		spin_lock_init(conf->hash_locks + i);
7590 
7591 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7592 		INIT_LIST_HEAD(conf->inactive_list + i);
7593 
7594 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7595 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7596 
7597 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7598 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7599 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7600 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7601 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7602 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7603 
7604 	conf->level = mddev->new_level;
7605 	conf->chunk_sectors = mddev->new_chunk_sectors;
7606 	ret = raid5_alloc_percpu(conf);
7607 	if (ret)
7608 		goto abort;
7609 
7610 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7611 
7612 	ret = -EIO;
7613 	rdev_for_each(rdev, mddev) {
7614 		raid_disk = rdev->raid_disk;
7615 		if (raid_disk >= max_disks
7616 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7617 			continue;
7618 		disk = conf->disks + raid_disk;
7619 
7620 		if (test_bit(Replacement, &rdev->flags)) {
7621 			if (disk->replacement)
7622 				goto abort;
7623 			disk->replacement = rdev;
7624 		} else {
7625 			if (disk->rdev)
7626 				goto abort;
7627 			disk->rdev = rdev;
7628 		}
7629 
7630 		if (test_bit(In_sync, &rdev->flags)) {
7631 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7632 				mdname(mddev), rdev->bdev, raid_disk);
7633 		} else if (rdev->saved_raid_disk != raid_disk)
7634 			/* Cannot rely on bitmap to complete recovery */
7635 			conf->fullsync = 1;
7636 	}
7637 
7638 	conf->level = mddev->new_level;
7639 	if (conf->level == 6) {
7640 		conf->max_degraded = 2;
7641 		if (raid6_call.xor_syndrome)
7642 			conf->rmw_level = PARITY_ENABLE_RMW;
7643 		else
7644 			conf->rmw_level = PARITY_DISABLE_RMW;
7645 	} else {
7646 		conf->max_degraded = 1;
7647 		conf->rmw_level = PARITY_ENABLE_RMW;
7648 	}
7649 	conf->algorithm = mddev->new_layout;
7650 	conf->reshape_progress = mddev->reshape_position;
7651 	if (conf->reshape_progress != MaxSector) {
7652 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7653 		conf->prev_algo = mddev->layout;
7654 	} else {
7655 		conf->prev_chunk_sectors = conf->chunk_sectors;
7656 		conf->prev_algo = conf->algorithm;
7657 	}
7658 
7659 	conf->min_nr_stripes = NR_STRIPES;
7660 	if (mddev->reshape_position != MaxSector) {
7661 		int stripes = max_t(int,
7662 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7663 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7664 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7665 		if (conf->min_nr_stripes != NR_STRIPES)
7666 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7667 				mdname(mddev), conf->min_nr_stripes);
7668 	}
7669 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7670 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7671 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7672 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7673 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7674 			mdname(mddev), memory);
7675 		ret = -ENOMEM;
7676 		goto abort;
7677 	} else
7678 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7679 	/*
7680 	 * Losing a stripe head costs more than the time to refill it,
7681 	 * it reduces the queue depth and so can hurt throughput.
7682 	 * So set it rather large, scaled by number of devices.
7683 	 */
7684 	conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7685 	if (!conf->shrinker) {
7686 		ret = -ENOMEM;
7687 		pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7688 			mdname(mddev));
7689 		goto abort;
7690 	}
7691 
7692 	conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7693 	conf->shrinker->scan_objects = raid5_cache_scan;
7694 	conf->shrinker->count_objects = raid5_cache_count;
7695 	conf->shrinker->batch = 128;
7696 	conf->shrinker->private_data = conf;
7697 
7698 	shrinker_register(conf->shrinker);
7699 
7700 	sprintf(pers_name, "raid%d", mddev->new_level);
7701 	rcu_assign_pointer(conf->thread,
7702 			   md_register_thread(raid5d, mddev, pers_name));
7703 	if (!conf->thread) {
7704 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7705 			mdname(mddev));
7706 		ret = -ENOMEM;
7707 		goto abort;
7708 	}
7709 
7710 	return conf;
7711 
7712  abort:
7713 	if (conf)
7714 		free_conf(conf);
7715 	return ERR_PTR(ret);
7716 }
7717 
7718 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7719 {
7720 	switch (algo) {
7721 	case ALGORITHM_PARITY_0:
7722 		if (raid_disk < max_degraded)
7723 			return 1;
7724 		break;
7725 	case ALGORITHM_PARITY_N:
7726 		if (raid_disk >= raid_disks - max_degraded)
7727 			return 1;
7728 		break;
7729 	case ALGORITHM_PARITY_0_6:
7730 		if (raid_disk == 0 ||
7731 		    raid_disk == raid_disks - 1)
7732 			return 1;
7733 		break;
7734 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7735 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7736 	case ALGORITHM_LEFT_SYMMETRIC_6:
7737 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7738 		if (raid_disk == raid_disks - 1)
7739 			return 1;
7740 	}
7741 	return 0;
7742 }
7743 
7744 static int raid5_create_ctx_pool(struct r5conf *conf)
7745 {
7746 	struct stripe_request_ctx *ctx;
7747 	int size;
7748 
7749 	if (mddev_is_dm(conf->mddev))
7750 		size = BITS_TO_LONGS(RAID5_MAX_REQ_STRIPES);
7751 	else
7752 		size = BITS_TO_LONGS(
7753 			queue_max_hw_sectors(conf->mddev->gendisk->queue) >>
7754 			RAID5_STRIPE_SHIFT(conf));
7755 
7756 	conf->ctx_size = struct_size(ctx, sectors_to_do, size);
7757 	conf->ctx_pool = mempool_create_kmalloc_pool(NR_RAID_BIOS,
7758 						     conf->ctx_size);
7759 
7760 	return conf->ctx_pool ? 0 : -ENOMEM;
7761 }
7762 
7763 static int raid5_set_limits(struct mddev *mddev)
7764 {
7765 	struct r5conf *conf = mddev->private;
7766 	struct queue_limits lim;
7767 	int data_disks, stripe;
7768 	struct md_rdev *rdev;
7769 
7770 	/*
7771 	 * The read-ahead size must cover two whole stripes, which is
7772 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7773 	 */
7774 	data_disks = conf->previous_raid_disks - conf->max_degraded;
7775 
7776 	/*
7777 	 * We can only discard a whole stripe. It doesn't make sense to
7778 	 * discard data disk but write parity disk
7779 	 */
7780 	stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7781 
7782 	md_init_stacking_limits(&lim);
7783 	lim.logical_block_size = mddev->logical_block_size;
7784 	lim.io_min = mddev->chunk_sectors << 9;
7785 	lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7786 	lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7787 	lim.discard_granularity = stripe;
7788 	lim.max_write_zeroes_sectors = 0;
7789 	lim.max_hw_wzeroes_unmap_sectors = 0;
7790 	mddev_stack_rdev_limits(mddev, &lim, 0);
7791 	rdev_for_each(rdev, mddev)
7792 		queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7793 				mddev->gendisk->disk_name);
7794 
7795 	/*
7796 	 * Zeroing is required for discard, otherwise data could be lost.
7797 	 *
7798 	 * Consider a scenario: discard a stripe (the stripe could be
7799 	 * inconsistent if discard_zeroes_data is 0); write one disk of the
7800 	 * stripe (the stripe could be inconsistent again depending on which
7801 	 * disks are used to calculate parity); the disk is broken; The stripe
7802 	 * data of this disk is lost.
7803 	 *
7804 	 * We only allow DISCARD if the sysadmin has confirmed that only safe
7805 	 * devices are in use by setting a module parameter.  A better idea
7806 	 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7807 	 * required to be safe.
7808 	 */
7809 	if (!devices_handle_discard_safely ||
7810 	    lim.max_discard_sectors < (stripe >> 9) ||
7811 	    lim.discard_granularity < stripe)
7812 		lim.max_hw_discard_sectors = 0;
7813 
7814 	/*
7815 	 * Requests require having a bitmap for each stripe.
7816 	 * Limit the max sectors based on this.
7817 	 */
7818 	lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7819 	if ((lim.max_hw_sectors << 9) < lim.io_opt)
7820 		lim.max_hw_sectors = lim.io_opt >> 9;
7821 
7822 	/* No restrictions on the number of segments in the request */
7823 	lim.max_segments = USHRT_MAX;
7824 
7825 	return queue_limits_set(mddev->gendisk->queue, &lim);
7826 }
7827 
7828 static int raid5_run(struct mddev *mddev)
7829 {
7830 	struct r5conf *conf;
7831 	int dirty_parity_disks = 0;
7832 	struct md_rdev *rdev;
7833 	struct md_rdev *journal_dev = NULL;
7834 	sector_t reshape_offset = 0;
7835 	int i;
7836 	long long min_offset_diff = 0;
7837 	int first = 1;
7838 	int ret = -EIO;
7839 
7840 	if (mddev->resync_offset != MaxSector)
7841 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7842 			  mdname(mddev));
7843 
7844 	rdev_for_each(rdev, mddev) {
7845 		long long diff;
7846 
7847 		if (test_bit(Journal, &rdev->flags)) {
7848 			journal_dev = rdev;
7849 			continue;
7850 		}
7851 		if (rdev->raid_disk < 0)
7852 			continue;
7853 		diff = (rdev->new_data_offset - rdev->data_offset);
7854 		if (first) {
7855 			min_offset_diff = diff;
7856 			first = 0;
7857 		} else if (mddev->reshape_backwards &&
7858 			 diff < min_offset_diff)
7859 			min_offset_diff = diff;
7860 		else if (!mddev->reshape_backwards &&
7861 			 diff > min_offset_diff)
7862 			min_offset_diff = diff;
7863 	}
7864 
7865 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7866 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7867 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7868 			  mdname(mddev));
7869 		return -EINVAL;
7870 	}
7871 
7872 	if (mddev->reshape_position != MaxSector) {
7873 		/* Check that we can continue the reshape.
7874 		 * Difficulties arise if the stripe we would write to
7875 		 * next is at or after the stripe we would read from next.
7876 		 * For a reshape that changes the number of devices, this
7877 		 * is only possible for a very short time, and mdadm makes
7878 		 * sure that time appears to have past before assembling
7879 		 * the array.  So we fail if that time hasn't passed.
7880 		 * For a reshape that keeps the number of devices the same
7881 		 * mdadm must be monitoring the reshape can keeping the
7882 		 * critical areas read-only and backed up.  It will start
7883 		 * the array in read-only mode, so we check for that.
7884 		 */
7885 		sector_t here_new, here_old;
7886 		int old_disks;
7887 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7888 		int chunk_sectors;
7889 		int new_data_disks;
7890 
7891 		if (journal_dev) {
7892 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7893 				mdname(mddev));
7894 			return -EINVAL;
7895 		}
7896 
7897 		if (mddev->new_level != mddev->level) {
7898 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7899 				mdname(mddev));
7900 			return -EINVAL;
7901 		}
7902 		old_disks = mddev->raid_disks - mddev->delta_disks;
7903 		/* reshape_position must be on a new-stripe boundary, and one
7904 		 * further up in new geometry must map after here in old
7905 		 * geometry.
7906 		 * If the chunk sizes are different, then as we perform reshape
7907 		 * in units of the largest of the two, reshape_position needs
7908 		 * be a multiple of the largest chunk size times new data disks.
7909 		 */
7910 		here_new = mddev->reshape_position;
7911 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7912 		new_data_disks = mddev->raid_disks - max_degraded;
7913 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7914 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7915 				mdname(mddev));
7916 			return -EINVAL;
7917 		}
7918 		reshape_offset = here_new * chunk_sectors;
7919 		/* here_new is the stripe we will write to */
7920 		here_old = mddev->reshape_position;
7921 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7922 		/* here_old is the first stripe that we might need to read
7923 		 * from */
7924 		if (mddev->delta_disks == 0) {
7925 			/* We cannot be sure it is safe to start an in-place
7926 			 * reshape.  It is only safe if user-space is monitoring
7927 			 * and taking constant backups.
7928 			 * mdadm always starts a situation like this in
7929 			 * readonly mode so it can take control before
7930 			 * allowing any writes.  So just check for that.
7931 			 */
7932 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7933 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7934 				/* not really in-place - so OK */;
7935 			else if (mddev->ro == 0) {
7936 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7937 					mdname(mddev));
7938 				return -EINVAL;
7939 			}
7940 		} else if (mddev->reshape_backwards
7941 		    ? (here_new * chunk_sectors + min_offset_diff <=
7942 		       here_old * chunk_sectors)
7943 		    : (here_new * chunk_sectors >=
7944 		       here_old * chunk_sectors + (-min_offset_diff))) {
7945 			/* Reading from the same stripe as writing to - bad */
7946 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7947 				mdname(mddev));
7948 			return -EINVAL;
7949 		}
7950 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7951 		/* OK, we should be able to continue; */
7952 	} else {
7953 		BUG_ON(mddev->level != mddev->new_level);
7954 		BUG_ON(mddev->layout != mddev->new_layout);
7955 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7956 		BUG_ON(mddev->delta_disks != 0);
7957 	}
7958 
7959 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7960 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7961 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7962 			mdname(mddev));
7963 		clear_bit(MD_HAS_PPL, &mddev->flags);
7964 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7965 	}
7966 
7967 	if (mddev->private == NULL)
7968 		conf = setup_conf(mddev);
7969 	else
7970 		conf = mddev->private;
7971 
7972 	if (IS_ERR(conf))
7973 		return PTR_ERR(conf);
7974 
7975 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7976 		if (!journal_dev) {
7977 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7978 				mdname(mddev));
7979 			mddev->ro = 1;
7980 			set_disk_ro(mddev->gendisk, 1);
7981 		} else if (mddev->resync_offset == MaxSector)
7982 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7983 	}
7984 
7985 	conf->min_offset_diff = min_offset_diff;
7986 	rcu_assign_pointer(mddev->thread, conf->thread);
7987 	rcu_assign_pointer(conf->thread, NULL);
7988 	mddev->private = conf;
7989 
7990 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7991 	     i++) {
7992 		rdev = conf->disks[i].rdev;
7993 		if (!rdev)
7994 			continue;
7995 		if (conf->disks[i].replacement &&
7996 		    conf->reshape_progress != MaxSector) {
7997 			/* replacements and reshape simply do not mix. */
7998 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7999 			goto abort;
8000 		}
8001 		if (test_bit(In_sync, &rdev->flags))
8002 			continue;
8003 		/* This disc is not fully in-sync.  However if it
8004 		 * just stored parity (beyond the recovery_offset),
8005 		 * when we don't need to be concerned about the
8006 		 * array being dirty.
8007 		 * When reshape goes 'backwards', we never have
8008 		 * partially completed devices, so we only need
8009 		 * to worry about reshape going forwards.
8010 		 */
8011 		/* Hack because v0.91 doesn't store recovery_offset properly. */
8012 		if (mddev->major_version == 0 &&
8013 		    mddev->minor_version > 90)
8014 			rdev->recovery_offset = reshape_offset;
8015 
8016 		if (rdev->recovery_offset < reshape_offset) {
8017 			/* We need to check old and new layout */
8018 			if (!only_parity(rdev->raid_disk,
8019 					 conf->algorithm,
8020 					 conf->raid_disks,
8021 					 conf->max_degraded))
8022 				continue;
8023 		}
8024 		if (!only_parity(rdev->raid_disk,
8025 				 conf->prev_algo,
8026 				 conf->previous_raid_disks,
8027 				 conf->max_degraded))
8028 			continue;
8029 		dirty_parity_disks++;
8030 	}
8031 
8032 	/*
8033 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
8034 	 */
8035 	mddev->degraded = raid5_calc_degraded(conf);
8036 
8037 	if (has_failed(conf)) {
8038 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
8039 			mdname(mddev), mddev->degraded, conf->raid_disks);
8040 		goto abort;
8041 	}
8042 
8043 	/* device size must be a multiple of chunk size */
8044 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
8045 	mddev->resync_max_sectors = mddev->dev_sectors;
8046 
8047 	if (mddev->degraded > dirty_parity_disks &&
8048 	    mddev->resync_offset != MaxSector) {
8049 		if (test_bit(MD_HAS_PPL, &mddev->flags))
8050 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8051 				mdname(mddev));
8052 		else if (mddev->ok_start_degraded)
8053 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8054 				mdname(mddev));
8055 		else {
8056 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8057 				mdname(mddev));
8058 			goto abort;
8059 		}
8060 	}
8061 
8062 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8063 		mdname(mddev), conf->level,
8064 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8065 		mddev->new_layout);
8066 
8067 	print_raid5_conf(conf);
8068 
8069 	if (conf->reshape_progress != MaxSector) {
8070 		conf->reshape_safe = conf->reshape_progress;
8071 		atomic_set(&conf->reshape_stripes, 0);
8072 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8073 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8074 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8075 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8076 	}
8077 
8078 	/* Ok, everything is just fine now */
8079 	if (mddev->to_remove == &raid5_attrs_group)
8080 		mddev->to_remove = NULL;
8081 	else if (mddev->kobj.sd &&
8082 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8083 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
8084 			mdname(mddev));
8085 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8086 
8087 	if (!mddev_is_dm(mddev)) {
8088 		ret = raid5_set_limits(mddev);
8089 		if (ret)
8090 			goto abort;
8091 	}
8092 
8093 	ret = raid5_create_ctx_pool(conf);
8094 	if (ret)
8095 		goto abort;
8096 
8097 	ret = log_init(conf, journal_dev, raid5_has_ppl(conf));
8098 	if (ret)
8099 		goto abort;
8100 
8101 	return 0;
8102 abort:
8103 	md_unregister_thread(mddev, &mddev->thread);
8104 	print_raid5_conf(conf);
8105 	free_conf(conf);
8106 	mddev->private = NULL;
8107 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8108 	return ret;
8109 }
8110 
8111 static void raid5_free(struct mddev *mddev, void *priv)
8112 {
8113 	struct r5conf *conf = priv;
8114 
8115 	free_conf(conf);
8116 	mddev->to_remove = &raid5_attrs_group;
8117 }
8118 
8119 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8120 {
8121 	struct r5conf *conf = mddev->private;
8122 	int i;
8123 
8124 	lockdep_assert_held(&mddev->lock);
8125 
8126 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8127 		conf->chunk_sectors / 2, mddev->layout);
8128 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8129 	for (i = 0; i < conf->raid_disks; i++) {
8130 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8131 
8132 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8133 	}
8134 	seq_printf (seq, "]");
8135 }
8136 
8137 static void print_raid5_conf(struct r5conf *conf)
8138 {
8139 	struct md_rdev *rdev;
8140 	int i;
8141 
8142 	pr_debug("RAID conf printout:\n");
8143 	if (!conf) {
8144 		pr_debug("(conf==NULL)\n");
8145 		return;
8146 	}
8147 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8148 	       conf->raid_disks,
8149 	       conf->raid_disks - conf->mddev->degraded);
8150 
8151 	for (i = 0; i < conf->raid_disks; i++) {
8152 		rdev = conf->disks[i].rdev;
8153 		if (rdev)
8154 			pr_debug(" disk %d, o:%d, dev:%pg\n",
8155 			       i, !test_bit(Faulty, &rdev->flags),
8156 			       rdev->bdev);
8157 	}
8158 }
8159 
8160 static int raid5_spare_active(struct mddev *mddev)
8161 {
8162 	int i;
8163 	struct r5conf *conf = mddev->private;
8164 	struct md_rdev *rdev, *replacement;
8165 	int count = 0;
8166 	unsigned long flags;
8167 
8168 	for (i = 0; i < conf->raid_disks; i++) {
8169 		rdev = conf->disks[i].rdev;
8170 		replacement = conf->disks[i].replacement;
8171 		if (replacement
8172 		    && replacement->recovery_offset == MaxSector
8173 		    && !test_bit(Faulty, &replacement->flags)
8174 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8175 			/* Replacement has just become active. */
8176 			if (!rdev
8177 			    || !test_and_clear_bit(In_sync, &rdev->flags))
8178 				count++;
8179 			if (rdev) {
8180 				/* Replaced device not technically faulty,
8181 				 * but we need to be sure it gets removed
8182 				 * and never re-added.
8183 				 */
8184 				set_bit(Faulty, &rdev->flags);
8185 				sysfs_notify_dirent_safe(
8186 					rdev->sysfs_state);
8187 			}
8188 			sysfs_notify_dirent_safe(replacement->sysfs_state);
8189 		} else if (rdev
8190 		    && rdev->recovery_offset == MaxSector
8191 		    && !test_bit(Faulty, &rdev->flags)
8192 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8193 			count++;
8194 			sysfs_notify_dirent_safe(rdev->sysfs_state);
8195 		}
8196 	}
8197 	spin_lock_irqsave(&conf->device_lock, flags);
8198 	mddev->degraded = raid5_calc_degraded(conf);
8199 	spin_unlock_irqrestore(&conf->device_lock, flags);
8200 	print_raid5_conf(conf);
8201 	return count;
8202 }
8203 
8204 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8205 {
8206 	struct r5conf *conf = mddev->private;
8207 	int err = 0;
8208 	int number = rdev->raid_disk;
8209 	struct md_rdev **rdevp;
8210 	struct disk_info *p;
8211 	struct md_rdev *tmp;
8212 
8213 	print_raid5_conf(conf);
8214 	if (test_bit(Journal, &rdev->flags) && conf->log) {
8215 		/*
8216 		 * we can't wait pending write here, as this is called in
8217 		 * raid5d, wait will deadlock.
8218 		 * neilb: there is no locking about new writes here,
8219 		 * so this cannot be safe.
8220 		 */
8221 		if (atomic_read(&conf->active_stripes) ||
8222 		    atomic_read(&conf->r5c_cached_full_stripes) ||
8223 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8224 			return -EBUSY;
8225 		}
8226 		log_exit(conf);
8227 		return 0;
8228 	}
8229 	if (unlikely(number >= conf->pool_size))
8230 		return 0;
8231 	p = conf->disks + number;
8232 	if (rdev == p->rdev)
8233 		rdevp = &p->rdev;
8234 	else if (rdev == p->replacement)
8235 		rdevp = &p->replacement;
8236 	else
8237 		return 0;
8238 
8239 	if (number >= conf->raid_disks &&
8240 	    conf->reshape_progress == MaxSector)
8241 		clear_bit(In_sync, &rdev->flags);
8242 
8243 	if (test_bit(In_sync, &rdev->flags) ||
8244 	    atomic_read(&rdev->nr_pending)) {
8245 		err = -EBUSY;
8246 		goto abort;
8247 	}
8248 	/* Only remove non-faulty devices if recovery
8249 	 * isn't possible.
8250 	 */
8251 	if (!test_bit(Faulty, &rdev->flags) &&
8252 	    !has_failed(conf) &&
8253 	    (!p->replacement || p->replacement == rdev) &&
8254 	    number < conf->raid_disks) {
8255 		err = -EBUSY;
8256 		goto abort;
8257 	}
8258 	WRITE_ONCE(*rdevp, NULL);
8259 	if (!err) {
8260 		err = log_modify(conf, rdev, false);
8261 		if (err)
8262 			goto abort;
8263 	}
8264 
8265 	tmp = p->replacement;
8266 	if (tmp) {
8267 		/* We must have just cleared 'rdev' */
8268 		WRITE_ONCE(p->rdev, tmp);
8269 		clear_bit(Replacement, &tmp->flags);
8270 		WRITE_ONCE(p->replacement, NULL);
8271 
8272 		if (!err)
8273 			err = log_modify(conf, tmp, true);
8274 	}
8275 
8276 	clear_bit(WantReplacement, &rdev->flags);
8277 abort:
8278 
8279 	print_raid5_conf(conf);
8280 	return err;
8281 }
8282 
8283 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8284 {
8285 	struct r5conf *conf = mddev->private;
8286 	int ret, err = -EEXIST;
8287 	int disk;
8288 	struct disk_info *p;
8289 	struct md_rdev *tmp;
8290 	int first = 0;
8291 	int last = conf->raid_disks - 1;
8292 
8293 	if (test_bit(Journal, &rdev->flags)) {
8294 		if (conf->log)
8295 			return -EBUSY;
8296 
8297 		rdev->raid_disk = 0;
8298 		/*
8299 		 * The array is in readonly mode if journal is missing, so no
8300 		 * write requests running. We should be safe
8301 		 */
8302 		ret = log_init(conf, rdev, false);
8303 		if (ret)
8304 			return ret;
8305 
8306 		ret = r5l_start(conf->log);
8307 		if (ret)
8308 			return ret;
8309 
8310 		return 0;
8311 	}
8312 
8313 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8314 		/* no point adding a device */
8315 		return -EINVAL;
8316 
8317 	if (rdev->raid_disk >= 0)
8318 		first = last = rdev->raid_disk;
8319 
8320 	/*
8321 	 * find the disk ... but prefer rdev->saved_raid_disk
8322 	 * if possible.
8323 	 */
8324 	if (rdev->saved_raid_disk >= first &&
8325 	    rdev->saved_raid_disk <= last &&
8326 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8327 		first = rdev->saved_raid_disk;
8328 
8329 	for (disk = first; disk <= last; disk++) {
8330 		p = conf->disks + disk;
8331 		if (p->rdev == NULL) {
8332 			clear_bit(In_sync, &rdev->flags);
8333 			rdev->raid_disk = disk;
8334 			if (rdev->saved_raid_disk != disk)
8335 				conf->fullsync = 1;
8336 			WRITE_ONCE(p->rdev, rdev);
8337 
8338 			err = log_modify(conf, rdev, true);
8339 
8340 			goto out;
8341 		}
8342 	}
8343 	for (disk = first; disk <= last; disk++) {
8344 		p = conf->disks + disk;
8345 		tmp = p->rdev;
8346 		if (test_bit(WantReplacement, &tmp->flags) &&
8347 		    mddev->reshape_position == MaxSector &&
8348 		    p->replacement == NULL) {
8349 			clear_bit(In_sync, &rdev->flags);
8350 			set_bit(Replacement, &rdev->flags);
8351 			rdev->raid_disk = disk;
8352 			err = 0;
8353 			conf->fullsync = 1;
8354 			WRITE_ONCE(p->replacement, rdev);
8355 			break;
8356 		}
8357 	}
8358 out:
8359 	print_raid5_conf(conf);
8360 	return err;
8361 }
8362 
8363 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8364 {
8365 	/* no resync is happening, and there is enough space
8366 	 * on all devices, so we can resize.
8367 	 * We need to make sure resync covers any new space.
8368 	 * If the array is shrinking we should possibly wait until
8369 	 * any io in the removed space completes, but it hardly seems
8370 	 * worth it.
8371 	 */
8372 	sector_t newsize;
8373 	struct r5conf *conf = mddev->private;
8374 
8375 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8376 		return -EINVAL;
8377 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8378 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8379 	if (mddev->external_size &&
8380 	    mddev->array_sectors > newsize)
8381 		return -EINVAL;
8382 
8383 	if (md_bitmap_enabled(mddev, false)) {
8384 		int ret = mddev->bitmap_ops->resize(mddev, sectors, 0);
8385 
8386 		if (ret)
8387 			return ret;
8388 	}
8389 
8390 	md_set_array_sectors(mddev, newsize);
8391 	if (sectors > mddev->dev_sectors &&
8392 	    mddev->resync_offset > mddev->dev_sectors) {
8393 		mddev->resync_offset = mddev->dev_sectors;
8394 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8395 	}
8396 	mddev->dev_sectors = sectors;
8397 	mddev->resync_max_sectors = sectors;
8398 	return 0;
8399 }
8400 
8401 static int check_stripe_cache(struct mddev *mddev)
8402 {
8403 	/* Can only proceed if there are plenty of stripe_heads.
8404 	 * We need a minimum of one full stripe,, and for sensible progress
8405 	 * it is best to have about 4 times that.
8406 	 * If we require 4 times, then the default 256 4K stripe_heads will
8407 	 * allow for chunk sizes up to 256K, which is probably OK.
8408 	 * If the chunk size is greater, user-space should request more
8409 	 * stripe_heads first.
8410 	 */
8411 	struct r5conf *conf = mddev->private;
8412 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8413 	    > conf->min_nr_stripes ||
8414 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8415 	    > conf->min_nr_stripes) {
8416 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8417 			mdname(mddev),
8418 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8419 			 / RAID5_STRIPE_SIZE(conf))*4);
8420 		return 0;
8421 	}
8422 	return 1;
8423 }
8424 
8425 static int check_reshape(struct mddev *mddev)
8426 {
8427 	struct r5conf *conf = mddev->private;
8428 
8429 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8430 		return -EINVAL;
8431 	if (mddev->delta_disks == 0 &&
8432 	    mddev->new_layout == mddev->layout &&
8433 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8434 		return 0; /* nothing to do */
8435 	if (has_failed(conf))
8436 		return -EINVAL;
8437 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8438 		/* We might be able to shrink, but the devices must
8439 		 * be made bigger first.
8440 		 * For raid6, 4 is the minimum size.
8441 		 * Otherwise 2 is the minimum
8442 		 */
8443 		int min = 2;
8444 		if (mddev->level == 6)
8445 			min = 4;
8446 		if (mddev->raid_disks + mddev->delta_disks < min)
8447 			return -EINVAL;
8448 	}
8449 
8450 	if (!check_stripe_cache(mddev))
8451 		return -ENOSPC;
8452 
8453 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8454 	    mddev->delta_disks > 0)
8455 		if (resize_chunks(conf,
8456 				  conf->previous_raid_disks
8457 				  + max(0, mddev->delta_disks),
8458 				  max(mddev->new_chunk_sectors,
8459 				      mddev->chunk_sectors)
8460 			    ) < 0)
8461 			return -ENOMEM;
8462 
8463 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8464 		return 0; /* never bother to shrink */
8465 	return resize_stripes(conf, (conf->previous_raid_disks
8466 				     + mddev->delta_disks));
8467 }
8468 
8469 static int raid5_start_reshape(struct mddev *mddev)
8470 {
8471 	struct r5conf *conf = mddev->private;
8472 	struct md_rdev *rdev;
8473 	int spares = 0;
8474 	int i;
8475 	unsigned long flags;
8476 
8477 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8478 		return -EBUSY;
8479 
8480 	if (!check_stripe_cache(mddev))
8481 		return -ENOSPC;
8482 
8483 	if (has_failed(conf))
8484 		return -EINVAL;
8485 
8486 	/* raid5 can't handle concurrent reshape and recovery */
8487 	if (mddev->resync_offset < MaxSector)
8488 		return -EBUSY;
8489 	for (i = 0; i < conf->raid_disks; i++)
8490 		if (conf->disks[i].replacement)
8491 			return -EBUSY;
8492 
8493 	rdev_for_each(rdev, mddev) {
8494 		if (!test_bit(In_sync, &rdev->flags)
8495 		    && !test_bit(Faulty, &rdev->flags))
8496 			spares++;
8497 	}
8498 
8499 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8500 		/* Not enough devices even to make a degraded array
8501 		 * of that size
8502 		 */
8503 		return -EINVAL;
8504 
8505 	/* Refuse to reduce size of the array.  Any reductions in
8506 	 * array size must be through explicit setting of array_size
8507 	 * attribute.
8508 	 */
8509 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8510 	    < mddev->array_sectors) {
8511 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8512 			mdname(mddev));
8513 		return -EINVAL;
8514 	}
8515 
8516 	atomic_set(&conf->reshape_stripes, 0);
8517 	spin_lock_irq(&conf->device_lock);
8518 	write_seqcount_begin(&conf->gen_lock);
8519 	conf->previous_raid_disks = conf->raid_disks;
8520 	conf->raid_disks += mddev->delta_disks;
8521 	conf->prev_chunk_sectors = conf->chunk_sectors;
8522 	conf->chunk_sectors = mddev->new_chunk_sectors;
8523 	conf->prev_algo = conf->algorithm;
8524 	conf->algorithm = mddev->new_layout;
8525 	conf->generation++;
8526 	/* Code that selects data_offset needs to see the generation update
8527 	 * if reshape_progress has been set - so a memory barrier needed.
8528 	 */
8529 	smp_mb();
8530 	if (mddev->reshape_backwards)
8531 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8532 	else
8533 		conf->reshape_progress = 0;
8534 	conf->reshape_safe = conf->reshape_progress;
8535 	write_seqcount_end(&conf->gen_lock);
8536 	spin_unlock_irq(&conf->device_lock);
8537 
8538 	/* Now make sure any requests that proceeded on the assumption
8539 	 * the reshape wasn't running - like Discard or Read - have
8540 	 * completed.
8541 	 */
8542 	raid5_quiesce(mddev, true);
8543 	raid5_quiesce(mddev, false);
8544 
8545 	/* Add some new drives, as many as will fit.
8546 	 * We know there are enough to make the newly sized array work.
8547 	 * Don't add devices if we are reducing the number of
8548 	 * devices in the array.  This is because it is not possible
8549 	 * to correctly record the "partially reconstructed" state of
8550 	 * such devices during the reshape and confusion could result.
8551 	 */
8552 	if (mddev->delta_disks >= 0) {
8553 		rdev_for_each(rdev, mddev)
8554 			if (rdev->raid_disk < 0 &&
8555 			    !test_bit(Faulty, &rdev->flags)) {
8556 				if (raid5_add_disk(mddev, rdev) == 0) {
8557 					if (rdev->raid_disk
8558 					    >= conf->previous_raid_disks)
8559 						set_bit(In_sync, &rdev->flags);
8560 					else
8561 						rdev->recovery_offset = 0;
8562 
8563 					/* Failure here is OK */
8564 					sysfs_link_rdev(mddev, rdev);
8565 				}
8566 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8567 				   && !test_bit(Faulty, &rdev->flags)) {
8568 				/* This is a spare that was manually added */
8569 				set_bit(In_sync, &rdev->flags);
8570 			}
8571 
8572 		/* When a reshape changes the number of devices,
8573 		 * ->degraded is measured against the larger of the
8574 		 * pre and post number of devices.
8575 		 */
8576 		spin_lock_irqsave(&conf->device_lock, flags);
8577 		mddev->degraded = raid5_calc_degraded(conf);
8578 		spin_unlock_irqrestore(&conf->device_lock, flags);
8579 	}
8580 	mddev->raid_disks = conf->raid_disks;
8581 	mddev->reshape_position = conf->reshape_progress;
8582 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8583 
8584 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8585 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8586 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8587 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8588 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8589 	conf->reshape_checkpoint = jiffies;
8590 	md_new_event();
8591 	return 0;
8592 }
8593 
8594 /* This is called from the reshape thread and should make any
8595  * changes needed in 'conf'
8596  */
8597 static void end_reshape(struct r5conf *conf)
8598 {
8599 
8600 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8601 		struct md_rdev *rdev;
8602 
8603 		spin_lock_irq(&conf->device_lock);
8604 		conf->previous_raid_disks = conf->raid_disks;
8605 		md_finish_reshape(conf->mddev);
8606 		smp_wmb();
8607 		conf->reshape_progress = MaxSector;
8608 		conf->mddev->reshape_position = MaxSector;
8609 		rdev_for_each(rdev, conf->mddev)
8610 			if (rdev->raid_disk >= 0 &&
8611 			    !test_bit(Journal, &rdev->flags) &&
8612 			    !test_bit(In_sync, &rdev->flags))
8613 				rdev->recovery_offset = MaxSector;
8614 		spin_unlock_irq(&conf->device_lock);
8615 		wake_up(&conf->wait_for_reshape);
8616 
8617 		mddev_update_io_opt(conf->mddev,
8618 			conf->raid_disks - conf->max_degraded);
8619 	}
8620 }
8621 
8622 /* This is called from the raid5d thread with mddev_lock held.
8623  * It makes config changes to the device.
8624  */
8625 static void raid5_finish_reshape(struct mddev *mddev)
8626 {
8627 	struct r5conf *conf = mddev->private;
8628 	struct md_rdev *rdev;
8629 
8630 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8631 
8632 		if (mddev->delta_disks <= 0) {
8633 			int d;
8634 			spin_lock_irq(&conf->device_lock);
8635 			mddev->degraded = raid5_calc_degraded(conf);
8636 			spin_unlock_irq(&conf->device_lock);
8637 			for (d = conf->raid_disks ;
8638 			     d < conf->raid_disks - mddev->delta_disks;
8639 			     d++) {
8640 				rdev = conf->disks[d].rdev;
8641 				if (rdev)
8642 					clear_bit(In_sync, &rdev->flags);
8643 				rdev = conf->disks[d].replacement;
8644 				if (rdev)
8645 					clear_bit(In_sync, &rdev->flags);
8646 			}
8647 		}
8648 		mddev->layout = conf->algorithm;
8649 		mddev->chunk_sectors = conf->chunk_sectors;
8650 		mddev->reshape_position = MaxSector;
8651 		mddev->delta_disks = 0;
8652 		mddev->reshape_backwards = 0;
8653 	}
8654 }
8655 
8656 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8657 {
8658 	struct r5conf *conf = mddev->private;
8659 
8660 	if (quiesce) {
8661 		/* stop all writes */
8662 		lock_all_device_hash_locks_irq(conf);
8663 		/* '2' tells resync/reshape to pause so that all
8664 		 * active stripes can drain
8665 		 */
8666 		r5c_flush_cache(conf, INT_MAX);
8667 		/* need a memory barrier to make sure read_one_chunk() sees
8668 		 * quiesce started and reverts to slow (locked) path.
8669 		 */
8670 		smp_store_release(&conf->quiesce, 2);
8671 		wait_event_cmd(conf->wait_for_quiescent,
8672 				    atomic_read(&conf->active_stripes) == 0 &&
8673 				    atomic_read(&conf->active_aligned_reads) == 0,
8674 				    unlock_all_device_hash_locks_irq(conf),
8675 				    lock_all_device_hash_locks_irq(conf));
8676 		conf->quiesce = 1;
8677 		unlock_all_device_hash_locks_irq(conf);
8678 		/* allow reshape to continue */
8679 		wake_up(&conf->wait_for_reshape);
8680 	} else {
8681 		/* re-enable writes */
8682 		lock_all_device_hash_locks_irq(conf);
8683 		conf->quiesce = 0;
8684 		wake_up(&conf->wait_for_quiescent);
8685 		wake_up(&conf->wait_for_reshape);
8686 		unlock_all_device_hash_locks_irq(conf);
8687 	}
8688 	log_quiesce(conf, quiesce);
8689 }
8690 
8691 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8692 {
8693 	struct r0conf *raid0_conf = mddev->private;
8694 	sector_t sectors;
8695 
8696 	/* for raid0 takeover only one zone is supported */
8697 	if (raid0_conf->nr_strip_zones > 1) {
8698 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8699 			mdname(mddev));
8700 		return ERR_PTR(-EINVAL);
8701 	}
8702 
8703 	sectors = raid0_conf->strip_zone[0].zone_end;
8704 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8705 	mddev->dev_sectors = sectors;
8706 	mddev->new_level = level;
8707 	mddev->new_layout = ALGORITHM_PARITY_N;
8708 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8709 	mddev->raid_disks += 1;
8710 	mddev->delta_disks = 1;
8711 	/* make sure it will be not marked as dirty */
8712 	mddev->resync_offset = MaxSector;
8713 
8714 	return setup_conf(mddev);
8715 }
8716 
8717 static void *raid5_takeover_raid1(struct mddev *mddev)
8718 {
8719 	int chunksect;
8720 	void *ret;
8721 
8722 	if (mddev->raid_disks != 2 ||
8723 	    mddev->degraded > 1)
8724 		return ERR_PTR(-EINVAL);
8725 
8726 	/* Should check if there are write-behind devices? */
8727 
8728 	chunksect = 64*2; /* 64K by default */
8729 
8730 	/* The array must be an exact multiple of chunksize */
8731 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8732 		chunksect >>= 1;
8733 
8734 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8735 		/* array size does not allow a suitable chunk size */
8736 		return ERR_PTR(-EINVAL);
8737 
8738 	mddev->new_level = 5;
8739 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8740 	mddev->new_chunk_sectors = chunksect;
8741 
8742 	ret = setup_conf(mddev);
8743 	if (!IS_ERR(ret))
8744 		mddev_clear_unsupported_flags(mddev,
8745 			UNSUPPORTED_MDDEV_FLAGS);
8746 	return ret;
8747 }
8748 
8749 static void *raid5_takeover_raid6(struct mddev *mddev)
8750 {
8751 	int new_layout;
8752 
8753 	switch (mddev->layout) {
8754 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8755 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8756 		break;
8757 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8758 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8759 		break;
8760 	case ALGORITHM_LEFT_SYMMETRIC_6:
8761 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8762 		break;
8763 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8764 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8765 		break;
8766 	case ALGORITHM_PARITY_0_6:
8767 		new_layout = ALGORITHM_PARITY_0;
8768 		break;
8769 	case ALGORITHM_PARITY_N:
8770 		new_layout = ALGORITHM_PARITY_N;
8771 		break;
8772 	default:
8773 		return ERR_PTR(-EINVAL);
8774 	}
8775 	mddev->new_level = 5;
8776 	mddev->new_layout = new_layout;
8777 	mddev->delta_disks = -1;
8778 	mddev->raid_disks -= 1;
8779 	return setup_conf(mddev);
8780 }
8781 
8782 static int raid5_check_reshape(struct mddev *mddev)
8783 {
8784 	/* For a 2-drive array, the layout and chunk size can be changed
8785 	 * immediately as not restriping is needed.
8786 	 * For larger arrays we record the new value - after validation
8787 	 * to be used by a reshape pass.
8788 	 */
8789 	struct r5conf *conf = mddev->private;
8790 	int new_chunk = mddev->new_chunk_sectors;
8791 
8792 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8793 		return -EINVAL;
8794 	if (new_chunk > 0) {
8795 		if (!is_power_of_2(new_chunk))
8796 			return -EINVAL;
8797 		if (new_chunk < (PAGE_SIZE>>9))
8798 			return -EINVAL;
8799 		if (mddev->array_sectors & (new_chunk-1))
8800 			/* not factor of array size */
8801 			return -EINVAL;
8802 	}
8803 
8804 	/* They look valid */
8805 
8806 	if (mddev->raid_disks == 2) {
8807 		/* can make the change immediately */
8808 		if (mddev->new_layout >= 0) {
8809 			conf->algorithm = mddev->new_layout;
8810 			mddev->layout = mddev->new_layout;
8811 		}
8812 		if (new_chunk > 0) {
8813 			conf->chunk_sectors = new_chunk ;
8814 			mddev->chunk_sectors = new_chunk;
8815 		}
8816 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8817 		md_wakeup_thread(mddev->thread);
8818 	}
8819 	return check_reshape(mddev);
8820 }
8821 
8822 static int raid6_check_reshape(struct mddev *mddev)
8823 {
8824 	int new_chunk = mddev->new_chunk_sectors;
8825 
8826 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8827 		return -EINVAL;
8828 	if (new_chunk > 0) {
8829 		if (!is_power_of_2(new_chunk))
8830 			return -EINVAL;
8831 		if (new_chunk < (PAGE_SIZE >> 9))
8832 			return -EINVAL;
8833 		if (mddev->array_sectors & (new_chunk-1))
8834 			/* not factor of array size */
8835 			return -EINVAL;
8836 	}
8837 
8838 	/* They look valid */
8839 	return check_reshape(mddev);
8840 }
8841 
8842 static void *raid5_takeover(struct mddev *mddev)
8843 {
8844 	/* raid5 can take over:
8845 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8846 	 *  raid1 - if there are two drives.  We need to know the chunk size
8847 	 *  raid4 - trivial - just use a raid4 layout.
8848 	 *  raid6 - Providing it is a *_6 layout
8849 	 */
8850 	if (mddev->level == 0)
8851 		return raid45_takeover_raid0(mddev, 5);
8852 	if (mddev->level == 1)
8853 		return raid5_takeover_raid1(mddev);
8854 	if (mddev->level == 4) {
8855 		mddev->new_layout = ALGORITHM_PARITY_N;
8856 		mddev->new_level = 5;
8857 		return setup_conf(mddev);
8858 	}
8859 	if (mddev->level == 6)
8860 		return raid5_takeover_raid6(mddev);
8861 
8862 	return ERR_PTR(-EINVAL);
8863 }
8864 
8865 static void *raid4_takeover(struct mddev *mddev)
8866 {
8867 	/* raid4 can take over:
8868 	 *  raid0 - if there is only one strip zone
8869 	 *  raid5 - if layout is right
8870 	 */
8871 	if (mddev->level == 0)
8872 		return raid45_takeover_raid0(mddev, 4);
8873 	if (mddev->level == 5 &&
8874 	    mddev->layout == ALGORITHM_PARITY_N) {
8875 		mddev->new_layout = 0;
8876 		mddev->new_level = 4;
8877 		return setup_conf(mddev);
8878 	}
8879 	return ERR_PTR(-EINVAL);
8880 }
8881 
8882 static struct md_personality raid5_personality;
8883 
8884 static void *raid6_takeover(struct mddev *mddev)
8885 {
8886 	/* Currently can only take over a raid5.  We map the
8887 	 * personality to an equivalent raid6 personality
8888 	 * with the Q block at the end.
8889 	 */
8890 	int new_layout;
8891 
8892 	if (mddev->pers != &raid5_personality)
8893 		return ERR_PTR(-EINVAL);
8894 	if (mddev->degraded > 1)
8895 		return ERR_PTR(-EINVAL);
8896 	if (mddev->raid_disks > 253)
8897 		return ERR_PTR(-EINVAL);
8898 	if (mddev->raid_disks < 3)
8899 		return ERR_PTR(-EINVAL);
8900 
8901 	switch (mddev->layout) {
8902 	case ALGORITHM_LEFT_ASYMMETRIC:
8903 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8904 		break;
8905 	case ALGORITHM_RIGHT_ASYMMETRIC:
8906 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8907 		break;
8908 	case ALGORITHM_LEFT_SYMMETRIC:
8909 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8910 		break;
8911 	case ALGORITHM_RIGHT_SYMMETRIC:
8912 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8913 		break;
8914 	case ALGORITHM_PARITY_0:
8915 		new_layout = ALGORITHM_PARITY_0_6;
8916 		break;
8917 	case ALGORITHM_PARITY_N:
8918 		new_layout = ALGORITHM_PARITY_N;
8919 		break;
8920 	default:
8921 		return ERR_PTR(-EINVAL);
8922 	}
8923 	mddev->new_level = 6;
8924 	mddev->new_layout = new_layout;
8925 	mddev->delta_disks = 1;
8926 	mddev->raid_disks += 1;
8927 	return setup_conf(mddev);
8928 }
8929 
8930 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8931 {
8932 	struct r5conf *conf;
8933 	int err;
8934 
8935 	err = mddev_suspend_and_lock(mddev);
8936 	if (err)
8937 		return err;
8938 	conf = mddev->private;
8939 	if (!conf) {
8940 		mddev_unlock_and_resume(mddev);
8941 		return -ENODEV;
8942 	}
8943 
8944 	if (strncmp(buf, "ppl", 3) == 0) {
8945 		/* ppl only works with RAID 5 */
8946 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8947 			err = log_init(conf, NULL, true);
8948 			if (!err) {
8949 				err = resize_stripes(conf, conf->pool_size);
8950 				if (err)
8951 					log_exit(conf);
8952 			}
8953 		} else
8954 			err = -EINVAL;
8955 	} else if (strncmp(buf, "resync", 6) == 0) {
8956 		if (raid5_has_ppl(conf)) {
8957 			log_exit(conf);
8958 			err = resize_stripes(conf, conf->pool_size);
8959 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8960 			   r5l_log_disk_error(conf)) {
8961 			bool journal_dev_exists = false;
8962 			struct md_rdev *rdev;
8963 
8964 			rdev_for_each(rdev, mddev)
8965 				if (test_bit(Journal, &rdev->flags)) {
8966 					journal_dev_exists = true;
8967 					break;
8968 				}
8969 
8970 			if (!journal_dev_exists)
8971 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8972 			else  /* need remove journal device first */
8973 				err = -EBUSY;
8974 		} else
8975 			err = -EINVAL;
8976 	} else {
8977 		err = -EINVAL;
8978 	}
8979 
8980 	if (!err)
8981 		md_update_sb(mddev, 1);
8982 
8983 	mddev_unlock_and_resume(mddev);
8984 
8985 	return err;
8986 }
8987 
8988 static int raid5_start(struct mddev *mddev)
8989 {
8990 	struct r5conf *conf = mddev->private;
8991 
8992 	return r5l_start(conf->log);
8993 }
8994 
8995 /*
8996  * This is only used for dm-raid456, caller already frozen sync_thread, hence
8997  * if rehsape is still in progress, io that is waiting for reshape can never be
8998  * done now, hence wake up and handle those IO.
8999  */
9000 static void raid5_prepare_suspend(struct mddev *mddev)
9001 {
9002 	struct r5conf *conf = mddev->private;
9003 
9004 	wake_up(&conf->wait_for_reshape);
9005 }
9006 
9007 static struct md_personality raid6_personality =
9008 {
9009 	.head = {
9010 		.type	= MD_PERSONALITY,
9011 		.id	= ID_RAID6,
9012 		.name	= "raid6",
9013 		.owner	= THIS_MODULE,
9014 	},
9015 
9016 	.make_request	= raid5_make_request,
9017 	.run		= raid5_run,
9018 	.start		= raid5_start,
9019 	.free		= raid5_free,
9020 	.status		= raid5_status,
9021 	.error_handler	= raid5_error,
9022 	.hot_add_disk	= raid5_add_disk,
9023 	.hot_remove_disk= raid5_remove_disk,
9024 	.spare_active	= raid5_spare_active,
9025 	.sync_request	= raid5_sync_request,
9026 	.resize		= raid5_resize,
9027 	.size		= raid5_size,
9028 	.check_reshape	= raid6_check_reshape,
9029 	.start_reshape  = raid5_start_reshape,
9030 	.finish_reshape = raid5_finish_reshape,
9031 	.quiesce	= raid5_quiesce,
9032 	.takeover	= raid6_takeover,
9033 	.change_consistency_policy = raid5_change_consistency_policy,
9034 	.prepare_suspend = raid5_prepare_suspend,
9035 	.bitmap_sector	= raid5_bitmap_sector,
9036 };
9037 static struct md_personality raid5_personality =
9038 {
9039 	.head = {
9040 		.type	= MD_PERSONALITY,
9041 		.id	= ID_RAID5,
9042 		.name	= "raid5",
9043 		.owner	= THIS_MODULE,
9044 	},
9045 
9046 	.make_request	= raid5_make_request,
9047 	.run		= raid5_run,
9048 	.start		= raid5_start,
9049 	.free		= raid5_free,
9050 	.status		= raid5_status,
9051 	.error_handler	= raid5_error,
9052 	.hot_add_disk	= raid5_add_disk,
9053 	.hot_remove_disk= raid5_remove_disk,
9054 	.spare_active	= raid5_spare_active,
9055 	.sync_request	= raid5_sync_request,
9056 	.resize		= raid5_resize,
9057 	.size		= raid5_size,
9058 	.check_reshape	= raid5_check_reshape,
9059 	.start_reshape  = raid5_start_reshape,
9060 	.finish_reshape = raid5_finish_reshape,
9061 	.quiesce	= raid5_quiesce,
9062 	.takeover	= raid5_takeover,
9063 	.change_consistency_policy = raid5_change_consistency_policy,
9064 	.prepare_suspend = raid5_prepare_suspend,
9065 	.bitmap_sector	= raid5_bitmap_sector,
9066 };
9067 
9068 static struct md_personality raid4_personality =
9069 {
9070 	.head = {
9071 		.type	= MD_PERSONALITY,
9072 		.id	= ID_RAID4,
9073 		.name	= "raid4",
9074 		.owner	= THIS_MODULE,
9075 	},
9076 
9077 	.make_request	= raid5_make_request,
9078 	.run		= raid5_run,
9079 	.start		= raid5_start,
9080 	.free		= raid5_free,
9081 	.status		= raid5_status,
9082 	.error_handler	= raid5_error,
9083 	.hot_add_disk	= raid5_add_disk,
9084 	.hot_remove_disk= raid5_remove_disk,
9085 	.spare_active	= raid5_spare_active,
9086 	.sync_request	= raid5_sync_request,
9087 	.resize		= raid5_resize,
9088 	.size		= raid5_size,
9089 	.check_reshape	= raid5_check_reshape,
9090 	.start_reshape  = raid5_start_reshape,
9091 	.finish_reshape = raid5_finish_reshape,
9092 	.quiesce	= raid5_quiesce,
9093 	.takeover	= raid4_takeover,
9094 	.change_consistency_policy = raid5_change_consistency_policy,
9095 	.prepare_suspend = raid5_prepare_suspend,
9096 	.bitmap_sector	= raid5_bitmap_sector,
9097 };
9098 
9099 static int __init raid5_init(void)
9100 {
9101 	int ret;
9102 
9103 	raid5_wq = alloc_workqueue("raid5wq",
9104 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_SYSFS, 0);
9105 	if (!raid5_wq)
9106 		return -ENOMEM;
9107 
9108 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9109 				      "md/raid5:prepare",
9110 				      raid456_cpu_up_prepare,
9111 				      raid456_cpu_dead);
9112 	if (ret)
9113 		goto err_destroy_wq;
9114 
9115 	ret = register_md_submodule(&raid6_personality.head);
9116 	if (ret)
9117 		goto err_cpuhp_remove;
9118 
9119 	ret = register_md_submodule(&raid5_personality.head);
9120 	if (ret)
9121 		goto err_unregister_raid6;
9122 
9123 	ret = register_md_submodule(&raid4_personality.head);
9124 	if (ret)
9125 		goto err_unregister_raid5;
9126 
9127 	return 0;
9128 
9129 err_unregister_raid5:
9130 	unregister_md_submodule(&raid5_personality.head);
9131 err_unregister_raid6:
9132 	unregister_md_submodule(&raid6_personality.head);
9133 err_cpuhp_remove:
9134 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9135 err_destroy_wq:
9136 	destroy_workqueue(raid5_wq);
9137 	return ret;
9138 }
9139 
9140 static void __exit raid5_exit(void)
9141 {
9142 	unregister_md_submodule(&raid6_personality.head);
9143 	unregister_md_submodule(&raid5_personality.head);
9144 	unregister_md_submodule(&raid4_personality.head);
9145 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9146 	destroy_workqueue(raid5_wq);
9147 }
9148 
9149 module_init(raid5_init);
9150 module_exit(raid5_exit);
9151 MODULE_LICENSE("GPL");
9152 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9153 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9154 MODULE_ALIAS("md-raid5");
9155 MODULE_ALIAS("md-raid4");
9156 MODULE_ALIAS("md-level-5");
9157 MODULE_ALIAS("md-level-4");
9158 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9159 MODULE_ALIAS("md-raid6");
9160 MODULE_ALIAS("md-level-6");
9161 
9162 /* This used to be two separate modules, they were: */
9163 MODULE_ALIAS("raid5");
9164 MODULE_ALIAS("raid6");
9165