1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26
27 static int vcpu_mmap_sz(void);
28
open_path_or_exit(const char * path,int flags)29 int open_path_or_exit(const char *path, int flags)
30 {
31 int fd;
32
33 fd = open(path, flags);
34 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
35 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
36
37 return fd;
38 }
39
40 /*
41 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
42 *
43 * Input Args:
44 * flags - The flags to pass when opening KVM_DEV_PATH.
45 *
46 * Return:
47 * The opened file descriptor of /dev/kvm.
48 */
_open_kvm_dev_path_or_exit(int flags)49 static int _open_kvm_dev_path_or_exit(int flags)
50 {
51 return open_path_or_exit(KVM_DEV_PATH, flags);
52 }
53
open_kvm_dev_path_or_exit(void)54 int open_kvm_dev_path_or_exit(void)
55 {
56 return _open_kvm_dev_path_or_exit(O_RDONLY);
57 }
58
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)59 static ssize_t get_module_param(const char *module_name, const char *param,
60 void *buffer, size_t buffer_size)
61 {
62 const int path_size = 128;
63 char path[path_size];
64 ssize_t bytes_read;
65 int fd, r;
66
67 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
68 module_name, param);
69 TEST_ASSERT(r < path_size,
70 "Failed to construct sysfs path in %d bytes.", path_size);
71
72 fd = open_path_or_exit(path, O_RDONLY);
73
74 bytes_read = read(fd, buffer, buffer_size);
75 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
76 path, bytes_read, buffer_size);
77
78 r = close(fd);
79 TEST_ASSERT(!r, "close(%s) failed", path);
80 return bytes_read;
81 }
82
get_module_param_integer(const char * module_name,const char * param)83 static int get_module_param_integer(const char *module_name, const char *param)
84 {
85 /*
86 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
87 * NUL char, and 1 byte because the kernel sucks and inserts a newline
88 * at the end.
89 */
90 char value[16 + 1 + 1];
91 ssize_t r;
92
93 memset(value, '\0', sizeof(value));
94
95 r = get_module_param(module_name, param, value, sizeof(value));
96 TEST_ASSERT(value[r - 1] == '\n',
97 "Expected trailing newline, got char '%c'", value[r - 1]);
98
99 /*
100 * Squash the newline, otherwise atoi_paranoid() will complain about
101 * trailing non-NUL characters in the string.
102 */
103 value[r - 1] = '\0';
104 return atoi_paranoid(value);
105 }
106
get_module_param_bool(const char * module_name,const char * param)107 static bool get_module_param_bool(const char *module_name, const char *param)
108 {
109 char value;
110 ssize_t r;
111
112 r = get_module_param(module_name, param, &value, sizeof(value));
113 TEST_ASSERT_EQ(r, 1);
114
115 if (value == 'Y')
116 return true;
117 else if (value == 'N')
118 return false;
119
120 TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
121 }
122
get_kvm_param_bool(const char * param)123 bool get_kvm_param_bool(const char *param)
124 {
125 return get_module_param_bool("kvm", param);
126 }
127
get_kvm_intel_param_bool(const char * param)128 bool get_kvm_intel_param_bool(const char *param)
129 {
130 return get_module_param_bool("kvm_intel", param);
131 }
132
get_kvm_amd_param_bool(const char * param)133 bool get_kvm_amd_param_bool(const char *param)
134 {
135 return get_module_param_bool("kvm_amd", param);
136 }
137
get_kvm_param_integer(const char * param)138 int get_kvm_param_integer(const char *param)
139 {
140 return get_module_param_integer("kvm", param);
141 }
142
get_kvm_intel_param_integer(const char * param)143 int get_kvm_intel_param_integer(const char *param)
144 {
145 return get_module_param_integer("kvm_intel", param);
146 }
147
get_kvm_amd_param_integer(const char * param)148 int get_kvm_amd_param_integer(const char *param)
149 {
150 return get_module_param_integer("kvm_amd", param);
151 }
152
153 /*
154 * Capability
155 *
156 * Input Args:
157 * cap - Capability
158 *
159 * Output Args: None
160 *
161 * Return:
162 * On success, the Value corresponding to the capability (KVM_CAP_*)
163 * specified by the value of cap. On failure a TEST_ASSERT failure
164 * is produced.
165 *
166 * Looks up and returns the value corresponding to the capability
167 * (KVM_CAP_*) given by cap.
168 */
kvm_check_cap(long cap)169 unsigned int kvm_check_cap(long cap)
170 {
171 int ret;
172 int kvm_fd;
173
174 kvm_fd = open_kvm_dev_path_or_exit();
175 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
176 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
177
178 close(kvm_fd);
179
180 return (unsigned int)ret;
181 }
182
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)183 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
184 {
185 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
186 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
187 else
188 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
189 vm->dirty_ring_size = ring_size;
190 }
191
vm_open(struct kvm_vm * vm)192 static void vm_open(struct kvm_vm *vm)
193 {
194 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
195
196 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
197
198 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
199 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
200
201 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
202 vm->stats.fd = vm_get_stats_fd(vm);
203 else
204 vm->stats.fd = -1;
205 }
206
vm_guest_mode_string(uint32_t i)207 const char *vm_guest_mode_string(uint32_t i)
208 {
209 static const char * const strings[] = {
210 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
211 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages",
212 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
213 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
214 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
215 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
216 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
217 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
218 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
219 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
220 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
221 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
222 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
223 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
224 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
225 [VM_MODE_P47V47_16K] = "PA-bits:47, VA-bits:47, 16K pages",
226 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
227 };
228 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
229 "Missing new mode strings?");
230
231 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
232
233 return strings[i];
234 }
235
236 const struct vm_guest_mode_params vm_guest_mode_params[] = {
237 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
238 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 },
239 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
240 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
241 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
242 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
243 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
244 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
245 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
246 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
247 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
248 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
249 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
250 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
251 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
252 [VM_MODE_P47V47_16K] = { 47, 47, 0x4000, 14 },
253 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
254 };
255 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
256 "Missing new mode params?");
257
258 /*
259 * Initializes vm->vpages_valid to match the canonical VA space of the
260 * architecture.
261 *
262 * The default implementation is valid for architectures which split the
263 * range addressed by a single page table into a low and high region
264 * based on the MSB of the VA. On architectures with this behavior
265 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
266 */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)267 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
268 {
269 sparsebit_set_num(vm->vpages_valid,
270 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
271 sparsebit_set_num(vm->vpages_valid,
272 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
273 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
274 }
275
____vm_create(struct vm_shape shape)276 struct kvm_vm *____vm_create(struct vm_shape shape)
277 {
278 struct kvm_vm *vm;
279
280 vm = calloc(1, sizeof(*vm));
281 TEST_ASSERT(vm != NULL, "Insufficient Memory");
282
283 INIT_LIST_HEAD(&vm->vcpus);
284 vm->regions.gpa_tree = RB_ROOT;
285 vm->regions.hva_tree = RB_ROOT;
286 hash_init(vm->regions.slot_hash);
287
288 vm->mode = shape.mode;
289 vm->type = shape.type;
290
291 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
292 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
293 vm->page_size = vm_guest_mode_params[vm->mode].page_size;
294 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
295
296 /* Setup mode specific traits. */
297 switch (vm->mode) {
298 case VM_MODE_P52V48_4K:
299 vm->pgtable_levels = 4;
300 break;
301 case VM_MODE_P52V48_64K:
302 vm->pgtable_levels = 3;
303 break;
304 case VM_MODE_P48V48_4K:
305 vm->pgtable_levels = 4;
306 break;
307 case VM_MODE_P48V48_64K:
308 vm->pgtable_levels = 3;
309 break;
310 case VM_MODE_P40V48_4K:
311 case VM_MODE_P36V48_4K:
312 vm->pgtable_levels = 4;
313 break;
314 case VM_MODE_P40V48_64K:
315 case VM_MODE_P36V48_64K:
316 vm->pgtable_levels = 3;
317 break;
318 case VM_MODE_P52V48_16K:
319 case VM_MODE_P48V48_16K:
320 case VM_MODE_P40V48_16K:
321 case VM_MODE_P36V48_16K:
322 vm->pgtable_levels = 4;
323 break;
324 case VM_MODE_P47V47_16K:
325 case VM_MODE_P36V47_16K:
326 vm->pgtable_levels = 3;
327 break;
328 case VM_MODE_PXXV48_4K:
329 #ifdef __x86_64__
330 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
331 kvm_init_vm_address_properties(vm);
332 /*
333 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
334 * it doesn't take effect unless a CR4.LA57 is set, which it
335 * isn't for this mode (48-bit virtual address space).
336 */
337 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
338 "Linear address width (%d bits) not supported",
339 vm->va_bits);
340 pr_debug("Guest physical address width detected: %d\n",
341 vm->pa_bits);
342 vm->pgtable_levels = 4;
343 vm->va_bits = 48;
344 #else
345 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
346 #endif
347 break;
348 case VM_MODE_P47V64_4K:
349 vm->pgtable_levels = 5;
350 break;
351 case VM_MODE_P44V64_4K:
352 vm->pgtable_levels = 5;
353 break;
354 default:
355 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
356 }
357
358 #ifdef __aarch64__
359 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
360 if (vm->pa_bits != 40)
361 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
362 #endif
363
364 vm_open(vm);
365
366 /* Limit to VA-bit canonical virtual addresses. */
367 vm->vpages_valid = sparsebit_alloc();
368 vm_vaddr_populate_bitmap(vm);
369
370 /* Limit physical addresses to PA-bits. */
371 vm->max_gfn = vm_compute_max_gfn(vm);
372
373 /* Allocate and setup memory for guest. */
374 vm->vpages_mapped = sparsebit_alloc();
375
376 return vm;
377 }
378
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)379 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
380 uint32_t nr_runnable_vcpus,
381 uint64_t extra_mem_pages)
382 {
383 uint64_t page_size = vm_guest_mode_params[mode].page_size;
384 uint64_t nr_pages;
385
386 TEST_ASSERT(nr_runnable_vcpus,
387 "Use vm_create_barebones() for VMs that _never_ have vCPUs");
388
389 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
390 "nr_vcpus = %d too large for host, max-vcpus = %d",
391 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
392
393 /*
394 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
395 * test code and other per-VM assets that will be loaded into memslot0.
396 */
397 nr_pages = 512;
398
399 /* Account for the per-vCPU stacks on behalf of the test. */
400 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
401
402 /*
403 * Account for the number of pages needed for the page tables. The
404 * maximum page table size for a memory region will be when the
405 * smallest page size is used. Considering each page contains x page
406 * table descriptors, the total extra size for page tables (for extra
407 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
408 * than N/x*2.
409 */
410 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
411
412 /* Account for the number of pages needed by ucall. */
413 nr_pages += ucall_nr_pages_required(page_size);
414
415 return vm_adjust_num_guest_pages(mode, nr_pages);
416 }
417
kvm_set_files_rlimit(uint32_t nr_vcpus)418 void kvm_set_files_rlimit(uint32_t nr_vcpus)
419 {
420 /*
421 * Each vCPU will open two file descriptors: the vCPU itself and the
422 * vCPU's binary stats file descriptor. Add an arbitrary amount of
423 * buffer for all other files a test may open.
424 */
425 int nr_fds_wanted = nr_vcpus * 2 + 100;
426 struct rlimit rl;
427
428 /*
429 * Check that we're allowed to open nr_fds_wanted file descriptors and
430 * try raising the limits if needed.
431 */
432 TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
433
434 if (rl.rlim_cur < nr_fds_wanted) {
435 rl.rlim_cur = nr_fds_wanted;
436 if (rl.rlim_max < nr_fds_wanted) {
437 int old_rlim_max = rl.rlim_max;
438
439 rl.rlim_max = nr_fds_wanted;
440 __TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
441 "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
442 old_rlim_max, nr_fds_wanted);
443 } else {
444 TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
445 }
446 }
447
448 }
449
is_guest_memfd_required(struct vm_shape shape)450 static bool is_guest_memfd_required(struct vm_shape shape)
451 {
452 #ifdef __x86_64__
453 return shape.type == KVM_X86_SNP_VM;
454 #else
455 return false;
456 #endif
457 }
458
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)459 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
460 uint64_t nr_extra_pages)
461 {
462 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
463 nr_extra_pages);
464 struct userspace_mem_region *slot0;
465 struct kvm_vm *vm;
466 int i, flags;
467
468 kvm_set_files_rlimit(nr_runnable_vcpus);
469
470 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
471 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
472
473 vm = ____vm_create(shape);
474
475 /*
476 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
477 * for CoCo VMs that require GUEST_MEMFD backed private memory.
478 */
479 flags = 0;
480 if (is_guest_memfd_required(shape))
481 flags |= KVM_MEM_GUEST_MEMFD;
482
483 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
484 for (i = 0; i < NR_MEM_REGIONS; i++)
485 vm->memslots[i] = 0;
486
487 kvm_vm_elf_load(vm, program_invocation_name);
488
489 /*
490 * TODO: Add proper defines to protect the library's memslots, and then
491 * carve out memslot1 for the ucall MMIO address. KVM treats writes to
492 * read-only memslots as MMIO, and creating a read-only memslot for the
493 * MMIO region would prevent silently clobbering the MMIO region.
494 */
495 slot0 = memslot2region(vm, 0);
496 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
497
498 if (guest_random_seed != last_guest_seed) {
499 pr_info("Random seed: 0x%x\n", guest_random_seed);
500 last_guest_seed = guest_random_seed;
501 }
502 guest_rng = new_guest_random_state(guest_random_seed);
503 sync_global_to_guest(vm, guest_rng);
504
505 kvm_arch_vm_post_create(vm);
506
507 return vm;
508 }
509
510 /*
511 * VM Create with customized parameters
512 *
513 * Input Args:
514 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
515 * nr_vcpus - VCPU count
516 * extra_mem_pages - Non-slot0 physical memory total size
517 * guest_code - Guest entry point
518 * vcpuids - VCPU IDs
519 *
520 * Output Args: None
521 *
522 * Return:
523 * Pointer to opaque structure that describes the created VM.
524 *
525 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
526 * extra_mem_pages is only used to calculate the maximum page table size,
527 * no real memory allocation for non-slot0 memory in this function.
528 */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])529 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
530 uint64_t extra_mem_pages,
531 void *guest_code, struct kvm_vcpu *vcpus[])
532 {
533 struct kvm_vm *vm;
534 int i;
535
536 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
537
538 vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
539
540 for (i = 0; i < nr_vcpus; ++i)
541 vcpus[i] = vm_vcpu_add(vm, i, guest_code);
542
543 return vm;
544 }
545
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)546 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
547 struct kvm_vcpu **vcpu,
548 uint64_t extra_mem_pages,
549 void *guest_code)
550 {
551 struct kvm_vcpu *vcpus[1];
552 struct kvm_vm *vm;
553
554 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
555
556 *vcpu = vcpus[0];
557 return vm;
558 }
559
560 /*
561 * VM Restart
562 *
563 * Input Args:
564 * vm - VM that has been released before
565 *
566 * Output Args: None
567 *
568 * Reopens the file descriptors associated to the VM and reinstates the
569 * global state, such as the irqchip and the memory regions that are mapped
570 * into the guest.
571 */
kvm_vm_restart(struct kvm_vm * vmp)572 void kvm_vm_restart(struct kvm_vm *vmp)
573 {
574 int ctr;
575 struct userspace_mem_region *region;
576
577 vm_open(vmp);
578 if (vmp->has_irqchip)
579 vm_create_irqchip(vmp);
580
581 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
582 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
583
584 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
585 " rc: %i errno: %i\n"
586 " slot: %u flags: 0x%x\n"
587 " guest_phys_addr: 0x%llx size: 0x%llx",
588 ret, errno, region->region.slot,
589 region->region.flags,
590 region->region.guest_phys_addr,
591 region->region.memory_size);
592 }
593 }
594
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)595 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
596 uint32_t vcpu_id)
597 {
598 return __vm_vcpu_add(vm, vcpu_id);
599 }
600
vm_recreate_with_one_vcpu(struct kvm_vm * vm)601 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
602 {
603 kvm_vm_restart(vm);
604
605 return vm_vcpu_recreate(vm, 0);
606 }
607
kvm_pin_this_task_to_pcpu(uint32_t pcpu)608 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
609 {
610 cpu_set_t mask;
611 int r;
612
613 CPU_ZERO(&mask);
614 CPU_SET(pcpu, &mask);
615 r = sched_setaffinity(0, sizeof(mask), &mask);
616 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
617 }
618
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)619 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
620 {
621 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
622
623 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
624 "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
625 return pcpu;
626 }
627
kvm_print_vcpu_pinning_help(void)628 void kvm_print_vcpu_pinning_help(void)
629 {
630 const char *name = program_invocation_name;
631
632 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n"
633 " values (target pCPU), one for each vCPU, plus an optional\n"
634 " entry for the main application task (specified via entry\n"
635 " <nr_vcpus + 1>). If used, entries must be provided for all\n"
636 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
637 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
638 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
639 " %s -v 3 -c 22,23,24,50\n\n"
640 " To leave the application task unpinned, drop the final entry:\n\n"
641 " %s -v 3 -c 22,23,24\n\n"
642 " (default: no pinning)\n", name, name);
643 }
644
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)645 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
646 int nr_vcpus)
647 {
648 cpu_set_t allowed_mask;
649 char *cpu, *cpu_list;
650 char delim[2] = ",";
651 int i, r;
652
653 cpu_list = strdup(pcpus_string);
654 TEST_ASSERT(cpu_list, "strdup() allocation failed.");
655
656 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
657 TEST_ASSERT(!r, "sched_getaffinity() failed");
658
659 cpu = strtok(cpu_list, delim);
660
661 /* 1. Get all pcpus for vcpus. */
662 for (i = 0; i < nr_vcpus; i++) {
663 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
664 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
665 cpu = strtok(NULL, delim);
666 }
667
668 /* 2. Check if the main worker needs to be pinned. */
669 if (cpu) {
670 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
671 cpu = strtok(NULL, delim);
672 }
673
674 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
675 free(cpu_list);
676 }
677
678 /*
679 * Userspace Memory Region Find
680 *
681 * Input Args:
682 * vm - Virtual Machine
683 * start - Starting VM physical address
684 * end - Ending VM physical address, inclusive.
685 *
686 * Output Args: None
687 *
688 * Return:
689 * Pointer to overlapping region, NULL if no such region.
690 *
691 * Searches for a region with any physical memory that overlaps with
692 * any portion of the guest physical addresses from start to end
693 * inclusive. If multiple overlapping regions exist, a pointer to any
694 * of the regions is returned. Null is returned only when no overlapping
695 * region exists.
696 */
697 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)698 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
699 {
700 struct rb_node *node;
701
702 for (node = vm->regions.gpa_tree.rb_node; node; ) {
703 struct userspace_mem_region *region =
704 container_of(node, struct userspace_mem_region, gpa_node);
705 uint64_t existing_start = region->region.guest_phys_addr;
706 uint64_t existing_end = region->region.guest_phys_addr
707 + region->region.memory_size - 1;
708 if (start <= existing_end && end >= existing_start)
709 return region;
710
711 if (start < existing_start)
712 node = node->rb_left;
713 else
714 node = node->rb_right;
715 }
716
717 return NULL;
718 }
719
kvm_stats_release(struct kvm_binary_stats * stats)720 static void kvm_stats_release(struct kvm_binary_stats *stats)
721 {
722 int ret;
723
724 if (stats->fd < 0)
725 return;
726
727 if (stats->desc) {
728 free(stats->desc);
729 stats->desc = NULL;
730 }
731
732 ret = close(stats->fd);
733 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
734 stats->fd = -1;
735 }
736
vcpu_arch_free(struct kvm_vcpu * vcpu)737 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
738 {
739
740 }
741
742 /*
743 * VM VCPU Remove
744 *
745 * Input Args:
746 * vcpu - VCPU to remove
747 *
748 * Output Args: None
749 *
750 * Return: None, TEST_ASSERT failures for all error conditions
751 *
752 * Removes a vCPU from a VM and frees its resources.
753 */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)754 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
755 {
756 int ret;
757
758 if (vcpu->dirty_gfns) {
759 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
760 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
761 vcpu->dirty_gfns = NULL;
762 }
763
764 ret = munmap(vcpu->run, vcpu_mmap_sz());
765 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
766
767 ret = close(vcpu->fd);
768 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
769
770 kvm_stats_release(&vcpu->stats);
771
772 list_del(&vcpu->list);
773
774 vcpu_arch_free(vcpu);
775 free(vcpu);
776 }
777
kvm_vm_release(struct kvm_vm * vmp)778 void kvm_vm_release(struct kvm_vm *vmp)
779 {
780 struct kvm_vcpu *vcpu, *tmp;
781 int ret;
782
783 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
784 vm_vcpu_rm(vmp, vcpu);
785
786 ret = close(vmp->fd);
787 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
788
789 ret = close(vmp->kvm_fd);
790 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
791
792 /* Free cached stats metadata and close FD */
793 kvm_stats_release(&vmp->stats);
794 }
795
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)796 static void __vm_mem_region_delete(struct kvm_vm *vm,
797 struct userspace_mem_region *region)
798 {
799 int ret;
800
801 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
802 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
803 hash_del(®ion->slot_node);
804
805 sparsebit_free(®ion->unused_phy_pages);
806 sparsebit_free(®ion->protected_phy_pages);
807 ret = munmap(region->mmap_start, region->mmap_size);
808 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
809 if (region->fd >= 0) {
810 /* There's an extra map when using shared memory. */
811 ret = munmap(region->mmap_alias, region->mmap_size);
812 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
813 close(region->fd);
814 }
815 if (region->region.guest_memfd >= 0)
816 close(region->region.guest_memfd);
817
818 free(region);
819 }
820
821 /*
822 * Destroys and frees the VM pointed to by vmp.
823 */
kvm_vm_free(struct kvm_vm * vmp)824 void kvm_vm_free(struct kvm_vm *vmp)
825 {
826 int ctr;
827 struct hlist_node *node;
828 struct userspace_mem_region *region;
829
830 if (vmp == NULL)
831 return;
832
833 /* Free userspace_mem_regions. */
834 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
835 __vm_mem_region_delete(vmp, region);
836
837 /* Free sparsebit arrays. */
838 sparsebit_free(&vmp->vpages_valid);
839 sparsebit_free(&vmp->vpages_mapped);
840
841 kvm_vm_release(vmp);
842
843 /* Free the structure describing the VM. */
844 free(vmp);
845 }
846
kvm_memfd_alloc(size_t size,bool hugepages)847 int kvm_memfd_alloc(size_t size, bool hugepages)
848 {
849 int memfd_flags = MFD_CLOEXEC;
850 int fd, r;
851
852 if (hugepages)
853 memfd_flags |= MFD_HUGETLB;
854
855 fd = memfd_create("kvm_selftest", memfd_flags);
856 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
857
858 r = ftruncate(fd, size);
859 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
860
861 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
862 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
863
864 return fd;
865 }
866
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)867 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
868 struct userspace_mem_region *region)
869 {
870 struct rb_node **cur, *parent;
871
872 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
873 struct userspace_mem_region *cregion;
874
875 cregion = container_of(*cur, typeof(*cregion), gpa_node);
876 parent = *cur;
877 if (region->region.guest_phys_addr <
878 cregion->region.guest_phys_addr)
879 cur = &(*cur)->rb_left;
880 else {
881 TEST_ASSERT(region->region.guest_phys_addr !=
882 cregion->region.guest_phys_addr,
883 "Duplicate GPA in region tree");
884
885 cur = &(*cur)->rb_right;
886 }
887 }
888
889 rb_link_node(®ion->gpa_node, parent, cur);
890 rb_insert_color(®ion->gpa_node, gpa_tree);
891 }
892
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)893 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
894 struct userspace_mem_region *region)
895 {
896 struct rb_node **cur, *parent;
897
898 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
899 struct userspace_mem_region *cregion;
900
901 cregion = container_of(*cur, typeof(*cregion), hva_node);
902 parent = *cur;
903 if (region->host_mem < cregion->host_mem)
904 cur = &(*cur)->rb_left;
905 else {
906 TEST_ASSERT(region->host_mem !=
907 cregion->host_mem,
908 "Duplicate HVA in region tree");
909
910 cur = &(*cur)->rb_right;
911 }
912 }
913
914 rb_link_node(®ion->hva_node, parent, cur);
915 rb_insert_color(®ion->hva_node, hva_tree);
916 }
917
918
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)919 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
920 uint64_t gpa, uint64_t size, void *hva)
921 {
922 struct kvm_userspace_memory_region region = {
923 .slot = slot,
924 .flags = flags,
925 .guest_phys_addr = gpa,
926 .memory_size = size,
927 .userspace_addr = (uintptr_t)hva,
928 };
929
930 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
931 }
932
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)933 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
934 uint64_t gpa, uint64_t size, void *hva)
935 {
936 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
937
938 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
939 errno, strerror(errno));
940 }
941
942 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \
943 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \
944 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
945
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)946 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
947 uint64_t gpa, uint64_t size, void *hva,
948 uint32_t guest_memfd, uint64_t guest_memfd_offset)
949 {
950 struct kvm_userspace_memory_region2 region = {
951 .slot = slot,
952 .flags = flags,
953 .guest_phys_addr = gpa,
954 .memory_size = size,
955 .userspace_addr = (uintptr_t)hva,
956 .guest_memfd = guest_memfd,
957 .guest_memfd_offset = guest_memfd_offset,
958 };
959
960 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
961
962 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion);
963 }
964
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)965 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
966 uint64_t gpa, uint64_t size, void *hva,
967 uint32_t guest_memfd, uint64_t guest_memfd_offset)
968 {
969 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
970 guest_memfd, guest_memfd_offset);
971
972 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
973 errno, strerror(errno));
974 }
975
976
977 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)978 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
979 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
980 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
981 {
982 int ret;
983 struct userspace_mem_region *region;
984 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
985 size_t mem_size = npages * vm->page_size;
986 size_t alignment;
987
988 TEST_REQUIRE_SET_USER_MEMORY_REGION2();
989
990 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
991 "Number of guest pages is not compatible with the host. "
992 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
993
994 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
995 "address not on a page boundary.\n"
996 " guest_paddr: 0x%lx vm->page_size: 0x%x",
997 guest_paddr, vm->page_size);
998 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
999 <= vm->max_gfn, "Physical range beyond maximum "
1000 "supported physical address,\n"
1001 " guest_paddr: 0x%lx npages: 0x%lx\n"
1002 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
1003 guest_paddr, npages, vm->max_gfn, vm->page_size);
1004
1005 /*
1006 * Confirm a mem region with an overlapping address doesn't
1007 * already exist.
1008 */
1009 region = (struct userspace_mem_region *) userspace_mem_region_find(
1010 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
1011 if (region != NULL)
1012 TEST_FAIL("overlapping userspace_mem_region already "
1013 "exists\n"
1014 " requested guest_paddr: 0x%lx npages: 0x%lx "
1015 "page_size: 0x%x\n"
1016 " existing guest_paddr: 0x%lx size: 0x%lx",
1017 guest_paddr, npages, vm->page_size,
1018 (uint64_t) region->region.guest_phys_addr,
1019 (uint64_t) region->region.memory_size);
1020
1021 /* Confirm no region with the requested slot already exists. */
1022 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1023 slot) {
1024 if (region->region.slot != slot)
1025 continue;
1026
1027 TEST_FAIL("A mem region with the requested slot "
1028 "already exists.\n"
1029 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1030 " existing slot: %u paddr: 0x%lx size: 0x%lx",
1031 slot, guest_paddr, npages,
1032 region->region.slot,
1033 (uint64_t) region->region.guest_phys_addr,
1034 (uint64_t) region->region.memory_size);
1035 }
1036
1037 /* Allocate and initialize new mem region structure. */
1038 region = calloc(1, sizeof(*region));
1039 TEST_ASSERT(region != NULL, "Insufficient Memory");
1040 region->mmap_size = mem_size;
1041
1042 #ifdef __s390x__
1043 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1044 alignment = 0x100000;
1045 #else
1046 alignment = 1;
1047 #endif
1048
1049 /*
1050 * When using THP mmap is not guaranteed to returned a hugepage aligned
1051 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1052 * because mmap will always return an address aligned to the HugeTLB
1053 * page size.
1054 */
1055 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1056 alignment = max(backing_src_pagesz, alignment);
1057
1058 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1059
1060 /* Add enough memory to align up if necessary */
1061 if (alignment > 1)
1062 region->mmap_size += alignment;
1063
1064 region->fd = -1;
1065 if (backing_src_is_shared(src_type))
1066 region->fd = kvm_memfd_alloc(region->mmap_size,
1067 src_type == VM_MEM_SRC_SHARED_HUGETLB);
1068
1069 region->mmap_start = mmap(NULL, region->mmap_size,
1070 PROT_READ | PROT_WRITE,
1071 vm_mem_backing_src_alias(src_type)->flag,
1072 region->fd, 0);
1073 TEST_ASSERT(region->mmap_start != MAP_FAILED,
1074 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1075
1076 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1077 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1078 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1079 region->mmap_start, backing_src_pagesz);
1080
1081 /* Align host address */
1082 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1083
1084 /* As needed perform madvise */
1085 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1086 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1087 ret = madvise(region->host_mem, mem_size,
1088 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1089 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1090 region->host_mem, mem_size,
1091 vm_mem_backing_src_alias(src_type)->name);
1092 }
1093
1094 region->backing_src_type = src_type;
1095
1096 if (flags & KVM_MEM_GUEST_MEMFD) {
1097 if (guest_memfd < 0) {
1098 uint32_t guest_memfd_flags = 0;
1099 TEST_ASSERT(!guest_memfd_offset,
1100 "Offset must be zero when creating new guest_memfd");
1101 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1102 } else {
1103 /*
1104 * Install a unique fd for each memslot so that the fd
1105 * can be closed when the region is deleted without
1106 * needing to track if the fd is owned by the framework
1107 * or by the caller.
1108 */
1109 guest_memfd = dup(guest_memfd);
1110 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1111 }
1112
1113 region->region.guest_memfd = guest_memfd;
1114 region->region.guest_memfd_offset = guest_memfd_offset;
1115 } else {
1116 region->region.guest_memfd = -1;
1117 }
1118
1119 region->unused_phy_pages = sparsebit_alloc();
1120 if (vm_arch_has_protected_memory(vm))
1121 region->protected_phy_pages = sparsebit_alloc();
1122 sparsebit_set_num(region->unused_phy_pages,
1123 guest_paddr >> vm->page_shift, npages);
1124 region->region.slot = slot;
1125 region->region.flags = flags;
1126 region->region.guest_phys_addr = guest_paddr;
1127 region->region.memory_size = npages * vm->page_size;
1128 region->region.userspace_addr = (uintptr_t) region->host_mem;
1129 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1130 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1131 " rc: %i errno: %i\n"
1132 " slot: %u flags: 0x%x\n"
1133 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1134 ret, errno, slot, flags,
1135 guest_paddr, (uint64_t) region->region.memory_size,
1136 region->region.guest_memfd);
1137
1138 /* Add to quick lookup data structures */
1139 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1140 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1141 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1142
1143 /* If shared memory, create an alias. */
1144 if (region->fd >= 0) {
1145 region->mmap_alias = mmap(NULL, region->mmap_size,
1146 PROT_READ | PROT_WRITE,
1147 vm_mem_backing_src_alias(src_type)->flag,
1148 region->fd, 0);
1149 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1150 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1151
1152 /* Align host alias address */
1153 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1154 }
1155 }
1156
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1157 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1158 enum vm_mem_backing_src_type src_type,
1159 uint64_t guest_paddr, uint32_t slot,
1160 uint64_t npages, uint32_t flags)
1161 {
1162 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1163 }
1164
1165 /*
1166 * Memslot to region
1167 *
1168 * Input Args:
1169 * vm - Virtual Machine
1170 * memslot - KVM memory slot ID
1171 *
1172 * Output Args: None
1173 *
1174 * Return:
1175 * Pointer to memory region structure that describe memory region
1176 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1177 * on error (e.g. currently no memory region using memslot as a KVM
1178 * memory slot ID).
1179 */
1180 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1181 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1182 {
1183 struct userspace_mem_region *region;
1184
1185 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1186 memslot)
1187 if (region->region.slot == memslot)
1188 return region;
1189
1190 fprintf(stderr, "No mem region with the requested slot found,\n"
1191 " requested slot: %u\n", memslot);
1192 fputs("---- vm dump ----\n", stderr);
1193 vm_dump(stderr, vm, 2);
1194 TEST_FAIL("Mem region not found");
1195 return NULL;
1196 }
1197
1198 /*
1199 * VM Memory Region Flags Set
1200 *
1201 * Input Args:
1202 * vm - Virtual Machine
1203 * flags - Starting guest physical address
1204 *
1205 * Output Args: None
1206 *
1207 * Return: None
1208 *
1209 * Sets the flags of the memory region specified by the value of slot,
1210 * to the values given by flags.
1211 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1212 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1213 {
1214 int ret;
1215 struct userspace_mem_region *region;
1216
1217 region = memslot2region(vm, slot);
1218
1219 region->region.flags = flags;
1220
1221 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1222
1223 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1224 " rc: %i errno: %i slot: %u flags: 0x%x",
1225 ret, errno, slot, flags);
1226 }
1227
1228 /*
1229 * VM Memory Region Move
1230 *
1231 * Input Args:
1232 * vm - Virtual Machine
1233 * slot - Slot of the memory region to move
1234 * new_gpa - Starting guest physical address
1235 *
1236 * Output Args: None
1237 *
1238 * Return: None
1239 *
1240 * Change the gpa of a memory region.
1241 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1242 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1243 {
1244 struct userspace_mem_region *region;
1245 int ret;
1246
1247 region = memslot2region(vm, slot);
1248
1249 region->region.guest_phys_addr = new_gpa;
1250
1251 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1252
1253 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1254 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1255 ret, errno, slot, new_gpa);
1256 }
1257
1258 /*
1259 * VM Memory Region Delete
1260 *
1261 * Input Args:
1262 * vm - Virtual Machine
1263 * slot - Slot of the memory region to delete
1264 *
1265 * Output Args: None
1266 *
1267 * Return: None
1268 *
1269 * Delete a memory region.
1270 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1271 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1272 {
1273 struct userspace_mem_region *region = memslot2region(vm, slot);
1274
1275 region->region.memory_size = 0;
1276 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region);
1277
1278 __vm_mem_region_delete(vm, region);
1279 }
1280
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1281 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1282 bool punch_hole)
1283 {
1284 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1285 struct userspace_mem_region *region;
1286 uint64_t end = base + size;
1287 uint64_t gpa, len;
1288 off_t fd_offset;
1289 int ret;
1290
1291 for (gpa = base; gpa < end; gpa += len) {
1292 uint64_t offset;
1293
1294 region = userspace_mem_region_find(vm, gpa, gpa);
1295 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1296 "Private memory region not found for GPA 0x%lx", gpa);
1297
1298 offset = gpa - region->region.guest_phys_addr;
1299 fd_offset = region->region.guest_memfd_offset + offset;
1300 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1301
1302 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1303 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1304 punch_hole ? "punch hole" : "allocate", gpa, len,
1305 region->region.guest_memfd, mode, fd_offset);
1306 }
1307 }
1308
1309 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1310 static int vcpu_mmap_sz(void)
1311 {
1312 int dev_fd, ret;
1313
1314 dev_fd = open_kvm_dev_path_or_exit();
1315
1316 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1317 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1318 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1319
1320 close(dev_fd);
1321
1322 return ret;
1323 }
1324
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1325 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1326 {
1327 struct kvm_vcpu *vcpu;
1328
1329 list_for_each_entry(vcpu, &vm->vcpus, list) {
1330 if (vcpu->id == vcpu_id)
1331 return true;
1332 }
1333
1334 return false;
1335 }
1336
1337 /*
1338 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1339 * No additional vCPU setup is done. Returns the vCPU.
1340 */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1341 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1342 {
1343 struct kvm_vcpu *vcpu;
1344
1345 /* Confirm a vcpu with the specified id doesn't already exist. */
1346 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1347
1348 /* Allocate and initialize new vcpu structure. */
1349 vcpu = calloc(1, sizeof(*vcpu));
1350 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1351
1352 vcpu->vm = vm;
1353 vcpu->id = vcpu_id;
1354 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1355 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1356
1357 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1358 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1359 vcpu_mmap_sz(), sizeof(*vcpu->run));
1360 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1361 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1362 TEST_ASSERT(vcpu->run != MAP_FAILED,
1363 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1364
1365 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1366 vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1367 else
1368 vcpu->stats.fd = -1;
1369
1370 /* Add to linked-list of VCPUs. */
1371 list_add(&vcpu->list, &vm->vcpus);
1372
1373 return vcpu;
1374 }
1375
1376 /*
1377 * VM Virtual Address Unused Gap
1378 *
1379 * Input Args:
1380 * vm - Virtual Machine
1381 * sz - Size (bytes)
1382 * vaddr_min - Minimum Virtual Address
1383 *
1384 * Output Args: None
1385 *
1386 * Return:
1387 * Lowest virtual address at or below vaddr_min, with at least
1388 * sz unused bytes. TEST_ASSERT failure if no area of at least
1389 * size sz is available.
1390 *
1391 * Within the VM specified by vm, locates the lowest starting virtual
1392 * address >= vaddr_min, that has at least sz unallocated bytes. A
1393 * TEST_ASSERT failure occurs for invalid input or no area of at least
1394 * sz unallocated bytes >= vaddr_min is available.
1395 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1396 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1397 vm_vaddr_t vaddr_min)
1398 {
1399 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1400
1401 /* Determine lowest permitted virtual page index. */
1402 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1403 if ((pgidx_start * vm->page_size) < vaddr_min)
1404 goto no_va_found;
1405
1406 /* Loop over section with enough valid virtual page indexes. */
1407 if (!sparsebit_is_set_num(vm->vpages_valid,
1408 pgidx_start, pages))
1409 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1410 pgidx_start, pages);
1411 do {
1412 /*
1413 * Are there enough unused virtual pages available at
1414 * the currently proposed starting virtual page index.
1415 * If not, adjust proposed starting index to next
1416 * possible.
1417 */
1418 if (sparsebit_is_clear_num(vm->vpages_mapped,
1419 pgidx_start, pages))
1420 goto va_found;
1421 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1422 pgidx_start, pages);
1423 if (pgidx_start == 0)
1424 goto no_va_found;
1425
1426 /*
1427 * If needed, adjust proposed starting virtual address,
1428 * to next range of valid virtual addresses.
1429 */
1430 if (!sparsebit_is_set_num(vm->vpages_valid,
1431 pgidx_start, pages)) {
1432 pgidx_start = sparsebit_next_set_num(
1433 vm->vpages_valid, pgidx_start, pages);
1434 if (pgidx_start == 0)
1435 goto no_va_found;
1436 }
1437 } while (pgidx_start != 0);
1438
1439 no_va_found:
1440 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1441
1442 /* NOT REACHED */
1443 return -1;
1444
1445 va_found:
1446 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1447 pgidx_start, pages),
1448 "Unexpected, invalid virtual page index range,\n"
1449 " pgidx_start: 0x%lx\n"
1450 " pages: 0x%lx",
1451 pgidx_start, pages);
1452 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1453 pgidx_start, pages),
1454 "Unexpected, pages already mapped,\n"
1455 " pgidx_start: 0x%lx\n"
1456 " pages: 0x%lx",
1457 pgidx_start, pages);
1458
1459 return pgidx_start * vm->page_size;
1460 }
1461
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1462 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1463 vm_vaddr_t vaddr_min,
1464 enum kvm_mem_region_type type,
1465 bool protected)
1466 {
1467 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1468
1469 virt_pgd_alloc(vm);
1470 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1471 KVM_UTIL_MIN_PFN * vm->page_size,
1472 vm->memslots[type], protected);
1473
1474 /*
1475 * Find an unused range of virtual page addresses of at least
1476 * pages in length.
1477 */
1478 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1479
1480 /* Map the virtual pages. */
1481 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1482 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1483
1484 virt_pg_map(vm, vaddr, paddr);
1485
1486 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1487 }
1488
1489 return vaddr_start;
1490 }
1491
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1492 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1493 enum kvm_mem_region_type type)
1494 {
1495 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1496 vm_arch_has_protected_memory(vm));
1497 }
1498
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1499 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1500 vm_vaddr_t vaddr_min,
1501 enum kvm_mem_region_type type)
1502 {
1503 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1504 }
1505
1506 /*
1507 * VM Virtual Address Allocate
1508 *
1509 * Input Args:
1510 * vm - Virtual Machine
1511 * sz - Size in bytes
1512 * vaddr_min - Minimum starting virtual address
1513 *
1514 * Output Args: None
1515 *
1516 * Return:
1517 * Starting guest virtual address
1518 *
1519 * Allocates at least sz bytes within the virtual address space of the vm
1520 * given by vm. The allocated bytes are mapped to a virtual address >=
1521 * the address given by vaddr_min. Note that each allocation uses a
1522 * a unique set of pages, with the minimum real allocation being at least
1523 * a page. The allocated physical space comes from the TEST_DATA memory region.
1524 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1525 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1526 {
1527 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1528 }
1529
1530 /*
1531 * VM Virtual Address Allocate Pages
1532 *
1533 * Input Args:
1534 * vm - Virtual Machine
1535 *
1536 * Output Args: None
1537 *
1538 * Return:
1539 * Starting guest virtual address
1540 *
1541 * Allocates at least N system pages worth of bytes within the virtual address
1542 * space of the vm.
1543 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1544 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1545 {
1546 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1547 }
1548
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1549 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1550 {
1551 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1552 }
1553
1554 /*
1555 * VM Virtual Address Allocate Page
1556 *
1557 * Input Args:
1558 * vm - Virtual Machine
1559 *
1560 * Output Args: None
1561 *
1562 * Return:
1563 * Starting guest virtual address
1564 *
1565 * Allocates at least one system page worth of bytes within the virtual address
1566 * space of the vm.
1567 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1568 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1569 {
1570 return vm_vaddr_alloc_pages(vm, 1);
1571 }
1572
1573 /*
1574 * Map a range of VM virtual address to the VM's physical address
1575 *
1576 * Input Args:
1577 * vm - Virtual Machine
1578 * vaddr - Virtuall address to map
1579 * paddr - VM Physical Address
1580 * npages - The number of pages to map
1581 *
1582 * Output Args: None
1583 *
1584 * Return: None
1585 *
1586 * Within the VM given by @vm, creates a virtual translation for
1587 * @npages starting at @vaddr to the page range starting at @paddr.
1588 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1589 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1590 unsigned int npages)
1591 {
1592 size_t page_size = vm->page_size;
1593 size_t size = npages * page_size;
1594
1595 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1596 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1597
1598 while (npages--) {
1599 virt_pg_map(vm, vaddr, paddr);
1600 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1601
1602 vaddr += page_size;
1603 paddr += page_size;
1604 }
1605 }
1606
1607 /*
1608 * Address VM Physical to Host Virtual
1609 *
1610 * Input Args:
1611 * vm - Virtual Machine
1612 * gpa - VM physical address
1613 *
1614 * Output Args: None
1615 *
1616 * Return:
1617 * Equivalent host virtual address
1618 *
1619 * Locates the memory region containing the VM physical address given
1620 * by gpa, within the VM given by vm. When found, the host virtual
1621 * address providing the memory to the vm physical address is returned.
1622 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1623 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1624 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1625 {
1626 struct userspace_mem_region *region;
1627
1628 gpa = vm_untag_gpa(vm, gpa);
1629
1630 region = userspace_mem_region_find(vm, gpa, gpa);
1631 if (!region) {
1632 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1633 return NULL;
1634 }
1635
1636 return (void *)((uintptr_t)region->host_mem
1637 + (gpa - region->region.guest_phys_addr));
1638 }
1639
1640 /*
1641 * Address Host Virtual to VM Physical
1642 *
1643 * Input Args:
1644 * vm - Virtual Machine
1645 * hva - Host virtual address
1646 *
1647 * Output Args: None
1648 *
1649 * Return:
1650 * Equivalent VM physical address
1651 *
1652 * Locates the memory region containing the host virtual address given
1653 * by hva, within the VM given by vm. When found, the equivalent
1654 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1655 * region containing hva exists.
1656 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1657 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1658 {
1659 struct rb_node *node;
1660
1661 for (node = vm->regions.hva_tree.rb_node; node; ) {
1662 struct userspace_mem_region *region =
1663 container_of(node, struct userspace_mem_region, hva_node);
1664
1665 if (hva >= region->host_mem) {
1666 if (hva <= (region->host_mem
1667 + region->region.memory_size - 1))
1668 return (vm_paddr_t)((uintptr_t)
1669 region->region.guest_phys_addr
1670 + (hva - (uintptr_t)region->host_mem));
1671
1672 node = node->rb_right;
1673 } else
1674 node = node->rb_left;
1675 }
1676
1677 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1678 return -1;
1679 }
1680
1681 /*
1682 * Address VM physical to Host Virtual *alias*.
1683 *
1684 * Input Args:
1685 * vm - Virtual Machine
1686 * gpa - VM physical address
1687 *
1688 * Output Args: None
1689 *
1690 * Return:
1691 * Equivalent address within the host virtual *alias* area, or NULL
1692 * (without failing the test) if the guest memory is not shared (so
1693 * no alias exists).
1694 *
1695 * Create a writable, shared virtual=>physical alias for the specific GPA.
1696 * The primary use case is to allow the host selftest to manipulate guest
1697 * memory without mapping said memory in the guest's address space. And, for
1698 * userfaultfd-based demand paging, to do so without triggering userfaults.
1699 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1700 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1701 {
1702 struct userspace_mem_region *region;
1703 uintptr_t offset;
1704
1705 region = userspace_mem_region_find(vm, gpa, gpa);
1706 if (!region)
1707 return NULL;
1708
1709 if (!region->host_alias)
1710 return NULL;
1711
1712 offset = gpa - region->region.guest_phys_addr;
1713 return (void *) ((uintptr_t) region->host_alias + offset);
1714 }
1715
1716 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1717 void vm_create_irqchip(struct kvm_vm *vm)
1718 {
1719 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1720
1721 vm->has_irqchip = true;
1722 }
1723
_vcpu_run(struct kvm_vcpu * vcpu)1724 int _vcpu_run(struct kvm_vcpu *vcpu)
1725 {
1726 int rc;
1727
1728 do {
1729 rc = __vcpu_run(vcpu);
1730 } while (rc == -1 && errno == EINTR);
1731
1732 if (!rc)
1733 assert_on_unhandled_exception(vcpu);
1734
1735 return rc;
1736 }
1737
1738 /*
1739 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1740 * Assert if the KVM returns an error (other than -EINTR).
1741 */
vcpu_run(struct kvm_vcpu * vcpu)1742 void vcpu_run(struct kvm_vcpu *vcpu)
1743 {
1744 int ret = _vcpu_run(vcpu);
1745
1746 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1747 }
1748
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1749 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1750 {
1751 int ret;
1752
1753 vcpu->run->immediate_exit = 1;
1754 ret = __vcpu_run(vcpu);
1755 vcpu->run->immediate_exit = 0;
1756
1757 TEST_ASSERT(ret == -1 && errno == EINTR,
1758 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1759 ret, errno);
1760 }
1761
1762 /*
1763 * Get the list of guest registers which are supported for
1764 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
1765 * it is the caller's responsibility to free the list.
1766 */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1767 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1768 {
1769 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1770 int ret;
1771
1772 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n);
1773 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1774
1775 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1776 reg_list->n = reg_list_n.n;
1777 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1778 return reg_list;
1779 }
1780
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1781 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1782 {
1783 uint32_t page_size = getpagesize();
1784 uint32_t size = vcpu->vm->dirty_ring_size;
1785
1786 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1787
1788 if (!vcpu->dirty_gfns) {
1789 void *addr;
1790
1791 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1792 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1793 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1794
1795 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1796 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1797 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1798
1799 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1800 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1801 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1802
1803 vcpu->dirty_gfns = addr;
1804 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1805 }
1806
1807 return vcpu->dirty_gfns;
1808 }
1809
1810 /*
1811 * Device Ioctl
1812 */
1813
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1814 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1815 {
1816 struct kvm_device_attr attribute = {
1817 .group = group,
1818 .attr = attr,
1819 .flags = 0,
1820 };
1821
1822 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1823 }
1824
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1825 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1826 {
1827 struct kvm_create_device create_dev = {
1828 .type = type,
1829 .flags = KVM_CREATE_DEVICE_TEST,
1830 };
1831
1832 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1833 }
1834
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1835 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1836 {
1837 struct kvm_create_device create_dev = {
1838 .type = type,
1839 .fd = -1,
1840 .flags = 0,
1841 };
1842 int err;
1843
1844 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1845 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1846 return err ? : create_dev.fd;
1847 }
1848
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1849 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1850 {
1851 struct kvm_device_attr kvmattr = {
1852 .group = group,
1853 .attr = attr,
1854 .flags = 0,
1855 .addr = (uintptr_t)val,
1856 };
1857
1858 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1859 }
1860
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1861 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1862 {
1863 struct kvm_device_attr kvmattr = {
1864 .group = group,
1865 .attr = attr,
1866 .flags = 0,
1867 .addr = (uintptr_t)val,
1868 };
1869
1870 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1871 }
1872
1873 /*
1874 * IRQ related functions.
1875 */
1876
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1877 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1878 {
1879 struct kvm_irq_level irq_level = {
1880 .irq = irq,
1881 .level = level,
1882 };
1883
1884 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1885 }
1886
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1887 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1888 {
1889 int ret = _kvm_irq_line(vm, irq, level);
1890
1891 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1892 }
1893
kvm_gsi_routing_create(void)1894 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1895 {
1896 struct kvm_irq_routing *routing;
1897 size_t size;
1898
1899 size = sizeof(struct kvm_irq_routing);
1900 /* Allocate space for the max number of entries: this wastes 196 KBs. */
1901 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1902 routing = calloc(1, size);
1903 assert(routing);
1904
1905 return routing;
1906 }
1907
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1908 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1909 uint32_t gsi, uint32_t pin)
1910 {
1911 int i;
1912
1913 assert(routing);
1914 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1915
1916 i = routing->nr;
1917 routing->entries[i].gsi = gsi;
1918 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1919 routing->entries[i].flags = 0;
1920 routing->entries[i].u.irqchip.irqchip = 0;
1921 routing->entries[i].u.irqchip.pin = pin;
1922 routing->nr++;
1923 }
1924
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1925 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1926 {
1927 int ret;
1928
1929 assert(routing);
1930 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1931 free(routing);
1932
1933 return ret;
1934 }
1935
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1936 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1937 {
1938 int ret;
1939
1940 ret = _kvm_gsi_routing_write(vm, routing);
1941 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1942 }
1943
1944 /*
1945 * VM Dump
1946 *
1947 * Input Args:
1948 * vm - Virtual Machine
1949 * indent - Left margin indent amount
1950 *
1951 * Output Args:
1952 * stream - Output FILE stream
1953 *
1954 * Return: None
1955 *
1956 * Dumps the current state of the VM given by vm, to the FILE stream
1957 * given by stream.
1958 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1959 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1960 {
1961 int ctr;
1962 struct userspace_mem_region *region;
1963 struct kvm_vcpu *vcpu;
1964
1965 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1966 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1967 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1968 fprintf(stream, "%*sMem Regions:\n", indent, "");
1969 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1970 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1971 "host_virt: %p\n", indent + 2, "",
1972 (uint64_t) region->region.guest_phys_addr,
1973 (uint64_t) region->region.memory_size,
1974 region->host_mem);
1975 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1976 sparsebit_dump(stream, region->unused_phy_pages, 0);
1977 if (region->protected_phy_pages) {
1978 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1979 sparsebit_dump(stream, region->protected_phy_pages, 0);
1980 }
1981 }
1982 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1983 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1984 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1985 vm->pgd_created);
1986 if (vm->pgd_created) {
1987 fprintf(stream, "%*sVirtual Translation Tables:\n",
1988 indent + 2, "");
1989 virt_dump(stream, vm, indent + 4);
1990 }
1991 fprintf(stream, "%*sVCPUs:\n", indent, "");
1992
1993 list_for_each_entry(vcpu, &vm->vcpus, list)
1994 vcpu_dump(stream, vcpu, indent + 2);
1995 }
1996
1997 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1998
1999 /* Known KVM exit reasons */
2000 static struct exit_reason {
2001 unsigned int reason;
2002 const char *name;
2003 } exit_reasons_known[] = {
2004 KVM_EXIT_STRING(UNKNOWN),
2005 KVM_EXIT_STRING(EXCEPTION),
2006 KVM_EXIT_STRING(IO),
2007 KVM_EXIT_STRING(HYPERCALL),
2008 KVM_EXIT_STRING(DEBUG),
2009 KVM_EXIT_STRING(HLT),
2010 KVM_EXIT_STRING(MMIO),
2011 KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
2012 KVM_EXIT_STRING(SHUTDOWN),
2013 KVM_EXIT_STRING(FAIL_ENTRY),
2014 KVM_EXIT_STRING(INTR),
2015 KVM_EXIT_STRING(SET_TPR),
2016 KVM_EXIT_STRING(TPR_ACCESS),
2017 KVM_EXIT_STRING(S390_SIEIC),
2018 KVM_EXIT_STRING(S390_RESET),
2019 KVM_EXIT_STRING(DCR),
2020 KVM_EXIT_STRING(NMI),
2021 KVM_EXIT_STRING(INTERNAL_ERROR),
2022 KVM_EXIT_STRING(OSI),
2023 KVM_EXIT_STRING(PAPR_HCALL),
2024 KVM_EXIT_STRING(S390_UCONTROL),
2025 KVM_EXIT_STRING(WATCHDOG),
2026 KVM_EXIT_STRING(S390_TSCH),
2027 KVM_EXIT_STRING(EPR),
2028 KVM_EXIT_STRING(SYSTEM_EVENT),
2029 KVM_EXIT_STRING(S390_STSI),
2030 KVM_EXIT_STRING(IOAPIC_EOI),
2031 KVM_EXIT_STRING(HYPERV),
2032 KVM_EXIT_STRING(ARM_NISV),
2033 KVM_EXIT_STRING(X86_RDMSR),
2034 KVM_EXIT_STRING(X86_WRMSR),
2035 KVM_EXIT_STRING(DIRTY_RING_FULL),
2036 KVM_EXIT_STRING(AP_RESET_HOLD),
2037 KVM_EXIT_STRING(X86_BUS_LOCK),
2038 KVM_EXIT_STRING(XEN),
2039 KVM_EXIT_STRING(RISCV_SBI),
2040 KVM_EXIT_STRING(RISCV_CSR),
2041 KVM_EXIT_STRING(NOTIFY),
2042 KVM_EXIT_STRING(LOONGARCH_IOCSR),
2043 KVM_EXIT_STRING(MEMORY_FAULT),
2044 };
2045
2046 /*
2047 * Exit Reason String
2048 *
2049 * Input Args:
2050 * exit_reason - Exit reason
2051 *
2052 * Output Args: None
2053 *
2054 * Return:
2055 * Constant string pointer describing the exit reason.
2056 *
2057 * Locates and returns a constant string that describes the KVM exit
2058 * reason given by exit_reason. If no such string is found, a constant
2059 * string of "Unknown" is returned.
2060 */
exit_reason_str(unsigned int exit_reason)2061 const char *exit_reason_str(unsigned int exit_reason)
2062 {
2063 unsigned int n1;
2064
2065 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2066 if (exit_reason == exit_reasons_known[n1].reason)
2067 return exit_reasons_known[n1].name;
2068 }
2069
2070 return "Unknown";
2071 }
2072
2073 /*
2074 * Physical Contiguous Page Allocator
2075 *
2076 * Input Args:
2077 * vm - Virtual Machine
2078 * num - number of pages
2079 * paddr_min - Physical address minimum
2080 * memslot - Memory region to allocate page from
2081 * protected - True if the pages will be used as protected/private memory
2082 *
2083 * Output Args: None
2084 *
2085 * Return:
2086 * Starting physical address
2087 *
2088 * Within the VM specified by vm, locates a range of available physical
2089 * pages at or above paddr_min. If found, the pages are marked as in use
2090 * and their base address is returned. A TEST_ASSERT failure occurs if
2091 * not enough pages are available at or above paddr_min.
2092 */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2093 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2094 vm_paddr_t paddr_min, uint32_t memslot,
2095 bool protected)
2096 {
2097 struct userspace_mem_region *region;
2098 sparsebit_idx_t pg, base;
2099
2100 TEST_ASSERT(num > 0, "Must allocate at least one page");
2101
2102 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2103 "not divisible by page size.\n"
2104 " paddr_min: 0x%lx page_size: 0x%x",
2105 paddr_min, vm->page_size);
2106
2107 region = memslot2region(vm, memslot);
2108 TEST_ASSERT(!protected || region->protected_phy_pages,
2109 "Region doesn't support protected memory");
2110
2111 base = pg = paddr_min >> vm->page_shift;
2112 do {
2113 for (; pg < base + num; ++pg) {
2114 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2115 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2116 break;
2117 }
2118 }
2119 } while (pg && pg != base + num);
2120
2121 if (pg == 0) {
2122 fprintf(stderr, "No guest physical page available, "
2123 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2124 paddr_min, vm->page_size, memslot);
2125 fputs("---- vm dump ----\n", stderr);
2126 vm_dump(stderr, vm, 2);
2127 abort();
2128 }
2129
2130 for (pg = base; pg < base + num; ++pg) {
2131 sparsebit_clear(region->unused_phy_pages, pg);
2132 if (protected)
2133 sparsebit_set(region->protected_phy_pages, pg);
2134 }
2135
2136 return base * vm->page_size;
2137 }
2138
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2139 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2140 uint32_t memslot)
2141 {
2142 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2143 }
2144
vm_alloc_page_table(struct kvm_vm * vm)2145 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2146 {
2147 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2148 vm->memslots[MEM_REGION_PT]);
2149 }
2150
2151 /*
2152 * Address Guest Virtual to Host Virtual
2153 *
2154 * Input Args:
2155 * vm - Virtual Machine
2156 * gva - VM virtual address
2157 *
2158 * Output Args: None
2159 *
2160 * Return:
2161 * Equivalent host virtual address
2162 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2163 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2164 {
2165 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2166 }
2167
vm_compute_max_gfn(struct kvm_vm * vm)2168 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2169 {
2170 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2171 }
2172
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2173 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2174 unsigned int page_shift,
2175 unsigned int new_page_shift,
2176 bool ceil)
2177 {
2178 unsigned int n = 1 << (new_page_shift - page_shift);
2179
2180 if (page_shift >= new_page_shift)
2181 return num_pages * (1 << (page_shift - new_page_shift));
2182
2183 return num_pages / n + !!(ceil && num_pages % n);
2184 }
2185
getpageshift(void)2186 static inline int getpageshift(void)
2187 {
2188 return __builtin_ffs(getpagesize()) - 1;
2189 }
2190
2191 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2192 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2193 {
2194 return vm_calc_num_pages(num_guest_pages,
2195 vm_guest_mode_params[mode].page_shift,
2196 getpageshift(), true);
2197 }
2198
2199 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2200 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2201 {
2202 return vm_calc_num_pages(num_host_pages, getpageshift(),
2203 vm_guest_mode_params[mode].page_shift, false);
2204 }
2205
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2206 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2207 {
2208 unsigned int n;
2209 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2210 return vm_adjust_num_guest_pages(mode, n);
2211 }
2212
2213 /*
2214 * Read binary stats descriptors
2215 *
2216 * Input Args:
2217 * stats_fd - the file descriptor for the binary stats file from which to read
2218 * header - the binary stats metadata header corresponding to the given FD
2219 *
2220 * Output Args: None
2221 *
2222 * Return:
2223 * A pointer to a newly allocated series of stat descriptors.
2224 * Caller is responsible for freeing the returned kvm_stats_desc.
2225 *
2226 * Read the stats descriptors from the binary stats interface.
2227 */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2228 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2229 struct kvm_stats_header *header)
2230 {
2231 struct kvm_stats_desc *stats_desc;
2232 ssize_t desc_size, total_size, ret;
2233
2234 desc_size = get_stats_descriptor_size(header);
2235 total_size = header->num_desc * desc_size;
2236
2237 stats_desc = calloc(header->num_desc, desc_size);
2238 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2239
2240 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2241 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2242
2243 return stats_desc;
2244 }
2245
2246 /*
2247 * Read stat data for a particular stat
2248 *
2249 * Input Args:
2250 * stats_fd - the file descriptor for the binary stats file from which to read
2251 * header - the binary stats metadata header corresponding to the given FD
2252 * desc - the binary stat metadata for the particular stat to be read
2253 * max_elements - the maximum number of 8-byte values to read into data
2254 *
2255 * Output Args:
2256 * data - the buffer into which stat data should be read
2257 *
2258 * Read the data values of a specified stat from the binary stats interface.
2259 */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2260 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2261 struct kvm_stats_desc *desc, uint64_t *data,
2262 size_t max_elements)
2263 {
2264 size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2265 size_t size = nr_elements * sizeof(*data);
2266 ssize_t ret;
2267
2268 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2269 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2270
2271 ret = pread(stats_fd, data, size,
2272 header->data_offset + desc->offset);
2273
2274 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2275 desc->name, errno, strerror(errno));
2276 TEST_ASSERT(ret == size,
2277 "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2278 desc->name, size, ret);
2279 }
2280
kvm_get_stat(struct kvm_binary_stats * stats,const char * name,uint64_t * data,size_t max_elements)2281 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2282 uint64_t *data, size_t max_elements)
2283 {
2284 struct kvm_stats_desc *desc;
2285 size_t size_desc;
2286 int i;
2287
2288 if (!stats->desc) {
2289 read_stats_header(stats->fd, &stats->header);
2290 stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2291 }
2292
2293 size_desc = get_stats_descriptor_size(&stats->header);
2294
2295 for (i = 0; i < stats->header.num_desc; ++i) {
2296 desc = (void *)stats->desc + (i * size_desc);
2297
2298 if (strcmp(desc->name, name))
2299 continue;
2300
2301 read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2302 return;
2303 }
2304
2305 TEST_FAIL("Unable to find stat '%s'", name);
2306 }
2307
kvm_arch_vm_post_create(struct kvm_vm * vm)2308 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2309 {
2310 }
2311
kvm_selftest_arch_init(void)2312 __weak void kvm_selftest_arch_init(void)
2313 {
2314 }
2315
kvm_selftest_init(void)2316 void __attribute((constructor)) kvm_selftest_init(void)
2317 {
2318 /* Tell stdout not to buffer its content. */
2319 setbuf(stdout, NULL);
2320
2321 guest_random_seed = last_guest_seed = random();
2322 pr_info("Random seed: 0x%x\n", guest_random_seed);
2323
2324 kvm_selftest_arch_init();
2325 }
2326
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2327 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2328 {
2329 sparsebit_idx_t pg = 0;
2330 struct userspace_mem_region *region;
2331
2332 if (!vm_arch_has_protected_memory(vm))
2333 return false;
2334
2335 region = userspace_mem_region_find(vm, paddr, paddr);
2336 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2337
2338 pg = paddr >> vm->page_shift;
2339 return sparsebit_is_set(region->protected_phy_pages, pg);
2340 }
2341