1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.org/pub/scm/linux/kernel/git/axboe/liburing.git
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "filetable.h"
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "register.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95 #include "waitid.h"
96 #include "futex.h"
97 #include "napi.h"
98 #include "uring_cmd.h"
99 #include "msg_ring.h"
100 #include "memmap.h"
101 #include "zcrx.h"
102
103 #include "timeout.h"
104 #include "poll.h"
105 #include "rw.h"
106 #include "alloc_cache.h"
107 #include "eventfd.h"
108
109 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
110 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
111
112 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
113
114 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
115 REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA)
116
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
118 REQ_F_REISSUE | REQ_F_POLLED | \
119 IO_REQ_CLEAN_FLAGS)
120
121 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122
123 #define IO_COMPL_BATCH 32
124 #define IO_REQ_ALLOC_BATCH 8
125 #define IO_LOCAL_TW_DEFAULT_MAX 20
126
127 /* requests with any of those set should undergo io_disarm_next() */
128 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
129
130 /*
131 * No waiters. It's larger than any valid value of the tw counter
132 * so that tests against ->cq_wait_nr would fail and skip wake_up().
133 */
134 #define IO_CQ_WAKE_INIT (-1U)
135 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
136 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
137
138 static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags);
139 static void __io_req_caches_free(struct io_ring_ctx *ctx);
140
141 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
142
143 struct kmem_cache *req_cachep;
144 static struct workqueue_struct *iou_wq __ro_after_init;
145
146 static int __read_mostly sysctl_io_uring_disabled;
147 static int __read_mostly sysctl_io_uring_group = -1;
148
149 #ifdef CONFIG_SYSCTL
150 static const struct ctl_table kernel_io_uring_disabled_table[] = {
151 {
152 .procname = "io_uring_disabled",
153 .data = &sysctl_io_uring_disabled,
154 .maxlen = sizeof(sysctl_io_uring_disabled),
155 .mode = 0644,
156 .proc_handler = proc_dointvec_minmax,
157 .extra1 = SYSCTL_ZERO,
158 .extra2 = SYSCTL_TWO,
159 },
160 {
161 .procname = "io_uring_group",
162 .data = &sysctl_io_uring_group,
163 .maxlen = sizeof(gid_t),
164 .mode = 0644,
165 .proc_handler = proc_dointvec,
166 },
167 };
168 #endif
169
io_poison_cached_req(struct io_kiocb * req)170 static void io_poison_cached_req(struct io_kiocb *req)
171 {
172 req->ctx = IO_URING_PTR_POISON;
173 req->tctx = IO_URING_PTR_POISON;
174 req->file = IO_URING_PTR_POISON;
175 req->creds = IO_URING_PTR_POISON;
176 req->io_task_work.func = IO_URING_PTR_POISON;
177 req->apoll = IO_URING_PTR_POISON;
178 }
179
io_poison_req(struct io_kiocb * req)180 static void io_poison_req(struct io_kiocb *req)
181 {
182 io_poison_cached_req(req);
183 req->async_data = IO_URING_PTR_POISON;
184 req->kbuf = IO_URING_PTR_POISON;
185 req->comp_list.next = IO_URING_PTR_POISON;
186 req->file_node = IO_URING_PTR_POISON;
187 req->link = IO_URING_PTR_POISON;
188 }
189
__io_cqring_events(struct io_ring_ctx * ctx)190 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
191 {
192 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
193 }
194
__io_cqring_events_user(struct io_ring_ctx * ctx)195 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
196 {
197 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
198 }
199
req_fail_link_node(struct io_kiocb * req,int res)200 static inline void req_fail_link_node(struct io_kiocb *req, int res)
201 {
202 req_set_fail(req);
203 io_req_set_res(req, res, 0);
204 }
205
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)206 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
207 {
208 if (IS_ENABLED(CONFIG_KASAN))
209 io_poison_cached_req(req);
210 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
211 }
212
io_ring_ctx_ref_free(struct percpu_ref * ref)213 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
214 {
215 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
216
217 complete(&ctx->ref_comp);
218 }
219
220 /*
221 * Terminate the request if either of these conditions are true:
222 *
223 * 1) It's being executed by the original task, but that task is marked
224 * with PF_EXITING as it's exiting.
225 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
226 * our fallback task_work.
227 * 3) The ring has been closed and is going away.
228 */
io_should_terminate_tw(struct io_ring_ctx * ctx)229 static inline bool io_should_terminate_tw(struct io_ring_ctx *ctx)
230 {
231 return (current->flags & (PF_EXITING | PF_KTHREAD)) || percpu_ref_is_dying(&ctx->refs);
232 }
233
io_fallback_req_func(struct work_struct * work)234 static __cold void io_fallback_req_func(struct work_struct *work)
235 {
236 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
237 fallback_work.work);
238 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
239 struct io_kiocb *req, *tmp;
240 struct io_tw_state ts = {};
241
242 percpu_ref_get(&ctx->refs);
243 mutex_lock(&ctx->uring_lock);
244 ts.cancel = io_should_terminate_tw(ctx);
245 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
246 req->io_task_work.func((struct io_tw_req){req}, ts);
247 io_submit_flush_completions(ctx);
248 mutex_unlock(&ctx->uring_lock);
249 percpu_ref_put(&ctx->refs);
250 }
251
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)252 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
253 {
254 unsigned int hash_buckets;
255 int i;
256
257 do {
258 hash_buckets = 1U << bits;
259 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
260 GFP_KERNEL_ACCOUNT);
261 if (table->hbs)
262 break;
263 if (bits == 1)
264 return -ENOMEM;
265 bits--;
266 } while (1);
267
268 table->hash_bits = bits;
269 for (i = 0; i < hash_buckets; i++)
270 INIT_HLIST_HEAD(&table->hbs[i].list);
271 return 0;
272 }
273
io_free_alloc_caches(struct io_ring_ctx * ctx)274 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
275 {
276 io_alloc_cache_free(&ctx->apoll_cache, kfree);
277 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
278 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
279 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
280 io_futex_cache_free(ctx);
281 io_rsrc_cache_free(ctx);
282 }
283
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 struct io_ring_ctx *ctx;
287 int hash_bits;
288 bool ret;
289
290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
291 if (!ctx)
292 return NULL;
293
294 xa_init(&ctx->io_bl_xa);
295
296 /*
297 * Use 5 bits less than the max cq entries, that should give us around
298 * 32 entries per hash list if totally full and uniformly spread, but
299 * don't keep too many buckets to not overconsume memory.
300 */
301 hash_bits = ilog2(p->cq_entries) - 5;
302 hash_bits = clamp(hash_bits, 1, 8);
303 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
304 goto err;
305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306 0, GFP_KERNEL))
307 goto err;
308
309 ctx->flags = p->flags;
310 ctx->hybrid_poll_time = LLONG_MAX;
311 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
312 init_waitqueue_head(&ctx->sqo_sq_wait);
313 INIT_LIST_HEAD(&ctx->sqd_list);
314 INIT_LIST_HEAD(&ctx->cq_overflow_list);
315 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
316 sizeof(struct async_poll), 0);
317 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
318 sizeof(struct io_async_msghdr),
319 offsetof(struct io_async_msghdr, clear));
320 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_async_rw),
322 offsetof(struct io_async_rw, clear));
323 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
324 sizeof(struct io_async_cmd),
325 sizeof(struct io_async_cmd));
326 ret |= io_futex_cache_init(ctx);
327 ret |= io_rsrc_cache_init(ctx);
328 if (ret)
329 goto free_ref;
330 init_completion(&ctx->ref_comp);
331 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
332 mutex_init(&ctx->uring_lock);
333 init_waitqueue_head(&ctx->cq_wait);
334 init_waitqueue_head(&ctx->poll_wq);
335 spin_lock_init(&ctx->completion_lock);
336 raw_spin_lock_init(&ctx->timeout_lock);
337 INIT_WQ_LIST(&ctx->iopoll_list);
338 INIT_LIST_HEAD(&ctx->defer_list);
339 INIT_LIST_HEAD(&ctx->timeout_list);
340 INIT_LIST_HEAD(&ctx->ltimeout_list);
341 init_llist_head(&ctx->work_llist);
342 INIT_LIST_HEAD(&ctx->tctx_list);
343 mutex_init(&ctx->tctx_lock);
344 ctx->submit_state.free_list.next = NULL;
345 INIT_HLIST_HEAD(&ctx->waitid_list);
346 xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
347 #ifdef CONFIG_FUTEX
348 INIT_HLIST_HEAD(&ctx->futex_list);
349 #endif
350 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
351 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
352 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
353 io_napi_init(ctx);
354 mutex_init(&ctx->mmap_lock);
355
356 return ctx;
357
358 free_ref:
359 percpu_ref_exit(&ctx->refs);
360 err:
361 io_free_alloc_caches(ctx);
362 kvfree(ctx->cancel_table.hbs);
363 xa_destroy(&ctx->io_bl_xa);
364 kfree(ctx);
365 return NULL;
366 }
367
io_clean_op(struct io_kiocb * req)368 static void io_clean_op(struct io_kiocb *req)
369 {
370 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
371 io_kbuf_drop_legacy(req);
372
373 if (req->flags & REQ_F_NEED_CLEANUP) {
374 const struct io_cold_def *def = &io_cold_defs[req->opcode];
375
376 if (def->cleanup)
377 def->cleanup(req);
378 }
379 if (req->flags & REQ_F_INFLIGHT)
380 atomic_dec(&req->tctx->inflight_tracked);
381 if (req->flags & REQ_F_CREDS)
382 put_cred(req->creds);
383 if (req->flags & REQ_F_ASYNC_DATA) {
384 kfree(req->async_data);
385 req->async_data = NULL;
386 }
387 req->flags &= ~IO_REQ_CLEAN_FLAGS;
388 }
389
390 /*
391 * Mark the request as inflight, so that file cancelation will find it.
392 * Can be used if the file is an io_uring instance, or if the request itself
393 * relies on ->mm being alive for the duration of the request.
394 */
io_req_track_inflight(struct io_kiocb * req)395 inline void io_req_track_inflight(struct io_kiocb *req)
396 {
397 if (!(req->flags & REQ_F_INFLIGHT)) {
398 req->flags |= REQ_F_INFLIGHT;
399 atomic_inc(&req->tctx->inflight_tracked);
400 }
401 }
402
__io_prep_linked_timeout(struct io_kiocb * req)403 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
404 {
405 if (WARN_ON_ONCE(!req->link))
406 return NULL;
407
408 req->flags &= ~REQ_F_ARM_LTIMEOUT;
409 req->flags |= REQ_F_LINK_TIMEOUT;
410
411 /* linked timeouts should have two refs once prep'ed */
412 io_req_set_refcount(req);
413 __io_req_set_refcount(req->link, 2);
414 return req->link;
415 }
416
io_prep_async_work(struct io_kiocb * req)417 static void io_prep_async_work(struct io_kiocb *req)
418 {
419 const struct io_issue_def *def = &io_issue_defs[req->opcode];
420 struct io_ring_ctx *ctx = req->ctx;
421
422 if (!(req->flags & REQ_F_CREDS)) {
423 req->flags |= REQ_F_CREDS;
424 req->creds = get_current_cred();
425 }
426
427 req->work.list.next = NULL;
428 atomic_set(&req->work.flags, 0);
429 if (req->flags & REQ_F_FORCE_ASYNC)
430 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
431
432 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
433 req->flags |= io_file_get_flags(req->file);
434
435 if (req->file && (req->flags & REQ_F_ISREG)) {
436 bool should_hash = def->hash_reg_file;
437
438 /* don't serialize this request if the fs doesn't need it */
439 if (should_hash && (req->file->f_flags & O_DIRECT) &&
440 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
441 should_hash = false;
442 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
443 io_wq_hash_work(&req->work, file_inode(req->file));
444 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
445 if (def->unbound_nonreg_file)
446 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
447 }
448 }
449
io_prep_async_link(struct io_kiocb * req)450 static void io_prep_async_link(struct io_kiocb *req)
451 {
452 struct io_kiocb *cur;
453
454 if (req->flags & REQ_F_LINK_TIMEOUT) {
455 struct io_ring_ctx *ctx = req->ctx;
456
457 raw_spin_lock_irq(&ctx->timeout_lock);
458 io_for_each_link(cur, req)
459 io_prep_async_work(cur);
460 raw_spin_unlock_irq(&ctx->timeout_lock);
461 } else {
462 io_for_each_link(cur, req)
463 io_prep_async_work(cur);
464 }
465 }
466
io_queue_iowq(struct io_kiocb * req)467 static void io_queue_iowq(struct io_kiocb *req)
468 {
469 struct io_uring_task *tctx = req->tctx;
470
471 BUG_ON(!tctx);
472
473 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
474 io_req_task_queue_fail(req, -ECANCELED);
475 return;
476 }
477
478 /* init ->work of the whole link before punting */
479 io_prep_async_link(req);
480
481 /*
482 * Not expected to happen, but if we do have a bug where this _can_
483 * happen, catch it here and ensure the request is marked as
484 * canceled. That will make io-wq go through the usual work cancel
485 * procedure rather than attempt to run this request (or create a new
486 * worker for it).
487 */
488 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
489 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
490
491 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
492 io_wq_enqueue(tctx->io_wq, &req->work);
493 }
494
io_req_queue_iowq_tw(struct io_tw_req tw_req,io_tw_token_t tw)495 static void io_req_queue_iowq_tw(struct io_tw_req tw_req, io_tw_token_t tw)
496 {
497 io_queue_iowq(tw_req.req);
498 }
499
io_req_queue_iowq(struct io_kiocb * req)500 void io_req_queue_iowq(struct io_kiocb *req)
501 {
502 req->io_task_work.func = io_req_queue_iowq_tw;
503 io_req_task_work_add(req);
504 }
505
io_linked_nr(struct io_kiocb * req)506 unsigned io_linked_nr(struct io_kiocb *req)
507 {
508 struct io_kiocb *tmp;
509 unsigned nr = 0;
510
511 io_for_each_link(tmp, req)
512 nr++;
513 return nr;
514 }
515
io_queue_deferred(struct io_ring_ctx * ctx)516 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
517 {
518 bool drain_seen = false, first = true;
519
520 lockdep_assert_held(&ctx->uring_lock);
521 __io_req_caches_free(ctx);
522
523 while (!list_empty(&ctx->defer_list)) {
524 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
525 struct io_defer_entry, list);
526
527 drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
528 if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
529 return;
530
531 list_del_init(&de->list);
532 ctx->nr_drained -= io_linked_nr(de->req);
533 io_req_task_queue(de->req);
534 kfree(de);
535 first = false;
536 }
537 }
538
__io_commit_cqring_flush(struct io_ring_ctx * ctx)539 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
540 {
541 if (ctx->poll_activated)
542 io_poll_wq_wake(ctx);
543 if (ctx->off_timeout_used)
544 io_flush_timeouts(ctx);
545 if (ctx->has_evfd)
546 io_eventfd_signal(ctx, true);
547 }
548
__io_cq_lock(struct io_ring_ctx * ctx)549 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
550 {
551 if (!ctx->lockless_cq)
552 spin_lock(&ctx->completion_lock);
553 }
554
io_cq_lock(struct io_ring_ctx * ctx)555 static inline void io_cq_lock(struct io_ring_ctx *ctx)
556 __acquires(ctx->completion_lock)
557 {
558 spin_lock(&ctx->completion_lock);
559 }
560
__io_cq_unlock_post(struct io_ring_ctx * ctx)561 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
562 {
563 io_commit_cqring(ctx);
564 if (!ctx->task_complete) {
565 if (!ctx->lockless_cq)
566 spin_unlock(&ctx->completion_lock);
567 /* IOPOLL rings only need to wake up if it's also SQPOLL */
568 if (!ctx->syscall_iopoll)
569 io_cqring_wake(ctx);
570 }
571 io_commit_cqring_flush(ctx);
572 }
573
io_cq_unlock_post(struct io_ring_ctx * ctx)574 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
575 __releases(ctx->completion_lock)
576 {
577 io_commit_cqring(ctx);
578 spin_unlock(&ctx->completion_lock);
579 io_cqring_wake(ctx);
580 io_commit_cqring_flush(ctx);
581 }
582
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)583 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
584 {
585 lockdep_assert_held(&ctx->uring_lock);
586
587 /* don't abort if we're dying, entries must get freed */
588 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
589 return;
590
591 io_cq_lock(ctx);
592 while (!list_empty(&ctx->cq_overflow_list)) {
593 size_t cqe_size = sizeof(struct io_uring_cqe);
594 struct io_uring_cqe *cqe;
595 struct io_overflow_cqe *ocqe;
596 bool is_cqe32 = false;
597
598 ocqe = list_first_entry(&ctx->cq_overflow_list,
599 struct io_overflow_cqe, list);
600 if (ocqe->cqe.flags & IORING_CQE_F_32 ||
601 ctx->flags & IORING_SETUP_CQE32) {
602 is_cqe32 = true;
603 cqe_size <<= 1;
604 }
605 if (ctx->flags & IORING_SETUP_CQE32)
606 is_cqe32 = false;
607
608 if (!dying) {
609 if (!io_get_cqe_overflow(ctx, &cqe, true, is_cqe32))
610 break;
611 memcpy(cqe, &ocqe->cqe, cqe_size);
612 }
613 list_del(&ocqe->list);
614 kfree(ocqe);
615
616 /*
617 * For silly syzbot cases that deliberately overflow by huge
618 * amounts, check if we need to resched and drop and
619 * reacquire the locks if so. Nothing real would ever hit this.
620 * Ideally we'd have a non-posting unlock for this, but hard
621 * to care for a non-real case.
622 */
623 if (need_resched()) {
624 ctx->cqe_sentinel = ctx->cqe_cached;
625 io_cq_unlock_post(ctx);
626 mutex_unlock(&ctx->uring_lock);
627 cond_resched();
628 mutex_lock(&ctx->uring_lock);
629 io_cq_lock(ctx);
630 }
631 }
632
633 if (list_empty(&ctx->cq_overflow_list)) {
634 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
635 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
636 }
637 io_cq_unlock_post(ctx);
638 }
639
io_cqring_overflow_kill(struct io_ring_ctx * ctx)640 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
641 {
642 if (ctx->rings)
643 __io_cqring_overflow_flush(ctx, true);
644 }
645
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)646 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
647 {
648 mutex_lock(&ctx->uring_lock);
649 __io_cqring_overflow_flush(ctx, false);
650 mutex_unlock(&ctx->uring_lock);
651 }
652
653 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)654 static inline void io_put_task(struct io_kiocb *req)
655 {
656 struct io_uring_task *tctx = req->tctx;
657
658 if (likely(tctx->task == current)) {
659 tctx->cached_refs++;
660 } else {
661 percpu_counter_sub(&tctx->inflight, 1);
662 if (unlikely(atomic_read(&tctx->in_cancel)))
663 wake_up(&tctx->wait);
664 put_task_struct(tctx->task);
665 }
666 }
667
io_task_refs_refill(struct io_uring_task * tctx)668 void io_task_refs_refill(struct io_uring_task *tctx)
669 {
670 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
671
672 percpu_counter_add(&tctx->inflight, refill);
673 refcount_add(refill, ¤t->usage);
674 tctx->cached_refs += refill;
675 }
676
io_uring_drop_tctx_refs(struct task_struct * task)677 __cold void io_uring_drop_tctx_refs(struct task_struct *task)
678 {
679 struct io_uring_task *tctx = task->io_uring;
680 unsigned int refs = tctx->cached_refs;
681
682 if (refs) {
683 tctx->cached_refs = 0;
684 percpu_counter_sub(&tctx->inflight, refs);
685 put_task_struct_many(task, refs);
686 }
687 }
688
io_cqring_add_overflow(struct io_ring_ctx * ctx,struct io_overflow_cqe * ocqe)689 static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
690 struct io_overflow_cqe *ocqe)
691 {
692 lockdep_assert_held(&ctx->completion_lock);
693
694 if (!ocqe) {
695 struct io_rings *r = ctx->rings;
696
697 /*
698 * If we're in ring overflow flush mode, or in task cancel mode,
699 * or cannot allocate an overflow entry, then we need to drop it
700 * on the floor.
701 */
702 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
703 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
704 return false;
705 }
706 if (list_empty(&ctx->cq_overflow_list)) {
707 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
708 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
709
710 }
711 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
712 return true;
713 }
714
io_alloc_ocqe(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe,gfp_t gfp)715 static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
716 struct io_cqe *cqe,
717 struct io_big_cqe *big_cqe, gfp_t gfp)
718 {
719 struct io_overflow_cqe *ocqe;
720 size_t ocq_size = sizeof(struct io_overflow_cqe);
721 bool is_cqe32 = false;
722
723 if (cqe->flags & IORING_CQE_F_32 || ctx->flags & IORING_SETUP_CQE32) {
724 is_cqe32 = true;
725 ocq_size += sizeof(struct io_uring_cqe);
726 }
727
728 ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
729 trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
730 if (ocqe) {
731 ocqe->cqe.user_data = cqe->user_data;
732 ocqe->cqe.res = cqe->res;
733 ocqe->cqe.flags = cqe->flags;
734 if (is_cqe32 && big_cqe) {
735 ocqe->cqe.big_cqe[0] = big_cqe->extra1;
736 ocqe->cqe.big_cqe[1] = big_cqe->extra2;
737 }
738 }
739 if (big_cqe)
740 big_cqe->extra1 = big_cqe->extra2 = 0;
741 return ocqe;
742 }
743
744 /*
745 * Fill an empty dummy CQE, in case alignment is off for posting a 32b CQE
746 * because the ring is a single 16b entry away from wrapping.
747 */
io_fill_nop_cqe(struct io_ring_ctx * ctx,unsigned int off)748 static bool io_fill_nop_cqe(struct io_ring_ctx *ctx, unsigned int off)
749 {
750 if (__io_cqring_events(ctx) < ctx->cq_entries) {
751 struct io_uring_cqe *cqe = &ctx->rings->cqes[off];
752
753 cqe->user_data = 0;
754 cqe->res = 0;
755 cqe->flags = IORING_CQE_F_SKIP;
756 ctx->cached_cq_tail++;
757 return true;
758 }
759 return false;
760 }
761
762 /*
763 * writes to the cq entry need to come after reading head; the
764 * control dependency is enough as we're using WRITE_ONCE to
765 * fill the cq entry
766 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow,bool cqe32)767 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32)
768 {
769 struct io_rings *rings = ctx->rings;
770 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
771 unsigned int free, queued, len;
772
773 /*
774 * Posting into the CQ when there are pending overflowed CQEs may break
775 * ordering guarantees, which will affect links, F_MORE users and more.
776 * Force overflow the completion.
777 */
778 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
779 return false;
780
781 /*
782 * Post dummy CQE if a 32b CQE is needed and there's only room for a
783 * 16b CQE before the ring wraps.
784 */
785 if (cqe32 && off + 1 == ctx->cq_entries) {
786 if (!io_fill_nop_cqe(ctx, off))
787 return false;
788 off = 0;
789 }
790
791 /* userspace may cheat modifying the tail, be safe and do min */
792 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
793 free = ctx->cq_entries - queued;
794 /* we need a contiguous range, limit based on the current array offset */
795 len = min(free, ctx->cq_entries - off);
796 if (len < (cqe32 + 1))
797 return false;
798
799 if (ctx->flags & IORING_SETUP_CQE32) {
800 off <<= 1;
801 len <<= 1;
802 }
803
804 ctx->cqe_cached = &rings->cqes[off];
805 ctx->cqe_sentinel = ctx->cqe_cached + len;
806 return true;
807 }
808
io_fill_cqe_aux32(struct io_ring_ctx * ctx,struct io_uring_cqe src_cqe[2])809 static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx,
810 struct io_uring_cqe src_cqe[2])
811 {
812 struct io_uring_cqe *cqe;
813
814 if (WARN_ON_ONCE(!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))))
815 return false;
816 if (unlikely(!io_get_cqe(ctx, &cqe, true)))
817 return false;
818
819 memcpy(cqe, src_cqe, 2 * sizeof(*cqe));
820 trace_io_uring_complete(ctx, NULL, cqe);
821 return true;
822 }
823
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)824 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
825 u32 cflags)
826 {
827 bool cqe32 = cflags & IORING_CQE_F_32;
828 struct io_uring_cqe *cqe;
829
830 if (likely(io_get_cqe(ctx, &cqe, cqe32))) {
831 WRITE_ONCE(cqe->user_data, user_data);
832 WRITE_ONCE(cqe->res, res);
833 WRITE_ONCE(cqe->flags, cflags);
834
835 if (cqe32) {
836 WRITE_ONCE(cqe->big_cqe[0], 0);
837 WRITE_ONCE(cqe->big_cqe[1], 0);
838 }
839
840 trace_io_uring_complete(ctx, NULL, cqe);
841 return true;
842 }
843 return false;
844 }
845
io_init_cqe(u64 user_data,s32 res,u32 cflags)846 static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
847 {
848 return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
849 }
850
io_cqe_overflow(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)851 static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
852 struct io_big_cqe *big_cqe)
853 {
854 struct io_overflow_cqe *ocqe;
855
856 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
857 spin_lock(&ctx->completion_lock);
858 io_cqring_add_overflow(ctx, ocqe);
859 spin_unlock(&ctx->completion_lock);
860 }
861
io_cqe_overflow_locked(struct io_ring_ctx * ctx,struct io_cqe * cqe,struct io_big_cqe * big_cqe)862 static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
863 struct io_cqe *cqe,
864 struct io_big_cqe *big_cqe)
865 {
866 struct io_overflow_cqe *ocqe;
867
868 ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_NOWAIT);
869 return io_cqring_add_overflow(ctx, ocqe);
870 }
871
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)872 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
873 {
874 bool filled;
875
876 io_cq_lock(ctx);
877 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
878 if (unlikely(!filled)) {
879 struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
880
881 filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
882 }
883 io_cq_unlock_post(ctx);
884 return filled;
885 }
886
887 /*
888 * Must be called from inline task_work so we know a flush will happen later,
889 * and obviously with ctx->uring_lock held (tw always has that).
890 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)891 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
892 {
893 lockdep_assert_held(&ctx->uring_lock);
894 lockdep_assert(ctx->lockless_cq);
895
896 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
897 struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
898
899 io_cqe_overflow(ctx, &cqe, NULL);
900 }
901 ctx->submit_state.cq_flush = true;
902 }
903
904 /*
905 * A helper for multishot requests posting additional CQEs.
906 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
907 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)908 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
909 {
910 struct io_ring_ctx *ctx = req->ctx;
911 bool posted;
912
913 /*
914 * If multishot has already posted deferred completions, ensure that
915 * those are flushed first before posting this one. If not, CQEs
916 * could get reordered.
917 */
918 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
919 __io_submit_flush_completions(ctx);
920
921 lockdep_assert(!io_wq_current_is_worker());
922 lockdep_assert_held(&ctx->uring_lock);
923
924 if (!ctx->lockless_cq) {
925 spin_lock(&ctx->completion_lock);
926 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
927 spin_unlock(&ctx->completion_lock);
928 } else {
929 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
930 }
931
932 ctx->submit_state.cq_flush = true;
933 return posted;
934 }
935
936 /*
937 * A helper for multishot requests posting additional CQEs.
938 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
939 */
io_req_post_cqe32(struct io_kiocb * req,struct io_uring_cqe cqe[2])940 bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2])
941 {
942 struct io_ring_ctx *ctx = req->ctx;
943 bool posted;
944
945 lockdep_assert(!io_wq_current_is_worker());
946 lockdep_assert_held(&ctx->uring_lock);
947
948 cqe[0].user_data = req->cqe.user_data;
949 if (!ctx->lockless_cq) {
950 spin_lock(&ctx->completion_lock);
951 posted = io_fill_cqe_aux32(ctx, cqe);
952 spin_unlock(&ctx->completion_lock);
953 } else {
954 posted = io_fill_cqe_aux32(ctx, cqe);
955 }
956
957 ctx->submit_state.cq_flush = true;
958 return posted;
959 }
960
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)961 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
962 {
963 struct io_ring_ctx *ctx = req->ctx;
964 bool completed = true;
965
966 /*
967 * All execution paths but io-wq use the deferred completions by
968 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
969 */
970 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
971 return;
972
973 /*
974 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
975 * the submitter task context, IOPOLL protects with uring_lock.
976 */
977 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
978 defer_complete:
979 req->io_task_work.func = io_req_task_complete;
980 io_req_task_work_add(req);
981 return;
982 }
983
984 io_cq_lock(ctx);
985 if (!(req->flags & REQ_F_CQE_SKIP))
986 completed = io_fill_cqe_req(ctx, req);
987 io_cq_unlock_post(ctx);
988
989 if (!completed)
990 goto defer_complete;
991
992 /*
993 * We don't free the request here because we know it's called from
994 * io-wq only, which holds a reference, so it cannot be the last put.
995 */
996 req_ref_put(req);
997 }
998
io_req_defer_failed(struct io_kiocb * req,s32 res)999 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1000 __must_hold(&ctx->uring_lock)
1001 {
1002 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1003
1004 lockdep_assert_held(&req->ctx->uring_lock);
1005
1006 req_set_fail(req);
1007 io_req_set_res(req, res, io_put_kbuf(req, res, NULL));
1008 if (def->fail)
1009 def->fail(req);
1010 io_req_complete_defer(req);
1011 }
1012
1013 /*
1014 * A request might get retired back into the request caches even before opcode
1015 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1016 * Because of that, io_alloc_req() should be called only under ->uring_lock
1017 * and with extra caution to not get a request that is still worked on.
1018 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1019 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1020 __must_hold(&ctx->uring_lock)
1021 {
1022 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
1023 void *reqs[IO_REQ_ALLOC_BATCH];
1024 int ret;
1025
1026 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1027
1028 /*
1029 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1030 * retry single alloc to be on the safe side.
1031 */
1032 if (unlikely(ret <= 0)) {
1033 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1034 if (!reqs[0])
1035 return false;
1036 ret = 1;
1037 }
1038
1039 percpu_ref_get_many(&ctx->refs, ret);
1040 ctx->nr_req_allocated += ret;
1041
1042 while (ret--) {
1043 struct io_kiocb *req = reqs[ret];
1044
1045 io_req_add_to_cache(req, ctx);
1046 }
1047 return true;
1048 }
1049
io_free_req(struct io_kiocb * req)1050 __cold void io_free_req(struct io_kiocb *req)
1051 {
1052 /* refs were already put, restore them for io_req_task_complete() */
1053 req->flags &= ~REQ_F_REFCOUNT;
1054 /* we only want to free it, don't post CQEs */
1055 req->flags |= REQ_F_CQE_SKIP;
1056 req->io_task_work.func = io_req_task_complete;
1057 io_req_task_work_add(req);
1058 }
1059
__io_req_find_next_prep(struct io_kiocb * req)1060 static void __io_req_find_next_prep(struct io_kiocb *req)
1061 {
1062 struct io_ring_ctx *ctx = req->ctx;
1063
1064 spin_lock(&ctx->completion_lock);
1065 io_disarm_next(req);
1066 spin_unlock(&ctx->completion_lock);
1067 }
1068
io_req_find_next(struct io_kiocb * req)1069 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1070 {
1071 struct io_kiocb *nxt;
1072
1073 /*
1074 * If LINK is set, we have dependent requests in this chain. If we
1075 * didn't fail this request, queue the first one up, moving any other
1076 * dependencies to the next request. In case of failure, fail the rest
1077 * of the chain.
1078 */
1079 if (unlikely(req->flags & IO_DISARM_MASK))
1080 __io_req_find_next_prep(req);
1081 nxt = req->link;
1082 req->link = NULL;
1083 return nxt;
1084 }
1085
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1086 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1087 {
1088 if (!ctx)
1089 return;
1090 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1091 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1092
1093 io_submit_flush_completions(ctx);
1094 mutex_unlock(&ctx->uring_lock);
1095 percpu_ref_put(&ctx->refs);
1096 }
1097
1098 /*
1099 * Run queued task_work, returning the number of entries processed in *count.
1100 * If more entries than max_entries are available, stop processing once this
1101 * is reached and return the rest of the list.
1102 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1103 struct llist_node *io_handle_tw_list(struct llist_node *node,
1104 unsigned int *count,
1105 unsigned int max_entries)
1106 {
1107 struct io_ring_ctx *ctx = NULL;
1108 struct io_tw_state ts = { };
1109
1110 do {
1111 struct llist_node *next = node->next;
1112 struct io_kiocb *req = container_of(node, struct io_kiocb,
1113 io_task_work.node);
1114
1115 if (req->ctx != ctx) {
1116 ctx_flush_and_put(ctx, ts);
1117 ctx = req->ctx;
1118 mutex_lock(&ctx->uring_lock);
1119 percpu_ref_get(&ctx->refs);
1120 ts.cancel = io_should_terminate_tw(ctx);
1121 }
1122 INDIRECT_CALL_2(req->io_task_work.func,
1123 io_poll_task_func, io_req_rw_complete,
1124 (struct io_tw_req){req}, ts);
1125 node = next;
1126 (*count)++;
1127 if (unlikely(need_resched())) {
1128 ctx_flush_and_put(ctx, ts);
1129 ctx = NULL;
1130 cond_resched();
1131 }
1132 } while (node && *count < max_entries);
1133
1134 ctx_flush_and_put(ctx, ts);
1135 return node;
1136 }
1137
__io_fallback_tw(struct llist_node * node,bool sync)1138 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1139 {
1140 struct io_ring_ctx *last_ctx = NULL;
1141 struct io_kiocb *req;
1142
1143 while (node) {
1144 req = container_of(node, struct io_kiocb, io_task_work.node);
1145 node = node->next;
1146 if (last_ctx != req->ctx) {
1147 if (last_ctx) {
1148 if (sync)
1149 flush_delayed_work(&last_ctx->fallback_work);
1150 percpu_ref_put(&last_ctx->refs);
1151 }
1152 last_ctx = req->ctx;
1153 percpu_ref_get(&last_ctx->refs);
1154 }
1155 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1156 schedule_delayed_work(&last_ctx->fallback_work, 1);
1157 }
1158
1159 if (last_ctx) {
1160 if (sync)
1161 flush_delayed_work(&last_ctx->fallback_work);
1162 percpu_ref_put(&last_ctx->refs);
1163 }
1164 }
1165
io_fallback_tw(struct io_uring_task * tctx,bool sync)1166 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1167 {
1168 struct llist_node *node = llist_del_all(&tctx->task_list);
1169
1170 __io_fallback_tw(node, sync);
1171 }
1172
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1173 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1174 unsigned int max_entries,
1175 unsigned int *count)
1176 {
1177 struct llist_node *node;
1178
1179 node = llist_del_all(&tctx->task_list);
1180 if (node) {
1181 node = llist_reverse_order(node);
1182 node = io_handle_tw_list(node, count, max_entries);
1183 }
1184
1185 /* relaxed read is enough as only the task itself sets ->in_cancel */
1186 if (unlikely(atomic_read(&tctx->in_cancel)))
1187 io_uring_drop_tctx_refs(current);
1188
1189 trace_io_uring_task_work_run(tctx, *count);
1190 return node;
1191 }
1192
tctx_task_work(struct callback_head * cb)1193 void tctx_task_work(struct callback_head *cb)
1194 {
1195 struct io_uring_task *tctx;
1196 struct llist_node *ret;
1197 unsigned int count = 0;
1198
1199 tctx = container_of(cb, struct io_uring_task, task_work);
1200 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1201 /* can't happen */
1202 WARN_ON_ONCE(ret);
1203 }
1204
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1205 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1206 {
1207 struct io_ring_ctx *ctx = req->ctx;
1208 unsigned nr_wait, nr_tw, nr_tw_prev;
1209 struct llist_node *head;
1210
1211 /* See comment above IO_CQ_WAKE_INIT */
1212 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1213
1214 /*
1215 * We don't know how many requests there are in the link and whether
1216 * they can even be queued lazily, fall back to non-lazy.
1217 */
1218 if (req->flags & IO_REQ_LINK_FLAGS)
1219 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1220
1221 guard(rcu)();
1222
1223 head = READ_ONCE(ctx->work_llist.first);
1224 do {
1225 nr_tw_prev = 0;
1226 if (head) {
1227 struct io_kiocb *first_req = container_of(head,
1228 struct io_kiocb,
1229 io_task_work.node);
1230 /*
1231 * Might be executed at any moment, rely on
1232 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1233 */
1234 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1235 }
1236
1237 /*
1238 * Theoretically, it can overflow, but that's fine as one of
1239 * previous adds should've tried to wake the task.
1240 */
1241 nr_tw = nr_tw_prev + 1;
1242 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1243 nr_tw = IO_CQ_WAKE_FORCE;
1244
1245 req->nr_tw = nr_tw;
1246 req->io_task_work.node.next = head;
1247 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1248 &req->io_task_work.node));
1249
1250 /*
1251 * cmpxchg implies a full barrier, which pairs with the barrier
1252 * in set_current_state() on the io_cqring_wait() side. It's used
1253 * to ensure that either we see updated ->cq_wait_nr, or waiters
1254 * going to sleep will observe the work added to the list, which
1255 * is similar to the wait/wawke task state sync.
1256 */
1257
1258 if (!head) {
1259 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1260 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1261 if (ctx->has_evfd)
1262 io_eventfd_signal(ctx, false);
1263 }
1264
1265 nr_wait = atomic_read(&ctx->cq_wait_nr);
1266 /* not enough or no one is waiting */
1267 if (nr_tw < nr_wait)
1268 return;
1269 /* the previous add has already woken it up */
1270 if (nr_tw_prev >= nr_wait)
1271 return;
1272 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1273 }
1274
io_req_normal_work_add(struct io_kiocb * req)1275 static void io_req_normal_work_add(struct io_kiocb *req)
1276 {
1277 struct io_uring_task *tctx = req->tctx;
1278 struct io_ring_ctx *ctx = req->ctx;
1279
1280 /* task_work already pending, we're done */
1281 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1282 return;
1283
1284 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1285 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1286
1287 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1288 if (ctx->flags & IORING_SETUP_SQPOLL) {
1289 __set_notify_signal(tctx->task);
1290 return;
1291 }
1292
1293 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1294 return;
1295
1296 io_fallback_tw(tctx, false);
1297 }
1298
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1299 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1300 {
1301 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1302 io_req_local_work_add(req, flags);
1303 else
1304 io_req_normal_work_add(req);
1305 }
1306
io_req_task_work_add_remote(struct io_kiocb * req,unsigned flags)1307 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1308 {
1309 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1310 return;
1311 __io_req_task_work_add(req, flags);
1312 }
1313
io_move_task_work_from_local(struct io_ring_ctx * ctx)1314 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1315 {
1316 struct llist_node *node = llist_del_all(&ctx->work_llist);
1317
1318 __io_fallback_tw(node, false);
1319 node = llist_del_all(&ctx->retry_llist);
1320 __io_fallback_tw(node, false);
1321 }
1322
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1323 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1324 int min_events)
1325 {
1326 if (!io_local_work_pending(ctx))
1327 return false;
1328 if (events < min_events)
1329 return true;
1330 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1331 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1332 return false;
1333 }
1334
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1335 static int __io_run_local_work_loop(struct llist_node **node,
1336 io_tw_token_t tw,
1337 int events)
1338 {
1339 int ret = 0;
1340
1341 while (*node) {
1342 struct llist_node *next = (*node)->next;
1343 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1344 io_task_work.node);
1345 INDIRECT_CALL_2(req->io_task_work.func,
1346 io_poll_task_func, io_req_rw_complete,
1347 (struct io_tw_req){req}, tw);
1348 *node = next;
1349 if (++ret >= events)
1350 break;
1351 }
1352
1353 return ret;
1354 }
1355
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1356 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1357 int min_events, int max_events)
1358 {
1359 struct llist_node *node;
1360 unsigned int loops = 0;
1361 int ret = 0;
1362
1363 if (WARN_ON_ONCE(ctx->submitter_task != current))
1364 return -EEXIST;
1365 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1366 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1367 again:
1368 tw.cancel = io_should_terminate_tw(ctx);
1369 min_events -= ret;
1370 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1371 if (ctx->retry_llist.first)
1372 goto retry_done;
1373
1374 /*
1375 * llists are in reverse order, flip it back the right way before
1376 * running the pending items.
1377 */
1378 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1379 ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1380 ctx->retry_llist.first = node;
1381 loops++;
1382
1383 if (io_run_local_work_continue(ctx, ret, min_events))
1384 goto again;
1385 retry_done:
1386 io_submit_flush_completions(ctx);
1387 if (io_run_local_work_continue(ctx, ret, min_events))
1388 goto again;
1389
1390 trace_io_uring_local_work_run(ctx, ret, loops);
1391 return ret;
1392 }
1393
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1394 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1395 int min_events)
1396 {
1397 struct io_tw_state ts = {};
1398
1399 if (!io_local_work_pending(ctx))
1400 return 0;
1401 return __io_run_local_work(ctx, ts, min_events,
1402 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1403 }
1404
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1405 int io_run_local_work(struct io_ring_ctx *ctx, int min_events, int max_events)
1406 {
1407 struct io_tw_state ts = {};
1408 int ret;
1409
1410 mutex_lock(&ctx->uring_lock);
1411 ret = __io_run_local_work(ctx, ts, min_events, max_events);
1412 mutex_unlock(&ctx->uring_lock);
1413 return ret;
1414 }
1415
io_req_task_cancel(struct io_tw_req tw_req,io_tw_token_t tw)1416 static void io_req_task_cancel(struct io_tw_req tw_req, io_tw_token_t tw)
1417 {
1418 struct io_kiocb *req = tw_req.req;
1419
1420 io_tw_lock(req->ctx, tw);
1421 io_req_defer_failed(req, req->cqe.res);
1422 }
1423
io_req_task_submit(struct io_tw_req tw_req,io_tw_token_t tw)1424 void io_req_task_submit(struct io_tw_req tw_req, io_tw_token_t tw)
1425 {
1426 struct io_kiocb *req = tw_req.req;
1427 struct io_ring_ctx *ctx = req->ctx;
1428
1429 io_tw_lock(ctx, tw);
1430 if (unlikely(tw.cancel))
1431 io_req_defer_failed(req, -EFAULT);
1432 else if (req->flags & REQ_F_FORCE_ASYNC)
1433 io_queue_iowq(req);
1434 else
1435 io_queue_sqe(req, 0);
1436 }
1437
io_req_task_queue_fail(struct io_kiocb * req,int ret)1438 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1439 {
1440 io_req_set_res(req, ret, 0);
1441 req->io_task_work.func = io_req_task_cancel;
1442 io_req_task_work_add(req);
1443 }
1444
io_req_task_queue(struct io_kiocb * req)1445 void io_req_task_queue(struct io_kiocb *req)
1446 {
1447 req->io_task_work.func = io_req_task_submit;
1448 io_req_task_work_add(req);
1449 }
1450
io_queue_next(struct io_kiocb * req)1451 void io_queue_next(struct io_kiocb *req)
1452 {
1453 struct io_kiocb *nxt = io_req_find_next(req);
1454
1455 if (nxt)
1456 io_req_task_queue(nxt);
1457 }
1458
io_req_put_rsrc_nodes(struct io_kiocb * req)1459 static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1460 {
1461 if (req->file_node) {
1462 io_put_rsrc_node(req->ctx, req->file_node);
1463 req->file_node = NULL;
1464 }
1465 if (req->flags & REQ_F_BUF_NODE)
1466 io_put_rsrc_node(req->ctx, req->buf_node);
1467 }
1468
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1469 static void io_free_batch_list(struct io_ring_ctx *ctx,
1470 struct io_wq_work_node *node)
1471 __must_hold(&ctx->uring_lock)
1472 {
1473 do {
1474 struct io_kiocb *req = container_of(node, struct io_kiocb,
1475 comp_list);
1476
1477 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1478 if (req->flags & REQ_F_REISSUE) {
1479 node = req->comp_list.next;
1480 req->flags &= ~REQ_F_REISSUE;
1481 io_queue_iowq(req);
1482 continue;
1483 }
1484 if (req->flags & REQ_F_REFCOUNT) {
1485 node = req->comp_list.next;
1486 if (!req_ref_put_and_test(req))
1487 continue;
1488 }
1489 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1490 struct async_poll *apoll = req->apoll;
1491
1492 if (apoll->double_poll)
1493 kfree(apoll->double_poll);
1494 io_cache_free(&ctx->apoll_cache, apoll);
1495 req->flags &= ~REQ_F_POLLED;
1496 }
1497 if (req->flags & IO_REQ_LINK_FLAGS)
1498 io_queue_next(req);
1499 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1500 io_clean_op(req);
1501 }
1502 io_put_file(req);
1503 io_req_put_rsrc_nodes(req);
1504 io_put_task(req);
1505
1506 node = req->comp_list.next;
1507 io_req_add_to_cache(req, ctx);
1508 } while (node);
1509 }
1510
__io_submit_flush_completions(struct io_ring_ctx * ctx)1511 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1512 __must_hold(&ctx->uring_lock)
1513 {
1514 struct io_submit_state *state = &ctx->submit_state;
1515 struct io_wq_work_node *node;
1516
1517 __io_cq_lock(ctx);
1518 __wq_list_for_each(node, &state->compl_reqs) {
1519 struct io_kiocb *req = container_of(node, struct io_kiocb,
1520 comp_list);
1521
1522 /*
1523 * Requests marked with REQUEUE should not post a CQE, they
1524 * will go through the io-wq retry machinery and post one
1525 * later.
1526 */
1527 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1528 unlikely(!io_fill_cqe_req(ctx, req))) {
1529 if (ctx->lockless_cq)
1530 io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1531 else
1532 io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1533 }
1534 }
1535 __io_cq_unlock_post(ctx);
1536
1537 if (!wq_list_empty(&state->compl_reqs)) {
1538 io_free_batch_list(ctx, state->compl_reqs.first);
1539 INIT_WQ_LIST(&state->compl_reqs);
1540 }
1541
1542 if (unlikely(ctx->drain_active))
1543 io_queue_deferred(ctx);
1544
1545 ctx->submit_state.cq_flush = false;
1546 }
1547
io_cqring_events(struct io_ring_ctx * ctx)1548 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1549 {
1550 /* See comment at the top of this file */
1551 smp_rmb();
1552 return __io_cqring_events(ctx);
1553 }
1554
1555 /*
1556 * We can't just wait for polled events to come to us, we have to actively
1557 * find and complete them.
1558 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1559 __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1560 {
1561 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1562 return;
1563
1564 mutex_lock(&ctx->uring_lock);
1565 while (!wq_list_empty(&ctx->iopoll_list)) {
1566 /* let it sleep and repeat later if can't complete a request */
1567 if (io_do_iopoll(ctx, true) == 0)
1568 break;
1569 /*
1570 * Ensure we allow local-to-the-cpu processing to take place,
1571 * in this case we need to ensure that we reap all events.
1572 * Also let task_work, etc. to progress by releasing the mutex
1573 */
1574 if (need_resched()) {
1575 mutex_unlock(&ctx->uring_lock);
1576 cond_resched();
1577 mutex_lock(&ctx->uring_lock);
1578 }
1579 }
1580 mutex_unlock(&ctx->uring_lock);
1581
1582 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1583 io_move_task_work_from_local(ctx);
1584 }
1585
io_iopoll_check(struct io_ring_ctx * ctx,unsigned int min_events)1586 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1587 {
1588 unsigned int nr_events = 0;
1589 unsigned long check_cq;
1590
1591 min_events = min(min_events, ctx->cq_entries);
1592
1593 lockdep_assert_held(&ctx->uring_lock);
1594
1595 if (!io_allowed_run_tw(ctx))
1596 return -EEXIST;
1597
1598 check_cq = READ_ONCE(ctx->check_cq);
1599 if (unlikely(check_cq)) {
1600 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1601 __io_cqring_overflow_flush(ctx, false);
1602 /*
1603 * Similarly do not spin if we have not informed the user of any
1604 * dropped CQE.
1605 */
1606 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1607 return -EBADR;
1608 }
1609 /*
1610 * Don't enter poll loop if we already have events pending.
1611 * If we do, we can potentially be spinning for commands that
1612 * already triggered a CQE (eg in error).
1613 */
1614 if (io_cqring_events(ctx))
1615 return 0;
1616
1617 do {
1618 int ret = 0;
1619
1620 /*
1621 * If a submit got punted to a workqueue, we can have the
1622 * application entering polling for a command before it gets
1623 * issued. That app will hold the uring_lock for the duration
1624 * of the poll right here, so we need to take a breather every
1625 * now and then to ensure that the issue has a chance to add
1626 * the poll to the issued list. Otherwise we can spin here
1627 * forever, while the workqueue is stuck trying to acquire the
1628 * very same mutex.
1629 */
1630 if (wq_list_empty(&ctx->iopoll_list) ||
1631 io_task_work_pending(ctx)) {
1632 u32 tail = ctx->cached_cq_tail;
1633
1634 (void) io_run_local_work_locked(ctx, min_events);
1635
1636 if (task_work_pending(current) ||
1637 wq_list_empty(&ctx->iopoll_list)) {
1638 mutex_unlock(&ctx->uring_lock);
1639 io_run_task_work();
1640 mutex_lock(&ctx->uring_lock);
1641 }
1642 /* some requests don't go through iopoll_list */
1643 if (tail != ctx->cached_cq_tail ||
1644 wq_list_empty(&ctx->iopoll_list))
1645 break;
1646 }
1647 ret = io_do_iopoll(ctx, !min_events);
1648 if (unlikely(ret < 0))
1649 return ret;
1650
1651 if (task_sigpending(current))
1652 return -EINTR;
1653 if (need_resched())
1654 break;
1655
1656 nr_events += ret;
1657 } while (nr_events < min_events);
1658
1659 return 0;
1660 }
1661
io_req_task_complete(struct io_tw_req tw_req,io_tw_token_t tw)1662 void io_req_task_complete(struct io_tw_req tw_req, io_tw_token_t tw)
1663 {
1664 io_req_complete_defer(tw_req.req);
1665 }
1666
1667 /*
1668 * After the iocb has been issued, it's safe to be found on the poll list.
1669 * Adding the kiocb to the list AFTER submission ensures that we don't
1670 * find it from a io_do_iopoll() thread before the issuer is done
1671 * accessing the kiocb cookie.
1672 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1673 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1674 {
1675 struct io_ring_ctx *ctx = req->ctx;
1676 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1677
1678 /* workqueue context doesn't hold uring_lock, grab it now */
1679 if (unlikely(needs_lock))
1680 mutex_lock(&ctx->uring_lock);
1681
1682 /*
1683 * Track whether we have multiple files in our lists. This will impact
1684 * how we do polling eventually, not spinning if we're on potentially
1685 * different devices.
1686 */
1687 if (wq_list_empty(&ctx->iopoll_list)) {
1688 ctx->poll_multi_queue = false;
1689 } else if (!ctx->poll_multi_queue) {
1690 struct io_kiocb *list_req;
1691
1692 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1693 comp_list);
1694 if (list_req->file != req->file)
1695 ctx->poll_multi_queue = true;
1696 }
1697
1698 /*
1699 * For fast devices, IO may have already completed. If it has, add
1700 * it to the front so we find it first.
1701 */
1702 if (READ_ONCE(req->iopoll_completed))
1703 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1704 else
1705 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1706
1707 if (unlikely(needs_lock)) {
1708 /*
1709 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1710 * in sq thread task context or in io worker task context. If
1711 * current task context is sq thread, we don't need to check
1712 * whether should wake up sq thread.
1713 */
1714 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1715 wq_has_sleeper(&ctx->sq_data->wait))
1716 wake_up(&ctx->sq_data->wait);
1717
1718 mutex_unlock(&ctx->uring_lock);
1719 }
1720 }
1721
io_file_get_flags(struct file * file)1722 io_req_flags_t io_file_get_flags(struct file *file)
1723 {
1724 io_req_flags_t res = 0;
1725
1726 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1727
1728 if (S_ISREG(file_inode(file)->i_mode))
1729 res |= REQ_F_ISREG;
1730 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1731 res |= REQ_F_SUPPORT_NOWAIT;
1732 return res;
1733 }
1734
io_drain_req(struct io_kiocb * req)1735 static __cold void io_drain_req(struct io_kiocb *req)
1736 __must_hold(&ctx->uring_lock)
1737 {
1738 struct io_ring_ctx *ctx = req->ctx;
1739 bool drain = req->flags & IOSQE_IO_DRAIN;
1740 struct io_defer_entry *de;
1741
1742 de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1743 if (!de) {
1744 io_req_defer_failed(req, -ENOMEM);
1745 return;
1746 }
1747
1748 io_prep_async_link(req);
1749 trace_io_uring_defer(req);
1750 de->req = req;
1751
1752 ctx->nr_drained += io_linked_nr(req);
1753 list_add_tail(&de->list, &ctx->defer_list);
1754 io_queue_deferred(ctx);
1755 if (!drain && list_empty(&ctx->defer_list))
1756 ctx->drain_active = false;
1757 }
1758
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1759 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1760 unsigned int issue_flags)
1761 {
1762 if (req->file || !def->needs_file)
1763 return true;
1764
1765 if (req->flags & REQ_F_FIXED_FILE)
1766 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1767 else
1768 req->file = io_file_get_normal(req, req->cqe.fd);
1769
1770 return !!req->file;
1771 }
1772
1773 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1774
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1775 static inline int __io_issue_sqe(struct io_kiocb *req,
1776 unsigned int issue_flags,
1777 const struct io_issue_def *def)
1778 {
1779 const struct cred *creds = NULL;
1780 struct io_kiocb *link = NULL;
1781 int ret;
1782
1783 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1784 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1785 creds = override_creds(req->creds);
1786 if (req->flags & REQ_F_ARM_LTIMEOUT)
1787 link = __io_prep_linked_timeout(req);
1788 }
1789
1790 if (!def->audit_skip)
1791 audit_uring_entry(req->opcode);
1792
1793 ret = def->issue(req, issue_flags);
1794
1795 if (!def->audit_skip)
1796 audit_uring_exit(!ret, ret);
1797
1798 if (unlikely(creds || link)) {
1799 if (creds)
1800 revert_creds(creds);
1801 if (link)
1802 io_queue_linked_timeout(link);
1803 }
1804
1805 return ret;
1806 }
1807
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1808 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1809 {
1810 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1811 int ret;
1812
1813 if (unlikely(!io_assign_file(req, def, issue_flags)))
1814 return -EBADF;
1815
1816 ret = __io_issue_sqe(req, issue_flags, def);
1817
1818 if (ret == IOU_COMPLETE) {
1819 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1820 io_req_complete_defer(req);
1821 else
1822 io_req_complete_post(req, issue_flags);
1823
1824 return 0;
1825 }
1826
1827 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1828 ret = 0;
1829
1830 /* If the op doesn't have a file, we're not polling for it */
1831 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1832 io_iopoll_req_issued(req, issue_flags);
1833 }
1834 return ret;
1835 }
1836
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1837 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1838 {
1839 const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1840 IO_URING_F_MULTISHOT |
1841 IO_URING_F_COMPLETE_DEFER;
1842 int ret;
1843
1844 io_tw_lock(req->ctx, tw);
1845
1846 WARN_ON_ONCE(!req->file);
1847 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1848 return -EFAULT;
1849
1850 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1851
1852 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1853 return ret;
1854 }
1855
io_wq_free_work(struct io_wq_work * work)1856 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1857 {
1858 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1859 struct io_kiocb *nxt = NULL;
1860
1861 if (req_ref_put_and_test_atomic(req)) {
1862 if (req->flags & IO_REQ_LINK_FLAGS)
1863 nxt = io_req_find_next(req);
1864 io_free_req(req);
1865 }
1866 return nxt ? &nxt->work : NULL;
1867 }
1868
io_wq_submit_work(struct io_wq_work * work)1869 void io_wq_submit_work(struct io_wq_work *work)
1870 {
1871 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1872 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1873 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1874 bool needs_poll = false;
1875 int ret = 0, err = -ECANCELED;
1876
1877 /* one will be dropped by io_wq_free_work() after returning to io-wq */
1878 if (!(req->flags & REQ_F_REFCOUNT))
1879 __io_req_set_refcount(req, 2);
1880 else
1881 req_ref_get(req);
1882
1883 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1884 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1885 fail:
1886 io_req_task_queue_fail(req, err);
1887 return;
1888 }
1889 if (!io_assign_file(req, def, issue_flags)) {
1890 err = -EBADF;
1891 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1892 goto fail;
1893 }
1894
1895 /*
1896 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1897 * submitter task context. Final request completions are handed to the
1898 * right context, however this is not the case of auxiliary CQEs,
1899 * which is the main mean of operation for multishot requests.
1900 * Don't allow any multishot execution from io-wq. It's more restrictive
1901 * than necessary and also cleaner.
1902 */
1903 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1904 err = -EBADFD;
1905 if (!io_file_can_poll(req))
1906 goto fail;
1907 if (req->file->f_flags & O_NONBLOCK ||
1908 req->file->f_mode & FMODE_NOWAIT) {
1909 err = -ECANCELED;
1910 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1911 goto fail;
1912 return;
1913 } else {
1914 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1915 }
1916 }
1917
1918 if (req->flags & REQ_F_FORCE_ASYNC) {
1919 bool opcode_poll = def->pollin || def->pollout;
1920
1921 if (opcode_poll && io_file_can_poll(req)) {
1922 needs_poll = true;
1923 issue_flags |= IO_URING_F_NONBLOCK;
1924 }
1925 }
1926
1927 do {
1928 ret = io_issue_sqe(req, issue_flags);
1929 if (ret != -EAGAIN)
1930 break;
1931
1932 /*
1933 * If REQ_F_NOWAIT is set, then don't wait or retry with
1934 * poll. -EAGAIN is final for that case.
1935 */
1936 if (req->flags & REQ_F_NOWAIT)
1937 break;
1938
1939 /*
1940 * We can get EAGAIN for iopolled IO even though we're
1941 * forcing a sync submission from here, since we can't
1942 * wait for request slots on the block side.
1943 */
1944 if (!needs_poll) {
1945 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1946 break;
1947 if (io_wq_worker_stopped())
1948 break;
1949 cond_resched();
1950 continue;
1951 }
1952
1953 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1954 return;
1955 /* aborted or ready, in either case retry blocking */
1956 needs_poll = false;
1957 issue_flags &= ~IO_URING_F_NONBLOCK;
1958 } while (1);
1959
1960 /* avoid locking problems by failing it from a clean context */
1961 if (ret)
1962 io_req_task_queue_fail(req, ret);
1963 }
1964
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1965 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1966 unsigned int issue_flags)
1967 {
1968 struct io_ring_ctx *ctx = req->ctx;
1969 struct io_rsrc_node *node;
1970 struct file *file = NULL;
1971
1972 io_ring_submit_lock(ctx, issue_flags);
1973 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1974 if (node) {
1975 node->refs++;
1976 req->file_node = node;
1977 req->flags |= io_slot_flags(node);
1978 file = io_slot_file(node);
1979 }
1980 io_ring_submit_unlock(ctx, issue_flags);
1981 return file;
1982 }
1983
io_file_get_normal(struct io_kiocb * req,int fd)1984 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1985 {
1986 struct file *file = fget(fd);
1987
1988 trace_io_uring_file_get(req, fd);
1989
1990 /* we don't allow fixed io_uring files */
1991 if (file && io_is_uring_fops(file))
1992 io_req_track_inflight(req);
1993 return file;
1994 }
1995
io_req_sqe_copy(struct io_kiocb * req,unsigned int issue_flags)1996 static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags)
1997 {
1998 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1999
2000 if (req->flags & REQ_F_SQE_COPIED)
2001 return 0;
2002 req->flags |= REQ_F_SQE_COPIED;
2003 if (!def->sqe_copy)
2004 return 0;
2005 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE)))
2006 return -EFAULT;
2007 def->sqe_copy(req);
2008 return 0;
2009 }
2010
io_queue_async(struct io_kiocb * req,unsigned int issue_flags,int ret)2011 static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret)
2012 __must_hold(&req->ctx->uring_lock)
2013 {
2014 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2015 fail:
2016 io_req_defer_failed(req, ret);
2017 return;
2018 }
2019
2020 ret = io_req_sqe_copy(req, issue_flags);
2021 if (unlikely(ret))
2022 goto fail;
2023
2024 switch (io_arm_poll_handler(req, 0)) {
2025 case IO_APOLL_READY:
2026 io_req_task_queue(req);
2027 break;
2028 case IO_APOLL_ABORTED:
2029 io_queue_iowq(req);
2030 break;
2031 case IO_APOLL_OK:
2032 break;
2033 }
2034 }
2035
io_queue_sqe(struct io_kiocb * req,unsigned int extra_flags)2036 static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags)
2037 __must_hold(&req->ctx->uring_lock)
2038 {
2039 unsigned int issue_flags = IO_URING_F_NONBLOCK |
2040 IO_URING_F_COMPLETE_DEFER | extra_flags;
2041 int ret;
2042
2043 ret = io_issue_sqe(req, issue_flags);
2044
2045 /*
2046 * We async punt it if the file wasn't marked NOWAIT, or if the file
2047 * doesn't support non-blocking read/write attempts
2048 */
2049 if (unlikely(ret))
2050 io_queue_async(req, issue_flags, ret);
2051 }
2052
io_queue_sqe_fallback(struct io_kiocb * req)2053 static void io_queue_sqe_fallback(struct io_kiocb *req)
2054 __must_hold(&req->ctx->uring_lock)
2055 {
2056 if (unlikely(req->flags & REQ_F_FAIL)) {
2057 /*
2058 * We don't submit, fail them all, for that replace hardlinks
2059 * with normal links. Extra REQ_F_LINK is tolerated.
2060 */
2061 req->flags &= ~REQ_F_HARDLINK;
2062 req->flags |= REQ_F_LINK;
2063 io_req_defer_failed(req, req->cqe.res);
2064 } else {
2065 /* can't fail with IO_URING_F_INLINE */
2066 io_req_sqe_copy(req, IO_URING_F_INLINE);
2067 if (unlikely(req->ctx->drain_active))
2068 io_drain_req(req);
2069 else
2070 io_queue_iowq(req);
2071 }
2072 }
2073
2074 /*
2075 * Check SQE restrictions (opcode and flags).
2076 *
2077 * Returns 'true' if SQE is allowed, 'false' otherwise.
2078 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2079 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2080 struct io_kiocb *req,
2081 unsigned int sqe_flags)
2082 {
2083 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2084 return false;
2085
2086 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2087 ctx->restrictions.sqe_flags_required)
2088 return false;
2089
2090 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2091 ctx->restrictions.sqe_flags_required))
2092 return false;
2093
2094 return true;
2095 }
2096
io_init_drain(struct io_ring_ctx * ctx)2097 static void io_init_drain(struct io_ring_ctx *ctx)
2098 {
2099 struct io_kiocb *head = ctx->submit_state.link.head;
2100
2101 ctx->drain_active = true;
2102 if (head) {
2103 /*
2104 * If we need to drain a request in the middle of a link, drain
2105 * the head request and the next request/link after the current
2106 * link. Considering sequential execution of links,
2107 * REQ_F_IO_DRAIN will be maintained for every request of our
2108 * link.
2109 */
2110 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2111 ctx->drain_next = true;
2112 }
2113 }
2114
io_init_fail_req(struct io_kiocb * req,int err)2115 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2116 {
2117 /* ensure per-opcode data is cleared if we fail before prep */
2118 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2119 return err;
2120 }
2121
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe,unsigned int * left)2122 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2123 const struct io_uring_sqe *sqe, unsigned int *left)
2124 __must_hold(&ctx->uring_lock)
2125 {
2126 const struct io_issue_def *def;
2127 unsigned int sqe_flags;
2128 int personality;
2129 u8 opcode;
2130
2131 req->ctx = ctx;
2132 req->opcode = opcode = READ_ONCE(sqe->opcode);
2133 /* same numerical values with corresponding REQ_F_*, safe to copy */
2134 sqe_flags = READ_ONCE(sqe->flags);
2135 req->flags = (__force io_req_flags_t) sqe_flags;
2136 req->cqe.user_data = READ_ONCE(sqe->user_data);
2137 req->file = NULL;
2138 req->tctx = current->io_uring;
2139 req->cancel_seq_set = false;
2140 req->async_data = NULL;
2141
2142 if (unlikely(opcode >= IORING_OP_LAST)) {
2143 req->opcode = 0;
2144 return io_init_fail_req(req, -EINVAL);
2145 }
2146 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2147
2148 def = &io_issue_defs[opcode];
2149 if (def->is_128 && !(ctx->flags & IORING_SETUP_SQE128)) {
2150 /*
2151 * A 128b op on a non-128b SQ requires mixed SQE support as
2152 * well as 2 contiguous entries.
2153 */
2154 if (!(ctx->flags & IORING_SETUP_SQE_MIXED) || *left < 2 ||
2155 !(ctx->cached_sq_head & (ctx->sq_entries - 1)))
2156 return io_init_fail_req(req, -EINVAL);
2157 /*
2158 * A 128b operation on a mixed SQ uses two entries, so we have
2159 * to increment the head and cached refs, and decrement what's
2160 * left.
2161 */
2162 current->io_uring->cached_refs++;
2163 ctx->cached_sq_head++;
2164 (*left)--;
2165 }
2166
2167 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2168 /* enforce forwards compatibility on users */
2169 if (sqe_flags & ~SQE_VALID_FLAGS)
2170 return io_init_fail_req(req, -EINVAL);
2171 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2172 if (!def->buffer_select)
2173 return io_init_fail_req(req, -EOPNOTSUPP);
2174 req->buf_index = READ_ONCE(sqe->buf_group);
2175 }
2176 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2177 ctx->drain_disabled = true;
2178 if (sqe_flags & IOSQE_IO_DRAIN) {
2179 if (ctx->drain_disabled)
2180 return io_init_fail_req(req, -EOPNOTSUPP);
2181 io_init_drain(ctx);
2182 }
2183 }
2184 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2185 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2186 return io_init_fail_req(req, -EACCES);
2187 /* knock it to the slow queue path, will be drained there */
2188 if (ctx->drain_active)
2189 req->flags |= REQ_F_FORCE_ASYNC;
2190 /* if there is no link, we're at "next" request and need to drain */
2191 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2192 ctx->drain_next = false;
2193 ctx->drain_active = true;
2194 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2195 }
2196 }
2197
2198 if (!def->ioprio && sqe->ioprio)
2199 return io_init_fail_req(req, -EINVAL);
2200 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2201 return io_init_fail_req(req, -EINVAL);
2202
2203 if (def->needs_file) {
2204 struct io_submit_state *state = &ctx->submit_state;
2205
2206 req->cqe.fd = READ_ONCE(sqe->fd);
2207
2208 /*
2209 * Plug now if we have more than 2 IO left after this, and the
2210 * target is potentially a read/write to block based storage.
2211 */
2212 if (state->need_plug && def->plug) {
2213 state->plug_started = true;
2214 state->need_plug = false;
2215 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2216 }
2217 }
2218
2219 personality = READ_ONCE(sqe->personality);
2220 if (personality) {
2221 int ret;
2222
2223 req->creds = xa_load(&ctx->personalities, personality);
2224 if (!req->creds)
2225 return io_init_fail_req(req, -EINVAL);
2226 get_cred(req->creds);
2227 ret = security_uring_override_creds(req->creds);
2228 if (ret) {
2229 put_cred(req->creds);
2230 return io_init_fail_req(req, ret);
2231 }
2232 req->flags |= REQ_F_CREDS;
2233 }
2234
2235 return def->prep(req, sqe);
2236 }
2237
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2238 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2239 struct io_kiocb *req, int ret)
2240 {
2241 struct io_ring_ctx *ctx = req->ctx;
2242 struct io_submit_link *link = &ctx->submit_state.link;
2243 struct io_kiocb *head = link->head;
2244
2245 trace_io_uring_req_failed(sqe, req, ret);
2246
2247 /*
2248 * Avoid breaking links in the middle as it renders links with SQPOLL
2249 * unusable. Instead of failing eagerly, continue assembling the link if
2250 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2251 * should find the flag and handle the rest.
2252 */
2253 req_fail_link_node(req, ret);
2254 if (head && !(head->flags & REQ_F_FAIL))
2255 req_fail_link_node(head, -ECANCELED);
2256
2257 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2258 if (head) {
2259 link->last->link = req;
2260 link->head = NULL;
2261 req = head;
2262 }
2263 io_queue_sqe_fallback(req);
2264 return ret;
2265 }
2266
2267 if (head)
2268 link->last->link = req;
2269 else
2270 link->head = req;
2271 link->last = req;
2272 return 0;
2273 }
2274
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe,unsigned int * left)2275 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2276 const struct io_uring_sqe *sqe, unsigned int *left)
2277 __must_hold(&ctx->uring_lock)
2278 {
2279 struct io_submit_link *link = &ctx->submit_state.link;
2280 int ret;
2281
2282 ret = io_init_req(ctx, req, sqe, left);
2283 if (unlikely(ret))
2284 return io_submit_fail_init(sqe, req, ret);
2285
2286 trace_io_uring_submit_req(req);
2287
2288 /*
2289 * If we already have a head request, queue this one for async
2290 * submittal once the head completes. If we don't have a head but
2291 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2292 * submitted sync once the chain is complete. If none of those
2293 * conditions are true (normal request), then just queue it.
2294 */
2295 if (unlikely(link->head)) {
2296 trace_io_uring_link(req, link->last);
2297 io_req_sqe_copy(req, IO_URING_F_INLINE);
2298 link->last->link = req;
2299 link->last = req;
2300
2301 if (req->flags & IO_REQ_LINK_FLAGS)
2302 return 0;
2303 /* last request of the link, flush it */
2304 req = link->head;
2305 link->head = NULL;
2306 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2307 goto fallback;
2308
2309 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2310 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2311 if (req->flags & IO_REQ_LINK_FLAGS) {
2312 link->head = req;
2313 link->last = req;
2314 } else {
2315 fallback:
2316 io_queue_sqe_fallback(req);
2317 }
2318 return 0;
2319 }
2320
2321 io_queue_sqe(req, IO_URING_F_INLINE);
2322 return 0;
2323 }
2324
2325 /*
2326 * Batched submission is done, ensure local IO is flushed out.
2327 */
io_submit_state_end(struct io_ring_ctx * ctx)2328 static void io_submit_state_end(struct io_ring_ctx *ctx)
2329 {
2330 struct io_submit_state *state = &ctx->submit_state;
2331
2332 if (unlikely(state->link.head))
2333 io_queue_sqe_fallback(state->link.head);
2334 /* flush only after queuing links as they can generate completions */
2335 io_submit_flush_completions(ctx);
2336 if (state->plug_started)
2337 blk_finish_plug(&state->plug);
2338 }
2339
2340 /*
2341 * Start submission side cache.
2342 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2343 static void io_submit_state_start(struct io_submit_state *state,
2344 unsigned int max_ios)
2345 {
2346 state->plug_started = false;
2347 state->need_plug = max_ios > 2;
2348 state->submit_nr = max_ios;
2349 /* set only head, no need to init link_last in advance */
2350 state->link.head = NULL;
2351 }
2352
io_commit_sqring(struct io_ring_ctx * ctx)2353 static void io_commit_sqring(struct io_ring_ctx *ctx)
2354 {
2355 struct io_rings *rings = ctx->rings;
2356
2357 /*
2358 * Ensure any loads from the SQEs are done at this point,
2359 * since once we write the new head, the application could
2360 * write new data to them.
2361 */
2362 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2363 }
2364
2365 /*
2366 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2367 * that is mapped by userspace. This means that care needs to be taken to
2368 * ensure that reads are stable, as we cannot rely on userspace always
2369 * being a good citizen. If members of the sqe are validated and then later
2370 * used, it's important that those reads are done through READ_ONCE() to
2371 * prevent a re-load down the line.
2372 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2373 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2374 {
2375 unsigned mask = ctx->sq_entries - 1;
2376 unsigned head = ctx->cached_sq_head++ & mask;
2377
2378 if (static_branch_unlikely(&io_key_has_sqarray) &&
2379 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2380 head = READ_ONCE(ctx->sq_array[head]);
2381 if (unlikely(head >= ctx->sq_entries)) {
2382 WRITE_ONCE(ctx->rings->sq_dropped,
2383 READ_ONCE(ctx->rings->sq_dropped) + 1);
2384 return false;
2385 }
2386 head = array_index_nospec(head, ctx->sq_entries);
2387 }
2388
2389 /*
2390 * The cached sq head (or cq tail) serves two purposes:
2391 *
2392 * 1) allows us to batch the cost of updating the user visible
2393 * head updates.
2394 * 2) allows the kernel side to track the head on its own, even
2395 * though the application is the one updating it.
2396 */
2397
2398 /* double index for 128-byte SQEs, twice as long */
2399 if (ctx->flags & IORING_SETUP_SQE128)
2400 head <<= 1;
2401 *sqe = &ctx->sq_sqes[head];
2402 return true;
2403 }
2404
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2405 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2406 __must_hold(&ctx->uring_lock)
2407 {
2408 unsigned int entries = io_sqring_entries(ctx);
2409 unsigned int left;
2410 int ret;
2411
2412 entries = min(nr, entries);
2413 if (unlikely(!entries))
2414 return 0;
2415
2416 ret = left = entries;
2417 io_get_task_refs(left);
2418 io_submit_state_start(&ctx->submit_state, left);
2419
2420 do {
2421 const struct io_uring_sqe *sqe;
2422 struct io_kiocb *req;
2423
2424 if (unlikely(!io_alloc_req(ctx, &req)))
2425 break;
2426 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2427 io_req_add_to_cache(req, ctx);
2428 break;
2429 }
2430
2431 /*
2432 * Continue submitting even for sqe failure if the
2433 * ring was setup with IORING_SETUP_SUBMIT_ALL
2434 */
2435 if (unlikely(io_submit_sqe(ctx, req, sqe, &left)) &&
2436 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2437 left--;
2438 break;
2439 }
2440 } while (--left);
2441
2442 if (unlikely(left)) {
2443 ret -= left;
2444 /* try again if it submitted nothing and can't allocate a req */
2445 if (!ret && io_req_cache_empty(ctx))
2446 ret = -EAGAIN;
2447 current->io_uring->cached_refs += left;
2448 }
2449
2450 io_submit_state_end(ctx);
2451 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2452 io_commit_sqring(ctx);
2453 return ret;
2454 }
2455
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2456 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2457 int wake_flags, void *key)
2458 {
2459 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2460
2461 /*
2462 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2463 * the task, and the next invocation will do it.
2464 */
2465 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2466 return autoremove_wake_function(curr, mode, wake_flags, key);
2467 return -1;
2468 }
2469
io_run_task_work_sig(struct io_ring_ctx * ctx)2470 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2471 {
2472 if (io_local_work_pending(ctx)) {
2473 __set_current_state(TASK_RUNNING);
2474 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2475 return 0;
2476 }
2477 if (io_run_task_work() > 0)
2478 return 0;
2479 if (task_sigpending(current))
2480 return -EINTR;
2481 return 0;
2482 }
2483
current_pending_io(void)2484 static bool current_pending_io(void)
2485 {
2486 struct io_uring_task *tctx = current->io_uring;
2487
2488 if (!tctx)
2489 return false;
2490 return percpu_counter_read_positive(&tctx->inflight);
2491 }
2492
io_cqring_timer_wakeup(struct hrtimer * timer)2493 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2494 {
2495 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2496
2497 WRITE_ONCE(iowq->hit_timeout, 1);
2498 iowq->min_timeout = 0;
2499 wake_up_process(iowq->wq.private);
2500 return HRTIMER_NORESTART;
2501 }
2502
2503 /*
2504 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2505 * wake up. If not, and we have a normal timeout, switch to that and keep
2506 * sleeping.
2507 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2508 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2509 {
2510 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2511 struct io_ring_ctx *ctx = iowq->ctx;
2512
2513 /* no general timeout, or shorter (or equal), we are done */
2514 if (iowq->timeout == KTIME_MAX ||
2515 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2516 goto out_wake;
2517 /* work we may need to run, wake function will see if we need to wake */
2518 if (io_has_work(ctx))
2519 goto out_wake;
2520 /* got events since we started waiting, min timeout is done */
2521 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2522 goto out_wake;
2523 /* if we have any events and min timeout expired, we're done */
2524 if (io_cqring_events(ctx))
2525 goto out_wake;
2526
2527 /*
2528 * If using deferred task_work running and application is waiting on
2529 * more than one request, ensure we reset it now where we are switching
2530 * to normal sleeps. Any request completion post min_wait should wake
2531 * the task and return.
2532 */
2533 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2534 atomic_set(&ctx->cq_wait_nr, 1);
2535 smp_mb();
2536 if (!llist_empty(&ctx->work_llist))
2537 goto out_wake;
2538 }
2539
2540 /* any generated CQE posted past this time should wake us up */
2541 iowq->cq_tail = iowq->cq_min_tail;
2542
2543 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2544 hrtimer_set_expires(timer, iowq->timeout);
2545 return HRTIMER_RESTART;
2546 out_wake:
2547 return io_cqring_timer_wakeup(timer);
2548 }
2549
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2550 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2551 clockid_t clock_id, ktime_t start_time)
2552 {
2553 ktime_t timeout;
2554
2555 if (iowq->min_timeout) {
2556 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2557 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2558 HRTIMER_MODE_ABS);
2559 } else {
2560 timeout = iowq->timeout;
2561 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2562 HRTIMER_MODE_ABS);
2563 }
2564
2565 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2566 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2567
2568 if (!READ_ONCE(iowq->hit_timeout))
2569 schedule();
2570
2571 hrtimer_cancel(&iowq->t);
2572 destroy_hrtimer_on_stack(&iowq->t);
2573 __set_current_state(TASK_RUNNING);
2574
2575 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2576 }
2577
2578 struct ext_arg {
2579 size_t argsz;
2580 struct timespec64 ts;
2581 const sigset_t __user *sig;
2582 ktime_t min_time;
2583 bool ts_set;
2584 bool iowait;
2585 };
2586
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2587 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2588 struct io_wait_queue *iowq,
2589 struct ext_arg *ext_arg,
2590 ktime_t start_time)
2591 {
2592 int ret = 0;
2593
2594 /*
2595 * Mark us as being in io_wait if we have pending requests, so cpufreq
2596 * can take into account that the task is waiting for IO - turns out
2597 * to be important for low QD IO.
2598 */
2599 if (ext_arg->iowait && current_pending_io())
2600 current->in_iowait = 1;
2601 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2602 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2603 else
2604 schedule();
2605 current->in_iowait = 0;
2606 return ret;
2607 }
2608
2609 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2610 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2611 struct io_wait_queue *iowq,
2612 struct ext_arg *ext_arg,
2613 ktime_t start_time)
2614 {
2615 if (unlikely(READ_ONCE(ctx->check_cq)))
2616 return 1;
2617 if (unlikely(io_local_work_pending(ctx)))
2618 return 1;
2619 if (unlikely(task_work_pending(current)))
2620 return 1;
2621 if (unlikely(task_sigpending(current)))
2622 return -EINTR;
2623 if (unlikely(io_should_wake(iowq)))
2624 return 0;
2625
2626 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2627 }
2628
2629 /*
2630 * Wait until events become available, if we don't already have some. The
2631 * application must reap them itself, as they reside on the shared cq ring.
2632 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2633 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2634 struct ext_arg *ext_arg)
2635 {
2636 struct io_wait_queue iowq;
2637 struct io_rings *rings = ctx->rings;
2638 ktime_t start_time;
2639 int ret;
2640
2641 min_events = min_t(int, min_events, ctx->cq_entries);
2642
2643 if (!io_allowed_run_tw(ctx))
2644 return -EEXIST;
2645 if (io_local_work_pending(ctx))
2646 io_run_local_work(ctx, min_events,
2647 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2648 io_run_task_work();
2649
2650 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2651 io_cqring_do_overflow_flush(ctx);
2652 if (__io_cqring_events_user(ctx) >= min_events)
2653 return 0;
2654
2655 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2656 iowq.wq.private = current;
2657 INIT_LIST_HEAD(&iowq.wq.entry);
2658 iowq.ctx = ctx;
2659 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2660 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2661 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2662 iowq.hit_timeout = 0;
2663 iowq.min_timeout = ext_arg->min_time;
2664 iowq.timeout = KTIME_MAX;
2665 start_time = io_get_time(ctx);
2666
2667 if (ext_arg->ts_set) {
2668 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2669 if (!(flags & IORING_ENTER_ABS_TIMER))
2670 iowq.timeout = ktime_add(iowq.timeout, start_time);
2671 }
2672
2673 if (ext_arg->sig) {
2674 #ifdef CONFIG_COMPAT
2675 if (in_compat_syscall())
2676 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2677 ext_arg->argsz);
2678 else
2679 #endif
2680 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2681
2682 if (ret)
2683 return ret;
2684 }
2685
2686 io_napi_busy_loop(ctx, &iowq);
2687
2688 trace_io_uring_cqring_wait(ctx, min_events);
2689 do {
2690 unsigned long check_cq;
2691 int nr_wait;
2692
2693 /* if min timeout has been hit, don't reset wait count */
2694 if (!iowq.hit_timeout)
2695 nr_wait = (int) iowq.cq_tail -
2696 READ_ONCE(ctx->rings->cq.tail);
2697 else
2698 nr_wait = 1;
2699
2700 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2701 atomic_set(&ctx->cq_wait_nr, nr_wait);
2702 set_current_state(TASK_INTERRUPTIBLE);
2703 } else {
2704 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2705 TASK_INTERRUPTIBLE);
2706 }
2707
2708 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2709 __set_current_state(TASK_RUNNING);
2710 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2711
2712 /*
2713 * Run task_work after scheduling and before io_should_wake().
2714 * If we got woken because of task_work being processed, run it
2715 * now rather than let the caller do another wait loop.
2716 */
2717 if (io_local_work_pending(ctx))
2718 io_run_local_work(ctx, nr_wait, nr_wait);
2719 io_run_task_work();
2720
2721 /*
2722 * Non-local task_work will be run on exit to userspace, but
2723 * if we're using DEFER_TASKRUN, then we could have waited
2724 * with a timeout for a number of requests. If the timeout
2725 * hits, we could have some requests ready to process. Ensure
2726 * this break is _after_ we have run task_work, to avoid
2727 * deferring running potentially pending requests until the
2728 * next time we wait for events.
2729 */
2730 if (ret < 0)
2731 break;
2732
2733 check_cq = READ_ONCE(ctx->check_cq);
2734 if (unlikely(check_cq)) {
2735 /* let the caller flush overflows, retry */
2736 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2737 io_cqring_do_overflow_flush(ctx);
2738 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2739 ret = -EBADR;
2740 break;
2741 }
2742 }
2743
2744 if (io_should_wake(&iowq)) {
2745 ret = 0;
2746 break;
2747 }
2748 cond_resched();
2749 } while (1);
2750
2751 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2752 finish_wait(&ctx->cq_wait, &iowq.wq);
2753 restore_saved_sigmask_unless(ret == -EINTR);
2754
2755 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2756 }
2757
io_rings_free(struct io_ring_ctx * ctx)2758 static void io_rings_free(struct io_ring_ctx *ctx)
2759 {
2760 io_free_region(ctx->user, &ctx->sq_region);
2761 io_free_region(ctx->user, &ctx->ring_region);
2762 ctx->rings = NULL;
2763 ctx->sq_sqes = NULL;
2764 }
2765
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,struct io_rings_layout * rl)2766 static int rings_size(unsigned int flags, unsigned int sq_entries,
2767 unsigned int cq_entries, struct io_rings_layout *rl)
2768 {
2769 struct io_rings *rings;
2770 size_t sqe_size;
2771 size_t off;
2772
2773 if (flags & IORING_SETUP_CQE_MIXED) {
2774 if (cq_entries < 2)
2775 return -EOVERFLOW;
2776 }
2777 if (flags & IORING_SETUP_SQE_MIXED) {
2778 if (sq_entries < 2)
2779 return -EOVERFLOW;
2780 }
2781
2782 rl->sq_array_offset = SIZE_MAX;
2783
2784 sqe_size = sizeof(struct io_uring_sqe);
2785 if (flags & IORING_SETUP_SQE128)
2786 sqe_size *= 2;
2787
2788 rl->sq_size = array_size(sqe_size, sq_entries);
2789 if (rl->sq_size == SIZE_MAX)
2790 return -EOVERFLOW;
2791
2792 off = struct_size(rings, cqes, cq_entries);
2793 if (flags & IORING_SETUP_CQE32)
2794 off = size_mul(off, 2);
2795 if (off == SIZE_MAX)
2796 return -EOVERFLOW;
2797
2798 #ifdef CONFIG_SMP
2799 off = ALIGN(off, SMP_CACHE_BYTES);
2800 if (off == 0)
2801 return -EOVERFLOW;
2802 #endif
2803
2804 if (!(flags & IORING_SETUP_NO_SQARRAY)) {
2805 size_t sq_array_size;
2806
2807 rl->sq_array_offset = off;
2808
2809 sq_array_size = array_size(sizeof(u32), sq_entries);
2810 off = size_add(off, sq_array_size);
2811 if (off == SIZE_MAX)
2812 return -EOVERFLOW;
2813 }
2814
2815 rl->rings_size = off;
2816 return 0;
2817 }
2818
__io_req_caches_free(struct io_ring_ctx * ctx)2819 static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2820 {
2821 struct io_kiocb *req;
2822 int nr = 0;
2823
2824 while (!io_req_cache_empty(ctx)) {
2825 req = io_extract_req(ctx);
2826 io_poison_req(req);
2827 kmem_cache_free(req_cachep, req);
2828 nr++;
2829 }
2830 if (nr) {
2831 ctx->nr_req_allocated -= nr;
2832 percpu_ref_put_many(&ctx->refs, nr);
2833 }
2834 }
2835
io_req_caches_free(struct io_ring_ctx * ctx)2836 static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2837 {
2838 guard(mutex)(&ctx->uring_lock);
2839 __io_req_caches_free(ctx);
2840 }
2841
io_ring_ctx_free(struct io_ring_ctx * ctx)2842 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2843 {
2844 io_sq_thread_finish(ctx);
2845
2846 mutex_lock(&ctx->uring_lock);
2847 io_sqe_buffers_unregister(ctx);
2848 io_sqe_files_unregister(ctx);
2849 io_unregister_zcrx_ifqs(ctx);
2850 io_cqring_overflow_kill(ctx);
2851 io_eventfd_unregister(ctx);
2852 io_free_alloc_caches(ctx);
2853 io_destroy_buffers(ctx);
2854 io_free_region(ctx->user, &ctx->param_region);
2855 mutex_unlock(&ctx->uring_lock);
2856 if (ctx->sq_creds)
2857 put_cred(ctx->sq_creds);
2858 if (ctx->submitter_task)
2859 put_task_struct(ctx->submitter_task);
2860
2861 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2862
2863 if (ctx->mm_account) {
2864 mmdrop(ctx->mm_account);
2865 ctx->mm_account = NULL;
2866 }
2867 io_rings_free(ctx);
2868
2869 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2870 static_branch_dec(&io_key_has_sqarray);
2871
2872 percpu_ref_exit(&ctx->refs);
2873 free_uid(ctx->user);
2874 io_req_caches_free(ctx);
2875
2876 WARN_ON_ONCE(ctx->nr_req_allocated);
2877
2878 if (ctx->hash_map)
2879 io_wq_put_hash(ctx->hash_map);
2880 io_napi_free(ctx);
2881 kvfree(ctx->cancel_table.hbs);
2882 xa_destroy(&ctx->io_bl_xa);
2883 kfree(ctx);
2884 }
2885
io_activate_pollwq_cb(struct callback_head * cb)2886 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2887 {
2888 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2889 poll_wq_task_work);
2890
2891 mutex_lock(&ctx->uring_lock);
2892 ctx->poll_activated = true;
2893 mutex_unlock(&ctx->uring_lock);
2894
2895 /*
2896 * Wake ups for some events between start of polling and activation
2897 * might've been lost due to loose synchronisation.
2898 */
2899 wake_up_all(&ctx->poll_wq);
2900 percpu_ref_put(&ctx->refs);
2901 }
2902
io_activate_pollwq(struct io_ring_ctx * ctx)2903 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2904 {
2905 spin_lock(&ctx->completion_lock);
2906 /* already activated or in progress */
2907 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2908 goto out;
2909 if (WARN_ON_ONCE(!ctx->task_complete))
2910 goto out;
2911 if (!ctx->submitter_task)
2912 goto out;
2913 /*
2914 * with ->submitter_task only the submitter task completes requests, we
2915 * only need to sync with it, which is done by injecting a tw
2916 */
2917 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2918 percpu_ref_get(&ctx->refs);
2919 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2920 percpu_ref_put(&ctx->refs);
2921 out:
2922 spin_unlock(&ctx->completion_lock);
2923 }
2924
io_uring_poll(struct file * file,poll_table * wait)2925 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2926 {
2927 struct io_ring_ctx *ctx = file->private_data;
2928 __poll_t mask = 0;
2929
2930 if (unlikely(!ctx->poll_activated))
2931 io_activate_pollwq(ctx);
2932 /*
2933 * provides mb() which pairs with barrier from wq_has_sleeper
2934 * call in io_commit_cqring
2935 */
2936 poll_wait(file, &ctx->poll_wq, wait);
2937
2938 if (!io_sqring_full(ctx))
2939 mask |= EPOLLOUT | EPOLLWRNORM;
2940
2941 /*
2942 * Don't flush cqring overflow list here, just do a simple check.
2943 * Otherwise there could possible be ABBA deadlock:
2944 * CPU0 CPU1
2945 * ---- ----
2946 * lock(&ctx->uring_lock);
2947 * lock(&ep->mtx);
2948 * lock(&ctx->uring_lock);
2949 * lock(&ep->mtx);
2950 *
2951 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2952 * pushes them to do the flush.
2953 */
2954
2955 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2956 mask |= EPOLLIN | EPOLLRDNORM;
2957
2958 return mask;
2959 }
2960
2961 struct io_tctx_exit {
2962 struct callback_head task_work;
2963 struct completion completion;
2964 struct io_ring_ctx *ctx;
2965 };
2966
io_tctx_exit_cb(struct callback_head * cb)2967 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2968 {
2969 struct io_uring_task *tctx = current->io_uring;
2970 struct io_tctx_exit *work;
2971
2972 work = container_of(cb, struct io_tctx_exit, task_work);
2973 /*
2974 * When @in_cancel, we're in cancellation and it's racy to remove the
2975 * node. It'll be removed by the end of cancellation, just ignore it.
2976 * tctx can be NULL if the queueing of this task_work raced with
2977 * work cancelation off the exec path.
2978 */
2979 if (tctx && !atomic_read(&tctx->in_cancel))
2980 io_uring_del_tctx_node((unsigned long)work->ctx);
2981 complete(&work->completion);
2982 }
2983
io_ring_exit_work(struct work_struct * work)2984 static __cold void io_ring_exit_work(struct work_struct *work)
2985 {
2986 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2987 unsigned long timeout = jiffies + HZ * 60 * 5;
2988 unsigned long interval = HZ / 20;
2989 struct io_tctx_exit exit;
2990 struct io_tctx_node *node;
2991 int ret;
2992
2993 /*
2994 * If we're doing polled IO and end up having requests being
2995 * submitted async (out-of-line), then completions can come in while
2996 * we're waiting for refs to drop. We need to reap these manually,
2997 * as nobody else will be looking for them.
2998 */
2999 do {
3000 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3001 mutex_lock(&ctx->uring_lock);
3002 io_cqring_overflow_kill(ctx);
3003 mutex_unlock(&ctx->uring_lock);
3004 }
3005
3006 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3007 io_move_task_work_from_local(ctx);
3008
3009 /* The SQPOLL thread never reaches this path */
3010 while (io_uring_try_cancel_requests(ctx, NULL, true, false))
3011 cond_resched();
3012
3013 if (ctx->sq_data) {
3014 struct io_sq_data *sqd = ctx->sq_data;
3015 struct task_struct *tsk;
3016
3017 io_sq_thread_park(sqd);
3018 tsk = sqpoll_task_locked(sqd);
3019 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3020 io_wq_cancel_cb(tsk->io_uring->io_wq,
3021 io_cancel_ctx_cb, ctx, true);
3022 io_sq_thread_unpark(sqd);
3023 }
3024
3025 io_req_caches_free(ctx);
3026
3027 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3028 /* there is little hope left, don't run it too often */
3029 interval = HZ * 60;
3030 }
3031 /*
3032 * This is really an uninterruptible wait, as it has to be
3033 * complete. But it's also run from a kworker, which doesn't
3034 * take signals, so it's fine to make it interruptible. This
3035 * avoids scenarios where we knowingly can wait much longer
3036 * on completions, for example if someone does a SIGSTOP on
3037 * a task that needs to finish task_work to make this loop
3038 * complete. That's a synthetic situation that should not
3039 * cause a stuck task backtrace, and hence a potential panic
3040 * on stuck tasks if that is enabled.
3041 */
3042 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3043
3044 init_completion(&exit.completion);
3045 init_task_work(&exit.task_work, io_tctx_exit_cb);
3046 exit.ctx = ctx;
3047
3048 mutex_lock(&ctx->uring_lock);
3049 mutex_lock(&ctx->tctx_lock);
3050 while (!list_empty(&ctx->tctx_list)) {
3051 WARN_ON_ONCE(time_after(jiffies, timeout));
3052
3053 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3054 ctx_node);
3055 /* don't spin on a single task if cancellation failed */
3056 list_rotate_left(&ctx->tctx_list);
3057 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3058 if (WARN_ON_ONCE(ret))
3059 continue;
3060
3061 mutex_unlock(&ctx->tctx_lock);
3062 mutex_unlock(&ctx->uring_lock);
3063 /*
3064 * See comment above for
3065 * wait_for_completion_interruptible_timeout() on why this
3066 * wait is marked as interruptible.
3067 */
3068 wait_for_completion_interruptible(&exit.completion);
3069 mutex_lock(&ctx->uring_lock);
3070 mutex_lock(&ctx->tctx_lock);
3071 }
3072 mutex_unlock(&ctx->tctx_lock);
3073 mutex_unlock(&ctx->uring_lock);
3074 spin_lock(&ctx->completion_lock);
3075 spin_unlock(&ctx->completion_lock);
3076
3077 /* pairs with RCU read section in io_req_local_work_add() */
3078 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3079 synchronize_rcu();
3080
3081 io_ring_ctx_free(ctx);
3082 }
3083
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3084 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3085 {
3086 unsigned long index;
3087 struct creds *creds;
3088
3089 mutex_lock(&ctx->uring_lock);
3090 percpu_ref_kill(&ctx->refs);
3091 xa_for_each(&ctx->personalities, index, creds)
3092 io_unregister_personality(ctx, index);
3093 mutex_unlock(&ctx->uring_lock);
3094
3095 flush_delayed_work(&ctx->fallback_work);
3096
3097 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3098 /*
3099 * Use system_dfl_wq to avoid spawning tons of event kworkers
3100 * if we're exiting a ton of rings at the same time. It just adds
3101 * noise and overhead, there's no discernable change in runtime
3102 * over using system_percpu_wq.
3103 */
3104 queue_work(iou_wq, &ctx->exit_work);
3105 }
3106
io_uring_release(struct inode * inode,struct file * file)3107 static int io_uring_release(struct inode *inode, struct file *file)
3108 {
3109 struct io_ring_ctx *ctx = file->private_data;
3110
3111 file->private_data = NULL;
3112 io_ring_ctx_wait_and_kill(ctx);
3113 return 0;
3114 }
3115
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3116 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3117 const struct io_uring_getevents_arg __user *uarg)
3118 {
3119 unsigned long size = sizeof(struct io_uring_reg_wait);
3120 unsigned long offset = (uintptr_t)uarg;
3121 unsigned long end;
3122
3123 if (unlikely(offset % sizeof(long)))
3124 return ERR_PTR(-EFAULT);
3125
3126 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3127 if (unlikely(check_add_overflow(offset, size, &end) ||
3128 end > ctx->cq_wait_size))
3129 return ERR_PTR(-EFAULT);
3130
3131 offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3132 return ctx->cq_wait_arg + offset;
3133 }
3134
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3135 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3136 const void __user *argp, size_t argsz)
3137 {
3138 struct io_uring_getevents_arg arg;
3139
3140 if (!(flags & IORING_ENTER_EXT_ARG))
3141 return 0;
3142 if (flags & IORING_ENTER_EXT_ARG_REG)
3143 return -EINVAL;
3144 if (argsz != sizeof(arg))
3145 return -EINVAL;
3146 if (copy_from_user(&arg, argp, sizeof(arg)))
3147 return -EFAULT;
3148 return 0;
3149 }
3150
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3151 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3152 const void __user *argp, struct ext_arg *ext_arg)
3153 {
3154 const struct io_uring_getevents_arg __user *uarg = argp;
3155 struct io_uring_getevents_arg arg;
3156
3157 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3158
3159 /*
3160 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3161 * is just a pointer to the sigset_t.
3162 */
3163 if (!(flags & IORING_ENTER_EXT_ARG)) {
3164 ext_arg->sig = (const sigset_t __user *) argp;
3165 return 0;
3166 }
3167
3168 if (flags & IORING_ENTER_EXT_ARG_REG) {
3169 struct io_uring_reg_wait *w;
3170
3171 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3172 return -EINVAL;
3173 w = io_get_ext_arg_reg(ctx, argp);
3174 if (IS_ERR(w))
3175 return PTR_ERR(w);
3176
3177 if (w->flags & ~IORING_REG_WAIT_TS)
3178 return -EINVAL;
3179 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3180 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3181 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3182 if (w->flags & IORING_REG_WAIT_TS) {
3183 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3184 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3185 ext_arg->ts_set = true;
3186 }
3187 return 0;
3188 }
3189
3190 /*
3191 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3192 * timespec and sigset_t pointers if good.
3193 */
3194 if (ext_arg->argsz != sizeof(arg))
3195 return -EINVAL;
3196 #ifdef CONFIG_64BIT
3197 if (!user_access_begin(uarg, sizeof(*uarg)))
3198 return -EFAULT;
3199 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3200 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3201 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3202 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3203 user_access_end();
3204 #else
3205 if (copy_from_user(&arg, uarg, sizeof(arg)))
3206 return -EFAULT;
3207 #endif
3208 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3209 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3210 ext_arg->argsz = arg.sigmask_sz;
3211 if (arg.ts) {
3212 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3213 return -EFAULT;
3214 ext_arg->ts_set = true;
3215 }
3216 return 0;
3217 #ifdef CONFIG_64BIT
3218 uaccess_end:
3219 user_access_end();
3220 return -EFAULT;
3221 #endif
3222 }
3223
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3224 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3225 u32, min_complete, u32, flags, const void __user *, argp,
3226 size_t, argsz)
3227 {
3228 struct io_ring_ctx *ctx;
3229 struct file *file;
3230 long ret;
3231
3232 if (unlikely(flags & ~IORING_ENTER_FLAGS))
3233 return -EINVAL;
3234
3235 /*
3236 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3237 * need only dereference our task private array to find it.
3238 */
3239 if (flags & IORING_ENTER_REGISTERED_RING) {
3240 struct io_uring_task *tctx = current->io_uring;
3241
3242 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3243 return -EINVAL;
3244 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3245 file = tctx->registered_rings[fd];
3246 if (unlikely(!file))
3247 return -EBADF;
3248 } else {
3249 file = fget(fd);
3250 if (unlikely(!file))
3251 return -EBADF;
3252 ret = -EOPNOTSUPP;
3253 if (unlikely(!io_is_uring_fops(file)))
3254 goto out;
3255 }
3256
3257 ctx = file->private_data;
3258 ret = -EBADFD;
3259 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3260 goto out;
3261
3262 /*
3263 * For SQ polling, the thread will do all submissions and completions.
3264 * Just return the requested submit count, and wake the thread if
3265 * we were asked to.
3266 */
3267 ret = 0;
3268 if (ctx->flags & IORING_SETUP_SQPOLL) {
3269 if (unlikely(ctx->sq_data->thread == NULL)) {
3270 ret = -EOWNERDEAD;
3271 goto out;
3272 }
3273 if (flags & IORING_ENTER_SQ_WAKEUP)
3274 wake_up(&ctx->sq_data->wait);
3275 if (flags & IORING_ENTER_SQ_WAIT)
3276 io_sqpoll_wait_sq(ctx);
3277
3278 ret = to_submit;
3279 } else if (to_submit) {
3280 ret = io_uring_add_tctx_node(ctx);
3281 if (unlikely(ret))
3282 goto out;
3283
3284 mutex_lock(&ctx->uring_lock);
3285 ret = io_submit_sqes(ctx, to_submit);
3286 if (ret != to_submit) {
3287 mutex_unlock(&ctx->uring_lock);
3288 goto out;
3289 }
3290 if (flags & IORING_ENTER_GETEVENTS) {
3291 if (ctx->syscall_iopoll)
3292 goto iopoll_locked;
3293 /*
3294 * Ignore errors, we'll soon call io_cqring_wait() and
3295 * it should handle ownership problems if any.
3296 */
3297 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3298 (void)io_run_local_work_locked(ctx, min_complete);
3299 }
3300 mutex_unlock(&ctx->uring_lock);
3301 }
3302
3303 if (flags & IORING_ENTER_GETEVENTS) {
3304 int ret2;
3305
3306 if (ctx->syscall_iopoll) {
3307 /*
3308 * We disallow the app entering submit/complete with
3309 * polling, but we still need to lock the ring to
3310 * prevent racing with polled issue that got punted to
3311 * a workqueue.
3312 */
3313 mutex_lock(&ctx->uring_lock);
3314 iopoll_locked:
3315 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3316 if (likely(!ret2))
3317 ret2 = io_iopoll_check(ctx, min_complete);
3318 mutex_unlock(&ctx->uring_lock);
3319 } else {
3320 struct ext_arg ext_arg = { .argsz = argsz };
3321
3322 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3323 if (likely(!ret2))
3324 ret2 = io_cqring_wait(ctx, min_complete, flags,
3325 &ext_arg);
3326 }
3327
3328 if (!ret) {
3329 ret = ret2;
3330
3331 /*
3332 * EBADR indicates that one or more CQE were dropped.
3333 * Once the user has been informed we can clear the bit
3334 * as they are obviously ok with those drops.
3335 */
3336 if (unlikely(ret2 == -EBADR))
3337 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3338 &ctx->check_cq);
3339 }
3340 }
3341 out:
3342 if (!(flags & IORING_ENTER_REGISTERED_RING))
3343 fput(file);
3344 return ret;
3345 }
3346
3347 static const struct file_operations io_uring_fops = {
3348 .release = io_uring_release,
3349 .mmap = io_uring_mmap,
3350 .get_unmapped_area = io_uring_get_unmapped_area,
3351 #ifndef CONFIG_MMU
3352 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3353 #endif
3354 .poll = io_uring_poll,
3355 #ifdef CONFIG_PROC_FS
3356 .show_fdinfo = io_uring_show_fdinfo,
3357 #endif
3358 };
3359
io_is_uring_fops(struct file * file)3360 bool io_is_uring_fops(struct file *file)
3361 {
3362 return file->f_op == &io_uring_fops;
3363 }
3364
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_ctx_config * config)3365 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3366 struct io_ctx_config *config)
3367 {
3368 struct io_uring_params *p = &config->p;
3369 struct io_rings_layout *rl = &config->layout;
3370 struct io_uring_region_desc rd;
3371 struct io_rings *rings;
3372 int ret;
3373
3374 /* make sure these are sane, as we already accounted them */
3375 ctx->sq_entries = p->sq_entries;
3376 ctx->cq_entries = p->cq_entries;
3377
3378 memset(&rd, 0, sizeof(rd));
3379 rd.size = PAGE_ALIGN(rl->rings_size);
3380 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3381 rd.user_addr = p->cq_off.user_addr;
3382 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3383 }
3384 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3385 if (ret)
3386 return ret;
3387 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3388 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3389 ctx->sq_array = (u32 *)((char *)rings + rl->sq_array_offset);
3390
3391 memset(&rd, 0, sizeof(rd));
3392 rd.size = PAGE_ALIGN(rl->sq_size);
3393 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3394 rd.user_addr = p->sq_off.user_addr;
3395 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3396 }
3397 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3398 if (ret) {
3399 io_rings_free(ctx);
3400 return ret;
3401 }
3402 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3403
3404 memset(rings, 0, sizeof(*rings));
3405 WRITE_ONCE(rings->sq_ring_mask, ctx->sq_entries - 1);
3406 WRITE_ONCE(rings->cq_ring_mask, ctx->cq_entries - 1);
3407 WRITE_ONCE(rings->sq_ring_entries, ctx->sq_entries);
3408 WRITE_ONCE(rings->cq_ring_entries, ctx->cq_entries);
3409 return 0;
3410 }
3411
io_uring_install_fd(struct file * file)3412 static int io_uring_install_fd(struct file *file)
3413 {
3414 int fd;
3415
3416 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3417 if (fd < 0)
3418 return fd;
3419 fd_install(fd, file);
3420 return fd;
3421 }
3422
3423 /*
3424 * Allocate an anonymous fd, this is what constitutes the application
3425 * visible backing of an io_uring instance. The application mmaps this
3426 * fd to gain access to the SQ/CQ ring details.
3427 */
io_uring_get_file(struct io_ring_ctx * ctx)3428 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3429 {
3430 /* Create a new inode so that the LSM can block the creation. */
3431 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3432 O_RDWR | O_CLOEXEC, NULL);
3433 }
3434
io_uring_sanitise_params(struct io_uring_params * p)3435 static int io_uring_sanitise_params(struct io_uring_params *p)
3436 {
3437 unsigned flags = p->flags;
3438
3439 if (flags & ~IORING_SETUP_FLAGS)
3440 return -EINVAL;
3441
3442 /* There is no way to mmap rings without a real fd */
3443 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3444 !(flags & IORING_SETUP_NO_MMAP))
3445 return -EINVAL;
3446
3447 if (flags & IORING_SETUP_SQPOLL) {
3448 /* IPI related flags don't make sense with SQPOLL */
3449 if (flags & (IORING_SETUP_COOP_TASKRUN |
3450 IORING_SETUP_TASKRUN_FLAG |
3451 IORING_SETUP_DEFER_TASKRUN))
3452 return -EINVAL;
3453 }
3454
3455 if (flags & IORING_SETUP_TASKRUN_FLAG) {
3456 if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3457 IORING_SETUP_DEFER_TASKRUN)))
3458 return -EINVAL;
3459 }
3460
3461 /* HYBRID_IOPOLL only valid with IOPOLL */
3462 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3463 return -EINVAL;
3464
3465 /*
3466 * For DEFER_TASKRUN we require the completion task to be the same as
3467 * the submission task. This implies that there is only one submitter.
3468 */
3469 if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3470 !(flags & IORING_SETUP_SINGLE_ISSUER))
3471 return -EINVAL;
3472
3473 /*
3474 * Nonsensical to ask for CQE32 and mixed CQE support, it's not
3475 * supported to post 16b CQEs on a ring setup with CQE32.
3476 */
3477 if ((flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) ==
3478 (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))
3479 return -EINVAL;
3480 /*
3481 * Nonsensical to ask for SQE128 and mixed SQE support, it's not
3482 * supported to post 64b SQEs on a ring setup with SQE128.
3483 */
3484 if ((flags & (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED)) ==
3485 (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED))
3486 return -EINVAL;
3487
3488 return 0;
3489 }
3490
io_uring_fill_params(struct io_uring_params * p)3491 static int io_uring_fill_params(struct io_uring_params *p)
3492 {
3493 unsigned entries = p->sq_entries;
3494
3495 if (!entries)
3496 return -EINVAL;
3497 if (entries > IORING_MAX_ENTRIES) {
3498 if (!(p->flags & IORING_SETUP_CLAMP))
3499 return -EINVAL;
3500 entries = IORING_MAX_ENTRIES;
3501 }
3502
3503 /*
3504 * Use twice as many entries for the CQ ring. It's possible for the
3505 * application to drive a higher depth than the size of the SQ ring,
3506 * since the sqes are only used at submission time. This allows for
3507 * some flexibility in overcommitting a bit. If the application has
3508 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3509 * of CQ ring entries manually.
3510 */
3511 p->sq_entries = roundup_pow_of_two(entries);
3512 if (p->flags & IORING_SETUP_CQSIZE) {
3513 /*
3514 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3515 * to a power-of-two, if it isn't already. We do NOT impose
3516 * any cq vs sq ring sizing.
3517 */
3518 if (!p->cq_entries)
3519 return -EINVAL;
3520 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3521 if (!(p->flags & IORING_SETUP_CLAMP))
3522 return -EINVAL;
3523 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3524 }
3525 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3526 if (p->cq_entries < p->sq_entries)
3527 return -EINVAL;
3528 } else {
3529 p->cq_entries = 2 * p->sq_entries;
3530 }
3531
3532 return 0;
3533 }
3534
io_prepare_config(struct io_ctx_config * config)3535 int io_prepare_config(struct io_ctx_config *config)
3536 {
3537 struct io_uring_params *p = &config->p;
3538 int ret;
3539
3540 ret = io_uring_sanitise_params(p);
3541 if (ret)
3542 return ret;
3543
3544 ret = io_uring_fill_params(p);
3545 if (ret)
3546 return ret;
3547
3548 ret = rings_size(p->flags, p->sq_entries, p->cq_entries,
3549 &config->layout);
3550 if (ret)
3551 return ret;
3552
3553 p->sq_off.head = offsetof(struct io_rings, sq.head);
3554 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3555 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3556 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3557 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3558 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3559 p->sq_off.resv1 = 0;
3560 if (!(p->flags & IORING_SETUP_NO_MMAP))
3561 p->sq_off.user_addr = 0;
3562
3563 p->cq_off.head = offsetof(struct io_rings, cq.head);
3564 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3565 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3566 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3567 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3568 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3569 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3570 p->cq_off.resv1 = 0;
3571 if (!(p->flags & IORING_SETUP_NO_MMAP))
3572 p->cq_off.user_addr = 0;
3573 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3574 p->sq_off.array = config->layout.sq_array_offset;
3575
3576 return 0;
3577 }
3578
io_uring_create(struct io_ctx_config * config)3579 static __cold int io_uring_create(struct io_ctx_config *config)
3580 {
3581 struct io_uring_params *p = &config->p;
3582 struct io_ring_ctx *ctx;
3583 struct io_uring_task *tctx;
3584 struct file *file;
3585 int ret;
3586
3587 ret = io_prepare_config(config);
3588 if (ret)
3589 return ret;
3590
3591 ctx = io_ring_ctx_alloc(p);
3592 if (!ctx)
3593 return -ENOMEM;
3594
3595 ctx->clockid = CLOCK_MONOTONIC;
3596 ctx->clock_offset = 0;
3597
3598 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3599 static_branch_inc(&io_key_has_sqarray);
3600
3601 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3602 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3603 !(ctx->flags & IORING_SETUP_SQPOLL))
3604 ctx->task_complete = true;
3605
3606 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3607 ctx->lockless_cq = true;
3608
3609 /*
3610 * lazy poll_wq activation relies on ->task_complete for synchronisation
3611 * purposes, see io_activate_pollwq()
3612 */
3613 if (!ctx->task_complete)
3614 ctx->poll_activated = true;
3615
3616 /*
3617 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3618 * space applications don't need to do io completion events
3619 * polling again, they can rely on io_sq_thread to do polling
3620 * work, which can reduce cpu usage and uring_lock contention.
3621 */
3622 if (ctx->flags & IORING_SETUP_IOPOLL &&
3623 !(ctx->flags & IORING_SETUP_SQPOLL))
3624 ctx->syscall_iopoll = 1;
3625
3626 ctx->compat = in_compat_syscall();
3627 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3628 ctx->user = get_uid(current_user());
3629
3630 /*
3631 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3632 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3633 */
3634 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3635 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3636 else
3637 ctx->notify_method = TWA_SIGNAL;
3638
3639 /*
3640 * This is just grabbed for accounting purposes. When a process exits,
3641 * the mm is exited and dropped before the files, hence we need to hang
3642 * on to this mm purely for the purposes of being able to unaccount
3643 * memory (locked/pinned vm). It's not used for anything else.
3644 */
3645 mmgrab(current->mm);
3646 ctx->mm_account = current->mm;
3647
3648 ret = io_allocate_scq_urings(ctx, config);
3649 if (ret)
3650 goto err;
3651
3652 ret = io_sq_offload_create(ctx, p);
3653 if (ret)
3654 goto err;
3655
3656 p->features = IORING_FEAT_FLAGS;
3657
3658 if (copy_to_user(config->uptr, p, sizeof(*p))) {
3659 ret = -EFAULT;
3660 goto err;
3661 }
3662
3663 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3664 && !(ctx->flags & IORING_SETUP_R_DISABLED)) {
3665 /*
3666 * Unlike io_register_enable_rings(), don't need WRITE_ONCE()
3667 * since ctx isn't yet accessible from other tasks
3668 */
3669 ctx->submitter_task = get_task_struct(current);
3670 }
3671
3672 file = io_uring_get_file(ctx);
3673 if (IS_ERR(file)) {
3674 ret = PTR_ERR(file);
3675 goto err;
3676 }
3677
3678 ret = __io_uring_add_tctx_node(ctx);
3679 if (ret)
3680 goto err_fput;
3681 tctx = current->io_uring;
3682
3683 /*
3684 * Install ring fd as the very last thing, so we don't risk someone
3685 * having closed it before we finish setup
3686 */
3687 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3688 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3689 else
3690 ret = io_uring_install_fd(file);
3691 if (ret < 0)
3692 goto err_fput;
3693
3694 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3695 return ret;
3696 err:
3697 io_ring_ctx_wait_and_kill(ctx);
3698 return ret;
3699 err_fput:
3700 fput(file);
3701 return ret;
3702 }
3703
3704 /*
3705 * Sets up an aio uring context, and returns the fd. Applications asks for a
3706 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3707 * params structure passed in.
3708 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3709 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3710 {
3711 struct io_ctx_config config;
3712
3713 memset(&config, 0, sizeof(config));
3714
3715 if (copy_from_user(&config.p, params, sizeof(config.p)))
3716 return -EFAULT;
3717
3718 if (!mem_is_zero(&config.p.resv, sizeof(config.p.resv)))
3719 return -EINVAL;
3720
3721 config.p.sq_entries = entries;
3722 config.uptr = params;
3723 return io_uring_create(&config);
3724 }
3725
io_uring_allowed(void)3726 static inline int io_uring_allowed(void)
3727 {
3728 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3729 kgid_t io_uring_group;
3730
3731 if (disabled == 2)
3732 return -EPERM;
3733
3734 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3735 goto allowed_lsm;
3736
3737 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3738 if (!gid_valid(io_uring_group))
3739 return -EPERM;
3740
3741 if (!in_group_p(io_uring_group))
3742 return -EPERM;
3743
3744 allowed_lsm:
3745 return security_uring_allowed();
3746 }
3747
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3748 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3749 struct io_uring_params __user *, params)
3750 {
3751 int ret;
3752
3753 ret = io_uring_allowed();
3754 if (ret)
3755 return ret;
3756
3757 return io_uring_setup(entries, params);
3758 }
3759
io_uring_init(void)3760 static int __init io_uring_init(void)
3761 {
3762 struct kmem_cache_args kmem_args = {
3763 .useroffset = offsetof(struct io_kiocb, cmd.data),
3764 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3765 .freeptr_offset = offsetof(struct io_kiocb, work),
3766 .use_freeptr_offset = true,
3767 };
3768
3769 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3770 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3771 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3772 } while (0)
3773
3774 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3775 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3776 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3777 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3778 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3779 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3780 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3781 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3782 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3783 BUILD_BUG_SQE_ELEM(8, __u64, off);
3784 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3785 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3786 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3787 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3788 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3789 BUILD_BUG_SQE_ELEM(24, __u32, len);
3790 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3791 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3792 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3793 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3794 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3795 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3796 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3797 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3798 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3799 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3800 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3801 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3802 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3803 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3804 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3805 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3806 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3807 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3808 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3809 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3810 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3811 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3812 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3813 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3814 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3815 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3816 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3817 BUILD_BUG_SQE_ELEM(44, __u8, write_stream);
3818 BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]);
3819 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3820 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3821 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3822 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3823 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3824 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3825
3826 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3827 sizeof(struct io_uring_rsrc_update));
3828 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3829 sizeof(struct io_uring_rsrc_update2));
3830
3831 /* ->buf_index is u16 */
3832 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3833 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3834 offsetof(struct io_uring_buf_ring, tail));
3835
3836 /* should fit into one byte */
3837 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3838 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3839 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3840
3841 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3842
3843 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3844
3845 /* top 8bits are for internal use */
3846 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3847
3848 io_uring_optable_init();
3849
3850 /* imu->dir is u8 */
3851 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3852
3853 /*
3854 * Allow user copy in the per-command field, which starts after the
3855 * file in io_kiocb and until the opcode field. The openat2 handling
3856 * requires copying in user memory into the io_kiocb object in that
3857 * range, and HARDENED_USERCOPY will complain if we haven't
3858 * correctly annotated this range.
3859 */
3860 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3861 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3862 SLAB_TYPESAFE_BY_RCU);
3863
3864 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3865 BUG_ON(!iou_wq);
3866
3867 #ifdef CONFIG_SYSCTL
3868 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3869 #endif
3870
3871 return 0;
3872 };
3873 __initcall(io_uring_init);
3874