xref: /linux/kernel/futex/waitwake.c (revision 06d07429858317ded2db7986113a9e0129cd599b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/plist.h>
4 #include <linux/sched/task.h>
5 #include <linux/sched/signal.h>
6 #include <linux/freezer.h>
7 
8 #include "futex.h"
9 
10 /*
11  * READ this before attempting to hack on futexes!
12  *
13  * Basic futex operation and ordering guarantees
14  * =============================================
15  *
16  * The waiter reads the futex value in user space and calls
17  * futex_wait(). This function computes the hash bucket and acquires
18  * the hash bucket lock. After that it reads the futex user space value
19  * again and verifies that the data has not changed. If it has not changed
20  * it enqueues itself into the hash bucket, releases the hash bucket lock
21  * and schedules.
22  *
23  * The waker side modifies the user space value of the futex and calls
24  * futex_wake(). This function computes the hash bucket and acquires the
25  * hash bucket lock. Then it looks for waiters on that futex in the hash
26  * bucket and wakes them.
27  *
28  * In futex wake up scenarios where no tasks are blocked on a futex, taking
29  * the hb spinlock can be avoided and simply return. In order for this
30  * optimization to work, ordering guarantees must exist so that the waiter
31  * being added to the list is acknowledged when the list is concurrently being
32  * checked by the waker, avoiding scenarios like the following:
33  *
34  * CPU 0                               CPU 1
35  * val = *futex;
36  * sys_futex(WAIT, futex, val);
37  *   futex_wait(futex, val);
38  *   uval = *futex;
39  *                                     *futex = newval;
40  *                                     sys_futex(WAKE, futex);
41  *                                       futex_wake(futex);
42  *                                       if (queue_empty())
43  *                                         return;
44  *   if (uval == val)
45  *      lock(hash_bucket(futex));
46  *      queue();
47  *     unlock(hash_bucket(futex));
48  *     schedule();
49  *
50  * This would cause the waiter on CPU 0 to wait forever because it
51  * missed the transition of the user space value from val to newval
52  * and the waker did not find the waiter in the hash bucket queue.
53  *
54  * The correct serialization ensures that a waiter either observes
55  * the changed user space value before blocking or is woken by a
56  * concurrent waker:
57  *
58  * CPU 0                                 CPU 1
59  * val = *futex;
60  * sys_futex(WAIT, futex, val);
61  *   futex_wait(futex, val);
62  *
63  *   waiters++; (a)
64  *   smp_mb(); (A) <-- paired with -.
65  *                                  |
66  *   lock(hash_bucket(futex));      |
67  *                                  |
68  *   uval = *futex;                 |
69  *                                  |        *futex = newval;
70  *                                  |        sys_futex(WAKE, futex);
71  *                                  |          futex_wake(futex);
72  *                                  |
73  *                                  `--------> smp_mb(); (B)
74  *   if (uval == val)
75  *     queue();
76  *     unlock(hash_bucket(futex));
77  *     schedule();                         if (waiters)
78  *                                           lock(hash_bucket(futex));
79  *   else                                    wake_waiters(futex);
80  *     waiters--; (b)                        unlock(hash_bucket(futex));
81  *
82  * Where (A) orders the waiters increment and the futex value read through
83  * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
84  * to futex and the waiters read (see futex_hb_waiters_pending()).
85  *
86  * This yields the following case (where X:=waiters, Y:=futex):
87  *
88  *	X = Y = 0
89  *
90  *	w[X]=1		w[Y]=1
91  *	MB		MB
92  *	r[Y]=y		r[X]=x
93  *
94  * Which guarantees that x==0 && y==0 is impossible; which translates back into
95  * the guarantee that we cannot both miss the futex variable change and the
96  * enqueue.
97  *
98  * Note that a new waiter is accounted for in (a) even when it is possible that
99  * the wait call can return error, in which case we backtrack from it in (b).
100  * Refer to the comment in futex_q_lock().
101  *
102  * Similarly, in order to account for waiters being requeued on another
103  * address we always increment the waiters for the destination bucket before
104  * acquiring the lock. It then decrements them again  after releasing it -
105  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
106  * will do the additional required waiter count housekeeping. This is done for
107  * double_lock_hb() and double_unlock_hb(), respectively.
108  */
109 
__futex_wake_mark(struct futex_q * q)110 bool __futex_wake_mark(struct futex_q *q)
111 {
112 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
113 		return false;
114 
115 	__futex_unqueue(q);
116 	/*
117 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
118 	 * is written, without taking any locks. This is possible in the event
119 	 * of a spurious wakeup, for example. A memory barrier is required here
120 	 * to prevent the following store to lock_ptr from getting ahead of the
121 	 * plist_del in __futex_unqueue().
122 	 */
123 	smp_store_release(&q->lock_ptr, NULL);
124 
125 	return true;
126 }
127 
128 /*
129  * The hash bucket lock must be held when this is called.
130  * Afterwards, the futex_q must not be accessed. Callers
131  * must ensure to later call wake_up_q() for the actual
132  * wakeups to occur.
133  */
futex_wake_mark(struct wake_q_head * wake_q,struct futex_q * q)134 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
135 {
136 	struct task_struct *p = q->task;
137 
138 	get_task_struct(p);
139 
140 	if (!__futex_wake_mark(q)) {
141 		put_task_struct(p);
142 		return;
143 	}
144 
145 	/*
146 	 * Queue the task for later wakeup for after we've released
147 	 * the hb->lock.
148 	 */
149 	wake_q_add_safe(wake_q, p);
150 }
151 
152 /*
153  * Wake up waiters matching bitset queued on this futex (uaddr).
154  */
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)155 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
156 {
157 	struct futex_hash_bucket *hb;
158 	struct futex_q *this, *next;
159 	union futex_key key = FUTEX_KEY_INIT;
160 	DEFINE_WAKE_Q(wake_q);
161 	int ret;
162 
163 	if (!bitset)
164 		return -EINVAL;
165 
166 	ret = get_futex_key(uaddr, flags, &key, FUTEX_READ);
167 	if (unlikely(ret != 0))
168 		return ret;
169 
170 	if ((flags & FLAGS_STRICT) && !nr_wake)
171 		return 0;
172 
173 	hb = futex_hash(&key);
174 
175 	/* Make sure we really have tasks to wakeup */
176 	if (!futex_hb_waiters_pending(hb))
177 		return ret;
178 
179 	spin_lock(&hb->lock);
180 
181 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
182 		if (futex_match (&this->key, &key)) {
183 			if (this->pi_state || this->rt_waiter) {
184 				ret = -EINVAL;
185 				break;
186 			}
187 
188 			/* Check if one of the bits is set in both bitsets */
189 			if (!(this->bitset & bitset))
190 				continue;
191 
192 			this->wake(&wake_q, this);
193 			if (++ret >= nr_wake)
194 				break;
195 		}
196 	}
197 
198 	spin_unlock(&hb->lock);
199 	wake_up_q(&wake_q);
200 	return ret;
201 }
202 
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)203 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
204 {
205 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
206 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
207 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
208 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
209 	int oldval, ret;
210 
211 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
212 		if (oparg < 0 || oparg > 31) {
213 			char comm[sizeof(current->comm)];
214 			/*
215 			 * kill this print and return -EINVAL when userspace
216 			 * is sane again
217 			 */
218 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
219 					get_task_comm(comm, current), oparg);
220 			oparg &= 31;
221 		}
222 		oparg = 1 << oparg;
223 	}
224 
225 	pagefault_disable();
226 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
227 	pagefault_enable();
228 	if (ret)
229 		return ret;
230 
231 	switch (cmp) {
232 	case FUTEX_OP_CMP_EQ:
233 		return oldval == cmparg;
234 	case FUTEX_OP_CMP_NE:
235 		return oldval != cmparg;
236 	case FUTEX_OP_CMP_LT:
237 		return oldval < cmparg;
238 	case FUTEX_OP_CMP_GE:
239 		return oldval >= cmparg;
240 	case FUTEX_OP_CMP_LE:
241 		return oldval <= cmparg;
242 	case FUTEX_OP_CMP_GT:
243 		return oldval > cmparg;
244 	default:
245 		return -ENOSYS;
246 	}
247 }
248 
249 /*
250  * Wake up all waiters hashed on the physical page that is mapped
251  * to this virtual address:
252  */
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)253 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
254 		  int nr_wake, int nr_wake2, int op)
255 {
256 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
257 	struct futex_hash_bucket *hb1, *hb2;
258 	struct futex_q *this, *next;
259 	int ret, op_ret;
260 	DEFINE_WAKE_Q(wake_q);
261 
262 retry:
263 	ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ);
264 	if (unlikely(ret != 0))
265 		return ret;
266 	ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
267 	if (unlikely(ret != 0))
268 		return ret;
269 
270 	hb1 = futex_hash(&key1);
271 	hb2 = futex_hash(&key2);
272 
273 retry_private:
274 	double_lock_hb(hb1, hb2);
275 	op_ret = futex_atomic_op_inuser(op, uaddr2);
276 	if (unlikely(op_ret < 0)) {
277 		double_unlock_hb(hb1, hb2);
278 
279 		if (!IS_ENABLED(CONFIG_MMU) ||
280 		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
281 			/*
282 			 * we don't get EFAULT from MMU faults if we don't have
283 			 * an MMU, but we might get them from range checking
284 			 */
285 			ret = op_ret;
286 			return ret;
287 		}
288 
289 		if (op_ret == -EFAULT) {
290 			ret = fault_in_user_writeable(uaddr2);
291 			if (ret)
292 				return ret;
293 		}
294 
295 		cond_resched();
296 		if (!(flags & FLAGS_SHARED))
297 			goto retry_private;
298 		goto retry;
299 	}
300 
301 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
302 		if (futex_match (&this->key, &key1)) {
303 			if (this->pi_state || this->rt_waiter) {
304 				ret = -EINVAL;
305 				goto out_unlock;
306 			}
307 			this->wake(&wake_q, this);
308 			if (++ret >= nr_wake)
309 				break;
310 		}
311 	}
312 
313 	if (op_ret > 0) {
314 		op_ret = 0;
315 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
316 			if (futex_match (&this->key, &key2)) {
317 				if (this->pi_state || this->rt_waiter) {
318 					ret = -EINVAL;
319 					goto out_unlock;
320 				}
321 				this->wake(&wake_q, this);
322 				if (++op_ret >= nr_wake2)
323 					break;
324 			}
325 		}
326 		ret += op_ret;
327 	}
328 
329 out_unlock:
330 	double_unlock_hb(hb1, hb2);
331 	wake_up_q(&wake_q);
332 	return ret;
333 }
334 
335 static long futex_wait_restart(struct restart_block *restart);
336 
337 /**
338  * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
339  * @hb:		the futex hash bucket, must be locked by the caller
340  * @q:		the futex_q to queue up on
341  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
342  */
futex_wait_queue(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)343 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
344 			    struct hrtimer_sleeper *timeout)
345 {
346 	/*
347 	 * The task state is guaranteed to be set before another task can
348 	 * wake it. set_current_state() is implemented using smp_store_mb() and
349 	 * futex_queue() calls spin_unlock() upon completion, both serializing
350 	 * access to the hash list and forcing another memory barrier.
351 	 */
352 	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
353 	futex_queue(q, hb);
354 
355 	/* Arm the timer */
356 	if (timeout)
357 		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
358 
359 	/*
360 	 * If we have been removed from the hash list, then another task
361 	 * has tried to wake us, and we can skip the call to schedule().
362 	 */
363 	if (likely(!plist_node_empty(&q->list))) {
364 		/*
365 		 * If the timer has already expired, current will already be
366 		 * flagged for rescheduling. Only call schedule if there
367 		 * is no timeout, or if it has yet to expire.
368 		 */
369 		if (!timeout || timeout->task)
370 			schedule();
371 	}
372 	__set_current_state(TASK_RUNNING);
373 }
374 
375 /**
376  * futex_unqueue_multiple - Remove various futexes from their hash bucket
377  * @v:	   The list of futexes to unqueue
378  * @count: Number of futexes in the list
379  *
380  * Helper to unqueue a list of futexes. This can't fail.
381  *
382  * Return:
383  *  - >=0 - Index of the last futex that was awoken;
384  *  - -1  - No futex was awoken
385  */
futex_unqueue_multiple(struct futex_vector * v,int count)386 int futex_unqueue_multiple(struct futex_vector *v, int count)
387 {
388 	int ret = -1, i;
389 
390 	for (i = 0; i < count; i++) {
391 		if (!futex_unqueue(&v[i].q))
392 			ret = i;
393 	}
394 
395 	return ret;
396 }
397 
398 /**
399  * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
400  * @vs:		The futex list to wait on
401  * @count:	The size of the list
402  * @woken:	Index of the last woken futex, if any. Used to notify the
403  *		caller that it can return this index to userspace (return parameter)
404  *
405  * Prepare multiple futexes in a single step and enqueue them. This may fail if
406  * the futex list is invalid or if any futex was already awoken. On success the
407  * task is ready to interruptible sleep.
408  *
409  * Return:
410  *  -  1 - One of the futexes was woken by another thread
411  *  -  0 - Success
412  *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
413  */
futex_wait_multiple_setup(struct futex_vector * vs,int count,int * woken)414 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
415 {
416 	struct futex_hash_bucket *hb;
417 	bool retry = false;
418 	int ret, i;
419 	u32 uval;
420 
421 	/*
422 	 * Enqueuing multiple futexes is tricky, because we need to enqueue
423 	 * each futex on the list before dealing with the next one to avoid
424 	 * deadlocking on the hash bucket. But, before enqueuing, we need to
425 	 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
426 	 * lose any wake events, which cannot be done before the get_futex_key
427 	 * of the next key, because it calls get_user_pages, which can sleep.
428 	 * Thus, we fetch the list of futexes keys in two steps, by first
429 	 * pinning all the memory keys in the futex key, and only then we read
430 	 * each key and queue the corresponding futex.
431 	 *
432 	 * Private futexes doesn't need to recalculate hash in retry, so skip
433 	 * get_futex_key() when retrying.
434 	 */
435 retry:
436 	for (i = 0; i < count; i++) {
437 		if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
438 			continue;
439 
440 		ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
441 				    vs[i].w.flags,
442 				    &vs[i].q.key, FUTEX_READ);
443 
444 		if (unlikely(ret))
445 			return ret;
446 	}
447 
448 	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
449 
450 	for (i = 0; i < count; i++) {
451 		u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
452 		struct futex_q *q = &vs[i].q;
453 		u32 val = vs[i].w.val;
454 
455 		hb = futex_q_lock(q);
456 		ret = futex_get_value_locked(&uval, uaddr);
457 
458 		if (!ret && uval == val) {
459 			/*
460 			 * The bucket lock can't be held while dealing with the
461 			 * next futex. Queue each futex at this moment so hb can
462 			 * be unlocked.
463 			 */
464 			futex_queue(q, hb);
465 			continue;
466 		}
467 
468 		futex_q_unlock(hb);
469 		__set_current_state(TASK_RUNNING);
470 
471 		/*
472 		 * Even if something went wrong, if we find out that a futex
473 		 * was woken, we don't return error and return this index to
474 		 * userspace
475 		 */
476 		*woken = futex_unqueue_multiple(vs, i);
477 		if (*woken >= 0)
478 			return 1;
479 
480 		if (ret) {
481 			/*
482 			 * If we need to handle a page fault, we need to do so
483 			 * without any lock and any enqueued futex (otherwise
484 			 * we could lose some wakeup). So we do it here, after
485 			 * undoing all the work done so far. In success, we
486 			 * retry all the work.
487 			 */
488 			if (get_user(uval, uaddr))
489 				return -EFAULT;
490 
491 			retry = true;
492 			goto retry;
493 		}
494 
495 		if (uval != val)
496 			return -EWOULDBLOCK;
497 	}
498 
499 	return 0;
500 }
501 
502 /**
503  * futex_sleep_multiple - Check sleeping conditions and sleep
504  * @vs:    List of futexes to wait for
505  * @count: Length of vs
506  * @to:    Timeout
507  *
508  * Sleep if and only if the timeout hasn't expired and no futex on the list has
509  * been woken up.
510  */
futex_sleep_multiple(struct futex_vector * vs,unsigned int count,struct hrtimer_sleeper * to)511 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
512 				 struct hrtimer_sleeper *to)
513 {
514 	if (to && !to->task)
515 		return;
516 
517 	for (; count; count--, vs++) {
518 		if (!READ_ONCE(vs->q.lock_ptr))
519 			return;
520 	}
521 
522 	schedule();
523 }
524 
525 /**
526  * futex_wait_multiple - Prepare to wait on and enqueue several futexes
527  * @vs:		The list of futexes to wait on
528  * @count:	The number of objects
529  * @to:		Timeout before giving up and returning to userspace
530  *
531  * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
532  * sleeps on a group of futexes and returns on the first futex that is
533  * wake, or after the timeout has elapsed.
534  *
535  * Return:
536  *  - >=0 - Hint to the futex that was awoken
537  *  - <0  - On error
538  */
futex_wait_multiple(struct futex_vector * vs,unsigned int count,struct hrtimer_sleeper * to)539 int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
540 			struct hrtimer_sleeper *to)
541 {
542 	int ret, hint = 0;
543 
544 	if (to)
545 		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
546 
547 	while (1) {
548 		ret = futex_wait_multiple_setup(vs, count, &hint);
549 		if (ret) {
550 			if (ret > 0) {
551 				/* A futex was woken during setup */
552 				ret = hint;
553 			}
554 			return ret;
555 		}
556 
557 		futex_sleep_multiple(vs, count, to);
558 
559 		__set_current_state(TASK_RUNNING);
560 
561 		ret = futex_unqueue_multiple(vs, count);
562 		if (ret >= 0)
563 			return ret;
564 
565 		if (to && !to->task)
566 			return -ETIMEDOUT;
567 		else if (signal_pending(current))
568 			return -ERESTARTSYS;
569 		/*
570 		 * The final case is a spurious wakeup, for
571 		 * which just retry.
572 		 */
573 	}
574 }
575 
576 /**
577  * futex_wait_setup() - Prepare to wait on a futex
578  * @uaddr:	the futex userspace address
579  * @val:	the expected value
580  * @flags:	futex flags (FLAGS_SHARED, etc.)
581  * @q:		the associated futex_q
582  * @hb:		storage for hash_bucket pointer to be returned to caller
583  *
584  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
585  * compare it with the expected value.  Handle atomic faults internally.
586  * Return with the hb lock held on success, and unlocked on failure.
587  *
588  * Return:
589  *  -  0 - uaddr contains val and hb has been locked;
590  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
591  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)592 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
593 		     struct futex_q *q, struct futex_hash_bucket **hb)
594 {
595 	u32 uval;
596 	int ret;
597 
598 	/*
599 	 * Access the page AFTER the hash-bucket is locked.
600 	 * Order is important:
601 	 *
602 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
603 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
604 	 *
605 	 * The basic logical guarantee of a futex is that it blocks ONLY
606 	 * if cond(var) is known to be true at the time of blocking, for
607 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
608 	 * would open a race condition where we could block indefinitely with
609 	 * cond(var) false, which would violate the guarantee.
610 	 *
611 	 * On the other hand, we insert q and release the hash-bucket only
612 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
613 	 * absorb a wakeup if *uaddr does not match the desired values
614 	 * while the syscall executes.
615 	 */
616 retry:
617 	ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ);
618 	if (unlikely(ret != 0))
619 		return ret;
620 
621 retry_private:
622 	*hb = futex_q_lock(q);
623 
624 	ret = futex_get_value_locked(&uval, uaddr);
625 
626 	if (ret) {
627 		futex_q_unlock(*hb);
628 
629 		ret = get_user(uval, uaddr);
630 		if (ret)
631 			return ret;
632 
633 		if (!(flags & FLAGS_SHARED))
634 			goto retry_private;
635 
636 		goto retry;
637 	}
638 
639 	if (uval != val) {
640 		futex_q_unlock(*hb);
641 		ret = -EWOULDBLOCK;
642 	}
643 
644 	return ret;
645 }
646 
__futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,struct hrtimer_sleeper * to,u32 bitset)647 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
648 		 struct hrtimer_sleeper *to, u32 bitset)
649 {
650 	struct futex_q q = futex_q_init;
651 	struct futex_hash_bucket *hb;
652 	int ret;
653 
654 	if (!bitset)
655 		return -EINVAL;
656 
657 	q.bitset = bitset;
658 
659 retry:
660 	/*
661 	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
662 	 * is initialized.
663 	 */
664 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
665 	if (ret)
666 		return ret;
667 
668 	/* futex_queue and wait for wakeup, timeout, or a signal. */
669 	futex_wait_queue(hb, &q, to);
670 
671 	/* If we were woken (and unqueued), we succeeded, whatever. */
672 	if (!futex_unqueue(&q))
673 		return 0;
674 
675 	if (to && !to->task)
676 		return -ETIMEDOUT;
677 
678 	/*
679 	 * We expect signal_pending(current), but we might be the
680 	 * victim of a spurious wakeup as well.
681 	 */
682 	if (!signal_pending(current))
683 		goto retry;
684 
685 	return -ERESTARTSYS;
686 }
687 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)688 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
689 {
690 	struct hrtimer_sleeper timeout, *to;
691 	struct restart_block *restart;
692 	int ret;
693 
694 	to = futex_setup_timer(abs_time, &timeout, flags,
695 			       current->timer_slack_ns);
696 
697 	ret = __futex_wait(uaddr, flags, val, to, bitset);
698 
699 	/* No timeout, nothing to clean up. */
700 	if (!to)
701 		return ret;
702 
703 	hrtimer_cancel(&to->timer);
704 	destroy_hrtimer_on_stack(&to->timer);
705 
706 	if (ret == -ERESTARTSYS) {
707 		restart = &current->restart_block;
708 		restart->futex.uaddr = uaddr;
709 		restart->futex.val = val;
710 		restart->futex.time = *abs_time;
711 		restart->futex.bitset = bitset;
712 		restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
713 
714 		return set_restart_fn(restart, futex_wait_restart);
715 	}
716 
717 	return ret;
718 }
719 
futex_wait_restart(struct restart_block * restart)720 static long futex_wait_restart(struct restart_block *restart)
721 {
722 	u32 __user *uaddr = restart->futex.uaddr;
723 	ktime_t t, *tp = NULL;
724 
725 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
726 		t = restart->futex.time;
727 		tp = &t;
728 	}
729 	restart->fn = do_no_restart_syscall;
730 
731 	return (long)futex_wait(uaddr, restart->futex.flags,
732 				restart->futex.val, tp, restart->futex.bitset);
733 }
734 
735