1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * UCSI driver for Cypress CCGx Type-C controller
4 *
5 * Copyright (C) 2017-2018 NVIDIA Corporation. All rights reserved.
6 * Author: Ajay Gupta <ajayg@nvidia.com>
7 *
8 * Some code borrowed from drivers/usb/typec/ucsi/ucsi_acpi.c
9 */
10 #include <linux/acpi.h>
11 #include <linux/delay.h>
12 #include <linux/firmware.h>
13 #include <linux/i2c.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/usb/typec_dp.h>
20
21 #include <linux/unaligned.h>
22 #include "ucsi.h"
23
24 enum enum_fw_mode {
25 BOOT, /* bootloader */
26 FW1, /* FW partition-1 (contains secondary fw) */
27 FW2, /* FW partition-2 (contains primary fw) */
28 FW_INVALID,
29 };
30
31 #define CCGX_RAB_DEVICE_MODE 0x0000
32 #define CCGX_RAB_INTR_REG 0x0006
33 #define DEV_INT BIT(0)
34 #define PORT0_INT BIT(1)
35 #define PORT1_INT BIT(2)
36 #define UCSI_READ_INT BIT(7)
37 #define CCGX_RAB_JUMP_TO_BOOT 0x0007
38 #define TO_BOOT 'J'
39 #define TO_ALT_FW 'A'
40 #define CCGX_RAB_RESET_REQ 0x0008
41 #define RESET_SIG 'R'
42 #define CMD_RESET_I2C 0x0
43 #define CMD_RESET_DEV 0x1
44 #define CCGX_RAB_ENTER_FLASHING 0x000A
45 #define FLASH_ENTER_SIG 'P'
46 #define CCGX_RAB_VALIDATE_FW 0x000B
47 #define CCGX_RAB_FLASH_ROW_RW 0x000C
48 #define FLASH_SIG 'F'
49 #define FLASH_RD_CMD 0x0
50 #define FLASH_WR_CMD 0x1
51 #define FLASH_FWCT1_WR_CMD 0x2
52 #define FLASH_FWCT2_WR_CMD 0x3
53 #define FLASH_FWCT_SIG_WR_CMD 0x4
54 #define CCGX_RAB_READ_ALL_VER 0x0010
55 #define CCGX_RAB_READ_FW2_VER 0x0020
56 #define CCGX_RAB_UCSI_CONTROL 0x0039
57 #define CCGX_RAB_UCSI_CONTROL_START BIT(0)
58 #define CCGX_RAB_UCSI_CONTROL_STOP BIT(1)
59 #define CCGX_RAB_UCSI_DATA_BLOCK(offset) (0xf000 | ((offset) & 0xff))
60 #define REG_FLASH_RW_MEM 0x0200
61 #define DEV_REG_IDX CCGX_RAB_DEVICE_MODE
62 #define CCGX_RAB_PDPORT_ENABLE 0x002C
63 #define PDPORT_1 BIT(0)
64 #define PDPORT_2 BIT(1)
65 #define CCGX_RAB_RESPONSE 0x007E
66 #define ASYNC_EVENT BIT(7)
67
68 /* CCGx events & async msg codes */
69 #define RESET_COMPLETE 0x80
70 #define EVENT_INDEX RESET_COMPLETE
71 #define PORT_CONNECT_DET 0x84
72 #define PORT_DISCONNECT_DET 0x85
73 #define ROLE_SWAP_COMPELETE 0x87
74
75 /* ccg firmware */
76 #define CYACD_LINE_SIZE 527
77 #define CCG4_ROW_SIZE 256
78 #define FW1_METADATA_ROW 0x1FF
79 #define FW2_METADATA_ROW 0x1FE
80 #define FW_CFG_TABLE_SIG_SIZE 256
81
82 static int secondary_fw_min_ver = 41;
83
84 enum enum_flash_mode {
85 SECONDARY_BL, /* update secondary using bootloader */
86 PRIMARY, /* update primary using secondary */
87 SECONDARY, /* update secondary using primary */
88 FLASH_NOT_NEEDED, /* update not required */
89 FLASH_INVALID,
90 };
91
92 static const char * const ccg_fw_names[] = {
93 "ccg_boot.cyacd",
94 "ccg_primary.cyacd",
95 "ccg_secondary.cyacd"
96 };
97
98 struct ccg_dev_info {
99 #define CCG_DEVINFO_FWMODE_SHIFT (0)
100 #define CCG_DEVINFO_FWMODE_MASK (0x3 << CCG_DEVINFO_FWMODE_SHIFT)
101 #define CCG_DEVINFO_PDPORTS_SHIFT (2)
102 #define CCG_DEVINFO_PDPORTS_MASK (0x3 << CCG_DEVINFO_PDPORTS_SHIFT)
103 u8 mode;
104 u8 bl_mode;
105 __le16 silicon_id;
106 __le16 bl_last_row;
107 } __packed;
108
109 struct version_format {
110 __le16 build;
111 u8 patch;
112 u8 ver;
113 #define CCG_VERSION_PATCH(x) ((x) << 16)
114 #define CCG_VERSION(x) ((x) << 24)
115 #define CCG_VERSION_MIN_SHIFT (0)
116 #define CCG_VERSION_MIN_MASK (0xf << CCG_VERSION_MIN_SHIFT)
117 #define CCG_VERSION_MAJ_SHIFT (4)
118 #define CCG_VERSION_MAJ_MASK (0xf << CCG_VERSION_MAJ_SHIFT)
119 } __packed;
120
121 /*
122 * Firmware version 3.1.10 or earlier, built for NVIDIA has known issue
123 * of missing interrupt when a device is connected for runtime resume
124 */
125 #define CCG_FW_BUILD_NVIDIA (('n' << 8) | 'v')
126 #define CCG_OLD_FW_VERSION (CCG_VERSION(0x31) | CCG_VERSION_PATCH(10))
127
128 /* Firmware for Tegra doesn't support UCSI ALT command, built
129 * for NVIDIA has known issue of reporting wrong capability info
130 */
131 #define CCG_FW_BUILD_NVIDIA_TEGRA (('g' << 8) | 'n')
132
133 /* Altmode offset for NVIDIA Function Test Board (FTB) */
134 #define NVIDIA_FTB_DP_OFFSET (2)
135 #define NVIDIA_FTB_DBG_OFFSET (3)
136
137 struct version_info {
138 struct version_format base;
139 struct version_format app;
140 };
141
142 struct fw_config_table {
143 u32 identity;
144 u16 table_size;
145 u8 fwct_version;
146 u8 is_key_change;
147 u8 guid[16];
148 struct version_format base;
149 struct version_format app;
150 u8 primary_fw_digest[32];
151 u32 key_exp_length;
152 u8 key_modulus[256];
153 u8 key_exp[4];
154 };
155
156 /* CCGx response codes */
157 enum ccg_resp_code {
158 CMD_NO_RESP = 0x00,
159 CMD_SUCCESS = 0x02,
160 FLASH_DATA_AVAILABLE = 0x03,
161 CMD_INVALID = 0x05,
162 FLASH_UPDATE_FAIL = 0x07,
163 INVALID_FW = 0x08,
164 INVALID_ARG = 0x09,
165 CMD_NOT_SUPPORT = 0x0A,
166 TRANSACTION_FAIL = 0x0C,
167 PD_CMD_FAIL = 0x0D,
168 UNDEF_ERROR = 0x0F,
169 INVALID_RESP = 0x10,
170 };
171
172 #define CCG_EVENT_MAX (EVENT_INDEX + 43)
173
174 struct ccg_cmd {
175 u16 reg;
176 u32 data;
177 int len;
178 u32 delay; /* ms delay for cmd timeout */
179 };
180
181 struct ccg_resp {
182 u8 code;
183 u8 length;
184 };
185
186 struct ucsi_ccg_altmode {
187 u16 svid;
188 u32 mid;
189 u8 linked_idx;
190 u8 active_idx;
191 #define UCSI_MULTI_DP_INDEX (0xff)
192 bool checked;
193 } __packed;
194
195 #define CCGX_MESSAGE_IN_MAX 4
196 struct op_region {
197 __le32 cci;
198 __le32 message_in[CCGX_MESSAGE_IN_MAX];
199 };
200
201 struct ucsi_ccg {
202 struct device *dev;
203 struct ucsi *ucsi;
204 struct i2c_client *client;
205
206 struct ccg_dev_info info;
207 /* version info for boot, primary and secondary */
208 struct version_info version[FW2 + 1];
209 u32 fw_version;
210 /* CCG HPI communication flags */
211 unsigned long flags;
212 #define RESET_PENDING 0
213 #define DEV_CMD_PENDING 1
214 struct ccg_resp dev_resp;
215 u8 cmd_resp;
216 int port_num;
217 int irq;
218 struct work_struct work;
219 struct mutex lock; /* to sync between user and driver thread */
220
221 /* fw build with vendor information */
222 u16 fw_build;
223 struct work_struct pm_work;
224
225 bool has_multiple_dp;
226 struct ucsi_ccg_altmode orig[UCSI_MAX_ALTMODES];
227 struct ucsi_ccg_altmode updated[UCSI_MAX_ALTMODES];
228
229 /*
230 * This spinlock protects op_data which includes CCI and MESSAGE_IN that
231 * will be updated in ISR
232 */
233 spinlock_t op_lock;
234 struct op_region op_data;
235 };
236
ccg_read(struct ucsi_ccg * uc,u16 rab,u8 * data,u32 len)237 static int ccg_read(struct ucsi_ccg *uc, u16 rab, u8 *data, u32 len)
238 {
239 struct i2c_client *client = uc->client;
240 const struct i2c_adapter_quirks *quirks = client->adapter->quirks;
241 unsigned char buf[2];
242 struct i2c_msg msgs[] = {
243 {
244 .addr = client->addr,
245 .flags = 0x0,
246 .len = sizeof(buf),
247 .buf = buf,
248 },
249 {
250 .addr = client->addr,
251 .flags = I2C_M_RD,
252 .buf = data,
253 },
254 };
255 u32 rlen, rem_len = len, max_read_len = len;
256 int status;
257
258 /* check any max_read_len limitation on i2c adapter */
259 if (quirks && quirks->max_read_len)
260 max_read_len = quirks->max_read_len;
261
262 pm_runtime_get_sync(uc->dev);
263 while (rem_len > 0) {
264 msgs[1].buf = &data[len - rem_len];
265 rlen = min_t(u16, rem_len, max_read_len);
266 msgs[1].len = rlen;
267 put_unaligned_le16(rab, buf);
268 status = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
269 if (status < 0) {
270 dev_err(uc->dev, "i2c_transfer failed %d\n", status);
271 pm_runtime_put_sync(uc->dev);
272 return status;
273 }
274 rab += rlen;
275 rem_len -= rlen;
276 }
277
278 pm_runtime_put_sync(uc->dev);
279 return 0;
280 }
281
ccg_write(struct ucsi_ccg * uc,u16 rab,const u8 * data,u32 len)282 static int ccg_write(struct ucsi_ccg *uc, u16 rab, const u8 *data, u32 len)
283 {
284 struct i2c_client *client = uc->client;
285 unsigned char *buf;
286 struct i2c_msg msgs[] = {
287 {
288 .addr = client->addr,
289 .flags = 0x0,
290 }
291 };
292 int status;
293
294 buf = kzalloc(len + sizeof(rab), GFP_KERNEL);
295 if (!buf)
296 return -ENOMEM;
297
298 put_unaligned_le16(rab, buf);
299 memcpy(buf + sizeof(rab), data, len);
300
301 msgs[0].len = len + sizeof(rab);
302 msgs[0].buf = buf;
303
304 pm_runtime_get_sync(uc->dev);
305 status = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
306 if (status < 0) {
307 dev_err(uc->dev, "i2c_transfer failed %d\n", status);
308 pm_runtime_put_sync(uc->dev);
309 kfree(buf);
310 return status;
311 }
312
313 pm_runtime_put_sync(uc->dev);
314 kfree(buf);
315 return 0;
316 }
317
ccg_op_region_update(struct ucsi_ccg * uc,u32 cci)318 static int ccg_op_region_update(struct ucsi_ccg *uc, u32 cci)
319 {
320 u16 reg = CCGX_RAB_UCSI_DATA_BLOCK(UCSI_MESSAGE_IN);
321 struct op_region *data = &uc->op_data;
322 unsigned char *buf;
323 size_t size = sizeof(data->message_in);
324
325 buf = kzalloc(size, GFP_ATOMIC);
326 if (!buf)
327 return -ENOMEM;
328 if (UCSI_CCI_LENGTH(cci)) {
329 int ret = ccg_read(uc, reg, (void *)buf, size);
330
331 if (ret) {
332 kfree(buf);
333 return ret;
334 }
335 }
336
337 spin_lock(&uc->op_lock);
338 data->cci = cpu_to_le32(cci);
339 if (UCSI_CCI_LENGTH(cci))
340 memcpy(&data->message_in, buf, size);
341 spin_unlock(&uc->op_lock);
342 kfree(buf);
343 return 0;
344 }
345
ucsi_ccg_init(struct ucsi_ccg * uc)346 static int ucsi_ccg_init(struct ucsi_ccg *uc)
347 {
348 unsigned int count = 10;
349 u8 data;
350 int status;
351
352 spin_lock_init(&uc->op_lock);
353
354 data = CCGX_RAB_UCSI_CONTROL_STOP;
355 status = ccg_write(uc, CCGX_RAB_UCSI_CONTROL, &data, sizeof(data));
356 if (status < 0)
357 return status;
358
359 data = CCGX_RAB_UCSI_CONTROL_START;
360 status = ccg_write(uc, CCGX_RAB_UCSI_CONTROL, &data, sizeof(data));
361 if (status < 0)
362 return status;
363
364 /*
365 * Flush CCGx RESPONSE queue by acking interrupts. Above ucsi control
366 * register write will push response which must be cleared.
367 */
368 do {
369 status = ccg_read(uc, CCGX_RAB_INTR_REG, &data, sizeof(data));
370 if (status < 0)
371 return status;
372
373 if (!(data & DEV_INT))
374 return 0;
375
376 status = ccg_write(uc, CCGX_RAB_INTR_REG, &data, sizeof(data));
377 if (status < 0)
378 return status;
379
380 usleep_range(10000, 11000);
381 } while (--count);
382
383 return -ETIMEDOUT;
384 }
385
ucsi_ccg_update_get_current_cam_cmd(struct ucsi_ccg * uc,u8 * data)386 static void ucsi_ccg_update_get_current_cam_cmd(struct ucsi_ccg *uc, u8 *data)
387 {
388 u8 cam, new_cam;
389
390 cam = data[0];
391 new_cam = uc->orig[cam].linked_idx;
392 uc->updated[new_cam].active_idx = cam;
393 data[0] = new_cam;
394 }
395
ucsi_ccg_update_altmodes(struct ucsi * ucsi,struct ucsi_altmode * orig,struct ucsi_altmode * updated)396 static bool ucsi_ccg_update_altmodes(struct ucsi *ucsi,
397 struct ucsi_altmode *orig,
398 struct ucsi_altmode *updated)
399 {
400 struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
401 struct ucsi_ccg_altmode *alt, *new_alt;
402 int i, j, k = 0;
403 bool found = false;
404
405 alt = uc->orig;
406 new_alt = uc->updated;
407 memset(uc->updated, 0, sizeof(uc->updated));
408
409 /*
410 * Copy original connector altmodes to new structure.
411 * We need this before second loop since second loop
412 * checks for duplicate altmodes.
413 */
414 for (i = 0; i < UCSI_MAX_ALTMODES; i++) {
415 alt[i].svid = orig[i].svid;
416 alt[i].mid = orig[i].mid;
417 if (!alt[i].svid)
418 break;
419 }
420
421 for (i = 0; i < UCSI_MAX_ALTMODES; i++) {
422 if (!alt[i].svid)
423 break;
424
425 /* already checked and considered */
426 if (alt[i].checked)
427 continue;
428
429 if (!DP_CONF_GET_PIN_ASSIGN(alt[i].mid)) {
430 /* Found Non DP altmode */
431 new_alt[k].svid = alt[i].svid;
432 new_alt[k].mid |= alt[i].mid;
433 new_alt[k].linked_idx = i;
434 alt[i].linked_idx = k;
435 updated[k].svid = new_alt[k].svid;
436 updated[k].mid = new_alt[k].mid;
437 k++;
438 continue;
439 }
440
441 for (j = i + 1; j < UCSI_MAX_ALTMODES; j++) {
442 if (alt[i].svid != alt[j].svid ||
443 !DP_CONF_GET_PIN_ASSIGN(alt[j].mid)) {
444 continue;
445 } else {
446 /* Found duplicate DP mode */
447 new_alt[k].svid = alt[i].svid;
448 new_alt[k].mid |= alt[i].mid | alt[j].mid;
449 new_alt[k].linked_idx = UCSI_MULTI_DP_INDEX;
450 alt[i].linked_idx = k;
451 alt[j].linked_idx = k;
452 alt[j].checked = true;
453 found = true;
454 }
455 }
456 if (found) {
457 uc->has_multiple_dp = true;
458 } else {
459 /* Didn't find any duplicate DP altmode */
460 new_alt[k].svid = alt[i].svid;
461 new_alt[k].mid |= alt[i].mid;
462 new_alt[k].linked_idx = i;
463 alt[i].linked_idx = k;
464 }
465 updated[k].svid = new_alt[k].svid;
466 updated[k].mid = new_alt[k].mid;
467 k++;
468 }
469 return found;
470 }
471
ucsi_ccg_update_set_new_cam_cmd(struct ucsi_ccg * uc,struct ucsi_connector * con,u64 * cmd)472 static void ucsi_ccg_update_set_new_cam_cmd(struct ucsi_ccg *uc,
473 struct ucsi_connector *con,
474 u64 *cmd)
475 {
476 struct ucsi_ccg_altmode *new_port, *port;
477 struct typec_altmode *alt = NULL;
478 u8 new_cam, cam, pin;
479 bool enter_new_mode;
480 int i, j, k = 0xff;
481
482 port = uc->orig;
483 new_cam = UCSI_SET_NEW_CAM_GET_AM(*cmd);
484 if (new_cam >= ARRAY_SIZE(uc->updated))
485 return;
486 new_port = &uc->updated[new_cam];
487 cam = new_port->linked_idx;
488 enter_new_mode = UCSI_SET_NEW_CAM_ENTER(*cmd);
489
490 /*
491 * If CAM is UCSI_MULTI_DP_INDEX then this is DP altmode
492 * with multiple DP mode. Find out CAM for best pin assignment
493 * among all DP mode. Priorite pin E->D->C after making sure
494 * the partner supports that pin.
495 */
496 if (cam == UCSI_MULTI_DP_INDEX) {
497 if (enter_new_mode) {
498 for (i = 0; con->partner_altmode[i]; i++) {
499 alt = con->partner_altmode[i];
500 if (alt->svid == new_port->svid)
501 break;
502 }
503 /*
504 * alt will always be non NULL since this is
505 * UCSI_SET_NEW_CAM command and so there will be
506 * at least one con->partner_altmode[i] with svid
507 * matching with new_port->svid.
508 */
509 for (j = 0; port[j].svid; j++) {
510 pin = DP_CONF_GET_PIN_ASSIGN(port[j].mid);
511 if (alt && port[j].svid == alt->svid &&
512 (pin & DP_CONF_GET_PIN_ASSIGN(alt->vdo))) {
513 /* prioritize pin E->D->C */
514 if (k == 0xff || (k != 0xff && pin >
515 DP_CONF_GET_PIN_ASSIGN(port[k].mid))
516 ) {
517 k = j;
518 }
519 }
520 }
521 cam = k;
522 new_port->active_idx = cam;
523 } else {
524 cam = new_port->active_idx;
525 }
526 }
527 *cmd &= ~UCSI_SET_NEW_CAM_AM_MASK;
528 *cmd |= UCSI_SET_NEW_CAM_SET_AM(cam);
529 }
530
531 /*
532 * Change the order of vdo values of NVIDIA test device FTB
533 * (Function Test Board) which reports altmode list with vdo=0x3
534 * first and then vdo=0x. Current logic to assign mode value is
535 * based on order in altmode list and it causes a mismatch of CON
536 * and SOP altmodes since NVIDIA GPU connector has order of vdo=0x1
537 * first and then vdo=0x3
538 */
ucsi_ccg_nvidia_altmode(struct ucsi_ccg * uc,struct ucsi_altmode * alt,u64 command)539 static void ucsi_ccg_nvidia_altmode(struct ucsi_ccg *uc,
540 struct ucsi_altmode *alt,
541 u64 command)
542 {
543 switch (UCSI_ALTMODE_OFFSET(command)) {
544 case NVIDIA_FTB_DP_OFFSET:
545 if (alt[0].mid == USB_TYPEC_NVIDIA_VLINK_DBG_VDO)
546 alt[0].mid = USB_TYPEC_NVIDIA_VLINK_DP_VDO |
547 DP_CAP_DP_SIGNALLING(0) | DP_CAP_USB |
548 DP_CONF_SET_PIN_ASSIGN(BIT(DP_PIN_ASSIGN_E));
549 break;
550 case NVIDIA_FTB_DBG_OFFSET:
551 if (alt[0].mid == USB_TYPEC_NVIDIA_VLINK_DP_VDO)
552 alt[0].mid = USB_TYPEC_NVIDIA_VLINK_DBG_VDO;
553 break;
554 default:
555 break;
556 }
557 }
558
ucsi_ccg_read_version(struct ucsi * ucsi,u16 * version)559 static int ucsi_ccg_read_version(struct ucsi *ucsi, u16 *version)
560 {
561 struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
562 u16 reg = CCGX_RAB_UCSI_DATA_BLOCK(UCSI_VERSION);
563
564 return ccg_read(uc, reg, (u8 *)version, sizeof(*version));
565 }
566
ucsi_ccg_read_cci(struct ucsi * ucsi,u32 * cci)567 static int ucsi_ccg_read_cci(struct ucsi *ucsi, u32 *cci)
568 {
569 struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
570
571 spin_lock(&uc->op_lock);
572 *cci = uc->op_data.cci;
573 spin_unlock(&uc->op_lock);
574
575 return 0;
576 }
577
ucsi_ccg_read_message_in(struct ucsi * ucsi,void * val,size_t val_len)578 static int ucsi_ccg_read_message_in(struct ucsi *ucsi, void *val, size_t val_len)
579 {
580 struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
581
582 spin_lock(&uc->op_lock);
583 memcpy(val, uc->op_data.message_in, val_len);
584 spin_unlock(&uc->op_lock);
585
586 return 0;
587 }
588
ucsi_ccg_async_control(struct ucsi * ucsi,u64 command)589 static int ucsi_ccg_async_control(struct ucsi *ucsi, u64 command)
590 {
591 struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
592 u16 reg = CCGX_RAB_UCSI_DATA_BLOCK(UCSI_CONTROL);
593
594 /*
595 * UCSI may read CCI instantly after async_control,
596 * clear CCI to avoid caller getting wrong data before we get CCI from ISR
597 */
598 spin_lock(&uc->op_lock);
599 uc->op_data.cci = 0;
600 spin_unlock(&uc->op_lock);
601
602 return ccg_write(uc, reg, (u8 *)&command, sizeof(command));
603 }
604
ucsi_ccg_sync_control(struct ucsi * ucsi,u64 command,u32 * cci,void * data,size_t size)605 static int ucsi_ccg_sync_control(struct ucsi *ucsi, u64 command, u32 *cci,
606 void *data, size_t size)
607 {
608 struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
609 struct ucsi_connector *con;
610 int con_index;
611 int ret;
612
613 mutex_lock(&uc->lock);
614 pm_runtime_get_sync(uc->dev);
615
616 if (UCSI_COMMAND(command) == UCSI_SET_NEW_CAM &&
617 uc->has_multiple_dp) {
618 con_index = (command >> 16) &
619 UCSI_CMD_CONNECTOR_MASK;
620 if (con_index == 0) {
621 ret = -EINVAL;
622 goto err_put;
623 }
624 con = &uc->ucsi->connector[con_index - 1];
625 ucsi_ccg_update_set_new_cam_cmd(uc, con, &command);
626 }
627
628 ret = ucsi_sync_control_common(ucsi, command, cci, data, size);
629
630 switch (UCSI_COMMAND(command)) {
631 case UCSI_GET_CURRENT_CAM:
632 if (uc->has_multiple_dp)
633 ucsi_ccg_update_get_current_cam_cmd(uc, (u8 *)data);
634 break;
635 case UCSI_GET_ALTERNATE_MODES:
636 if (UCSI_ALTMODE_RECIPIENT(command) == UCSI_RECIPIENT_SOP) {
637 struct ucsi_altmode *alt = data;
638
639 if (alt[0].svid == USB_TYPEC_NVIDIA_VLINK_SID)
640 ucsi_ccg_nvidia_altmode(uc, alt, command);
641 }
642 break;
643 case UCSI_GET_CAPABILITY:
644 if (uc->fw_build == CCG_FW_BUILD_NVIDIA_TEGRA) {
645 struct ucsi_capability *cap = data;
646
647 cap->features &= ~UCSI_CAP_ALT_MODE_DETAILS;
648 }
649 break;
650 default:
651 break;
652 }
653
654 err_put:
655 pm_runtime_put_sync(uc->dev);
656 mutex_unlock(&uc->lock);
657
658 return ret;
659 }
660
661 static const struct ucsi_operations ucsi_ccg_ops = {
662 .read_version = ucsi_ccg_read_version,
663 .read_cci = ucsi_ccg_read_cci,
664 .poll_cci = ucsi_ccg_read_cci,
665 .read_message_in = ucsi_ccg_read_message_in,
666 .sync_control = ucsi_ccg_sync_control,
667 .async_control = ucsi_ccg_async_control,
668 .update_altmodes = ucsi_ccg_update_altmodes
669 };
670
ccg_irq_handler(int irq,void * data)671 static irqreturn_t ccg_irq_handler(int irq, void *data)
672 {
673 u16 reg = CCGX_RAB_UCSI_DATA_BLOCK(UCSI_CCI);
674 struct ucsi_ccg *uc = data;
675 u8 intr_reg;
676 u32 cci = 0;
677 int ret = 0;
678
679 ret = ccg_read(uc, CCGX_RAB_INTR_REG, &intr_reg, sizeof(intr_reg));
680 if (ret)
681 return ret;
682
683 if (!intr_reg)
684 return IRQ_HANDLED;
685 else if (!(intr_reg & UCSI_READ_INT))
686 goto err_clear_irq;
687
688 ret = ccg_read(uc, reg, (void *)&cci, sizeof(cci));
689 if (ret)
690 goto err_clear_irq;
691
692 /*
693 * As per CCGx UCSI interface guide, copy CCI and MESSAGE_IN
694 * to the OpRegion before clear the UCSI interrupt
695 */
696 ret = ccg_op_region_update(uc, cci);
697 if (ret)
698 goto err_clear_irq;
699
700 err_clear_irq:
701 ccg_write(uc, CCGX_RAB_INTR_REG, &intr_reg, sizeof(intr_reg));
702
703 if (!ret)
704 ucsi_notify_common(uc->ucsi, cci);
705
706 return IRQ_HANDLED;
707 }
708
ccg_request_irq(struct ucsi_ccg * uc)709 static int ccg_request_irq(struct ucsi_ccg *uc)
710 {
711 unsigned long flags = IRQF_ONESHOT;
712
713 if (!dev_fwnode(uc->dev))
714 flags |= IRQF_TRIGGER_HIGH;
715
716 return request_threaded_irq(uc->irq, NULL, ccg_irq_handler, flags, dev_name(uc->dev), uc);
717 }
718
ccg_pm_workaround_work(struct work_struct * pm_work)719 static void ccg_pm_workaround_work(struct work_struct *pm_work)
720 {
721 ccg_irq_handler(0, container_of(pm_work, struct ucsi_ccg, pm_work));
722 }
723
get_fw_info(struct ucsi_ccg * uc)724 static int get_fw_info(struct ucsi_ccg *uc)
725 {
726 int err;
727
728 err = ccg_read(uc, CCGX_RAB_READ_ALL_VER, (u8 *)(&uc->version),
729 sizeof(uc->version));
730 if (err < 0)
731 return err;
732
733 uc->fw_version = CCG_VERSION(uc->version[FW2].app.ver) |
734 CCG_VERSION_PATCH(uc->version[FW2].app.patch);
735
736 err = ccg_read(uc, CCGX_RAB_DEVICE_MODE, (u8 *)(&uc->info),
737 sizeof(uc->info));
738 if (err < 0)
739 return err;
740
741 return 0;
742 }
743
invalid_async_evt(int code)744 static inline bool invalid_async_evt(int code)
745 {
746 return (code >= CCG_EVENT_MAX) || (code < EVENT_INDEX);
747 }
748
ccg_process_response(struct ucsi_ccg * uc)749 static void ccg_process_response(struct ucsi_ccg *uc)
750 {
751 struct device *dev = uc->dev;
752
753 if (uc->dev_resp.code & ASYNC_EVENT) {
754 if (uc->dev_resp.code == RESET_COMPLETE) {
755 if (test_bit(RESET_PENDING, &uc->flags))
756 uc->cmd_resp = uc->dev_resp.code;
757 get_fw_info(uc);
758 }
759 if (invalid_async_evt(uc->dev_resp.code))
760 dev_err(dev, "invalid async evt %d\n",
761 uc->dev_resp.code);
762 } else {
763 if (test_bit(DEV_CMD_PENDING, &uc->flags)) {
764 uc->cmd_resp = uc->dev_resp.code;
765 clear_bit(DEV_CMD_PENDING, &uc->flags);
766 } else {
767 dev_err(dev, "dev resp 0x%04x but no cmd pending\n",
768 uc->dev_resp.code);
769 }
770 }
771 }
772
ccg_read_response(struct ucsi_ccg * uc)773 static int ccg_read_response(struct ucsi_ccg *uc)
774 {
775 unsigned long target = jiffies + msecs_to_jiffies(1000);
776 struct device *dev = uc->dev;
777 u8 intval;
778 int status;
779
780 /* wait for interrupt status to get updated */
781 do {
782 status = ccg_read(uc, CCGX_RAB_INTR_REG, &intval,
783 sizeof(intval));
784 if (status < 0)
785 return status;
786
787 if (intval & DEV_INT)
788 break;
789 usleep_range(500, 600);
790 } while (time_is_after_jiffies(target));
791
792 if (time_is_before_jiffies(target)) {
793 dev_err(dev, "response timeout error\n");
794 return -ETIME;
795 }
796
797 status = ccg_read(uc, CCGX_RAB_RESPONSE, (u8 *)&uc->dev_resp,
798 sizeof(uc->dev_resp));
799 if (status < 0)
800 return status;
801
802 status = ccg_write(uc, CCGX_RAB_INTR_REG, &intval, sizeof(intval));
803 if (status < 0)
804 return status;
805
806 return 0;
807 }
808
809 /* Caller must hold uc->lock */
ccg_send_command(struct ucsi_ccg * uc,struct ccg_cmd * cmd)810 static int ccg_send_command(struct ucsi_ccg *uc, struct ccg_cmd *cmd)
811 {
812 struct device *dev = uc->dev;
813 int ret;
814
815 switch (cmd->reg & 0xF000) {
816 case DEV_REG_IDX:
817 set_bit(DEV_CMD_PENDING, &uc->flags);
818 break;
819 default:
820 dev_err(dev, "invalid cmd register\n");
821 break;
822 }
823
824 ret = ccg_write(uc, cmd->reg, (u8 *)&cmd->data, cmd->len);
825 if (ret < 0)
826 return ret;
827
828 msleep(cmd->delay);
829
830 ret = ccg_read_response(uc);
831 if (ret < 0) {
832 dev_err(dev, "response read error\n");
833 switch (cmd->reg & 0xF000) {
834 case DEV_REG_IDX:
835 clear_bit(DEV_CMD_PENDING, &uc->flags);
836 break;
837 default:
838 dev_err(dev, "invalid cmd register\n");
839 break;
840 }
841 return -EIO;
842 }
843 ccg_process_response(uc);
844
845 return uc->cmd_resp;
846 }
847
ccg_cmd_enter_flashing(struct ucsi_ccg * uc)848 static int ccg_cmd_enter_flashing(struct ucsi_ccg *uc)
849 {
850 struct ccg_cmd cmd;
851 int ret;
852
853 cmd.reg = CCGX_RAB_ENTER_FLASHING;
854 cmd.data = FLASH_ENTER_SIG;
855 cmd.len = 1;
856 cmd.delay = 50;
857
858 mutex_lock(&uc->lock);
859
860 ret = ccg_send_command(uc, &cmd);
861
862 mutex_unlock(&uc->lock);
863
864 if (ret != CMD_SUCCESS) {
865 dev_err(uc->dev, "enter flashing failed ret=%d\n", ret);
866 return ret;
867 }
868
869 return 0;
870 }
871
ccg_cmd_reset(struct ucsi_ccg * uc)872 static int ccg_cmd_reset(struct ucsi_ccg *uc)
873 {
874 struct ccg_cmd cmd;
875 u8 *p;
876 int ret;
877
878 p = (u8 *)&cmd.data;
879 cmd.reg = CCGX_RAB_RESET_REQ;
880 p[0] = RESET_SIG;
881 p[1] = CMD_RESET_DEV;
882 cmd.len = 2;
883 cmd.delay = 5000;
884
885 mutex_lock(&uc->lock);
886
887 set_bit(RESET_PENDING, &uc->flags);
888
889 ret = ccg_send_command(uc, &cmd);
890 if (ret != RESET_COMPLETE)
891 goto err_clear_flag;
892
893 ret = 0;
894
895 err_clear_flag:
896 clear_bit(RESET_PENDING, &uc->flags);
897
898 mutex_unlock(&uc->lock);
899
900 return ret;
901 }
902
ccg_cmd_port_control(struct ucsi_ccg * uc,bool enable)903 static int ccg_cmd_port_control(struct ucsi_ccg *uc, bool enable)
904 {
905 struct ccg_cmd cmd;
906 int ret;
907
908 cmd.reg = CCGX_RAB_PDPORT_ENABLE;
909 if (enable)
910 cmd.data = (uc->port_num == 1) ?
911 PDPORT_1 : (PDPORT_1 | PDPORT_2);
912 else
913 cmd.data = 0x0;
914 cmd.len = 1;
915 cmd.delay = 10;
916
917 mutex_lock(&uc->lock);
918
919 ret = ccg_send_command(uc, &cmd);
920
921 mutex_unlock(&uc->lock);
922
923 if (ret != CMD_SUCCESS) {
924 dev_err(uc->dev, "port control failed ret=%d\n", ret);
925 return ret;
926 }
927 return 0;
928 }
929
ccg_cmd_jump_boot_mode(struct ucsi_ccg * uc,int bl_mode)930 static int ccg_cmd_jump_boot_mode(struct ucsi_ccg *uc, int bl_mode)
931 {
932 struct ccg_cmd cmd;
933 int ret;
934
935 cmd.reg = CCGX_RAB_JUMP_TO_BOOT;
936
937 if (bl_mode)
938 cmd.data = TO_BOOT;
939 else
940 cmd.data = TO_ALT_FW;
941
942 cmd.len = 1;
943 cmd.delay = 100;
944
945 mutex_lock(&uc->lock);
946
947 set_bit(RESET_PENDING, &uc->flags);
948
949 ret = ccg_send_command(uc, &cmd);
950 if (ret != RESET_COMPLETE)
951 goto err_clear_flag;
952
953 ret = 0;
954
955 err_clear_flag:
956 clear_bit(RESET_PENDING, &uc->flags);
957
958 mutex_unlock(&uc->lock);
959
960 return ret;
961 }
962
963 static int
ccg_cmd_write_flash_row(struct ucsi_ccg * uc,u16 row,const void * data,u8 fcmd)964 ccg_cmd_write_flash_row(struct ucsi_ccg *uc, u16 row,
965 const void *data, u8 fcmd)
966 {
967 struct i2c_client *client = uc->client;
968 struct ccg_cmd cmd;
969 u8 buf[CCG4_ROW_SIZE + 2];
970 u8 *p;
971 int ret;
972
973 /* Copy the data into the flash read/write memory. */
974 put_unaligned_le16(REG_FLASH_RW_MEM, buf);
975
976 memcpy(buf + 2, data, CCG4_ROW_SIZE);
977
978 mutex_lock(&uc->lock);
979
980 ret = i2c_master_send(client, buf, CCG4_ROW_SIZE + 2);
981 if (ret != CCG4_ROW_SIZE + 2) {
982 dev_err(uc->dev, "REG_FLASH_RW_MEM write fail %d\n", ret);
983 mutex_unlock(&uc->lock);
984 return ret < 0 ? ret : -EIO;
985 }
986
987 /* Use the FLASH_ROW_READ_WRITE register to trigger */
988 /* writing of data to the desired flash row */
989 p = (u8 *)&cmd.data;
990 cmd.reg = CCGX_RAB_FLASH_ROW_RW;
991 p[0] = FLASH_SIG;
992 p[1] = fcmd;
993 put_unaligned_le16(row, &p[2]);
994 cmd.len = 4;
995 cmd.delay = 50;
996 if (fcmd == FLASH_FWCT_SIG_WR_CMD)
997 cmd.delay += 400;
998 if (row == 510)
999 cmd.delay += 220;
1000 ret = ccg_send_command(uc, &cmd);
1001
1002 mutex_unlock(&uc->lock);
1003
1004 if (ret != CMD_SUCCESS) {
1005 dev_err(uc->dev, "write flash row failed ret=%d\n", ret);
1006 return ret;
1007 }
1008
1009 return 0;
1010 }
1011
ccg_cmd_validate_fw(struct ucsi_ccg * uc,unsigned int fwid)1012 static int ccg_cmd_validate_fw(struct ucsi_ccg *uc, unsigned int fwid)
1013 {
1014 struct ccg_cmd cmd;
1015 int ret;
1016
1017 cmd.reg = CCGX_RAB_VALIDATE_FW;
1018 cmd.data = fwid;
1019 cmd.len = 1;
1020 cmd.delay = 500;
1021
1022 mutex_lock(&uc->lock);
1023
1024 ret = ccg_send_command(uc, &cmd);
1025
1026 mutex_unlock(&uc->lock);
1027
1028 if (ret != CMD_SUCCESS)
1029 return ret;
1030
1031 return 0;
1032 }
1033
ccg_check_vendor_version(struct ucsi_ccg * uc,struct version_format * app,struct fw_config_table * fw_cfg)1034 static bool ccg_check_vendor_version(struct ucsi_ccg *uc,
1035 struct version_format *app,
1036 struct fw_config_table *fw_cfg)
1037 {
1038 struct device *dev = uc->dev;
1039
1040 /* Check if the fw build is for supported vendors */
1041 if (le16_to_cpu(app->build) != uc->fw_build) {
1042 dev_info(dev, "current fw is not from supported vendor\n");
1043 return false;
1044 }
1045
1046 /* Check if the new fw build is for supported vendors */
1047 if (le16_to_cpu(fw_cfg->app.build) != uc->fw_build) {
1048 dev_info(dev, "new fw is not from supported vendor\n");
1049 return false;
1050 }
1051 return true;
1052 }
1053
ccg_check_fw_version(struct ucsi_ccg * uc,const char * fw_name,struct version_format * app)1054 static bool ccg_check_fw_version(struct ucsi_ccg *uc, const char *fw_name,
1055 struct version_format *app)
1056 {
1057 const struct firmware *fw = NULL;
1058 struct device *dev = uc->dev;
1059 struct fw_config_table fw_cfg;
1060 u32 cur_version, new_version;
1061 bool is_later = false;
1062
1063 if (request_firmware(&fw, fw_name, dev) != 0) {
1064 dev_err(dev, "error: Failed to open cyacd file %s\n", fw_name);
1065 return false;
1066 }
1067
1068 /*
1069 * check if signed fw
1070 * last part of fw image is fw cfg table and signature
1071 */
1072 if (fw->size < sizeof(fw_cfg) + FW_CFG_TABLE_SIG_SIZE)
1073 goto out_release_firmware;
1074
1075 memcpy((uint8_t *)&fw_cfg, fw->data + fw->size -
1076 sizeof(fw_cfg) - FW_CFG_TABLE_SIG_SIZE, sizeof(fw_cfg));
1077
1078 if (fw_cfg.identity != ('F' | 'W' << 8 | 'C' << 16 | 'T' << 24)) {
1079 dev_info(dev, "not a signed image\n");
1080 goto out_release_firmware;
1081 }
1082
1083 /* compare input version with FWCT version */
1084 cur_version = le16_to_cpu(app->build) | CCG_VERSION_PATCH(app->patch) |
1085 CCG_VERSION(app->ver);
1086
1087 new_version = le16_to_cpu(fw_cfg.app.build) |
1088 CCG_VERSION_PATCH(fw_cfg.app.patch) |
1089 CCG_VERSION(fw_cfg.app.ver);
1090
1091 if (!ccg_check_vendor_version(uc, app, &fw_cfg))
1092 goto out_release_firmware;
1093
1094 if (new_version > cur_version)
1095 is_later = true;
1096
1097 out_release_firmware:
1098 release_firmware(fw);
1099 return is_later;
1100 }
1101
ccg_fw_update_needed(struct ucsi_ccg * uc,enum enum_flash_mode * mode)1102 static int ccg_fw_update_needed(struct ucsi_ccg *uc,
1103 enum enum_flash_mode *mode)
1104 {
1105 struct device *dev = uc->dev;
1106 int err;
1107 struct version_info version[3];
1108
1109 err = ccg_read(uc, CCGX_RAB_DEVICE_MODE, (u8 *)(&uc->info),
1110 sizeof(uc->info));
1111 if (err) {
1112 dev_err(dev, "read device mode failed\n");
1113 return err;
1114 }
1115
1116 err = ccg_read(uc, CCGX_RAB_READ_ALL_VER, (u8 *)version,
1117 sizeof(version));
1118 if (err) {
1119 dev_err(dev, "read device mode failed\n");
1120 return err;
1121 }
1122
1123 if (memcmp(&version[FW1], "\0\0\0\0\0\0\0\0",
1124 sizeof(struct version_info)) == 0) {
1125 dev_info(dev, "secondary fw is not flashed\n");
1126 *mode = SECONDARY_BL;
1127 } else if (le16_to_cpu(version[FW1].base.build) <
1128 secondary_fw_min_ver) {
1129 dev_info(dev, "secondary fw version is too low (< %d)\n",
1130 secondary_fw_min_ver);
1131 *mode = SECONDARY;
1132 } else if (memcmp(&version[FW2], "\0\0\0\0\0\0\0\0",
1133 sizeof(struct version_info)) == 0) {
1134 dev_info(dev, "primary fw is not flashed\n");
1135 *mode = PRIMARY;
1136 } else if (ccg_check_fw_version(uc, ccg_fw_names[PRIMARY],
1137 &version[FW2].app)) {
1138 dev_info(dev, "found primary fw with later version\n");
1139 *mode = PRIMARY;
1140 } else {
1141 dev_info(dev, "secondary and primary fw are the latest\n");
1142 *mode = FLASH_NOT_NEEDED;
1143 }
1144 return 0;
1145 }
1146
do_flash(struct ucsi_ccg * uc,enum enum_flash_mode mode)1147 static int do_flash(struct ucsi_ccg *uc, enum enum_flash_mode mode)
1148 {
1149 struct device *dev = uc->dev;
1150 const struct firmware *fw = NULL;
1151 const char *p, *s;
1152 const char *eof;
1153 int err, row, len, line_sz, line_cnt = 0;
1154 unsigned long start_time = jiffies;
1155 struct fw_config_table fw_cfg;
1156 u8 fw_cfg_sig[FW_CFG_TABLE_SIG_SIZE];
1157 u8 *wr_buf;
1158
1159 err = request_firmware(&fw, ccg_fw_names[mode], dev);
1160 if (err) {
1161 dev_err(dev, "request %s failed err=%d\n",
1162 ccg_fw_names[mode], err);
1163 return err;
1164 }
1165
1166 if (((uc->info.mode & CCG_DEVINFO_FWMODE_MASK) >>
1167 CCG_DEVINFO_FWMODE_SHIFT) == FW2) {
1168 err = ccg_cmd_port_control(uc, false);
1169 if (err < 0)
1170 goto release_fw;
1171 err = ccg_cmd_jump_boot_mode(uc, 0);
1172 if (err < 0)
1173 goto release_fw;
1174 }
1175
1176 eof = fw->data + fw->size;
1177
1178 /*
1179 * check if signed fw
1180 * last part of fw image is fw cfg table and signature
1181 */
1182 if (fw->size < sizeof(fw_cfg) + sizeof(fw_cfg_sig))
1183 goto not_signed_fw;
1184
1185 memcpy((uint8_t *)&fw_cfg, fw->data + fw->size -
1186 sizeof(fw_cfg) - sizeof(fw_cfg_sig), sizeof(fw_cfg));
1187
1188 if (fw_cfg.identity != ('F' | ('W' << 8) | ('C' << 16) | ('T' << 24))) {
1189 dev_info(dev, "not a signed image\n");
1190 goto not_signed_fw;
1191 }
1192 eof = fw->data + fw->size - sizeof(fw_cfg) - sizeof(fw_cfg_sig);
1193
1194 memcpy((uint8_t *)&fw_cfg_sig,
1195 fw->data + fw->size - sizeof(fw_cfg_sig), sizeof(fw_cfg_sig));
1196
1197 /* flash fw config table and signature first */
1198 err = ccg_cmd_write_flash_row(uc, 0, (u8 *)&fw_cfg,
1199 FLASH_FWCT1_WR_CMD);
1200 if (err)
1201 goto release_fw;
1202
1203 err = ccg_cmd_write_flash_row(uc, 0, (u8 *)&fw_cfg + CCG4_ROW_SIZE,
1204 FLASH_FWCT2_WR_CMD);
1205 if (err)
1206 goto release_fw;
1207
1208 err = ccg_cmd_write_flash_row(uc, 0, &fw_cfg_sig,
1209 FLASH_FWCT_SIG_WR_CMD);
1210 if (err)
1211 goto release_fw;
1212
1213 not_signed_fw:
1214 wr_buf = kzalloc(CCG4_ROW_SIZE + 4, GFP_KERNEL);
1215 if (!wr_buf) {
1216 err = -ENOMEM;
1217 goto release_fw;
1218 }
1219
1220 err = ccg_cmd_enter_flashing(uc);
1221 if (err)
1222 goto release_mem;
1223
1224 /*****************************************************************
1225 * CCG firmware image (.cyacd) file line format
1226 *
1227 * :00rrrrllll[dd....]cc/r/n
1228 *
1229 * :00 header
1230 * rrrr is row number to flash (4 char)
1231 * llll is data len to flash (4 char)
1232 * dd is a data field represents one byte of data (512 char)
1233 * cc is checksum (2 char)
1234 * \r\n newline
1235 *
1236 * Total length: 3 + 4 + 4 + 512 + 2 + 2 = 527
1237 *
1238 *****************************************************************/
1239
1240 p = strnchr(fw->data, fw->size, ':');
1241 while (p < eof) {
1242 s = strnchr(p + 1, eof - p - 1, ':');
1243
1244 if (!s)
1245 s = eof;
1246
1247 line_sz = s - p;
1248
1249 if (line_sz != CYACD_LINE_SIZE) {
1250 dev_err(dev, "Bad FW format line_sz=%d\n", line_sz);
1251 err = -EINVAL;
1252 goto release_mem;
1253 }
1254
1255 if (hex2bin(wr_buf, p + 3, CCG4_ROW_SIZE + 4)) {
1256 err = -EINVAL;
1257 goto release_mem;
1258 }
1259
1260 row = get_unaligned_be16(wr_buf);
1261 len = get_unaligned_be16(&wr_buf[2]);
1262
1263 if (len != CCG4_ROW_SIZE) {
1264 err = -EINVAL;
1265 goto release_mem;
1266 }
1267
1268 err = ccg_cmd_write_flash_row(uc, row, wr_buf + 4,
1269 FLASH_WR_CMD);
1270 if (err)
1271 goto release_mem;
1272
1273 line_cnt++;
1274 p = s;
1275 }
1276
1277 dev_info(dev, "total %d row flashed. time: %dms\n",
1278 line_cnt, jiffies_to_msecs(jiffies - start_time));
1279
1280 err = ccg_cmd_validate_fw(uc, (mode == PRIMARY) ? FW2 : FW1);
1281 if (err)
1282 dev_err(dev, "%s validation failed err=%d\n",
1283 (mode == PRIMARY) ? "FW2" : "FW1", err);
1284 else
1285 dev_info(dev, "%s validated\n",
1286 (mode == PRIMARY) ? "FW2" : "FW1");
1287
1288 err = ccg_cmd_port_control(uc, false);
1289 if (err < 0)
1290 goto release_mem;
1291
1292 err = ccg_cmd_reset(uc);
1293 if (err < 0)
1294 goto release_mem;
1295
1296 err = ccg_cmd_port_control(uc, true);
1297 if (err < 0)
1298 goto release_mem;
1299
1300 release_mem:
1301 kfree(wr_buf);
1302
1303 release_fw:
1304 release_firmware(fw);
1305 return err;
1306 }
1307
1308 /*******************************************************************************
1309 * CCG4 has two copies of the firmware in addition to the bootloader.
1310 * If the device is running FW1, FW2 can be updated with the new version.
1311 * Dual firmware mode allows the CCG device to stay in a PD contract and support
1312 * USB PD and Type-C functionality while a firmware update is in progress.
1313 ******************************************************************************/
ccg_fw_update(struct ucsi_ccg * uc,enum enum_flash_mode flash_mode)1314 static int ccg_fw_update(struct ucsi_ccg *uc, enum enum_flash_mode flash_mode)
1315 {
1316 int err = 0;
1317
1318 while (flash_mode != FLASH_NOT_NEEDED) {
1319 err = do_flash(uc, flash_mode);
1320 if (err < 0)
1321 return err;
1322 err = ccg_fw_update_needed(uc, &flash_mode);
1323 if (err < 0)
1324 return err;
1325 }
1326 dev_info(uc->dev, "CCG FW update successful\n");
1327
1328 return err;
1329 }
1330
ccg_restart(struct ucsi_ccg * uc)1331 static int ccg_restart(struct ucsi_ccg *uc)
1332 {
1333 struct device *dev = uc->dev;
1334 int status;
1335
1336 status = ucsi_ccg_init(uc);
1337 if (status < 0) {
1338 dev_err(dev, "ucsi_ccg_start fail, err=%d\n", status);
1339 return status;
1340 }
1341
1342 status = ccg_request_irq(uc);
1343 if (status < 0) {
1344 dev_err(dev, "request_threaded_irq failed - %d\n", status);
1345 return status;
1346 }
1347
1348 status = ucsi_register(uc->ucsi);
1349 if (status) {
1350 dev_err(uc->dev, "failed to register the interface\n");
1351 return status;
1352 }
1353
1354 pm_runtime_enable(uc->dev);
1355 return 0;
1356 }
1357
ccg_update_firmware(struct work_struct * work)1358 static void ccg_update_firmware(struct work_struct *work)
1359 {
1360 struct ucsi_ccg *uc = container_of(work, struct ucsi_ccg, work);
1361 enum enum_flash_mode flash_mode;
1362 int status;
1363
1364 status = ccg_fw_update_needed(uc, &flash_mode);
1365 if (status < 0)
1366 return;
1367
1368 if (flash_mode != FLASH_NOT_NEEDED) {
1369 ucsi_unregister(uc->ucsi);
1370 pm_runtime_disable(uc->dev);
1371 free_irq(uc->irq, uc);
1372
1373 ccg_fw_update(uc, flash_mode);
1374 ccg_restart(uc);
1375 }
1376 }
1377
do_flash_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1378 static ssize_t do_flash_store(struct device *dev,
1379 struct device_attribute *attr,
1380 const char *buf, size_t n)
1381 {
1382 struct ucsi_ccg *uc = i2c_get_clientdata(to_i2c_client(dev));
1383 bool flash;
1384
1385 if (kstrtobool(buf, &flash))
1386 return -EINVAL;
1387
1388 if (!flash)
1389 return n;
1390
1391 schedule_work(&uc->work);
1392 return n;
1393 }
1394
ucsi_ccg_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int idx)1395 static umode_t ucsi_ccg_attrs_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1396 {
1397 struct device *dev = kobj_to_dev(kobj);
1398 struct ucsi_ccg *uc = i2c_get_clientdata(to_i2c_client(dev));
1399
1400 if (!uc->fw_build)
1401 return 0;
1402
1403 return attr->mode;
1404 }
1405
1406 static DEVICE_ATTR_WO(do_flash);
1407
1408 static struct attribute *ucsi_ccg_attrs[] = {
1409 &dev_attr_do_flash.attr,
1410 NULL,
1411 };
1412 static struct attribute_group ucsi_ccg_attr_group = {
1413 .attrs = ucsi_ccg_attrs,
1414 .is_visible = ucsi_ccg_attrs_is_visible,
1415 };
1416 static const struct attribute_group *ucsi_ccg_groups[] = {
1417 &ucsi_ccg_attr_group,
1418 NULL,
1419 };
1420
ucsi_ccg_probe(struct i2c_client * client)1421 static int ucsi_ccg_probe(struct i2c_client *client)
1422 {
1423 struct device *dev = &client->dev;
1424 struct ucsi_ccg *uc;
1425 const char *fw_name;
1426 int status;
1427
1428 uc = devm_kzalloc(dev, sizeof(*uc), GFP_KERNEL);
1429 if (!uc)
1430 return -ENOMEM;
1431
1432 uc->dev = dev;
1433 uc->client = client;
1434 uc->irq = client->irq;
1435 mutex_init(&uc->lock);
1436 INIT_WORK(&uc->work, ccg_update_firmware);
1437 INIT_WORK(&uc->pm_work, ccg_pm_workaround_work);
1438
1439 /* Only fail FW flashing when FW build information is not provided */
1440 status = device_property_read_string(dev, "firmware-name", &fw_name);
1441 if (!status) {
1442 if (!strcmp(fw_name, "nvidia,jetson-agx-xavier"))
1443 uc->fw_build = CCG_FW_BUILD_NVIDIA_TEGRA;
1444 else if (!strcmp(fw_name, "nvidia,gpu"))
1445 uc->fw_build = CCG_FW_BUILD_NVIDIA;
1446 if (!uc->fw_build)
1447 dev_err(uc->dev, "failed to get FW build information\n");
1448 }
1449
1450 /* reset ccg device and initialize ucsi */
1451 status = ucsi_ccg_init(uc);
1452 if (status < 0) {
1453 dev_err(uc->dev, "ucsi_ccg_init failed - %d\n", status);
1454 return status;
1455 }
1456
1457 status = get_fw_info(uc);
1458 if (status < 0) {
1459 dev_err(uc->dev, "get_fw_info failed - %d\n", status);
1460 return status;
1461 }
1462
1463 uc->port_num = 1;
1464
1465 if (uc->info.mode & CCG_DEVINFO_PDPORTS_MASK)
1466 uc->port_num++;
1467
1468 uc->ucsi = ucsi_create(dev, &ucsi_ccg_ops);
1469 if (IS_ERR(uc->ucsi))
1470 return PTR_ERR(uc->ucsi);
1471
1472 ucsi_set_drvdata(uc->ucsi, uc);
1473
1474 status = ccg_request_irq(uc);
1475 if (status < 0) {
1476 dev_err(uc->dev, "request_threaded_irq failed - %d\n", status);
1477 goto out_ucsi_destroy;
1478 }
1479
1480 status = ucsi_register(uc->ucsi);
1481 if (status)
1482 goto out_free_irq;
1483
1484 i2c_set_clientdata(client, uc);
1485
1486 device_disable_async_suspend(uc->dev);
1487
1488 pm_runtime_set_active(uc->dev);
1489 pm_runtime_enable(uc->dev);
1490 pm_runtime_use_autosuspend(uc->dev);
1491 pm_runtime_set_autosuspend_delay(uc->dev, 5000);
1492 pm_runtime_idle(uc->dev);
1493
1494 return 0;
1495
1496 out_free_irq:
1497 free_irq(uc->irq, uc);
1498 out_ucsi_destroy:
1499 ucsi_destroy(uc->ucsi);
1500
1501 return status;
1502 }
1503
ucsi_ccg_remove(struct i2c_client * client)1504 static void ucsi_ccg_remove(struct i2c_client *client)
1505 {
1506 struct ucsi_ccg *uc = i2c_get_clientdata(client);
1507
1508 cancel_work_sync(&uc->pm_work);
1509 cancel_work_sync(&uc->work);
1510 pm_runtime_disable(uc->dev);
1511 ucsi_unregister(uc->ucsi);
1512 ucsi_destroy(uc->ucsi);
1513 free_irq(uc->irq, uc);
1514 }
1515
1516 static const struct of_device_id ucsi_ccg_of_match_table[] = {
1517 { .compatible = "cypress,cypd4226", },
1518 { /* sentinel */ }
1519 };
1520 MODULE_DEVICE_TABLE(of, ucsi_ccg_of_match_table);
1521
1522 static const struct i2c_device_id ucsi_ccg_device_id[] = {
1523 { "ccgx-ucsi" },
1524 {}
1525 };
1526 MODULE_DEVICE_TABLE(i2c, ucsi_ccg_device_id);
1527
1528 static const struct acpi_device_id amd_i2c_ucsi_match[] = {
1529 {"AMDI0042"},
1530 {}
1531 };
1532 MODULE_DEVICE_TABLE(acpi, amd_i2c_ucsi_match);
1533
ucsi_ccg_resume(struct device * dev)1534 static int ucsi_ccg_resume(struct device *dev)
1535 {
1536 struct i2c_client *client = to_i2c_client(dev);
1537 struct ucsi_ccg *uc = i2c_get_clientdata(client);
1538
1539 return ucsi_resume(uc->ucsi);
1540 }
1541
ucsi_ccg_runtime_suspend(struct device * dev)1542 static int ucsi_ccg_runtime_suspend(struct device *dev)
1543 {
1544 return 0;
1545 }
1546
ucsi_ccg_runtime_resume(struct device * dev)1547 static int ucsi_ccg_runtime_resume(struct device *dev)
1548 {
1549 struct i2c_client *client = to_i2c_client(dev);
1550 struct ucsi_ccg *uc = i2c_get_clientdata(client);
1551
1552 /*
1553 * Firmware version 3.1.10 or earlier, built for NVIDIA has known issue
1554 * of missing interrupt when a device is connected for runtime resume.
1555 * Schedule a work to call ISR as a workaround.
1556 */
1557 if (uc->fw_build == CCG_FW_BUILD_NVIDIA &&
1558 uc->fw_version <= CCG_OLD_FW_VERSION)
1559 schedule_work(&uc->pm_work);
1560
1561 return 0;
1562 }
1563
1564 static const struct dev_pm_ops ucsi_ccg_pm = {
1565 .resume = ucsi_ccg_resume,
1566 .runtime_suspend = ucsi_ccg_runtime_suspend,
1567 .runtime_resume = ucsi_ccg_runtime_resume,
1568 };
1569
1570 static struct i2c_driver ucsi_ccg_driver = {
1571 .driver = {
1572 .name = "ucsi_ccg",
1573 .pm = &ucsi_ccg_pm,
1574 .dev_groups = ucsi_ccg_groups,
1575 .acpi_match_table = amd_i2c_ucsi_match,
1576 .of_match_table = ucsi_ccg_of_match_table,
1577 },
1578 .probe = ucsi_ccg_probe,
1579 .remove = ucsi_ccg_remove,
1580 .id_table = ucsi_ccg_device_id,
1581 };
1582
1583 module_i2c_driver(ucsi_ccg_driver);
1584
1585 MODULE_AUTHOR("Ajay Gupta <ajayg@nvidia.com>");
1586 MODULE_DESCRIPTION("UCSI driver for Cypress CCGx Type-C controller");
1587 MODULE_LICENSE("GPL v2");
1588