1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 MEMCG_SOCK,
37 MEMCG_PERCPU_B,
38 MEMCG_VMALLOC,
39 MEMCG_KMEM,
40 MEMCG_ZSWAP_B,
41 MEMCG_ZSWAPPED,
42 MEMCG_NR_STAT,
43 };
44
45 enum memcg_memory_event {
46 MEMCG_LOW,
47 MEMCG_HIGH,
48 MEMCG_MAX,
49 MEMCG_OOM,
50 MEMCG_OOM_KILL,
51 MEMCG_OOM_GROUP_KILL,
52 MEMCG_SWAP_HIGH,
53 MEMCG_SWAP_MAX,
54 MEMCG_SWAP_FAIL,
55 MEMCG_SOCK_THROTTLED,
56 MEMCG_NR_MEMORY_EVENTS,
57 };
58
59 struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int generation;
62 };
63
64 #ifdef CONFIG_MEMCG
65
66 #define MEM_CGROUP_ID_SHIFT 16
67
68 struct mem_cgroup_id {
69 int id;
70 refcount_t ref;
71 };
72
73 struct memcg_vmstats_percpu;
74 struct memcg1_events_percpu;
75 struct memcg_vmstats;
76 struct lruvec_stats_percpu;
77 struct lruvec_stats;
78
79 struct mem_cgroup_reclaim_iter {
80 struct mem_cgroup *position;
81 /* scan generation, increased every round-trip */
82 atomic_t generation;
83 };
84
85 /*
86 * per-node information in memory controller.
87 */
88 struct mem_cgroup_per_node {
89 /* Keep the read-only fields at the start */
90 struct mem_cgroup *memcg; /* Back pointer, we cannot */
91 /* use container_of */
92
93 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
94 struct lruvec_stats *lruvec_stats;
95 struct shrinker_info __rcu *shrinker_info;
96
97 #ifdef CONFIG_MEMCG_V1
98 /*
99 * Memcg-v1 only stuff in middle as buffer between read mostly fields
100 * and update often fields to avoid false sharing. If v1 stuff is
101 * not present, an explicit padding is needed.
102 */
103
104 struct rb_node tree_node; /* RB tree node */
105 unsigned long usage_in_excess;/* Set to the value by which */
106 /* the soft limit is exceeded*/
107 bool on_tree;
108 #else
109 CACHELINE_PADDING(_pad1_);
110 #endif
111
112 /* Fields which get updated often at the end. */
113 struct lruvec lruvec;
114 CACHELINE_PADDING(_pad2_);
115 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
116 struct mem_cgroup_reclaim_iter iter;
117
118 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
119 /* slab stats for nmi context */
120 atomic_t slab_reclaimable;
121 atomic_t slab_unreclaimable;
122 #endif
123 };
124
125 struct mem_cgroup_threshold {
126 struct eventfd_ctx *eventfd;
127 unsigned long threshold;
128 };
129
130 /* For threshold */
131 struct mem_cgroup_threshold_ary {
132 /* An array index points to threshold just below or equal to usage. */
133 int current_threshold;
134 /* Size of entries[] */
135 unsigned int size;
136 /* Array of thresholds */
137 struct mem_cgroup_threshold entries[] __counted_by(size);
138 };
139
140 struct mem_cgroup_thresholds {
141 /* Primary thresholds array */
142 struct mem_cgroup_threshold_ary *primary;
143 /*
144 * Spare threshold array.
145 * This is needed to make mem_cgroup_unregister_event() "never fail".
146 * It must be able to store at least primary->size - 1 entries.
147 */
148 struct mem_cgroup_threshold_ary *spare;
149 };
150
151 /*
152 * Remember four most recent foreign writebacks with dirty pages in this
153 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
154 * one in a given round, we're likely to catch it later if it keeps
155 * foreign-dirtying, so a fairly low count should be enough.
156 *
157 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
158 */
159 #define MEMCG_CGWB_FRN_CNT 4
160
161 struct memcg_cgwb_frn {
162 u64 bdi_id; /* bdi->id of the foreign inode */
163 int memcg_id; /* memcg->css.id of foreign inode */
164 u64 at; /* jiffies_64 at the time of dirtying */
165 struct wb_completion done; /* tracks in-flight foreign writebacks */
166 };
167
168 /*
169 * Bucket for arbitrarily byte-sized objects charged to a memory
170 * cgroup. The bucket can be reparented in one piece when the cgroup
171 * is destroyed, without having to round up the individual references
172 * of all live memory objects in the wild.
173 */
174 struct obj_cgroup {
175 struct percpu_ref refcnt;
176 struct mem_cgroup *memcg;
177 atomic_t nr_charged_bytes;
178 union {
179 struct list_head list; /* protected by objcg_lock */
180 struct rcu_head rcu;
181 };
182 };
183
184 /*
185 * The memory controller data structure. The memory controller controls both
186 * page cache and RSS per cgroup. We would eventually like to provide
187 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
188 * to help the administrator determine what knobs to tune.
189 */
190 struct mem_cgroup {
191 struct cgroup_subsys_state css;
192
193 /* Private memcg ID. Used to ID objects that outlive the cgroup */
194 struct mem_cgroup_id id;
195
196 /* Accounted resources */
197 struct page_counter memory; /* Both v1 & v2 */
198
199 union {
200 struct page_counter swap; /* v2 only */
201 struct page_counter memsw; /* v1 only */
202 };
203
204 /* registered local peak watchers */
205 struct list_head memory_peaks;
206 struct list_head swap_peaks;
207 spinlock_t peaks_lock;
208
209 /* Range enforcement for interrupt charges */
210 struct work_struct high_work;
211
212 #ifdef CONFIG_ZSWAP
213 unsigned long zswap_max;
214
215 /*
216 * Prevent pages from this memcg from being written back from zswap to
217 * swap, and from being swapped out on zswap store failures.
218 */
219 bool zswap_writeback;
220 #endif
221
222 /* vmpressure notifications */
223 struct vmpressure vmpressure;
224
225 /*
226 * Should the OOM killer kill all belonging tasks, had it kill one?
227 */
228 bool oom_group;
229
230 int swappiness;
231
232 /* memory.events and memory.events.local */
233 struct cgroup_file events_file;
234 struct cgroup_file events_local_file;
235
236 /* handle for "memory.swap.events" */
237 struct cgroup_file swap_events_file;
238
239 /* memory.stat */
240 struct memcg_vmstats *vmstats;
241
242 /* memory.events */
243 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
244 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
245
246 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
247 /* MEMCG_KMEM for nmi context */
248 atomic_t kmem_stat;
249 #endif
250 /*
251 * Hint of reclaim pressure for socket memroy management. Note
252 * that this indicator should NOT be used in legacy cgroup mode
253 * where socket memory is accounted/charged separately.
254 */
255 u64 socket_pressure;
256 #if BITS_PER_LONG < 64
257 seqlock_t socket_pressure_seqlock;
258 #endif
259 int kmemcg_id;
260 /*
261 * memcg->objcg is wiped out as a part of the objcg repaprenting
262 * process. memcg->orig_objcg preserves a pointer (and a reference)
263 * to the original objcg until the end of live of memcg.
264 */
265 struct obj_cgroup __rcu *objcg;
266 struct obj_cgroup *orig_objcg;
267 /* list of inherited objcgs, protected by objcg_lock */
268 struct list_head objcg_list;
269
270 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
271
272 #ifdef CONFIG_CGROUP_WRITEBACK
273 struct list_head cgwb_list;
274 struct wb_domain cgwb_domain;
275 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
276 #endif
277
278 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
279 struct deferred_split deferred_split_queue;
280 #endif
281
282 #ifdef CONFIG_LRU_GEN_WALKS_MMU
283 /* per-memcg mm_struct list */
284 struct lru_gen_mm_list mm_list;
285 #endif
286
287 #ifdef CONFIG_MEMCG_V1
288 /* Legacy consumer-oriented counters */
289 struct page_counter kmem; /* v1 only */
290 struct page_counter tcpmem; /* v1 only */
291
292 struct memcg1_events_percpu __percpu *events_percpu;
293
294 unsigned long soft_limit;
295
296 /* protected by memcg_oom_lock */
297 bool oom_lock;
298 int under_oom;
299
300 /* OOM-Killer disable */
301 int oom_kill_disable;
302
303 /* protect arrays of thresholds */
304 struct mutex thresholds_lock;
305
306 /* thresholds for memory usage. RCU-protected */
307 struct mem_cgroup_thresholds thresholds;
308
309 /* thresholds for mem+swap usage. RCU-protected */
310 struct mem_cgroup_thresholds memsw_thresholds;
311
312 /* For oom notifier event fd */
313 struct list_head oom_notify;
314
315 /* Legacy tcp memory accounting */
316 bool tcpmem_active;
317 int tcpmem_pressure;
318
319 /* List of events which userspace want to receive */
320 struct list_head event_list;
321 spinlock_t event_list_lock;
322 #endif /* CONFIG_MEMCG_V1 */
323
324 struct mem_cgroup_per_node *nodeinfo[];
325 };
326
327 /*
328 * size of first charge trial.
329 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
330 * workload.
331 */
332 #define MEMCG_CHARGE_BATCH 64U
333
334 extern struct mem_cgroup *root_mem_cgroup;
335
336 enum page_memcg_data_flags {
337 /* page->memcg_data is a pointer to an slabobj_ext vector */
338 MEMCG_DATA_OBJEXTS = (1UL << 0),
339 /* page has been accounted as a non-slab kernel page */
340 MEMCG_DATA_KMEM = (1UL << 1),
341 /* the next bit after the last actual flag */
342 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
343 };
344
345 #define __OBJEXTS_ALLOC_FAIL MEMCG_DATA_OBJEXTS
346 #define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS
347
348 #else /* CONFIG_MEMCG */
349
350 #define __OBJEXTS_ALLOC_FAIL (1UL << 0)
351 #define __FIRST_OBJEXT_FLAG (1UL << 0)
352
353 #endif /* CONFIG_MEMCG */
354
355 enum objext_flags {
356 /*
357 * Use bit 0 with zero other bits to signal that slabobj_ext vector
358 * failed to allocate. The same bit 0 with valid upper bits means
359 * MEMCG_DATA_OBJEXTS.
360 */
361 OBJEXTS_ALLOC_FAIL = __OBJEXTS_ALLOC_FAIL,
362 /* slabobj_ext vector allocated with kmalloc_nolock() */
363 OBJEXTS_NOSPIN_ALLOC = __FIRST_OBJEXT_FLAG,
364 /* the next bit after the last actual flag */
365 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
366 };
367
368 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
369
370 #ifdef CONFIG_MEMCG
371
372 static inline bool folio_memcg_kmem(struct folio *folio);
373
374 /*
375 * After the initialization objcg->memcg is always pointing at
376 * a valid memcg, but can be atomically swapped to the parent memcg.
377 *
378 * The caller must ensure that the returned memcg won't be released.
379 */
obj_cgroup_memcg(struct obj_cgroup * objcg)380 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
381 {
382 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
383 return READ_ONCE(objcg->memcg);
384 }
385
386 /*
387 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
388 * @folio: Pointer to the folio.
389 *
390 * Returns a pointer to the memory cgroup associated with the folio,
391 * or NULL. This function assumes that the folio is known to have a
392 * proper memory cgroup pointer. It's not safe to call this function
393 * against some type of folios, e.g. slab folios or ex-slab folios or
394 * kmem folios.
395 */
__folio_memcg(struct folio * folio)396 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
397 {
398 unsigned long memcg_data = folio->memcg_data;
399
400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
403
404 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405 }
406
407 /*
408 * __folio_objcg - get the object cgroup associated with a kmem folio.
409 * @folio: Pointer to the folio.
410 *
411 * Returns a pointer to the object cgroup associated with the folio,
412 * or NULL. This function assumes that the folio is known to have a
413 * proper object cgroup pointer. It's not safe to call this function
414 * against some type of folios, e.g. slab folios or ex-slab folios or
415 * LRU folios.
416 */
__folio_objcg(struct folio * folio)417 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
418 {
419 unsigned long memcg_data = folio->memcg_data;
420
421 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
422 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
423 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
424
425 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
426 }
427
428 /*
429 * folio_memcg - Get the memory cgroup associated with a folio.
430 * @folio: Pointer to the folio.
431 *
432 * Returns a pointer to the memory cgroup associated with the folio,
433 * or NULL. This function assumes that the folio is known to have a
434 * proper memory cgroup pointer. It's not safe to call this function
435 * against some type of folios, e.g. slab folios or ex-slab folios.
436 *
437 * For a non-kmem folio any of the following ensures folio and memcg binding
438 * stability:
439 *
440 * - the folio lock
441 * - LRU isolation
442 * - exclusive reference
443 *
444 * For a kmem folio a caller should hold an rcu read lock to protect memcg
445 * associated with a kmem folio from being released.
446 */
folio_memcg(struct folio * folio)447 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
448 {
449 if (folio_memcg_kmem(folio))
450 return obj_cgroup_memcg(__folio_objcg(folio));
451 return __folio_memcg(folio);
452 }
453
454 /*
455 * folio_memcg_charged - If a folio is charged to a memory cgroup.
456 * @folio: Pointer to the folio.
457 *
458 * Returns true if folio is charged to a memory cgroup, otherwise returns false.
459 */
folio_memcg_charged(struct folio * folio)460 static inline bool folio_memcg_charged(struct folio *folio)
461 {
462 return folio->memcg_data != 0;
463 }
464
465 /*
466 * folio_memcg_check - Get the memory cgroup associated with a folio.
467 * @folio: Pointer to the folio.
468 *
469 * Returns a pointer to the memory cgroup associated with the folio,
470 * or NULL. This function unlike folio_memcg() can take any folio
471 * as an argument. It has to be used in cases when it's not known if a folio
472 * has an associated memory cgroup pointer or an object cgroups vector or
473 * an object cgroup.
474 *
475 * For a non-kmem folio any of the following ensures folio and memcg binding
476 * stability:
477 *
478 * - the folio lock
479 * - LRU isolation
480 * - exclusive reference
481 *
482 * For a kmem folio a caller should hold an rcu read lock to protect memcg
483 * associated with a kmem folio from being released.
484 */
folio_memcg_check(struct folio * folio)485 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
486 {
487 /*
488 * Because folio->memcg_data might be changed asynchronously
489 * for slabs, READ_ONCE() should be used here.
490 */
491 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
492
493 if (memcg_data & MEMCG_DATA_OBJEXTS)
494 return NULL;
495
496 if (memcg_data & MEMCG_DATA_KMEM) {
497 struct obj_cgroup *objcg;
498
499 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
500 return obj_cgroup_memcg(objcg);
501 }
502
503 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
504 }
505
page_memcg_check(struct page * page)506 static inline struct mem_cgroup *page_memcg_check(struct page *page)
507 {
508 if (PageTail(page))
509 return NULL;
510 return folio_memcg_check((struct folio *)page);
511 }
512
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)513 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
514 {
515 struct mem_cgroup *memcg;
516
517 rcu_read_lock();
518 retry:
519 memcg = obj_cgroup_memcg(objcg);
520 if (unlikely(!css_tryget(&memcg->css)))
521 goto retry;
522 rcu_read_unlock();
523
524 return memcg;
525 }
526
527 /*
528 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
529 * @folio: Pointer to the folio.
530 *
531 * Checks if the folio has MemcgKmem flag set. The caller must ensure
532 * that the folio has an associated memory cgroup. It's not safe to call
533 * this function against some types of folios, e.g. slab folios.
534 */
folio_memcg_kmem(struct folio * folio)535 static inline bool folio_memcg_kmem(struct folio *folio)
536 {
537 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
538 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
539 return folio->memcg_data & MEMCG_DATA_KMEM;
540 }
541
PageMemcgKmem(struct page * page)542 static inline bool PageMemcgKmem(struct page *page)
543 {
544 return folio_memcg_kmem(page_folio(page));
545 }
546
mem_cgroup_is_root(struct mem_cgroup * memcg)547 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
548 {
549 return (memcg == root_mem_cgroup);
550 }
551
mem_cgroup_disabled(void)552 static inline bool mem_cgroup_disabled(void)
553 {
554 return !cgroup_subsys_enabled(memory_cgrp_subsys);
555 }
556
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)557 static inline void mem_cgroup_protection(struct mem_cgroup *root,
558 struct mem_cgroup *memcg,
559 unsigned long *min,
560 unsigned long *low)
561 {
562 *min = *low = 0;
563
564 if (mem_cgroup_disabled())
565 return;
566
567 /*
568 * There is no reclaim protection applied to a targeted reclaim.
569 * We are special casing this specific case here because
570 * mem_cgroup_calculate_protection is not robust enough to keep
571 * the protection invariant for calculated effective values for
572 * parallel reclaimers with different reclaim target. This is
573 * especially a problem for tail memcgs (as they have pages on LRU)
574 * which would want to have effective values 0 for targeted reclaim
575 * but a different value for external reclaim.
576 *
577 * Example
578 * Let's have global and A's reclaim in parallel:
579 * |
580 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
581 * |\
582 * | C (low = 1G, usage = 2.5G)
583 * B (low = 1G, usage = 0.5G)
584 *
585 * For the global reclaim
586 * A.elow = A.low
587 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
588 * C.elow = min(C.usage, C.low)
589 *
590 * With the effective values resetting we have A reclaim
591 * A.elow = 0
592 * B.elow = B.low
593 * C.elow = C.low
594 *
595 * If the global reclaim races with A's reclaim then
596 * B.elow = C.elow = 0 because children_low_usage > A.elow)
597 * is possible and reclaiming B would be violating the protection.
598 *
599 */
600 if (root == memcg)
601 return;
602
603 *min = READ_ONCE(memcg->memory.emin);
604 *low = READ_ONCE(memcg->memory.elow);
605 }
606
607 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
608 struct mem_cgroup *memcg);
609
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)610 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
611 struct mem_cgroup *memcg)
612 {
613 /*
614 * The root memcg doesn't account charges, and doesn't support
615 * protection. The target memcg's protection is ignored, see
616 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
617 */
618 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
619 memcg == target;
620 }
621
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)622 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
623 struct mem_cgroup *memcg)
624 {
625 if (mem_cgroup_unprotected(target, memcg))
626 return false;
627
628 return READ_ONCE(memcg->memory.elow) >=
629 page_counter_read(&memcg->memory);
630 }
631
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)632 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
633 struct mem_cgroup *memcg)
634 {
635 if (mem_cgroup_unprotected(target, memcg))
636 return false;
637
638 return READ_ONCE(memcg->memory.emin) >=
639 page_counter_read(&memcg->memory);
640 }
641
642 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
643
644 /**
645 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
646 * @folio: Folio to charge.
647 * @mm: mm context of the allocating task.
648 * @gfp: Reclaim mode.
649 *
650 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
651 * pages according to @gfp if necessary. If @mm is NULL, try to
652 * charge to the active memcg.
653 *
654 * Do not use this for folios allocated for swapin.
655 *
656 * Return: 0 on success. Otherwise, an error code is returned.
657 */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)658 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
659 gfp_t gfp)
660 {
661 if (mem_cgroup_disabled())
662 return 0;
663 return __mem_cgroup_charge(folio, mm, gfp);
664 }
665
666 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
667
668 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
669 gfp_t gfp, swp_entry_t entry);
670
671 void __mem_cgroup_uncharge(struct folio *folio);
672
673 /**
674 * mem_cgroup_uncharge - Uncharge a folio.
675 * @folio: Folio to uncharge.
676 *
677 * Uncharge a folio previously charged with mem_cgroup_charge().
678 */
mem_cgroup_uncharge(struct folio * folio)679 static inline void mem_cgroup_uncharge(struct folio *folio)
680 {
681 if (mem_cgroup_disabled())
682 return;
683 __mem_cgroup_uncharge(folio);
684 }
685
686 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
mem_cgroup_uncharge_folios(struct folio_batch * folios)687 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
688 {
689 if (mem_cgroup_disabled())
690 return;
691 __mem_cgroup_uncharge_folios(folios);
692 }
693
694 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
695 void mem_cgroup_migrate(struct folio *old, struct folio *new);
696
697 /**
698 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
699 * @memcg: memcg of the wanted lruvec
700 * @pgdat: pglist_data
701 *
702 * Returns the lru list vector holding pages for a given @memcg &
703 * @pgdat combination. This can be the node lruvec, if the memory
704 * controller is disabled.
705 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)706 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
707 struct pglist_data *pgdat)
708 {
709 struct mem_cgroup_per_node *mz;
710 struct lruvec *lruvec;
711
712 if (mem_cgroup_disabled()) {
713 lruvec = &pgdat->__lruvec;
714 goto out;
715 }
716
717 if (!memcg)
718 memcg = root_mem_cgroup;
719
720 mz = memcg->nodeinfo[pgdat->node_id];
721 lruvec = &mz->lruvec;
722 out:
723 /*
724 * Since a node can be onlined after the mem_cgroup was created,
725 * we have to be prepared to initialize lruvec->pgdat here;
726 * and if offlined then reonlined, we need to reinitialize it.
727 */
728 if (unlikely(lruvec->pgdat != pgdat))
729 lruvec->pgdat = pgdat;
730 return lruvec;
731 }
732
733 /**
734 * folio_lruvec - return lruvec for isolating/putting an LRU folio
735 * @folio: Pointer to the folio.
736 *
737 * This function relies on folio->mem_cgroup being stable.
738 */
folio_lruvec(struct folio * folio)739 static inline struct lruvec *folio_lruvec(struct folio *folio)
740 {
741 struct mem_cgroup *memcg = folio_memcg(folio);
742
743 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
744 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
745 }
746
747 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
748
749 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
750
751 struct mem_cgroup *get_mem_cgroup_from_current(void);
752
753 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
754
755 struct lruvec *folio_lruvec_lock(struct folio *folio);
756 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
757 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
758 unsigned long *flags);
759
760 #ifdef CONFIG_DEBUG_VM
761 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
762 #else
763 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)764 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
765 {
766 }
767 #endif
768
769 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)770 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
771 return css ? container_of(css, struct mem_cgroup, css) : NULL;
772 }
773
obj_cgroup_tryget(struct obj_cgroup * objcg)774 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
775 {
776 return percpu_ref_tryget(&objcg->refcnt);
777 }
778
obj_cgroup_get(struct obj_cgroup * objcg)779 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
780 {
781 percpu_ref_get(&objcg->refcnt);
782 }
783
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)784 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
785 unsigned long nr)
786 {
787 percpu_ref_get_many(&objcg->refcnt, nr);
788 }
789
obj_cgroup_put(struct obj_cgroup * objcg)790 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
791 {
792 if (objcg)
793 percpu_ref_put(&objcg->refcnt);
794 }
795
mem_cgroup_tryget(struct mem_cgroup * memcg)796 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
797 {
798 return !memcg || css_tryget(&memcg->css);
799 }
800
mem_cgroup_tryget_online(struct mem_cgroup * memcg)801 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
802 {
803 return !memcg || css_tryget_online(&memcg->css);
804 }
805
mem_cgroup_put(struct mem_cgroup * memcg)806 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
807 {
808 if (memcg)
809 css_put(&memcg->css);
810 }
811
812 #define mem_cgroup_from_counter(counter, member) \
813 container_of(counter, struct mem_cgroup, member)
814
815 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
816 struct mem_cgroup *,
817 struct mem_cgroup_reclaim_cookie *);
818 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
819 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
820 int (*)(struct task_struct *, void *), void *arg);
821
mem_cgroup_id(struct mem_cgroup * memcg)822 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
823 {
824 if (mem_cgroup_disabled())
825 return 0;
826
827 return memcg->id.id;
828 }
829 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
830
831 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)832 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
833 {
834 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
835 }
836
837 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
838 #endif
839
mem_cgroup_from_seq(struct seq_file * m)840 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
841 {
842 return mem_cgroup_from_css(seq_css(m));
843 }
844
lruvec_memcg(struct lruvec * lruvec)845 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
846 {
847 struct mem_cgroup_per_node *mz;
848
849 if (mem_cgroup_disabled())
850 return NULL;
851
852 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
853 return mz->memcg;
854 }
855
856 /**
857 * parent_mem_cgroup - find the accounting parent of a memcg
858 * @memcg: memcg whose parent to find
859 *
860 * Returns the parent memcg, or NULL if this is the root.
861 */
parent_mem_cgroup(struct mem_cgroup * memcg)862 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
863 {
864 return mem_cgroup_from_css(memcg->css.parent);
865 }
866
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)867 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
868 struct mem_cgroup *root)
869 {
870 if (root == memcg)
871 return true;
872 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
873 }
874
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)875 static inline bool mm_match_cgroup(struct mm_struct *mm,
876 struct mem_cgroup *memcg)
877 {
878 struct mem_cgroup *task_memcg;
879 bool match = false;
880
881 rcu_read_lock();
882 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
883 if (task_memcg)
884 match = mem_cgroup_is_descendant(task_memcg, memcg);
885 rcu_read_unlock();
886 return match;
887 }
888
889 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
890 ino_t page_cgroup_ino(struct page *page);
891
mem_cgroup_online(struct mem_cgroup * memcg)892 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
893 {
894 if (mem_cgroup_disabled())
895 return true;
896 return !!(memcg->css.flags & CSS_ONLINE);
897 }
898
899 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
900 int zid, int nr_pages);
901
902 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)903 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
904 enum lru_list lru, int zone_idx)
905 {
906 struct mem_cgroup_per_node *mz;
907
908 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
909 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
910 }
911
912 void __mem_cgroup_handle_over_high(gfp_t gfp_mask);
913
mem_cgroup_handle_over_high(gfp_t gfp_mask)914 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
915 {
916 if (unlikely(current->memcg_nr_pages_over_high))
917 __mem_cgroup_handle_over_high(gfp_mask);
918 }
919
920 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
921
922 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
923
924 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
925 struct task_struct *p);
926
927 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
928
929 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
930 struct mem_cgroup *oom_domain);
931 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
932
933 /* idx can be of type enum memcg_stat_item or node_stat_item */
934 void mod_memcg_state(struct mem_cgroup *memcg,
935 enum memcg_stat_item idx, int val);
936
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)937 static inline void mod_memcg_page_state(struct page *page,
938 enum memcg_stat_item idx, int val)
939 {
940 struct mem_cgroup *memcg;
941
942 if (mem_cgroup_disabled())
943 return;
944
945 rcu_read_lock();
946 memcg = folio_memcg(page_folio(page));
947 if (memcg)
948 mod_memcg_state(memcg, idx, val);
949 rcu_read_unlock();
950 }
951
952 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
953 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
954 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
955 enum node_stat_item idx);
956
957 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
958 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
959
960 void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
961
962 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
963 unsigned long count);
964
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)965 static inline void count_memcg_folio_events(struct folio *folio,
966 enum vm_event_item idx, unsigned long nr)
967 {
968 struct mem_cgroup *memcg = folio_memcg(folio);
969
970 if (memcg)
971 count_memcg_events(memcg, idx, nr);
972 }
973
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)974 static inline void count_memcg_events_mm(struct mm_struct *mm,
975 enum vm_event_item idx, unsigned long count)
976 {
977 struct mem_cgroup *memcg;
978
979 if (mem_cgroup_disabled())
980 return;
981
982 rcu_read_lock();
983 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
984 if (likely(memcg))
985 count_memcg_events(memcg, idx, count);
986 rcu_read_unlock();
987 }
988
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)989 static inline void count_memcg_event_mm(struct mm_struct *mm,
990 enum vm_event_item idx)
991 {
992 count_memcg_events_mm(mm, idx, 1);
993 }
994
995 void __memcg_memory_event(struct mem_cgroup *memcg,
996 enum memcg_memory_event event, bool allow_spinning);
997
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)998 static inline void memcg_memory_event(struct mem_cgroup *memcg,
999 enum memcg_memory_event event)
1000 {
1001 __memcg_memory_event(memcg, event, true);
1002 }
1003
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1004 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1005 enum memcg_memory_event event)
1006 {
1007 struct mem_cgroup *memcg;
1008
1009 if (mem_cgroup_disabled())
1010 return;
1011
1012 rcu_read_lock();
1013 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1014 if (likely(memcg))
1015 memcg_memory_event(memcg, event);
1016 rcu_read_unlock();
1017 }
1018
1019 void split_page_memcg(struct page *first, unsigned order);
1020 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
1021 unsigned new_order);
1022
cgroup_id_from_mm(struct mm_struct * mm)1023 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1024 {
1025 struct mem_cgroup *memcg;
1026 u64 id;
1027
1028 if (mem_cgroup_disabled())
1029 return 0;
1030
1031 rcu_read_lock();
1032 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1033 if (!memcg)
1034 memcg = root_mem_cgroup;
1035 id = cgroup_id(memcg->css.cgroup);
1036 rcu_read_unlock();
1037 return id;
1038 }
1039
1040 extern int mem_cgroup_init(void);
1041 #else /* CONFIG_MEMCG */
1042
1043 #define MEM_CGROUP_ID_SHIFT 0
1044
1045 #define root_mem_cgroup (NULL)
1046
folio_memcg(struct folio * folio)1047 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1048 {
1049 return NULL;
1050 }
1051
folio_memcg_charged(struct folio * folio)1052 static inline bool folio_memcg_charged(struct folio *folio)
1053 {
1054 return false;
1055 }
1056
folio_memcg_check(struct folio * folio)1057 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1058 {
1059 return NULL;
1060 }
1061
page_memcg_check(struct page * page)1062 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1063 {
1064 return NULL;
1065 }
1066
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)1067 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1068 {
1069 return NULL;
1070 }
1071
folio_memcg_kmem(struct folio * folio)1072 static inline bool folio_memcg_kmem(struct folio *folio)
1073 {
1074 return false;
1075 }
1076
PageMemcgKmem(struct page * page)1077 static inline bool PageMemcgKmem(struct page *page)
1078 {
1079 return false;
1080 }
1081
mem_cgroup_is_root(struct mem_cgroup * memcg)1082 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1083 {
1084 return true;
1085 }
1086
mem_cgroup_disabled(void)1087 static inline bool mem_cgroup_disabled(void)
1088 {
1089 return true;
1090 }
1091
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1092 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1093 enum memcg_memory_event event)
1094 {
1095 }
1096
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1097 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1098 enum memcg_memory_event event)
1099 {
1100 }
1101
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1102 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1103 struct mem_cgroup *memcg,
1104 unsigned long *min,
1105 unsigned long *low)
1106 {
1107 *min = *low = 0;
1108 }
1109
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1110 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1111 struct mem_cgroup *memcg)
1112 {
1113 }
1114
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1115 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1116 struct mem_cgroup *memcg)
1117 {
1118 return true;
1119 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1120 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1121 struct mem_cgroup *memcg)
1122 {
1123 return false;
1124 }
1125
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1126 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1127 struct mem_cgroup *memcg)
1128 {
1129 return false;
1130 }
1131
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1132 static inline int mem_cgroup_charge(struct folio *folio,
1133 struct mm_struct *mm, gfp_t gfp)
1134 {
1135 return 0;
1136 }
1137
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)1138 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1139 {
1140 return 0;
1141 }
1142
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1143 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1144 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1145 {
1146 return 0;
1147 }
1148
mem_cgroup_uncharge(struct folio * folio)1149 static inline void mem_cgroup_uncharge(struct folio *folio)
1150 {
1151 }
1152
mem_cgroup_uncharge_folios(struct folio_batch * folios)1153 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1154 {
1155 }
1156
mem_cgroup_replace_folio(struct folio * old,struct folio * new)1157 static inline void mem_cgroup_replace_folio(struct folio *old,
1158 struct folio *new)
1159 {
1160 }
1161
mem_cgroup_migrate(struct folio * old,struct folio * new)1162 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1163 {
1164 }
1165
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1166 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1167 struct pglist_data *pgdat)
1168 {
1169 return &pgdat->__lruvec;
1170 }
1171
folio_lruvec(struct folio * folio)1172 static inline struct lruvec *folio_lruvec(struct folio *folio)
1173 {
1174 struct pglist_data *pgdat = folio_pgdat(folio);
1175 return &pgdat->__lruvec;
1176 }
1177
1178 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1179 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1180 {
1181 }
1182
parent_mem_cgroup(struct mem_cgroup * memcg)1183 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1184 {
1185 return NULL;
1186 }
1187
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1188 static inline bool mm_match_cgroup(struct mm_struct *mm,
1189 struct mem_cgroup *memcg)
1190 {
1191 return true;
1192 }
1193
get_mem_cgroup_from_mm(struct mm_struct * mm)1194 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1195 {
1196 return NULL;
1197 }
1198
get_mem_cgroup_from_current(void)1199 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1200 {
1201 return NULL;
1202 }
1203
get_mem_cgroup_from_folio(struct folio * folio)1204 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1205 {
1206 return NULL;
1207 }
1208
1209 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1210 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1211 {
1212 return NULL;
1213 }
1214
obj_cgroup_get(struct obj_cgroup * objcg)1215 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1216 {
1217 }
1218
obj_cgroup_put(struct obj_cgroup * objcg)1219 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1220 {
1221 }
1222
mem_cgroup_tryget(struct mem_cgroup * memcg)1223 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1224 {
1225 return true;
1226 }
1227
mem_cgroup_tryget_online(struct mem_cgroup * memcg)1228 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1229 {
1230 return true;
1231 }
1232
mem_cgroup_put(struct mem_cgroup * memcg)1233 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1234 {
1235 }
1236
folio_lruvec_lock(struct folio * folio)1237 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1238 {
1239 struct pglist_data *pgdat = folio_pgdat(folio);
1240
1241 spin_lock(&pgdat->__lruvec.lru_lock);
1242 return &pgdat->__lruvec;
1243 }
1244
folio_lruvec_lock_irq(struct folio * folio)1245 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1246 {
1247 struct pglist_data *pgdat = folio_pgdat(folio);
1248
1249 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1250 return &pgdat->__lruvec;
1251 }
1252
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1253 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1254 unsigned long *flagsp)
1255 {
1256 struct pglist_data *pgdat = folio_pgdat(folio);
1257
1258 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1259 return &pgdat->__lruvec;
1260 }
1261
1262 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1263 mem_cgroup_iter(struct mem_cgroup *root,
1264 struct mem_cgroup *prev,
1265 struct mem_cgroup_reclaim_cookie *reclaim)
1266 {
1267 return NULL;
1268 }
1269
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1270 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1271 struct mem_cgroup *prev)
1272 {
1273 }
1274
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1275 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1276 int (*fn)(struct task_struct *, void *), void *arg)
1277 {
1278 }
1279
mem_cgroup_id(struct mem_cgroup * memcg)1280 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1281 {
1282 return 0;
1283 }
1284
mem_cgroup_from_id(unsigned short id)1285 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1286 {
1287 WARN_ON_ONCE(id);
1288 /* XXX: This should always return root_mem_cgroup */
1289 return NULL;
1290 }
1291
1292 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1293 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1294 {
1295 return 0;
1296 }
1297
mem_cgroup_get_from_ino(unsigned long ino)1298 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1299 {
1300 return NULL;
1301 }
1302 #endif
1303
mem_cgroup_from_seq(struct seq_file * m)1304 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1305 {
1306 return NULL;
1307 }
1308
lruvec_memcg(struct lruvec * lruvec)1309 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1310 {
1311 return NULL;
1312 }
1313
mem_cgroup_online(struct mem_cgroup * memcg)1314 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1315 {
1316 return true;
1317 }
1318
1319 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1320 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1321 enum lru_list lru, int zone_idx)
1322 {
1323 return 0;
1324 }
1325
mem_cgroup_get_max(struct mem_cgroup * memcg)1326 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1327 {
1328 return 0;
1329 }
1330
mem_cgroup_size(struct mem_cgroup * memcg)1331 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1332 {
1333 return 0;
1334 }
1335
1336 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1337 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1338 {
1339 }
1340
1341 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1342 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1343 {
1344 }
1345
mem_cgroup_handle_over_high(gfp_t gfp_mask)1346 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1347 {
1348 }
1349
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1350 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1351 struct task_struct *victim, struct mem_cgroup *oom_domain)
1352 {
1353 return NULL;
1354 }
1355
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1356 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1357 {
1358 }
1359
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int nr)1360 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1361 enum memcg_stat_item idx,
1362 int nr)
1363 {
1364 }
1365
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)1366 static inline void mod_memcg_page_state(struct page *page,
1367 enum memcg_stat_item idx, int val)
1368 {
1369 }
1370
memcg_page_state(struct mem_cgroup * memcg,int idx)1371 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1372 {
1373 return 0;
1374 }
1375
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1376 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1377 enum node_stat_item idx)
1378 {
1379 return node_page_state(lruvec_pgdat(lruvec), idx);
1380 }
1381
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1382 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1383 enum node_stat_item idx)
1384 {
1385 return node_page_state(lruvec_pgdat(lruvec), idx);
1386 }
1387
mem_cgroup_flush_stats(struct mem_cgroup * memcg)1388 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1389 {
1390 }
1391
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)1392 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1393 {
1394 }
1395
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1396 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1397 int val)
1398 {
1399 struct page *page = virt_to_head_page(p);
1400
1401 mod_node_page_state(page_pgdat(page), idx, val);
1402 }
1403
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1404 static inline void count_memcg_events(struct mem_cgroup *memcg,
1405 enum vm_event_item idx,
1406 unsigned long count)
1407 {
1408 }
1409
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1410 static inline void count_memcg_folio_events(struct folio *folio,
1411 enum vm_event_item idx, unsigned long nr)
1412 {
1413 }
1414
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)1415 static inline void count_memcg_events_mm(struct mm_struct *mm,
1416 enum vm_event_item idx, unsigned long count)
1417 {
1418 }
1419
1420 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1421 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1422 {
1423 }
1424
split_page_memcg(struct page * first,unsigned order)1425 static inline void split_page_memcg(struct page *first, unsigned order)
1426 {
1427 }
1428
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)1429 static inline void folio_split_memcg_refs(struct folio *folio,
1430 unsigned old_order, unsigned new_order)
1431 {
1432 }
1433
cgroup_id_from_mm(struct mm_struct * mm)1434 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1435 {
1436 return 0;
1437 }
1438
mem_cgroup_init(void)1439 static inline int mem_cgroup_init(void) { return 0; }
1440 #endif /* CONFIG_MEMCG */
1441
1442 /*
1443 * Extended information for slab objects stored as an array in page->memcg_data
1444 * if MEMCG_DATA_OBJEXTS is set.
1445 */
1446 struct slabobj_ext {
1447 #ifdef CONFIG_MEMCG
1448 struct obj_cgroup *objcg;
1449 #endif
1450 #ifdef CONFIG_MEM_ALLOC_PROFILING
1451 union codetag_ref ref;
1452 #endif
1453 } __aligned(8);
1454
parent_lruvec(struct lruvec * lruvec)1455 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1456 {
1457 struct mem_cgroup *memcg;
1458
1459 memcg = lruvec_memcg(lruvec);
1460 if (!memcg)
1461 return NULL;
1462 memcg = parent_mem_cgroup(memcg);
1463 if (!memcg)
1464 return NULL;
1465 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1466 }
1467
unlock_page_lruvec(struct lruvec * lruvec)1468 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1469 {
1470 spin_unlock(&lruvec->lru_lock);
1471 }
1472
unlock_page_lruvec_irq(struct lruvec * lruvec)1473 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1474 {
1475 spin_unlock_irq(&lruvec->lru_lock);
1476 }
1477
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1478 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1479 unsigned long flags)
1480 {
1481 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1482 }
1483
1484 /* Test requires a stable folio->memcg binding, see folio_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1485 static inline bool folio_matches_lruvec(struct folio *folio,
1486 struct lruvec *lruvec)
1487 {
1488 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1489 lruvec_memcg(lruvec) == folio_memcg(folio);
1490 }
1491
1492 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1493 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1494 struct lruvec *locked_lruvec)
1495 {
1496 if (locked_lruvec) {
1497 if (folio_matches_lruvec(folio, locked_lruvec))
1498 return locked_lruvec;
1499
1500 unlock_page_lruvec_irq(locked_lruvec);
1501 }
1502
1503 return folio_lruvec_lock_irq(folio);
1504 }
1505
1506 /* Don't lock again iff folio's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flags)1507 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1508 struct lruvec **lruvecp, unsigned long *flags)
1509 {
1510 if (*lruvecp) {
1511 if (folio_matches_lruvec(folio, *lruvecp))
1512 return;
1513
1514 unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1515 }
1516
1517 *lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1518 }
1519
1520 #ifdef CONFIG_CGROUP_WRITEBACK
1521
1522 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1523 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1524 unsigned long *pheadroom, unsigned long *pdirty,
1525 unsigned long *pwriteback);
1526
1527 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1528 struct bdi_writeback *wb);
1529
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1530 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1531 struct bdi_writeback *wb)
1532 {
1533 struct mem_cgroup *memcg;
1534
1535 if (mem_cgroup_disabled())
1536 return;
1537
1538 memcg = folio_memcg(folio);
1539 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1540 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1541 }
1542
1543 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1544
1545 #else /* CONFIG_CGROUP_WRITEBACK */
1546
mem_cgroup_wb_domain(struct bdi_writeback * wb)1547 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1548 {
1549 return NULL;
1550 }
1551
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1552 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1553 unsigned long *pfilepages,
1554 unsigned long *pheadroom,
1555 unsigned long *pdirty,
1556 unsigned long *pwriteback)
1557 {
1558 }
1559
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1560 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1561 struct bdi_writeback *wb)
1562 {
1563 }
1564
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1565 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1566 {
1567 }
1568
1569 #endif /* CONFIG_CGROUP_WRITEBACK */
1570
1571 struct sock;
1572 #ifdef CONFIG_MEMCG
1573 extern struct static_key_false memcg_sockets_enabled_key;
1574 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1575
1576 void mem_cgroup_sk_alloc(struct sock *sk);
1577 void mem_cgroup_sk_free(struct sock *sk);
1578 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk);
1579 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
1580 gfp_t gfp_mask);
1581 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages);
1582
1583 #if BITS_PER_LONG < 64
mem_cgroup_set_socket_pressure(struct mem_cgroup * memcg)1584 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1585 {
1586 u64 val = get_jiffies_64() + HZ;
1587 unsigned long flags;
1588
1589 write_seqlock_irqsave(&memcg->socket_pressure_seqlock, flags);
1590 memcg->socket_pressure = val;
1591 write_sequnlock_irqrestore(&memcg->socket_pressure_seqlock, flags);
1592 }
1593
mem_cgroup_get_socket_pressure(struct mem_cgroup * memcg)1594 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1595 {
1596 unsigned int seq;
1597 u64 val;
1598
1599 do {
1600 seq = read_seqbegin(&memcg->socket_pressure_seqlock);
1601 val = memcg->socket_pressure;
1602 } while (read_seqretry(&memcg->socket_pressure_seqlock, seq));
1603
1604 return val;
1605 }
1606 #else
mem_cgroup_set_socket_pressure(struct mem_cgroup * memcg)1607 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg)
1608 {
1609 WRITE_ONCE(memcg->socket_pressure, jiffies + HZ);
1610 }
1611
mem_cgroup_get_socket_pressure(struct mem_cgroup * memcg)1612 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg)
1613 {
1614 return READ_ONCE(memcg->socket_pressure);
1615 }
1616 #endif
1617
1618 int alloc_shrinker_info(struct mem_cgroup *memcg);
1619 void free_shrinker_info(struct mem_cgroup *memcg);
1620 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1621 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1622
shrinker_id(struct shrinker * shrinker)1623 static inline int shrinker_id(struct shrinker *shrinker)
1624 {
1625 return shrinker->id;
1626 }
1627 #else
1628 #define mem_cgroup_sockets_enabled 0
1629
mem_cgroup_sk_alloc(struct sock * sk)1630 static inline void mem_cgroup_sk_alloc(struct sock *sk)
1631 {
1632 }
1633
mem_cgroup_sk_free(struct sock * sk)1634 static inline void mem_cgroup_sk_free(struct sock *sk)
1635 {
1636 }
1637
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)1638 static inline void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
1639 {
1640 }
1641
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)1642 static inline bool mem_cgroup_sk_charge(const struct sock *sk,
1643 unsigned int nr_pages,
1644 gfp_t gfp_mask)
1645 {
1646 return false;
1647 }
1648
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)1649 static inline void mem_cgroup_sk_uncharge(const struct sock *sk,
1650 unsigned int nr_pages)
1651 {
1652 }
1653
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1654 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1655 int nid, int shrinker_id)
1656 {
1657 }
1658
shrinker_id(struct shrinker * shrinker)1659 static inline int shrinker_id(struct shrinker *shrinker)
1660 {
1661 return -1;
1662 }
1663 #endif
1664
1665 #ifdef CONFIG_MEMCG
1666 bool mem_cgroup_kmem_disabled(void);
1667 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1668 void __memcg_kmem_uncharge_page(struct page *page, int order);
1669
1670 /*
1671 * The returned objcg pointer is safe to use without additional
1672 * protection within a scope. The scope is defined either by
1673 * the current task (similar to the "current" global variable)
1674 * or by set_active_memcg() pair.
1675 * Please, use obj_cgroup_get() to get a reference if the pointer
1676 * needs to be used outside of the local scope.
1677 */
1678 struct obj_cgroup *current_obj_cgroup(void);
1679 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1680
get_obj_cgroup_from_current(void)1681 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1682 {
1683 struct obj_cgroup *objcg = current_obj_cgroup();
1684
1685 if (objcg)
1686 obj_cgroup_get(objcg);
1687
1688 return objcg;
1689 }
1690
1691 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1692 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1693
1694 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1695 static inline bool memcg_bpf_enabled(void)
1696 {
1697 return static_branch_likely(&memcg_bpf_enabled_key);
1698 }
1699
1700 extern struct static_key_false memcg_kmem_online_key;
1701
memcg_kmem_online(void)1702 static inline bool memcg_kmem_online(void)
1703 {
1704 return static_branch_likely(&memcg_kmem_online_key);
1705 }
1706
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1707 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1708 int order)
1709 {
1710 if (memcg_kmem_online())
1711 return __memcg_kmem_charge_page(page, gfp, order);
1712 return 0;
1713 }
1714
memcg_kmem_uncharge_page(struct page * page,int order)1715 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1716 {
1717 if (memcg_kmem_online())
1718 __memcg_kmem_uncharge_page(page, order);
1719 }
1720
1721 /*
1722 * A helper for accessing memcg's kmem_id, used for getting
1723 * corresponding LRU lists.
1724 */
memcg_kmem_id(struct mem_cgroup * memcg)1725 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1726 {
1727 return memcg ? memcg->kmemcg_id : -1;
1728 }
1729
1730 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1731
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1732 static inline void count_objcg_events(struct obj_cgroup *objcg,
1733 enum vm_event_item idx,
1734 unsigned long count)
1735 {
1736 struct mem_cgroup *memcg;
1737
1738 if (!memcg_kmem_online())
1739 return;
1740
1741 rcu_read_lock();
1742 memcg = obj_cgroup_memcg(objcg);
1743 count_memcg_events(memcg, idx, count);
1744 rcu_read_unlock();
1745 }
1746
1747 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid);
1748
1749 void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg);
1750
memcg_is_dying(struct mem_cgroup * memcg)1751 static inline bool memcg_is_dying(struct mem_cgroup *memcg)
1752 {
1753 return memcg ? css_is_dying(&memcg->css) : false;
1754 }
1755
1756 #else
mem_cgroup_kmem_disabled(void)1757 static inline bool mem_cgroup_kmem_disabled(void)
1758 {
1759 return true;
1760 }
1761
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1762 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1763 int order)
1764 {
1765 return 0;
1766 }
1767
memcg_kmem_uncharge_page(struct page * page,int order)1768 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1769 {
1770 }
1771
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1772 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1773 int order)
1774 {
1775 return 0;
1776 }
1777
__memcg_kmem_uncharge_page(struct page * page,int order)1778 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1779 {
1780 }
1781
get_obj_cgroup_from_folio(struct folio * folio)1782 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1783 {
1784 return NULL;
1785 }
1786
memcg_bpf_enabled(void)1787 static inline bool memcg_bpf_enabled(void)
1788 {
1789 return false;
1790 }
1791
memcg_kmem_online(void)1792 static inline bool memcg_kmem_online(void)
1793 {
1794 return false;
1795 }
1796
memcg_kmem_id(struct mem_cgroup * memcg)1797 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1798 {
1799 return -1;
1800 }
1801
mem_cgroup_from_slab_obj(void * p)1802 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1803 {
1804 return NULL;
1805 }
1806
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1807 static inline void count_objcg_events(struct obj_cgroup *objcg,
1808 enum vm_event_item idx,
1809 unsigned long count)
1810 {
1811 }
1812
page_cgroup_ino(struct page * page)1813 static inline ino_t page_cgroup_ino(struct page *page)
1814 {
1815 return 0;
1816 }
1817
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)1818 static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
1819 {
1820 return true;
1821 }
1822
mem_cgroup_show_protected_memory(struct mem_cgroup * memcg)1823 static inline void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
1824 {
1825 }
1826
memcg_is_dying(struct mem_cgroup * memcg)1827 static inline bool memcg_is_dying(struct mem_cgroup *memcg)
1828 {
1829 return false;
1830 }
1831 #endif /* CONFIG_MEMCG */
1832
1833 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1834 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1835 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1836 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1837 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1838 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1839 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1840 {
1841 return true;
1842 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1843 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1844 size_t size)
1845 {
1846 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1847 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1848 size_t size)
1849 {
1850 }
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)1851 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1852 {
1853 /* if zswap is disabled, do not block pages going to the swapping device */
1854 return true;
1855 }
1856 #endif
1857
1858
1859 /* Cgroup v1-related declarations */
1860
1861 #ifdef CONFIG_MEMCG_V1
1862 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1863 gfp_t gfp_mask,
1864 unsigned long *total_scanned);
1865
1866 bool mem_cgroup_oom_synchronize(bool wait);
1867
task_in_memcg_oom(struct task_struct * p)1868 static inline bool task_in_memcg_oom(struct task_struct *p)
1869 {
1870 return p->memcg_in_oom;
1871 }
1872
mem_cgroup_enter_user_fault(void)1873 static inline void mem_cgroup_enter_user_fault(void)
1874 {
1875 WARN_ON(current->in_user_fault);
1876 current->in_user_fault = 1;
1877 }
1878
mem_cgroup_exit_user_fault(void)1879 static inline void mem_cgroup_exit_user_fault(void)
1880 {
1881 WARN_ON(!current->in_user_fault);
1882 current->in_user_fault = 0;
1883 }
1884
1885 void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1886 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1887
1888 #else /* CONFIG_MEMCG_V1 */
1889 static inline
memcg1_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1890 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1891 gfp_t gfp_mask,
1892 unsigned long *total_scanned)
1893 {
1894 return 0;
1895 }
1896
task_in_memcg_oom(struct task_struct * p)1897 static inline bool task_in_memcg_oom(struct task_struct *p)
1898 {
1899 return false;
1900 }
1901
mem_cgroup_oom_synchronize(bool wait)1902 static inline bool mem_cgroup_oom_synchronize(bool wait)
1903 {
1904 return false;
1905 }
1906
mem_cgroup_enter_user_fault(void)1907 static inline void mem_cgroup_enter_user_fault(void)
1908 {
1909 }
1910
mem_cgroup_exit_user_fault(void)1911 static inline void mem_cgroup_exit_user_fault(void)
1912 {
1913 }
1914
memcg1_swapout(struct folio * folio,swp_entry_t entry)1915 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1916 {
1917 }
1918
memcg1_swapin(swp_entry_t entry,unsigned int nr_pages)1919 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1920 {
1921 }
1922
1923 #endif /* CONFIG_MEMCG_V1 */
1924
1925 #endif /* _LINUX_MEMCONTROL_H */
1926