1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/list.h>
46 #include <linux/mutex.h>
47 #include <linux/rbtree.h>
48 #include <linux/slab.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/fs.h>
52 #include <linux/seq_file.h>
53 #include <linux/parser.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71
72 #include <linux/uaccess.h>
73
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77
78 #include <trace/events/vmscan.h>
79
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97
98 #ifdef CONFIG_CGROUP_WRITEBACK
99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 #endif
101
task_is_dying(void)102 static inline bool task_is_dying(void)
103 {
104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
105 (current->flags & PF_EXITING);
106 }
107
108 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
110 {
111 if (!memcg)
112 memcg = root_mem_cgroup;
113 return &memcg->vmpressure;
114 }
115
vmpressure_to_memcg(struct vmpressure * vmpr)116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
117 {
118 return container_of(vmpr, struct mem_cgroup, vmpressure);
119 }
120
121 #define SEQ_BUF_SIZE SZ_4K
122 #define CURRENT_OBJCG_UPDATE_BIT 0
123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
124
125 static DEFINE_SPINLOCK(objcg_lock);
126
mem_cgroup_kmem_disabled(void)127 bool mem_cgroup_kmem_disabled(void)
128 {
129 return cgroup_memory_nokmem;
130 }
131
132 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
133 unsigned int nr_pages);
134
obj_cgroup_release(struct percpu_ref * ref)135 static void obj_cgroup_release(struct percpu_ref *ref)
136 {
137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
138 unsigned int nr_bytes;
139 unsigned int nr_pages;
140 unsigned long flags;
141
142 /*
143 * At this point all allocated objects are freed, and
144 * objcg->nr_charged_bytes can't have an arbitrary byte value.
145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
146 *
147 * The following sequence can lead to it:
148 * 1) CPU0: objcg == stock->cached_objcg
149 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
150 * PAGE_SIZE bytes are charged
151 * 3) CPU1: a process from another memcg is allocating something,
152 * the stock if flushed,
153 * objcg->nr_charged_bytes = PAGE_SIZE - 92
154 * 5) CPU0: we do release this object,
155 * 92 bytes are added to stock->nr_bytes
156 * 6) CPU0: stock is flushed,
157 * 92 bytes are added to objcg->nr_charged_bytes
158 *
159 * In the result, nr_charged_bytes == PAGE_SIZE.
160 * This page will be uncharged in obj_cgroup_release().
161 */
162 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
164 nr_pages = nr_bytes >> PAGE_SHIFT;
165
166 if (nr_pages)
167 obj_cgroup_uncharge_pages(objcg, nr_pages);
168
169 spin_lock_irqsave(&objcg_lock, flags);
170 list_del(&objcg->list);
171 spin_unlock_irqrestore(&objcg_lock, flags);
172
173 percpu_ref_exit(ref);
174 kfree_rcu(objcg, rcu);
175 }
176
obj_cgroup_alloc(void)177 static struct obj_cgroup *obj_cgroup_alloc(void)
178 {
179 struct obj_cgroup *objcg;
180 int ret;
181
182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
183 if (!objcg)
184 return NULL;
185
186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
187 GFP_KERNEL);
188 if (ret) {
189 kfree(objcg);
190 return NULL;
191 }
192 INIT_LIST_HEAD(&objcg->list);
193 return objcg;
194 }
195
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)196 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
197 struct mem_cgroup *parent)
198 {
199 struct obj_cgroup *objcg, *iter;
200
201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
202
203 spin_lock_irq(&objcg_lock);
204
205 /* 1) Ready to reparent active objcg. */
206 list_add(&objcg->list, &memcg->objcg_list);
207 /* 2) Reparent active objcg and already reparented objcgs to parent. */
208 list_for_each_entry(iter, &memcg->objcg_list, list)
209 WRITE_ONCE(iter->memcg, parent);
210 /* 3) Move already reparented objcgs to the parent's list */
211 list_splice(&memcg->objcg_list, &parent->objcg_list);
212
213 spin_unlock_irq(&objcg_lock);
214
215 percpu_ref_kill(&objcg->refcnt);
216 }
217
218 /*
219 * A lot of the calls to the cache allocation functions are expected to be
220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
221 * conditional to this static branch, we'll have to allow modules that does
222 * kmem_cache_alloc and the such to see this symbol as well
223 */
224 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
225 EXPORT_SYMBOL(memcg_kmem_online_key);
226
227 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
228 EXPORT_SYMBOL(memcg_bpf_enabled_key);
229
230 /**
231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
232 * @folio: folio of interest
233 *
234 * If memcg is bound to the default hierarchy, css of the memcg associated
235 * with @folio is returned. The returned css remains associated with @folio
236 * until it is released.
237 *
238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
239 * is returned.
240 */
mem_cgroup_css_from_folio(struct folio * folio)241 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
242 {
243 struct mem_cgroup *memcg = folio_memcg(folio);
244
245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
246 memcg = root_mem_cgroup;
247
248 return &memcg->css;
249 }
250
251 /**
252 * page_cgroup_ino - return inode number of the memcg a page is charged to
253 * @page: the page
254 *
255 * Look up the closest online ancestor of the memory cgroup @page is charged to
256 * and return its inode number or 0 if @page is not charged to any cgroup. It
257 * is safe to call this function without holding a reference to @page.
258 *
259 * Note, this function is inherently racy, because there is nothing to prevent
260 * the cgroup inode from getting torn down and potentially reallocated a moment
261 * after page_cgroup_ino() returns, so it only should be used by callers that
262 * do not care (such as procfs interfaces).
263 */
page_cgroup_ino(struct page * page)264 ino_t page_cgroup_ino(struct page *page)
265 {
266 struct mem_cgroup *memcg;
267 unsigned long ino = 0;
268
269 rcu_read_lock();
270 /* page_folio() is racy here, but the entire function is racy anyway */
271 memcg = folio_memcg_check(page_folio(page));
272
273 while (memcg && !(memcg->css.flags & CSS_ONLINE))
274 memcg = parent_mem_cgroup(memcg);
275 if (memcg)
276 ino = cgroup_ino(memcg->css.cgroup);
277 rcu_read_unlock();
278 return ino;
279 }
280
281 /* Subset of node_stat_item for memcg stats */
282 static const unsigned int memcg_node_stat_items[] = {
283 NR_INACTIVE_ANON,
284 NR_ACTIVE_ANON,
285 NR_INACTIVE_FILE,
286 NR_ACTIVE_FILE,
287 NR_UNEVICTABLE,
288 NR_SLAB_RECLAIMABLE_B,
289 NR_SLAB_UNRECLAIMABLE_B,
290 WORKINGSET_REFAULT_ANON,
291 WORKINGSET_REFAULT_FILE,
292 WORKINGSET_ACTIVATE_ANON,
293 WORKINGSET_ACTIVATE_FILE,
294 WORKINGSET_RESTORE_ANON,
295 WORKINGSET_RESTORE_FILE,
296 WORKINGSET_NODERECLAIM,
297 NR_ANON_MAPPED,
298 NR_FILE_MAPPED,
299 NR_FILE_PAGES,
300 NR_FILE_DIRTY,
301 NR_WRITEBACK,
302 NR_SHMEM,
303 NR_SHMEM_THPS,
304 NR_FILE_THPS,
305 NR_ANON_THPS,
306 NR_KERNEL_STACK_KB,
307 NR_PAGETABLE,
308 NR_SECONDARY_PAGETABLE,
309 #ifdef CONFIG_SWAP
310 NR_SWAPCACHE,
311 #endif
312 #ifdef CONFIG_NUMA_BALANCING
313 PGPROMOTE_SUCCESS,
314 #endif
315 PGDEMOTE_KSWAPD,
316 PGDEMOTE_DIRECT,
317 PGDEMOTE_KHUGEPAGED,
318 #ifdef CONFIG_HUGETLB_PAGE
319 NR_HUGETLB,
320 #endif
321 };
322
323 static const unsigned int memcg_stat_items[] = {
324 MEMCG_SWAP,
325 MEMCG_SOCK,
326 MEMCG_PERCPU_B,
327 MEMCG_VMALLOC,
328 MEMCG_KMEM,
329 MEMCG_ZSWAP_B,
330 MEMCG_ZSWAPPED,
331 };
332
333 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
334 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
335 ARRAY_SIZE(memcg_stat_items))
336 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
337 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
338
init_memcg_stats(void)339 static void init_memcg_stats(void)
340 {
341 u8 i, j = 0;
342
343 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
344
345 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
346
347 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
348 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
349
350 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
351 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
352 }
353
memcg_stats_index(int idx)354 static inline int memcg_stats_index(int idx)
355 {
356 return mem_cgroup_stats_index[idx];
357 }
358
359 struct lruvec_stats_percpu {
360 /* Local (CPU and cgroup) state */
361 long state[NR_MEMCG_NODE_STAT_ITEMS];
362
363 /* Delta calculation for lockless upward propagation */
364 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
365 };
366
367 struct lruvec_stats {
368 /* Aggregated (CPU and subtree) state */
369 long state[NR_MEMCG_NODE_STAT_ITEMS];
370
371 /* Non-hierarchical (CPU aggregated) state */
372 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
373
374 /* Pending child counts during tree propagation */
375 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
376 };
377
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)378 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
379 {
380 struct mem_cgroup_per_node *pn;
381 long x;
382 int i;
383
384 if (mem_cgroup_disabled())
385 return node_page_state(lruvec_pgdat(lruvec), idx);
386
387 i = memcg_stats_index(idx);
388 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
389 return 0;
390
391 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
392 x = READ_ONCE(pn->lruvec_stats->state[i]);
393 #ifdef CONFIG_SMP
394 if (x < 0)
395 x = 0;
396 #endif
397 return x;
398 }
399
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)400 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
401 enum node_stat_item idx)
402 {
403 struct mem_cgroup_per_node *pn;
404 long x;
405 int i;
406
407 if (mem_cgroup_disabled())
408 return node_page_state(lruvec_pgdat(lruvec), idx);
409
410 i = memcg_stats_index(idx);
411 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
412 return 0;
413
414 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
415 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
416 #ifdef CONFIG_SMP
417 if (x < 0)
418 x = 0;
419 #endif
420 return x;
421 }
422
423 /* Subset of vm_event_item to report for memcg event stats */
424 static const unsigned int memcg_vm_event_stat[] = {
425 #ifdef CONFIG_MEMCG_V1
426 PGPGIN,
427 PGPGOUT,
428 #endif
429 PSWPIN,
430 PSWPOUT,
431 PGSCAN_KSWAPD,
432 PGSCAN_DIRECT,
433 PGSCAN_KHUGEPAGED,
434 PGSTEAL_KSWAPD,
435 PGSTEAL_DIRECT,
436 PGSTEAL_KHUGEPAGED,
437 PGFAULT,
438 PGMAJFAULT,
439 PGREFILL,
440 PGACTIVATE,
441 PGDEACTIVATE,
442 PGLAZYFREE,
443 PGLAZYFREED,
444 #ifdef CONFIG_SWAP
445 SWPIN_ZERO,
446 SWPOUT_ZERO,
447 #endif
448 #ifdef CONFIG_ZSWAP
449 ZSWPIN,
450 ZSWPOUT,
451 ZSWPWB,
452 #endif
453 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
454 THP_FAULT_ALLOC,
455 THP_COLLAPSE_ALLOC,
456 THP_SWPOUT,
457 THP_SWPOUT_FALLBACK,
458 #endif
459 #ifdef CONFIG_NUMA_BALANCING
460 NUMA_PAGE_MIGRATE,
461 NUMA_PTE_UPDATES,
462 NUMA_HINT_FAULTS,
463 #endif
464 };
465
466 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
467 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
468
init_memcg_events(void)469 static void init_memcg_events(void)
470 {
471 u8 i;
472
473 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
474
475 memset(mem_cgroup_events_index, U8_MAX,
476 sizeof(mem_cgroup_events_index));
477
478 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
479 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
480 }
481
memcg_events_index(enum vm_event_item idx)482 static inline int memcg_events_index(enum vm_event_item idx)
483 {
484 return mem_cgroup_events_index[idx];
485 }
486
487 struct memcg_vmstats_percpu {
488 /* Stats updates since the last flush */
489 unsigned int stats_updates;
490
491 /* Cached pointers for fast iteration in memcg_rstat_updated() */
492 struct memcg_vmstats_percpu *parent;
493 struct memcg_vmstats *vmstats;
494
495 /* The above should fit a single cacheline for memcg_rstat_updated() */
496
497 /* Local (CPU and cgroup) page state & events */
498 long state[MEMCG_VMSTAT_SIZE];
499 unsigned long events[NR_MEMCG_EVENTS];
500
501 /* Delta calculation for lockless upward propagation */
502 long state_prev[MEMCG_VMSTAT_SIZE];
503 unsigned long events_prev[NR_MEMCG_EVENTS];
504 } ____cacheline_aligned;
505
506 struct memcg_vmstats {
507 /* Aggregated (CPU and subtree) page state & events */
508 long state[MEMCG_VMSTAT_SIZE];
509 unsigned long events[NR_MEMCG_EVENTS];
510
511 /* Non-hierarchical (CPU aggregated) page state & events */
512 long state_local[MEMCG_VMSTAT_SIZE];
513 unsigned long events_local[NR_MEMCG_EVENTS];
514
515 /* Pending child counts during tree propagation */
516 long state_pending[MEMCG_VMSTAT_SIZE];
517 unsigned long events_pending[NR_MEMCG_EVENTS];
518
519 /* Stats updates since the last flush */
520 atomic64_t stats_updates;
521 };
522
523 /*
524 * memcg and lruvec stats flushing
525 *
526 * Many codepaths leading to stats update or read are performance sensitive and
527 * adding stats flushing in such codepaths is not desirable. So, to optimize the
528 * flushing the kernel does:
529 *
530 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
531 * rstat update tree grow unbounded.
532 *
533 * 2) Flush the stats synchronously on reader side only when there are more than
534 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
535 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
536 * only for 2 seconds due to (1).
537 */
538 static void flush_memcg_stats_dwork(struct work_struct *w);
539 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
540 static u64 flush_last_time;
541
542 #define FLUSH_TIME (2UL*HZ)
543
544 /*
545 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
546 * not rely on this as part of an acquired spinlock_t lock. These functions are
547 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
548 * is sufficient.
549 */
memcg_stats_lock(void)550 static void memcg_stats_lock(void)
551 {
552 preempt_disable_nested();
553 VM_WARN_ON_IRQS_ENABLED();
554 }
555
__memcg_stats_lock(void)556 static void __memcg_stats_lock(void)
557 {
558 preempt_disable_nested();
559 }
560
memcg_stats_unlock(void)561 static void memcg_stats_unlock(void)
562 {
563 preempt_enable_nested();
564 }
565
566
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)567 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
568 {
569 return atomic64_read(&vmstats->stats_updates) >
570 MEMCG_CHARGE_BATCH * num_online_cpus();
571 }
572
memcg_rstat_updated(struct mem_cgroup * memcg,int val)573 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
574 {
575 struct memcg_vmstats_percpu *statc;
576 int cpu = smp_processor_id();
577 unsigned int stats_updates;
578
579 if (!val)
580 return;
581
582 cgroup_rstat_updated(memcg->css.cgroup, cpu);
583 statc = this_cpu_ptr(memcg->vmstats_percpu);
584 for (; statc; statc = statc->parent) {
585 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
586 WRITE_ONCE(statc->stats_updates, stats_updates);
587 if (stats_updates < MEMCG_CHARGE_BATCH)
588 continue;
589
590 /*
591 * If @memcg is already flush-able, increasing stats_updates is
592 * redundant. Avoid the overhead of the atomic update.
593 */
594 if (!memcg_vmstats_needs_flush(statc->vmstats))
595 atomic64_add(stats_updates,
596 &statc->vmstats->stats_updates);
597 WRITE_ONCE(statc->stats_updates, 0);
598 }
599 }
600
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)601 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
602 {
603 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
604
605 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates),
606 force, needs_flush);
607
608 if (!force && !needs_flush)
609 return;
610
611 if (mem_cgroup_is_root(memcg))
612 WRITE_ONCE(flush_last_time, jiffies_64);
613
614 cgroup_rstat_flush(memcg->css.cgroup);
615 }
616
617 /*
618 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
619 * @memcg: root of the subtree to flush
620 *
621 * Flushing is serialized by the underlying global rstat lock. There is also a
622 * minimum amount of work to be done even if there are no stat updates to flush.
623 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
624 * avoids unnecessary work and contention on the underlying lock.
625 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)626 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
627 {
628 if (mem_cgroup_disabled())
629 return;
630
631 if (!memcg)
632 memcg = root_mem_cgroup;
633
634 __mem_cgroup_flush_stats(memcg, false);
635 }
636
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)637 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
638 {
639 /* Only flush if the periodic flusher is one full cycle late */
640 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
641 mem_cgroup_flush_stats(memcg);
642 }
643
flush_memcg_stats_dwork(struct work_struct * w)644 static void flush_memcg_stats_dwork(struct work_struct *w)
645 {
646 /*
647 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
648 * in latency-sensitive paths is as cheap as possible.
649 */
650 __mem_cgroup_flush_stats(root_mem_cgroup, true);
651 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
652 }
653
memcg_page_state(struct mem_cgroup * memcg,int idx)654 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
655 {
656 long x;
657 int i = memcg_stats_index(idx);
658
659 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
660 return 0;
661
662 x = READ_ONCE(memcg->vmstats->state[i]);
663 #ifdef CONFIG_SMP
664 if (x < 0)
665 x = 0;
666 #endif
667 return x;
668 }
669
670 static int memcg_page_state_unit(int item);
671
672 /*
673 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
674 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
675 */
memcg_state_val_in_pages(int idx,int val)676 static int memcg_state_val_in_pages(int idx, int val)
677 {
678 int unit = memcg_page_state_unit(idx);
679
680 if (!val || unit == PAGE_SIZE)
681 return val;
682 else
683 return max(val * unit / PAGE_SIZE, 1UL);
684 }
685
686 /**
687 * __mod_memcg_state - update cgroup memory statistics
688 * @memcg: the memory cgroup
689 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
690 * @val: delta to add to the counter, can be negative
691 */
__mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)692 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
693 int val)
694 {
695 int i = memcg_stats_index(idx);
696
697 if (mem_cgroup_disabled())
698 return;
699
700 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
701 return;
702
703 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
704 val = memcg_state_val_in_pages(idx, val);
705 memcg_rstat_updated(memcg, val);
706 trace_mod_memcg_state(memcg, idx, val);
707 }
708
709 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)710 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
711 {
712 long x;
713 int i = memcg_stats_index(idx);
714
715 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 return 0;
717
718 x = READ_ONCE(memcg->vmstats->state_local[i]);
719 #ifdef CONFIG_SMP
720 if (x < 0)
721 x = 0;
722 #endif
723 return x;
724 }
725
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)726 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
727 enum node_stat_item idx,
728 int val)
729 {
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 int i = memcg_stats_index(idx);
733
734 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
735 return;
736
737 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
738 memcg = pn->memcg;
739
740 /*
741 * The caller from rmap relies on disabled preemption because they never
742 * update their counter from in-interrupt context. For these two
743 * counters we check that the update is never performed from an
744 * interrupt context while other caller need to have disabled interrupt.
745 */
746 __memcg_stats_lock();
747 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
748 switch (idx) {
749 case NR_ANON_MAPPED:
750 case NR_FILE_MAPPED:
751 case NR_ANON_THPS:
752 WARN_ON_ONCE(!in_task());
753 break;
754 default:
755 VM_WARN_ON_IRQS_ENABLED();
756 }
757 }
758
759 /* Update memcg */
760 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
761
762 /* Update lruvec */
763 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
764
765 val = memcg_state_val_in_pages(idx, val);
766 memcg_rstat_updated(memcg, val);
767 trace_mod_memcg_lruvec_state(memcg, idx, val);
768 memcg_stats_unlock();
769 }
770
771 /**
772 * __mod_lruvec_state - update lruvec memory statistics
773 * @lruvec: the lruvec
774 * @idx: the stat item
775 * @val: delta to add to the counter, can be negative
776 *
777 * The lruvec is the intersection of the NUMA node and a cgroup. This
778 * function updates the all three counters that are affected by a
779 * change of state at this level: per-node, per-cgroup, per-lruvec.
780 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)781 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
782 int val)
783 {
784 /* Update node */
785 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
786
787 /* Update memcg and lruvec */
788 if (!mem_cgroup_disabled())
789 __mod_memcg_lruvec_state(lruvec, idx, val);
790 }
791
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)792 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
793 int val)
794 {
795 struct mem_cgroup *memcg;
796 pg_data_t *pgdat = folio_pgdat(folio);
797 struct lruvec *lruvec;
798
799 rcu_read_lock();
800 memcg = folio_memcg(folio);
801 /* Untracked pages have no memcg, no lruvec. Update only the node */
802 if (!memcg) {
803 rcu_read_unlock();
804 __mod_node_page_state(pgdat, idx, val);
805 return;
806 }
807
808 lruvec = mem_cgroup_lruvec(memcg, pgdat);
809 __mod_lruvec_state(lruvec, idx, val);
810 rcu_read_unlock();
811 }
812 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
813
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)814 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
815 {
816 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
817 struct mem_cgroup *memcg;
818 struct lruvec *lruvec;
819
820 rcu_read_lock();
821 memcg = mem_cgroup_from_slab_obj(p);
822
823 /*
824 * Untracked pages have no memcg, no lruvec. Update only the
825 * node. If we reparent the slab objects to the root memcg,
826 * when we free the slab object, we need to update the per-memcg
827 * vmstats to keep it correct for the root memcg.
828 */
829 if (!memcg) {
830 __mod_node_page_state(pgdat, idx, val);
831 } else {
832 lruvec = mem_cgroup_lruvec(memcg, pgdat);
833 __mod_lruvec_state(lruvec, idx, val);
834 }
835 rcu_read_unlock();
836 }
837
838 /**
839 * __count_memcg_events - account VM events in a cgroup
840 * @memcg: the memory cgroup
841 * @idx: the event item
842 * @count: the number of events that occurred
843 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)844 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
845 unsigned long count)
846 {
847 int i = memcg_events_index(idx);
848
849 if (mem_cgroup_disabled())
850 return;
851
852 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
853 return;
854
855 memcg_stats_lock();
856 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
857 memcg_rstat_updated(memcg, count);
858 trace_count_memcg_events(memcg, idx, count);
859 memcg_stats_unlock();
860 }
861
memcg_events(struct mem_cgroup * memcg,int event)862 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
863 {
864 int i = memcg_events_index(event);
865
866 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
867 return 0;
868
869 return READ_ONCE(memcg->vmstats->events[i]);
870 }
871
memcg_events_local(struct mem_cgroup * memcg,int event)872 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
873 {
874 int i = memcg_events_index(event);
875
876 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
877 return 0;
878
879 return READ_ONCE(memcg->vmstats->events_local[i]);
880 }
881
mem_cgroup_from_task(struct task_struct * p)882 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
883 {
884 /*
885 * mm_update_next_owner() may clear mm->owner to NULL
886 * if it races with swapoff, page migration, etc.
887 * So this can be called with p == NULL.
888 */
889 if (unlikely(!p))
890 return NULL;
891
892 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
893 }
894 EXPORT_SYMBOL(mem_cgroup_from_task);
895
active_memcg(void)896 static __always_inline struct mem_cgroup *active_memcg(void)
897 {
898 if (!in_task())
899 return this_cpu_read(int_active_memcg);
900 else
901 return current->active_memcg;
902 }
903
904 /**
905 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
906 * @mm: mm from which memcg should be extracted. It can be NULL.
907 *
908 * Obtain a reference on mm->memcg and returns it if successful. If mm
909 * is NULL, then the memcg is chosen as follows:
910 * 1) The active memcg, if set.
911 * 2) current->mm->memcg, if available
912 * 3) root memcg
913 * If mem_cgroup is disabled, NULL is returned.
914 */
get_mem_cgroup_from_mm(struct mm_struct * mm)915 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
916 {
917 struct mem_cgroup *memcg;
918
919 if (mem_cgroup_disabled())
920 return NULL;
921
922 /*
923 * Page cache insertions can happen without an
924 * actual mm context, e.g. during disk probing
925 * on boot, loopback IO, acct() writes etc.
926 *
927 * No need to css_get on root memcg as the reference
928 * counting is disabled on the root level in the
929 * cgroup core. See CSS_NO_REF.
930 */
931 if (unlikely(!mm)) {
932 memcg = active_memcg();
933 if (unlikely(memcg)) {
934 /* remote memcg must hold a ref */
935 css_get(&memcg->css);
936 return memcg;
937 }
938 mm = current->mm;
939 if (unlikely(!mm))
940 return root_mem_cgroup;
941 }
942
943 rcu_read_lock();
944 do {
945 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
946 if (unlikely(!memcg))
947 memcg = root_mem_cgroup;
948 } while (!css_tryget(&memcg->css));
949 rcu_read_unlock();
950 return memcg;
951 }
952 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
953
954 /**
955 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
956 */
get_mem_cgroup_from_current(void)957 struct mem_cgroup *get_mem_cgroup_from_current(void)
958 {
959 struct mem_cgroup *memcg;
960
961 if (mem_cgroup_disabled())
962 return NULL;
963
964 again:
965 rcu_read_lock();
966 memcg = mem_cgroup_from_task(current);
967 if (!css_tryget(&memcg->css)) {
968 rcu_read_unlock();
969 goto again;
970 }
971 rcu_read_unlock();
972 return memcg;
973 }
974
975 /**
976 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
977 * @folio: folio from which memcg should be extracted.
978 */
get_mem_cgroup_from_folio(struct folio * folio)979 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
980 {
981 struct mem_cgroup *memcg = folio_memcg(folio);
982
983 if (mem_cgroup_disabled())
984 return NULL;
985
986 rcu_read_lock();
987 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
988 memcg = root_mem_cgroup;
989 rcu_read_unlock();
990 return memcg;
991 }
992
993 /**
994 * mem_cgroup_iter - iterate over memory cgroup hierarchy
995 * @root: hierarchy root
996 * @prev: previously returned memcg, NULL on first invocation
997 * @reclaim: cookie for shared reclaim walks, NULL for full walks
998 *
999 * Returns references to children of the hierarchy below @root, or
1000 * @root itself, or %NULL after a full round-trip.
1001 *
1002 * Caller must pass the return value in @prev on subsequent
1003 * invocations for reference counting, or use mem_cgroup_iter_break()
1004 * to cancel a hierarchy walk before the round-trip is complete.
1005 *
1006 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1007 * in the hierarchy among all concurrent reclaimers operating on the
1008 * same node.
1009 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1010 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1011 struct mem_cgroup *prev,
1012 struct mem_cgroup_reclaim_cookie *reclaim)
1013 {
1014 struct mem_cgroup_reclaim_iter *iter;
1015 struct cgroup_subsys_state *css;
1016 struct mem_cgroup *pos;
1017 struct mem_cgroup *next;
1018
1019 if (mem_cgroup_disabled())
1020 return NULL;
1021
1022 if (!root)
1023 root = root_mem_cgroup;
1024
1025 rcu_read_lock();
1026 restart:
1027 next = NULL;
1028
1029 if (reclaim) {
1030 int gen;
1031 int nid = reclaim->pgdat->node_id;
1032
1033 iter = &root->nodeinfo[nid]->iter;
1034 gen = atomic_read(&iter->generation);
1035
1036 /*
1037 * On start, join the current reclaim iteration cycle.
1038 * Exit when a concurrent walker completes it.
1039 */
1040 if (!prev)
1041 reclaim->generation = gen;
1042 else if (reclaim->generation != gen)
1043 goto out_unlock;
1044
1045 pos = READ_ONCE(iter->position);
1046 } else
1047 pos = prev;
1048
1049 css = pos ? &pos->css : NULL;
1050
1051 while ((css = css_next_descendant_pre(css, &root->css))) {
1052 /*
1053 * Verify the css and acquire a reference. The root
1054 * is provided by the caller, so we know it's alive
1055 * and kicking, and don't take an extra reference.
1056 */
1057 if (css == &root->css || css_tryget(css))
1058 break;
1059 }
1060
1061 next = mem_cgroup_from_css(css);
1062
1063 if (reclaim) {
1064 /*
1065 * The position could have already been updated by a competing
1066 * thread, so check that the value hasn't changed since we read
1067 * it to avoid reclaiming from the same cgroup twice.
1068 */
1069 if (cmpxchg(&iter->position, pos, next) != pos) {
1070 if (css && css != &root->css)
1071 css_put(css);
1072 goto restart;
1073 }
1074
1075 if (!next) {
1076 atomic_inc(&iter->generation);
1077
1078 /*
1079 * Reclaimers share the hierarchy walk, and a
1080 * new one might jump in right at the end of
1081 * the hierarchy - make sure they see at least
1082 * one group and restart from the beginning.
1083 */
1084 if (!prev)
1085 goto restart;
1086 }
1087 }
1088
1089 out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return next;
1095 }
1096
1097 /**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1102 void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104 {
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109 }
1110
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1111 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113 {
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123 }
1124
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126 {
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgroup1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (!mem_cgroup_is_root(last))
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144 }
1145
1146 /**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop. Otherwise, it will iterate
1155 * over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1159 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161 {
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164 int i = 0;
1165
1166 BUG_ON(mem_cgroup_is_root(memcg));
1167
1168 for_each_mem_cgroup_tree(iter, memcg) {
1169 struct css_task_iter it;
1170 struct task_struct *task;
1171
1172 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1173 while (!ret && (task = css_task_iter_next(&it))) {
1174 /* Avoid potential softlockup warning */
1175 if ((++i & 1023) == 0)
1176 cond_resched();
1177 ret = fn(task, arg);
1178 }
1179 css_task_iter_end(&it);
1180 if (ret) {
1181 mem_cgroup_iter_break(memcg, iter);
1182 break;
1183 }
1184 }
1185 }
1186
1187 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1188 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1189 {
1190 struct mem_cgroup *memcg;
1191
1192 if (mem_cgroup_disabled())
1193 return;
1194
1195 memcg = folio_memcg(folio);
1196
1197 if (!memcg)
1198 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1199 else
1200 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1201 }
1202 #endif
1203
1204 /**
1205 * folio_lruvec_lock - Lock the lruvec for a folio.
1206 * @folio: Pointer to the folio.
1207 *
1208 * These functions are safe to use under any of the following conditions:
1209 * - folio locked
1210 * - folio_test_lru false
1211 * - folio frozen (refcount of 0)
1212 *
1213 * Return: The lruvec this folio is on with its lock held.
1214 */
folio_lruvec_lock(struct folio * folio)1215 struct lruvec *folio_lruvec_lock(struct folio *folio)
1216 {
1217 struct lruvec *lruvec = folio_lruvec(folio);
1218
1219 spin_lock(&lruvec->lru_lock);
1220 lruvec_memcg_debug(lruvec, folio);
1221
1222 return lruvec;
1223 }
1224
1225 /**
1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227 * @folio: Pointer to the folio.
1228 *
1229 * These functions are safe to use under any of the following conditions:
1230 * - folio locked
1231 * - folio_test_lru false
1232 * - folio frozen (refcount of 0)
1233 *
1234 * Return: The lruvec this folio is on with its lock held and interrupts
1235 * disabled.
1236 */
folio_lruvec_lock_irq(struct folio * folio)1237 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1238 {
1239 struct lruvec *lruvec = folio_lruvec(folio);
1240
1241 spin_lock_irq(&lruvec->lru_lock);
1242 lruvec_memcg_debug(lruvec, folio);
1243
1244 return lruvec;
1245 }
1246
1247 /**
1248 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1249 * @folio: Pointer to the folio.
1250 * @flags: Pointer to irqsave flags.
1251 *
1252 * These functions are safe to use under any of the following conditions:
1253 * - folio locked
1254 * - folio_test_lru false
1255 * - folio frozen (refcount of 0)
1256 *
1257 * Return: The lruvec this folio is on with its lock held and interrupts
1258 * disabled.
1259 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1260 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1261 unsigned long *flags)
1262 {
1263 struct lruvec *lruvec = folio_lruvec(folio);
1264
1265 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1266 lruvec_memcg_debug(lruvec, folio);
1267
1268 return lruvec;
1269 }
1270
1271 /**
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @zid: zone id of the accounted pages
1276 * @nr_pages: positive when adding or negative when removing
1277 *
1278 * This function must be called under lru_lock, just before a page is added
1279 * to or just after a page is removed from an lru list.
1280 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1281 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282 int zid, int nr_pages)
1283 {
1284 struct mem_cgroup_per_node *mz;
1285 unsigned long *lru_size;
1286 long size;
1287
1288 if (mem_cgroup_disabled())
1289 return;
1290
1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292 lru_size = &mz->lru_zone_size[zid][lru];
1293
1294 if (nr_pages < 0)
1295 *lru_size += nr_pages;
1296
1297 size = *lru_size;
1298 if (WARN_ONCE(size < 0,
1299 "%s(%p, %d, %d): lru_size %ld\n",
1300 __func__, lruvec, lru, nr_pages, size)) {
1301 VM_BUG_ON(1);
1302 *lru_size = 0;
1303 }
1304
1305 if (nr_pages > 0)
1306 *lru_size += nr_pages;
1307 }
1308
1309 /**
1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311 * @memcg: the memory cgroup
1312 *
1313 * Returns the maximum amount of memory @mem can be charged with, in
1314 * pages.
1315 */
mem_cgroup_margin(struct mem_cgroup * memcg)1316 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317 {
1318 unsigned long margin = 0;
1319 unsigned long count;
1320 unsigned long limit;
1321
1322 count = page_counter_read(&memcg->memory);
1323 limit = READ_ONCE(memcg->memory.max);
1324 if (count < limit)
1325 margin = limit - count;
1326
1327 if (do_memsw_account()) {
1328 count = page_counter_read(&memcg->memsw);
1329 limit = READ_ONCE(memcg->memsw.max);
1330 if (count < limit)
1331 margin = min(margin, limit - count);
1332 else
1333 margin = 0;
1334 }
1335
1336 return margin;
1337 }
1338
1339 struct memory_stat {
1340 const char *name;
1341 unsigned int idx;
1342 };
1343
1344 static const struct memory_stat memory_stats[] = {
1345 { "anon", NR_ANON_MAPPED },
1346 { "file", NR_FILE_PAGES },
1347 { "kernel", MEMCG_KMEM },
1348 { "kernel_stack", NR_KERNEL_STACK_KB },
1349 { "pagetables", NR_PAGETABLE },
1350 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1351 { "percpu", MEMCG_PERCPU_B },
1352 { "sock", MEMCG_SOCK },
1353 { "vmalloc", MEMCG_VMALLOC },
1354 { "shmem", NR_SHMEM },
1355 #ifdef CONFIG_ZSWAP
1356 { "zswap", MEMCG_ZSWAP_B },
1357 { "zswapped", MEMCG_ZSWAPPED },
1358 #endif
1359 { "file_mapped", NR_FILE_MAPPED },
1360 { "file_dirty", NR_FILE_DIRTY },
1361 { "file_writeback", NR_WRITEBACK },
1362 #ifdef CONFIG_SWAP
1363 { "swapcached", NR_SWAPCACHE },
1364 #endif
1365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366 { "anon_thp", NR_ANON_THPS },
1367 { "file_thp", NR_FILE_THPS },
1368 { "shmem_thp", NR_SHMEM_THPS },
1369 #endif
1370 { "inactive_anon", NR_INACTIVE_ANON },
1371 { "active_anon", NR_ACTIVE_ANON },
1372 { "inactive_file", NR_INACTIVE_FILE },
1373 { "active_file", NR_ACTIVE_FILE },
1374 { "unevictable", NR_UNEVICTABLE },
1375 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1376 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1377 #ifdef CONFIG_HUGETLB_PAGE
1378 { "hugetlb", NR_HUGETLB },
1379 #endif
1380
1381 /* The memory events */
1382 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1383 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1384 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1385 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1386 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1387 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1388 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1389
1390 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1391 { "pgdemote_direct", PGDEMOTE_DIRECT },
1392 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1393 #ifdef CONFIG_NUMA_BALANCING
1394 { "pgpromote_success", PGPROMOTE_SUCCESS },
1395 #endif
1396 };
1397
1398 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1399 static int memcg_page_state_unit(int item)
1400 {
1401 switch (item) {
1402 case MEMCG_PERCPU_B:
1403 case MEMCG_ZSWAP_B:
1404 case NR_SLAB_RECLAIMABLE_B:
1405 case NR_SLAB_UNRECLAIMABLE_B:
1406 return 1;
1407 case NR_KERNEL_STACK_KB:
1408 return SZ_1K;
1409 default:
1410 return PAGE_SIZE;
1411 }
1412 }
1413
1414 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1415 static int memcg_page_state_output_unit(int item)
1416 {
1417 /*
1418 * Workingset state is actually in pages, but we export it to userspace
1419 * as a scalar count of events, so special case it here.
1420 *
1421 * Demotion and promotion activities are exported in pages, consistent
1422 * with their global counterparts.
1423 */
1424 switch (item) {
1425 case WORKINGSET_REFAULT_ANON:
1426 case WORKINGSET_REFAULT_FILE:
1427 case WORKINGSET_ACTIVATE_ANON:
1428 case WORKINGSET_ACTIVATE_FILE:
1429 case WORKINGSET_RESTORE_ANON:
1430 case WORKINGSET_RESTORE_FILE:
1431 case WORKINGSET_NODERECLAIM:
1432 case PGDEMOTE_KSWAPD:
1433 case PGDEMOTE_DIRECT:
1434 case PGDEMOTE_KHUGEPAGED:
1435 #ifdef CONFIG_NUMA_BALANCING
1436 case PGPROMOTE_SUCCESS:
1437 #endif
1438 return 1;
1439 default:
1440 return memcg_page_state_unit(item);
1441 }
1442 }
1443
memcg_page_state_output(struct mem_cgroup * memcg,int item)1444 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1445 {
1446 return memcg_page_state(memcg, item) *
1447 memcg_page_state_output_unit(item);
1448 }
1449
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1450 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1451 {
1452 return memcg_page_state_local(memcg, item) *
1453 memcg_page_state_output_unit(item);
1454 }
1455
1456 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1457 static bool memcg_accounts_hugetlb(void)
1458 {
1459 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1460 }
1461 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1462 static bool memcg_accounts_hugetlb(void)
1463 {
1464 return false;
1465 }
1466 #endif /* CONFIG_HUGETLB_PAGE */
1467
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1468 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1469 {
1470 int i;
1471
1472 /*
1473 * Provide statistics on the state of the memory subsystem as
1474 * well as cumulative event counters that show past behavior.
1475 *
1476 * This list is ordered following a combination of these gradients:
1477 * 1) generic big picture -> specifics and details
1478 * 2) reflecting userspace activity -> reflecting kernel heuristics
1479 *
1480 * Current memory state:
1481 */
1482 mem_cgroup_flush_stats(memcg);
1483
1484 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1485 u64 size;
1486
1487 #ifdef CONFIG_HUGETLB_PAGE
1488 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1489 !memcg_accounts_hugetlb())
1490 continue;
1491 #endif
1492 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1493 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1494
1495 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1496 size += memcg_page_state_output(memcg,
1497 NR_SLAB_RECLAIMABLE_B);
1498 seq_buf_printf(s, "slab %llu\n", size);
1499 }
1500 }
1501
1502 /* Accumulated memory events */
1503 seq_buf_printf(s, "pgscan %lu\n",
1504 memcg_events(memcg, PGSCAN_KSWAPD) +
1505 memcg_events(memcg, PGSCAN_DIRECT) +
1506 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1507 seq_buf_printf(s, "pgsteal %lu\n",
1508 memcg_events(memcg, PGSTEAL_KSWAPD) +
1509 memcg_events(memcg, PGSTEAL_DIRECT) +
1510 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1511
1512 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1513 #ifdef CONFIG_MEMCG_V1
1514 if (memcg_vm_event_stat[i] == PGPGIN ||
1515 memcg_vm_event_stat[i] == PGPGOUT)
1516 continue;
1517 #endif
1518 seq_buf_printf(s, "%s %lu\n",
1519 vm_event_name(memcg_vm_event_stat[i]),
1520 memcg_events(memcg, memcg_vm_event_stat[i]));
1521 }
1522 }
1523
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1524 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1525 {
1526 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1527 memcg_stat_format(memcg, s);
1528 else
1529 memcg1_stat_format(memcg, s);
1530 if (seq_buf_has_overflowed(s))
1531 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1532 }
1533
1534 /**
1535 * mem_cgroup_print_oom_context: Print OOM information relevant to
1536 * memory controller.
1537 * @memcg: The memory cgroup that went over limit
1538 * @p: Task that is going to be killed
1539 *
1540 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1541 * enabled
1542 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1543 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1544 {
1545 rcu_read_lock();
1546
1547 if (memcg) {
1548 pr_cont(",oom_memcg=");
1549 pr_cont_cgroup_path(memcg->css.cgroup);
1550 } else
1551 pr_cont(",global_oom");
1552 if (p) {
1553 pr_cont(",task_memcg=");
1554 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1555 }
1556 rcu_read_unlock();
1557 }
1558
1559 /**
1560 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1561 * memory controller.
1562 * @memcg: The memory cgroup that went over limit
1563 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1564 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1565 {
1566 /* Use static buffer, for the caller is holding oom_lock. */
1567 static char buf[SEQ_BUF_SIZE];
1568 struct seq_buf s;
1569
1570 lockdep_assert_held(&oom_lock);
1571
1572 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1573 K((u64)page_counter_read(&memcg->memory)),
1574 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1575 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1576 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1577 K((u64)page_counter_read(&memcg->swap)),
1578 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1579 #ifdef CONFIG_MEMCG_V1
1580 else {
1581 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1582 K((u64)page_counter_read(&memcg->memsw)),
1583 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1584 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1585 K((u64)page_counter_read(&memcg->kmem)),
1586 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1587 }
1588 #endif
1589
1590 pr_info("Memory cgroup stats for ");
1591 pr_cont_cgroup_path(memcg->css.cgroup);
1592 pr_cont(":");
1593 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1594 memory_stat_format(memcg, &s);
1595 seq_buf_do_printk(&s, KERN_INFO);
1596 }
1597
1598 /*
1599 * Return the memory (and swap, if configured) limit for a memcg.
1600 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1601 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1602 {
1603 unsigned long max = READ_ONCE(memcg->memory.max);
1604
1605 if (do_memsw_account()) {
1606 if (mem_cgroup_swappiness(memcg)) {
1607 /* Calculate swap excess capacity from memsw limit */
1608 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1609
1610 max += min(swap, (unsigned long)total_swap_pages);
1611 }
1612 } else {
1613 if (mem_cgroup_swappiness(memcg))
1614 max += min(READ_ONCE(memcg->swap.max),
1615 (unsigned long)total_swap_pages);
1616 }
1617 return max;
1618 }
1619
mem_cgroup_size(struct mem_cgroup * memcg)1620 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1621 {
1622 return page_counter_read(&memcg->memory);
1623 }
1624
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1625 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1626 int order)
1627 {
1628 struct oom_control oc = {
1629 .zonelist = NULL,
1630 .nodemask = NULL,
1631 .memcg = memcg,
1632 .gfp_mask = gfp_mask,
1633 .order = order,
1634 };
1635 bool ret = true;
1636
1637 if (mutex_lock_killable(&oom_lock))
1638 return true;
1639
1640 if (mem_cgroup_margin(memcg) >= (1 << order))
1641 goto unlock;
1642
1643 /*
1644 * A few threads which were not waiting at mutex_lock_killable() can
1645 * fail to bail out. Therefore, check again after holding oom_lock.
1646 */
1647 ret = task_is_dying() || out_of_memory(&oc);
1648
1649 unlock:
1650 mutex_unlock(&oom_lock);
1651 return ret;
1652 }
1653
1654 /*
1655 * Returns true if successfully killed one or more processes. Though in some
1656 * corner cases it can return true even without killing any process.
1657 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1658 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1659 {
1660 bool locked, ret;
1661
1662 if (order > PAGE_ALLOC_COSTLY_ORDER)
1663 return false;
1664
1665 memcg_memory_event(memcg, MEMCG_OOM);
1666
1667 if (!memcg1_oom_prepare(memcg, &locked))
1668 return false;
1669
1670 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1671
1672 memcg1_oom_finish(memcg, locked);
1673
1674 return ret;
1675 }
1676
1677 /**
1678 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1679 * @victim: task to be killed by the OOM killer
1680 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1681 *
1682 * Returns a pointer to a memory cgroup, which has to be cleaned up
1683 * by killing all belonging OOM-killable tasks.
1684 *
1685 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1686 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1687 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1688 struct mem_cgroup *oom_domain)
1689 {
1690 struct mem_cgroup *oom_group = NULL;
1691 struct mem_cgroup *memcg;
1692
1693 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1694 return NULL;
1695
1696 if (!oom_domain)
1697 oom_domain = root_mem_cgroup;
1698
1699 rcu_read_lock();
1700
1701 memcg = mem_cgroup_from_task(victim);
1702 if (mem_cgroup_is_root(memcg))
1703 goto out;
1704
1705 /*
1706 * If the victim task has been asynchronously moved to a different
1707 * memory cgroup, we might end up killing tasks outside oom_domain.
1708 * In this case it's better to ignore memory.group.oom.
1709 */
1710 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1711 goto out;
1712
1713 /*
1714 * Traverse the memory cgroup hierarchy from the victim task's
1715 * cgroup up to the OOMing cgroup (or root) to find the
1716 * highest-level memory cgroup with oom.group set.
1717 */
1718 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1719 if (READ_ONCE(memcg->oom_group))
1720 oom_group = memcg;
1721
1722 if (memcg == oom_domain)
1723 break;
1724 }
1725
1726 if (oom_group)
1727 css_get(&oom_group->css);
1728 out:
1729 rcu_read_unlock();
1730
1731 return oom_group;
1732 }
1733
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1734 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1735 {
1736 pr_info("Tasks in ");
1737 pr_cont_cgroup_path(memcg->css.cgroup);
1738 pr_cont(" are going to be killed due to memory.oom.group set\n");
1739 }
1740
1741 struct memcg_stock_pcp {
1742 local_lock_t stock_lock;
1743 struct mem_cgroup *cached; /* this never be root cgroup */
1744 unsigned int nr_pages;
1745
1746 struct obj_cgroup *cached_objcg;
1747 struct pglist_data *cached_pgdat;
1748 unsigned int nr_bytes;
1749 int nr_slab_reclaimable_b;
1750 int nr_slab_unreclaimable_b;
1751
1752 struct work_struct work;
1753 unsigned long flags;
1754 #define FLUSHING_CACHED_CHARGE 0
1755 };
1756 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1757 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
1758 };
1759 static DEFINE_MUTEX(percpu_charge_mutex);
1760
1761 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1762 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1763 struct mem_cgroup *root_memcg);
1764
1765 /**
1766 * consume_stock: Try to consume stocked charge on this cpu.
1767 * @memcg: memcg to consume from.
1768 * @nr_pages: how many pages to charge.
1769 *
1770 * The charges will only happen if @memcg matches the current cpu's memcg
1771 * stock, and at least @nr_pages are available in that stock. Failure to
1772 * service an allocation will refill the stock.
1773 *
1774 * returns true if successful, false otherwise.
1775 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1776 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1777 {
1778 struct memcg_stock_pcp *stock;
1779 unsigned int stock_pages;
1780 unsigned long flags;
1781 bool ret = false;
1782
1783 if (nr_pages > MEMCG_CHARGE_BATCH)
1784 return ret;
1785
1786 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1787
1788 stock = this_cpu_ptr(&memcg_stock);
1789 stock_pages = READ_ONCE(stock->nr_pages);
1790 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1791 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1792 ret = true;
1793 }
1794
1795 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1796
1797 return ret;
1798 }
1799
1800 /*
1801 * Returns stocks cached in percpu and reset cached information.
1802 */
drain_stock(struct memcg_stock_pcp * stock)1803 static void drain_stock(struct memcg_stock_pcp *stock)
1804 {
1805 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1806 struct mem_cgroup *old = READ_ONCE(stock->cached);
1807
1808 if (!old)
1809 return;
1810
1811 if (stock_pages) {
1812 page_counter_uncharge(&old->memory, stock_pages);
1813 if (do_memsw_account())
1814 page_counter_uncharge(&old->memsw, stock_pages);
1815
1816 WRITE_ONCE(stock->nr_pages, 0);
1817 }
1818
1819 css_put(&old->css);
1820 WRITE_ONCE(stock->cached, NULL);
1821 }
1822
drain_local_stock(struct work_struct * dummy)1823 static void drain_local_stock(struct work_struct *dummy)
1824 {
1825 struct memcg_stock_pcp *stock;
1826 struct obj_cgroup *old = NULL;
1827 unsigned long flags;
1828
1829 /*
1830 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1831 * drain_stock races is that we always operate on local CPU stock
1832 * here with IRQ disabled
1833 */
1834 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1835
1836 stock = this_cpu_ptr(&memcg_stock);
1837 old = drain_obj_stock(stock);
1838 drain_stock(stock);
1839 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1840
1841 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1842 obj_cgroup_put(old);
1843 }
1844
1845 /*
1846 * Cache charges(val) to local per_cpu area.
1847 * This will be consumed by consume_stock() function, later.
1848 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1849 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1850 {
1851 struct memcg_stock_pcp *stock;
1852 unsigned int stock_pages;
1853
1854 stock = this_cpu_ptr(&memcg_stock);
1855 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1856 drain_stock(stock);
1857 css_get(&memcg->css);
1858 WRITE_ONCE(stock->cached, memcg);
1859 }
1860 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1861 WRITE_ONCE(stock->nr_pages, stock_pages);
1862
1863 if (stock_pages > MEMCG_CHARGE_BATCH)
1864 drain_stock(stock);
1865 }
1866
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1867 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1868 {
1869 unsigned long flags;
1870
1871 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1872 __refill_stock(memcg, nr_pages);
1873 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1874 }
1875
1876 /*
1877 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1878 * of the hierarchy under it.
1879 */
drain_all_stock(struct mem_cgroup * root_memcg)1880 void drain_all_stock(struct mem_cgroup *root_memcg)
1881 {
1882 int cpu, curcpu;
1883
1884 /* If someone's already draining, avoid adding running more workers. */
1885 if (!mutex_trylock(&percpu_charge_mutex))
1886 return;
1887 /*
1888 * Notify other cpus that system-wide "drain" is running
1889 * We do not care about races with the cpu hotplug because cpu down
1890 * as well as workers from this path always operate on the local
1891 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1892 */
1893 migrate_disable();
1894 curcpu = smp_processor_id();
1895 for_each_online_cpu(cpu) {
1896 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1897 struct mem_cgroup *memcg;
1898 bool flush = false;
1899
1900 rcu_read_lock();
1901 memcg = READ_ONCE(stock->cached);
1902 if (memcg && READ_ONCE(stock->nr_pages) &&
1903 mem_cgroup_is_descendant(memcg, root_memcg))
1904 flush = true;
1905 else if (obj_stock_flush_required(stock, root_memcg))
1906 flush = true;
1907 rcu_read_unlock();
1908
1909 if (flush &&
1910 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1911 if (cpu == curcpu)
1912 drain_local_stock(&stock->work);
1913 else if (!cpu_is_isolated(cpu))
1914 schedule_work_on(cpu, &stock->work);
1915 }
1916 }
1917 migrate_enable();
1918 mutex_unlock(&percpu_charge_mutex);
1919 }
1920
memcg_hotplug_cpu_dead(unsigned int cpu)1921 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1922 {
1923 struct memcg_stock_pcp *stock;
1924
1925 stock = &per_cpu(memcg_stock, cpu);
1926 drain_stock(stock);
1927
1928 return 0;
1929 }
1930
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)1931 static unsigned long reclaim_high(struct mem_cgroup *memcg,
1932 unsigned int nr_pages,
1933 gfp_t gfp_mask)
1934 {
1935 unsigned long nr_reclaimed = 0;
1936
1937 do {
1938 unsigned long pflags;
1939
1940 if (page_counter_read(&memcg->memory) <=
1941 READ_ONCE(memcg->memory.high))
1942 continue;
1943
1944 memcg_memory_event(memcg, MEMCG_HIGH);
1945
1946 psi_memstall_enter(&pflags);
1947 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1948 gfp_mask,
1949 MEMCG_RECLAIM_MAY_SWAP,
1950 NULL);
1951 psi_memstall_leave(&pflags);
1952 } while ((memcg = parent_mem_cgroup(memcg)) &&
1953 !mem_cgroup_is_root(memcg));
1954
1955 return nr_reclaimed;
1956 }
1957
high_work_func(struct work_struct * work)1958 static void high_work_func(struct work_struct *work)
1959 {
1960 struct mem_cgroup *memcg;
1961
1962 memcg = container_of(work, struct mem_cgroup, high_work);
1963 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1964 }
1965
1966 /*
1967 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1968 * enough to still cause a significant slowdown in most cases, while still
1969 * allowing diagnostics and tracing to proceed without becoming stuck.
1970 */
1971 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1972
1973 /*
1974 * When calculating the delay, we use these either side of the exponentiation to
1975 * maintain precision and scale to a reasonable number of jiffies (see the table
1976 * below.
1977 *
1978 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1979 * overage ratio to a delay.
1980 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1981 * proposed penalty in order to reduce to a reasonable number of jiffies, and
1982 * to produce a reasonable delay curve.
1983 *
1984 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1985 * reasonable delay curve compared to precision-adjusted overage, not
1986 * penalising heavily at first, but still making sure that growth beyond the
1987 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1988 * example, with a high of 100 megabytes:
1989 *
1990 * +-------+------------------------+
1991 * | usage | time to allocate in ms |
1992 * +-------+------------------------+
1993 * | 100M | 0 |
1994 * | 101M | 6 |
1995 * | 102M | 25 |
1996 * | 103M | 57 |
1997 * | 104M | 102 |
1998 * | 105M | 159 |
1999 * | 106M | 230 |
2000 * | 107M | 313 |
2001 * | 108M | 409 |
2002 * | 109M | 518 |
2003 * | 110M | 639 |
2004 * | 111M | 774 |
2005 * | 112M | 921 |
2006 * | 113M | 1081 |
2007 * | 114M | 1254 |
2008 * | 115M | 1439 |
2009 * | 116M | 1638 |
2010 * | 117M | 1849 |
2011 * | 118M | 2000 |
2012 * | 119M | 2000 |
2013 * | 120M | 2000 |
2014 * +-------+------------------------+
2015 */
2016 #define MEMCG_DELAY_PRECISION_SHIFT 20
2017 #define MEMCG_DELAY_SCALING_SHIFT 14
2018
calculate_overage(unsigned long usage,unsigned long high)2019 static u64 calculate_overage(unsigned long usage, unsigned long high)
2020 {
2021 u64 overage;
2022
2023 if (usage <= high)
2024 return 0;
2025
2026 /*
2027 * Prevent division by 0 in overage calculation by acting as if
2028 * it was a threshold of 1 page
2029 */
2030 high = max(high, 1UL);
2031
2032 overage = usage - high;
2033 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2034 return div64_u64(overage, high);
2035 }
2036
mem_find_max_overage(struct mem_cgroup * memcg)2037 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2038 {
2039 u64 overage, max_overage = 0;
2040
2041 do {
2042 overage = calculate_overage(page_counter_read(&memcg->memory),
2043 READ_ONCE(memcg->memory.high));
2044 max_overage = max(overage, max_overage);
2045 } while ((memcg = parent_mem_cgroup(memcg)) &&
2046 !mem_cgroup_is_root(memcg));
2047
2048 return max_overage;
2049 }
2050
swap_find_max_overage(struct mem_cgroup * memcg)2051 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2052 {
2053 u64 overage, max_overage = 0;
2054
2055 do {
2056 overage = calculate_overage(page_counter_read(&memcg->swap),
2057 READ_ONCE(memcg->swap.high));
2058 if (overage)
2059 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2060 max_overage = max(overage, max_overage);
2061 } while ((memcg = parent_mem_cgroup(memcg)) &&
2062 !mem_cgroup_is_root(memcg));
2063
2064 return max_overage;
2065 }
2066
2067 /*
2068 * Get the number of jiffies that we should penalise a mischievous cgroup which
2069 * is exceeding its memory.high by checking both it and its ancestors.
2070 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2071 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2072 unsigned int nr_pages,
2073 u64 max_overage)
2074 {
2075 unsigned long penalty_jiffies;
2076
2077 if (!max_overage)
2078 return 0;
2079
2080 /*
2081 * We use overage compared to memory.high to calculate the number of
2082 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2083 * fairly lenient on small overages, and increasingly harsh when the
2084 * memcg in question makes it clear that it has no intention of stopping
2085 * its crazy behaviour, so we exponentially increase the delay based on
2086 * overage amount.
2087 */
2088 penalty_jiffies = max_overage * max_overage * HZ;
2089 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2090 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2091
2092 /*
2093 * Factor in the task's own contribution to the overage, such that four
2094 * N-sized allocations are throttled approximately the same as one
2095 * 4N-sized allocation.
2096 *
2097 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2098 * larger the current charge patch is than that.
2099 */
2100 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2101 }
2102
2103 /*
2104 * Reclaims memory over the high limit. Called directly from
2105 * try_charge() (context permitting), as well as from the userland
2106 * return path where reclaim is always able to block.
2107 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2108 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2109 {
2110 unsigned long penalty_jiffies;
2111 unsigned long pflags;
2112 unsigned long nr_reclaimed;
2113 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2114 int nr_retries = MAX_RECLAIM_RETRIES;
2115 struct mem_cgroup *memcg;
2116 bool in_retry = false;
2117
2118 if (likely(!nr_pages))
2119 return;
2120
2121 memcg = get_mem_cgroup_from_mm(current->mm);
2122 current->memcg_nr_pages_over_high = 0;
2123
2124 retry_reclaim:
2125 /*
2126 * Bail if the task is already exiting. Unlike memory.max,
2127 * memory.high enforcement isn't as strict, and there is no
2128 * OOM killer involved, which means the excess could already
2129 * be much bigger (and still growing) than it could for
2130 * memory.max; the dying task could get stuck in fruitless
2131 * reclaim for a long time, which isn't desirable.
2132 */
2133 if (task_is_dying())
2134 goto out;
2135
2136 /*
2137 * The allocating task should reclaim at least the batch size, but for
2138 * subsequent retries we only want to do what's necessary to prevent oom
2139 * or breaching resource isolation.
2140 *
2141 * This is distinct from memory.max or page allocator behaviour because
2142 * memory.high is currently batched, whereas memory.max and the page
2143 * allocator run every time an allocation is made.
2144 */
2145 nr_reclaimed = reclaim_high(memcg,
2146 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2147 gfp_mask);
2148
2149 /*
2150 * memory.high is breached and reclaim is unable to keep up. Throttle
2151 * allocators proactively to slow down excessive growth.
2152 */
2153 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2154 mem_find_max_overage(memcg));
2155
2156 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2157 swap_find_max_overage(memcg));
2158
2159 /*
2160 * Clamp the max delay per usermode return so as to still keep the
2161 * application moving forwards and also permit diagnostics, albeit
2162 * extremely slowly.
2163 */
2164 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2165
2166 /*
2167 * Don't sleep if the amount of jiffies this memcg owes us is so low
2168 * that it's not even worth doing, in an attempt to be nice to those who
2169 * go only a small amount over their memory.high value and maybe haven't
2170 * been aggressively reclaimed enough yet.
2171 */
2172 if (penalty_jiffies <= HZ / 100)
2173 goto out;
2174
2175 /*
2176 * If reclaim is making forward progress but we're still over
2177 * memory.high, we want to encourage that rather than doing allocator
2178 * throttling.
2179 */
2180 if (nr_reclaimed || nr_retries--) {
2181 in_retry = true;
2182 goto retry_reclaim;
2183 }
2184
2185 /*
2186 * Reclaim didn't manage to push usage below the limit, slow
2187 * this allocating task down.
2188 *
2189 * If we exit early, we're guaranteed to die (since
2190 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2191 * need to account for any ill-begotten jiffies to pay them off later.
2192 */
2193 psi_memstall_enter(&pflags);
2194 schedule_timeout_killable(penalty_jiffies);
2195 psi_memstall_leave(&pflags);
2196
2197 out:
2198 css_put(&memcg->css);
2199 }
2200
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2201 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2202 unsigned int nr_pages)
2203 {
2204 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2205 int nr_retries = MAX_RECLAIM_RETRIES;
2206 struct mem_cgroup *mem_over_limit;
2207 struct page_counter *counter;
2208 unsigned long nr_reclaimed;
2209 bool passed_oom = false;
2210 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2211 bool drained = false;
2212 bool raised_max_event = false;
2213 unsigned long pflags;
2214
2215 retry:
2216 if (consume_stock(memcg, nr_pages))
2217 return 0;
2218
2219 if (!do_memsw_account() ||
2220 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2221 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2222 goto done_restock;
2223 if (do_memsw_account())
2224 page_counter_uncharge(&memcg->memsw, batch);
2225 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2226 } else {
2227 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2228 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2229 }
2230
2231 if (batch > nr_pages) {
2232 batch = nr_pages;
2233 goto retry;
2234 }
2235
2236 /*
2237 * Prevent unbounded recursion when reclaim operations need to
2238 * allocate memory. This might exceed the limits temporarily,
2239 * but we prefer facilitating memory reclaim and getting back
2240 * under the limit over triggering OOM kills in these cases.
2241 */
2242 if (unlikely(current->flags & PF_MEMALLOC))
2243 goto force;
2244
2245 if (unlikely(task_in_memcg_oom(current)))
2246 goto nomem;
2247
2248 if (!gfpflags_allow_blocking(gfp_mask))
2249 goto nomem;
2250
2251 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2252 raised_max_event = true;
2253
2254 psi_memstall_enter(&pflags);
2255 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2256 gfp_mask, reclaim_options, NULL);
2257 psi_memstall_leave(&pflags);
2258
2259 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2260 goto retry;
2261
2262 if (!drained) {
2263 drain_all_stock(mem_over_limit);
2264 drained = true;
2265 goto retry;
2266 }
2267
2268 if (gfp_mask & __GFP_NORETRY)
2269 goto nomem;
2270 /*
2271 * Even though the limit is exceeded at this point, reclaim
2272 * may have been able to free some pages. Retry the charge
2273 * before killing the task.
2274 *
2275 * Only for regular pages, though: huge pages are rather
2276 * unlikely to succeed so close to the limit, and we fall back
2277 * to regular pages anyway in case of failure.
2278 */
2279 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2280 goto retry;
2281
2282 if (nr_retries--)
2283 goto retry;
2284
2285 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2286 goto nomem;
2287
2288 /* Avoid endless loop for tasks bypassed by the oom killer */
2289 if (passed_oom && task_is_dying())
2290 goto nomem;
2291
2292 /*
2293 * keep retrying as long as the memcg oom killer is able to make
2294 * a forward progress or bypass the charge if the oom killer
2295 * couldn't make any progress.
2296 */
2297 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2298 get_order(nr_pages * PAGE_SIZE))) {
2299 passed_oom = true;
2300 nr_retries = MAX_RECLAIM_RETRIES;
2301 goto retry;
2302 }
2303 nomem:
2304 /*
2305 * Memcg doesn't have a dedicated reserve for atomic
2306 * allocations. But like the global atomic pool, we need to
2307 * put the burden of reclaim on regular allocation requests
2308 * and let these go through as privileged allocations.
2309 */
2310 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2311 return -ENOMEM;
2312 force:
2313 /*
2314 * If the allocation has to be enforced, don't forget to raise
2315 * a MEMCG_MAX event.
2316 */
2317 if (!raised_max_event)
2318 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2319
2320 /*
2321 * The allocation either can't fail or will lead to more memory
2322 * being freed very soon. Allow memory usage go over the limit
2323 * temporarily by force charging it.
2324 */
2325 page_counter_charge(&memcg->memory, nr_pages);
2326 if (do_memsw_account())
2327 page_counter_charge(&memcg->memsw, nr_pages);
2328
2329 return 0;
2330
2331 done_restock:
2332 if (batch > nr_pages)
2333 refill_stock(memcg, batch - nr_pages);
2334
2335 /*
2336 * If the hierarchy is above the normal consumption range, schedule
2337 * reclaim on returning to userland. We can perform reclaim here
2338 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2339 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2340 * not recorded as it most likely matches current's and won't
2341 * change in the meantime. As high limit is checked again before
2342 * reclaim, the cost of mismatch is negligible.
2343 */
2344 do {
2345 bool mem_high, swap_high;
2346
2347 mem_high = page_counter_read(&memcg->memory) >
2348 READ_ONCE(memcg->memory.high);
2349 swap_high = page_counter_read(&memcg->swap) >
2350 READ_ONCE(memcg->swap.high);
2351
2352 /* Don't bother a random interrupted task */
2353 if (!in_task()) {
2354 if (mem_high) {
2355 schedule_work(&memcg->high_work);
2356 break;
2357 }
2358 continue;
2359 }
2360
2361 if (mem_high || swap_high) {
2362 /*
2363 * The allocating tasks in this cgroup will need to do
2364 * reclaim or be throttled to prevent further growth
2365 * of the memory or swap footprints.
2366 *
2367 * Target some best-effort fairness between the tasks,
2368 * and distribute reclaim work and delay penalties
2369 * based on how much each task is actually allocating.
2370 */
2371 current->memcg_nr_pages_over_high += batch;
2372 set_notify_resume(current);
2373 break;
2374 }
2375 } while ((memcg = parent_mem_cgroup(memcg)));
2376
2377 /*
2378 * Reclaim is set up above to be called from the userland
2379 * return path. But also attempt synchronous reclaim to avoid
2380 * excessive overrun while the task is still inside the
2381 * kernel. If this is successful, the return path will see it
2382 * when it rechecks the overage and simply bail out.
2383 */
2384 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2385 !(current->flags & PF_MEMALLOC) &&
2386 gfpflags_allow_blocking(gfp_mask))
2387 mem_cgroup_handle_over_high(gfp_mask);
2388 return 0;
2389 }
2390
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2391 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2392 {
2393 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2394 /*
2395 * Any of the following ensures page's memcg stability:
2396 *
2397 * - the page lock
2398 * - LRU isolation
2399 * - exclusive reference
2400 */
2401 folio->memcg_data = (unsigned long)memcg;
2402 }
2403
__mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2404 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2405 struct pglist_data *pgdat,
2406 enum node_stat_item idx, int nr)
2407 {
2408 struct mem_cgroup *memcg;
2409 struct lruvec *lruvec;
2410
2411 rcu_read_lock();
2412 memcg = obj_cgroup_memcg(objcg);
2413 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2414 __mod_memcg_lruvec_state(lruvec, idx, nr);
2415 rcu_read_unlock();
2416 }
2417
2418 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2419 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2420 {
2421 /*
2422 * Slab objects are accounted individually, not per-page.
2423 * Memcg membership data for each individual object is saved in
2424 * slab->obj_exts.
2425 */
2426 if (folio_test_slab(folio)) {
2427 struct slabobj_ext *obj_exts;
2428 struct slab *slab;
2429 unsigned int off;
2430
2431 slab = folio_slab(folio);
2432 obj_exts = slab_obj_exts(slab);
2433 if (!obj_exts)
2434 return NULL;
2435
2436 off = obj_to_index(slab->slab_cache, slab, p);
2437 if (obj_exts[off].objcg)
2438 return obj_cgroup_memcg(obj_exts[off].objcg);
2439
2440 return NULL;
2441 }
2442
2443 /*
2444 * folio_memcg_check() is used here, because in theory we can encounter
2445 * a folio where the slab flag has been cleared already, but
2446 * slab->obj_exts has not been freed yet
2447 * folio_memcg_check() will guarantee that a proper memory
2448 * cgroup pointer or NULL will be returned.
2449 */
2450 return folio_memcg_check(folio);
2451 }
2452
2453 /*
2454 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2455 * It is not suitable for objects allocated using vmalloc().
2456 *
2457 * A passed kernel object must be a slab object or a generic kernel page.
2458 *
2459 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2460 * cgroup_mutex, etc.
2461 */
mem_cgroup_from_slab_obj(void * p)2462 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2463 {
2464 if (mem_cgroup_disabled())
2465 return NULL;
2466
2467 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2468 }
2469
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2470 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2471 {
2472 struct obj_cgroup *objcg = NULL;
2473
2474 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2475 objcg = rcu_dereference(memcg->objcg);
2476 if (likely(objcg && obj_cgroup_tryget(objcg)))
2477 break;
2478 objcg = NULL;
2479 }
2480 return objcg;
2481 }
2482
current_objcg_update(void)2483 static struct obj_cgroup *current_objcg_update(void)
2484 {
2485 struct mem_cgroup *memcg;
2486 struct obj_cgroup *old, *objcg = NULL;
2487
2488 do {
2489 /* Atomically drop the update bit. */
2490 old = xchg(¤t->objcg, NULL);
2491 if (old) {
2492 old = (struct obj_cgroup *)
2493 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2494 obj_cgroup_put(old);
2495
2496 old = NULL;
2497 }
2498
2499 /* If new objcg is NULL, no reason for the second atomic update. */
2500 if (!current->mm || (current->flags & PF_KTHREAD))
2501 return NULL;
2502
2503 /*
2504 * Release the objcg pointer from the previous iteration,
2505 * if try_cmpxcg() below fails.
2506 */
2507 if (unlikely(objcg)) {
2508 obj_cgroup_put(objcg);
2509 objcg = NULL;
2510 }
2511
2512 /*
2513 * Obtain the new objcg pointer. The current task can be
2514 * asynchronously moved to another memcg and the previous
2515 * memcg can be offlined. So let's get the memcg pointer
2516 * and try get a reference to objcg under a rcu read lock.
2517 */
2518
2519 rcu_read_lock();
2520 memcg = mem_cgroup_from_task(current);
2521 objcg = __get_obj_cgroup_from_memcg(memcg);
2522 rcu_read_unlock();
2523
2524 /*
2525 * Try set up a new objcg pointer atomically. If it
2526 * fails, it means the update flag was set concurrently, so
2527 * the whole procedure should be repeated.
2528 */
2529 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2530
2531 return objcg;
2532 }
2533
current_obj_cgroup(void)2534 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2535 {
2536 struct mem_cgroup *memcg;
2537 struct obj_cgroup *objcg;
2538
2539 if (in_task()) {
2540 memcg = current->active_memcg;
2541 if (unlikely(memcg))
2542 goto from_memcg;
2543
2544 objcg = READ_ONCE(current->objcg);
2545 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2546 objcg = current_objcg_update();
2547 /*
2548 * Objcg reference is kept by the task, so it's safe
2549 * to use the objcg by the current task.
2550 */
2551 return objcg;
2552 }
2553
2554 memcg = this_cpu_read(int_active_memcg);
2555 if (unlikely(memcg))
2556 goto from_memcg;
2557
2558 return NULL;
2559
2560 from_memcg:
2561 objcg = NULL;
2562 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2563 /*
2564 * Memcg pointer is protected by scope (see set_active_memcg())
2565 * and is pinning the corresponding objcg, so objcg can't go
2566 * away and can be used within the scope without any additional
2567 * protection.
2568 */
2569 objcg = rcu_dereference_check(memcg->objcg, 1);
2570 if (likely(objcg))
2571 break;
2572 }
2573
2574 return objcg;
2575 }
2576
get_obj_cgroup_from_folio(struct folio * folio)2577 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2578 {
2579 struct obj_cgroup *objcg;
2580
2581 if (!memcg_kmem_online())
2582 return NULL;
2583
2584 if (folio_memcg_kmem(folio)) {
2585 objcg = __folio_objcg(folio);
2586 obj_cgroup_get(objcg);
2587 } else {
2588 struct mem_cgroup *memcg;
2589
2590 rcu_read_lock();
2591 memcg = __folio_memcg(folio);
2592 if (memcg)
2593 objcg = __get_obj_cgroup_from_memcg(memcg);
2594 else
2595 objcg = NULL;
2596 rcu_read_unlock();
2597 }
2598 return objcg;
2599 }
2600
2601 /*
2602 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2603 * @objcg: object cgroup to uncharge
2604 * @nr_pages: number of pages to uncharge
2605 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2606 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2607 unsigned int nr_pages)
2608 {
2609 struct mem_cgroup *memcg;
2610
2611 memcg = get_mem_cgroup_from_objcg(objcg);
2612
2613 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2614 memcg1_account_kmem(memcg, -nr_pages);
2615 refill_stock(memcg, nr_pages);
2616
2617 css_put(&memcg->css);
2618 }
2619
2620 /*
2621 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2622 * @objcg: object cgroup to charge
2623 * @gfp: reclaim mode
2624 * @nr_pages: number of pages to charge
2625 *
2626 * Returns 0 on success, an error code on failure.
2627 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2628 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2629 unsigned int nr_pages)
2630 {
2631 struct mem_cgroup *memcg;
2632 int ret;
2633
2634 memcg = get_mem_cgroup_from_objcg(objcg);
2635
2636 ret = try_charge_memcg(memcg, gfp, nr_pages);
2637 if (ret)
2638 goto out;
2639
2640 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2641 memcg1_account_kmem(memcg, nr_pages);
2642 out:
2643 css_put(&memcg->css);
2644
2645 return ret;
2646 }
2647
2648 /**
2649 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2650 * @page: page to charge
2651 * @gfp: reclaim mode
2652 * @order: allocation order
2653 *
2654 * Returns 0 on success, an error code on failure.
2655 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2656 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2657 {
2658 struct obj_cgroup *objcg;
2659 int ret = 0;
2660
2661 objcg = current_obj_cgroup();
2662 if (objcg) {
2663 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2664 if (!ret) {
2665 obj_cgroup_get(objcg);
2666 page->memcg_data = (unsigned long)objcg |
2667 MEMCG_DATA_KMEM;
2668 return 0;
2669 }
2670 }
2671 return ret;
2672 }
2673
2674 /**
2675 * __memcg_kmem_uncharge_page: uncharge a kmem page
2676 * @page: page to uncharge
2677 * @order: allocation order
2678 */
__memcg_kmem_uncharge_page(struct page * page,int order)2679 void __memcg_kmem_uncharge_page(struct page *page, int order)
2680 {
2681 struct folio *folio = page_folio(page);
2682 struct obj_cgroup *objcg;
2683 unsigned int nr_pages = 1 << order;
2684
2685 if (!folio_memcg_kmem(folio))
2686 return;
2687
2688 objcg = __folio_objcg(folio);
2689 obj_cgroup_uncharge_pages(objcg, nr_pages);
2690 folio->memcg_data = 0;
2691 obj_cgroup_put(objcg);
2692 }
2693
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2694 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2695 enum node_stat_item idx, int nr)
2696 {
2697 struct memcg_stock_pcp *stock;
2698 struct obj_cgroup *old = NULL;
2699 unsigned long flags;
2700 int *bytes;
2701
2702 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2703 stock = this_cpu_ptr(&memcg_stock);
2704
2705 /*
2706 * Save vmstat data in stock and skip vmstat array update unless
2707 * accumulating over a page of vmstat data or when pgdat or idx
2708 * changes.
2709 */
2710 if (READ_ONCE(stock->cached_objcg) != objcg) {
2711 old = drain_obj_stock(stock);
2712 obj_cgroup_get(objcg);
2713 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2714 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2715 WRITE_ONCE(stock->cached_objcg, objcg);
2716 stock->cached_pgdat = pgdat;
2717 } else if (stock->cached_pgdat != pgdat) {
2718 /* Flush the existing cached vmstat data */
2719 struct pglist_data *oldpg = stock->cached_pgdat;
2720
2721 if (stock->nr_slab_reclaimable_b) {
2722 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2723 stock->nr_slab_reclaimable_b);
2724 stock->nr_slab_reclaimable_b = 0;
2725 }
2726 if (stock->nr_slab_unreclaimable_b) {
2727 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2728 stock->nr_slab_unreclaimable_b);
2729 stock->nr_slab_unreclaimable_b = 0;
2730 }
2731 stock->cached_pgdat = pgdat;
2732 }
2733
2734 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2735 : &stock->nr_slab_unreclaimable_b;
2736 /*
2737 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2738 * cached locally at least once before pushing it out.
2739 */
2740 if (!*bytes) {
2741 *bytes = nr;
2742 nr = 0;
2743 } else {
2744 *bytes += nr;
2745 if (abs(*bytes) > PAGE_SIZE) {
2746 nr = *bytes;
2747 *bytes = 0;
2748 } else {
2749 nr = 0;
2750 }
2751 }
2752 if (nr)
2753 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
2754
2755 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2756 obj_cgroup_put(old);
2757 }
2758
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)2759 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2760 {
2761 struct memcg_stock_pcp *stock;
2762 unsigned long flags;
2763 bool ret = false;
2764
2765 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2766
2767 stock = this_cpu_ptr(&memcg_stock);
2768 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2769 stock->nr_bytes -= nr_bytes;
2770 ret = true;
2771 }
2772
2773 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2774
2775 return ret;
2776 }
2777
drain_obj_stock(struct memcg_stock_pcp * stock)2778 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2779 {
2780 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2781
2782 if (!old)
2783 return NULL;
2784
2785 if (stock->nr_bytes) {
2786 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2787 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2788
2789 if (nr_pages) {
2790 struct mem_cgroup *memcg;
2791
2792 memcg = get_mem_cgroup_from_objcg(old);
2793
2794 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2795 memcg1_account_kmem(memcg, -nr_pages);
2796 __refill_stock(memcg, nr_pages);
2797
2798 css_put(&memcg->css);
2799 }
2800
2801 /*
2802 * The leftover is flushed to the centralized per-memcg value.
2803 * On the next attempt to refill obj stock it will be moved
2804 * to a per-cpu stock (probably, on an other CPU), see
2805 * refill_obj_stock().
2806 *
2807 * How often it's flushed is a trade-off between the memory
2808 * limit enforcement accuracy and potential CPU contention,
2809 * so it might be changed in the future.
2810 */
2811 atomic_add(nr_bytes, &old->nr_charged_bytes);
2812 stock->nr_bytes = 0;
2813 }
2814
2815 /*
2816 * Flush the vmstat data in current stock
2817 */
2818 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2819 if (stock->nr_slab_reclaimable_b) {
2820 __mod_objcg_mlstate(old, stock->cached_pgdat,
2821 NR_SLAB_RECLAIMABLE_B,
2822 stock->nr_slab_reclaimable_b);
2823 stock->nr_slab_reclaimable_b = 0;
2824 }
2825 if (stock->nr_slab_unreclaimable_b) {
2826 __mod_objcg_mlstate(old, stock->cached_pgdat,
2827 NR_SLAB_UNRECLAIMABLE_B,
2828 stock->nr_slab_unreclaimable_b);
2829 stock->nr_slab_unreclaimable_b = 0;
2830 }
2831 stock->cached_pgdat = NULL;
2832 }
2833
2834 WRITE_ONCE(stock->cached_objcg, NULL);
2835 /*
2836 * The `old' objects needs to be released by the caller via
2837 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2838 */
2839 return old;
2840 }
2841
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2842 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2843 struct mem_cgroup *root_memcg)
2844 {
2845 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2846 struct mem_cgroup *memcg;
2847
2848 if (objcg) {
2849 memcg = obj_cgroup_memcg(objcg);
2850 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2851 return true;
2852 }
2853
2854 return false;
2855 }
2856
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)2857 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2858 bool allow_uncharge)
2859 {
2860 struct memcg_stock_pcp *stock;
2861 struct obj_cgroup *old = NULL;
2862 unsigned long flags;
2863 unsigned int nr_pages = 0;
2864
2865 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2866
2867 stock = this_cpu_ptr(&memcg_stock);
2868 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2869 old = drain_obj_stock(stock);
2870 obj_cgroup_get(objcg);
2871 WRITE_ONCE(stock->cached_objcg, objcg);
2872 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2873 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2874 allow_uncharge = true; /* Allow uncharge when objcg changes */
2875 }
2876 stock->nr_bytes += nr_bytes;
2877
2878 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2879 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2880 stock->nr_bytes &= (PAGE_SIZE - 1);
2881 }
2882
2883 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2884 obj_cgroup_put(old);
2885
2886 if (nr_pages)
2887 obj_cgroup_uncharge_pages(objcg, nr_pages);
2888 }
2889
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)2890 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2891 {
2892 unsigned int nr_pages, nr_bytes;
2893 int ret;
2894
2895 if (consume_obj_stock(objcg, size))
2896 return 0;
2897
2898 /*
2899 * In theory, objcg->nr_charged_bytes can have enough
2900 * pre-charged bytes to satisfy the allocation. However,
2901 * flushing objcg->nr_charged_bytes requires two atomic
2902 * operations, and objcg->nr_charged_bytes can't be big.
2903 * The shared objcg->nr_charged_bytes can also become a
2904 * performance bottleneck if all tasks of the same memcg are
2905 * trying to update it. So it's better to ignore it and try
2906 * grab some new pages. The stock's nr_bytes will be flushed to
2907 * objcg->nr_charged_bytes later on when objcg changes.
2908 *
2909 * The stock's nr_bytes may contain enough pre-charged bytes
2910 * to allow one less page from being charged, but we can't rely
2911 * on the pre-charged bytes not being changed outside of
2912 * consume_obj_stock() or refill_obj_stock(). So ignore those
2913 * pre-charged bytes as well when charging pages. To avoid a
2914 * page uncharge right after a page charge, we set the
2915 * allow_uncharge flag to false when calling refill_obj_stock()
2916 * to temporarily allow the pre-charged bytes to exceed the page
2917 * size limit. The maximum reachable value of the pre-charged
2918 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2919 * race.
2920 */
2921 nr_pages = size >> PAGE_SHIFT;
2922 nr_bytes = size & (PAGE_SIZE - 1);
2923
2924 if (nr_bytes)
2925 nr_pages += 1;
2926
2927 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2928 if (!ret && nr_bytes)
2929 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2930
2931 return ret;
2932 }
2933
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)2934 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2935 {
2936 refill_obj_stock(objcg, size, true);
2937 }
2938
obj_full_size(struct kmem_cache * s)2939 static inline size_t obj_full_size(struct kmem_cache *s)
2940 {
2941 /*
2942 * For each accounted object there is an extra space which is used
2943 * to store obj_cgroup membership. Charge it too.
2944 */
2945 return s->size + sizeof(struct obj_cgroup *);
2946 }
2947
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2948 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2949 gfp_t flags, size_t size, void **p)
2950 {
2951 struct obj_cgroup *objcg;
2952 struct slab *slab;
2953 unsigned long off;
2954 size_t i;
2955
2956 /*
2957 * The obtained objcg pointer is safe to use within the current scope,
2958 * defined by current task or set_active_memcg() pair.
2959 * obj_cgroup_get() is used to get a permanent reference.
2960 */
2961 objcg = current_obj_cgroup();
2962 if (!objcg)
2963 return true;
2964
2965 /*
2966 * slab_alloc_node() avoids the NULL check, so we might be called with a
2967 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2968 * the whole requested size.
2969 * return success as there's nothing to free back
2970 */
2971 if (unlikely(*p == NULL))
2972 return true;
2973
2974 flags &= gfp_allowed_mask;
2975
2976 if (lru) {
2977 int ret;
2978 struct mem_cgroup *memcg;
2979
2980 memcg = get_mem_cgroup_from_objcg(objcg);
2981 ret = memcg_list_lru_alloc(memcg, lru, flags);
2982 css_put(&memcg->css);
2983
2984 if (ret)
2985 return false;
2986 }
2987
2988 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
2989 return false;
2990
2991 for (i = 0; i < size; i++) {
2992 slab = virt_to_slab(p[i]);
2993
2994 if (!slab_obj_exts(slab) &&
2995 alloc_slab_obj_exts(slab, s, flags, false)) {
2996 obj_cgroup_uncharge(objcg, obj_full_size(s));
2997 continue;
2998 }
2999
3000 off = obj_to_index(s, slab, p[i]);
3001 obj_cgroup_get(objcg);
3002 slab_obj_exts(slab)[off].objcg = objcg;
3003 mod_objcg_state(objcg, slab_pgdat(slab),
3004 cache_vmstat_idx(s), obj_full_size(s));
3005 }
3006
3007 return true;
3008 }
3009
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3010 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3011 void **p, int objects, struct slabobj_ext *obj_exts)
3012 {
3013 for (int i = 0; i < objects; i++) {
3014 struct obj_cgroup *objcg;
3015 unsigned int off;
3016
3017 off = obj_to_index(s, slab, p[i]);
3018 objcg = obj_exts[off].objcg;
3019 if (!objcg)
3020 continue;
3021
3022 obj_exts[off].objcg = NULL;
3023 obj_cgroup_uncharge(objcg, obj_full_size(s));
3024 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3025 -obj_full_size(s));
3026 obj_cgroup_put(objcg);
3027 }
3028 }
3029
3030 /*
3031 * Because folio_memcg(head) is not set on tails, set it now.
3032 */
split_page_memcg(struct page * head,int old_order,int new_order)3033 void split_page_memcg(struct page *head, int old_order, int new_order)
3034 {
3035 struct folio *folio = page_folio(head);
3036 int i;
3037 unsigned int old_nr = 1 << old_order;
3038 unsigned int new_nr = 1 << new_order;
3039
3040 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3041 return;
3042
3043 for (i = new_nr; i < old_nr; i += new_nr)
3044 folio_page(folio, i)->memcg_data = folio->memcg_data;
3045
3046 if (folio_memcg_kmem(folio))
3047 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3048 else
3049 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3050 }
3051
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3052 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3053 {
3054 unsigned long val;
3055
3056 if (mem_cgroup_is_root(memcg)) {
3057 /*
3058 * Approximate root's usage from global state. This isn't
3059 * perfect, but the root usage was always an approximation.
3060 */
3061 val = global_node_page_state(NR_FILE_PAGES) +
3062 global_node_page_state(NR_ANON_MAPPED);
3063 if (swap)
3064 val += total_swap_pages - get_nr_swap_pages();
3065 } else {
3066 if (!swap)
3067 val = page_counter_read(&memcg->memory);
3068 else
3069 val = page_counter_read(&memcg->memsw);
3070 }
3071 return val;
3072 }
3073
memcg_online_kmem(struct mem_cgroup * memcg)3074 static int memcg_online_kmem(struct mem_cgroup *memcg)
3075 {
3076 struct obj_cgroup *objcg;
3077
3078 if (mem_cgroup_kmem_disabled())
3079 return 0;
3080
3081 if (unlikely(mem_cgroup_is_root(memcg)))
3082 return 0;
3083
3084 objcg = obj_cgroup_alloc();
3085 if (!objcg)
3086 return -ENOMEM;
3087
3088 objcg->memcg = memcg;
3089 rcu_assign_pointer(memcg->objcg, objcg);
3090 obj_cgroup_get(objcg);
3091 memcg->orig_objcg = objcg;
3092
3093 static_branch_enable(&memcg_kmem_online_key);
3094
3095 memcg->kmemcg_id = memcg->id.id;
3096
3097 return 0;
3098 }
3099
memcg_offline_kmem(struct mem_cgroup * memcg)3100 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3101 {
3102 struct mem_cgroup *parent;
3103
3104 if (mem_cgroup_kmem_disabled())
3105 return;
3106
3107 if (unlikely(mem_cgroup_is_root(memcg)))
3108 return;
3109
3110 parent = parent_mem_cgroup(memcg);
3111 if (!parent)
3112 parent = root_mem_cgroup;
3113
3114 memcg_reparent_list_lrus(memcg, parent);
3115
3116 /*
3117 * Objcg's reparenting must be after list_lru's, make sure list_lru
3118 * helpers won't use parent's list_lru until child is drained.
3119 */
3120 memcg_reparent_objcgs(memcg, parent);
3121 }
3122
3123 #ifdef CONFIG_CGROUP_WRITEBACK
3124
3125 #include <trace/events/writeback.h>
3126
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3127 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3128 {
3129 return wb_domain_init(&memcg->cgwb_domain, gfp);
3130 }
3131
memcg_wb_domain_exit(struct mem_cgroup * memcg)3132 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3133 {
3134 wb_domain_exit(&memcg->cgwb_domain);
3135 }
3136
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3137 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3138 {
3139 wb_domain_size_changed(&memcg->cgwb_domain);
3140 }
3141
mem_cgroup_wb_domain(struct bdi_writeback * wb)3142 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3143 {
3144 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3145
3146 if (!memcg->css.parent)
3147 return NULL;
3148
3149 return &memcg->cgwb_domain;
3150 }
3151
3152 /**
3153 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3154 * @wb: bdi_writeback in question
3155 * @pfilepages: out parameter for number of file pages
3156 * @pheadroom: out parameter for number of allocatable pages according to memcg
3157 * @pdirty: out parameter for number of dirty pages
3158 * @pwriteback: out parameter for number of pages under writeback
3159 *
3160 * Determine the numbers of file, headroom, dirty, and writeback pages in
3161 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3162 * is a bit more involved.
3163 *
3164 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3165 * headroom is calculated as the lowest headroom of itself and the
3166 * ancestors. Note that this doesn't consider the actual amount of
3167 * available memory in the system. The caller should further cap
3168 * *@pheadroom accordingly.
3169 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3170 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3171 unsigned long *pheadroom, unsigned long *pdirty,
3172 unsigned long *pwriteback)
3173 {
3174 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3175 struct mem_cgroup *parent;
3176
3177 mem_cgroup_flush_stats_ratelimited(memcg);
3178
3179 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3180 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3181 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3182 memcg_page_state(memcg, NR_ACTIVE_FILE);
3183
3184 *pheadroom = PAGE_COUNTER_MAX;
3185 while ((parent = parent_mem_cgroup(memcg))) {
3186 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3187 READ_ONCE(memcg->memory.high));
3188 unsigned long used = page_counter_read(&memcg->memory);
3189
3190 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3191 memcg = parent;
3192 }
3193 }
3194
3195 /*
3196 * Foreign dirty flushing
3197 *
3198 * There's an inherent mismatch between memcg and writeback. The former
3199 * tracks ownership per-page while the latter per-inode. This was a
3200 * deliberate design decision because honoring per-page ownership in the
3201 * writeback path is complicated, may lead to higher CPU and IO overheads
3202 * and deemed unnecessary given that write-sharing an inode across
3203 * different cgroups isn't a common use-case.
3204 *
3205 * Combined with inode majority-writer ownership switching, this works well
3206 * enough in most cases but there are some pathological cases. For
3207 * example, let's say there are two cgroups A and B which keep writing to
3208 * different but confined parts of the same inode. B owns the inode and
3209 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3210 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3211 * triggering background writeback. A will be slowed down without a way to
3212 * make writeback of the dirty pages happen.
3213 *
3214 * Conditions like the above can lead to a cgroup getting repeatedly and
3215 * severely throttled after making some progress after each
3216 * dirty_expire_interval while the underlying IO device is almost
3217 * completely idle.
3218 *
3219 * Solving this problem completely requires matching the ownership tracking
3220 * granularities between memcg and writeback in either direction. However,
3221 * the more egregious behaviors can be avoided by simply remembering the
3222 * most recent foreign dirtying events and initiating remote flushes on
3223 * them when local writeback isn't enough to keep the memory clean enough.
3224 *
3225 * The following two functions implement such mechanism. When a foreign
3226 * page - a page whose memcg and writeback ownerships don't match - is
3227 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3228 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3229 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3230 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3231 * foreign bdi_writebacks which haven't expired. Both the numbers of
3232 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3233 * limited to MEMCG_CGWB_FRN_CNT.
3234 *
3235 * The mechanism only remembers IDs and doesn't hold any object references.
3236 * As being wrong occasionally doesn't matter, updates and accesses to the
3237 * records are lockless and racy.
3238 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3239 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3240 struct bdi_writeback *wb)
3241 {
3242 struct mem_cgroup *memcg = folio_memcg(folio);
3243 struct memcg_cgwb_frn *frn;
3244 u64 now = get_jiffies_64();
3245 u64 oldest_at = now;
3246 int oldest = -1;
3247 int i;
3248
3249 trace_track_foreign_dirty(folio, wb);
3250
3251 /*
3252 * Pick the slot to use. If there is already a slot for @wb, keep
3253 * using it. If not replace the oldest one which isn't being
3254 * written out.
3255 */
3256 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3257 frn = &memcg->cgwb_frn[i];
3258 if (frn->bdi_id == wb->bdi->id &&
3259 frn->memcg_id == wb->memcg_css->id)
3260 break;
3261 if (time_before64(frn->at, oldest_at) &&
3262 atomic_read(&frn->done.cnt) == 1) {
3263 oldest = i;
3264 oldest_at = frn->at;
3265 }
3266 }
3267
3268 if (i < MEMCG_CGWB_FRN_CNT) {
3269 /*
3270 * Re-using an existing one. Update timestamp lazily to
3271 * avoid making the cacheline hot. We want them to be
3272 * reasonably up-to-date and significantly shorter than
3273 * dirty_expire_interval as that's what expires the record.
3274 * Use the shorter of 1s and dirty_expire_interval / 8.
3275 */
3276 unsigned long update_intv =
3277 min_t(unsigned long, HZ,
3278 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3279
3280 if (time_before64(frn->at, now - update_intv))
3281 frn->at = now;
3282 } else if (oldest >= 0) {
3283 /* replace the oldest free one */
3284 frn = &memcg->cgwb_frn[oldest];
3285 frn->bdi_id = wb->bdi->id;
3286 frn->memcg_id = wb->memcg_css->id;
3287 frn->at = now;
3288 }
3289 }
3290
3291 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3292 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3293 {
3294 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3295 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3296 u64 now = jiffies_64;
3297 int i;
3298
3299 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3300 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3301
3302 /*
3303 * If the record is older than dirty_expire_interval,
3304 * writeback on it has already started. No need to kick it
3305 * off again. Also, don't start a new one if there's
3306 * already one in flight.
3307 */
3308 if (time_after64(frn->at, now - intv) &&
3309 atomic_read(&frn->done.cnt) == 1) {
3310 frn->at = 0;
3311 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3312 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3313 WB_REASON_FOREIGN_FLUSH,
3314 &frn->done);
3315 }
3316 }
3317 }
3318
3319 #else /* CONFIG_CGROUP_WRITEBACK */
3320
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3321 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3322 {
3323 return 0;
3324 }
3325
memcg_wb_domain_exit(struct mem_cgroup * memcg)3326 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3327 {
3328 }
3329
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3330 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3331 {
3332 }
3333
3334 #endif /* CONFIG_CGROUP_WRITEBACK */
3335
3336 /*
3337 * Private memory cgroup IDR
3338 *
3339 * Swap-out records and page cache shadow entries need to store memcg
3340 * references in constrained space, so we maintain an ID space that is
3341 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3342 * memory-controlled cgroups to 64k.
3343 *
3344 * However, there usually are many references to the offline CSS after
3345 * the cgroup has been destroyed, such as page cache or reclaimable
3346 * slab objects, that don't need to hang on to the ID. We want to keep
3347 * those dead CSS from occupying IDs, or we might quickly exhaust the
3348 * relatively small ID space and prevent the creation of new cgroups
3349 * even when there are much fewer than 64k cgroups - possibly none.
3350 *
3351 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3352 * be freed and recycled when it's no longer needed, which is usually
3353 * when the CSS is offlined.
3354 *
3355 * The only exception to that are records of swapped out tmpfs/shmem
3356 * pages that need to be attributed to live ancestors on swapin. But
3357 * those references are manageable from userspace.
3358 */
3359
3360 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3361 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3362
mem_cgroup_id_remove(struct mem_cgroup * memcg)3363 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3364 {
3365 if (memcg->id.id > 0) {
3366 xa_erase(&mem_cgroup_ids, memcg->id.id);
3367 memcg->id.id = 0;
3368 }
3369 }
3370
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3371 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3372 unsigned int n)
3373 {
3374 refcount_add(n, &memcg->id.ref);
3375 }
3376
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3377 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3378 {
3379 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3380 mem_cgroup_id_remove(memcg);
3381
3382 /* Memcg ID pins CSS */
3383 css_put(&memcg->css);
3384 }
3385 }
3386
mem_cgroup_id_put(struct mem_cgroup * memcg)3387 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3388 {
3389 mem_cgroup_id_put_many(memcg, 1);
3390 }
3391
3392 /**
3393 * mem_cgroup_from_id - look up a memcg from a memcg id
3394 * @id: the memcg id to look up
3395 *
3396 * Caller must hold rcu_read_lock().
3397 */
mem_cgroup_from_id(unsigned short id)3398 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3399 {
3400 WARN_ON_ONCE(!rcu_read_lock_held());
3401 return xa_load(&mem_cgroup_ids, id);
3402 }
3403
3404 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3405 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3406 {
3407 struct cgroup *cgrp;
3408 struct cgroup_subsys_state *css;
3409 struct mem_cgroup *memcg;
3410
3411 cgrp = cgroup_get_from_id(ino);
3412 if (IS_ERR(cgrp))
3413 return ERR_CAST(cgrp);
3414
3415 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3416 if (css)
3417 memcg = container_of(css, struct mem_cgroup, css);
3418 else
3419 memcg = ERR_PTR(-ENOENT);
3420
3421 cgroup_put(cgrp);
3422
3423 return memcg;
3424 }
3425 #endif
3426
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3427 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3428 {
3429 struct mem_cgroup_per_node *pn;
3430
3431 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3432 if (!pn)
3433 return false;
3434
3435 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3436 GFP_KERNEL_ACCOUNT, node);
3437 if (!pn->lruvec_stats)
3438 goto fail;
3439
3440 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3441 GFP_KERNEL_ACCOUNT);
3442 if (!pn->lruvec_stats_percpu)
3443 goto fail;
3444
3445 lruvec_init(&pn->lruvec);
3446 pn->memcg = memcg;
3447
3448 memcg->nodeinfo[node] = pn;
3449 return true;
3450 fail:
3451 kfree(pn->lruvec_stats);
3452 kfree(pn);
3453 return false;
3454 }
3455
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3456 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3457 {
3458 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3459
3460 if (!pn)
3461 return;
3462
3463 free_percpu(pn->lruvec_stats_percpu);
3464 kfree(pn->lruvec_stats);
3465 kfree(pn);
3466 }
3467
__mem_cgroup_free(struct mem_cgroup * memcg)3468 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3469 {
3470 int node;
3471
3472 obj_cgroup_put(memcg->orig_objcg);
3473
3474 for_each_node(node)
3475 free_mem_cgroup_per_node_info(memcg, node);
3476 memcg1_free_events(memcg);
3477 kfree(memcg->vmstats);
3478 free_percpu(memcg->vmstats_percpu);
3479 kfree(memcg);
3480 }
3481
mem_cgroup_free(struct mem_cgroup * memcg)3482 static void mem_cgroup_free(struct mem_cgroup *memcg)
3483 {
3484 lru_gen_exit_memcg(memcg);
3485 memcg_wb_domain_exit(memcg);
3486 __mem_cgroup_free(memcg);
3487 }
3488
mem_cgroup_alloc(struct mem_cgroup * parent)3489 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3490 {
3491 struct memcg_vmstats_percpu *statc, *pstatc;
3492 struct mem_cgroup *memcg;
3493 int node, cpu;
3494 int __maybe_unused i;
3495 long error;
3496
3497 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3498 if (!memcg)
3499 return ERR_PTR(-ENOMEM);
3500
3501 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3502 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3503 if (error)
3504 goto fail;
3505 error = -ENOMEM;
3506
3507 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3508 GFP_KERNEL_ACCOUNT);
3509 if (!memcg->vmstats)
3510 goto fail;
3511
3512 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3513 GFP_KERNEL_ACCOUNT);
3514 if (!memcg->vmstats_percpu)
3515 goto fail;
3516
3517 if (!memcg1_alloc_events(memcg))
3518 goto fail;
3519
3520 for_each_possible_cpu(cpu) {
3521 if (parent)
3522 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3523 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3524 statc->parent = parent ? pstatc : NULL;
3525 statc->vmstats = memcg->vmstats;
3526 }
3527
3528 for_each_node(node)
3529 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3530 goto fail;
3531
3532 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3533 goto fail;
3534
3535 INIT_WORK(&memcg->high_work, high_work_func);
3536 vmpressure_init(&memcg->vmpressure);
3537 INIT_LIST_HEAD(&memcg->memory_peaks);
3538 INIT_LIST_HEAD(&memcg->swap_peaks);
3539 spin_lock_init(&memcg->peaks_lock);
3540 memcg->socket_pressure = jiffies;
3541 memcg1_memcg_init(memcg);
3542 memcg->kmemcg_id = -1;
3543 INIT_LIST_HEAD(&memcg->objcg_list);
3544 #ifdef CONFIG_CGROUP_WRITEBACK
3545 INIT_LIST_HEAD(&memcg->cgwb_list);
3546 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3547 memcg->cgwb_frn[i].done =
3548 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3549 #endif
3550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3551 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3552 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3553 memcg->deferred_split_queue.split_queue_len = 0;
3554 #endif
3555 lru_gen_init_memcg(memcg);
3556 return memcg;
3557 fail:
3558 mem_cgroup_id_remove(memcg);
3559 __mem_cgroup_free(memcg);
3560 return ERR_PTR(error);
3561 }
3562
3563 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3564 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3565 {
3566 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3567 struct mem_cgroup *memcg, *old_memcg;
3568
3569 old_memcg = set_active_memcg(parent);
3570 memcg = mem_cgroup_alloc(parent);
3571 set_active_memcg(old_memcg);
3572 if (IS_ERR(memcg))
3573 return ERR_CAST(memcg);
3574
3575 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3576 memcg1_soft_limit_reset(memcg);
3577 #ifdef CONFIG_ZSWAP
3578 memcg->zswap_max = PAGE_COUNTER_MAX;
3579 WRITE_ONCE(memcg->zswap_writeback, true);
3580 #endif
3581 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3582 if (parent) {
3583 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3584
3585 page_counter_init(&memcg->memory, &parent->memory, true);
3586 page_counter_init(&memcg->swap, &parent->swap, false);
3587 #ifdef CONFIG_MEMCG_V1
3588 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3589 page_counter_init(&memcg->kmem, &parent->kmem, false);
3590 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3591 #endif
3592 } else {
3593 init_memcg_stats();
3594 init_memcg_events();
3595 page_counter_init(&memcg->memory, NULL, true);
3596 page_counter_init(&memcg->swap, NULL, false);
3597 #ifdef CONFIG_MEMCG_V1
3598 page_counter_init(&memcg->kmem, NULL, false);
3599 page_counter_init(&memcg->tcpmem, NULL, false);
3600 #endif
3601 root_mem_cgroup = memcg;
3602 return &memcg->css;
3603 }
3604
3605 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3606 static_branch_inc(&memcg_sockets_enabled_key);
3607
3608 if (!cgroup_memory_nobpf)
3609 static_branch_inc(&memcg_bpf_enabled_key);
3610
3611 return &memcg->css;
3612 }
3613
mem_cgroup_css_online(struct cgroup_subsys_state * css)3614 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3615 {
3616 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3617
3618 if (memcg_online_kmem(memcg))
3619 goto remove_id;
3620
3621 /*
3622 * A memcg must be visible for expand_shrinker_info()
3623 * by the time the maps are allocated. So, we allocate maps
3624 * here, when for_each_mem_cgroup() can't skip it.
3625 */
3626 if (alloc_shrinker_info(memcg))
3627 goto offline_kmem;
3628
3629 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3630 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3631 FLUSH_TIME);
3632 lru_gen_online_memcg(memcg);
3633
3634 /* Online state pins memcg ID, memcg ID pins CSS */
3635 refcount_set(&memcg->id.ref, 1);
3636 css_get(css);
3637
3638 /*
3639 * Ensure mem_cgroup_from_id() works once we're fully online.
3640 *
3641 * We could do this earlier and require callers to filter with
3642 * css_tryget_online(). But right now there are no users that
3643 * need earlier access, and the workingset code relies on the
3644 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3645 * publish it here at the end of onlining. This matches the
3646 * regular ID destruction during offlining.
3647 */
3648 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3649
3650 return 0;
3651 offline_kmem:
3652 memcg_offline_kmem(memcg);
3653 remove_id:
3654 mem_cgroup_id_remove(memcg);
3655 return -ENOMEM;
3656 }
3657
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3658 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3659 {
3660 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3661
3662 memcg1_css_offline(memcg);
3663
3664 page_counter_set_min(&memcg->memory, 0);
3665 page_counter_set_low(&memcg->memory, 0);
3666
3667 zswap_memcg_offline_cleanup(memcg);
3668
3669 memcg_offline_kmem(memcg);
3670 reparent_shrinker_deferred(memcg);
3671 wb_memcg_offline(memcg);
3672 lru_gen_offline_memcg(memcg);
3673
3674 drain_all_stock(memcg);
3675
3676 mem_cgroup_id_put(memcg);
3677 }
3678
mem_cgroup_css_released(struct cgroup_subsys_state * css)3679 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3680 {
3681 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3682
3683 invalidate_reclaim_iterators(memcg);
3684 lru_gen_release_memcg(memcg);
3685 }
3686
mem_cgroup_css_free(struct cgroup_subsys_state * css)3687 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3688 {
3689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3690 int __maybe_unused i;
3691
3692 #ifdef CONFIG_CGROUP_WRITEBACK
3693 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3694 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3695 #endif
3696 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3697 static_branch_dec(&memcg_sockets_enabled_key);
3698
3699 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3700 static_branch_dec(&memcg_sockets_enabled_key);
3701
3702 if (!cgroup_memory_nobpf)
3703 static_branch_dec(&memcg_bpf_enabled_key);
3704
3705 vmpressure_cleanup(&memcg->vmpressure);
3706 cancel_work_sync(&memcg->high_work);
3707 memcg1_remove_from_trees(memcg);
3708 free_shrinker_info(memcg);
3709 mem_cgroup_free(memcg);
3710 }
3711
3712 /**
3713 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3714 * @css: the target css
3715 *
3716 * Reset the states of the mem_cgroup associated with @css. This is
3717 * invoked when the userland requests disabling on the default hierarchy
3718 * but the memcg is pinned through dependency. The memcg should stop
3719 * applying policies and should revert to the vanilla state as it may be
3720 * made visible again.
3721 *
3722 * The current implementation only resets the essential configurations.
3723 * This needs to be expanded to cover all the visible parts.
3724 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3725 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3726 {
3727 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3728
3729 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3730 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3731 #ifdef CONFIG_MEMCG_V1
3732 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3733 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3734 #endif
3735 page_counter_set_min(&memcg->memory, 0);
3736 page_counter_set_low(&memcg->memory, 0);
3737 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3738 memcg1_soft_limit_reset(memcg);
3739 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3740 memcg_wb_domain_size_changed(memcg);
3741 }
3742
3743 struct aggregate_control {
3744 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3745 long *aggregate;
3746 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3747 long *local;
3748 /* pointer to the pending child counters during tree propagation */
3749 long *pending;
3750 /* pointer to the parent's pending counters, could be NULL */
3751 long *ppending;
3752 /* pointer to the percpu counters to be aggregated */
3753 long *cstat;
3754 /* pointer to the percpu counters of the last aggregation*/
3755 long *cstat_prev;
3756 /* size of the above counters */
3757 int size;
3758 };
3759
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3760 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3761 {
3762 int i;
3763 long delta, delta_cpu, v;
3764
3765 for (i = 0; i < ac->size; i++) {
3766 /*
3767 * Collect the aggregated propagation counts of groups
3768 * below us. We're in a per-cpu loop here and this is
3769 * a global counter, so the first cycle will get them.
3770 */
3771 delta = ac->pending[i];
3772 if (delta)
3773 ac->pending[i] = 0;
3774
3775 /* Add CPU changes on this level since the last flush */
3776 delta_cpu = 0;
3777 v = READ_ONCE(ac->cstat[i]);
3778 if (v != ac->cstat_prev[i]) {
3779 delta_cpu = v - ac->cstat_prev[i];
3780 delta += delta_cpu;
3781 ac->cstat_prev[i] = v;
3782 }
3783
3784 /* Aggregate counts on this level and propagate upwards */
3785 if (delta_cpu)
3786 ac->local[i] += delta_cpu;
3787
3788 if (delta) {
3789 ac->aggregate[i] += delta;
3790 if (ac->ppending)
3791 ac->ppending[i] += delta;
3792 }
3793 }
3794 }
3795
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)3796 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3797 {
3798 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3799 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3800 struct memcg_vmstats_percpu *statc;
3801 struct aggregate_control ac;
3802 int nid;
3803
3804 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3805
3806 ac = (struct aggregate_control) {
3807 .aggregate = memcg->vmstats->state,
3808 .local = memcg->vmstats->state_local,
3809 .pending = memcg->vmstats->state_pending,
3810 .ppending = parent ? parent->vmstats->state_pending : NULL,
3811 .cstat = statc->state,
3812 .cstat_prev = statc->state_prev,
3813 .size = MEMCG_VMSTAT_SIZE,
3814 };
3815 mem_cgroup_stat_aggregate(&ac);
3816
3817 ac = (struct aggregate_control) {
3818 .aggregate = memcg->vmstats->events,
3819 .local = memcg->vmstats->events_local,
3820 .pending = memcg->vmstats->events_pending,
3821 .ppending = parent ? parent->vmstats->events_pending : NULL,
3822 .cstat = statc->events,
3823 .cstat_prev = statc->events_prev,
3824 .size = NR_MEMCG_EVENTS,
3825 };
3826 mem_cgroup_stat_aggregate(&ac);
3827
3828 for_each_node_state(nid, N_MEMORY) {
3829 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3830 struct lruvec_stats *lstats = pn->lruvec_stats;
3831 struct lruvec_stats *plstats = NULL;
3832 struct lruvec_stats_percpu *lstatc;
3833
3834 if (parent)
3835 plstats = parent->nodeinfo[nid]->lruvec_stats;
3836
3837 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3838
3839 ac = (struct aggregate_control) {
3840 .aggregate = lstats->state,
3841 .local = lstats->state_local,
3842 .pending = lstats->state_pending,
3843 .ppending = plstats ? plstats->state_pending : NULL,
3844 .cstat = lstatc->state,
3845 .cstat_prev = lstatc->state_prev,
3846 .size = NR_MEMCG_NODE_STAT_ITEMS,
3847 };
3848 mem_cgroup_stat_aggregate(&ac);
3849
3850 }
3851 WRITE_ONCE(statc->stats_updates, 0);
3852 /* We are in a per-cpu loop here, only do the atomic write once */
3853 if (atomic64_read(&memcg->vmstats->stats_updates))
3854 atomic64_set(&memcg->vmstats->stats_updates, 0);
3855 }
3856
mem_cgroup_fork(struct task_struct * task)3857 static void mem_cgroup_fork(struct task_struct *task)
3858 {
3859 /*
3860 * Set the update flag to cause task->objcg to be initialized lazily
3861 * on the first allocation. It can be done without any synchronization
3862 * because it's always performed on the current task, so does
3863 * current_objcg_update().
3864 */
3865 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3866 }
3867
mem_cgroup_exit(struct task_struct * task)3868 static void mem_cgroup_exit(struct task_struct *task)
3869 {
3870 struct obj_cgroup *objcg = task->objcg;
3871
3872 objcg = (struct obj_cgroup *)
3873 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3874 obj_cgroup_put(objcg);
3875
3876 /*
3877 * Some kernel allocations can happen after this point,
3878 * but let's ignore them. It can be done without any synchronization
3879 * because it's always performed on the current task, so does
3880 * current_objcg_update().
3881 */
3882 task->objcg = NULL;
3883 }
3884
3885 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3886 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3887 {
3888 struct task_struct *task;
3889 struct cgroup_subsys_state *css;
3890
3891 /* find the first leader if there is any */
3892 cgroup_taskset_for_each_leader(task, css, tset)
3893 break;
3894
3895 if (!task)
3896 return;
3897
3898 task_lock(task);
3899 if (task->mm && READ_ONCE(task->mm->owner) == task)
3900 lru_gen_migrate_mm(task->mm);
3901 task_unlock(task);
3902 }
3903 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3904 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3905 #endif /* CONFIG_LRU_GEN */
3906
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)3907 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3908 {
3909 struct task_struct *task;
3910 struct cgroup_subsys_state *css;
3911
3912 cgroup_taskset_for_each(task, css, tset) {
3913 /* atomically set the update bit */
3914 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3915 }
3916 }
3917
mem_cgroup_attach(struct cgroup_taskset * tset)3918 static void mem_cgroup_attach(struct cgroup_taskset *tset)
3919 {
3920 mem_cgroup_lru_gen_attach(tset);
3921 mem_cgroup_kmem_attach(tset);
3922 }
3923
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)3924 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3925 {
3926 if (value == PAGE_COUNTER_MAX)
3927 seq_puts(m, "max\n");
3928 else
3929 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3930
3931 return 0;
3932 }
3933
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)3934 static u64 memory_current_read(struct cgroup_subsys_state *css,
3935 struct cftype *cft)
3936 {
3937 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3938
3939 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3940 }
3941
3942 #define OFP_PEAK_UNSET (((-1UL)))
3943
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)3944 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3945 {
3946 struct cgroup_of_peak *ofp = of_peak(sf->private);
3947 u64 fd_peak = READ_ONCE(ofp->value), peak;
3948
3949 /* User wants global or local peak? */
3950 if (fd_peak == OFP_PEAK_UNSET)
3951 peak = pc->watermark;
3952 else
3953 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3954
3955 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3956 return 0;
3957 }
3958
memory_peak_show(struct seq_file * sf,void * v)3959 static int memory_peak_show(struct seq_file *sf, void *v)
3960 {
3961 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3962
3963 return peak_show(sf, v, &memcg->memory);
3964 }
3965
peak_open(struct kernfs_open_file * of)3966 static int peak_open(struct kernfs_open_file *of)
3967 {
3968 struct cgroup_of_peak *ofp = of_peak(of);
3969
3970 ofp->value = OFP_PEAK_UNSET;
3971 return 0;
3972 }
3973
peak_release(struct kernfs_open_file * of)3974 static void peak_release(struct kernfs_open_file *of)
3975 {
3976 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3977 struct cgroup_of_peak *ofp = of_peak(of);
3978
3979 if (ofp->value == OFP_PEAK_UNSET) {
3980 /* fast path (no writes on this fd) */
3981 return;
3982 }
3983 spin_lock(&memcg->peaks_lock);
3984 list_del(&ofp->list);
3985 spin_unlock(&memcg->peaks_lock);
3986 }
3987
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)3988 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
3989 loff_t off, struct page_counter *pc,
3990 struct list_head *watchers)
3991 {
3992 unsigned long usage;
3993 struct cgroup_of_peak *peer_ctx;
3994 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3995 struct cgroup_of_peak *ofp = of_peak(of);
3996
3997 spin_lock(&memcg->peaks_lock);
3998
3999 usage = page_counter_read(pc);
4000 WRITE_ONCE(pc->local_watermark, usage);
4001
4002 list_for_each_entry(peer_ctx, watchers, list)
4003 if (usage > peer_ctx->value)
4004 WRITE_ONCE(peer_ctx->value, usage);
4005
4006 /* initial write, register watcher */
4007 if (ofp->value == -1)
4008 list_add(&ofp->list, watchers);
4009
4010 WRITE_ONCE(ofp->value, usage);
4011 spin_unlock(&memcg->peaks_lock);
4012
4013 return nbytes;
4014 }
4015
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4016 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4017 size_t nbytes, loff_t off)
4018 {
4019 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4020
4021 return peak_write(of, buf, nbytes, off, &memcg->memory,
4022 &memcg->memory_peaks);
4023 }
4024
4025 #undef OFP_PEAK_UNSET
4026
memory_min_show(struct seq_file * m,void * v)4027 static int memory_min_show(struct seq_file *m, void *v)
4028 {
4029 return seq_puts_memcg_tunable(m,
4030 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4031 }
4032
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4033 static ssize_t memory_min_write(struct kernfs_open_file *of,
4034 char *buf, size_t nbytes, loff_t off)
4035 {
4036 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4037 unsigned long min;
4038 int err;
4039
4040 buf = strstrip(buf);
4041 err = page_counter_memparse(buf, "max", &min);
4042 if (err)
4043 return err;
4044
4045 page_counter_set_min(&memcg->memory, min);
4046
4047 return nbytes;
4048 }
4049
memory_low_show(struct seq_file * m,void * v)4050 static int memory_low_show(struct seq_file *m, void *v)
4051 {
4052 return seq_puts_memcg_tunable(m,
4053 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4054 }
4055
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4056 static ssize_t memory_low_write(struct kernfs_open_file *of,
4057 char *buf, size_t nbytes, loff_t off)
4058 {
4059 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4060 unsigned long low;
4061 int err;
4062
4063 buf = strstrip(buf);
4064 err = page_counter_memparse(buf, "max", &low);
4065 if (err)
4066 return err;
4067
4068 page_counter_set_low(&memcg->memory, low);
4069
4070 return nbytes;
4071 }
4072
memory_high_show(struct seq_file * m,void * v)4073 static int memory_high_show(struct seq_file *m, void *v)
4074 {
4075 return seq_puts_memcg_tunable(m,
4076 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4077 }
4078
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4079 static ssize_t memory_high_write(struct kernfs_open_file *of,
4080 char *buf, size_t nbytes, loff_t off)
4081 {
4082 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4083 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4084 bool drained = false;
4085 unsigned long high;
4086 int err;
4087
4088 buf = strstrip(buf);
4089 err = page_counter_memparse(buf, "max", &high);
4090 if (err)
4091 return err;
4092
4093 page_counter_set_high(&memcg->memory, high);
4094
4095 for (;;) {
4096 unsigned long nr_pages = page_counter_read(&memcg->memory);
4097 unsigned long reclaimed;
4098
4099 if (nr_pages <= high)
4100 break;
4101
4102 if (signal_pending(current))
4103 break;
4104
4105 if (!drained) {
4106 drain_all_stock(memcg);
4107 drained = true;
4108 continue;
4109 }
4110
4111 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4112 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4113
4114 if (!reclaimed && !nr_retries--)
4115 break;
4116 }
4117
4118 memcg_wb_domain_size_changed(memcg);
4119 return nbytes;
4120 }
4121
memory_max_show(struct seq_file * m,void * v)4122 static int memory_max_show(struct seq_file *m, void *v)
4123 {
4124 return seq_puts_memcg_tunable(m,
4125 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4126 }
4127
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4128 static ssize_t memory_max_write(struct kernfs_open_file *of,
4129 char *buf, size_t nbytes, loff_t off)
4130 {
4131 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4132 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4133 bool drained = false;
4134 unsigned long max;
4135 int err;
4136
4137 buf = strstrip(buf);
4138 err = page_counter_memparse(buf, "max", &max);
4139 if (err)
4140 return err;
4141
4142 xchg(&memcg->memory.max, max);
4143
4144 for (;;) {
4145 unsigned long nr_pages = page_counter_read(&memcg->memory);
4146
4147 if (nr_pages <= max)
4148 break;
4149
4150 if (signal_pending(current))
4151 break;
4152
4153 if (!drained) {
4154 drain_all_stock(memcg);
4155 drained = true;
4156 continue;
4157 }
4158
4159 if (nr_reclaims) {
4160 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4161 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4162 nr_reclaims--;
4163 continue;
4164 }
4165
4166 memcg_memory_event(memcg, MEMCG_OOM);
4167 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4168 break;
4169 cond_resched();
4170 }
4171
4172 memcg_wb_domain_size_changed(memcg);
4173 return nbytes;
4174 }
4175
4176 /*
4177 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4178 * if any new events become available.
4179 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4180 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4181 {
4182 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4183 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4184 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4185 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4186 seq_printf(m, "oom_kill %lu\n",
4187 atomic_long_read(&events[MEMCG_OOM_KILL]));
4188 seq_printf(m, "oom_group_kill %lu\n",
4189 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4190 }
4191
memory_events_show(struct seq_file * m,void * v)4192 static int memory_events_show(struct seq_file *m, void *v)
4193 {
4194 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4195
4196 __memory_events_show(m, memcg->memory_events);
4197 return 0;
4198 }
4199
memory_events_local_show(struct seq_file * m,void * v)4200 static int memory_events_local_show(struct seq_file *m, void *v)
4201 {
4202 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4203
4204 __memory_events_show(m, memcg->memory_events_local);
4205 return 0;
4206 }
4207
memory_stat_show(struct seq_file * m,void * v)4208 int memory_stat_show(struct seq_file *m, void *v)
4209 {
4210 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4211 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4212 struct seq_buf s;
4213
4214 if (!buf)
4215 return -ENOMEM;
4216 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4217 memory_stat_format(memcg, &s);
4218 seq_puts(m, buf);
4219 kfree(buf);
4220 return 0;
4221 }
4222
4223 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4224 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4225 int item)
4226 {
4227 return lruvec_page_state(lruvec, item) *
4228 memcg_page_state_output_unit(item);
4229 }
4230
memory_numa_stat_show(struct seq_file * m,void * v)4231 static int memory_numa_stat_show(struct seq_file *m, void *v)
4232 {
4233 int i;
4234 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4235
4236 mem_cgroup_flush_stats(memcg);
4237
4238 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4239 int nid;
4240
4241 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4242 continue;
4243
4244 seq_printf(m, "%s", memory_stats[i].name);
4245 for_each_node_state(nid, N_MEMORY) {
4246 u64 size;
4247 struct lruvec *lruvec;
4248
4249 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4250 size = lruvec_page_state_output(lruvec,
4251 memory_stats[i].idx);
4252 seq_printf(m, " N%d=%llu", nid, size);
4253 }
4254 seq_putc(m, '\n');
4255 }
4256
4257 return 0;
4258 }
4259 #endif
4260
memory_oom_group_show(struct seq_file * m,void * v)4261 static int memory_oom_group_show(struct seq_file *m, void *v)
4262 {
4263 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4264
4265 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4266
4267 return 0;
4268 }
4269
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4270 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4271 char *buf, size_t nbytes, loff_t off)
4272 {
4273 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4274 int ret, oom_group;
4275
4276 buf = strstrip(buf);
4277 if (!buf)
4278 return -EINVAL;
4279
4280 ret = kstrtoint(buf, 0, &oom_group);
4281 if (ret)
4282 return ret;
4283
4284 if (oom_group != 0 && oom_group != 1)
4285 return -EINVAL;
4286
4287 WRITE_ONCE(memcg->oom_group, oom_group);
4288
4289 return nbytes;
4290 }
4291
4292 enum {
4293 MEMORY_RECLAIM_SWAPPINESS = 0,
4294 MEMORY_RECLAIM_NULL,
4295 };
4296
4297 static const match_table_t tokens = {
4298 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4299 { MEMORY_RECLAIM_NULL, NULL },
4300 };
4301
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4302 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4303 size_t nbytes, loff_t off)
4304 {
4305 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4306 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4307 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4308 int swappiness = -1;
4309 unsigned int reclaim_options;
4310 char *old_buf, *start;
4311 substring_t args[MAX_OPT_ARGS];
4312
4313 buf = strstrip(buf);
4314
4315 old_buf = buf;
4316 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4317 if (buf == old_buf)
4318 return -EINVAL;
4319
4320 buf = strstrip(buf);
4321
4322 while ((start = strsep(&buf, " ")) != NULL) {
4323 if (!strlen(start))
4324 continue;
4325 switch (match_token(start, tokens, args)) {
4326 case MEMORY_RECLAIM_SWAPPINESS:
4327 if (match_int(&args[0], &swappiness))
4328 return -EINVAL;
4329 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4330 return -EINVAL;
4331 break;
4332 default:
4333 return -EINVAL;
4334 }
4335 }
4336
4337 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4338 while (nr_reclaimed < nr_to_reclaim) {
4339 /* Will converge on zero, but reclaim enforces a minimum */
4340 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4341 unsigned long reclaimed;
4342
4343 if (signal_pending(current))
4344 return -EINTR;
4345
4346 /*
4347 * This is the final attempt, drain percpu lru caches in the
4348 * hope of introducing more evictable pages for
4349 * try_to_free_mem_cgroup_pages().
4350 */
4351 if (!nr_retries)
4352 lru_add_drain_all();
4353
4354 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4355 batch_size, GFP_KERNEL,
4356 reclaim_options,
4357 swappiness == -1 ? NULL : &swappiness);
4358
4359 if (!reclaimed && !nr_retries--)
4360 return -EAGAIN;
4361
4362 nr_reclaimed += reclaimed;
4363 }
4364
4365 return nbytes;
4366 }
4367
4368 static struct cftype memory_files[] = {
4369 {
4370 .name = "current",
4371 .flags = CFTYPE_NOT_ON_ROOT,
4372 .read_u64 = memory_current_read,
4373 },
4374 {
4375 .name = "peak",
4376 .flags = CFTYPE_NOT_ON_ROOT,
4377 .open = peak_open,
4378 .release = peak_release,
4379 .seq_show = memory_peak_show,
4380 .write = memory_peak_write,
4381 },
4382 {
4383 .name = "min",
4384 .flags = CFTYPE_NOT_ON_ROOT,
4385 .seq_show = memory_min_show,
4386 .write = memory_min_write,
4387 },
4388 {
4389 .name = "low",
4390 .flags = CFTYPE_NOT_ON_ROOT,
4391 .seq_show = memory_low_show,
4392 .write = memory_low_write,
4393 },
4394 {
4395 .name = "high",
4396 .flags = CFTYPE_NOT_ON_ROOT,
4397 .seq_show = memory_high_show,
4398 .write = memory_high_write,
4399 },
4400 {
4401 .name = "max",
4402 .flags = CFTYPE_NOT_ON_ROOT,
4403 .seq_show = memory_max_show,
4404 .write = memory_max_write,
4405 },
4406 {
4407 .name = "events",
4408 .flags = CFTYPE_NOT_ON_ROOT,
4409 .file_offset = offsetof(struct mem_cgroup, events_file),
4410 .seq_show = memory_events_show,
4411 },
4412 {
4413 .name = "events.local",
4414 .flags = CFTYPE_NOT_ON_ROOT,
4415 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4416 .seq_show = memory_events_local_show,
4417 },
4418 {
4419 .name = "stat",
4420 .seq_show = memory_stat_show,
4421 },
4422 #ifdef CONFIG_NUMA
4423 {
4424 .name = "numa_stat",
4425 .seq_show = memory_numa_stat_show,
4426 },
4427 #endif
4428 {
4429 .name = "oom.group",
4430 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4431 .seq_show = memory_oom_group_show,
4432 .write = memory_oom_group_write,
4433 },
4434 {
4435 .name = "reclaim",
4436 .flags = CFTYPE_NS_DELEGATABLE,
4437 .write = memory_reclaim,
4438 },
4439 { } /* terminate */
4440 };
4441
4442 struct cgroup_subsys memory_cgrp_subsys = {
4443 .css_alloc = mem_cgroup_css_alloc,
4444 .css_online = mem_cgroup_css_online,
4445 .css_offline = mem_cgroup_css_offline,
4446 .css_released = mem_cgroup_css_released,
4447 .css_free = mem_cgroup_css_free,
4448 .css_reset = mem_cgroup_css_reset,
4449 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4450 .attach = mem_cgroup_attach,
4451 .fork = mem_cgroup_fork,
4452 .exit = mem_cgroup_exit,
4453 .dfl_cftypes = memory_files,
4454 #ifdef CONFIG_MEMCG_V1
4455 .legacy_cftypes = mem_cgroup_legacy_files,
4456 #endif
4457 .early_init = 0,
4458 };
4459
4460 /**
4461 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4462 * @root: the top ancestor of the sub-tree being checked
4463 * @memcg: the memory cgroup to check
4464 *
4465 * WARNING: This function is not stateless! It can only be used as part
4466 * of a top-down tree iteration, not for isolated queries.
4467 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4468 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4469 struct mem_cgroup *memcg)
4470 {
4471 bool recursive_protection =
4472 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4473
4474 if (mem_cgroup_disabled())
4475 return;
4476
4477 if (!root)
4478 root = root_mem_cgroup;
4479
4480 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4481 }
4482
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4483 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4484 gfp_t gfp)
4485 {
4486 int ret;
4487
4488 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4489 if (ret)
4490 goto out;
4491
4492 css_get(&memcg->css);
4493 commit_charge(folio, memcg);
4494 memcg1_commit_charge(folio, memcg);
4495 out:
4496 return ret;
4497 }
4498
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4499 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4500 {
4501 struct mem_cgroup *memcg;
4502 int ret;
4503
4504 memcg = get_mem_cgroup_from_mm(mm);
4505 ret = charge_memcg(folio, memcg, gfp);
4506 css_put(&memcg->css);
4507
4508 return ret;
4509 }
4510
4511 /**
4512 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4513 * @folio: folio being charged
4514 * @gfp: reclaim mode
4515 *
4516 * This function is called when allocating a huge page folio, after the page has
4517 * already been obtained and charged to the appropriate hugetlb cgroup
4518 * controller (if it is enabled).
4519 *
4520 * Returns ENOMEM if the memcg is already full.
4521 * Returns 0 if either the charge was successful, or if we skip the charging.
4522 */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4523 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4524 {
4525 struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4526 int ret = 0;
4527
4528 /*
4529 * Even memcg does not account for hugetlb, we still want to update
4530 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4531 * charging the memcg.
4532 */
4533 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4534 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4535 goto out;
4536
4537 if (charge_memcg(folio, memcg, gfp))
4538 ret = -ENOMEM;
4539
4540 out:
4541 mem_cgroup_put(memcg);
4542 return ret;
4543 }
4544
4545 /**
4546 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4547 * @folio: folio to charge.
4548 * @mm: mm context of the victim
4549 * @gfp: reclaim mode
4550 * @entry: swap entry for which the folio is allocated
4551 *
4552 * This function charges a folio allocated for swapin. Please call this before
4553 * adding the folio to the swapcache.
4554 *
4555 * Returns 0 on success. Otherwise, an error code is returned.
4556 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4557 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4558 gfp_t gfp, swp_entry_t entry)
4559 {
4560 struct mem_cgroup *memcg;
4561 unsigned short id;
4562 int ret;
4563
4564 if (mem_cgroup_disabled())
4565 return 0;
4566
4567 id = lookup_swap_cgroup_id(entry);
4568 rcu_read_lock();
4569 memcg = mem_cgroup_from_id(id);
4570 if (!memcg || !css_tryget_online(&memcg->css))
4571 memcg = get_mem_cgroup_from_mm(mm);
4572 rcu_read_unlock();
4573
4574 ret = charge_memcg(folio, memcg, gfp);
4575
4576 css_put(&memcg->css);
4577 return ret;
4578 }
4579
4580 /*
4581 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4582 * @entry: the first swap entry for which the pages are charged
4583 * @nr_pages: number of pages which will be uncharged
4584 *
4585 * Call this function after successfully adding the charged page to swapcache.
4586 *
4587 * Note: This function assumes the page for which swap slot is being uncharged
4588 * is order 0 page.
4589 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)4590 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4591 {
4592 /*
4593 * Cgroup1's unified memory+swap counter has been charged with the
4594 * new swapcache page, finish the transfer by uncharging the swap
4595 * slot. The swap slot would also get uncharged when it dies, but
4596 * it can stick around indefinitely and we'd count the page twice
4597 * the entire time.
4598 *
4599 * Cgroup2 has separate resource counters for memory and swap,
4600 * so this is a non-issue here. Memory and swap charge lifetimes
4601 * correspond 1:1 to page and swap slot lifetimes: we charge the
4602 * page to memory here, and uncharge swap when the slot is freed.
4603 */
4604 if (do_memsw_account()) {
4605 /*
4606 * The swap entry might not get freed for a long time,
4607 * let's not wait for it. The page already received a
4608 * memory+swap charge, drop the swap entry duplicate.
4609 */
4610 mem_cgroup_uncharge_swap(entry, nr_pages);
4611 }
4612 }
4613
4614 struct uncharge_gather {
4615 struct mem_cgroup *memcg;
4616 unsigned long nr_memory;
4617 unsigned long pgpgout;
4618 unsigned long nr_kmem;
4619 int nid;
4620 };
4621
uncharge_gather_clear(struct uncharge_gather * ug)4622 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4623 {
4624 memset(ug, 0, sizeof(*ug));
4625 }
4626
uncharge_batch(const struct uncharge_gather * ug)4627 static void uncharge_batch(const struct uncharge_gather *ug)
4628 {
4629 if (ug->nr_memory) {
4630 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4631 if (do_memsw_account())
4632 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4633 if (ug->nr_kmem) {
4634 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4635 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4636 }
4637 memcg1_oom_recover(ug->memcg);
4638 }
4639
4640 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4641
4642 /* drop reference from uncharge_folio */
4643 css_put(&ug->memcg->css);
4644 }
4645
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4646 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4647 {
4648 long nr_pages;
4649 struct mem_cgroup *memcg;
4650 struct obj_cgroup *objcg;
4651
4652 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4653
4654 /*
4655 * Nobody should be changing or seriously looking at
4656 * folio memcg or objcg at this point, we have fully
4657 * exclusive access to the folio.
4658 */
4659 if (folio_memcg_kmem(folio)) {
4660 objcg = __folio_objcg(folio);
4661 /*
4662 * This get matches the put at the end of the function and
4663 * kmem pages do not hold memcg references anymore.
4664 */
4665 memcg = get_mem_cgroup_from_objcg(objcg);
4666 } else {
4667 memcg = __folio_memcg(folio);
4668 }
4669
4670 if (!memcg)
4671 return;
4672
4673 if (ug->memcg != memcg) {
4674 if (ug->memcg) {
4675 uncharge_batch(ug);
4676 uncharge_gather_clear(ug);
4677 }
4678 ug->memcg = memcg;
4679 ug->nid = folio_nid(folio);
4680
4681 /* pairs with css_put in uncharge_batch */
4682 css_get(&memcg->css);
4683 }
4684
4685 nr_pages = folio_nr_pages(folio);
4686
4687 if (folio_memcg_kmem(folio)) {
4688 ug->nr_memory += nr_pages;
4689 ug->nr_kmem += nr_pages;
4690
4691 folio->memcg_data = 0;
4692 obj_cgroup_put(objcg);
4693 } else {
4694 /* LRU pages aren't accounted at the root level */
4695 if (!mem_cgroup_is_root(memcg))
4696 ug->nr_memory += nr_pages;
4697 ug->pgpgout++;
4698
4699 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4700 folio->memcg_data = 0;
4701 }
4702
4703 css_put(&memcg->css);
4704 }
4705
__mem_cgroup_uncharge(struct folio * folio)4706 void __mem_cgroup_uncharge(struct folio *folio)
4707 {
4708 struct uncharge_gather ug;
4709
4710 /* Don't touch folio->lru of any random page, pre-check: */
4711 if (!folio_memcg_charged(folio))
4712 return;
4713
4714 uncharge_gather_clear(&ug);
4715 uncharge_folio(folio, &ug);
4716 uncharge_batch(&ug);
4717 }
4718
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4719 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4720 {
4721 struct uncharge_gather ug;
4722 unsigned int i;
4723
4724 uncharge_gather_clear(&ug);
4725 for (i = 0; i < folios->nr; i++)
4726 uncharge_folio(folios->folios[i], &ug);
4727 if (ug.memcg)
4728 uncharge_batch(&ug);
4729 }
4730
4731 /**
4732 * mem_cgroup_replace_folio - Charge a folio's replacement.
4733 * @old: Currently circulating folio.
4734 * @new: Replacement folio.
4735 *
4736 * Charge @new as a replacement folio for @old. @old will
4737 * be uncharged upon free.
4738 *
4739 * Both folios must be locked, @new->mapping must be set up.
4740 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4741 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4742 {
4743 struct mem_cgroup *memcg;
4744 long nr_pages = folio_nr_pages(new);
4745
4746 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4747 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4748 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4749 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4750
4751 if (mem_cgroup_disabled())
4752 return;
4753
4754 /* Page cache replacement: new folio already charged? */
4755 if (folio_memcg_charged(new))
4756 return;
4757
4758 memcg = folio_memcg(old);
4759 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4760 if (!memcg)
4761 return;
4762
4763 /* Force-charge the new page. The old one will be freed soon */
4764 if (!mem_cgroup_is_root(memcg)) {
4765 page_counter_charge(&memcg->memory, nr_pages);
4766 if (do_memsw_account())
4767 page_counter_charge(&memcg->memsw, nr_pages);
4768 }
4769
4770 css_get(&memcg->css);
4771 commit_charge(new, memcg);
4772 memcg1_commit_charge(new, memcg);
4773 }
4774
4775 /**
4776 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4777 * @old: Currently circulating folio.
4778 * @new: Replacement folio.
4779 *
4780 * Transfer the memcg data from the old folio to the new folio for migration.
4781 * The old folio's data info will be cleared. Note that the memory counters
4782 * will remain unchanged throughout the process.
4783 *
4784 * Both folios must be locked, @new->mapping must be set up.
4785 */
mem_cgroup_migrate(struct folio * old,struct folio * new)4786 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4787 {
4788 struct mem_cgroup *memcg;
4789
4790 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4791 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4792 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4793 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4794 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4795
4796 if (mem_cgroup_disabled())
4797 return;
4798
4799 memcg = folio_memcg(old);
4800 /*
4801 * Note that it is normal to see !memcg for a hugetlb folio.
4802 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4803 * was not selected.
4804 */
4805 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4806 if (!memcg)
4807 return;
4808
4809 /* Transfer the charge and the css ref */
4810 commit_charge(new, memcg);
4811
4812 /* Warning should never happen, so don't worry about refcount non-0 */
4813 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4814 old->memcg_data = 0;
4815 }
4816
4817 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4818 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4819
mem_cgroup_sk_alloc(struct sock * sk)4820 void mem_cgroup_sk_alloc(struct sock *sk)
4821 {
4822 struct mem_cgroup *memcg;
4823
4824 if (!mem_cgroup_sockets_enabled)
4825 return;
4826
4827 /* Do not associate the sock with unrelated interrupted task's memcg. */
4828 if (!in_task())
4829 return;
4830
4831 rcu_read_lock();
4832 memcg = mem_cgroup_from_task(current);
4833 if (mem_cgroup_is_root(memcg))
4834 goto out;
4835 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4836 goto out;
4837 if (css_tryget(&memcg->css))
4838 sk->sk_memcg = memcg;
4839 out:
4840 rcu_read_unlock();
4841 }
4842
mem_cgroup_sk_free(struct sock * sk)4843 void mem_cgroup_sk_free(struct sock *sk)
4844 {
4845 if (sk->sk_memcg)
4846 css_put(&sk->sk_memcg->css);
4847 }
4848
4849 /**
4850 * mem_cgroup_charge_skmem - charge socket memory
4851 * @memcg: memcg to charge
4852 * @nr_pages: number of pages to charge
4853 * @gfp_mask: reclaim mode
4854 *
4855 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4856 * @memcg's configured limit, %false if it doesn't.
4857 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)4858 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4859 gfp_t gfp_mask)
4860 {
4861 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4862 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4863
4864 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4865 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4866 return true;
4867 }
4868
4869 return false;
4870 }
4871
4872 /**
4873 * mem_cgroup_uncharge_skmem - uncharge socket memory
4874 * @memcg: memcg to uncharge
4875 * @nr_pages: number of pages to uncharge
4876 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)4877 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4878 {
4879 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4880 memcg1_uncharge_skmem(memcg, nr_pages);
4881 return;
4882 }
4883
4884 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4885
4886 refill_stock(memcg, nr_pages);
4887 }
4888
cgroup_memory(char * s)4889 static int __init cgroup_memory(char *s)
4890 {
4891 char *token;
4892
4893 while ((token = strsep(&s, ",")) != NULL) {
4894 if (!*token)
4895 continue;
4896 if (!strcmp(token, "nosocket"))
4897 cgroup_memory_nosocket = true;
4898 if (!strcmp(token, "nokmem"))
4899 cgroup_memory_nokmem = true;
4900 if (!strcmp(token, "nobpf"))
4901 cgroup_memory_nobpf = true;
4902 }
4903 return 1;
4904 }
4905 __setup("cgroup.memory=", cgroup_memory);
4906
4907 /*
4908 * subsys_initcall() for memory controller.
4909 *
4910 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4911 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4912 * basically everything that doesn't depend on a specific mem_cgroup structure
4913 * should be initialized from here.
4914 */
mem_cgroup_init(void)4915 static int __init mem_cgroup_init(void)
4916 {
4917 int cpu;
4918
4919 /*
4920 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4921 * used for per-memcg-per-cpu caching of per-node statistics. In order
4922 * to work fine, we should make sure that the overfill threshold can't
4923 * exceed S32_MAX / PAGE_SIZE.
4924 */
4925 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4926
4927 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4928 memcg_hotplug_cpu_dead);
4929
4930 for_each_possible_cpu(cpu)
4931 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4932 drain_local_stock);
4933
4934 return 0;
4935 }
4936 subsys_initcall(mem_cgroup_init);
4937
4938 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)4939 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4940 {
4941 while (!refcount_inc_not_zero(&memcg->id.ref)) {
4942 /*
4943 * The root cgroup cannot be destroyed, so it's refcount must
4944 * always be >= 1.
4945 */
4946 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4947 VM_BUG_ON(1);
4948 break;
4949 }
4950 memcg = parent_mem_cgroup(memcg);
4951 if (!memcg)
4952 memcg = root_mem_cgroup;
4953 }
4954 return memcg;
4955 }
4956
4957 /**
4958 * mem_cgroup_swapout - transfer a memsw charge to swap
4959 * @folio: folio whose memsw charge to transfer
4960 * @entry: swap entry to move the charge to
4961 *
4962 * Transfer the memsw charge of @folio to @entry.
4963 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)4964 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4965 {
4966 struct mem_cgroup *memcg, *swap_memcg;
4967 unsigned int nr_entries;
4968
4969 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4970 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4971
4972 if (mem_cgroup_disabled())
4973 return;
4974
4975 if (!do_memsw_account())
4976 return;
4977
4978 memcg = folio_memcg(folio);
4979
4980 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4981 if (!memcg)
4982 return;
4983
4984 /*
4985 * In case the memcg owning these pages has been offlined and doesn't
4986 * have an ID allocated to it anymore, charge the closest online
4987 * ancestor for the swap instead and transfer the memory+swap charge.
4988 */
4989 swap_memcg = mem_cgroup_id_get_online(memcg);
4990 nr_entries = folio_nr_pages(folio);
4991 /* Get references for the tail pages, too */
4992 if (nr_entries > 1)
4993 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
4994 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
4995
4996 swap_cgroup_record(folio, entry);
4997
4998 folio_unqueue_deferred_split(folio);
4999 folio->memcg_data = 0;
5000
5001 if (!mem_cgroup_is_root(memcg))
5002 page_counter_uncharge(&memcg->memory, nr_entries);
5003
5004 if (memcg != swap_memcg) {
5005 if (!mem_cgroup_is_root(swap_memcg))
5006 page_counter_charge(&swap_memcg->memsw, nr_entries);
5007 page_counter_uncharge(&memcg->memsw, nr_entries);
5008 }
5009
5010 memcg1_swapout(folio, memcg);
5011 css_put(&memcg->css);
5012 }
5013
5014 /**
5015 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5016 * @folio: folio being added to swap
5017 * @entry: swap entry to charge
5018 *
5019 * Try to charge @folio's memcg for the swap space at @entry.
5020 *
5021 * Returns 0 on success, -ENOMEM on failure.
5022 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5023 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5024 {
5025 unsigned int nr_pages = folio_nr_pages(folio);
5026 struct page_counter *counter;
5027 struct mem_cgroup *memcg;
5028
5029 if (do_memsw_account())
5030 return 0;
5031
5032 memcg = folio_memcg(folio);
5033
5034 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5035 if (!memcg)
5036 return 0;
5037
5038 if (!entry.val) {
5039 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5040 return 0;
5041 }
5042
5043 memcg = mem_cgroup_id_get_online(memcg);
5044
5045 if (!mem_cgroup_is_root(memcg) &&
5046 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5047 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5048 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5049 mem_cgroup_id_put(memcg);
5050 return -ENOMEM;
5051 }
5052
5053 /* Get references for the tail pages, too */
5054 if (nr_pages > 1)
5055 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5056 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5057
5058 swap_cgroup_record(folio, entry);
5059
5060 return 0;
5061 }
5062
5063 /**
5064 * __mem_cgroup_uncharge_swap - uncharge swap space
5065 * @entry: swap entry to uncharge
5066 * @nr_pages: the amount of swap space to uncharge
5067 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5068 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5069 {
5070 struct mem_cgroup *memcg;
5071 unsigned short id;
5072
5073 id = swap_cgroup_clear(entry, nr_pages);
5074 rcu_read_lock();
5075 memcg = mem_cgroup_from_id(id);
5076 if (memcg) {
5077 if (!mem_cgroup_is_root(memcg)) {
5078 if (do_memsw_account())
5079 page_counter_uncharge(&memcg->memsw, nr_pages);
5080 else
5081 page_counter_uncharge(&memcg->swap, nr_pages);
5082 }
5083 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5084 mem_cgroup_id_put_many(memcg, nr_pages);
5085 }
5086 rcu_read_unlock();
5087 }
5088
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5089 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5090 {
5091 long nr_swap_pages = get_nr_swap_pages();
5092
5093 if (mem_cgroup_disabled() || do_memsw_account())
5094 return nr_swap_pages;
5095 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5096 nr_swap_pages = min_t(long, nr_swap_pages,
5097 READ_ONCE(memcg->swap.max) -
5098 page_counter_read(&memcg->swap));
5099 return nr_swap_pages;
5100 }
5101
mem_cgroup_swap_full(struct folio * folio)5102 bool mem_cgroup_swap_full(struct folio *folio)
5103 {
5104 struct mem_cgroup *memcg;
5105
5106 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5107
5108 if (vm_swap_full())
5109 return true;
5110 if (do_memsw_account())
5111 return false;
5112
5113 memcg = folio_memcg(folio);
5114 if (!memcg)
5115 return false;
5116
5117 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5118 unsigned long usage = page_counter_read(&memcg->swap);
5119
5120 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5121 usage * 2 >= READ_ONCE(memcg->swap.max))
5122 return true;
5123 }
5124
5125 return false;
5126 }
5127
setup_swap_account(char * s)5128 static int __init setup_swap_account(char *s)
5129 {
5130 bool res;
5131
5132 if (!kstrtobool(s, &res) && !res)
5133 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5134 "in favor of configuring swap control via cgroupfs. "
5135 "Please report your usecase to linux-mm@kvack.org if you "
5136 "depend on this functionality.\n");
5137 return 1;
5138 }
5139 __setup("swapaccount=", setup_swap_account);
5140
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5141 static u64 swap_current_read(struct cgroup_subsys_state *css,
5142 struct cftype *cft)
5143 {
5144 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5145
5146 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5147 }
5148
swap_peak_show(struct seq_file * sf,void * v)5149 static int swap_peak_show(struct seq_file *sf, void *v)
5150 {
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5152
5153 return peak_show(sf, v, &memcg->swap);
5154 }
5155
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5156 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5157 size_t nbytes, loff_t off)
5158 {
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5160
5161 return peak_write(of, buf, nbytes, off, &memcg->swap,
5162 &memcg->swap_peaks);
5163 }
5164
swap_high_show(struct seq_file * m,void * v)5165 static int swap_high_show(struct seq_file *m, void *v)
5166 {
5167 return seq_puts_memcg_tunable(m,
5168 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5169 }
5170
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5171 static ssize_t swap_high_write(struct kernfs_open_file *of,
5172 char *buf, size_t nbytes, loff_t off)
5173 {
5174 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5175 unsigned long high;
5176 int err;
5177
5178 buf = strstrip(buf);
5179 err = page_counter_memparse(buf, "max", &high);
5180 if (err)
5181 return err;
5182
5183 page_counter_set_high(&memcg->swap, high);
5184
5185 return nbytes;
5186 }
5187
swap_max_show(struct seq_file * m,void * v)5188 static int swap_max_show(struct seq_file *m, void *v)
5189 {
5190 return seq_puts_memcg_tunable(m,
5191 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5192 }
5193
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5194 static ssize_t swap_max_write(struct kernfs_open_file *of,
5195 char *buf, size_t nbytes, loff_t off)
5196 {
5197 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5198 unsigned long max;
5199 int err;
5200
5201 buf = strstrip(buf);
5202 err = page_counter_memparse(buf, "max", &max);
5203 if (err)
5204 return err;
5205
5206 xchg(&memcg->swap.max, max);
5207
5208 return nbytes;
5209 }
5210
swap_events_show(struct seq_file * m,void * v)5211 static int swap_events_show(struct seq_file *m, void *v)
5212 {
5213 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5214
5215 seq_printf(m, "high %lu\n",
5216 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5217 seq_printf(m, "max %lu\n",
5218 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5219 seq_printf(m, "fail %lu\n",
5220 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5221
5222 return 0;
5223 }
5224
5225 static struct cftype swap_files[] = {
5226 {
5227 .name = "swap.current",
5228 .flags = CFTYPE_NOT_ON_ROOT,
5229 .read_u64 = swap_current_read,
5230 },
5231 {
5232 .name = "swap.high",
5233 .flags = CFTYPE_NOT_ON_ROOT,
5234 .seq_show = swap_high_show,
5235 .write = swap_high_write,
5236 },
5237 {
5238 .name = "swap.max",
5239 .flags = CFTYPE_NOT_ON_ROOT,
5240 .seq_show = swap_max_show,
5241 .write = swap_max_write,
5242 },
5243 {
5244 .name = "swap.peak",
5245 .flags = CFTYPE_NOT_ON_ROOT,
5246 .open = peak_open,
5247 .release = peak_release,
5248 .seq_show = swap_peak_show,
5249 .write = swap_peak_write,
5250 },
5251 {
5252 .name = "swap.events",
5253 .flags = CFTYPE_NOT_ON_ROOT,
5254 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5255 .seq_show = swap_events_show,
5256 },
5257 { } /* terminate */
5258 };
5259
5260 #ifdef CONFIG_ZSWAP
5261 /**
5262 * obj_cgroup_may_zswap - check if this cgroup can zswap
5263 * @objcg: the object cgroup
5264 *
5265 * Check if the hierarchical zswap limit has been reached.
5266 *
5267 * This doesn't check for specific headroom, and it is not atomic
5268 * either. But with zswap, the size of the allocation is only known
5269 * once compression has occurred, and this optimistic pre-check avoids
5270 * spending cycles on compression when there is already no room left
5271 * or zswap is disabled altogether somewhere in the hierarchy.
5272 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5273 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5274 {
5275 struct mem_cgroup *memcg, *original_memcg;
5276 bool ret = true;
5277
5278 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5279 return true;
5280
5281 original_memcg = get_mem_cgroup_from_objcg(objcg);
5282 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5283 memcg = parent_mem_cgroup(memcg)) {
5284 unsigned long max = READ_ONCE(memcg->zswap_max);
5285 unsigned long pages;
5286
5287 if (max == PAGE_COUNTER_MAX)
5288 continue;
5289 if (max == 0) {
5290 ret = false;
5291 break;
5292 }
5293
5294 /* Force flush to get accurate stats for charging */
5295 __mem_cgroup_flush_stats(memcg, true);
5296 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5297 if (pages < max)
5298 continue;
5299 ret = false;
5300 break;
5301 }
5302 mem_cgroup_put(original_memcg);
5303 return ret;
5304 }
5305
5306 /**
5307 * obj_cgroup_charge_zswap - charge compression backend memory
5308 * @objcg: the object cgroup
5309 * @size: size of compressed object
5310 *
5311 * This forces the charge after obj_cgroup_may_zswap() allowed
5312 * compression and storage in zwap for this cgroup to go ahead.
5313 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5314 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5315 {
5316 struct mem_cgroup *memcg;
5317
5318 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5319 return;
5320
5321 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5322
5323 /* PF_MEMALLOC context, charging must succeed */
5324 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5325 VM_WARN_ON_ONCE(1);
5326
5327 rcu_read_lock();
5328 memcg = obj_cgroup_memcg(objcg);
5329 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5330 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5331 rcu_read_unlock();
5332 }
5333
5334 /**
5335 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5336 * @objcg: the object cgroup
5337 * @size: size of compressed object
5338 *
5339 * Uncharges zswap memory on page in.
5340 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5341 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5342 {
5343 struct mem_cgroup *memcg;
5344
5345 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5346 return;
5347
5348 obj_cgroup_uncharge(objcg, size);
5349
5350 rcu_read_lock();
5351 memcg = obj_cgroup_memcg(objcg);
5352 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5353 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5354 rcu_read_unlock();
5355 }
5356
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5357 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5358 {
5359 /* if zswap is disabled, do not block pages going to the swapping device */
5360 if (!zswap_is_enabled())
5361 return true;
5362
5363 for (; memcg; memcg = parent_mem_cgroup(memcg))
5364 if (!READ_ONCE(memcg->zswap_writeback))
5365 return false;
5366
5367 return true;
5368 }
5369
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5370 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5371 struct cftype *cft)
5372 {
5373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5374
5375 mem_cgroup_flush_stats(memcg);
5376 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5377 }
5378
zswap_max_show(struct seq_file * m,void * v)5379 static int zswap_max_show(struct seq_file *m, void *v)
5380 {
5381 return seq_puts_memcg_tunable(m,
5382 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5383 }
5384
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5385 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5386 char *buf, size_t nbytes, loff_t off)
5387 {
5388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5389 unsigned long max;
5390 int err;
5391
5392 buf = strstrip(buf);
5393 err = page_counter_memparse(buf, "max", &max);
5394 if (err)
5395 return err;
5396
5397 xchg(&memcg->zswap_max, max);
5398
5399 return nbytes;
5400 }
5401
zswap_writeback_show(struct seq_file * m,void * v)5402 static int zswap_writeback_show(struct seq_file *m, void *v)
5403 {
5404 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5405
5406 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5407 return 0;
5408 }
5409
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5410 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5411 char *buf, size_t nbytes, loff_t off)
5412 {
5413 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5414 int zswap_writeback;
5415 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5416
5417 if (parse_ret)
5418 return parse_ret;
5419
5420 if (zswap_writeback != 0 && zswap_writeback != 1)
5421 return -EINVAL;
5422
5423 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5424 return nbytes;
5425 }
5426
5427 static struct cftype zswap_files[] = {
5428 {
5429 .name = "zswap.current",
5430 .flags = CFTYPE_NOT_ON_ROOT,
5431 .read_u64 = zswap_current_read,
5432 },
5433 {
5434 .name = "zswap.max",
5435 .flags = CFTYPE_NOT_ON_ROOT,
5436 .seq_show = zswap_max_show,
5437 .write = zswap_max_write,
5438 },
5439 {
5440 .name = "zswap.writeback",
5441 .seq_show = zswap_writeback_show,
5442 .write = zswap_writeback_write,
5443 },
5444 { } /* terminate */
5445 };
5446 #endif /* CONFIG_ZSWAP */
5447
mem_cgroup_swap_init(void)5448 static int __init mem_cgroup_swap_init(void)
5449 {
5450 if (mem_cgroup_disabled())
5451 return 0;
5452
5453 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5454 #ifdef CONFIG_MEMCG_V1
5455 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5456 #endif
5457 #ifdef CONFIG_ZSWAP
5458 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5459 #endif
5460 return 0;
5461 }
5462 subsys_initcall(mem_cgroup_swap_init);
5463
5464 #endif /* CONFIG_SWAP */
5465