xref: /linux/kernel/time/clocksource.c (revision 3a0562d733b19d5f10ebf7643dab0ab1a4fd8cf7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 static void clocksource_enqueue(struct clocksource *cs);
24 
cycles_to_nsec_safe(struct clocksource * cs,u64 start,u64 end)25 static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
26 {
27 	u64 delta = clocksource_delta(end, start, cs->mask, cs->max_raw_delta);
28 
29 	if (likely(delta < cs->max_cycles))
30 		return clocksource_cyc2ns(delta, cs->mult, cs->shift);
31 
32 	return mul_u64_u32_shr(delta, cs->mult, cs->shift);
33 }
34 
35 /**
36  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
37  * @mult:	pointer to mult variable
38  * @shift:	pointer to shift variable
39  * @from:	frequency to convert from
40  * @to:		frequency to convert to
41  * @maxsec:	guaranteed runtime conversion range in seconds
42  *
43  * The function evaluates the shift/mult pair for the scaled math
44  * operations of clocksources and clockevents.
45  *
46  * @to and @from are frequency values in HZ. For clock sources @to is
47  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
48  * event @to is the counter frequency and @from is NSEC_PER_SEC.
49  *
50  * The @maxsec conversion range argument controls the time frame in
51  * seconds which must be covered by the runtime conversion with the
52  * calculated mult and shift factors. This guarantees that no 64bit
53  * overflow happens when the input value of the conversion is
54  * multiplied with the calculated mult factor. Larger ranges may
55  * reduce the conversion accuracy by choosing smaller mult and shift
56  * factors.
57  */
58 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)59 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
60 {
61 	u64 tmp;
62 	u32 sft, sftacc= 32;
63 
64 	/*
65 	 * Calculate the shift factor which is limiting the conversion
66 	 * range:
67 	 */
68 	tmp = ((u64)maxsec * from) >> 32;
69 	while (tmp) {
70 		tmp >>=1;
71 		sftacc--;
72 	}
73 
74 	/*
75 	 * Find the conversion shift/mult pair which has the best
76 	 * accuracy and fits the maxsec conversion range:
77 	 */
78 	for (sft = 32; sft > 0; sft--) {
79 		tmp = (u64) to << sft;
80 		tmp += from / 2;
81 		do_div(tmp, from);
82 		if ((tmp >> sftacc) == 0)
83 			break;
84 	}
85 	*mult = tmp;
86 	*shift = sft;
87 }
88 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
89 
90 /*[Clocksource internal variables]---------
91  * curr_clocksource:
92  *	currently selected clocksource.
93  * suspend_clocksource:
94  *	used to calculate the suspend time.
95  * clocksource_list:
96  *	linked list with the registered clocksources
97  * clocksource_mutex:
98  *	protects manipulations to curr_clocksource and the clocksource_list
99  * override_name:
100  *	Name of the user-specified clocksource.
101  */
102 static struct clocksource *curr_clocksource;
103 static struct clocksource *suspend_clocksource;
104 static LIST_HEAD(clocksource_list);
105 static DEFINE_MUTEX(clocksource_mutex);
106 static char override_name[CS_NAME_LEN];
107 static int finished_booting;
108 static u64 suspend_start;
109 
110 /*
111  * Interval: 0.5sec.
112  */
113 #define WATCHDOG_INTERVAL (HZ >> 1)
114 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
115 
116 /*
117  * Threshold: 0.0312s, when doubled: 0.0625s.
118  */
119 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
120 
121 /*
122  * Maximum permissible delay between two readouts of the watchdog
123  * clocksource surrounding a read of the clocksource being validated.
124  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
125  * a lower bound for cs->uncertainty_margin values when registering clocks.
126  *
127  * The default of 500 parts per million is based on NTP's limits.
128  * If a clocksource is good enough for NTP, it is good enough for us!
129  *
130  * In other words, by default, even if a clocksource is extremely
131  * precise (for example, with a sub-nanosecond period), the maximum
132  * permissible skew between the clocksource watchdog and the clocksource
133  * under test is not permitted to go below the 500ppm minimum defined
134  * by MAX_SKEW_USEC.  This 500ppm minimum may be overridden using the
135  * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option.
136  */
137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
138 #define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
139 #else
140 #define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
141 #endif
142 
143 /*
144  * Default for maximum permissible skew when cs->uncertainty_margin is
145  * not specified, and the lower bound even when cs->uncertainty_margin
146  * is specified.  This is also the default that is used when registering
147  * clocks with unspecifed cs->uncertainty_margin, so this macro is used
148  * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels.
149  */
150 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
151 
152 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
153 static void clocksource_watchdog_work(struct work_struct *work);
154 static void clocksource_select(void);
155 
156 static LIST_HEAD(watchdog_list);
157 static struct clocksource *watchdog;
158 static struct timer_list watchdog_timer;
159 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
160 static DEFINE_SPINLOCK(watchdog_lock);
161 static int watchdog_running;
162 static atomic_t watchdog_reset_pending;
163 static int64_t watchdog_max_interval;
164 
clocksource_watchdog_lock(unsigned long * flags)165 static inline void clocksource_watchdog_lock(unsigned long *flags)
166 {
167 	spin_lock_irqsave(&watchdog_lock, *flags);
168 }
169 
clocksource_watchdog_unlock(unsigned long * flags)170 static inline void clocksource_watchdog_unlock(unsigned long *flags)
171 {
172 	spin_unlock_irqrestore(&watchdog_lock, *flags);
173 }
174 
175 static int clocksource_watchdog_kthread(void *data);
176 
clocksource_watchdog_work(struct work_struct * work)177 static void clocksource_watchdog_work(struct work_struct *work)
178 {
179 	/*
180 	 * We cannot directly run clocksource_watchdog_kthread() here, because
181 	 * clocksource_select() calls timekeeping_notify() which uses
182 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
183 	 * lock inversions wrt CPU hotplug.
184 	 *
185 	 * Also, we only ever run this work once or twice during the lifetime
186 	 * of the kernel, so there is no point in creating a more permanent
187 	 * kthread for this.
188 	 *
189 	 * If kthread_run fails the next watchdog scan over the
190 	 * watchdog_list will find the unstable clock again.
191 	 */
192 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
193 }
194 
clocksource_change_rating(struct clocksource * cs,int rating)195 static void clocksource_change_rating(struct clocksource *cs, int rating)
196 {
197 	list_del(&cs->list);
198 	cs->rating = rating;
199 	clocksource_enqueue(cs);
200 }
201 
__clocksource_unstable(struct clocksource * cs)202 static void __clocksource_unstable(struct clocksource *cs)
203 {
204 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
205 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
206 
207 	/*
208 	 * If the clocksource is registered clocksource_watchdog_kthread() will
209 	 * re-rate and re-select.
210 	 */
211 	if (list_empty(&cs->list)) {
212 		cs->rating = 0;
213 		return;
214 	}
215 
216 	if (cs->mark_unstable)
217 		cs->mark_unstable(cs);
218 
219 	/* kick clocksource_watchdog_kthread() */
220 	if (finished_booting)
221 		schedule_work(&watchdog_work);
222 }
223 
224 /**
225  * clocksource_mark_unstable - mark clocksource unstable via watchdog
226  * @cs:		clocksource to be marked unstable
227  *
228  * This function is called by the x86 TSC code to mark clocksources as unstable;
229  * it defers demotion and re-selection to a kthread.
230  */
clocksource_mark_unstable(struct clocksource * cs)231 void clocksource_mark_unstable(struct clocksource *cs)
232 {
233 	unsigned long flags;
234 
235 	spin_lock_irqsave(&watchdog_lock, flags);
236 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
237 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
238 			list_add(&cs->wd_list, &watchdog_list);
239 		__clocksource_unstable(cs);
240 	}
241 	spin_unlock_irqrestore(&watchdog_lock, flags);
242 }
243 
244 static int verify_n_cpus = 8;
245 module_param(verify_n_cpus, int, 0644);
246 
247 enum wd_read_status {
248 	WD_READ_SUCCESS,
249 	WD_READ_UNSTABLE,
250 	WD_READ_SKIP
251 };
252 
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)253 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
254 {
255 	int64_t md = 2 * watchdog->uncertainty_margin;
256 	unsigned int nretries, max_retries;
257 	int64_t wd_delay, wd_seq_delay;
258 	u64 wd_end, wd_end2;
259 
260 	max_retries = clocksource_get_max_watchdog_retry();
261 	for (nretries = 0; nretries <= max_retries; nretries++) {
262 		local_irq_disable();
263 		*wdnow = watchdog->read(watchdog);
264 		*csnow = cs->read(cs);
265 		wd_end = watchdog->read(watchdog);
266 		wd_end2 = watchdog->read(watchdog);
267 		local_irq_enable();
268 
269 		wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
270 		if (wd_delay <= md + cs->uncertainty_margin) {
271 			if (nretries > 1 && nretries >= max_retries) {
272 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
273 					smp_processor_id(), watchdog->name, nretries);
274 			}
275 			return WD_READ_SUCCESS;
276 		}
277 
278 		/*
279 		 * Now compute delay in consecutive watchdog read to see if
280 		 * there is too much external interferences that cause
281 		 * significant delay in reading both clocksource and watchdog.
282 		 *
283 		 * If consecutive WD read-back delay > md, report
284 		 * system busy, reinit the watchdog and skip the current
285 		 * watchdog test.
286 		 */
287 		wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
288 		if (wd_seq_delay > md)
289 			goto skip_test;
290 	}
291 
292 	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
293 		smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
294 	return WD_READ_UNSTABLE;
295 
296 skip_test:
297 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
298 		smp_processor_id(), watchdog->name, wd_seq_delay);
299 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
300 		cs->name, wd_delay);
301 	return WD_READ_SKIP;
302 }
303 
304 static u64 csnow_mid;
305 static cpumask_t cpus_ahead;
306 static cpumask_t cpus_behind;
307 static cpumask_t cpus_chosen;
308 
clocksource_verify_choose_cpus(void)309 static void clocksource_verify_choose_cpus(void)
310 {
311 	int cpu, i, n = verify_n_cpus;
312 
313 	if (n < 0) {
314 		/* Check all of the CPUs. */
315 		cpumask_copy(&cpus_chosen, cpu_online_mask);
316 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
317 		return;
318 	}
319 
320 	/* If no checking desired, or no other CPU to check, leave. */
321 	cpumask_clear(&cpus_chosen);
322 	if (n == 0 || num_online_cpus() <= 1)
323 		return;
324 
325 	/* Make sure to select at least one CPU other than the current CPU. */
326 	cpu = cpumask_first(cpu_online_mask);
327 	if (cpu == smp_processor_id())
328 		cpu = cpumask_next(cpu, cpu_online_mask);
329 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
330 		return;
331 	cpumask_set_cpu(cpu, &cpus_chosen);
332 
333 	/* Force a sane value for the boot parameter. */
334 	if (n > nr_cpu_ids)
335 		n = nr_cpu_ids;
336 
337 	/*
338 	 * Randomly select the specified number of CPUs.  If the same
339 	 * CPU is selected multiple times, that CPU is checked only once,
340 	 * and no replacement CPU is selected.  This gracefully handles
341 	 * situations where verify_n_cpus is greater than the number of
342 	 * CPUs that are currently online.
343 	 */
344 	for (i = 1; i < n; i++) {
345 		cpu = get_random_u32_below(nr_cpu_ids);
346 		cpu = cpumask_next(cpu - 1, cpu_online_mask);
347 		if (cpu >= nr_cpu_ids)
348 			cpu = cpumask_first(cpu_online_mask);
349 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
350 			cpumask_set_cpu(cpu, &cpus_chosen);
351 	}
352 
353 	/* Don't verify ourselves. */
354 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
355 }
356 
clocksource_verify_one_cpu(void * csin)357 static void clocksource_verify_one_cpu(void *csin)
358 {
359 	struct clocksource *cs = (struct clocksource *)csin;
360 
361 	csnow_mid = cs->read(cs);
362 }
363 
clocksource_verify_percpu(struct clocksource * cs)364 void clocksource_verify_percpu(struct clocksource *cs)
365 {
366 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
367 	u64 csnow_begin, csnow_end;
368 	int cpu, testcpu;
369 	s64 delta;
370 
371 	if (verify_n_cpus == 0)
372 		return;
373 	cpumask_clear(&cpus_ahead);
374 	cpumask_clear(&cpus_behind);
375 	cpus_read_lock();
376 	migrate_disable();
377 	clocksource_verify_choose_cpus();
378 	if (cpumask_empty(&cpus_chosen)) {
379 		migrate_enable();
380 		cpus_read_unlock();
381 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
382 		return;
383 	}
384 	testcpu = smp_processor_id();
385 	pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n",
386 		cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
387 	preempt_disable();
388 	for_each_cpu(cpu, &cpus_chosen) {
389 		if (cpu == testcpu)
390 			continue;
391 		csnow_begin = cs->read(cs);
392 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
393 		csnow_end = cs->read(cs);
394 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
395 		if (delta < 0)
396 			cpumask_set_cpu(cpu, &cpus_behind);
397 		delta = (csnow_end - csnow_mid) & cs->mask;
398 		if (delta < 0)
399 			cpumask_set_cpu(cpu, &cpus_ahead);
400 		cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
401 		if (cs_nsec > cs_nsec_max)
402 			cs_nsec_max = cs_nsec;
403 		if (cs_nsec < cs_nsec_min)
404 			cs_nsec_min = cs_nsec;
405 	}
406 	preempt_enable();
407 	migrate_enable();
408 	cpus_read_unlock();
409 	if (!cpumask_empty(&cpus_ahead))
410 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
411 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
412 	if (!cpumask_empty(&cpus_behind))
413 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
414 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
415 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
416 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
417 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
418 }
419 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
420 
clocksource_reset_watchdog(void)421 static inline void clocksource_reset_watchdog(void)
422 {
423 	struct clocksource *cs;
424 
425 	list_for_each_entry(cs, &watchdog_list, wd_list)
426 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
427 }
428 
429 
clocksource_watchdog(struct timer_list * unused)430 static void clocksource_watchdog(struct timer_list *unused)
431 {
432 	int64_t wd_nsec, cs_nsec, interval;
433 	u64 csnow, wdnow, cslast, wdlast;
434 	int next_cpu, reset_pending;
435 	struct clocksource *cs;
436 	enum wd_read_status read_ret;
437 	unsigned long extra_wait = 0;
438 	u32 md;
439 
440 	spin_lock(&watchdog_lock);
441 	if (!watchdog_running)
442 		goto out;
443 
444 	reset_pending = atomic_read(&watchdog_reset_pending);
445 
446 	list_for_each_entry(cs, &watchdog_list, wd_list) {
447 
448 		/* Clocksource already marked unstable? */
449 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
450 			if (finished_booting)
451 				schedule_work(&watchdog_work);
452 			continue;
453 		}
454 
455 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
456 
457 		if (read_ret == WD_READ_UNSTABLE) {
458 			/* Clock readout unreliable, so give it up. */
459 			__clocksource_unstable(cs);
460 			continue;
461 		}
462 
463 		/*
464 		 * When WD_READ_SKIP is returned, it means the system is likely
465 		 * under very heavy load, where the latency of reading
466 		 * watchdog/clocksource is very big, and affect the accuracy of
467 		 * watchdog check. So give system some space and suspend the
468 		 * watchdog check for 5 minutes.
469 		 */
470 		if (read_ret == WD_READ_SKIP) {
471 			/*
472 			 * As the watchdog timer will be suspended, and
473 			 * cs->last could keep unchanged for 5 minutes, reset
474 			 * the counters.
475 			 */
476 			clocksource_reset_watchdog();
477 			extra_wait = HZ * 300;
478 			break;
479 		}
480 
481 		/* Clocksource initialized ? */
482 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
483 		    atomic_read(&watchdog_reset_pending)) {
484 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
485 			cs->wd_last = wdnow;
486 			cs->cs_last = csnow;
487 			continue;
488 		}
489 
490 		wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
491 		cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
492 		wdlast = cs->wd_last; /* save these in case we print them */
493 		cslast = cs->cs_last;
494 		cs->cs_last = csnow;
495 		cs->wd_last = wdnow;
496 
497 		if (atomic_read(&watchdog_reset_pending))
498 			continue;
499 
500 		/*
501 		 * The processing of timer softirqs can get delayed (usually
502 		 * on account of ksoftirqd not getting to run in a timely
503 		 * manner), which causes the watchdog interval to stretch.
504 		 * Skew detection may fail for longer watchdog intervals
505 		 * on account of fixed margins being used.
506 		 * Some clocksources, e.g. acpi_pm, cannot tolerate
507 		 * watchdog intervals longer than a few seconds.
508 		 */
509 		interval = max(cs_nsec, wd_nsec);
510 		if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
511 			if (system_state > SYSTEM_SCHEDULING &&
512 			    interval > 2 * watchdog_max_interval) {
513 				watchdog_max_interval = interval;
514 				pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
515 					cs_nsec, wd_nsec);
516 			}
517 			watchdog_timer.expires = jiffies;
518 			continue;
519 		}
520 
521 		/* Check the deviation from the watchdog clocksource. */
522 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
523 		if (abs(cs_nsec - wd_nsec) > md) {
524 			s64 cs_wd_msec;
525 			s64 wd_msec;
526 			u32 wd_rem;
527 
528 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
529 				smp_processor_id(), cs->name);
530 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
531 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
532 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
533 				cs->name, cs_nsec, csnow, cslast, cs->mask);
534 			cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
535 			wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
536 			pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
537 				cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
538 			if (curr_clocksource == cs)
539 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
540 			else if (curr_clocksource)
541 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
542 			else
543 				pr_warn("                      No current clocksource.\n");
544 			__clocksource_unstable(cs);
545 			continue;
546 		}
547 
548 		if (cs == curr_clocksource && cs->tick_stable)
549 			cs->tick_stable(cs);
550 
551 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
552 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
553 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
554 			/* Mark it valid for high-res. */
555 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
556 
557 			/*
558 			 * clocksource_done_booting() will sort it if
559 			 * finished_booting is not set yet.
560 			 */
561 			if (!finished_booting)
562 				continue;
563 
564 			/*
565 			 * If this is not the current clocksource let
566 			 * the watchdog thread reselect it. Due to the
567 			 * change to high res this clocksource might
568 			 * be preferred now. If it is the current
569 			 * clocksource let the tick code know about
570 			 * that change.
571 			 */
572 			if (cs != curr_clocksource) {
573 				cs->flags |= CLOCK_SOURCE_RESELECT;
574 				schedule_work(&watchdog_work);
575 			} else {
576 				tick_clock_notify();
577 			}
578 		}
579 	}
580 
581 	/*
582 	 * We only clear the watchdog_reset_pending, when we did a
583 	 * full cycle through all clocksources.
584 	 */
585 	if (reset_pending)
586 		atomic_dec(&watchdog_reset_pending);
587 
588 	/*
589 	 * Cycle through CPUs to check if the CPUs stay synchronized
590 	 * to each other.
591 	 */
592 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
593 	if (next_cpu >= nr_cpu_ids)
594 		next_cpu = cpumask_first(cpu_online_mask);
595 
596 	/*
597 	 * Arm timer if not already pending: could race with concurrent
598 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
599 	 */
600 	if (!timer_pending(&watchdog_timer)) {
601 		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
602 		add_timer_on(&watchdog_timer, next_cpu);
603 	}
604 out:
605 	spin_unlock(&watchdog_lock);
606 }
607 
clocksource_start_watchdog(void)608 static inline void clocksource_start_watchdog(void)
609 {
610 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
611 		return;
612 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
613 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
614 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
615 	watchdog_running = 1;
616 }
617 
clocksource_stop_watchdog(void)618 static inline void clocksource_stop_watchdog(void)
619 {
620 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
621 		return;
622 	del_timer(&watchdog_timer);
623 	watchdog_running = 0;
624 }
625 
clocksource_resume_watchdog(void)626 static void clocksource_resume_watchdog(void)
627 {
628 	atomic_inc(&watchdog_reset_pending);
629 }
630 
clocksource_enqueue_watchdog(struct clocksource * cs)631 static void clocksource_enqueue_watchdog(struct clocksource *cs)
632 {
633 	INIT_LIST_HEAD(&cs->wd_list);
634 
635 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
636 		/* cs is a clocksource to be watched. */
637 		list_add(&cs->wd_list, &watchdog_list);
638 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
639 	} else {
640 		/* cs is a watchdog. */
641 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
642 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
643 	}
644 }
645 
clocksource_select_watchdog(bool fallback)646 static void clocksource_select_watchdog(bool fallback)
647 {
648 	struct clocksource *cs, *old_wd;
649 	unsigned long flags;
650 
651 	spin_lock_irqsave(&watchdog_lock, flags);
652 	/* save current watchdog */
653 	old_wd = watchdog;
654 	if (fallback)
655 		watchdog = NULL;
656 
657 	list_for_each_entry(cs, &clocksource_list, list) {
658 		/* cs is a clocksource to be watched. */
659 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
660 			continue;
661 
662 		/* Skip current if we were requested for a fallback. */
663 		if (fallback && cs == old_wd)
664 			continue;
665 
666 		/* Pick the best watchdog. */
667 		if (!watchdog || cs->rating > watchdog->rating)
668 			watchdog = cs;
669 	}
670 	/* If we failed to find a fallback restore the old one. */
671 	if (!watchdog)
672 		watchdog = old_wd;
673 
674 	/* If we changed the watchdog we need to reset cycles. */
675 	if (watchdog != old_wd)
676 		clocksource_reset_watchdog();
677 
678 	/* Check if the watchdog timer needs to be started. */
679 	clocksource_start_watchdog();
680 	spin_unlock_irqrestore(&watchdog_lock, flags);
681 }
682 
clocksource_dequeue_watchdog(struct clocksource * cs)683 static void clocksource_dequeue_watchdog(struct clocksource *cs)
684 {
685 	if (cs != watchdog) {
686 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
687 			/* cs is a watched clocksource. */
688 			list_del_init(&cs->wd_list);
689 			/* Check if the watchdog timer needs to be stopped. */
690 			clocksource_stop_watchdog();
691 		}
692 	}
693 }
694 
__clocksource_watchdog_kthread(void)695 static int __clocksource_watchdog_kthread(void)
696 {
697 	struct clocksource *cs, *tmp;
698 	unsigned long flags;
699 	int select = 0;
700 
701 	/* Do any required per-CPU skew verification. */
702 	if (curr_clocksource &&
703 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
704 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
705 		clocksource_verify_percpu(curr_clocksource);
706 
707 	spin_lock_irqsave(&watchdog_lock, flags);
708 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
709 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
710 			list_del_init(&cs->wd_list);
711 			clocksource_change_rating(cs, 0);
712 			select = 1;
713 		}
714 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
715 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
716 			select = 1;
717 		}
718 	}
719 	/* Check if the watchdog timer needs to be stopped. */
720 	clocksource_stop_watchdog();
721 	spin_unlock_irqrestore(&watchdog_lock, flags);
722 
723 	return select;
724 }
725 
clocksource_watchdog_kthread(void * data)726 static int clocksource_watchdog_kthread(void *data)
727 {
728 	mutex_lock(&clocksource_mutex);
729 	if (__clocksource_watchdog_kthread())
730 		clocksource_select();
731 	mutex_unlock(&clocksource_mutex);
732 	return 0;
733 }
734 
clocksource_is_watchdog(struct clocksource * cs)735 static bool clocksource_is_watchdog(struct clocksource *cs)
736 {
737 	return cs == watchdog;
738 }
739 
740 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
741 
clocksource_enqueue_watchdog(struct clocksource * cs)742 static void clocksource_enqueue_watchdog(struct clocksource *cs)
743 {
744 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
745 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
746 }
747 
clocksource_select_watchdog(bool fallback)748 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)749 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)750 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)751 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)752 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)753 void clocksource_mark_unstable(struct clocksource *cs) { }
754 
clocksource_watchdog_lock(unsigned long * flags)755 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)756 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
757 
758 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
759 
clocksource_is_suspend(struct clocksource * cs)760 static bool clocksource_is_suspend(struct clocksource *cs)
761 {
762 	return cs == suspend_clocksource;
763 }
764 
__clocksource_suspend_select(struct clocksource * cs)765 static void __clocksource_suspend_select(struct clocksource *cs)
766 {
767 	/*
768 	 * Skip the clocksource which will be stopped in suspend state.
769 	 */
770 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
771 		return;
772 
773 	/*
774 	 * The nonstop clocksource can be selected as the suspend clocksource to
775 	 * calculate the suspend time, so it should not supply suspend/resume
776 	 * interfaces to suspend the nonstop clocksource when system suspends.
777 	 */
778 	if (cs->suspend || cs->resume) {
779 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
780 			cs->name);
781 	}
782 
783 	/* Pick the best rating. */
784 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
785 		suspend_clocksource = cs;
786 }
787 
788 /**
789  * clocksource_suspend_select - Select the best clocksource for suspend timing
790  * @fallback:	if select a fallback clocksource
791  */
clocksource_suspend_select(bool fallback)792 static void clocksource_suspend_select(bool fallback)
793 {
794 	struct clocksource *cs, *old_suspend;
795 
796 	old_suspend = suspend_clocksource;
797 	if (fallback)
798 		suspend_clocksource = NULL;
799 
800 	list_for_each_entry(cs, &clocksource_list, list) {
801 		/* Skip current if we were requested for a fallback. */
802 		if (fallback && cs == old_suspend)
803 			continue;
804 
805 		__clocksource_suspend_select(cs);
806 	}
807 }
808 
809 /**
810  * clocksource_start_suspend_timing - Start measuring the suspend timing
811  * @cs:			current clocksource from timekeeping
812  * @start_cycles:	current cycles from timekeeping
813  *
814  * This function will save the start cycle values of suspend timer to calculate
815  * the suspend time when resuming system.
816  *
817  * This function is called late in the suspend process from timekeeping_suspend(),
818  * that means processes are frozen, non-boot cpus and interrupts are disabled
819  * now. It is therefore possible to start the suspend timer without taking the
820  * clocksource mutex.
821  */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)822 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
823 {
824 	if (!suspend_clocksource)
825 		return;
826 
827 	/*
828 	 * If current clocksource is the suspend timer, we should use the
829 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
830 	 * from suspend timer.
831 	 */
832 	if (clocksource_is_suspend(cs)) {
833 		suspend_start = start_cycles;
834 		return;
835 	}
836 
837 	if (suspend_clocksource->enable &&
838 	    suspend_clocksource->enable(suspend_clocksource)) {
839 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
840 		return;
841 	}
842 
843 	suspend_start = suspend_clocksource->read(suspend_clocksource);
844 }
845 
846 /**
847  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
848  * @cs:		current clocksource from timekeeping
849  * @cycle_now:	current cycles from timekeeping
850  *
851  * This function will calculate the suspend time from suspend timer.
852  *
853  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
854  *
855  * This function is called early in the resume process from timekeeping_resume(),
856  * that means there is only one cpu, no processes are running and the interrupts
857  * are disabled. It is therefore possible to stop the suspend timer without
858  * taking the clocksource mutex.
859  */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)860 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
861 {
862 	u64 now, nsec = 0;
863 
864 	if (!suspend_clocksource)
865 		return 0;
866 
867 	/*
868 	 * If current clocksource is the suspend timer, we should use the
869 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
870 	 * avoid same reading from suspend timer.
871 	 */
872 	if (clocksource_is_suspend(cs))
873 		now = cycle_now;
874 	else
875 		now = suspend_clocksource->read(suspend_clocksource);
876 
877 	if (now > suspend_start)
878 		nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
879 
880 	/*
881 	 * Disable the suspend timer to save power if current clocksource is
882 	 * not the suspend timer.
883 	 */
884 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
885 		suspend_clocksource->disable(suspend_clocksource);
886 
887 	return nsec;
888 }
889 
890 /**
891  * clocksource_suspend - suspend the clocksource(s)
892  */
clocksource_suspend(void)893 void clocksource_suspend(void)
894 {
895 	struct clocksource *cs;
896 
897 	list_for_each_entry_reverse(cs, &clocksource_list, list)
898 		if (cs->suspend)
899 			cs->suspend(cs);
900 }
901 
902 /**
903  * clocksource_resume - resume the clocksource(s)
904  */
clocksource_resume(void)905 void clocksource_resume(void)
906 {
907 	struct clocksource *cs;
908 
909 	list_for_each_entry(cs, &clocksource_list, list)
910 		if (cs->resume)
911 			cs->resume(cs);
912 
913 	clocksource_resume_watchdog();
914 }
915 
916 /**
917  * clocksource_touch_watchdog - Update watchdog
918  *
919  * Update the watchdog after exception contexts such as kgdb so as not
920  * to incorrectly trip the watchdog. This might fail when the kernel
921  * was stopped in code which holds watchdog_lock.
922  */
clocksource_touch_watchdog(void)923 void clocksource_touch_watchdog(void)
924 {
925 	clocksource_resume_watchdog();
926 }
927 
928 /**
929  * clocksource_max_adjustment- Returns max adjustment amount
930  * @cs:         Pointer to clocksource
931  *
932  */
clocksource_max_adjustment(struct clocksource * cs)933 static u32 clocksource_max_adjustment(struct clocksource *cs)
934 {
935 	u64 ret;
936 	/*
937 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
938 	 */
939 	ret = (u64)cs->mult * 11;
940 	do_div(ret,100);
941 	return (u32)ret;
942 }
943 
944 /**
945  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
946  * @mult:	cycle to nanosecond multiplier
947  * @shift:	cycle to nanosecond divisor (power of two)
948  * @maxadj:	maximum adjustment value to mult (~11%)
949  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
950  * @max_cyc:	maximum cycle value before potential overflow (does not include
951  *		any safety margin)
952  *
953  * NOTE: This function includes a safety margin of 50%, in other words, we
954  * return half the number of nanoseconds the hardware counter can technically
955  * cover. This is done so that we can potentially detect problems caused by
956  * delayed timers or bad hardware, which might result in time intervals that
957  * are larger than what the math used can handle without overflows.
958  */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)959 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
960 {
961 	u64 max_nsecs, max_cycles;
962 
963 	/*
964 	 * Calculate the maximum number of cycles that we can pass to the
965 	 * cyc2ns() function without overflowing a 64-bit result.
966 	 */
967 	max_cycles = ULLONG_MAX;
968 	do_div(max_cycles, mult+maxadj);
969 
970 	/*
971 	 * The actual maximum number of cycles we can defer the clocksource is
972 	 * determined by the minimum of max_cycles and mask.
973 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
974 	 * too long if there's a large negative adjustment.
975 	 */
976 	max_cycles = min(max_cycles, mask);
977 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
978 
979 	/* return the max_cycles value as well if requested */
980 	if (max_cyc)
981 		*max_cyc = max_cycles;
982 
983 	/* Return 50% of the actual maximum, so we can detect bad values */
984 	max_nsecs >>= 1;
985 
986 	return max_nsecs;
987 }
988 
989 /**
990  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
991  * @cs:         Pointer to clocksource to be updated
992  *
993  */
clocksource_update_max_deferment(struct clocksource * cs)994 static inline void clocksource_update_max_deferment(struct clocksource *cs)
995 {
996 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
997 						cs->maxadj, cs->mask,
998 						&cs->max_cycles);
999 
1000 	/*
1001 	 * Threshold for detecting negative motion in clocksource_delta().
1002 	 *
1003 	 * Allow for 0.875 of the counter width so that overly long idle
1004 	 * sleeps, which go slightly over mask/2, do not trigger the
1005 	 * negative motion detection.
1006 	 */
1007 	cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3);
1008 }
1009 
clocksource_find_best(bool oneshot,bool skipcur)1010 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
1011 {
1012 	struct clocksource *cs;
1013 
1014 	if (!finished_booting || list_empty(&clocksource_list))
1015 		return NULL;
1016 
1017 	/*
1018 	 * We pick the clocksource with the highest rating. If oneshot
1019 	 * mode is active, we pick the highres valid clocksource with
1020 	 * the best rating.
1021 	 */
1022 	list_for_each_entry(cs, &clocksource_list, list) {
1023 		if (skipcur && cs == curr_clocksource)
1024 			continue;
1025 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1026 			continue;
1027 		return cs;
1028 	}
1029 	return NULL;
1030 }
1031 
__clocksource_select(bool skipcur)1032 static void __clocksource_select(bool skipcur)
1033 {
1034 	bool oneshot = tick_oneshot_mode_active();
1035 	struct clocksource *best, *cs;
1036 
1037 	/* Find the best suitable clocksource */
1038 	best = clocksource_find_best(oneshot, skipcur);
1039 	if (!best)
1040 		return;
1041 
1042 	if (!strlen(override_name))
1043 		goto found;
1044 
1045 	/* Check for the override clocksource. */
1046 	list_for_each_entry(cs, &clocksource_list, list) {
1047 		if (skipcur && cs == curr_clocksource)
1048 			continue;
1049 		if (strcmp(cs->name, override_name) != 0)
1050 			continue;
1051 		/*
1052 		 * Check to make sure we don't switch to a non-highres
1053 		 * capable clocksource if the tick code is in oneshot
1054 		 * mode (highres or nohz)
1055 		 */
1056 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1057 			/* Override clocksource cannot be used. */
1058 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1059 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1060 					cs->name);
1061 				override_name[0] = 0;
1062 			} else {
1063 				/*
1064 				 * The override cannot be currently verified.
1065 				 * Deferring to let the watchdog check.
1066 				 */
1067 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1068 					cs->name);
1069 			}
1070 		} else
1071 			/* Override clocksource can be used. */
1072 			best = cs;
1073 		break;
1074 	}
1075 
1076 found:
1077 	if (curr_clocksource != best && !timekeeping_notify(best)) {
1078 		pr_info("Switched to clocksource %s\n", best->name);
1079 		curr_clocksource = best;
1080 	}
1081 }
1082 
1083 /**
1084  * clocksource_select - Select the best clocksource available
1085  *
1086  * Private function. Must hold clocksource_mutex when called.
1087  *
1088  * Select the clocksource with the best rating, or the clocksource,
1089  * which is selected by userspace override.
1090  */
clocksource_select(void)1091 static void clocksource_select(void)
1092 {
1093 	__clocksource_select(false);
1094 }
1095 
clocksource_select_fallback(void)1096 static void clocksource_select_fallback(void)
1097 {
1098 	__clocksource_select(true);
1099 }
1100 
1101 /*
1102  * clocksource_done_booting - Called near the end of core bootup
1103  *
1104  * Hack to avoid lots of clocksource churn at boot time.
1105  * We use fs_initcall because we want this to start before
1106  * device_initcall but after subsys_initcall.
1107  */
clocksource_done_booting(void)1108 static int __init clocksource_done_booting(void)
1109 {
1110 	mutex_lock(&clocksource_mutex);
1111 	curr_clocksource = clocksource_default_clock();
1112 	finished_booting = 1;
1113 	/*
1114 	 * Run the watchdog first to eliminate unstable clock sources
1115 	 */
1116 	__clocksource_watchdog_kthread();
1117 	clocksource_select();
1118 	mutex_unlock(&clocksource_mutex);
1119 	return 0;
1120 }
1121 fs_initcall(clocksource_done_booting);
1122 
1123 /*
1124  * Enqueue the clocksource sorted by rating
1125  */
clocksource_enqueue(struct clocksource * cs)1126 static void clocksource_enqueue(struct clocksource *cs)
1127 {
1128 	struct list_head *entry = &clocksource_list;
1129 	struct clocksource *tmp;
1130 
1131 	list_for_each_entry(tmp, &clocksource_list, list) {
1132 		/* Keep track of the place, where to insert */
1133 		if (tmp->rating < cs->rating)
1134 			break;
1135 		entry = &tmp->list;
1136 	}
1137 	list_add(&cs->list, entry);
1138 }
1139 
1140 /**
1141  * __clocksource_update_freq_scale - Used update clocksource with new freq
1142  * @cs:		clocksource to be registered
1143  * @scale:	Scale factor multiplied against freq to get clocksource hz
1144  * @freq:	clocksource frequency (cycles per second) divided by scale
1145  *
1146  * This should only be called from the clocksource->enable() method.
1147  *
1148  * This *SHOULD NOT* be called directly! Please use the
1149  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1150  * functions.
1151  */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)1152 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1153 {
1154 	u64 sec;
1155 
1156 	/*
1157 	 * Default clocksources are *special* and self-define their mult/shift.
1158 	 * But, you're not special, so you should specify a freq value.
1159 	 */
1160 	if (freq) {
1161 		/*
1162 		 * Calc the maximum number of seconds which we can run before
1163 		 * wrapping around. For clocksources which have a mask > 32-bit
1164 		 * we need to limit the max sleep time to have a good
1165 		 * conversion precision. 10 minutes is still a reasonable
1166 		 * amount. That results in a shift value of 24 for a
1167 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1168 		 * ~ 0.06ppm granularity for NTP.
1169 		 */
1170 		sec = cs->mask;
1171 		do_div(sec, freq);
1172 		do_div(sec, scale);
1173 		if (!sec)
1174 			sec = 1;
1175 		else if (sec > 600 && cs->mask > UINT_MAX)
1176 			sec = 600;
1177 
1178 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1179 				       NSEC_PER_SEC / scale, sec * scale);
1180 	}
1181 
1182 	/*
1183 	 * If the uncertainty margin is not specified, calculate it.  If
1184 	 * both scale and freq are non-zero, calculate the clock period, but
1185 	 * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default.
1186 	 * However, if either of scale or freq is zero, be very conservative
1187 	 * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value
1188 	 * for the uncertainty margin.  Allow stupidly small uncertainty
1189 	 * margins to be specified by the caller for testing purposes,
1190 	 * but warn to discourage production use of this capability.
1191 	 *
1192 	 * Bottom line:  The sum of the uncertainty margins of the
1193 	 * watchdog clocksource and the clocksource under test will be at
1194 	 * least 500ppm by default.  For more information, please see the
1195 	 * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above.
1196 	 */
1197 	if (scale && freq && !cs->uncertainty_margin) {
1198 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1199 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1200 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1201 	} else if (!cs->uncertainty_margin) {
1202 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1203 	}
1204 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1205 
1206 	/*
1207 	 * Ensure clocksources that have large 'mult' values don't overflow
1208 	 * when adjusted.
1209 	 */
1210 	cs->maxadj = clocksource_max_adjustment(cs);
1211 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1212 		|| (cs->mult - cs->maxadj > cs->mult))) {
1213 		cs->mult >>= 1;
1214 		cs->shift--;
1215 		cs->maxadj = clocksource_max_adjustment(cs);
1216 	}
1217 
1218 	/*
1219 	 * Only warn for *special* clocksources that self-define
1220 	 * their mult/shift values and don't specify a freq.
1221 	 */
1222 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1223 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1224 		cs->name);
1225 
1226 	clocksource_update_max_deferment(cs);
1227 
1228 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1229 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1230 }
1231 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1232 
1233 /**
1234  * __clocksource_register_scale - Used to install new clocksources
1235  * @cs:		clocksource to be registered
1236  * @scale:	Scale factor multiplied against freq to get clocksource hz
1237  * @freq:	clocksource frequency (cycles per second) divided by scale
1238  *
1239  * Returns -EBUSY if registration fails, zero otherwise.
1240  *
1241  * This *SHOULD NOT* be called directly! Please use the
1242  * clocksource_register_hz() or clocksource_register_khz helper functions.
1243  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1244 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1245 {
1246 	unsigned long flags;
1247 
1248 	clocksource_arch_init(cs);
1249 
1250 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1251 		cs->id = CSID_GENERIC;
1252 	if (cs->vdso_clock_mode < 0 ||
1253 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1254 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1255 			cs->name, cs->vdso_clock_mode);
1256 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1257 	}
1258 
1259 	/* Initialize mult/shift and max_idle_ns */
1260 	__clocksource_update_freq_scale(cs, scale, freq);
1261 
1262 	/* Add clocksource to the clocksource list */
1263 	mutex_lock(&clocksource_mutex);
1264 
1265 	clocksource_watchdog_lock(&flags);
1266 	clocksource_enqueue(cs);
1267 	clocksource_enqueue_watchdog(cs);
1268 	clocksource_watchdog_unlock(&flags);
1269 
1270 	clocksource_select();
1271 	clocksource_select_watchdog(false);
1272 	__clocksource_suspend_select(cs);
1273 	mutex_unlock(&clocksource_mutex);
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1277 
1278 /*
1279  * Unbind clocksource @cs. Called with clocksource_mutex held
1280  */
clocksource_unbind(struct clocksource * cs)1281 static int clocksource_unbind(struct clocksource *cs)
1282 {
1283 	unsigned long flags;
1284 
1285 	if (clocksource_is_watchdog(cs)) {
1286 		/* Select and try to install a replacement watchdog. */
1287 		clocksource_select_watchdog(true);
1288 		if (clocksource_is_watchdog(cs))
1289 			return -EBUSY;
1290 	}
1291 
1292 	if (cs == curr_clocksource) {
1293 		/* Select and try to install a replacement clock source */
1294 		clocksource_select_fallback();
1295 		if (curr_clocksource == cs)
1296 			return -EBUSY;
1297 	}
1298 
1299 	if (clocksource_is_suspend(cs)) {
1300 		/*
1301 		 * Select and try to install a replacement suspend clocksource.
1302 		 * If no replacement suspend clocksource, we will just let the
1303 		 * clocksource go and have no suspend clocksource.
1304 		 */
1305 		clocksource_suspend_select(true);
1306 	}
1307 
1308 	clocksource_watchdog_lock(&flags);
1309 	clocksource_dequeue_watchdog(cs);
1310 	list_del_init(&cs->list);
1311 	clocksource_watchdog_unlock(&flags);
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  * clocksource_unregister - remove a registered clocksource
1318  * @cs:	clocksource to be unregistered
1319  */
clocksource_unregister(struct clocksource * cs)1320 int clocksource_unregister(struct clocksource *cs)
1321 {
1322 	int ret = 0;
1323 
1324 	mutex_lock(&clocksource_mutex);
1325 	if (!list_empty(&cs->list))
1326 		ret = clocksource_unbind(cs);
1327 	mutex_unlock(&clocksource_mutex);
1328 	return ret;
1329 }
1330 EXPORT_SYMBOL(clocksource_unregister);
1331 
1332 #ifdef CONFIG_SYSFS
1333 /**
1334  * current_clocksource_show - sysfs interface for current clocksource
1335  * @dev:	unused
1336  * @attr:	unused
1337  * @buf:	char buffer to be filled with clocksource list
1338  *
1339  * Provides sysfs interface for listing current clocksource.
1340  */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1341 static ssize_t current_clocksource_show(struct device *dev,
1342 					struct device_attribute *attr,
1343 					char *buf)
1344 {
1345 	ssize_t count = 0;
1346 
1347 	mutex_lock(&clocksource_mutex);
1348 	count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
1349 	mutex_unlock(&clocksource_mutex);
1350 
1351 	return count;
1352 }
1353 
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1354 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1355 {
1356 	size_t ret = cnt;
1357 
1358 	/* strings from sysfs write are not 0 terminated! */
1359 	if (!cnt || cnt >= CS_NAME_LEN)
1360 		return -EINVAL;
1361 
1362 	/* strip of \n: */
1363 	if (buf[cnt-1] == '\n')
1364 		cnt--;
1365 	if (cnt > 0)
1366 		memcpy(dst, buf, cnt);
1367 	dst[cnt] = 0;
1368 	return ret;
1369 }
1370 
1371 /**
1372  * current_clocksource_store - interface for manually overriding clocksource
1373  * @dev:	unused
1374  * @attr:	unused
1375  * @buf:	name of override clocksource
1376  * @count:	length of buffer
1377  *
1378  * Takes input from sysfs interface for manually overriding the default
1379  * clocksource selection.
1380  */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1381 static ssize_t current_clocksource_store(struct device *dev,
1382 					 struct device_attribute *attr,
1383 					 const char *buf, size_t count)
1384 {
1385 	ssize_t ret;
1386 
1387 	mutex_lock(&clocksource_mutex);
1388 
1389 	ret = sysfs_get_uname(buf, override_name, count);
1390 	if (ret >= 0)
1391 		clocksource_select();
1392 
1393 	mutex_unlock(&clocksource_mutex);
1394 
1395 	return ret;
1396 }
1397 static DEVICE_ATTR_RW(current_clocksource);
1398 
1399 /**
1400  * unbind_clocksource_store - interface for manually unbinding clocksource
1401  * @dev:	unused
1402  * @attr:	unused
1403  * @buf:	unused
1404  * @count:	length of buffer
1405  *
1406  * Takes input from sysfs interface for manually unbinding a clocksource.
1407  */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1408 static ssize_t unbind_clocksource_store(struct device *dev,
1409 					struct device_attribute *attr,
1410 					const char *buf, size_t count)
1411 {
1412 	struct clocksource *cs;
1413 	char name[CS_NAME_LEN];
1414 	ssize_t ret;
1415 
1416 	ret = sysfs_get_uname(buf, name, count);
1417 	if (ret < 0)
1418 		return ret;
1419 
1420 	ret = -ENODEV;
1421 	mutex_lock(&clocksource_mutex);
1422 	list_for_each_entry(cs, &clocksource_list, list) {
1423 		if (strcmp(cs->name, name))
1424 			continue;
1425 		ret = clocksource_unbind(cs);
1426 		break;
1427 	}
1428 	mutex_unlock(&clocksource_mutex);
1429 
1430 	return ret ? ret : count;
1431 }
1432 static DEVICE_ATTR_WO(unbind_clocksource);
1433 
1434 /**
1435  * available_clocksource_show - sysfs interface for listing clocksource
1436  * @dev:	unused
1437  * @attr:	unused
1438  * @buf:	char buffer to be filled with clocksource list
1439  *
1440  * Provides sysfs interface for listing registered clocksources
1441  */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1442 static ssize_t available_clocksource_show(struct device *dev,
1443 					  struct device_attribute *attr,
1444 					  char *buf)
1445 {
1446 	struct clocksource *src;
1447 	ssize_t count = 0;
1448 
1449 	mutex_lock(&clocksource_mutex);
1450 	list_for_each_entry(src, &clocksource_list, list) {
1451 		/*
1452 		 * Don't show non-HRES clocksource if the tick code is
1453 		 * in one shot mode (highres=on or nohz=on)
1454 		 */
1455 		if (!tick_oneshot_mode_active() ||
1456 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1457 			count += snprintf(buf + count,
1458 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1459 				  "%s ", src->name);
1460 	}
1461 	mutex_unlock(&clocksource_mutex);
1462 
1463 	count += snprintf(buf + count,
1464 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1465 
1466 	return count;
1467 }
1468 static DEVICE_ATTR_RO(available_clocksource);
1469 
1470 static struct attribute *clocksource_attrs[] = {
1471 	&dev_attr_current_clocksource.attr,
1472 	&dev_attr_unbind_clocksource.attr,
1473 	&dev_attr_available_clocksource.attr,
1474 	NULL
1475 };
1476 ATTRIBUTE_GROUPS(clocksource);
1477 
1478 static const struct bus_type clocksource_subsys = {
1479 	.name = "clocksource",
1480 	.dev_name = "clocksource",
1481 };
1482 
1483 static struct device device_clocksource = {
1484 	.id	= 0,
1485 	.bus	= &clocksource_subsys,
1486 	.groups	= clocksource_groups,
1487 };
1488 
init_clocksource_sysfs(void)1489 static int __init init_clocksource_sysfs(void)
1490 {
1491 	int error = subsys_system_register(&clocksource_subsys, NULL);
1492 
1493 	if (!error)
1494 		error = device_register(&device_clocksource);
1495 
1496 	return error;
1497 }
1498 
1499 device_initcall(init_clocksource_sysfs);
1500 #endif /* CONFIG_SYSFS */
1501 
1502 /**
1503  * boot_override_clocksource - boot clock override
1504  * @str:	override name
1505  *
1506  * Takes a clocksource= boot argument and uses it
1507  * as the clocksource override name.
1508  */
boot_override_clocksource(char * str)1509 static int __init boot_override_clocksource(char* str)
1510 {
1511 	mutex_lock(&clocksource_mutex);
1512 	if (str)
1513 		strscpy(override_name, str, sizeof(override_name));
1514 	mutex_unlock(&clocksource_mutex);
1515 	return 1;
1516 }
1517 
1518 __setup("clocksource=", boot_override_clocksource);
1519 
1520 /**
1521  * boot_override_clock - Compatibility layer for deprecated boot option
1522  * @str:	override name
1523  *
1524  * DEPRECATED! Takes a clock= boot argument and uses it
1525  * as the clocksource override name
1526  */
boot_override_clock(char * str)1527 static int __init boot_override_clock(char* str)
1528 {
1529 	if (!strcmp(str, "pmtmr")) {
1530 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1531 		return boot_override_clocksource("acpi_pm");
1532 	}
1533 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1534 	return boot_override_clocksource(str);
1535 }
1536 
1537 __setup("clock=", boot_override_clock);
1538