1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "extent-tree.h"
13 #include "transaction.h"
14 #include "qgroup.h"
15 #include "space-info.h"
16 #include "tree-mod-log.h"
17 #include "fs.h"
18
19 struct kmem_cache *btrfs_delayed_ref_head_cachep;
20 struct kmem_cache *btrfs_delayed_ref_node_cachep;
21 struct kmem_cache *btrfs_delayed_extent_op_cachep;
22 /*
23 * delayed back reference update tracking. For subvolume trees
24 * we queue up extent allocations and backref maintenance for
25 * delayed processing. This avoids deep call chains where we
26 * add extents in the middle of btrfs_search_slot, and it allows
27 * us to buffer up frequently modified backrefs in an rb tree instead
28 * of hammering updates on the extent allocation tree.
29 */
30
btrfs_check_space_for_delayed_refs(struct btrfs_fs_info * fs_info)31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32 {
33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35 bool ret = false;
36 u64 reserved;
37
38 spin_lock(&global_rsv->lock);
39 reserved = global_rsv->reserved;
40 spin_unlock(&global_rsv->lock);
41
42 /*
43 * Since the global reserve is just kind of magic we don't really want
44 * to rely on it to save our bacon, so if our size is more than the
45 * delayed_refs_rsv and the global rsv then it's time to think about
46 * bailing.
47 */
48 spin_lock(&delayed_refs_rsv->lock);
49 reserved += delayed_refs_rsv->reserved;
50 if (delayed_refs_rsv->size >= reserved)
51 ret = true;
52 spin_unlock(&delayed_refs_rsv->lock);
53 return ret;
54 }
55
56 /*
57 * Release a ref head's reservation.
58 *
59 * @fs_info: the filesystem
60 * @nr_refs: number of delayed refs to drop
61 * @nr_csums: number of csum items to drop
62 *
63 * Drops the delayed ref head's count from the delayed refs rsv and free any
64 * excess reservation we had.
65 */
btrfs_delayed_refs_rsv_release(struct btrfs_fs_info * fs_info,int nr_refs,int nr_csums)66 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
67 {
68 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
69 u64 num_bytes;
70 u64 released;
71
72 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
73 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
74
75 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
76 if (released)
77 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
78 0, released, 0);
79 }
80
81 /*
82 * Adjust the size of the delayed refs rsv.
83 *
84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
86 * add it to the delayed_refs_rsv.
87 */
btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle * trans)88 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
89 {
90 struct btrfs_fs_info *fs_info = trans->fs_info;
91 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
92 struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
93 u64 num_bytes;
94 u64 reserved_bytes;
95
96 if (btrfs_is_testing(fs_info))
97 return;
98
99 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
100 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
101 trans->delayed_ref_csum_deletions);
102
103 if (num_bytes == 0)
104 return;
105
106 /*
107 * Try to take num_bytes from the transaction's local delayed reserve.
108 * If not possible, try to take as much as it's available. If the local
109 * reserve doesn't have enough reserved space, the delayed refs reserve
110 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
111 * by someone or if a transaction commit is triggered before that, the
112 * global block reserve will be used. We want to minimize using the
113 * global block reserve for cases we can account for in advance, to
114 * avoid exhausting it and reach -ENOSPC during a transaction commit.
115 */
116 spin_lock(&local_rsv->lock);
117 reserved_bytes = min(num_bytes, local_rsv->reserved);
118 local_rsv->reserved -= reserved_bytes;
119 local_rsv->full = (local_rsv->reserved >= local_rsv->size);
120 spin_unlock(&local_rsv->lock);
121
122 spin_lock(&delayed_rsv->lock);
123 delayed_rsv->size += num_bytes;
124 delayed_rsv->reserved += reserved_bytes;
125 delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
126 spin_unlock(&delayed_rsv->lock);
127 trans->delayed_ref_updates = 0;
128 trans->delayed_ref_csum_deletions = 0;
129 }
130
131 /*
132 * Adjust the size of the delayed refs block reserve for 1 block group item
133 * insertion, used after allocating a block group.
134 */
btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info * fs_info)135 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
136 {
137 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
138
139 spin_lock(&delayed_rsv->lock);
140 /*
141 * Inserting a block group item does not require changing the free space
142 * tree, only the extent tree or the block group tree, so this is all we
143 * need.
144 */
145 delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
146 delayed_rsv->full = false;
147 spin_unlock(&delayed_rsv->lock);
148 }
149
150 /*
151 * Adjust the size of the delayed refs block reserve to release space for 1
152 * block group item insertion.
153 */
btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info * fs_info)154 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
155 {
156 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
157 const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
158 u64 released;
159
160 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
161 if (released > 0)
162 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
163 0, released, 0);
164 }
165
166 /*
167 * Adjust the size of the delayed refs block reserve for 1 block group item
168 * update.
169 */
btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info * fs_info)170 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
171 {
172 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
173
174 spin_lock(&delayed_rsv->lock);
175 /*
176 * Updating a block group item does not result in new nodes/leaves and
177 * does not require changing the free space tree, only the extent tree
178 * or the block group tree, so this is all we need.
179 */
180 delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
181 delayed_rsv->full = false;
182 spin_unlock(&delayed_rsv->lock);
183 }
184
185 /*
186 * Adjust the size of the delayed refs block reserve to release space for 1
187 * block group item update.
188 */
btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info * fs_info)189 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
190 {
191 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
192 const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
193 u64 released;
194
195 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
196 if (released > 0)
197 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
198 0, released, 0);
199 }
200
201 /*
202 * Refill based on our delayed refs usage.
203 *
204 * @fs_info: the filesystem
205 * @flush: control how we can flush for this reservation.
206 *
207 * This will refill the delayed block_rsv up to 1 items size worth of space and
208 * will return -ENOSPC if we can't make the reservation.
209 */
btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush)210 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
211 enum btrfs_reserve_flush_enum flush)
212 {
213 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
214 struct btrfs_space_info *space_info = block_rsv->space_info;
215 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
216 u64 num_bytes = 0;
217 u64 refilled_bytes;
218 u64 to_free;
219 int ret = -ENOSPC;
220
221 spin_lock(&block_rsv->lock);
222 if (block_rsv->reserved < block_rsv->size) {
223 num_bytes = block_rsv->size - block_rsv->reserved;
224 num_bytes = min(num_bytes, limit);
225 }
226 spin_unlock(&block_rsv->lock);
227
228 if (!num_bytes)
229 return 0;
230
231 ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
232 if (ret)
233 return ret;
234
235 /*
236 * We may have raced with someone else, so check again if we the block
237 * reserve is still not full and release any excess space.
238 */
239 spin_lock(&block_rsv->lock);
240 if (block_rsv->reserved < block_rsv->size) {
241 u64 needed = block_rsv->size - block_rsv->reserved;
242
243 if (num_bytes >= needed) {
244 block_rsv->reserved += needed;
245 block_rsv->full = true;
246 to_free = num_bytes - needed;
247 refilled_bytes = needed;
248 } else {
249 block_rsv->reserved += num_bytes;
250 to_free = 0;
251 refilled_bytes = num_bytes;
252 }
253 } else {
254 to_free = num_bytes;
255 refilled_bytes = 0;
256 }
257 spin_unlock(&block_rsv->lock);
258
259 if (to_free > 0)
260 btrfs_space_info_free_bytes_may_use(space_info, to_free);
261
262 if (refilled_bytes > 0)
263 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
264 refilled_bytes, 1);
265 return 0;
266 }
267
268 /*
269 * compare two delayed data backrefs with same bytenr and type
270 */
comp_data_refs(const struct btrfs_delayed_ref_node * ref1,const struct btrfs_delayed_ref_node * ref2)271 static int comp_data_refs(const struct btrfs_delayed_ref_node *ref1,
272 const struct btrfs_delayed_ref_node *ref2)
273 {
274 if (ref1->data_ref.objectid < ref2->data_ref.objectid)
275 return -1;
276 if (ref1->data_ref.objectid > ref2->data_ref.objectid)
277 return 1;
278 if (ref1->data_ref.offset < ref2->data_ref.offset)
279 return -1;
280 if (ref1->data_ref.offset > ref2->data_ref.offset)
281 return 1;
282 return 0;
283 }
284
comp_refs(const struct btrfs_delayed_ref_node * ref1,const struct btrfs_delayed_ref_node * ref2,bool check_seq)285 static int comp_refs(const struct btrfs_delayed_ref_node *ref1,
286 const struct btrfs_delayed_ref_node *ref2,
287 bool check_seq)
288 {
289 int ret = 0;
290
291 if (ref1->type < ref2->type)
292 return -1;
293 if (ref1->type > ref2->type)
294 return 1;
295 if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
296 ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
297 if (ref1->parent < ref2->parent)
298 return -1;
299 if (ref1->parent > ref2->parent)
300 return 1;
301 } else {
302 if (ref1->ref_root < ref2->ref_root)
303 return -1;
304 if (ref1->ref_root > ref2->ref_root)
305 return 1;
306 if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
307 ret = comp_data_refs(ref1, ref2);
308 }
309 if (ret)
310 return ret;
311 if (check_seq) {
312 if (ref1->seq < ref2->seq)
313 return -1;
314 if (ref1->seq > ref2->seq)
315 return 1;
316 }
317 return 0;
318 }
319
cmp_refs_node(const struct rb_node * new,const struct rb_node * exist)320 static int cmp_refs_node(const struct rb_node *new, const struct rb_node *exist)
321 {
322 const struct btrfs_delayed_ref_node *new_node =
323 rb_entry(new, struct btrfs_delayed_ref_node, ref_node);
324 const struct btrfs_delayed_ref_node *exist_node =
325 rb_entry(exist, struct btrfs_delayed_ref_node, ref_node);
326
327 return comp_refs(new_node, exist_node, true);
328 }
329
tree_insert(struct rb_root_cached * root,struct btrfs_delayed_ref_node * ins)330 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
331 struct btrfs_delayed_ref_node *ins)
332 {
333 struct rb_node *node = &ins->ref_node;
334 struct rb_node *exist;
335
336 exist = rb_find_add_cached(node, root, cmp_refs_node);
337 if (exist)
338 return rb_entry(exist, struct btrfs_delayed_ref_node, ref_node);
339 return NULL;
340 }
341
find_first_ref_head(struct btrfs_delayed_ref_root * dr)342 static struct btrfs_delayed_ref_head *find_first_ref_head(
343 struct btrfs_delayed_ref_root *dr)
344 {
345 unsigned long from = 0;
346
347 lockdep_assert_held(&dr->lock);
348
349 return xa_find(&dr->head_refs, &from, ULONG_MAX, XA_PRESENT);
350 }
351
btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)352 static bool btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
353 struct btrfs_delayed_ref_head *head)
354 {
355 lockdep_assert_held(&delayed_refs->lock);
356 if (mutex_trylock(&head->mutex))
357 return true;
358
359 refcount_inc(&head->refs);
360 spin_unlock(&delayed_refs->lock);
361
362 mutex_lock(&head->mutex);
363 spin_lock(&delayed_refs->lock);
364 if (!head->tracked) {
365 mutex_unlock(&head->mutex);
366 btrfs_put_delayed_ref_head(head);
367 return false;
368 }
369 btrfs_put_delayed_ref_head(head);
370 return true;
371 }
372
drop_delayed_ref(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref)373 static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
374 struct btrfs_delayed_ref_root *delayed_refs,
375 struct btrfs_delayed_ref_head *head,
376 struct btrfs_delayed_ref_node *ref)
377 {
378 lockdep_assert_held(&head->lock);
379 rb_erase_cached(&ref->ref_node, &head->ref_tree);
380 RB_CLEAR_NODE(&ref->ref_node);
381 if (!list_empty(&ref->add_list))
382 list_del(&ref->add_list);
383 btrfs_put_delayed_ref(ref);
384 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
385 }
386
merge_ref(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref,u64 seq)387 static bool merge_ref(struct btrfs_fs_info *fs_info,
388 struct btrfs_delayed_ref_root *delayed_refs,
389 struct btrfs_delayed_ref_head *head,
390 struct btrfs_delayed_ref_node *ref,
391 u64 seq)
392 {
393 struct btrfs_delayed_ref_node *next;
394 struct rb_node *node = rb_next(&ref->ref_node);
395 bool done = false;
396
397 while (!done && node) {
398 int mod;
399
400 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
401 node = rb_next(node);
402 if (seq && next->seq >= seq)
403 break;
404 if (comp_refs(ref, next, false))
405 break;
406
407 if (ref->action == next->action) {
408 mod = next->ref_mod;
409 } else {
410 if (ref->ref_mod < next->ref_mod) {
411 swap(ref, next);
412 done = true;
413 }
414 mod = -next->ref_mod;
415 }
416
417 drop_delayed_ref(fs_info, delayed_refs, head, next);
418 ref->ref_mod += mod;
419 if (ref->ref_mod == 0) {
420 drop_delayed_ref(fs_info, delayed_refs, head, ref);
421 done = true;
422 } else {
423 /*
424 * Can't have multiples of the same ref on a tree block.
425 */
426 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
427 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
428 }
429 }
430
431 return done;
432 }
433
btrfs_merge_delayed_refs(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)434 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
435 struct btrfs_delayed_ref_root *delayed_refs,
436 struct btrfs_delayed_ref_head *head)
437 {
438 struct btrfs_delayed_ref_node *ref;
439 struct rb_node *node;
440 u64 seq = 0;
441
442 lockdep_assert_held(&head->lock);
443
444 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
445 return;
446
447 /* We don't have too many refs to merge for data. */
448 if (head->is_data)
449 return;
450
451 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
452 again:
453 for (node = rb_first_cached(&head->ref_tree); node;
454 node = rb_next(node)) {
455 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
456 if (seq && ref->seq >= seq)
457 continue;
458 if (merge_ref(fs_info, delayed_refs, head, ref, seq))
459 goto again;
460 }
461 }
462
btrfs_check_delayed_seq(struct btrfs_fs_info * fs_info,u64 seq)463 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
464 {
465 int ret = 0;
466 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
467
468 if (min_seq != 0 && seq >= min_seq) {
469 btrfs_debug(fs_info,
470 "holding back delayed_ref %llu, lowest is %llu",
471 seq, min_seq);
472 ret = 1;
473 }
474
475 return ret;
476 }
477
btrfs_select_ref_head(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs)478 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
479 const struct btrfs_fs_info *fs_info,
480 struct btrfs_delayed_ref_root *delayed_refs)
481 {
482 struct btrfs_delayed_ref_head *head;
483 unsigned long start_index;
484 unsigned long found_index;
485 bool found_head = false;
486 bool locked;
487
488 spin_lock(&delayed_refs->lock);
489 again:
490 start_index = (delayed_refs->run_delayed_start >> fs_info->sectorsize_bits);
491 xa_for_each_start(&delayed_refs->head_refs, found_index, head, start_index) {
492 if (!head->processing) {
493 found_head = true;
494 break;
495 }
496 }
497 if (!found_head) {
498 if (delayed_refs->run_delayed_start == 0) {
499 spin_unlock(&delayed_refs->lock);
500 return NULL;
501 }
502 delayed_refs->run_delayed_start = 0;
503 goto again;
504 }
505
506 head->processing = true;
507 WARN_ON(delayed_refs->num_heads_ready == 0);
508 delayed_refs->num_heads_ready--;
509 delayed_refs->run_delayed_start = head->bytenr +
510 head->num_bytes;
511
512 locked = btrfs_delayed_ref_lock(delayed_refs, head);
513 spin_unlock(&delayed_refs->lock);
514
515 /*
516 * We may have dropped the spin lock to get the head mutex lock, and
517 * that might have given someone else time to free the head. If that's
518 * true, it has been removed from our list and we can move on.
519 */
520 if (!locked)
521 return ERR_PTR(-EAGAIN);
522
523 return head;
524 }
525
btrfs_unselect_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)526 void btrfs_unselect_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
527 struct btrfs_delayed_ref_head *head)
528 {
529 spin_lock(&delayed_refs->lock);
530 head->processing = false;
531 delayed_refs->num_heads_ready++;
532 spin_unlock(&delayed_refs->lock);
533 btrfs_delayed_ref_unlock(head);
534 }
535
btrfs_delete_ref_head(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)536 void btrfs_delete_ref_head(const struct btrfs_fs_info *fs_info,
537 struct btrfs_delayed_ref_root *delayed_refs,
538 struct btrfs_delayed_ref_head *head)
539 {
540 const unsigned long index = (head->bytenr >> fs_info->sectorsize_bits);
541
542 lockdep_assert_held(&delayed_refs->lock);
543 lockdep_assert_held(&head->lock);
544
545 xa_erase(&delayed_refs->head_refs, index);
546 head->tracked = false;
547 delayed_refs->num_heads--;
548 if (!head->processing)
549 delayed_refs->num_heads_ready--;
550 }
551
btrfs_select_delayed_ref(struct btrfs_delayed_ref_head * head)552 struct btrfs_delayed_ref_node *btrfs_select_delayed_ref(struct btrfs_delayed_ref_head *head)
553 {
554 struct btrfs_delayed_ref_node *ref;
555
556 lockdep_assert_held(&head->mutex);
557 lockdep_assert_held(&head->lock);
558
559 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
560 return NULL;
561
562 /*
563 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
564 * This is to prevent a ref count from going down to zero, which deletes
565 * the extent item from the extent tree, when there still are references
566 * to add, which would fail because they would not find the extent item.
567 */
568 if (!list_empty(&head->ref_add_list))
569 return list_first_entry(&head->ref_add_list,
570 struct btrfs_delayed_ref_node, add_list);
571
572 ref = rb_entry(rb_first_cached(&head->ref_tree),
573 struct btrfs_delayed_ref_node, ref_node);
574 ASSERT(list_empty(&ref->add_list));
575 return ref;
576 }
577
578 /*
579 * Helper to insert the ref_node to the tail or merge with tail.
580 *
581 * Return false if the ref was inserted.
582 * Return true if the ref was merged into an existing one (and therefore can be
583 * freed by the caller).
584 */
insert_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * ref)585 static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
586 struct btrfs_delayed_ref_head *href,
587 struct btrfs_delayed_ref_node *ref)
588 {
589 struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
590 struct btrfs_delayed_ref_node *exist;
591 int mod;
592
593 spin_lock(&href->lock);
594 exist = tree_insert(&href->ref_tree, ref);
595 if (!exist) {
596 if (ref->action == BTRFS_ADD_DELAYED_REF)
597 list_add_tail(&ref->add_list, &href->ref_add_list);
598 spin_unlock(&href->lock);
599 trans->delayed_ref_updates++;
600 return false;
601 }
602
603 /* Now we are sure we can merge */
604 if (exist->action == ref->action) {
605 mod = ref->ref_mod;
606 } else {
607 /* Need to change action */
608 if (exist->ref_mod < ref->ref_mod) {
609 exist->action = ref->action;
610 mod = -exist->ref_mod;
611 exist->ref_mod = ref->ref_mod;
612 if (ref->action == BTRFS_ADD_DELAYED_REF)
613 list_add_tail(&exist->add_list,
614 &href->ref_add_list);
615 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
616 ASSERT(!list_empty(&exist->add_list));
617 list_del_init(&exist->add_list);
618 } else {
619 ASSERT(0);
620 }
621 } else
622 mod = -ref->ref_mod;
623 }
624 exist->ref_mod += mod;
625
626 /* remove existing tail if its ref_mod is zero */
627 if (exist->ref_mod == 0)
628 drop_delayed_ref(trans->fs_info, root, href, exist);
629 spin_unlock(&href->lock);
630 return true;
631 }
632
633 /*
634 * helper function to update the accounting in the head ref
635 * existing and update must have the same bytenr
636 */
update_existing_head_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * existing,struct btrfs_delayed_ref_head * update)637 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
638 struct btrfs_delayed_ref_head *existing,
639 struct btrfs_delayed_ref_head *update)
640 {
641 struct btrfs_delayed_ref_root *delayed_refs =
642 &trans->transaction->delayed_refs;
643 struct btrfs_fs_info *fs_info = trans->fs_info;
644 int old_ref_mod;
645
646 BUG_ON(existing->is_data != update->is_data);
647
648 spin_lock(&existing->lock);
649
650 /*
651 * When freeing an extent, we may not know the owning root when we
652 * first create the head_ref. However, some deref before the last deref
653 * will know it, so we just need to update the head_ref accordingly.
654 */
655 if (!existing->owning_root)
656 existing->owning_root = update->owning_root;
657
658 if (update->must_insert_reserved) {
659 /* if the extent was freed and then
660 * reallocated before the delayed ref
661 * entries were processed, we can end up
662 * with an existing head ref without
663 * the must_insert_reserved flag set.
664 * Set it again here
665 */
666 existing->must_insert_reserved = update->must_insert_reserved;
667 existing->owning_root = update->owning_root;
668
669 /*
670 * update the num_bytes so we make sure the accounting
671 * is done correctly
672 */
673 existing->num_bytes = update->num_bytes;
674
675 }
676
677 if (update->extent_op) {
678 if (!existing->extent_op) {
679 existing->extent_op = update->extent_op;
680 } else {
681 if (update->extent_op->update_key) {
682 memcpy(&existing->extent_op->key,
683 &update->extent_op->key,
684 sizeof(update->extent_op->key));
685 existing->extent_op->update_key = true;
686 }
687 if (update->extent_op->update_flags) {
688 existing->extent_op->flags_to_set |=
689 update->extent_op->flags_to_set;
690 existing->extent_op->update_flags = true;
691 }
692 btrfs_free_delayed_extent_op(update->extent_op);
693 }
694 }
695 /*
696 * update the reference mod on the head to reflect this new operation,
697 * only need the lock for this case cause we could be processing it
698 * currently, for refs we just added we know we're a-ok.
699 */
700 old_ref_mod = existing->total_ref_mod;
701 existing->ref_mod += update->ref_mod;
702 existing->total_ref_mod += update->ref_mod;
703
704 /*
705 * If we are going to from a positive ref mod to a negative or vice
706 * versa we need to make sure to adjust pending_csums accordingly.
707 * We reserve bytes for csum deletion when adding or updating a ref head
708 * see add_delayed_ref_head() for more details.
709 */
710 if (existing->is_data) {
711 u64 csum_leaves =
712 btrfs_csum_bytes_to_leaves(fs_info,
713 existing->num_bytes);
714
715 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
716 delayed_refs->pending_csums -= existing->num_bytes;
717 btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
718 }
719 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
720 delayed_refs->pending_csums += existing->num_bytes;
721 trans->delayed_ref_csum_deletions += csum_leaves;
722 }
723 }
724
725 spin_unlock(&existing->lock);
726 }
727
init_delayed_ref_head(struct btrfs_delayed_ref_head * head_ref,struct btrfs_ref * generic_ref,struct btrfs_qgroup_extent_record * qrecord,u64 reserved)728 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
729 struct btrfs_ref *generic_ref,
730 struct btrfs_qgroup_extent_record *qrecord,
731 u64 reserved)
732 {
733 int count_mod = 1;
734 bool must_insert_reserved = false;
735
736 /* If reserved is provided, it must be a data extent. */
737 BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
738
739 switch (generic_ref->action) {
740 case BTRFS_ADD_DELAYED_REF:
741 /* count_mod is already set to 1. */
742 break;
743 case BTRFS_UPDATE_DELAYED_HEAD:
744 count_mod = 0;
745 break;
746 case BTRFS_DROP_DELAYED_REF:
747 /*
748 * The head node stores the sum of all the mods, so dropping a ref
749 * should drop the sum in the head node by one.
750 */
751 count_mod = -1;
752 break;
753 case BTRFS_ADD_DELAYED_EXTENT:
754 /*
755 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
756 * reserved accounting when the extent is finally added, or if a
757 * later modification deletes the delayed ref without ever
758 * inserting the extent into the extent allocation tree.
759 * ref->must_insert_reserved is the flag used to record that
760 * accounting mods are required.
761 *
762 * Once we record must_insert_reserved, switch the action to
763 * BTRFS_ADD_DELAYED_REF because other special casing is not
764 * required.
765 */
766 must_insert_reserved = true;
767 break;
768 }
769
770 refcount_set(&head_ref->refs, 1);
771 head_ref->bytenr = generic_ref->bytenr;
772 head_ref->num_bytes = generic_ref->num_bytes;
773 head_ref->ref_mod = count_mod;
774 head_ref->reserved_bytes = reserved;
775 head_ref->must_insert_reserved = must_insert_reserved;
776 head_ref->owning_root = generic_ref->owning_root;
777 head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
778 head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
779 head_ref->ref_tree = RB_ROOT_CACHED;
780 INIT_LIST_HEAD(&head_ref->ref_add_list);
781 head_ref->tracked = false;
782 head_ref->processing = false;
783 head_ref->total_ref_mod = count_mod;
784 spin_lock_init(&head_ref->lock);
785 mutex_init(&head_ref->mutex);
786
787 /* If not metadata set an impossible level to help debugging. */
788 if (generic_ref->type == BTRFS_REF_METADATA)
789 head_ref->level = generic_ref->tree_ref.level;
790 else
791 head_ref->level = U8_MAX;
792
793 if (qrecord) {
794 if (generic_ref->ref_root && reserved) {
795 qrecord->data_rsv = reserved;
796 qrecord->data_rsv_refroot = generic_ref->ref_root;
797 }
798 qrecord->num_bytes = generic_ref->num_bytes;
799 qrecord->old_roots = NULL;
800 }
801 }
802
803 /*
804 * helper function to actually insert a head node into the rbtree.
805 * this does all the dirty work in terms of maintaining the correct
806 * overall modification count.
807 *
808 * Returns an error pointer in case of an error.
809 */
810 static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,int action,bool * qrecord_inserted_ret)811 add_delayed_ref_head(struct btrfs_trans_handle *trans,
812 struct btrfs_delayed_ref_head *head_ref,
813 struct btrfs_qgroup_extent_record *qrecord,
814 int action, bool *qrecord_inserted_ret)
815 {
816 struct btrfs_fs_info *fs_info = trans->fs_info;
817 struct btrfs_delayed_ref_head *existing;
818 struct btrfs_delayed_ref_root *delayed_refs;
819 const unsigned long index = (head_ref->bytenr >> fs_info->sectorsize_bits);
820 bool qrecord_inserted = false;
821
822 delayed_refs = &trans->transaction->delayed_refs;
823 lockdep_assert_held(&delayed_refs->lock);
824
825 #if BITS_PER_LONG == 32
826 if (head_ref->bytenr >= MAX_LFS_FILESIZE) {
827 if (qrecord)
828 xa_release(&delayed_refs->dirty_extents, index);
829 btrfs_err_rl(fs_info,
830 "delayed ref head %llu is beyond 32bit page cache and xarray index limit",
831 head_ref->bytenr);
832 btrfs_err_32bit_limit(fs_info);
833 return ERR_PTR(-EOVERFLOW);
834 }
835 #endif
836
837 /* Record qgroup extent info if provided */
838 if (qrecord) {
839 int ret;
840
841 ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord,
842 head_ref->bytenr);
843 if (ret) {
844 /* Clean up if insertion fails or item exists. */
845 xa_release(&delayed_refs->dirty_extents, index);
846 /* Caller responsible for freeing qrecord on error. */
847 if (ret < 0)
848 return ERR_PTR(ret);
849 kfree(qrecord);
850 } else {
851 qrecord_inserted = true;
852 }
853 }
854
855 trace_add_delayed_ref_head(fs_info, head_ref, action);
856
857 existing = xa_load(&delayed_refs->head_refs, index);
858 if (existing) {
859 update_existing_head_ref(trans, existing, head_ref);
860 /*
861 * we've updated the existing ref, free the newly
862 * allocated ref
863 */
864 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
865 head_ref = existing;
866 } else {
867 existing = xa_store(&delayed_refs->head_refs, index, head_ref, GFP_ATOMIC);
868 if (xa_is_err(existing)) {
869 /* Memory was preallocated by the caller. */
870 ASSERT(xa_err(existing) != -ENOMEM);
871 return ERR_PTR(xa_err(existing));
872 } else if (WARN_ON(existing)) {
873 /*
874 * Shouldn't happen we just did a lookup before under
875 * delayed_refs->lock.
876 */
877 return ERR_PTR(-EEXIST);
878 }
879 head_ref->tracked = true;
880 /*
881 * We reserve the amount of bytes needed to delete csums when
882 * adding the ref head and not when adding individual drop refs
883 * since the csum items are deleted only after running the last
884 * delayed drop ref (the data extent's ref count drops to 0).
885 */
886 if (head_ref->is_data && head_ref->ref_mod < 0) {
887 delayed_refs->pending_csums += head_ref->num_bytes;
888 trans->delayed_ref_csum_deletions +=
889 btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes);
890 }
891 delayed_refs->num_heads++;
892 delayed_refs->num_heads_ready++;
893 }
894 if (qrecord_inserted_ret)
895 *qrecord_inserted_ret = qrecord_inserted;
896
897 return head_ref;
898 }
899
900 /*
901 * Initialize the structure which represents a modification to a an extent.
902 *
903 * @fs_info: Internal to the mounted filesystem mount structure.
904 *
905 * @ref: The structure which is going to be initialized.
906 *
907 * @bytenr: The logical address of the extent for which a modification is
908 * going to be recorded.
909 *
910 * @num_bytes: Size of the extent whose modification is being recorded.
911 *
912 * @ref_root: The id of the root where this modification has originated, this
913 * can be either one of the well-known metadata trees or the
914 * subvolume id which references this extent.
915 *
916 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
917 * BTRFS_ADD_DELAYED_EXTENT
918 *
919 * @ref_type: Holds the type of the extent which is being recorded, can be
920 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
921 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
922 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
923 */
init_delayed_ref_common(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * ref,struct btrfs_ref * generic_ref)924 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
925 struct btrfs_delayed_ref_node *ref,
926 struct btrfs_ref *generic_ref)
927 {
928 int action = generic_ref->action;
929 u64 seq = 0;
930
931 if (action == BTRFS_ADD_DELAYED_EXTENT)
932 action = BTRFS_ADD_DELAYED_REF;
933
934 if (is_fstree(generic_ref->ref_root))
935 seq = atomic64_read(&fs_info->tree_mod_seq);
936
937 refcount_set(&ref->refs, 1);
938 ref->bytenr = generic_ref->bytenr;
939 ref->num_bytes = generic_ref->num_bytes;
940 ref->ref_mod = 1;
941 ref->action = action;
942 ref->seq = seq;
943 ref->type = btrfs_ref_type(generic_ref);
944 ref->ref_root = generic_ref->ref_root;
945 ref->parent = generic_ref->parent;
946 RB_CLEAR_NODE(&ref->ref_node);
947 INIT_LIST_HEAD(&ref->add_list);
948
949 if (generic_ref->type == BTRFS_REF_DATA)
950 ref->data_ref = generic_ref->data_ref;
951 else
952 ref->tree_ref = generic_ref->tree_ref;
953 }
954
btrfs_init_tree_ref(struct btrfs_ref * generic_ref,int level,u64 mod_root,bool skip_qgroup)955 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
956 bool skip_qgroup)
957 {
958 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
959 /* If @real_root not set, use @root as fallback */
960 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
961 #endif
962 generic_ref->tree_ref.level = level;
963 generic_ref->type = BTRFS_REF_METADATA;
964 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
965 (!mod_root || is_fstree(mod_root))))
966 generic_ref->skip_qgroup = true;
967 else
968 generic_ref->skip_qgroup = false;
969
970 }
971
btrfs_init_data_ref(struct btrfs_ref * generic_ref,u64 ino,u64 offset,u64 mod_root,bool skip_qgroup)972 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
973 u64 mod_root, bool skip_qgroup)
974 {
975 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
976 /* If @real_root not set, use @root as fallback */
977 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
978 #endif
979 generic_ref->data_ref.objectid = ino;
980 generic_ref->data_ref.offset = offset;
981 generic_ref->type = BTRFS_REF_DATA;
982 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
983 (!mod_root || is_fstree(mod_root))))
984 generic_ref->skip_qgroup = true;
985 else
986 generic_ref->skip_qgroup = false;
987 }
988
add_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op,u64 reserved)989 static int add_delayed_ref(struct btrfs_trans_handle *trans,
990 struct btrfs_ref *generic_ref,
991 struct btrfs_delayed_extent_op *extent_op,
992 u64 reserved)
993 {
994 struct btrfs_fs_info *fs_info = trans->fs_info;
995 struct btrfs_delayed_ref_node *node;
996 struct btrfs_delayed_ref_head *head_ref;
997 struct btrfs_delayed_ref_head *new_head_ref;
998 struct btrfs_delayed_ref_root *delayed_refs;
999 struct btrfs_qgroup_extent_record *record = NULL;
1000 const unsigned long index = (generic_ref->bytenr >> fs_info->sectorsize_bits);
1001 bool qrecord_reserved = false;
1002 bool qrecord_inserted;
1003 int action = generic_ref->action;
1004 bool merged;
1005 int ret;
1006
1007 node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
1008 if (!node)
1009 return -ENOMEM;
1010
1011 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1012 if (!head_ref) {
1013 ret = -ENOMEM;
1014 goto free_node;
1015 }
1016
1017 delayed_refs = &trans->transaction->delayed_refs;
1018
1019 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1020 record = kzalloc(sizeof(*record), GFP_NOFS);
1021 if (!record) {
1022 ret = -ENOMEM;
1023 goto free_head_ref;
1024 }
1025 if (xa_reserve(&delayed_refs->dirty_extents, index, GFP_NOFS)) {
1026 ret = -ENOMEM;
1027 goto free_record;
1028 }
1029 qrecord_reserved = true;
1030 }
1031
1032 ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1033 if (ret) {
1034 if (qrecord_reserved)
1035 xa_release(&delayed_refs->dirty_extents, index);
1036 goto free_record;
1037 }
1038
1039 init_delayed_ref_common(fs_info, node, generic_ref);
1040 init_delayed_ref_head(head_ref, generic_ref, record, reserved);
1041 head_ref->extent_op = extent_op;
1042
1043 spin_lock(&delayed_refs->lock);
1044
1045 /*
1046 * insert both the head node and the new ref without dropping
1047 * the spin lock
1048 */
1049 new_head_ref = add_delayed_ref_head(trans, head_ref, record,
1050 action, &qrecord_inserted);
1051 if (IS_ERR(new_head_ref)) {
1052 xa_release(&delayed_refs->head_refs, index);
1053 spin_unlock(&delayed_refs->lock);
1054 ret = PTR_ERR(new_head_ref);
1055 goto free_record;
1056 }
1057 head_ref = new_head_ref;
1058
1059 merged = insert_delayed_ref(trans, head_ref, node);
1060 spin_unlock(&delayed_refs->lock);
1061
1062 /*
1063 * Need to update the delayed_refs_rsv with any changes we may have
1064 * made.
1065 */
1066 btrfs_update_delayed_refs_rsv(trans);
1067
1068 if (generic_ref->type == BTRFS_REF_DATA)
1069 trace_add_delayed_data_ref(trans->fs_info, node);
1070 else
1071 trace_add_delayed_tree_ref(trans->fs_info, node);
1072 if (merged)
1073 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1074
1075 if (qrecord_inserted)
1076 return btrfs_qgroup_trace_extent_post(trans, record, generic_ref->bytenr);
1077 return 0;
1078
1079 free_record:
1080 kfree(record);
1081 free_head_ref:
1082 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1083 free_node:
1084 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1085 return ret;
1086 }
1087
1088 /*
1089 * Add a delayed tree ref. This does all of the accounting required to make sure
1090 * the delayed ref is eventually processed before this transaction commits.
1091 */
btrfs_add_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op)1092 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1093 struct btrfs_ref *generic_ref,
1094 struct btrfs_delayed_extent_op *extent_op)
1095 {
1096 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1097 return add_delayed_ref(trans, generic_ref, extent_op, 0);
1098 }
1099
1100 /*
1101 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1102 */
btrfs_add_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,u64 reserved)1103 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1104 struct btrfs_ref *generic_ref,
1105 u64 reserved)
1106 {
1107 ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1108 return add_delayed_ref(trans, generic_ref, NULL, reserved);
1109 }
1110
btrfs_add_delayed_extent_op(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,u8 level,struct btrfs_delayed_extent_op * extent_op)1111 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1112 u64 bytenr, u64 num_bytes, u8 level,
1113 struct btrfs_delayed_extent_op *extent_op)
1114 {
1115 const unsigned long index = (bytenr >> trans->fs_info->sectorsize_bits);
1116 struct btrfs_delayed_ref_head *head_ref;
1117 struct btrfs_delayed_ref_head *head_ref_ret;
1118 struct btrfs_delayed_ref_root *delayed_refs;
1119 struct btrfs_ref generic_ref = {
1120 .type = BTRFS_REF_METADATA,
1121 .action = BTRFS_UPDATE_DELAYED_HEAD,
1122 .bytenr = bytenr,
1123 .num_bytes = num_bytes,
1124 .tree_ref.level = level,
1125 };
1126 int ret;
1127
1128 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1129 if (!head_ref)
1130 return -ENOMEM;
1131
1132 init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1133 head_ref->extent_op = extent_op;
1134
1135 delayed_refs = &trans->transaction->delayed_refs;
1136
1137 ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1138 if (ret) {
1139 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1140 return ret;
1141 }
1142
1143 spin_lock(&delayed_refs->lock);
1144 head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL,
1145 BTRFS_UPDATE_DELAYED_HEAD, NULL);
1146 if (IS_ERR(head_ref_ret)) {
1147 xa_release(&delayed_refs->head_refs, index);
1148 spin_unlock(&delayed_refs->lock);
1149 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1150 return PTR_ERR(head_ref_ret);
1151 }
1152 spin_unlock(&delayed_refs->lock);
1153
1154 /*
1155 * Need to update the delayed_refs_rsv with any changes we may have
1156 * made.
1157 */
1158 btrfs_update_delayed_refs_rsv(trans);
1159 return 0;
1160 }
1161
btrfs_put_delayed_ref(struct btrfs_delayed_ref_node * ref)1162 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1163 {
1164 if (refcount_dec_and_test(&ref->refs)) {
1165 WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1166 kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1167 }
1168 }
1169
1170 /*
1171 * This does a simple search for the head node for a given extent. Returns the
1172 * head node if found, or NULL if not.
1173 */
1174 struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,u64 bytenr)1175 btrfs_find_delayed_ref_head(const struct btrfs_fs_info *fs_info,
1176 struct btrfs_delayed_ref_root *delayed_refs,
1177 u64 bytenr)
1178 {
1179 const unsigned long index = (bytenr >> fs_info->sectorsize_bits);
1180
1181 lockdep_assert_held(&delayed_refs->lock);
1182
1183 return xa_load(&delayed_refs->head_refs, index);
1184 }
1185
find_comp(struct btrfs_delayed_ref_node * entry,u64 root,u64 parent)1186 static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent)
1187 {
1188 int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY;
1189
1190 if (type < entry->type)
1191 return -1;
1192 if (type > entry->type)
1193 return 1;
1194
1195 if (type == BTRFS_TREE_BLOCK_REF_KEY) {
1196 if (root < entry->ref_root)
1197 return -1;
1198 if (root > entry->ref_root)
1199 return 1;
1200 } else {
1201 if (parent < entry->parent)
1202 return -1;
1203 if (parent > entry->parent)
1204 return 1;
1205 }
1206 return 0;
1207 }
1208
1209 /*
1210 * Check to see if a given root/parent reference is attached to the head. This
1211 * only checks for BTRFS_ADD_DELAYED_REF references that match, as that
1212 * indicates the reference exists for the given root or parent. This is for
1213 * tree blocks only.
1214 *
1215 * @head: the head of the bytenr we're searching.
1216 * @root: the root objectid of the reference if it is a normal reference.
1217 * @parent: the parent if this is a shared backref.
1218 */
btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head * head,u64 root,u64 parent)1219 bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
1220 u64 root, u64 parent)
1221 {
1222 struct rb_node *node;
1223 bool found = false;
1224
1225 lockdep_assert_held(&head->mutex);
1226
1227 spin_lock(&head->lock);
1228 node = head->ref_tree.rb_root.rb_node;
1229 while (node) {
1230 struct btrfs_delayed_ref_node *entry;
1231 int ret;
1232
1233 entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
1234 ret = find_comp(entry, root, parent);
1235 if (ret < 0) {
1236 node = node->rb_left;
1237 } else if (ret > 0) {
1238 node = node->rb_right;
1239 } else {
1240 /*
1241 * We only want to count ADD actions, as drops mean the
1242 * ref doesn't exist.
1243 */
1244 if (entry->action == BTRFS_ADD_DELAYED_REF)
1245 found = true;
1246 break;
1247 }
1248 }
1249 spin_unlock(&head->lock);
1250 return found;
1251 }
1252
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans)1253 void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans)
1254 {
1255 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
1256 struct btrfs_fs_info *fs_info = trans->fs_info;
1257 bool testing = btrfs_is_testing(fs_info);
1258
1259 spin_lock(&delayed_refs->lock);
1260 while (true) {
1261 struct btrfs_delayed_ref_head *head;
1262 struct rb_node *n;
1263 bool pin_bytes = false;
1264
1265 head = find_first_ref_head(delayed_refs);
1266 if (!head)
1267 break;
1268
1269 if (!btrfs_delayed_ref_lock(delayed_refs, head))
1270 continue;
1271
1272 spin_lock(&head->lock);
1273 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
1274 struct btrfs_delayed_ref_node *ref;
1275
1276 ref = rb_entry(n, struct btrfs_delayed_ref_node, ref_node);
1277 drop_delayed_ref(fs_info, delayed_refs, head, ref);
1278 }
1279 if (head->must_insert_reserved)
1280 pin_bytes = true;
1281 btrfs_free_delayed_extent_op(head->extent_op);
1282 btrfs_delete_ref_head(fs_info, delayed_refs, head);
1283 spin_unlock(&head->lock);
1284 spin_unlock(&delayed_refs->lock);
1285 mutex_unlock(&head->mutex);
1286
1287 if (!testing && pin_bytes) {
1288 struct btrfs_block_group *bg;
1289
1290 bg = btrfs_lookup_block_group(fs_info, head->bytenr);
1291 if (WARN_ON_ONCE(bg == NULL)) {
1292 /*
1293 * Unexpected and there's nothing we can do here
1294 * because we are in a transaction abort path,
1295 * so any errors can only be ignored or reported
1296 * while attempting to cleanup all resources.
1297 */
1298 btrfs_err(fs_info,
1299 "block group for delayed ref at %llu was not found while destroying ref head",
1300 head->bytenr);
1301 } else {
1302 spin_lock(&bg->space_info->lock);
1303 spin_lock(&bg->lock);
1304 bg->pinned += head->num_bytes;
1305 btrfs_space_info_update_bytes_pinned(bg->space_info,
1306 head->num_bytes);
1307 bg->reserved -= head->num_bytes;
1308 bg->space_info->bytes_reserved -= head->num_bytes;
1309 spin_unlock(&bg->lock);
1310 spin_unlock(&bg->space_info->lock);
1311
1312 btrfs_put_block_group(bg);
1313 }
1314
1315 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
1316 head->bytenr + head->num_bytes - 1);
1317 }
1318 if (!testing)
1319 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1320 btrfs_put_delayed_ref_head(head);
1321 cond_resched();
1322 spin_lock(&delayed_refs->lock);
1323 }
1324
1325 if (!testing)
1326 btrfs_qgroup_destroy_extent_records(trans);
1327
1328 spin_unlock(&delayed_refs->lock);
1329 }
1330
btrfs_delayed_ref_exit(void)1331 void __cold btrfs_delayed_ref_exit(void)
1332 {
1333 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1334 kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
1335 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1336 }
1337
btrfs_delayed_ref_init(void)1338 int __init btrfs_delayed_ref_init(void)
1339 {
1340 btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1341 if (!btrfs_delayed_ref_head_cachep)
1342 goto fail;
1343
1344 btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1345 if (!btrfs_delayed_ref_node_cachep)
1346 goto fail;
1347
1348 btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1349 if (!btrfs_delayed_extent_op_cachep)
1350 goto fail;
1351
1352 return 0;
1353 fail:
1354 btrfs_delayed_ref_exit();
1355 return -ENOMEM;
1356 }
1357