1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #define pr_fmt(fmt) "GICv3: " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kernel.h>
16 #include <linux/kstrtox.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/percpu.h>
21 #include <linux/refcount.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24
25 #include <linux/irqchip.h>
26 #include <linux/irqchip/arm-gic-common.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/irqchip/arm-gic-v3-prio.h>
29 #include <linux/irqchip/irq-partition-percpu.h>
30 #include <linux/bitfield.h>
31 #include <linux/bits.h>
32 #include <linux/arm-smccc.h>
33
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/smp_plat.h>
37 #include <asm/virt.h>
38
39 #include "irq-gic-common.h"
40
41 static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ;
42 static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI;
43
44 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
45 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
46 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 2)
47 #define FLAGS_WORKAROUND_INSECURE (1ULL << 3)
48
49 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
50
51 static struct cpumask broken_rdists __read_mostly __maybe_unused;
52
53 struct redist_region {
54 void __iomem *redist_base;
55 phys_addr_t phys_base;
56 bool single_redist;
57 };
58
59 struct gic_chip_data {
60 struct fwnode_handle *fwnode;
61 phys_addr_t dist_phys_base;
62 void __iomem *dist_base;
63 struct redist_region *redist_regions;
64 struct rdists rdists;
65 struct irq_domain *domain;
66 u64 redist_stride;
67 u32 nr_redist_regions;
68 u64 flags;
69 bool has_rss;
70 unsigned int ppi_nr;
71 struct partition_desc **ppi_descs;
72 };
73
74 #define T241_CHIPS_MAX 4
75 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
76 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
77
78 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
79
80 static struct gic_chip_data gic_data __read_mostly;
81 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
82
83 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
84 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
85 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
86
87 static bool nmi_support_forbidden;
88
89 /*
90 * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
91 * are potentially stolen by the secure side. Some code, especially code dealing
92 * with hwirq IDs, is simplified by accounting for all 16.
93 */
94 #define SGI_NR 16
95
96 /*
97 * The behaviours of RPR and PMR registers differ depending on the value of
98 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
99 * distributor and redistributors depends on whether security is enabled in the
100 * GIC.
101 *
102 * When security is enabled, non-secure priority values from the (re)distributor
103 * are presented to the GIC CPUIF as follow:
104 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
105 *
106 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
107 * EL1 are subject to a similar operation thus matching the priorities presented
108 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
109 * these values are unchanged by the GIC.
110 *
111 * see GICv3/GICv4 Architecture Specification (IHI0069D):
112 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
113 * priorities.
114 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
115 * interrupt.
116 */
117 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
118
gic_get_pribits(void)119 static u32 gic_get_pribits(void)
120 {
121 u32 pribits;
122
123 pribits = gic_read_ctlr();
124 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
125 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
126 pribits++;
127
128 return pribits;
129 }
130
gic_has_group0(void)131 static bool gic_has_group0(void)
132 {
133 u32 val;
134 u32 old_pmr;
135
136 old_pmr = gic_read_pmr();
137
138 /*
139 * Let's find out if Group0 is under control of EL3 or not by
140 * setting the highest possible, non-zero priority in PMR.
141 *
142 * If SCR_EL3.FIQ is set, the priority gets shifted down in
143 * order for the CPU interface to set bit 7, and keep the
144 * actual priority in the non-secure range. In the process, it
145 * looses the least significant bit and the actual priority
146 * becomes 0x80. Reading it back returns 0, indicating that
147 * we're don't have access to Group0.
148 */
149 gic_write_pmr(BIT(8 - gic_get_pribits()));
150 val = gic_read_pmr();
151
152 gic_write_pmr(old_pmr);
153
154 return val != 0;
155 }
156
gic_dist_security_disabled(void)157 static inline bool gic_dist_security_disabled(void)
158 {
159 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
160 }
161
162 static bool cpus_have_security_disabled __ro_after_init;
163 static bool cpus_have_group0 __ro_after_init;
164
gic_prio_init(void)165 static void __init gic_prio_init(void)
166 {
167 bool ds;
168
169 cpus_have_group0 = gic_has_group0();
170
171 ds = gic_dist_security_disabled();
172 if ((gic_data.flags & FLAGS_WORKAROUND_INSECURE) && !ds) {
173 if (cpus_have_group0) {
174 u32 val;
175
176 val = readl_relaxed(gic_data.dist_base + GICD_CTLR);
177 val |= GICD_CTLR_DS;
178 writel_relaxed(val, gic_data.dist_base + GICD_CTLR);
179
180 ds = gic_dist_security_disabled();
181 if (ds)
182 pr_warn("Broken GIC integration, security disabled\n");
183 } else {
184 pr_warn("Broken GIC integration, pNMI forbidden\n");
185 nmi_support_forbidden = true;
186 }
187 }
188
189 cpus_have_security_disabled = ds;
190
191 /*
192 * How priority values are used by the GIC depends on two things:
193 * the security state of the GIC (controlled by the GICD_CTLR.DS bit)
194 * and if Group 0 interrupts can be delivered to Linux in the non-secure
195 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
196 * way priorities are presented in ICC_PMR_EL1 and in the distributor:
197 *
198 * GICD_CTLR.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor
199 * -------------------------------------------------------
200 * 1 | - | unchanged | unchanged
201 * -------------------------------------------------------
202 * 0 | 1 | non-secure | non-secure
203 * -------------------------------------------------------
204 * 0 | 0 | unchanged | non-secure
205 *
206 * In the non-secure view reads and writes are modified:
207 *
208 * - A value written is right-shifted by one and the MSB is set,
209 * forcing the priority into the non-secure range.
210 *
211 * - A value read is left-shifted by one.
212 *
213 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
214 * are both either modified or unchanged, we can use the same set of
215 * priorities.
216 *
217 * In the last case, where only the interrupt priorities are modified to
218 * be in the non-secure range, we program the non-secure values into
219 * the distributor to match the PMR values we want.
220 */
221 if (cpus_have_group0 && !cpus_have_security_disabled) {
222 dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq);
223 dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi);
224 }
225
226 pr_info("GICD_CTLR.DS=%d, SCR_EL3.FIQ=%d\n",
227 cpus_have_security_disabled,
228 !cpus_have_group0);
229 }
230
231 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
232 static refcount_t *rdist_nmi_refs;
233
234 static struct gic_kvm_info gic_v3_kvm_info __initdata;
235 static DEFINE_PER_CPU(bool, has_rss);
236
237 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
238 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
239 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
240 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
241
242 /* Our default, arbitrary priority value. Linux only uses one anyway. */
243 #define DEFAULT_PMR_VALUE 0xf0
244
245 enum gic_intid_range {
246 SGI_RANGE,
247 PPI_RANGE,
248 SPI_RANGE,
249 EPPI_RANGE,
250 ESPI_RANGE,
251 LPI_RANGE,
252 __INVALID_RANGE__
253 };
254
__get_intid_range(irq_hw_number_t hwirq)255 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
256 {
257 switch (hwirq) {
258 case 0 ... 15:
259 return SGI_RANGE;
260 case 16 ... 31:
261 return PPI_RANGE;
262 case 32 ... 1019:
263 return SPI_RANGE;
264 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
265 return EPPI_RANGE;
266 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
267 return ESPI_RANGE;
268 case 8192 ... GENMASK(23, 0):
269 return LPI_RANGE;
270 default:
271 return __INVALID_RANGE__;
272 }
273 }
274
get_intid_range(struct irq_data * d)275 static enum gic_intid_range get_intid_range(struct irq_data *d)
276 {
277 return __get_intid_range(d->hwirq);
278 }
279
gic_irq_in_rdist(struct irq_data * d)280 static inline bool gic_irq_in_rdist(struct irq_data *d)
281 {
282 switch (get_intid_range(d)) {
283 case SGI_RANGE:
284 case PPI_RANGE:
285 case EPPI_RANGE:
286 return true;
287 default:
288 return false;
289 }
290 }
291
gic_dist_base_alias(struct irq_data * d)292 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
293 {
294 if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
295 irq_hw_number_t hwirq = irqd_to_hwirq(d);
296 u32 chip;
297
298 /*
299 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
300 * registers are directed to the chip that owns the SPI. The
301 * the alias region can also be used for writes to the
302 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
303 * for 320 {E}SPIs. Mappings for all 4 chips:
304 * Chip0 = 32-351
305 * Chip1 = 352-671
306 * Chip2 = 672-991
307 * Chip3 = 4096-4415
308 */
309 switch (__get_intid_range(hwirq)) {
310 case SPI_RANGE:
311 chip = (hwirq - 32) / 320;
312 break;
313 case ESPI_RANGE:
314 chip = 3;
315 break;
316 default:
317 unreachable();
318 }
319 return t241_dist_base_alias[chip];
320 }
321
322 return gic_data.dist_base;
323 }
324
gic_dist_base(struct irq_data * d)325 static inline void __iomem *gic_dist_base(struct irq_data *d)
326 {
327 switch (get_intid_range(d)) {
328 case SGI_RANGE:
329 case PPI_RANGE:
330 case EPPI_RANGE:
331 /* SGI+PPI -> SGI_base for this CPU */
332 return gic_data_rdist_sgi_base();
333
334 case SPI_RANGE:
335 case ESPI_RANGE:
336 /* SPI -> dist_base */
337 return gic_data.dist_base;
338
339 default:
340 return NULL;
341 }
342 }
343
gic_do_wait_for_rwp(void __iomem * base,u32 bit)344 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
345 {
346 u32 val;
347 int ret;
348
349 ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
350 1, USEC_PER_SEC);
351 if (ret == -ETIMEDOUT)
352 pr_err_ratelimited("RWP timeout, gone fishing\n");
353 }
354
355 /* Wait for completion of a distributor change */
gic_dist_wait_for_rwp(void)356 static void gic_dist_wait_for_rwp(void)
357 {
358 gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
359 }
360
361 /* Wait for completion of a redistributor change */
gic_redist_wait_for_rwp(void)362 static void gic_redist_wait_for_rwp(void)
363 {
364 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
365 }
366
gic_enable_redist(bool enable)367 static void gic_enable_redist(bool enable)
368 {
369 void __iomem *rbase;
370 u32 val;
371 int ret;
372
373 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
374 return;
375
376 rbase = gic_data_rdist_rd_base();
377
378 val = readl_relaxed(rbase + GICR_WAKER);
379 if (enable)
380 /* Wake up this CPU redistributor */
381 val &= ~GICR_WAKER_ProcessorSleep;
382 else
383 val |= GICR_WAKER_ProcessorSleep;
384 writel_relaxed(val, rbase + GICR_WAKER);
385
386 if (!enable) { /* Check that GICR_WAKER is writeable */
387 val = readl_relaxed(rbase + GICR_WAKER);
388 if (!(val & GICR_WAKER_ProcessorSleep))
389 return; /* No PM support in this redistributor */
390 }
391
392 ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
393 enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
394 1, USEC_PER_SEC);
395 if (ret == -ETIMEDOUT) {
396 pr_err_ratelimited("redistributor failed to %s...\n",
397 enable ? "wakeup" : "sleep");
398 }
399 }
400
401 /*
402 * Routines to disable, enable, EOI and route interrupts
403 */
convert_offset_index(struct irq_data * d,u32 offset,u32 * index)404 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
405 {
406 switch (get_intid_range(d)) {
407 case SGI_RANGE:
408 case PPI_RANGE:
409 case SPI_RANGE:
410 *index = d->hwirq;
411 return offset;
412 case EPPI_RANGE:
413 /*
414 * Contrary to the ESPI range, the EPPI range is contiguous
415 * to the PPI range in the registers, so let's adjust the
416 * displacement accordingly. Consistency is overrated.
417 */
418 *index = d->hwirq - EPPI_BASE_INTID + 32;
419 return offset;
420 case ESPI_RANGE:
421 *index = d->hwirq - ESPI_BASE_INTID;
422 switch (offset) {
423 case GICD_ISENABLER:
424 return GICD_ISENABLERnE;
425 case GICD_ICENABLER:
426 return GICD_ICENABLERnE;
427 case GICD_ISPENDR:
428 return GICD_ISPENDRnE;
429 case GICD_ICPENDR:
430 return GICD_ICPENDRnE;
431 case GICD_ISACTIVER:
432 return GICD_ISACTIVERnE;
433 case GICD_ICACTIVER:
434 return GICD_ICACTIVERnE;
435 case GICD_IPRIORITYR:
436 return GICD_IPRIORITYRnE;
437 case GICD_ICFGR:
438 return GICD_ICFGRnE;
439 case GICD_IROUTER:
440 return GICD_IROUTERnE;
441 default:
442 break;
443 }
444 break;
445 default:
446 break;
447 }
448
449 WARN_ON(1);
450 *index = d->hwirq;
451 return offset;
452 }
453
gic_peek_irq(struct irq_data * d,u32 offset)454 static int gic_peek_irq(struct irq_data *d, u32 offset)
455 {
456 void __iomem *base;
457 u32 index, mask;
458
459 offset = convert_offset_index(d, offset, &index);
460 mask = 1 << (index % 32);
461
462 if (gic_irq_in_rdist(d))
463 base = gic_data_rdist_sgi_base();
464 else
465 base = gic_dist_base_alias(d);
466
467 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
468 }
469
gic_poke_irq(struct irq_data * d,u32 offset)470 static void gic_poke_irq(struct irq_data *d, u32 offset)
471 {
472 void __iomem *base;
473 u32 index, mask;
474
475 offset = convert_offset_index(d, offset, &index);
476 mask = 1 << (index % 32);
477
478 if (gic_irq_in_rdist(d))
479 base = gic_data_rdist_sgi_base();
480 else
481 base = gic_data.dist_base;
482
483 writel_relaxed(mask, base + offset + (index / 32) * 4);
484 }
485
gic_mask_irq(struct irq_data * d)486 static void gic_mask_irq(struct irq_data *d)
487 {
488 gic_poke_irq(d, GICD_ICENABLER);
489 if (gic_irq_in_rdist(d))
490 gic_redist_wait_for_rwp();
491 else
492 gic_dist_wait_for_rwp();
493 }
494
gic_eoimode1_mask_irq(struct irq_data * d)495 static void gic_eoimode1_mask_irq(struct irq_data *d)
496 {
497 gic_mask_irq(d);
498 /*
499 * When masking a forwarded interrupt, make sure it is
500 * deactivated as well.
501 *
502 * This ensures that an interrupt that is getting
503 * disabled/masked will not get "stuck", because there is
504 * noone to deactivate it (guest is being terminated).
505 */
506 if (irqd_is_forwarded_to_vcpu(d))
507 gic_poke_irq(d, GICD_ICACTIVER);
508 }
509
gic_unmask_irq(struct irq_data * d)510 static void gic_unmask_irq(struct irq_data *d)
511 {
512 gic_poke_irq(d, GICD_ISENABLER);
513 }
514
gic_supports_nmi(void)515 static inline bool gic_supports_nmi(void)
516 {
517 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
518 static_branch_likely(&supports_pseudo_nmis);
519 }
520
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)521 static int gic_irq_set_irqchip_state(struct irq_data *d,
522 enum irqchip_irq_state which, bool val)
523 {
524 u32 reg;
525
526 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
527 return -EINVAL;
528
529 switch (which) {
530 case IRQCHIP_STATE_PENDING:
531 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
532 break;
533
534 case IRQCHIP_STATE_ACTIVE:
535 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
536 break;
537
538 case IRQCHIP_STATE_MASKED:
539 if (val) {
540 gic_mask_irq(d);
541 return 0;
542 }
543 reg = GICD_ISENABLER;
544 break;
545
546 default:
547 return -EINVAL;
548 }
549
550 gic_poke_irq(d, reg);
551
552 /*
553 * Force read-back to guarantee that the active state has taken
554 * effect, and won't race with a guest-driven deactivation.
555 */
556 if (reg == GICD_ISACTIVER)
557 gic_peek_irq(d, reg);
558 return 0;
559 }
560
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)561 static int gic_irq_get_irqchip_state(struct irq_data *d,
562 enum irqchip_irq_state which, bool *val)
563 {
564 if (d->hwirq >= 8192) /* PPI/SPI only */
565 return -EINVAL;
566
567 switch (which) {
568 case IRQCHIP_STATE_PENDING:
569 *val = gic_peek_irq(d, GICD_ISPENDR);
570 break;
571
572 case IRQCHIP_STATE_ACTIVE:
573 *val = gic_peek_irq(d, GICD_ISACTIVER);
574 break;
575
576 case IRQCHIP_STATE_MASKED:
577 *val = !gic_peek_irq(d, GICD_ISENABLER);
578 break;
579
580 default:
581 return -EINVAL;
582 }
583
584 return 0;
585 }
586
gic_irq_set_prio(struct irq_data * d,u8 prio)587 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
588 {
589 void __iomem *base = gic_dist_base(d);
590 u32 offset, index;
591
592 offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
593
594 writeb_relaxed(prio, base + offset + index);
595 }
596
__gic_get_ppi_index(irq_hw_number_t hwirq)597 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
598 {
599 switch (__get_intid_range(hwirq)) {
600 case PPI_RANGE:
601 return hwirq - 16;
602 case EPPI_RANGE:
603 return hwirq - EPPI_BASE_INTID + 16;
604 default:
605 unreachable();
606 }
607 }
608
__gic_get_rdist_index(irq_hw_number_t hwirq)609 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
610 {
611 switch (__get_intid_range(hwirq)) {
612 case SGI_RANGE:
613 case PPI_RANGE:
614 return hwirq;
615 case EPPI_RANGE:
616 return hwirq - EPPI_BASE_INTID + 32;
617 default:
618 unreachable();
619 }
620 }
621
gic_get_rdist_index(struct irq_data * d)622 static u32 gic_get_rdist_index(struct irq_data *d)
623 {
624 return __gic_get_rdist_index(d->hwirq);
625 }
626
gic_irq_nmi_setup(struct irq_data * d)627 static int gic_irq_nmi_setup(struct irq_data *d)
628 {
629 struct irq_desc *desc = irq_to_desc(d->irq);
630
631 if (!gic_supports_nmi())
632 return -EINVAL;
633
634 if (gic_peek_irq(d, GICD_ISENABLER)) {
635 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
636 return -EINVAL;
637 }
638
639 /*
640 * A secondary irq_chip should be in charge of LPI request,
641 * it should not be possible to get there
642 */
643 if (WARN_ON(irqd_to_hwirq(d) >= 8192))
644 return -EINVAL;
645
646 /* desc lock should already be held */
647 if (gic_irq_in_rdist(d)) {
648 u32 idx = gic_get_rdist_index(d);
649
650 /*
651 * Setting up a percpu interrupt as NMI, only switch handler
652 * for first NMI
653 */
654 if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
655 refcount_set(&rdist_nmi_refs[idx], 1);
656 desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
657 }
658 } else {
659 desc->handle_irq = handle_fasteoi_nmi;
660 }
661
662 gic_irq_set_prio(d, dist_prio_nmi);
663
664 return 0;
665 }
666
gic_irq_nmi_teardown(struct irq_data * d)667 static void gic_irq_nmi_teardown(struct irq_data *d)
668 {
669 struct irq_desc *desc = irq_to_desc(d->irq);
670
671 if (WARN_ON(!gic_supports_nmi()))
672 return;
673
674 if (gic_peek_irq(d, GICD_ISENABLER)) {
675 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
676 return;
677 }
678
679 /*
680 * A secondary irq_chip should be in charge of LPI request,
681 * it should not be possible to get there
682 */
683 if (WARN_ON(irqd_to_hwirq(d) >= 8192))
684 return;
685
686 /* desc lock should already be held */
687 if (gic_irq_in_rdist(d)) {
688 u32 idx = gic_get_rdist_index(d);
689
690 /* Tearing down NMI, only switch handler for last NMI */
691 if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
692 desc->handle_irq = handle_percpu_devid_irq;
693 } else {
694 desc->handle_irq = handle_fasteoi_irq;
695 }
696
697 gic_irq_set_prio(d, dist_prio_irq);
698 }
699
gic_arm64_erratum_2941627_needed(struct irq_data * d)700 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
701 {
702 enum gic_intid_range range;
703
704 if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
705 return false;
706
707 range = get_intid_range(d);
708
709 /*
710 * The workaround is needed if the IRQ is an SPI and
711 * the target cpu is different from the one we are
712 * executing on.
713 */
714 return (range == SPI_RANGE || range == ESPI_RANGE) &&
715 !cpumask_test_cpu(raw_smp_processor_id(),
716 irq_data_get_effective_affinity_mask(d));
717 }
718
gic_eoi_irq(struct irq_data * d)719 static void gic_eoi_irq(struct irq_data *d)
720 {
721 write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
722 isb();
723
724 if (gic_arm64_erratum_2941627_needed(d)) {
725 /*
726 * Make sure the GIC stream deactivate packet
727 * issued by ICC_EOIR1_EL1 has completed before
728 * deactivating through GICD_IACTIVER.
729 */
730 dsb(sy);
731 gic_poke_irq(d, GICD_ICACTIVER);
732 }
733 }
734
gic_eoimode1_eoi_irq(struct irq_data * d)735 static void gic_eoimode1_eoi_irq(struct irq_data *d)
736 {
737 /*
738 * No need to deactivate an LPI, or an interrupt that
739 * is is getting forwarded to a vcpu.
740 */
741 if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
742 return;
743
744 if (!gic_arm64_erratum_2941627_needed(d))
745 gic_write_dir(irqd_to_hwirq(d));
746 else
747 gic_poke_irq(d, GICD_ICACTIVER);
748 }
749
gic_set_type(struct irq_data * d,unsigned int type)750 static int gic_set_type(struct irq_data *d, unsigned int type)
751 {
752 irq_hw_number_t irq = irqd_to_hwirq(d);
753 enum gic_intid_range range;
754 void __iomem *base;
755 u32 offset, index;
756 int ret;
757
758 range = get_intid_range(d);
759
760 /* Interrupt configuration for SGIs can't be changed */
761 if (range == SGI_RANGE)
762 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
763
764 /* SPIs have restrictions on the supported types */
765 if ((range == SPI_RANGE || range == ESPI_RANGE) &&
766 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
767 return -EINVAL;
768
769 if (gic_irq_in_rdist(d))
770 base = gic_data_rdist_sgi_base();
771 else
772 base = gic_dist_base_alias(d);
773
774 offset = convert_offset_index(d, GICD_ICFGR, &index);
775
776 ret = gic_configure_irq(index, type, base + offset);
777 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
778 /* Misconfigured PPIs are usually not fatal */
779 pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
780 ret = 0;
781 }
782
783 return ret;
784 }
785
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)786 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
787 {
788 if (get_intid_range(d) == SGI_RANGE)
789 return -EINVAL;
790
791 if (vcpu)
792 irqd_set_forwarded_to_vcpu(d);
793 else
794 irqd_clr_forwarded_to_vcpu(d);
795 return 0;
796 }
797
gic_cpu_to_affinity(int cpu)798 static u64 gic_cpu_to_affinity(int cpu)
799 {
800 u64 mpidr = cpu_logical_map(cpu);
801 u64 aff;
802
803 /* ASR8601 needs to have its affinities shifted down... */
804 if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
805 mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) |
806 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
807
808 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
809 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
810 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
811 MPIDR_AFFINITY_LEVEL(mpidr, 0));
812
813 return aff;
814 }
815
gic_deactivate_unhandled(u32 irqnr)816 static void gic_deactivate_unhandled(u32 irqnr)
817 {
818 if (static_branch_likely(&supports_deactivate_key)) {
819 if (irqnr < 8192)
820 gic_write_dir(irqnr);
821 } else {
822 write_gicreg(irqnr, ICC_EOIR1_EL1);
823 isb();
824 }
825 }
826
827 /*
828 * Follow a read of the IAR with any HW maintenance that needs to happen prior
829 * to invoking the relevant IRQ handler. We must do two things:
830 *
831 * (1) Ensure instruction ordering between a read of IAR and subsequent
832 * instructions in the IRQ handler using an ISB.
833 *
834 * It is possible for the IAR to report an IRQ which was signalled *after*
835 * the CPU took an IRQ exception as multiple interrupts can race to be
836 * recognized by the GIC, earlier interrupts could be withdrawn, and/or
837 * later interrupts could be prioritized by the GIC.
838 *
839 * For devices which are tightly coupled to the CPU, such as PMUs, a
840 * context synchronization event is necessary to ensure that system
841 * register state is not stale, as these may have been indirectly written
842 * *after* exception entry.
843 *
844 * (2) Execute an interrupt priority drop when EOI mode 1 is in use.
845 */
gic_complete_ack(u32 irqnr)846 static inline void gic_complete_ack(u32 irqnr)
847 {
848 if (static_branch_likely(&supports_deactivate_key))
849 write_gicreg(irqnr, ICC_EOIR1_EL1);
850
851 isb();
852 }
853
gic_rpr_is_nmi_prio(void)854 static bool gic_rpr_is_nmi_prio(void)
855 {
856 if (!gic_supports_nmi())
857 return false;
858
859 return unlikely(gic_read_rpr() == GICV3_PRIO_NMI);
860 }
861
gic_irqnr_is_special(u32 irqnr)862 static bool gic_irqnr_is_special(u32 irqnr)
863 {
864 return irqnr >= 1020 && irqnr <= 1023;
865 }
866
__gic_handle_irq(u32 irqnr,struct pt_regs * regs)867 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
868 {
869 if (gic_irqnr_is_special(irqnr))
870 return;
871
872 gic_complete_ack(irqnr);
873
874 if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
875 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
876 gic_deactivate_unhandled(irqnr);
877 }
878 }
879
__gic_handle_nmi(u32 irqnr,struct pt_regs * regs)880 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
881 {
882 if (gic_irqnr_is_special(irqnr))
883 return;
884
885 gic_complete_ack(irqnr);
886
887 if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
888 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
889 gic_deactivate_unhandled(irqnr);
890 }
891 }
892
893 /*
894 * An exception has been taken from a context with IRQs enabled, and this could
895 * be an IRQ or an NMI.
896 *
897 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
898 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
899 * after handling any NMI but before handling any IRQ.
900 *
901 * The entry code has performed IRQ entry, and if an NMI is detected we must
902 * perform NMI entry/exit around invoking the handler.
903 */
__gic_handle_irq_from_irqson(struct pt_regs * regs)904 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
905 {
906 bool is_nmi;
907 u32 irqnr;
908
909 irqnr = gic_read_iar();
910
911 is_nmi = gic_rpr_is_nmi_prio();
912
913 if (is_nmi) {
914 nmi_enter();
915 __gic_handle_nmi(irqnr, regs);
916 nmi_exit();
917 }
918
919 if (gic_prio_masking_enabled()) {
920 gic_pmr_mask_irqs();
921 gic_arch_enable_irqs();
922 }
923
924 if (!is_nmi)
925 __gic_handle_irq(irqnr, regs);
926 }
927
928 /*
929 * An exception has been taken from a context with IRQs disabled, which can only
930 * be an NMI.
931 *
932 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
933 * DAIF.IF (and ICC_PMR_EL1) unchanged.
934 *
935 * The entry code has performed NMI entry.
936 */
__gic_handle_irq_from_irqsoff(struct pt_regs * regs)937 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
938 {
939 u64 pmr;
940 u32 irqnr;
941
942 /*
943 * We were in a context with IRQs disabled. However, the
944 * entry code has set PMR to a value that allows any
945 * interrupt to be acknowledged, and not just NMIs. This can
946 * lead to surprising effects if the NMI has been retired in
947 * the meantime, and that there is an IRQ pending. The IRQ
948 * would then be taken in NMI context, something that nobody
949 * wants to debug twice.
950 *
951 * Until we sort this, drop PMR again to a level that will
952 * actually only allow NMIs before reading IAR, and then
953 * restore it to what it was.
954 */
955 pmr = gic_read_pmr();
956 gic_pmr_mask_irqs();
957 isb();
958 irqnr = gic_read_iar();
959 gic_write_pmr(pmr);
960
961 __gic_handle_nmi(irqnr, regs);
962 }
963
gic_handle_irq(struct pt_regs * regs)964 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
965 {
966 if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
967 __gic_handle_irq_from_irqsoff(regs);
968 else
969 __gic_handle_irq_from_irqson(regs);
970 }
971
gic_dist_init(void)972 static void __init gic_dist_init(void)
973 {
974 unsigned int i;
975 u64 affinity;
976 void __iomem *base = gic_data.dist_base;
977 u32 val;
978
979 /* Disable the distributor */
980 writel_relaxed(0, base + GICD_CTLR);
981 gic_dist_wait_for_rwp();
982
983 /*
984 * Configure SPIs as non-secure Group-1. This will only matter
985 * if the GIC only has a single security state. This will not
986 * do the right thing if the kernel is running in secure mode,
987 * but that's not the intended use case anyway.
988 */
989 for (i = 32; i < GIC_LINE_NR; i += 32)
990 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
991
992 /* Extended SPI range, not handled by the GICv2/GICv3 common code */
993 for (i = 0; i < GIC_ESPI_NR; i += 32) {
994 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
995 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
996 }
997
998 for (i = 0; i < GIC_ESPI_NR; i += 32)
999 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
1000
1001 for (i = 0; i < GIC_ESPI_NR; i += 16)
1002 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
1003
1004 for (i = 0; i < GIC_ESPI_NR; i += 4)
1005 writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq),
1006 base + GICD_IPRIORITYRnE + i);
1007
1008 /* Now do the common stuff */
1009 gic_dist_config(base, GIC_LINE_NR, dist_prio_irq);
1010
1011 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
1012 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
1013 pr_info("Enabling SGIs without active state\n");
1014 val |= GICD_CTLR_nASSGIreq;
1015 }
1016
1017 /* Enable distributor with ARE, Group1, and wait for it to drain */
1018 writel_relaxed(val, base + GICD_CTLR);
1019 gic_dist_wait_for_rwp();
1020
1021 /*
1022 * Set all global interrupts to the boot CPU only. ARE must be
1023 * enabled.
1024 */
1025 affinity = gic_cpu_to_affinity(smp_processor_id());
1026 for (i = 32; i < GIC_LINE_NR; i++)
1027 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
1028
1029 for (i = 0; i < GIC_ESPI_NR; i++)
1030 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
1031 }
1032
gic_iterate_rdists(int (* fn)(struct redist_region *,void __iomem *))1033 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
1034 {
1035 int ret = -ENODEV;
1036 int i;
1037
1038 for (i = 0; i < gic_data.nr_redist_regions; i++) {
1039 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
1040 u64 typer;
1041 u32 reg;
1042
1043 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
1044 if (reg != GIC_PIDR2_ARCH_GICv3 &&
1045 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
1046 pr_warn("No redistributor present @%p\n", ptr);
1047 break;
1048 }
1049
1050 do {
1051 typer = gic_read_typer(ptr + GICR_TYPER);
1052 ret = fn(gic_data.redist_regions + i, ptr);
1053 if (!ret)
1054 return 0;
1055
1056 if (gic_data.redist_regions[i].single_redist)
1057 break;
1058
1059 if (gic_data.redist_stride) {
1060 ptr += gic_data.redist_stride;
1061 } else {
1062 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
1063 if (typer & GICR_TYPER_VLPIS)
1064 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
1065 }
1066 } while (!(typer & GICR_TYPER_LAST));
1067 }
1068
1069 return ret ? -ENODEV : 0;
1070 }
1071
__gic_populate_rdist(struct redist_region * region,void __iomem * ptr)1072 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1073 {
1074 unsigned long mpidr;
1075 u64 typer;
1076 u32 aff;
1077
1078 /*
1079 * Convert affinity to a 32bit value that can be matched to
1080 * GICR_TYPER bits [63:32].
1081 */
1082 mpidr = gic_cpu_to_affinity(smp_processor_id());
1083
1084 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1085 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1086 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1087 MPIDR_AFFINITY_LEVEL(mpidr, 0));
1088
1089 typer = gic_read_typer(ptr + GICR_TYPER);
1090 if ((typer >> 32) == aff) {
1091 u64 offset = ptr - region->redist_base;
1092 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1093 gic_data_rdist_rd_base() = ptr;
1094 gic_data_rdist()->phys_base = region->phys_base + offset;
1095
1096 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1097 smp_processor_id(), mpidr,
1098 (int)(region - gic_data.redist_regions),
1099 &gic_data_rdist()->phys_base);
1100 return 0;
1101 }
1102
1103 /* Try next one */
1104 return 1;
1105 }
1106
gic_populate_rdist(void)1107 static int gic_populate_rdist(void)
1108 {
1109 if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1110 return 0;
1111
1112 /* We couldn't even deal with ourselves... */
1113 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1114 smp_processor_id(),
1115 (unsigned long)cpu_logical_map(smp_processor_id()));
1116 return -ENODEV;
1117 }
1118
__gic_update_rdist_properties(struct redist_region * region,void __iomem * ptr)1119 static int __gic_update_rdist_properties(struct redist_region *region,
1120 void __iomem *ptr)
1121 {
1122 u64 typer = gic_read_typer(ptr + GICR_TYPER);
1123 u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1124
1125 /* Boot-time cleanup */
1126 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1127 u64 val;
1128
1129 /* Deactivate any present vPE */
1130 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1131 if (val & GICR_VPENDBASER_Valid)
1132 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1133 ptr + SZ_128K + GICR_VPENDBASER);
1134
1135 /* Mark the VPE table as invalid */
1136 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1137 val &= ~GICR_VPROPBASER_4_1_VALID;
1138 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1139 }
1140
1141 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1142
1143 /*
1144 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1145 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1146 * that the ITS driver can make use of for LPIs (and not VLPIs).
1147 *
1148 * These are 3 different ways to express the same thing, depending
1149 * on the revision of the architecture and its relaxations over
1150 * time. Just group them under the 'direct_lpi' banner.
1151 */
1152 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1153 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1154 !!(ctlr & GICR_CTLR_IR) |
1155 gic_data.rdists.has_rvpeid);
1156 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1157
1158 /* Detect non-sensical configurations */
1159 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1160 gic_data.rdists.has_direct_lpi = false;
1161 gic_data.rdists.has_vlpis = false;
1162 gic_data.rdists.has_rvpeid = false;
1163 }
1164
1165 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1166
1167 return 1;
1168 }
1169
gic_update_rdist_properties(void)1170 static void gic_update_rdist_properties(void)
1171 {
1172 gic_data.ppi_nr = UINT_MAX;
1173 gic_iterate_rdists(__gic_update_rdist_properties);
1174 if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1175 gic_data.ppi_nr = 0;
1176 pr_info("GICv3 features: %d PPIs%s%s\n",
1177 gic_data.ppi_nr,
1178 gic_data.has_rss ? ", RSS" : "",
1179 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1180
1181 if (gic_data.rdists.has_vlpis)
1182 pr_info("GICv4 features: %s%s%s\n",
1183 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1184 gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1185 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1186 }
1187
gic_cpu_sys_reg_enable(void)1188 static void gic_cpu_sys_reg_enable(void)
1189 {
1190 /*
1191 * Need to check that the SRE bit has actually been set. If
1192 * not, it means that SRE is disabled at EL2. We're going to
1193 * die painfully, and there is nothing we can do about it.
1194 *
1195 * Kindly inform the luser.
1196 */
1197 if (!gic_enable_sre())
1198 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1199
1200 }
1201
gic_cpu_sys_reg_init(void)1202 static void gic_cpu_sys_reg_init(void)
1203 {
1204 int i, cpu = smp_processor_id();
1205 u64 mpidr = gic_cpu_to_affinity(cpu);
1206 u64 need_rss = MPIDR_RS(mpidr);
1207 bool group0;
1208 u32 pribits;
1209
1210 pribits = gic_get_pribits();
1211
1212 group0 = gic_has_group0();
1213
1214 /* Set priority mask register */
1215 if (!gic_prio_masking_enabled()) {
1216 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1217 } else if (gic_supports_nmi()) {
1218 /*
1219 * Check that all CPUs use the same priority space.
1220 *
1221 * If there's a mismatch with the boot CPU, the system is
1222 * likely to die as interrupt masking will not work properly on
1223 * all CPUs.
1224 */
1225 WARN_ON(group0 != cpus_have_group0);
1226 WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled);
1227 }
1228
1229 /*
1230 * Some firmwares hand over to the kernel with the BPR changed from
1231 * its reset value (and with a value large enough to prevent
1232 * any pre-emptive interrupts from working at all). Writing a zero
1233 * to BPR restores is reset value.
1234 */
1235 gic_write_bpr1(0);
1236
1237 if (static_branch_likely(&supports_deactivate_key)) {
1238 /* EOI drops priority only (mode 1) */
1239 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1240 } else {
1241 /* EOI deactivates interrupt too (mode 0) */
1242 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1243 }
1244
1245 /* Always whack Group0 before Group1 */
1246 if (group0) {
1247 switch(pribits) {
1248 case 8:
1249 case 7:
1250 write_gicreg(0, ICC_AP0R3_EL1);
1251 write_gicreg(0, ICC_AP0R2_EL1);
1252 fallthrough;
1253 case 6:
1254 write_gicreg(0, ICC_AP0R1_EL1);
1255 fallthrough;
1256 case 5:
1257 case 4:
1258 write_gicreg(0, ICC_AP0R0_EL1);
1259 }
1260
1261 isb();
1262 }
1263
1264 switch(pribits) {
1265 case 8:
1266 case 7:
1267 write_gicreg(0, ICC_AP1R3_EL1);
1268 write_gicreg(0, ICC_AP1R2_EL1);
1269 fallthrough;
1270 case 6:
1271 write_gicreg(0, ICC_AP1R1_EL1);
1272 fallthrough;
1273 case 5:
1274 case 4:
1275 write_gicreg(0, ICC_AP1R0_EL1);
1276 }
1277
1278 isb();
1279
1280 /* ... and let's hit the road... */
1281 gic_write_grpen1(1);
1282
1283 /* Keep the RSS capability status in per_cpu variable */
1284 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1285
1286 /* Check all the CPUs have capable of sending SGIs to other CPUs */
1287 for_each_online_cpu(i) {
1288 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1289
1290 need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1291 if (need_rss && (!have_rss))
1292 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1293 cpu, (unsigned long)mpidr,
1294 i, (unsigned long)gic_cpu_to_affinity(i));
1295 }
1296
1297 /**
1298 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1299 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1300 * UNPREDICTABLE choice of :
1301 * - The write is ignored.
1302 * - The RS field is treated as 0.
1303 */
1304 if (need_rss && (!gic_data.has_rss))
1305 pr_crit_once("RSS is required but GICD doesn't support it\n");
1306 }
1307
1308 static bool gicv3_nolpi;
1309
gicv3_nolpi_cfg(char * buf)1310 static int __init gicv3_nolpi_cfg(char *buf)
1311 {
1312 return kstrtobool(buf, &gicv3_nolpi);
1313 }
1314 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1315
gic_dist_supports_lpis(void)1316 static int gic_dist_supports_lpis(void)
1317 {
1318 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1319 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1320 !gicv3_nolpi);
1321 }
1322
gic_cpu_init(void)1323 static void gic_cpu_init(void)
1324 {
1325 void __iomem *rbase;
1326 int i;
1327
1328 /* Register ourselves with the rest of the world */
1329 if (gic_populate_rdist())
1330 return;
1331
1332 gic_enable_redist(true);
1333
1334 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1335 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1336 "Distributor has extended ranges, but CPU%d doesn't\n",
1337 smp_processor_id());
1338
1339 rbase = gic_data_rdist_sgi_base();
1340
1341 /* Configure SGIs/PPIs as non-secure Group-1 */
1342 for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1343 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1344
1345 gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq);
1346 gic_redist_wait_for_rwp();
1347
1348 /* initialise system registers */
1349 gic_cpu_sys_reg_init();
1350 }
1351
1352 #ifdef CONFIG_SMP
1353
1354 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1355 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
1356
1357 /*
1358 * gic_starting_cpu() is called after the last point where cpuhp is allowed
1359 * to fail. So pre check for problems earlier.
1360 */
gic_check_rdist(unsigned int cpu)1361 static int gic_check_rdist(unsigned int cpu)
1362 {
1363 if (cpumask_test_cpu(cpu, &broken_rdists))
1364 return -EINVAL;
1365
1366 return 0;
1367 }
1368
gic_starting_cpu(unsigned int cpu)1369 static int gic_starting_cpu(unsigned int cpu)
1370 {
1371 gic_cpu_sys_reg_enable();
1372 gic_cpu_init();
1373
1374 if (gic_dist_supports_lpis())
1375 its_cpu_init();
1376
1377 return 0;
1378 }
1379
gic_compute_target_list(int * base_cpu,const struct cpumask * mask,unsigned long cluster_id)1380 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1381 unsigned long cluster_id)
1382 {
1383 int next_cpu, cpu = *base_cpu;
1384 unsigned long mpidr;
1385 u16 tlist = 0;
1386
1387 mpidr = gic_cpu_to_affinity(cpu);
1388
1389 while (cpu < nr_cpu_ids) {
1390 tlist |= 1 << (mpidr & 0xf);
1391
1392 next_cpu = cpumask_next(cpu, mask);
1393 if (next_cpu >= nr_cpu_ids)
1394 goto out;
1395 cpu = next_cpu;
1396
1397 mpidr = gic_cpu_to_affinity(cpu);
1398
1399 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1400 cpu--;
1401 goto out;
1402 }
1403 }
1404 out:
1405 *base_cpu = cpu;
1406 return tlist;
1407 }
1408
1409 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1410 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1411 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1412
gic_send_sgi(u64 cluster_id,u16 tlist,unsigned int irq)1413 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1414 {
1415 u64 val;
1416
1417 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
1418 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
1419 irq << ICC_SGI1R_SGI_ID_SHIFT |
1420 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
1421 MPIDR_TO_SGI_RS(cluster_id) |
1422 tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1423
1424 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1425 gic_write_sgi1r(val);
1426 }
1427
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)1428 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1429 {
1430 int cpu;
1431
1432 if (WARN_ON(d->hwirq >= 16))
1433 return;
1434
1435 /*
1436 * Ensure that stores to Normal memory are visible to the
1437 * other CPUs before issuing the IPI.
1438 */
1439 dsb(ishst);
1440
1441 for_each_cpu(cpu, mask) {
1442 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1443 u16 tlist;
1444
1445 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1446 gic_send_sgi(cluster_id, tlist, d->hwirq);
1447 }
1448
1449 /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1450 isb();
1451 }
1452
gic_smp_init(void)1453 static void __init gic_smp_init(void)
1454 {
1455 struct irq_fwspec sgi_fwspec = {
1456 .fwnode = gic_data.fwnode,
1457 .param_count = 1,
1458 };
1459 int base_sgi;
1460
1461 cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
1462 "irqchip/arm/gicv3:checkrdist",
1463 gic_check_rdist, NULL);
1464
1465 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1466 "irqchip/arm/gicv3:starting",
1467 gic_starting_cpu, NULL);
1468
1469 /* Register all 8 non-secure SGIs */
1470 base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1471 if (WARN_ON(base_sgi <= 0))
1472 return;
1473
1474 set_smp_ipi_range(base_sgi, 8);
1475 }
1476
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1477 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1478 bool force)
1479 {
1480 unsigned int cpu;
1481 u32 offset, index;
1482 void __iomem *reg;
1483 int enabled;
1484 u64 val;
1485
1486 if (force)
1487 cpu = cpumask_first(mask_val);
1488 else
1489 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1490
1491 if (cpu >= nr_cpu_ids)
1492 return -EINVAL;
1493
1494 if (gic_irq_in_rdist(d))
1495 return -EINVAL;
1496
1497 /* If interrupt was enabled, disable it first */
1498 enabled = gic_peek_irq(d, GICD_ISENABLER);
1499 if (enabled)
1500 gic_mask_irq(d);
1501
1502 offset = convert_offset_index(d, GICD_IROUTER, &index);
1503 reg = gic_dist_base(d) + offset + (index * 8);
1504 val = gic_cpu_to_affinity(cpu);
1505
1506 gic_write_irouter(val, reg);
1507
1508 /*
1509 * If the interrupt was enabled, enabled it again. Otherwise,
1510 * just wait for the distributor to have digested our changes.
1511 */
1512 if (enabled)
1513 gic_unmask_irq(d);
1514
1515 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1516
1517 return IRQ_SET_MASK_OK_DONE;
1518 }
1519 #else
1520 #define gic_set_affinity NULL
1521 #define gic_ipi_send_mask NULL
1522 #define gic_smp_init() do { } while(0)
1523 #endif
1524
gic_retrigger(struct irq_data * data)1525 static int gic_retrigger(struct irq_data *data)
1526 {
1527 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1528 }
1529
1530 #ifdef CONFIG_CPU_PM
gic_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1531 static int gic_cpu_pm_notifier(struct notifier_block *self,
1532 unsigned long cmd, void *v)
1533 {
1534 if (cmd == CPU_PM_EXIT || cmd == CPU_PM_ENTER_FAILED) {
1535 if (gic_dist_security_disabled())
1536 gic_enable_redist(true);
1537 gic_cpu_sys_reg_enable();
1538 gic_cpu_sys_reg_init();
1539 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1540 gic_write_grpen1(0);
1541 gic_enable_redist(false);
1542 }
1543 return NOTIFY_OK;
1544 }
1545
1546 static struct notifier_block gic_cpu_pm_notifier_block = {
1547 .notifier_call = gic_cpu_pm_notifier,
1548 };
1549
gic_cpu_pm_init(void)1550 static void gic_cpu_pm_init(void)
1551 {
1552 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1553 }
1554
1555 #else
gic_cpu_pm_init(void)1556 static inline void gic_cpu_pm_init(void) { }
1557 #endif /* CONFIG_CPU_PM */
1558
1559 static struct irq_chip gic_chip = {
1560 .name = "GICv3",
1561 .irq_mask = gic_mask_irq,
1562 .irq_unmask = gic_unmask_irq,
1563 .irq_eoi = gic_eoi_irq,
1564 .irq_set_type = gic_set_type,
1565 .irq_set_affinity = gic_set_affinity,
1566 .irq_retrigger = gic_retrigger,
1567 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1568 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1569 .irq_nmi_setup = gic_irq_nmi_setup,
1570 .irq_nmi_teardown = gic_irq_nmi_teardown,
1571 .ipi_send_mask = gic_ipi_send_mask,
1572 .flags = IRQCHIP_SET_TYPE_MASKED |
1573 IRQCHIP_SKIP_SET_WAKE |
1574 IRQCHIP_MASK_ON_SUSPEND,
1575 };
1576
1577 static struct irq_chip gic_eoimode1_chip = {
1578 .name = "GICv3",
1579 .irq_mask = gic_eoimode1_mask_irq,
1580 .irq_unmask = gic_unmask_irq,
1581 .irq_eoi = gic_eoimode1_eoi_irq,
1582 .irq_set_type = gic_set_type,
1583 .irq_set_affinity = gic_set_affinity,
1584 .irq_retrigger = gic_retrigger,
1585 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1586 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1587 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
1588 .irq_nmi_setup = gic_irq_nmi_setup,
1589 .irq_nmi_teardown = gic_irq_nmi_teardown,
1590 .ipi_send_mask = gic_ipi_send_mask,
1591 .flags = IRQCHIP_SET_TYPE_MASKED |
1592 IRQCHIP_SKIP_SET_WAKE |
1593 IRQCHIP_MASK_ON_SUSPEND,
1594 };
1595
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1596 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1597 irq_hw_number_t hw)
1598 {
1599 struct irq_chip *chip = &gic_chip;
1600 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1601
1602 if (static_branch_likely(&supports_deactivate_key))
1603 chip = &gic_eoimode1_chip;
1604
1605 switch (__get_intid_range(hw)) {
1606 case SGI_RANGE:
1607 case PPI_RANGE:
1608 case EPPI_RANGE:
1609 irq_set_percpu_devid(irq);
1610 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1611 handle_percpu_devid_irq, NULL, NULL);
1612 break;
1613
1614 case SPI_RANGE:
1615 case ESPI_RANGE:
1616 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1617 handle_fasteoi_irq, NULL, NULL);
1618 irq_set_probe(irq);
1619 irqd_set_single_target(irqd);
1620 break;
1621
1622 case LPI_RANGE:
1623 if (!gic_dist_supports_lpis())
1624 return -EPERM;
1625 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1626 handle_fasteoi_irq, NULL, NULL);
1627 break;
1628
1629 default:
1630 return -EPERM;
1631 }
1632
1633 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1634 irqd_set_handle_enforce_irqctx(irqd);
1635 return 0;
1636 }
1637
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1638 static int gic_irq_domain_translate(struct irq_domain *d,
1639 struct irq_fwspec *fwspec,
1640 unsigned long *hwirq,
1641 unsigned int *type)
1642 {
1643 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1644 *hwirq = fwspec->param[0];
1645 *type = IRQ_TYPE_EDGE_RISING;
1646 return 0;
1647 }
1648
1649 if (is_of_node(fwspec->fwnode)) {
1650 if (fwspec->param_count < 3)
1651 return -EINVAL;
1652
1653 switch (fwspec->param[0]) {
1654 case 0: /* SPI */
1655 *hwirq = fwspec->param[1] + 32;
1656 break;
1657 case 1: /* PPI */
1658 *hwirq = fwspec->param[1] + 16;
1659 break;
1660 case 2: /* ESPI */
1661 *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1662 break;
1663 case 3: /* EPPI */
1664 *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1665 break;
1666 case GIC_IRQ_TYPE_LPI: /* LPI */
1667 *hwirq = fwspec->param[1];
1668 break;
1669 case GIC_IRQ_TYPE_PARTITION:
1670 *hwirq = fwspec->param[1];
1671 if (fwspec->param[1] >= 16)
1672 *hwirq += EPPI_BASE_INTID - 16;
1673 else
1674 *hwirq += 16;
1675 break;
1676 default:
1677 return -EINVAL;
1678 }
1679
1680 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1681
1682 /*
1683 * Make it clear that broken DTs are... broken.
1684 * Partitioned PPIs are an unfortunate exception.
1685 */
1686 WARN_ON(*type == IRQ_TYPE_NONE &&
1687 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1688 return 0;
1689 }
1690
1691 if (is_fwnode_irqchip(fwspec->fwnode)) {
1692 if(fwspec->param_count != 2)
1693 return -EINVAL;
1694
1695 if (fwspec->param[0] < 16) {
1696 pr_err(FW_BUG "Illegal GSI%d translation request\n",
1697 fwspec->param[0]);
1698 return -EINVAL;
1699 }
1700
1701 *hwirq = fwspec->param[0];
1702 *type = fwspec->param[1];
1703
1704 WARN_ON(*type == IRQ_TYPE_NONE);
1705 return 0;
1706 }
1707
1708 return -EINVAL;
1709 }
1710
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1711 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1712 unsigned int nr_irqs, void *arg)
1713 {
1714 int i, ret;
1715 irq_hw_number_t hwirq;
1716 unsigned int type = IRQ_TYPE_NONE;
1717 struct irq_fwspec *fwspec = arg;
1718
1719 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1720 if (ret)
1721 return ret;
1722
1723 for (i = 0; i < nr_irqs; i++) {
1724 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1725 if (ret)
1726 return ret;
1727 }
1728
1729 return 0;
1730 }
1731
gic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1732 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1733 unsigned int nr_irqs)
1734 {
1735 int i;
1736
1737 for (i = 0; i < nr_irqs; i++) {
1738 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1739 irq_set_handler(virq + i, NULL);
1740 irq_domain_reset_irq_data(d);
1741 }
1742 }
1743
fwspec_is_partitioned_ppi(struct irq_fwspec * fwspec,irq_hw_number_t hwirq)1744 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1745 irq_hw_number_t hwirq)
1746 {
1747 enum gic_intid_range range;
1748
1749 if (!gic_data.ppi_descs)
1750 return false;
1751
1752 if (!is_of_node(fwspec->fwnode))
1753 return false;
1754
1755 if (fwspec->param_count < 4 || !fwspec->param[3])
1756 return false;
1757
1758 range = __get_intid_range(hwirq);
1759 if (range != PPI_RANGE && range != EPPI_RANGE)
1760 return false;
1761
1762 return true;
1763 }
1764
gic_irq_domain_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1765 static int gic_irq_domain_select(struct irq_domain *d,
1766 struct irq_fwspec *fwspec,
1767 enum irq_domain_bus_token bus_token)
1768 {
1769 unsigned int type, ppi_idx;
1770 irq_hw_number_t hwirq;
1771 int ret;
1772
1773 /* Not for us */
1774 if (fwspec->fwnode != d->fwnode)
1775 return 0;
1776
1777 /* Handle pure domain searches */
1778 if (!fwspec->param_count)
1779 return d->bus_token == bus_token;
1780
1781 /* If this is not DT, then we have a single domain */
1782 if (!is_of_node(fwspec->fwnode))
1783 return 1;
1784
1785 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1786 if (WARN_ON_ONCE(ret))
1787 return 0;
1788
1789 if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1790 return d == gic_data.domain;
1791
1792 /*
1793 * If this is a PPI and we have a 4th (non-null) parameter,
1794 * then we need to match the partition domain.
1795 */
1796 ppi_idx = __gic_get_ppi_index(hwirq);
1797 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1798 }
1799
1800 static const struct irq_domain_ops gic_irq_domain_ops = {
1801 .translate = gic_irq_domain_translate,
1802 .alloc = gic_irq_domain_alloc,
1803 .free = gic_irq_domain_free,
1804 .select = gic_irq_domain_select,
1805 };
1806
partition_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1807 static int partition_domain_translate(struct irq_domain *d,
1808 struct irq_fwspec *fwspec,
1809 unsigned long *hwirq,
1810 unsigned int *type)
1811 {
1812 unsigned long ppi_intid;
1813 struct device_node *np;
1814 unsigned int ppi_idx;
1815 int ret;
1816
1817 if (!gic_data.ppi_descs)
1818 return -ENOMEM;
1819
1820 np = of_find_node_by_phandle(fwspec->param[3]);
1821 if (WARN_ON(!np))
1822 return -EINVAL;
1823
1824 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1825 if (WARN_ON_ONCE(ret))
1826 return 0;
1827
1828 ppi_idx = __gic_get_ppi_index(ppi_intid);
1829 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1830 of_fwnode_handle(np));
1831 if (ret < 0)
1832 return ret;
1833
1834 *hwirq = ret;
1835 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1836
1837 return 0;
1838 }
1839
1840 static const struct irq_domain_ops partition_domain_ops = {
1841 .translate = partition_domain_translate,
1842 .select = gic_irq_domain_select,
1843 };
1844
gic_enable_quirk_msm8996(void * data)1845 static bool gic_enable_quirk_msm8996(void *data)
1846 {
1847 struct gic_chip_data *d = data;
1848
1849 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1850
1851 return true;
1852 }
1853
gic_enable_quirk_cavium_38539(void * data)1854 static bool gic_enable_quirk_cavium_38539(void *data)
1855 {
1856 struct gic_chip_data *d = data;
1857
1858 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1859
1860 return true;
1861 }
1862
gic_enable_quirk_hip06_07(void * data)1863 static bool gic_enable_quirk_hip06_07(void *data)
1864 {
1865 struct gic_chip_data *d = data;
1866
1867 /*
1868 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1869 * not being an actual ARM implementation). The saving grace is
1870 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1871 * HIP07 doesn't even have a proper IIDR, and still pretends to
1872 * have ESPI. In both cases, put them right.
1873 */
1874 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1875 /* Zero both ESPI and the RES0 field next to it... */
1876 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1877 return true;
1878 }
1879
1880 return false;
1881 }
1882
1883 #define T241_CHIPN_MASK GENMASK_ULL(45, 44)
1884 #define T241_CHIP_GICDA_OFFSET 0x1580000
1885 #define SMCCC_SOC_ID_T241 0x036b0241
1886
gic_enable_quirk_nvidia_t241(void * data)1887 static bool gic_enable_quirk_nvidia_t241(void *data)
1888 {
1889 s32 soc_id = arm_smccc_get_soc_id_version();
1890 unsigned long chip_bmask = 0;
1891 phys_addr_t phys;
1892 u32 i;
1893
1894 /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1895 if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1896 return false;
1897
1898 /* Find the chips based on GICR regions PHYS addr */
1899 for (i = 0; i < gic_data.nr_redist_regions; i++) {
1900 chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1901 (u64)gic_data.redist_regions[i].phys_base));
1902 }
1903
1904 if (hweight32(chip_bmask) < 3)
1905 return false;
1906
1907 /* Setup GICD alias regions */
1908 for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1909 if (chip_bmask & BIT(i)) {
1910 phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1911 phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1912 t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1913 WARN_ON_ONCE(!t241_dist_base_alias[i]);
1914 }
1915 }
1916 static_branch_enable(&gic_nvidia_t241_erratum);
1917 return true;
1918 }
1919
gic_enable_quirk_asr8601(void * data)1920 static bool gic_enable_quirk_asr8601(void *data)
1921 {
1922 struct gic_chip_data *d = data;
1923
1924 d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1925
1926 return true;
1927 }
1928
gic_enable_quirk_arm64_2941627(void * data)1929 static bool gic_enable_quirk_arm64_2941627(void *data)
1930 {
1931 static_branch_enable(&gic_arm64_2941627_erratum);
1932 return true;
1933 }
1934
gic_enable_quirk_rk3399(void * data)1935 static bool gic_enable_quirk_rk3399(void *data)
1936 {
1937 struct gic_chip_data *d = data;
1938
1939 if (of_machine_is_compatible("rockchip,rk3399")) {
1940 d->flags |= FLAGS_WORKAROUND_INSECURE;
1941 return true;
1942 }
1943
1944 return false;
1945 }
1946
rd_set_non_coherent(void * data)1947 static bool rd_set_non_coherent(void *data)
1948 {
1949 struct gic_chip_data *d = data;
1950
1951 d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1952 return true;
1953 }
1954
1955 static const struct gic_quirk gic_quirks[] = {
1956 {
1957 .desc = "GICv3: Qualcomm MSM8996 broken firmware",
1958 .compatible = "qcom,msm8996-gic-v3",
1959 .init = gic_enable_quirk_msm8996,
1960 },
1961 {
1962 .desc = "GICv3: ASR erratum 8601001",
1963 .compatible = "asr,asr8601-gic-v3",
1964 .init = gic_enable_quirk_asr8601,
1965 },
1966 {
1967 .desc = "GICv3: HIP06 erratum 161010803",
1968 .iidr = 0x0204043b,
1969 .mask = 0xffffffff,
1970 .init = gic_enable_quirk_hip06_07,
1971 },
1972 {
1973 .desc = "GICv3: HIP07 erratum 161010803",
1974 .iidr = 0x00000000,
1975 .mask = 0xffffffff,
1976 .init = gic_enable_quirk_hip06_07,
1977 },
1978 {
1979 /*
1980 * Reserved register accesses generate a Synchronous
1981 * External Abort. This erratum applies to:
1982 * - ThunderX: CN88xx
1983 * - OCTEON TX: CN83xx, CN81xx
1984 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1985 */
1986 .desc = "GICv3: Cavium erratum 38539",
1987 .iidr = 0xa000034c,
1988 .mask = 0xe8f00fff,
1989 .init = gic_enable_quirk_cavium_38539,
1990 },
1991 {
1992 .desc = "GICv3: NVIDIA erratum T241-FABRIC-4",
1993 .iidr = 0x0402043b,
1994 .mask = 0xffffffff,
1995 .init = gic_enable_quirk_nvidia_t241,
1996 },
1997 {
1998 /*
1999 * GIC-700: 2941627 workaround - IP variant [0,1]
2000 *
2001 */
2002 .desc = "GICv3: ARM64 erratum 2941627",
2003 .iidr = 0x0400043b,
2004 .mask = 0xff0e0fff,
2005 .init = gic_enable_quirk_arm64_2941627,
2006 },
2007 {
2008 /*
2009 * GIC-700: 2941627 workaround - IP variant [2]
2010 */
2011 .desc = "GICv3: ARM64 erratum 2941627",
2012 .iidr = 0x0402043b,
2013 .mask = 0xff0f0fff,
2014 .init = gic_enable_quirk_arm64_2941627,
2015 },
2016 {
2017 .desc = "GICv3: non-coherent attribute",
2018 .property = "dma-noncoherent",
2019 .init = rd_set_non_coherent,
2020 },
2021 {
2022 .desc = "GICv3: Insecure RK3399 integration",
2023 .iidr = 0x0000043b,
2024 .mask = 0xff000fff,
2025 .init = gic_enable_quirk_rk3399,
2026 },
2027 {
2028 }
2029 };
2030
gic_enable_nmi_support(void)2031 static void gic_enable_nmi_support(void)
2032 {
2033 int i;
2034
2035 if (!gic_prio_masking_enabled() || nmi_support_forbidden)
2036 return;
2037
2038 rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
2039 sizeof(*rdist_nmi_refs), GFP_KERNEL);
2040 if (!rdist_nmi_refs)
2041 return;
2042
2043 for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
2044 refcount_set(&rdist_nmi_refs[i], 0);
2045
2046 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
2047 gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
2048
2049 static_branch_enable(&supports_pseudo_nmis);
2050
2051 if (static_branch_likely(&supports_deactivate_key))
2052 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2053 else
2054 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2055 }
2056
gic_init_bases(phys_addr_t dist_phys_base,void __iomem * dist_base,struct redist_region * rdist_regs,u32 nr_redist_regions,u64 redist_stride,struct fwnode_handle * handle)2057 static int __init gic_init_bases(phys_addr_t dist_phys_base,
2058 void __iomem *dist_base,
2059 struct redist_region *rdist_regs,
2060 u32 nr_redist_regions,
2061 u64 redist_stride,
2062 struct fwnode_handle *handle)
2063 {
2064 u32 typer;
2065 int err;
2066
2067 if (!is_hyp_mode_available())
2068 static_branch_disable(&supports_deactivate_key);
2069
2070 if (static_branch_likely(&supports_deactivate_key))
2071 pr_info("GIC: Using split EOI/Deactivate mode\n");
2072
2073 gic_data.fwnode = handle;
2074 gic_data.dist_phys_base = dist_phys_base;
2075 gic_data.dist_base = dist_base;
2076 gic_data.redist_regions = rdist_regs;
2077 gic_data.nr_redist_regions = nr_redist_regions;
2078 gic_data.redist_stride = redist_stride;
2079
2080 /*
2081 * Find out how many interrupts are supported.
2082 */
2083 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2084 gic_data.rdists.gicd_typer = typer;
2085
2086 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2087 gic_quirks, &gic_data);
2088
2089 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2090 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2091
2092 /*
2093 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2094 * architecture spec (which says that reserved registers are RES0).
2095 */
2096 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2097 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2098
2099 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2100 &gic_data);
2101 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2102 if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2103 /* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2104 gic_data.rdists.has_rvpeid = true;
2105 gic_data.rdists.has_vlpis = true;
2106 gic_data.rdists.has_direct_lpi = true;
2107 gic_data.rdists.has_vpend_valid_dirty = true;
2108 }
2109
2110 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2111 err = -ENOMEM;
2112 goto out_free;
2113 }
2114
2115 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2116
2117 gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2118
2119 if (typer & GICD_TYPER_MBIS) {
2120 err = mbi_init(handle, gic_data.domain);
2121 if (err)
2122 pr_err("Failed to initialize MBIs\n");
2123 }
2124
2125 set_handle_irq(gic_handle_irq);
2126
2127 gic_update_rdist_properties();
2128
2129 gic_cpu_sys_reg_enable();
2130 gic_prio_init();
2131 gic_dist_init();
2132 gic_cpu_init();
2133 gic_enable_nmi_support();
2134 gic_smp_init();
2135 gic_cpu_pm_init();
2136
2137 if (gic_dist_supports_lpis()) {
2138 its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq);
2139 its_cpu_init();
2140 its_lpi_memreserve_init();
2141 } else {
2142 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2143 gicv2m_init(handle, gic_data.domain);
2144 }
2145
2146 return 0;
2147
2148 out_free:
2149 if (gic_data.domain)
2150 irq_domain_remove(gic_data.domain);
2151 free_percpu(gic_data.rdists.rdist);
2152 return err;
2153 }
2154
gic_validate_dist_version(void __iomem * dist_base)2155 static int __init gic_validate_dist_version(void __iomem *dist_base)
2156 {
2157 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2158
2159 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2160 return -ENODEV;
2161
2162 return 0;
2163 }
2164
2165 /* Create all possible partitions at boot time */
gic_populate_ppi_partitions(struct device_node * gic_node)2166 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2167 {
2168 struct device_node *parts_node, *child_part;
2169 int part_idx = 0, i;
2170 int nr_parts;
2171 struct partition_affinity *parts;
2172
2173 parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2174 if (!parts_node)
2175 return;
2176
2177 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2178 if (!gic_data.ppi_descs)
2179 goto out_put_node;
2180
2181 nr_parts = of_get_child_count(parts_node);
2182
2183 if (!nr_parts)
2184 goto out_put_node;
2185
2186 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2187 if (WARN_ON(!parts))
2188 goto out_put_node;
2189
2190 for_each_child_of_node(parts_node, child_part) {
2191 struct partition_affinity *part;
2192 int n;
2193
2194 part = &parts[part_idx];
2195
2196 part->partition_id = of_fwnode_handle(child_part);
2197
2198 pr_info("GIC: PPI partition %pOFn[%d] { ",
2199 child_part, part_idx);
2200
2201 n = of_property_count_elems_of_size(child_part, "affinity",
2202 sizeof(u32));
2203 WARN_ON(n <= 0);
2204
2205 for (i = 0; i < n; i++) {
2206 int err, cpu;
2207 u32 cpu_phandle;
2208 struct device_node *cpu_node;
2209
2210 err = of_property_read_u32_index(child_part, "affinity",
2211 i, &cpu_phandle);
2212 if (WARN_ON(err))
2213 continue;
2214
2215 cpu_node = of_find_node_by_phandle(cpu_phandle);
2216 if (WARN_ON(!cpu_node))
2217 continue;
2218
2219 cpu = of_cpu_node_to_id(cpu_node);
2220 if (WARN_ON(cpu < 0)) {
2221 of_node_put(cpu_node);
2222 continue;
2223 }
2224
2225 pr_cont("%pOF[%d] ", cpu_node, cpu);
2226
2227 cpumask_set_cpu(cpu, &part->mask);
2228 of_node_put(cpu_node);
2229 }
2230
2231 pr_cont("}\n");
2232 part_idx++;
2233 }
2234
2235 for (i = 0; i < gic_data.ppi_nr; i++) {
2236 unsigned int irq;
2237 struct partition_desc *desc;
2238 struct irq_fwspec ppi_fwspec = {
2239 .fwnode = gic_data.fwnode,
2240 .param_count = 3,
2241 .param = {
2242 [0] = GIC_IRQ_TYPE_PARTITION,
2243 [1] = i,
2244 [2] = IRQ_TYPE_NONE,
2245 },
2246 };
2247
2248 irq = irq_create_fwspec_mapping(&ppi_fwspec);
2249 if (WARN_ON(!irq))
2250 continue;
2251 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2252 irq, &partition_domain_ops);
2253 if (WARN_ON(!desc))
2254 continue;
2255
2256 gic_data.ppi_descs[i] = desc;
2257 }
2258
2259 out_put_node:
2260 of_node_put(parts_node);
2261 }
2262
gic_of_setup_kvm_info(struct device_node * node,u32 nr_redist_regions)2263 static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions)
2264 {
2265 int ret;
2266 struct resource r;
2267
2268 gic_v3_kvm_info.type = GIC_V3;
2269
2270 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2271 if (!gic_v3_kvm_info.maint_irq)
2272 return;
2273
2274 /* Also skip GICD, GICC, GICH */
2275 ret = of_address_to_resource(node, nr_redist_regions + 3, &r);
2276 if (!ret)
2277 gic_v3_kvm_info.vcpu = r;
2278
2279 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2280 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2281 vgic_set_kvm_info(&gic_v3_kvm_info);
2282 }
2283
gic_request_region(resource_size_t base,resource_size_t size,const char * name)2284 static void gic_request_region(resource_size_t base, resource_size_t size,
2285 const char *name)
2286 {
2287 if (!request_mem_region(base, size, name))
2288 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2289 name, &base);
2290 }
2291
gic_of_iomap(struct device_node * node,int idx,const char * name,struct resource * res)2292 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2293 const char *name, struct resource *res)
2294 {
2295 void __iomem *base;
2296 int ret;
2297
2298 ret = of_address_to_resource(node, idx, res);
2299 if (ret)
2300 return IOMEM_ERR_PTR(ret);
2301
2302 gic_request_region(res->start, resource_size(res), name);
2303 base = of_iomap(node, idx);
2304
2305 return base ?: IOMEM_ERR_PTR(-ENOMEM);
2306 }
2307
gic_of_init(struct device_node * node,struct device_node * parent)2308 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2309 {
2310 phys_addr_t dist_phys_base;
2311 void __iomem *dist_base;
2312 struct redist_region *rdist_regs;
2313 struct resource res;
2314 u64 redist_stride;
2315 u32 nr_redist_regions;
2316 int err, i;
2317
2318 dist_base = gic_of_iomap(node, 0, "GICD", &res);
2319 if (IS_ERR(dist_base)) {
2320 pr_err("%pOF: unable to map gic dist registers\n", node);
2321 return PTR_ERR(dist_base);
2322 }
2323
2324 dist_phys_base = res.start;
2325
2326 err = gic_validate_dist_version(dist_base);
2327 if (err) {
2328 pr_err("%pOF: no distributor detected, giving up\n", node);
2329 goto out_unmap_dist;
2330 }
2331
2332 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2333 nr_redist_regions = 1;
2334
2335 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2336 GFP_KERNEL);
2337 if (!rdist_regs) {
2338 err = -ENOMEM;
2339 goto out_unmap_dist;
2340 }
2341
2342 for (i = 0; i < nr_redist_regions; i++) {
2343 rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2344 if (IS_ERR(rdist_regs[i].redist_base)) {
2345 pr_err("%pOF: couldn't map region %d\n", node, i);
2346 err = -ENODEV;
2347 goto out_unmap_rdist;
2348 }
2349 rdist_regs[i].phys_base = res.start;
2350 }
2351
2352 if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2353 redist_stride = 0;
2354
2355 gic_enable_of_quirks(node, gic_quirks, &gic_data);
2356
2357 err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2358 nr_redist_regions, redist_stride, &node->fwnode);
2359 if (err)
2360 goto out_unmap_rdist;
2361
2362 gic_populate_ppi_partitions(node);
2363
2364 if (static_branch_likely(&supports_deactivate_key))
2365 gic_of_setup_kvm_info(node, nr_redist_regions);
2366 return 0;
2367
2368 out_unmap_rdist:
2369 for (i = 0; i < nr_redist_regions; i++)
2370 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2371 iounmap(rdist_regs[i].redist_base);
2372 kfree(rdist_regs);
2373 out_unmap_dist:
2374 iounmap(dist_base);
2375 return err;
2376 }
2377
2378 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2379
2380 #ifdef CONFIG_ACPI
2381 static struct
2382 {
2383 void __iomem *dist_base;
2384 struct redist_region *redist_regs;
2385 u32 nr_redist_regions;
2386 bool single_redist;
2387 int enabled_rdists;
2388 u32 maint_irq;
2389 int maint_irq_mode;
2390 phys_addr_t vcpu_base;
2391 } acpi_data __initdata;
2392
2393 static void __init
gic_acpi_register_redist(phys_addr_t phys_base,void __iomem * redist_base)2394 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2395 {
2396 static int count = 0;
2397
2398 acpi_data.redist_regs[count].phys_base = phys_base;
2399 acpi_data.redist_regs[count].redist_base = redist_base;
2400 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2401 count++;
2402 }
2403
2404 static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers * header,const unsigned long end)2405 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2406 const unsigned long end)
2407 {
2408 struct acpi_madt_generic_redistributor *redist =
2409 (struct acpi_madt_generic_redistributor *)header;
2410 void __iomem *redist_base;
2411
2412 redist_base = ioremap(redist->base_address, redist->length);
2413 if (!redist_base) {
2414 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2415 return -ENOMEM;
2416 }
2417
2418 if (acpi_get_madt_revision() >= 7 &&
2419 (redist->flags & ACPI_MADT_GICR_NON_COHERENT))
2420 gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2421
2422 gic_request_region(redist->base_address, redist->length, "GICR");
2423
2424 gic_acpi_register_redist(redist->base_address, redist_base);
2425 return 0;
2426 }
2427
2428 static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2429 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2430 const unsigned long end)
2431 {
2432 struct acpi_madt_generic_interrupt *gicc =
2433 (struct acpi_madt_generic_interrupt *)header;
2434 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2435 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2436 void __iomem *redist_base;
2437
2438 /* Neither enabled or online capable means it doesn't exist, skip it */
2439 if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2440 return 0;
2441
2442 /*
2443 * Capable but disabled CPUs can be brought online later. What about
2444 * the redistributor? ACPI doesn't want to say!
2445 * Virtual hotplug systems can use the MADT's "always-on" GICR entries.
2446 * Otherwise, prevent such CPUs from being brought online.
2447 */
2448 if (!(gicc->flags & ACPI_MADT_ENABLED)) {
2449 int cpu = get_cpu_for_acpi_id(gicc->uid);
2450
2451 pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu);
2452 if (cpu >= 0)
2453 cpumask_set_cpu(cpu, &broken_rdists);
2454 return 0;
2455 }
2456
2457 redist_base = ioremap(gicc->gicr_base_address, size);
2458 if (!redist_base)
2459 return -ENOMEM;
2460 gic_request_region(gicc->gicr_base_address, size, "GICR");
2461
2462 if (acpi_get_madt_revision() >= 7 &&
2463 (gicc->flags & ACPI_MADT_GICC_NON_COHERENT))
2464 gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2465
2466 gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2467 return 0;
2468 }
2469
gic_acpi_collect_gicr_base(void)2470 static int __init gic_acpi_collect_gicr_base(void)
2471 {
2472 acpi_tbl_entry_handler redist_parser;
2473 enum acpi_madt_type type;
2474
2475 if (acpi_data.single_redist) {
2476 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2477 redist_parser = gic_acpi_parse_madt_gicc;
2478 } else {
2479 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2480 redist_parser = gic_acpi_parse_madt_redist;
2481 }
2482
2483 /* Collect redistributor base addresses in GICR entries */
2484 if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2485 return 0;
2486
2487 pr_info("No valid GICR entries exist\n");
2488 return -ENODEV;
2489 }
2490
gic_acpi_match_gicr(union acpi_subtable_headers * header,const unsigned long end)2491 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2492 const unsigned long end)
2493 {
2494 /* Subtable presence means that redist exists, that's it */
2495 return 0;
2496 }
2497
gic_acpi_match_gicc(union acpi_subtable_headers * header,const unsigned long end)2498 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2499 const unsigned long end)
2500 {
2501 struct acpi_madt_generic_interrupt *gicc =
2502 (struct acpi_madt_generic_interrupt *)header;
2503
2504 /*
2505 * If GICC is enabled and has valid gicr base address, then it means
2506 * GICR base is presented via GICC. The redistributor is only known to
2507 * be accessible if the GICC is marked as enabled. If this bit is not
2508 * set, we'd need to add the redistributor at runtime, which isn't
2509 * supported.
2510 */
2511 if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address)
2512 acpi_data.enabled_rdists++;
2513
2514 return 0;
2515 }
2516
gic_acpi_count_gicr_regions(void)2517 static int __init gic_acpi_count_gicr_regions(void)
2518 {
2519 int count;
2520
2521 /*
2522 * Count how many redistributor regions we have. It is not allowed
2523 * to mix redistributor description, GICR and GICC subtables have to be
2524 * mutually exclusive.
2525 */
2526 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2527 gic_acpi_match_gicr, 0);
2528 if (count > 0) {
2529 acpi_data.single_redist = false;
2530 return count;
2531 }
2532
2533 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2534 gic_acpi_match_gicc, 0);
2535 if (count > 0) {
2536 acpi_data.single_redist = true;
2537 count = acpi_data.enabled_rdists;
2538 }
2539
2540 return count;
2541 }
2542
acpi_validate_gic_table(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)2543 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2544 struct acpi_probe_entry *ape)
2545 {
2546 struct acpi_madt_generic_distributor *dist;
2547 int count;
2548
2549 dist = (struct acpi_madt_generic_distributor *)header;
2550 if (dist->version != ape->driver_data)
2551 return false;
2552
2553 /* We need to do that exercise anyway, the sooner the better */
2554 count = gic_acpi_count_gicr_regions();
2555 if (count <= 0)
2556 return false;
2557
2558 acpi_data.nr_redist_regions = count;
2559 return true;
2560 }
2561
gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2562 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2563 const unsigned long end)
2564 {
2565 struct acpi_madt_generic_interrupt *gicc =
2566 (struct acpi_madt_generic_interrupt *)header;
2567 int maint_irq_mode;
2568 static int first_madt = true;
2569
2570 if (!(gicc->flags &
2571 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2572 return 0;
2573
2574 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2575 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2576
2577 if (first_madt) {
2578 first_madt = false;
2579
2580 acpi_data.maint_irq = gicc->vgic_interrupt;
2581 acpi_data.maint_irq_mode = maint_irq_mode;
2582 acpi_data.vcpu_base = gicc->gicv_base_address;
2583
2584 return 0;
2585 }
2586
2587 /*
2588 * The maintenance interrupt and GICV should be the same for every CPU
2589 */
2590 if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2591 (acpi_data.maint_irq_mode != maint_irq_mode) ||
2592 (acpi_data.vcpu_base != gicc->gicv_base_address))
2593 return -EINVAL;
2594
2595 return 0;
2596 }
2597
gic_acpi_collect_virt_info(void)2598 static bool __init gic_acpi_collect_virt_info(void)
2599 {
2600 int count;
2601
2602 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2603 gic_acpi_parse_virt_madt_gicc, 0);
2604
2605 return (count > 0);
2606 }
2607
2608 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2609 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
2610 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
2611
gic_acpi_setup_kvm_info(void)2612 static void __init gic_acpi_setup_kvm_info(void)
2613 {
2614 int irq;
2615
2616 if (!gic_acpi_collect_virt_info()) {
2617 pr_warn("Unable to get hardware information used for virtualization\n");
2618 return;
2619 }
2620
2621 gic_v3_kvm_info.type = GIC_V3;
2622
2623 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2624 acpi_data.maint_irq_mode,
2625 ACPI_ACTIVE_HIGH);
2626 if (irq <= 0)
2627 return;
2628
2629 gic_v3_kvm_info.maint_irq = irq;
2630
2631 if (acpi_data.vcpu_base) {
2632 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2633
2634 vcpu->flags = IORESOURCE_MEM;
2635 vcpu->start = acpi_data.vcpu_base;
2636 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2637 }
2638
2639 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2640 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2641 vgic_set_kvm_info(&gic_v3_kvm_info);
2642 }
2643
2644 static struct fwnode_handle *gsi_domain_handle;
2645
gic_v3_get_gsi_domain_id(u32 gsi)2646 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2647 {
2648 return gsi_domain_handle;
2649 }
2650
2651 static int __init
gic_acpi_init(union acpi_subtable_headers * header,const unsigned long end)2652 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2653 {
2654 struct acpi_madt_generic_distributor *dist;
2655 size_t size;
2656 int i, err;
2657
2658 /* Get distributor base address */
2659 dist = (struct acpi_madt_generic_distributor *)header;
2660 acpi_data.dist_base = ioremap(dist->base_address,
2661 ACPI_GICV3_DIST_MEM_SIZE);
2662 if (!acpi_data.dist_base) {
2663 pr_err("Unable to map GICD registers\n");
2664 return -ENOMEM;
2665 }
2666 gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2667
2668 err = gic_validate_dist_version(acpi_data.dist_base);
2669 if (err) {
2670 pr_err("No distributor detected at @%p, giving up\n",
2671 acpi_data.dist_base);
2672 goto out_dist_unmap;
2673 }
2674
2675 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2676 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2677 if (!acpi_data.redist_regs) {
2678 err = -ENOMEM;
2679 goto out_dist_unmap;
2680 }
2681
2682 err = gic_acpi_collect_gicr_base();
2683 if (err)
2684 goto out_redist_unmap;
2685
2686 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2687 if (!gsi_domain_handle) {
2688 err = -ENOMEM;
2689 goto out_redist_unmap;
2690 }
2691
2692 err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2693 acpi_data.redist_regs, acpi_data.nr_redist_regions,
2694 0, gsi_domain_handle);
2695 if (err)
2696 goto out_fwhandle_free;
2697
2698 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2699
2700 if (static_branch_likely(&supports_deactivate_key))
2701 gic_acpi_setup_kvm_info();
2702
2703 return 0;
2704
2705 out_fwhandle_free:
2706 irq_domain_free_fwnode(gsi_domain_handle);
2707 out_redist_unmap:
2708 for (i = 0; i < acpi_data.nr_redist_regions; i++)
2709 if (acpi_data.redist_regs[i].redist_base)
2710 iounmap(acpi_data.redist_regs[i].redist_base);
2711 kfree(acpi_data.redist_regs);
2712 out_dist_unmap:
2713 iounmap(acpi_data.dist_base);
2714 return err;
2715 }
2716 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2717 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2718 gic_acpi_init);
2719 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2720 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2721 gic_acpi_init);
2722 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2723 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2724 gic_acpi_init);
2725 #endif
2726