xref: /linux/net/core/skbuff.c (revision 1e15510b71c99c6e49134d756df91069f7d18141)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gro.h>
73 #include <net/gso.h>
74 #include <net/hotdata.h>
75 #include <net/ip6_checksum.h>
76 #include <net/xfrm.h>
77 #include <net/mpls.h>
78 #include <net/mptcp.h>
79 #include <net/mctp.h>
80 #include <net/page_pool/helpers.h>
81 #include <net/dropreason.h>
82 
83 #include <linux/uaccess.h>
84 #include <trace/events/skb.h>
85 #include <linux/highmem.h>
86 #include <linux/capability.h>
87 #include <linux/user_namespace.h>
88 #include <linux/indirect_call_wrapper.h>
89 #include <linux/textsearch.h>
90 
91 #include "dev.h"
92 #include "netmem_priv.h"
93 #include "sock_destructor.h"
94 
95 #ifdef CONFIG_SKB_EXTENSIONS
96 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
97 #endif
98 
99 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
101 					       GRO_MAX_HEAD_PAD))
102 
103 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
104  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
105  * size, and we can differentiate heads from skb_small_head_cache
106  * vs system slabs by looking at their size (skb_end_offset()).
107  */
108 #define SKB_SMALL_HEAD_CACHE_SIZE					\
109 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
110 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
111 		SKB_SMALL_HEAD_SIZE)
112 
113 #define SKB_SMALL_HEAD_HEADROOM						\
114 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
115 
116 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
117  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
118  * netmem is a page.
119  */
120 static_assert(offsetof(struct bio_vec, bv_page) ==
121 	      offsetof(skb_frag_t, netmem));
122 static_assert(sizeof_field(struct bio_vec, bv_page) ==
123 	      sizeof_field(skb_frag_t, netmem));
124 
125 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
126 static_assert(sizeof_field(struct bio_vec, bv_len) ==
127 	      sizeof_field(skb_frag_t, len));
128 
129 static_assert(offsetof(struct bio_vec, bv_offset) ==
130 	      offsetof(skb_frag_t, offset));
131 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
132 	      sizeof_field(skb_frag_t, offset));
133 
134 #undef FN
135 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
136 static const char * const drop_reasons[] = {
137 	[SKB_CONSUMED] = "CONSUMED",
138 	DEFINE_DROP_REASON(FN, FN)
139 };
140 
141 static const struct drop_reason_list drop_reasons_core = {
142 	.reasons = drop_reasons,
143 	.n_reasons = ARRAY_SIZE(drop_reasons),
144 };
145 
146 const struct drop_reason_list __rcu *
147 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
148 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
149 };
150 EXPORT_SYMBOL(drop_reasons_by_subsys);
151 
152 /**
153  * drop_reasons_register_subsys - register another drop reason subsystem
154  * @subsys: the subsystem to register, must not be the core
155  * @list: the list of drop reasons within the subsystem, must point to
156  *	a statically initialized list
157  */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)158 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
159 				  const struct drop_reason_list *list)
160 {
161 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
162 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
163 		 "invalid subsystem %d\n", subsys))
164 		return;
165 
166 	/* must point to statically allocated memory, so INIT is OK */
167 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
168 }
169 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
170 
171 /**
172  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
173  * @subsys: the subsystem to remove, must not be the core
174  *
175  * Note: This will synchronize_rcu() to ensure no users when it returns.
176  */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)177 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
178 {
179 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
180 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
181 		 "invalid subsystem %d\n", subsys))
182 		return;
183 
184 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
185 
186 	synchronize_rcu();
187 }
188 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
189 
190 /**
191  *	skb_panic - private function for out-of-line support
192  *	@skb:	buffer
193  *	@sz:	size
194  *	@addr:	address
195  *	@msg:	skb_over_panic or skb_under_panic
196  *
197  *	Out-of-line support for skb_put() and skb_push().
198  *	Called via the wrapper skb_over_panic() or skb_under_panic().
199  *	Keep out of line to prevent kernel bloat.
200  *	__builtin_return_address is not used because it is not always reliable.
201  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])202 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
203 		      const char msg[])
204 {
205 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
206 		 msg, addr, skb->len, sz, skb->head, skb->data,
207 		 (unsigned long)skb->tail, (unsigned long)skb->end,
208 		 skb->dev ? skb->dev->name : "<NULL>");
209 	BUG();
210 }
211 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)212 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
213 {
214 	skb_panic(skb, sz, addr, __func__);
215 }
216 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)217 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
218 {
219 	skb_panic(skb, sz, addr, __func__);
220 }
221 
222 #define NAPI_SKB_CACHE_SIZE	64
223 #define NAPI_SKB_CACHE_BULK	16
224 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
225 
226 struct napi_alloc_cache {
227 	local_lock_t bh_lock;
228 	struct page_frag_cache page;
229 	unsigned int skb_count;
230 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
231 };
232 
233 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
234 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
235 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
236 };
237 
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)238 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
239 {
240 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
241 	void *data;
242 
243 	fragsz = SKB_DATA_ALIGN(fragsz);
244 
245 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
246 	data = __page_frag_alloc_align(&nc->page, fragsz,
247 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
248 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
249 	return data;
250 
251 }
252 EXPORT_SYMBOL(__napi_alloc_frag_align);
253 
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)254 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
255 {
256 	void *data;
257 
258 	if (in_hardirq() || irqs_disabled()) {
259 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
260 
261 		fragsz = SKB_DATA_ALIGN(fragsz);
262 		data = __page_frag_alloc_align(nc, fragsz,
263 					       GFP_ATOMIC | __GFP_NOWARN,
264 					       align_mask);
265 	} else {
266 		local_bh_disable();
267 		data = __napi_alloc_frag_align(fragsz, align_mask);
268 		local_bh_enable();
269 	}
270 	return data;
271 }
272 EXPORT_SYMBOL(__netdev_alloc_frag_align);
273 
napi_skb_cache_get(void)274 static struct sk_buff *napi_skb_cache_get(void)
275 {
276 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
277 	struct sk_buff *skb;
278 
279 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
280 	if (unlikely(!nc->skb_count)) {
281 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
282 						      GFP_ATOMIC | __GFP_NOWARN,
283 						      NAPI_SKB_CACHE_BULK,
284 						      nc->skb_cache);
285 		if (unlikely(!nc->skb_count)) {
286 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
287 			return NULL;
288 		}
289 	}
290 
291 	skb = nc->skb_cache[--nc->skb_count];
292 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
293 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
294 
295 	return skb;
296 }
297 
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)298 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
299 					 unsigned int size)
300 {
301 	struct skb_shared_info *shinfo;
302 
303 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
304 
305 	/* Assumes caller memset cleared SKB */
306 	skb->truesize = SKB_TRUESIZE(size);
307 	refcount_set(&skb->users, 1);
308 	skb->head = data;
309 	skb->data = data;
310 	skb_reset_tail_pointer(skb);
311 	skb_set_end_offset(skb, size);
312 	skb->mac_header = (typeof(skb->mac_header))~0U;
313 	skb->transport_header = (typeof(skb->transport_header))~0U;
314 	skb->alloc_cpu = raw_smp_processor_id();
315 	/* make sure we initialize shinfo sequentially */
316 	shinfo = skb_shinfo(skb);
317 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
318 	atomic_set(&shinfo->dataref, 1);
319 
320 	skb_set_kcov_handle(skb, kcov_common_handle());
321 }
322 
__slab_build_skb(struct sk_buff * skb,void * data,unsigned int * size)323 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
324 				     unsigned int *size)
325 {
326 	void *resized;
327 
328 	/* Must find the allocation size (and grow it to match). */
329 	*size = ksize(data);
330 	/* krealloc() will immediately return "data" when
331 	 * "ksize(data)" is requested: it is the existing upper
332 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
333 	 * that this "new" pointer needs to be passed back to the
334 	 * caller for use so the __alloc_size hinting will be
335 	 * tracked correctly.
336 	 */
337 	resized = krealloc(data, *size, GFP_ATOMIC);
338 	WARN_ON_ONCE(resized != data);
339 	return resized;
340 }
341 
342 /* build_skb() variant which can operate on slab buffers.
343  * Note that this should be used sparingly as slab buffers
344  * cannot be combined efficiently by GRO!
345  */
slab_build_skb(void * data)346 struct sk_buff *slab_build_skb(void *data)
347 {
348 	struct sk_buff *skb;
349 	unsigned int size;
350 
351 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
352 			       GFP_ATOMIC | __GFP_NOWARN);
353 	if (unlikely(!skb))
354 		return NULL;
355 
356 	memset(skb, 0, offsetof(struct sk_buff, tail));
357 	data = __slab_build_skb(skb, data, &size);
358 	__finalize_skb_around(skb, data, size);
359 
360 	return skb;
361 }
362 EXPORT_SYMBOL(slab_build_skb);
363 
364 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)365 static void __build_skb_around(struct sk_buff *skb, void *data,
366 			       unsigned int frag_size)
367 {
368 	unsigned int size = frag_size;
369 
370 	/* frag_size == 0 is considered deprecated now. Callers
371 	 * using slab buffer should use slab_build_skb() instead.
372 	 */
373 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
374 		data = __slab_build_skb(skb, data, &size);
375 
376 	__finalize_skb_around(skb, data, size);
377 }
378 
379 /**
380  * __build_skb - build a network buffer
381  * @data: data buffer provided by caller
382  * @frag_size: size of data (must not be 0)
383  *
384  * Allocate a new &sk_buff. Caller provides space holding head and
385  * skb_shared_info. @data must have been allocated from the page
386  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
387  * allocation is deprecated, and callers should use slab_build_skb()
388  * instead.)
389  * The return is the new skb buffer.
390  * On a failure the return is %NULL, and @data is not freed.
391  * Notes :
392  *  Before IO, driver allocates only data buffer where NIC put incoming frame
393  *  Driver should add room at head (NET_SKB_PAD) and
394  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
395  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
396  *  before giving packet to stack.
397  *  RX rings only contains data buffers, not full skbs.
398  */
__build_skb(void * data,unsigned int frag_size)399 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
400 {
401 	struct sk_buff *skb;
402 
403 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
404 			       GFP_ATOMIC | __GFP_NOWARN);
405 	if (unlikely(!skb))
406 		return NULL;
407 
408 	memset(skb, 0, offsetof(struct sk_buff, tail));
409 	__build_skb_around(skb, data, frag_size);
410 
411 	return skb;
412 }
413 
414 /* build_skb() is wrapper over __build_skb(), that specifically
415  * takes care of skb->head and skb->pfmemalloc
416  */
build_skb(void * data,unsigned int frag_size)417 struct sk_buff *build_skb(void *data, unsigned int frag_size)
418 {
419 	struct sk_buff *skb = __build_skb(data, frag_size);
420 
421 	if (likely(skb && frag_size)) {
422 		skb->head_frag = 1;
423 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
424 	}
425 	return skb;
426 }
427 EXPORT_SYMBOL(build_skb);
428 
429 /**
430  * build_skb_around - build a network buffer around provided skb
431  * @skb: sk_buff provide by caller, must be memset cleared
432  * @data: data buffer provided by caller
433  * @frag_size: size of data
434  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)435 struct sk_buff *build_skb_around(struct sk_buff *skb,
436 				 void *data, unsigned int frag_size)
437 {
438 	if (unlikely(!skb))
439 		return NULL;
440 
441 	__build_skb_around(skb, data, frag_size);
442 
443 	if (frag_size) {
444 		skb->head_frag = 1;
445 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
446 	}
447 	return skb;
448 }
449 EXPORT_SYMBOL(build_skb_around);
450 
451 /**
452  * __napi_build_skb - build a network buffer
453  * @data: data buffer provided by caller
454  * @frag_size: size of data
455  *
456  * Version of __build_skb() that uses NAPI percpu caches to obtain
457  * skbuff_head instead of inplace allocation.
458  *
459  * Returns a new &sk_buff on success, %NULL on allocation failure.
460  */
__napi_build_skb(void * data,unsigned int frag_size)461 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
462 {
463 	struct sk_buff *skb;
464 
465 	skb = napi_skb_cache_get();
466 	if (unlikely(!skb))
467 		return NULL;
468 
469 	memset(skb, 0, offsetof(struct sk_buff, tail));
470 	__build_skb_around(skb, data, frag_size);
471 
472 	return skb;
473 }
474 
475 /**
476  * napi_build_skb - build a network buffer
477  * @data: data buffer provided by caller
478  * @frag_size: size of data
479  *
480  * Version of __napi_build_skb() that takes care of skb->head_frag
481  * and skb->pfmemalloc when the data is a page or page fragment.
482  *
483  * Returns a new &sk_buff on success, %NULL on allocation failure.
484  */
napi_build_skb(void * data,unsigned int frag_size)485 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
486 {
487 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
488 
489 	if (likely(skb) && frag_size) {
490 		skb->head_frag = 1;
491 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
492 	}
493 
494 	return skb;
495 }
496 EXPORT_SYMBOL(napi_build_skb);
497 
498 /*
499  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
500  * the caller if emergency pfmemalloc reserves are being used. If it is and
501  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
502  * may be used. Otherwise, the packet data may be discarded until enough
503  * memory is free
504  */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)505 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
506 			     bool *pfmemalloc)
507 {
508 	bool ret_pfmemalloc = false;
509 	size_t obj_size;
510 	void *obj;
511 
512 	obj_size = SKB_HEAD_ALIGN(*size);
513 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
514 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
515 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
516 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
517 				node);
518 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
519 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
520 			goto out;
521 		/* Try again but now we are using pfmemalloc reserves */
522 		ret_pfmemalloc = true;
523 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
524 		goto out;
525 	}
526 
527 	obj_size = kmalloc_size_roundup(obj_size);
528 	/* The following cast might truncate high-order bits of obj_size, this
529 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
530 	 */
531 	*size = (unsigned int)obj_size;
532 
533 	/*
534 	 * Try a regular allocation, when that fails and we're not entitled
535 	 * to the reserves, fail.
536 	 */
537 	obj = kmalloc_node_track_caller(obj_size,
538 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
539 					node);
540 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
541 		goto out;
542 
543 	/* Try again but now we are using pfmemalloc reserves */
544 	ret_pfmemalloc = true;
545 	obj = kmalloc_node_track_caller(obj_size, flags, node);
546 
547 out:
548 	if (pfmemalloc)
549 		*pfmemalloc = ret_pfmemalloc;
550 
551 	return obj;
552 }
553 
554 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
555  *	'private' fields and also do memory statistics to find all the
556  *	[BEEP] leaks.
557  *
558  */
559 
560 /**
561  *	__alloc_skb	-	allocate a network buffer
562  *	@size: size to allocate
563  *	@gfp_mask: allocation mask
564  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
565  *		instead of head cache and allocate a cloned (child) skb.
566  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
567  *		allocations in case the data is required for writeback
568  *	@node: numa node to allocate memory on
569  *
570  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
571  *	tail room of at least size bytes. The object has a reference count
572  *	of one. The return is the buffer. On a failure the return is %NULL.
573  *
574  *	Buffers may only be allocated from interrupts using a @gfp_mask of
575  *	%GFP_ATOMIC.
576  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)577 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
578 			    int flags, int node)
579 {
580 	struct kmem_cache *cache;
581 	struct sk_buff *skb;
582 	bool pfmemalloc;
583 	u8 *data;
584 
585 	cache = (flags & SKB_ALLOC_FCLONE)
586 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
587 
588 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
589 		gfp_mask |= __GFP_MEMALLOC;
590 
591 	/* Get the HEAD */
592 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
593 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
594 		skb = napi_skb_cache_get();
595 	else
596 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
597 	if (unlikely(!skb))
598 		return NULL;
599 	prefetchw(skb);
600 
601 	/* We do our best to align skb_shared_info on a separate cache
602 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
603 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
604 	 * Both skb->head and skb_shared_info are cache line aligned.
605 	 */
606 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
607 	if (unlikely(!data))
608 		goto nodata;
609 	/* kmalloc_size_roundup() might give us more room than requested.
610 	 * Put skb_shared_info exactly at the end of allocated zone,
611 	 * to allow max possible filling before reallocation.
612 	 */
613 	prefetchw(data + SKB_WITH_OVERHEAD(size));
614 
615 	/*
616 	 * Only clear those fields we need to clear, not those that we will
617 	 * actually initialise below. Hence, don't put any more fields after
618 	 * the tail pointer in struct sk_buff!
619 	 */
620 	memset(skb, 0, offsetof(struct sk_buff, tail));
621 	__build_skb_around(skb, data, size);
622 	skb->pfmemalloc = pfmemalloc;
623 
624 	if (flags & SKB_ALLOC_FCLONE) {
625 		struct sk_buff_fclones *fclones;
626 
627 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
628 
629 		skb->fclone = SKB_FCLONE_ORIG;
630 		refcount_set(&fclones->fclone_ref, 1);
631 	}
632 
633 	return skb;
634 
635 nodata:
636 	kmem_cache_free(cache, skb);
637 	return NULL;
638 }
639 EXPORT_SYMBOL(__alloc_skb);
640 
641 /**
642  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
643  *	@dev: network device to receive on
644  *	@len: length to allocate
645  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
646  *
647  *	Allocate a new &sk_buff and assign it a usage count of one. The
648  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
649  *	the headroom they think they need without accounting for the
650  *	built in space. The built in space is used for optimisations.
651  *
652  *	%NULL is returned if there is no free memory.
653  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)654 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
655 				   gfp_t gfp_mask)
656 {
657 	struct page_frag_cache *nc;
658 	struct sk_buff *skb;
659 	bool pfmemalloc;
660 	void *data;
661 
662 	len += NET_SKB_PAD;
663 
664 	/* If requested length is either too small or too big,
665 	 * we use kmalloc() for skb->head allocation.
666 	 */
667 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
668 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
669 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
670 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
671 		if (!skb)
672 			goto skb_fail;
673 		goto skb_success;
674 	}
675 
676 	len = SKB_HEAD_ALIGN(len);
677 
678 	if (sk_memalloc_socks())
679 		gfp_mask |= __GFP_MEMALLOC;
680 
681 	if (in_hardirq() || irqs_disabled()) {
682 		nc = this_cpu_ptr(&netdev_alloc_cache);
683 		data = page_frag_alloc(nc, len, gfp_mask);
684 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
685 	} else {
686 		local_bh_disable();
687 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
688 
689 		nc = this_cpu_ptr(&napi_alloc_cache.page);
690 		data = page_frag_alloc(nc, len, gfp_mask);
691 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
692 
693 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
694 		local_bh_enable();
695 	}
696 
697 	if (unlikely(!data))
698 		return NULL;
699 
700 	skb = __build_skb(data, len);
701 	if (unlikely(!skb)) {
702 		skb_free_frag(data);
703 		return NULL;
704 	}
705 
706 	if (pfmemalloc)
707 		skb->pfmemalloc = 1;
708 	skb->head_frag = 1;
709 
710 skb_success:
711 	skb_reserve(skb, NET_SKB_PAD);
712 	skb->dev = dev;
713 
714 skb_fail:
715 	return skb;
716 }
717 EXPORT_SYMBOL(__netdev_alloc_skb);
718 
719 /**
720  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
721  *	@napi: napi instance this buffer was allocated for
722  *	@len: length to allocate
723  *
724  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
725  *	attempt to allocate the head from a special reserved region used
726  *	only for NAPI Rx allocation.  By doing this we can save several
727  *	CPU cycles by avoiding having to disable and re-enable IRQs.
728  *
729  *	%NULL is returned if there is no free memory.
730  */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)731 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
732 {
733 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
734 	struct napi_alloc_cache *nc;
735 	struct sk_buff *skb;
736 	bool pfmemalloc;
737 	void *data;
738 
739 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
740 	len += NET_SKB_PAD + NET_IP_ALIGN;
741 
742 	/* If requested length is either too small or too big,
743 	 * we use kmalloc() for skb->head allocation.
744 	 */
745 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
746 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
747 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
748 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
749 				  NUMA_NO_NODE);
750 		if (!skb)
751 			goto skb_fail;
752 		goto skb_success;
753 	}
754 
755 	len = SKB_HEAD_ALIGN(len);
756 
757 	if (sk_memalloc_socks())
758 		gfp_mask |= __GFP_MEMALLOC;
759 
760 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
761 	nc = this_cpu_ptr(&napi_alloc_cache);
762 
763 	data = page_frag_alloc(&nc->page, len, gfp_mask);
764 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
765 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
766 
767 	if (unlikely(!data))
768 		return NULL;
769 
770 	skb = __napi_build_skb(data, len);
771 	if (unlikely(!skb)) {
772 		skb_free_frag(data);
773 		return NULL;
774 	}
775 
776 	if (pfmemalloc)
777 		skb->pfmemalloc = 1;
778 	skb->head_frag = 1;
779 
780 skb_success:
781 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
782 	skb->dev = napi->dev;
783 
784 skb_fail:
785 	return skb;
786 }
787 EXPORT_SYMBOL(napi_alloc_skb);
788 
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)789 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
790 			    int off, int size, unsigned int truesize)
791 {
792 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
793 
794 	skb_fill_netmem_desc(skb, i, netmem, off, size);
795 	skb->len += size;
796 	skb->data_len += size;
797 	skb->truesize += truesize;
798 }
799 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
800 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)801 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
802 			  unsigned int truesize)
803 {
804 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
805 
806 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
807 
808 	skb_frag_size_add(frag, size);
809 	skb->len += size;
810 	skb->data_len += size;
811 	skb->truesize += truesize;
812 }
813 EXPORT_SYMBOL(skb_coalesce_rx_frag);
814 
skb_drop_list(struct sk_buff ** listp)815 static void skb_drop_list(struct sk_buff **listp)
816 {
817 	kfree_skb_list(*listp);
818 	*listp = NULL;
819 }
820 
skb_drop_fraglist(struct sk_buff * skb)821 static inline void skb_drop_fraglist(struct sk_buff *skb)
822 {
823 	skb_drop_list(&skb_shinfo(skb)->frag_list);
824 }
825 
skb_clone_fraglist(struct sk_buff * skb)826 static void skb_clone_fraglist(struct sk_buff *skb)
827 {
828 	struct sk_buff *list;
829 
830 	skb_walk_frags(skb, list)
831 		skb_get(list);
832 }
833 
is_pp_netmem(netmem_ref netmem)834 static bool is_pp_netmem(netmem_ref netmem)
835 {
836 	return (netmem_get_pp_magic(netmem) & ~0x3UL) == PP_SIGNATURE;
837 }
838 
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)839 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
840 		    unsigned int headroom)
841 {
842 #if IS_ENABLED(CONFIG_PAGE_POOL)
843 	u32 size, truesize, len, max_head_size, off;
844 	struct sk_buff *skb = *pskb, *nskb;
845 	int err, i, head_off;
846 	void *data;
847 
848 	/* XDP does not support fraglist so we need to linearize
849 	 * the skb.
850 	 */
851 	if (skb_has_frag_list(skb))
852 		return -EOPNOTSUPP;
853 
854 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
855 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
856 		return -ENOMEM;
857 
858 	size = min_t(u32, skb->len, max_head_size);
859 	truesize = SKB_HEAD_ALIGN(size) + headroom;
860 	data = page_pool_dev_alloc_va(pool, &truesize);
861 	if (!data)
862 		return -ENOMEM;
863 
864 	nskb = napi_build_skb(data, truesize);
865 	if (!nskb) {
866 		page_pool_free_va(pool, data, true);
867 		return -ENOMEM;
868 	}
869 
870 	skb_reserve(nskb, headroom);
871 	skb_copy_header(nskb, skb);
872 	skb_mark_for_recycle(nskb);
873 
874 	err = skb_copy_bits(skb, 0, nskb->data, size);
875 	if (err) {
876 		consume_skb(nskb);
877 		return err;
878 	}
879 	skb_put(nskb, size);
880 
881 	head_off = skb_headroom(nskb) - skb_headroom(skb);
882 	skb_headers_offset_update(nskb, head_off);
883 
884 	off = size;
885 	len = skb->len - off;
886 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
887 		struct page *page;
888 		u32 page_off;
889 
890 		size = min_t(u32, len, PAGE_SIZE);
891 		truesize = size;
892 
893 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
894 		if (!page) {
895 			consume_skb(nskb);
896 			return -ENOMEM;
897 		}
898 
899 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
900 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
901 				    size);
902 		if (err) {
903 			consume_skb(nskb);
904 			return err;
905 		}
906 
907 		len -= size;
908 		off += size;
909 	}
910 
911 	consume_skb(skb);
912 	*pskb = nskb;
913 
914 	return 0;
915 #else
916 	return -EOPNOTSUPP;
917 #endif
918 }
919 EXPORT_SYMBOL(skb_pp_cow_data);
920 
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,const struct bpf_prog * prog)921 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
922 			 const struct bpf_prog *prog)
923 {
924 	if (!prog->aux->xdp_has_frags)
925 		return -EINVAL;
926 
927 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
928 }
929 EXPORT_SYMBOL(skb_cow_data_for_xdp);
930 
931 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)932 bool napi_pp_put_page(netmem_ref netmem)
933 {
934 	netmem = netmem_compound_head(netmem);
935 
936 	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
937 	 * in order to preserve any existing bits, such as bit 0 for the
938 	 * head page of compound page and bit 1 for pfmemalloc page, so
939 	 * mask those bits for freeing side when doing below checking,
940 	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
941 	 * to avoid recycling the pfmemalloc page.
942 	 */
943 	if (unlikely(!is_pp_netmem(netmem)))
944 		return false;
945 
946 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
947 
948 	return true;
949 }
950 EXPORT_SYMBOL(napi_pp_put_page);
951 #endif
952 
skb_pp_recycle(struct sk_buff * skb,void * data)953 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
954 {
955 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
956 		return false;
957 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
958 }
959 
960 /**
961  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
962  * @skb:	page pool aware skb
963  *
964  * Increase the fragment reference count (pp_ref_count) of a skb. This is
965  * intended to gain fragment references only for page pool aware skbs,
966  * i.e. when skb->pp_recycle is true, and not for fragments in a
967  * non-pp-recycling skb. It has a fallback to increase references on normal
968  * pages, as page pool aware skbs may also have normal page fragments.
969  */
skb_pp_frag_ref(struct sk_buff * skb)970 static int skb_pp_frag_ref(struct sk_buff *skb)
971 {
972 	struct skb_shared_info *shinfo;
973 	netmem_ref head_netmem;
974 	int i;
975 
976 	if (!skb->pp_recycle)
977 		return -EINVAL;
978 
979 	shinfo = skb_shinfo(skb);
980 
981 	for (i = 0; i < shinfo->nr_frags; i++) {
982 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
983 		if (likely(is_pp_netmem(head_netmem)))
984 			page_pool_ref_netmem(head_netmem);
985 		else
986 			page_ref_inc(netmem_to_page(head_netmem));
987 	}
988 	return 0;
989 }
990 
skb_kfree_head(void * head,unsigned int end_offset)991 static void skb_kfree_head(void *head, unsigned int end_offset)
992 {
993 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
994 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
995 	else
996 		kfree(head);
997 }
998 
skb_free_head(struct sk_buff * skb)999 static void skb_free_head(struct sk_buff *skb)
1000 {
1001 	unsigned char *head = skb->head;
1002 
1003 	if (skb->head_frag) {
1004 		if (skb_pp_recycle(skb, head))
1005 			return;
1006 		skb_free_frag(head);
1007 	} else {
1008 		skb_kfree_head(head, skb_end_offset(skb));
1009 	}
1010 }
1011 
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1012 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1013 {
1014 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1015 	int i;
1016 
1017 	if (!skb_data_unref(skb, shinfo))
1018 		goto exit;
1019 
1020 	if (skb_zcopy(skb)) {
1021 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1022 
1023 		skb_zcopy_clear(skb, true);
1024 		if (skip_unref)
1025 			goto free_head;
1026 	}
1027 
1028 	for (i = 0; i < shinfo->nr_frags; i++)
1029 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1030 
1031 free_head:
1032 	if (shinfo->frag_list)
1033 		kfree_skb_list_reason(shinfo->frag_list, reason);
1034 
1035 	skb_free_head(skb);
1036 exit:
1037 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1038 	 * bit is only set on the head though, so in order to avoid races
1039 	 * while trying to recycle fragments on __skb_frag_unref() we need
1040 	 * to make one SKB responsible for triggering the recycle path.
1041 	 * So disable the recycling bit if an SKB is cloned and we have
1042 	 * additional references to the fragmented part of the SKB.
1043 	 * Eventually the last SKB will have the recycling bit set and it's
1044 	 * dataref set to 0, which will trigger the recycling
1045 	 */
1046 	skb->pp_recycle = 0;
1047 }
1048 
1049 /*
1050  *	Free an skbuff by memory without cleaning the state.
1051  */
kfree_skbmem(struct sk_buff * skb)1052 static void kfree_skbmem(struct sk_buff *skb)
1053 {
1054 	struct sk_buff_fclones *fclones;
1055 
1056 	switch (skb->fclone) {
1057 	case SKB_FCLONE_UNAVAILABLE:
1058 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1059 		return;
1060 
1061 	case SKB_FCLONE_ORIG:
1062 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1063 
1064 		/* We usually free the clone (TX completion) before original skb
1065 		 * This test would have no chance to be true for the clone,
1066 		 * while here, branch prediction will be good.
1067 		 */
1068 		if (refcount_read(&fclones->fclone_ref) == 1)
1069 			goto fastpath;
1070 		break;
1071 
1072 	default: /* SKB_FCLONE_CLONE */
1073 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1074 		break;
1075 	}
1076 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1077 		return;
1078 fastpath:
1079 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1080 }
1081 
skb_release_head_state(struct sk_buff * skb)1082 void skb_release_head_state(struct sk_buff *skb)
1083 {
1084 	skb_dst_drop(skb);
1085 	if (skb->destructor) {
1086 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1087 		skb->destructor(skb);
1088 	}
1089 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1090 	nf_conntrack_put(skb_nfct(skb));
1091 #endif
1092 	skb_ext_put(skb);
1093 }
1094 
1095 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1096 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1097 {
1098 	skb_release_head_state(skb);
1099 	if (likely(skb->head))
1100 		skb_release_data(skb, reason);
1101 }
1102 
1103 /**
1104  *	__kfree_skb - private function
1105  *	@skb: buffer
1106  *
1107  *	Free an sk_buff. Release anything attached to the buffer.
1108  *	Clean the state. This is an internal helper function. Users should
1109  *	always call kfree_skb
1110  */
1111 
__kfree_skb(struct sk_buff * skb)1112 void __kfree_skb(struct sk_buff *skb)
1113 {
1114 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1115 	kfree_skbmem(skb);
1116 }
1117 EXPORT_SYMBOL(__kfree_skb);
1118 
1119 static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1120 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1121 			  enum skb_drop_reason reason)
1122 {
1123 	if (unlikely(!skb_unref(skb)))
1124 		return false;
1125 
1126 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1127 			       u32_get_bits(reason,
1128 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1129 				SKB_DROP_REASON_SUBSYS_NUM);
1130 
1131 	if (reason == SKB_CONSUMED)
1132 		trace_consume_skb(skb, __builtin_return_address(0));
1133 	else
1134 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1135 	return true;
1136 }
1137 
1138 /**
1139  *	sk_skb_reason_drop - free an sk_buff with special reason
1140  *	@sk: the socket to receive @skb, or NULL if not applicable
1141  *	@skb: buffer to free
1142  *	@reason: reason why this skb is dropped
1143  *
1144  *	Drop a reference to the buffer and free it if the usage count has hit
1145  *	zero. Meanwhile, pass the receiving socket and drop reason to
1146  *	'kfree_skb' tracepoint.
1147  */
1148 void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1149 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1150 {
1151 	if (__sk_skb_reason_drop(sk, skb, reason))
1152 		__kfree_skb(skb);
1153 }
1154 EXPORT_SYMBOL(sk_skb_reason_drop);
1155 
1156 #define KFREE_SKB_BULK_SIZE	16
1157 
1158 struct skb_free_array {
1159 	unsigned int skb_count;
1160 	void *skb_array[KFREE_SKB_BULK_SIZE];
1161 };
1162 
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1163 static void kfree_skb_add_bulk(struct sk_buff *skb,
1164 			       struct skb_free_array *sa,
1165 			       enum skb_drop_reason reason)
1166 {
1167 	/* if SKB is a clone, don't handle this case */
1168 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1169 		__kfree_skb(skb);
1170 		return;
1171 	}
1172 
1173 	skb_release_all(skb, reason);
1174 	sa->skb_array[sa->skb_count++] = skb;
1175 
1176 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1177 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1178 				     sa->skb_array);
1179 		sa->skb_count = 0;
1180 	}
1181 }
1182 
1183 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1184 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1185 {
1186 	struct skb_free_array sa;
1187 
1188 	sa.skb_count = 0;
1189 
1190 	while (segs) {
1191 		struct sk_buff *next = segs->next;
1192 
1193 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1194 			skb_poison_list(segs);
1195 			kfree_skb_add_bulk(segs, &sa, reason);
1196 		}
1197 
1198 		segs = next;
1199 	}
1200 
1201 	if (sa.skb_count)
1202 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1203 }
1204 EXPORT_SYMBOL(kfree_skb_list_reason);
1205 
1206 /* Dump skb information and contents.
1207  *
1208  * Must only be called from net_ratelimit()-ed paths.
1209  *
1210  * Dumps whole packets if full_pkt, only headers otherwise.
1211  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1212 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1213 {
1214 	struct skb_shared_info *sh = skb_shinfo(skb);
1215 	struct net_device *dev = skb->dev;
1216 	struct sock *sk = skb->sk;
1217 	struct sk_buff *list_skb;
1218 	bool has_mac, has_trans;
1219 	int headroom, tailroom;
1220 	int i, len, seg_len;
1221 
1222 	if (full_pkt)
1223 		len = skb->len;
1224 	else
1225 		len = min_t(int, skb->len, MAX_HEADER + 128);
1226 
1227 	headroom = skb_headroom(skb);
1228 	tailroom = skb_tailroom(skb);
1229 
1230 	has_mac = skb_mac_header_was_set(skb);
1231 	has_trans = skb_transport_header_was_set(skb);
1232 
1233 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1234 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1235 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1236 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1237 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1238 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1239 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1240 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1241 	       has_mac ? skb->mac_header : -1,
1242 	       has_mac ? skb_mac_header_len(skb) : -1,
1243 	       skb->mac_len,
1244 	       skb->network_header,
1245 	       has_trans ? skb_network_header_len(skb) : -1,
1246 	       has_trans ? skb->transport_header : -1,
1247 	       sh->tx_flags, sh->nr_frags,
1248 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1249 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1250 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1251 	       skb->hash, skb->sw_hash, skb->l4_hash,
1252 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1253 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1254 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1255 	       skb->inner_network_header, skb->inner_transport_header);
1256 
1257 	if (dev)
1258 		printk("%sdev name=%s feat=%pNF\n",
1259 		       level, dev->name, &dev->features);
1260 	if (sk)
1261 		printk("%ssk family=%hu type=%u proto=%u\n",
1262 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1263 
1264 	if (full_pkt && headroom)
1265 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1266 			       16, 1, skb->head, headroom, false);
1267 
1268 	seg_len = min_t(int, skb_headlen(skb), len);
1269 	if (seg_len)
1270 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1271 			       16, 1, skb->data, seg_len, false);
1272 	len -= seg_len;
1273 
1274 	if (full_pkt && tailroom)
1275 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1276 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1277 
1278 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1279 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1280 		u32 p_off, p_len, copied;
1281 		struct page *p;
1282 		u8 *vaddr;
1283 
1284 		if (skb_frag_is_net_iov(frag)) {
1285 			printk("%sskb frag %d: not readable\n", level, i);
1286 			len -= skb_frag_size(frag);
1287 			if (!len)
1288 				break;
1289 			continue;
1290 		}
1291 
1292 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1293 				      skb_frag_size(frag), p, p_off, p_len,
1294 				      copied) {
1295 			seg_len = min_t(int, p_len, len);
1296 			vaddr = kmap_atomic(p);
1297 			print_hex_dump(level, "skb frag:     ",
1298 				       DUMP_PREFIX_OFFSET,
1299 				       16, 1, vaddr + p_off, seg_len, false);
1300 			kunmap_atomic(vaddr);
1301 			len -= seg_len;
1302 			if (!len)
1303 				break;
1304 		}
1305 	}
1306 
1307 	if (full_pkt && skb_has_frag_list(skb)) {
1308 		printk("skb fraglist:\n");
1309 		skb_walk_frags(skb, list_skb)
1310 			skb_dump(level, list_skb, true);
1311 	}
1312 }
1313 EXPORT_SYMBOL(skb_dump);
1314 
1315 /**
1316  *	skb_tx_error - report an sk_buff xmit error
1317  *	@skb: buffer that triggered an error
1318  *
1319  *	Report xmit error if a device callback is tracking this skb.
1320  *	skb must be freed afterwards.
1321  */
skb_tx_error(struct sk_buff * skb)1322 void skb_tx_error(struct sk_buff *skb)
1323 {
1324 	if (skb) {
1325 		skb_zcopy_downgrade_managed(skb);
1326 		skb_zcopy_clear(skb, true);
1327 	}
1328 }
1329 EXPORT_SYMBOL(skb_tx_error);
1330 
1331 #ifdef CONFIG_TRACEPOINTS
1332 /**
1333  *	consume_skb - free an skbuff
1334  *	@skb: buffer to free
1335  *
1336  *	Drop a ref to the buffer and free it if the usage count has hit zero
1337  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1338  *	is being dropped after a failure and notes that
1339  */
consume_skb(struct sk_buff * skb)1340 void consume_skb(struct sk_buff *skb)
1341 {
1342 	if (!skb_unref(skb))
1343 		return;
1344 
1345 	trace_consume_skb(skb, __builtin_return_address(0));
1346 	__kfree_skb(skb);
1347 }
1348 EXPORT_SYMBOL(consume_skb);
1349 #endif
1350 
1351 /**
1352  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1353  *	@skb: buffer to free
1354  *
1355  *	Alike consume_skb(), but this variant assumes that this is the last
1356  *	skb reference and all the head states have been already dropped
1357  */
__consume_stateless_skb(struct sk_buff * skb)1358 void __consume_stateless_skb(struct sk_buff *skb)
1359 {
1360 	trace_consume_skb(skb, __builtin_return_address(0));
1361 	skb_release_data(skb, SKB_CONSUMED);
1362 	kfree_skbmem(skb);
1363 }
1364 
napi_skb_cache_put(struct sk_buff * skb)1365 static void napi_skb_cache_put(struct sk_buff *skb)
1366 {
1367 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1368 	u32 i;
1369 
1370 	if (!kasan_mempool_poison_object(skb))
1371 		return;
1372 
1373 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1374 	nc->skb_cache[nc->skb_count++] = skb;
1375 
1376 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1377 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1378 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1379 						kmem_cache_size(net_hotdata.skbuff_cache));
1380 
1381 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1382 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1383 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1384 	}
1385 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1386 }
1387 
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1388 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1389 {
1390 	skb_release_all(skb, reason);
1391 	napi_skb_cache_put(skb);
1392 }
1393 
napi_skb_free_stolen_head(struct sk_buff * skb)1394 void napi_skb_free_stolen_head(struct sk_buff *skb)
1395 {
1396 	if (unlikely(skb->slow_gro)) {
1397 		nf_reset_ct(skb);
1398 		skb_dst_drop(skb);
1399 		skb_ext_put(skb);
1400 		skb_orphan(skb);
1401 		skb->slow_gro = 0;
1402 	}
1403 	napi_skb_cache_put(skb);
1404 }
1405 
napi_consume_skb(struct sk_buff * skb,int budget)1406 void napi_consume_skb(struct sk_buff *skb, int budget)
1407 {
1408 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1409 	if (unlikely(!budget)) {
1410 		dev_consume_skb_any(skb);
1411 		return;
1412 	}
1413 
1414 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1415 
1416 	if (!skb_unref(skb))
1417 		return;
1418 
1419 	/* if reaching here SKB is ready to free */
1420 	trace_consume_skb(skb, __builtin_return_address(0));
1421 
1422 	/* if SKB is a clone, don't handle this case */
1423 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1424 		__kfree_skb(skb);
1425 		return;
1426 	}
1427 
1428 	skb_release_all(skb, SKB_CONSUMED);
1429 	napi_skb_cache_put(skb);
1430 }
1431 EXPORT_SYMBOL(napi_consume_skb);
1432 
1433 /* Make sure a field is contained by headers group */
1434 #define CHECK_SKB_FIELD(field) \
1435 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1436 		     offsetof(struct sk_buff, headers.field));	\
1437 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1438 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1439 {
1440 	new->tstamp		= old->tstamp;
1441 	/* We do not copy old->sk */
1442 	new->dev		= old->dev;
1443 	memcpy(new->cb, old->cb, sizeof(old->cb));
1444 	skb_dst_copy(new, old);
1445 	__skb_ext_copy(new, old);
1446 	__nf_copy(new, old, false);
1447 
1448 	/* Note : this field could be in the headers group.
1449 	 * It is not yet because we do not want to have a 16 bit hole
1450 	 */
1451 	new->queue_mapping = old->queue_mapping;
1452 
1453 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1454 	CHECK_SKB_FIELD(protocol);
1455 	CHECK_SKB_FIELD(csum);
1456 	CHECK_SKB_FIELD(hash);
1457 	CHECK_SKB_FIELD(priority);
1458 	CHECK_SKB_FIELD(skb_iif);
1459 	CHECK_SKB_FIELD(vlan_proto);
1460 	CHECK_SKB_FIELD(vlan_tci);
1461 	CHECK_SKB_FIELD(transport_header);
1462 	CHECK_SKB_FIELD(network_header);
1463 	CHECK_SKB_FIELD(mac_header);
1464 	CHECK_SKB_FIELD(inner_protocol);
1465 	CHECK_SKB_FIELD(inner_transport_header);
1466 	CHECK_SKB_FIELD(inner_network_header);
1467 	CHECK_SKB_FIELD(inner_mac_header);
1468 	CHECK_SKB_FIELD(mark);
1469 #ifdef CONFIG_NETWORK_SECMARK
1470 	CHECK_SKB_FIELD(secmark);
1471 #endif
1472 #ifdef CONFIG_NET_RX_BUSY_POLL
1473 	CHECK_SKB_FIELD(napi_id);
1474 #endif
1475 	CHECK_SKB_FIELD(alloc_cpu);
1476 #ifdef CONFIG_XPS
1477 	CHECK_SKB_FIELD(sender_cpu);
1478 #endif
1479 #ifdef CONFIG_NET_SCHED
1480 	CHECK_SKB_FIELD(tc_index);
1481 #endif
1482 
1483 }
1484 
1485 /*
1486  * You should not add any new code to this function.  Add it to
1487  * __copy_skb_header above instead.
1488  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1489 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1490 {
1491 #define C(x) n->x = skb->x
1492 
1493 	n->next = n->prev = NULL;
1494 	n->sk = NULL;
1495 	__copy_skb_header(n, skb);
1496 
1497 	C(len);
1498 	C(data_len);
1499 	C(mac_len);
1500 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1501 	n->cloned = 1;
1502 	n->nohdr = 0;
1503 	n->peeked = 0;
1504 	C(pfmemalloc);
1505 	C(pp_recycle);
1506 	n->destructor = NULL;
1507 	C(tail);
1508 	C(end);
1509 	C(head);
1510 	C(head_frag);
1511 	C(data);
1512 	C(truesize);
1513 	refcount_set(&n->users, 1);
1514 
1515 	atomic_inc(&(skb_shinfo(skb)->dataref));
1516 	skb->cloned = 1;
1517 
1518 	return n;
1519 #undef C
1520 }
1521 
1522 /**
1523  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1524  * @first: first sk_buff of the msg
1525  */
alloc_skb_for_msg(struct sk_buff * first)1526 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1527 {
1528 	struct sk_buff *n;
1529 
1530 	n = alloc_skb(0, GFP_ATOMIC);
1531 	if (!n)
1532 		return NULL;
1533 
1534 	n->len = first->len;
1535 	n->data_len = first->len;
1536 	n->truesize = first->truesize;
1537 
1538 	skb_shinfo(n)->frag_list = first;
1539 
1540 	__copy_skb_header(n, first);
1541 	n->destructor = NULL;
1542 
1543 	return n;
1544 }
1545 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1546 
1547 /**
1548  *	skb_morph	-	morph one skb into another
1549  *	@dst: the skb to receive the contents
1550  *	@src: the skb to supply the contents
1551  *
1552  *	This is identical to skb_clone except that the target skb is
1553  *	supplied by the user.
1554  *
1555  *	The target skb is returned upon exit.
1556  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1557 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1558 {
1559 	skb_release_all(dst, SKB_CONSUMED);
1560 	return __skb_clone(dst, src);
1561 }
1562 EXPORT_SYMBOL_GPL(skb_morph);
1563 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1564 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1565 {
1566 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1567 	struct user_struct *user;
1568 
1569 	if (capable(CAP_IPC_LOCK) || !size)
1570 		return 0;
1571 
1572 	rlim = rlimit(RLIMIT_MEMLOCK);
1573 	if (rlim == RLIM_INFINITY)
1574 		return 0;
1575 
1576 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1577 	max_pg = rlim >> PAGE_SHIFT;
1578 	user = mmp->user ? : current_user();
1579 
1580 	old_pg = atomic_long_read(&user->locked_vm);
1581 	do {
1582 		new_pg = old_pg + num_pg;
1583 		if (new_pg > max_pg)
1584 			return -ENOBUFS;
1585 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1586 
1587 	if (!mmp->user) {
1588 		mmp->user = get_uid(user);
1589 		mmp->num_pg = num_pg;
1590 	} else {
1591 		mmp->num_pg += num_pg;
1592 	}
1593 
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1597 
mm_unaccount_pinned_pages(struct mmpin * mmp)1598 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1599 {
1600 	if (mmp->user) {
1601 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1602 		free_uid(mmp->user);
1603 	}
1604 }
1605 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1606 
msg_zerocopy_alloc(struct sock * sk,size_t size)1607 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1608 {
1609 	struct ubuf_info_msgzc *uarg;
1610 	struct sk_buff *skb;
1611 
1612 	WARN_ON_ONCE(!in_task());
1613 
1614 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1615 	if (!skb)
1616 		return NULL;
1617 
1618 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1619 	uarg = (void *)skb->cb;
1620 	uarg->mmp.user = NULL;
1621 
1622 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1623 		kfree_skb(skb);
1624 		return NULL;
1625 	}
1626 
1627 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1628 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1629 	uarg->len = 1;
1630 	uarg->bytelen = size;
1631 	uarg->zerocopy = 1;
1632 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1633 	refcount_set(&uarg->ubuf.refcnt, 1);
1634 	sock_hold(sk);
1635 
1636 	return &uarg->ubuf;
1637 }
1638 
skb_from_uarg(struct ubuf_info_msgzc * uarg)1639 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1640 {
1641 	return container_of((void *)uarg, struct sk_buff, cb);
1642 }
1643 
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1644 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1645 				       struct ubuf_info *uarg)
1646 {
1647 	if (uarg) {
1648 		struct ubuf_info_msgzc *uarg_zc;
1649 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1650 		u32 bytelen, next;
1651 
1652 		/* there might be non MSG_ZEROCOPY users */
1653 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1654 			return NULL;
1655 
1656 		/* realloc only when socket is locked (TCP, UDP cork),
1657 		 * so uarg->len and sk_zckey access is serialized
1658 		 */
1659 		if (!sock_owned_by_user(sk)) {
1660 			WARN_ON_ONCE(1);
1661 			return NULL;
1662 		}
1663 
1664 		uarg_zc = uarg_to_msgzc(uarg);
1665 		bytelen = uarg_zc->bytelen + size;
1666 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1667 			/* TCP can create new skb to attach new uarg */
1668 			if (sk->sk_type == SOCK_STREAM)
1669 				goto new_alloc;
1670 			return NULL;
1671 		}
1672 
1673 		next = (u32)atomic_read(&sk->sk_zckey);
1674 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1675 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1676 				return NULL;
1677 			uarg_zc->len++;
1678 			uarg_zc->bytelen = bytelen;
1679 			atomic_set(&sk->sk_zckey, ++next);
1680 
1681 			/* no extra ref when appending to datagram (MSG_MORE) */
1682 			if (sk->sk_type == SOCK_STREAM)
1683 				net_zcopy_get(uarg);
1684 
1685 			return uarg;
1686 		}
1687 	}
1688 
1689 new_alloc:
1690 	return msg_zerocopy_alloc(sk, size);
1691 }
1692 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1693 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1694 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1695 {
1696 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1697 	u32 old_lo, old_hi;
1698 	u64 sum_len;
1699 
1700 	old_lo = serr->ee.ee_info;
1701 	old_hi = serr->ee.ee_data;
1702 	sum_len = old_hi - old_lo + 1ULL + len;
1703 
1704 	if (sum_len >= (1ULL << 32))
1705 		return false;
1706 
1707 	if (lo != old_hi + 1)
1708 		return false;
1709 
1710 	serr->ee.ee_data += len;
1711 	return true;
1712 }
1713 
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1714 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1715 {
1716 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1717 	struct sock_exterr_skb *serr;
1718 	struct sock *sk = skb->sk;
1719 	struct sk_buff_head *q;
1720 	unsigned long flags;
1721 	bool is_zerocopy;
1722 	u32 lo, hi;
1723 	u16 len;
1724 
1725 	mm_unaccount_pinned_pages(&uarg->mmp);
1726 
1727 	/* if !len, there was only 1 call, and it was aborted
1728 	 * so do not queue a completion notification
1729 	 */
1730 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1731 		goto release;
1732 
1733 	len = uarg->len;
1734 	lo = uarg->id;
1735 	hi = uarg->id + len - 1;
1736 	is_zerocopy = uarg->zerocopy;
1737 
1738 	serr = SKB_EXT_ERR(skb);
1739 	memset(serr, 0, sizeof(*serr));
1740 	serr->ee.ee_errno = 0;
1741 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1742 	serr->ee.ee_data = hi;
1743 	serr->ee.ee_info = lo;
1744 	if (!is_zerocopy)
1745 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1746 
1747 	q = &sk->sk_error_queue;
1748 	spin_lock_irqsave(&q->lock, flags);
1749 	tail = skb_peek_tail(q);
1750 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1751 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1752 		__skb_queue_tail(q, skb);
1753 		skb = NULL;
1754 	}
1755 	spin_unlock_irqrestore(&q->lock, flags);
1756 
1757 	sk_error_report(sk);
1758 
1759 release:
1760 	consume_skb(skb);
1761 	sock_put(sk);
1762 }
1763 
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1764 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1765 				  bool success)
1766 {
1767 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1768 
1769 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1770 
1771 	if (refcount_dec_and_test(&uarg->refcnt))
1772 		__msg_zerocopy_callback(uarg_zc);
1773 }
1774 
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1775 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1776 {
1777 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1778 
1779 	atomic_dec(&sk->sk_zckey);
1780 	uarg_to_msgzc(uarg)->len--;
1781 
1782 	if (have_uref)
1783 		msg_zerocopy_complete(NULL, uarg, true);
1784 }
1785 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1786 
1787 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1788 	.complete = msg_zerocopy_complete,
1789 };
1790 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1791 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1792 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1793 			     struct msghdr *msg, int len,
1794 			     struct ubuf_info *uarg)
1795 {
1796 	int err, orig_len = skb->len;
1797 
1798 	if (uarg->ops->link_skb) {
1799 		err = uarg->ops->link_skb(skb, uarg);
1800 		if (err)
1801 			return err;
1802 	} else {
1803 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1804 
1805 		/* An skb can only point to one uarg. This edge case happens
1806 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1807 		 * a new alloc.
1808 		 */
1809 		if (orig_uarg && uarg != orig_uarg)
1810 			return -EEXIST;
1811 	}
1812 
1813 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1814 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1815 		struct sock *save_sk = skb->sk;
1816 
1817 		/* Streams do not free skb on error. Reset to prev state. */
1818 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1819 		skb->sk = sk;
1820 		___pskb_trim(skb, orig_len);
1821 		skb->sk = save_sk;
1822 		return err;
1823 	}
1824 
1825 	skb_zcopy_set(skb, uarg, NULL);
1826 	return skb->len - orig_len;
1827 }
1828 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1829 
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1830 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1831 {
1832 	int i;
1833 
1834 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1835 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1836 		skb_frag_ref(skb, i);
1837 }
1838 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1839 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1840 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1841 			      gfp_t gfp_mask)
1842 {
1843 	if (skb_zcopy(orig)) {
1844 		if (skb_zcopy(nskb)) {
1845 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1846 			if (!gfp_mask) {
1847 				WARN_ON_ONCE(1);
1848 				return -ENOMEM;
1849 			}
1850 			if (skb_uarg(nskb) == skb_uarg(orig))
1851 				return 0;
1852 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1853 				return -EIO;
1854 		}
1855 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1856 	}
1857 	return 0;
1858 }
1859 
1860 /**
1861  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1862  *	@skb: the skb to modify
1863  *	@gfp_mask: allocation priority
1864  *
1865  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1866  *	It will copy all frags into kernel and drop the reference
1867  *	to userspace pages.
1868  *
1869  *	If this function is called from an interrupt gfp_mask() must be
1870  *	%GFP_ATOMIC.
1871  *
1872  *	Returns 0 on success or a negative error code on failure
1873  *	to allocate kernel memory to copy to.
1874  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1875 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1876 {
1877 	int num_frags = skb_shinfo(skb)->nr_frags;
1878 	struct page *page, *head = NULL;
1879 	int i, order, psize, new_frags;
1880 	u32 d_off;
1881 
1882 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1883 		return -EINVAL;
1884 
1885 	if (!skb_frags_readable(skb))
1886 		return -EFAULT;
1887 
1888 	if (!num_frags)
1889 		goto release;
1890 
1891 	/* We might have to allocate high order pages, so compute what minimum
1892 	 * page order is needed.
1893 	 */
1894 	order = 0;
1895 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1896 		order++;
1897 	psize = (PAGE_SIZE << order);
1898 
1899 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1900 	for (i = 0; i < new_frags; i++) {
1901 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1902 		if (!page) {
1903 			while (head) {
1904 				struct page *next = (struct page *)page_private(head);
1905 				put_page(head);
1906 				head = next;
1907 			}
1908 			return -ENOMEM;
1909 		}
1910 		set_page_private(page, (unsigned long)head);
1911 		head = page;
1912 	}
1913 
1914 	page = head;
1915 	d_off = 0;
1916 	for (i = 0; i < num_frags; i++) {
1917 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1918 		u32 p_off, p_len, copied;
1919 		struct page *p;
1920 		u8 *vaddr;
1921 
1922 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1923 				      p, p_off, p_len, copied) {
1924 			u32 copy, done = 0;
1925 			vaddr = kmap_atomic(p);
1926 
1927 			while (done < p_len) {
1928 				if (d_off == psize) {
1929 					d_off = 0;
1930 					page = (struct page *)page_private(page);
1931 				}
1932 				copy = min_t(u32, psize - d_off, p_len - done);
1933 				memcpy(page_address(page) + d_off,
1934 				       vaddr + p_off + done, copy);
1935 				done += copy;
1936 				d_off += copy;
1937 			}
1938 			kunmap_atomic(vaddr);
1939 		}
1940 	}
1941 
1942 	/* skb frags release userspace buffers */
1943 	for (i = 0; i < num_frags; i++)
1944 		skb_frag_unref(skb, i);
1945 
1946 	/* skb frags point to kernel buffers */
1947 	for (i = 0; i < new_frags - 1; i++) {
1948 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
1949 		head = (struct page *)page_private(head);
1950 	}
1951 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
1952 			       d_off);
1953 	skb_shinfo(skb)->nr_frags = new_frags;
1954 
1955 release:
1956 	skb_zcopy_clear(skb, false);
1957 	return 0;
1958 }
1959 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1960 
1961 /**
1962  *	skb_clone	-	duplicate an sk_buff
1963  *	@skb: buffer to clone
1964  *	@gfp_mask: allocation priority
1965  *
1966  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1967  *	copies share the same packet data but not structure. The new
1968  *	buffer has a reference count of 1. If the allocation fails the
1969  *	function returns %NULL otherwise the new buffer is returned.
1970  *
1971  *	If this function is called from an interrupt gfp_mask() must be
1972  *	%GFP_ATOMIC.
1973  */
1974 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1975 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1976 {
1977 	struct sk_buff_fclones *fclones = container_of(skb,
1978 						       struct sk_buff_fclones,
1979 						       skb1);
1980 	struct sk_buff *n;
1981 
1982 	if (skb_orphan_frags(skb, gfp_mask))
1983 		return NULL;
1984 
1985 	if (skb->fclone == SKB_FCLONE_ORIG &&
1986 	    refcount_read(&fclones->fclone_ref) == 1) {
1987 		n = &fclones->skb2;
1988 		refcount_set(&fclones->fclone_ref, 2);
1989 		n->fclone = SKB_FCLONE_CLONE;
1990 	} else {
1991 		if (skb_pfmemalloc(skb))
1992 			gfp_mask |= __GFP_MEMALLOC;
1993 
1994 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
1995 		if (!n)
1996 			return NULL;
1997 
1998 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1999 	}
2000 
2001 	return __skb_clone(n, skb);
2002 }
2003 EXPORT_SYMBOL(skb_clone);
2004 
skb_headers_offset_update(struct sk_buff * skb,int off)2005 void skb_headers_offset_update(struct sk_buff *skb, int off)
2006 {
2007 	/* Only adjust this if it actually is csum_start rather than csum */
2008 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2009 		skb->csum_start += off;
2010 	/* {transport,network,mac}_header and tail are relative to skb->head */
2011 	skb->transport_header += off;
2012 	skb->network_header   += off;
2013 	if (skb_mac_header_was_set(skb))
2014 		skb->mac_header += off;
2015 	skb->inner_transport_header += off;
2016 	skb->inner_network_header += off;
2017 	skb->inner_mac_header += off;
2018 }
2019 EXPORT_SYMBOL(skb_headers_offset_update);
2020 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2021 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2022 {
2023 	__copy_skb_header(new, old);
2024 
2025 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2026 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2027 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2028 }
2029 EXPORT_SYMBOL(skb_copy_header);
2030 
skb_alloc_rx_flag(const struct sk_buff * skb)2031 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2032 {
2033 	if (skb_pfmemalloc(skb))
2034 		return SKB_ALLOC_RX;
2035 	return 0;
2036 }
2037 
2038 /**
2039  *	skb_copy	-	create private copy of an sk_buff
2040  *	@skb: buffer to copy
2041  *	@gfp_mask: allocation priority
2042  *
2043  *	Make a copy of both an &sk_buff and its data. This is used when the
2044  *	caller wishes to modify the data and needs a private copy of the
2045  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2046  *	on success. The returned buffer has a reference count of 1.
2047  *
2048  *	As by-product this function converts non-linear &sk_buff to linear
2049  *	one, so that &sk_buff becomes completely private and caller is allowed
2050  *	to modify all the data of returned buffer. This means that this
2051  *	function is not recommended for use in circumstances when only
2052  *	header is going to be modified. Use pskb_copy() instead.
2053  */
2054 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2055 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2056 {
2057 	struct sk_buff *n;
2058 	unsigned int size;
2059 	int headerlen;
2060 
2061 	if (!skb_frags_readable(skb))
2062 		return NULL;
2063 
2064 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2065 		return NULL;
2066 
2067 	headerlen = skb_headroom(skb);
2068 	size = skb_end_offset(skb) + skb->data_len;
2069 	n = __alloc_skb(size, gfp_mask,
2070 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2071 	if (!n)
2072 		return NULL;
2073 
2074 	/* Set the data pointer */
2075 	skb_reserve(n, headerlen);
2076 	/* Set the tail pointer and length */
2077 	skb_put(n, skb->len);
2078 
2079 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2080 
2081 	skb_copy_header(n, skb);
2082 	return n;
2083 }
2084 EXPORT_SYMBOL(skb_copy);
2085 
2086 /**
2087  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2088  *	@skb: buffer to copy
2089  *	@headroom: headroom of new skb
2090  *	@gfp_mask: allocation priority
2091  *	@fclone: if true allocate the copy of the skb from the fclone
2092  *	cache instead of the head cache; it is recommended to set this
2093  *	to true for the cases where the copy will likely be cloned
2094  *
2095  *	Make a copy of both an &sk_buff and part of its data, located
2096  *	in header. Fragmented data remain shared. This is used when
2097  *	the caller wishes to modify only header of &sk_buff and needs
2098  *	private copy of the header to alter. Returns %NULL on failure
2099  *	or the pointer to the buffer on success.
2100  *	The returned buffer has a reference count of 1.
2101  */
2102 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2103 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2104 				   gfp_t gfp_mask, bool fclone)
2105 {
2106 	unsigned int size = skb_headlen(skb) + headroom;
2107 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2108 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2109 
2110 	if (!n)
2111 		goto out;
2112 
2113 	/* Set the data pointer */
2114 	skb_reserve(n, headroom);
2115 	/* Set the tail pointer and length */
2116 	skb_put(n, skb_headlen(skb));
2117 	/* Copy the bytes */
2118 	skb_copy_from_linear_data(skb, n->data, n->len);
2119 
2120 	n->truesize += skb->data_len;
2121 	n->data_len  = skb->data_len;
2122 	n->len	     = skb->len;
2123 
2124 	if (skb_shinfo(skb)->nr_frags) {
2125 		int i;
2126 
2127 		if (skb_orphan_frags(skb, gfp_mask) ||
2128 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2129 			kfree_skb(n);
2130 			n = NULL;
2131 			goto out;
2132 		}
2133 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2134 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2135 			skb_frag_ref(skb, i);
2136 		}
2137 		skb_shinfo(n)->nr_frags = i;
2138 	}
2139 
2140 	if (skb_has_frag_list(skb)) {
2141 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2142 		skb_clone_fraglist(n);
2143 	}
2144 
2145 	skb_copy_header(n, skb);
2146 out:
2147 	return n;
2148 }
2149 EXPORT_SYMBOL(__pskb_copy_fclone);
2150 
2151 /**
2152  *	pskb_expand_head - reallocate header of &sk_buff
2153  *	@skb: buffer to reallocate
2154  *	@nhead: room to add at head
2155  *	@ntail: room to add at tail
2156  *	@gfp_mask: allocation priority
2157  *
2158  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2159  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2160  *	reference count of 1. Returns zero in the case of success or error,
2161  *	if expansion failed. In the last case, &sk_buff is not changed.
2162  *
2163  *	All the pointers pointing into skb header may change and must be
2164  *	reloaded after call to this function.
2165  */
2166 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2167 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2168 		     gfp_t gfp_mask)
2169 {
2170 	unsigned int osize = skb_end_offset(skb);
2171 	unsigned int size = osize + nhead + ntail;
2172 	long off;
2173 	u8 *data;
2174 	int i;
2175 
2176 	BUG_ON(nhead < 0);
2177 
2178 	BUG_ON(skb_shared(skb));
2179 
2180 	skb_zcopy_downgrade_managed(skb);
2181 
2182 	if (skb_pfmemalloc(skb))
2183 		gfp_mask |= __GFP_MEMALLOC;
2184 
2185 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2186 	if (!data)
2187 		goto nodata;
2188 	size = SKB_WITH_OVERHEAD(size);
2189 
2190 	/* Copy only real data... and, alas, header. This should be
2191 	 * optimized for the cases when header is void.
2192 	 */
2193 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2194 
2195 	memcpy((struct skb_shared_info *)(data + size),
2196 	       skb_shinfo(skb),
2197 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2198 
2199 	/*
2200 	 * if shinfo is shared we must drop the old head gracefully, but if it
2201 	 * is not we can just drop the old head and let the existing refcount
2202 	 * be since all we did is relocate the values
2203 	 */
2204 	if (skb_cloned(skb)) {
2205 		if (skb_orphan_frags(skb, gfp_mask))
2206 			goto nofrags;
2207 		if (skb_zcopy(skb))
2208 			refcount_inc(&skb_uarg(skb)->refcnt);
2209 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2210 			skb_frag_ref(skb, i);
2211 
2212 		if (skb_has_frag_list(skb))
2213 			skb_clone_fraglist(skb);
2214 
2215 		skb_release_data(skb, SKB_CONSUMED);
2216 	} else {
2217 		skb_free_head(skb);
2218 	}
2219 	off = (data + nhead) - skb->head;
2220 
2221 	skb->head     = data;
2222 	skb->head_frag = 0;
2223 	skb->data    += off;
2224 
2225 	skb_set_end_offset(skb, size);
2226 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2227 	off           = nhead;
2228 #endif
2229 	skb->tail	      += off;
2230 	skb_headers_offset_update(skb, nhead);
2231 	skb->cloned   = 0;
2232 	skb->hdr_len  = 0;
2233 	skb->nohdr    = 0;
2234 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2235 
2236 	skb_metadata_clear(skb);
2237 
2238 	/* It is not generally safe to change skb->truesize.
2239 	 * For the moment, we really care of rx path, or
2240 	 * when skb is orphaned (not attached to a socket).
2241 	 */
2242 	if (!skb->sk || skb->destructor == sock_edemux)
2243 		skb->truesize += size - osize;
2244 
2245 	return 0;
2246 
2247 nofrags:
2248 	skb_kfree_head(data, size);
2249 nodata:
2250 	return -ENOMEM;
2251 }
2252 EXPORT_SYMBOL(pskb_expand_head);
2253 
2254 /* Make private copy of skb with writable head and some headroom */
2255 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2256 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2257 {
2258 	struct sk_buff *skb2;
2259 	int delta = headroom - skb_headroom(skb);
2260 
2261 	if (delta <= 0)
2262 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2263 	else {
2264 		skb2 = skb_clone(skb, GFP_ATOMIC);
2265 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2266 					     GFP_ATOMIC)) {
2267 			kfree_skb(skb2);
2268 			skb2 = NULL;
2269 		}
2270 	}
2271 	return skb2;
2272 }
2273 EXPORT_SYMBOL(skb_realloc_headroom);
2274 
2275 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2276 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2277 {
2278 	unsigned int saved_end_offset, saved_truesize;
2279 	struct skb_shared_info *shinfo;
2280 	int res;
2281 
2282 	saved_end_offset = skb_end_offset(skb);
2283 	saved_truesize = skb->truesize;
2284 
2285 	res = pskb_expand_head(skb, 0, 0, pri);
2286 	if (res)
2287 		return res;
2288 
2289 	skb->truesize = saved_truesize;
2290 
2291 	if (likely(skb_end_offset(skb) == saved_end_offset))
2292 		return 0;
2293 
2294 	/* We can not change skb->end if the original or new value
2295 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2296 	 */
2297 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2298 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2299 		/* We think this path should not be taken.
2300 		 * Add a temporary trace to warn us just in case.
2301 		 */
2302 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2303 			    saved_end_offset, skb_end_offset(skb));
2304 		WARN_ON_ONCE(1);
2305 		return 0;
2306 	}
2307 
2308 	shinfo = skb_shinfo(skb);
2309 
2310 	/* We are about to change back skb->end,
2311 	 * we need to move skb_shinfo() to its new location.
2312 	 */
2313 	memmove(skb->head + saved_end_offset,
2314 		shinfo,
2315 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2316 
2317 	skb_set_end_offset(skb, saved_end_offset);
2318 
2319 	return 0;
2320 }
2321 
2322 /**
2323  *	skb_expand_head - reallocate header of &sk_buff
2324  *	@skb: buffer to reallocate
2325  *	@headroom: needed headroom
2326  *
2327  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2328  *	if possible; copies skb->sk to new skb as needed
2329  *	and frees original skb in case of failures.
2330  *
2331  *	It expect increased headroom and generates warning otherwise.
2332  */
2333 
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2334 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2335 {
2336 	int delta = headroom - skb_headroom(skb);
2337 	int osize = skb_end_offset(skb);
2338 	struct sock *sk = skb->sk;
2339 
2340 	if (WARN_ONCE(delta <= 0,
2341 		      "%s is expecting an increase in the headroom", __func__))
2342 		return skb;
2343 
2344 	delta = SKB_DATA_ALIGN(delta);
2345 	/* pskb_expand_head() might crash, if skb is shared. */
2346 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2347 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2348 
2349 		if (unlikely(!nskb))
2350 			goto fail;
2351 
2352 		if (sk)
2353 			skb_set_owner_w(nskb, sk);
2354 		consume_skb(skb);
2355 		skb = nskb;
2356 	}
2357 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2358 		goto fail;
2359 
2360 	if (sk && is_skb_wmem(skb)) {
2361 		delta = skb_end_offset(skb) - osize;
2362 		refcount_add(delta, &sk->sk_wmem_alloc);
2363 		skb->truesize += delta;
2364 	}
2365 	return skb;
2366 
2367 fail:
2368 	kfree_skb(skb);
2369 	return NULL;
2370 }
2371 EXPORT_SYMBOL(skb_expand_head);
2372 
2373 /**
2374  *	skb_copy_expand	-	copy and expand sk_buff
2375  *	@skb: buffer to copy
2376  *	@newheadroom: new free bytes at head
2377  *	@newtailroom: new free bytes at tail
2378  *	@gfp_mask: allocation priority
2379  *
2380  *	Make a copy of both an &sk_buff and its data and while doing so
2381  *	allocate additional space.
2382  *
2383  *	This is used when the caller wishes to modify the data and needs a
2384  *	private copy of the data to alter as well as more space for new fields.
2385  *	Returns %NULL on failure or the pointer to the buffer
2386  *	on success. The returned buffer has a reference count of 1.
2387  *
2388  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2389  *	is called from an interrupt.
2390  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2391 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2392 				int newheadroom, int newtailroom,
2393 				gfp_t gfp_mask)
2394 {
2395 	/*
2396 	 *	Allocate the copy buffer
2397 	 */
2398 	int head_copy_len, head_copy_off;
2399 	struct sk_buff *n;
2400 	int oldheadroom;
2401 
2402 	if (!skb_frags_readable(skb))
2403 		return NULL;
2404 
2405 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2406 		return NULL;
2407 
2408 	oldheadroom = skb_headroom(skb);
2409 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2410 			gfp_mask, skb_alloc_rx_flag(skb),
2411 			NUMA_NO_NODE);
2412 	if (!n)
2413 		return NULL;
2414 
2415 	skb_reserve(n, newheadroom);
2416 
2417 	/* Set the tail pointer and length */
2418 	skb_put(n, skb->len);
2419 
2420 	head_copy_len = oldheadroom;
2421 	head_copy_off = 0;
2422 	if (newheadroom <= head_copy_len)
2423 		head_copy_len = newheadroom;
2424 	else
2425 		head_copy_off = newheadroom - head_copy_len;
2426 
2427 	/* Copy the linear header and data. */
2428 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2429 			     skb->len + head_copy_len));
2430 
2431 	skb_copy_header(n, skb);
2432 
2433 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2434 
2435 	return n;
2436 }
2437 EXPORT_SYMBOL(skb_copy_expand);
2438 
2439 /**
2440  *	__skb_pad		-	zero pad the tail of an skb
2441  *	@skb: buffer to pad
2442  *	@pad: space to pad
2443  *	@free_on_error: free buffer on error
2444  *
2445  *	Ensure that a buffer is followed by a padding area that is zero
2446  *	filled. Used by network drivers which may DMA or transfer data
2447  *	beyond the buffer end onto the wire.
2448  *
2449  *	May return error in out of memory cases. The skb is freed on error
2450  *	if @free_on_error is true.
2451  */
2452 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2453 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2454 {
2455 	int err;
2456 	int ntail;
2457 
2458 	/* If the skbuff is non linear tailroom is always zero.. */
2459 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2460 		memset(skb->data+skb->len, 0, pad);
2461 		return 0;
2462 	}
2463 
2464 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2465 	if (likely(skb_cloned(skb) || ntail > 0)) {
2466 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2467 		if (unlikely(err))
2468 			goto free_skb;
2469 	}
2470 
2471 	/* FIXME: The use of this function with non-linear skb's really needs
2472 	 * to be audited.
2473 	 */
2474 	err = skb_linearize(skb);
2475 	if (unlikely(err))
2476 		goto free_skb;
2477 
2478 	memset(skb->data + skb->len, 0, pad);
2479 	return 0;
2480 
2481 free_skb:
2482 	if (free_on_error)
2483 		kfree_skb(skb);
2484 	return err;
2485 }
2486 EXPORT_SYMBOL(__skb_pad);
2487 
2488 /**
2489  *	pskb_put - add data to the tail of a potentially fragmented buffer
2490  *	@skb: start of the buffer to use
2491  *	@tail: tail fragment of the buffer to use
2492  *	@len: amount of data to add
2493  *
2494  *	This function extends the used data area of the potentially
2495  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2496  *	@skb itself. If this would exceed the total buffer size the kernel
2497  *	will panic. A pointer to the first byte of the extra data is
2498  *	returned.
2499  */
2500 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2501 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2502 {
2503 	if (tail != skb) {
2504 		skb->data_len += len;
2505 		skb->len += len;
2506 	}
2507 	return skb_put(tail, len);
2508 }
2509 EXPORT_SYMBOL_GPL(pskb_put);
2510 
2511 /**
2512  *	skb_put - add data to a buffer
2513  *	@skb: buffer to use
2514  *	@len: amount of data to add
2515  *
2516  *	This function extends the used data area of the buffer. If this would
2517  *	exceed the total buffer size the kernel will panic. A pointer to the
2518  *	first byte of the extra data is returned.
2519  */
skb_put(struct sk_buff * skb,unsigned int len)2520 void *skb_put(struct sk_buff *skb, unsigned int len)
2521 {
2522 	void *tmp = skb_tail_pointer(skb);
2523 	SKB_LINEAR_ASSERT(skb);
2524 	skb->tail += len;
2525 	skb->len  += len;
2526 	if (unlikely(skb->tail > skb->end))
2527 		skb_over_panic(skb, len, __builtin_return_address(0));
2528 	return tmp;
2529 }
2530 EXPORT_SYMBOL(skb_put);
2531 
2532 /**
2533  *	skb_push - add data to the start of a buffer
2534  *	@skb: buffer to use
2535  *	@len: amount of data to add
2536  *
2537  *	This function extends the used data area of the buffer at the buffer
2538  *	start. If this would exceed the total buffer headroom the kernel will
2539  *	panic. A pointer to the first byte of the extra data is returned.
2540  */
skb_push(struct sk_buff * skb,unsigned int len)2541 void *skb_push(struct sk_buff *skb, unsigned int len)
2542 {
2543 	skb->data -= len;
2544 	skb->len  += len;
2545 	if (unlikely(skb->data < skb->head))
2546 		skb_under_panic(skb, len, __builtin_return_address(0));
2547 	return skb->data;
2548 }
2549 EXPORT_SYMBOL(skb_push);
2550 
2551 /**
2552  *	skb_pull - remove data from the start of a buffer
2553  *	@skb: buffer to use
2554  *	@len: amount of data to remove
2555  *
2556  *	This function removes data from the start of a buffer, returning
2557  *	the memory to the headroom. A pointer to the next data in the buffer
2558  *	is returned. Once the data has been pulled future pushes will overwrite
2559  *	the old data.
2560  */
skb_pull(struct sk_buff * skb,unsigned int len)2561 void *skb_pull(struct sk_buff *skb, unsigned int len)
2562 {
2563 	return skb_pull_inline(skb, len);
2564 }
2565 EXPORT_SYMBOL(skb_pull);
2566 
2567 /**
2568  *	skb_pull_data - remove data from the start of a buffer returning its
2569  *	original position.
2570  *	@skb: buffer to use
2571  *	@len: amount of data to remove
2572  *
2573  *	This function removes data from the start of a buffer, returning
2574  *	the memory to the headroom. A pointer to the original data in the buffer
2575  *	is returned after checking if there is enough data to pull. Once the
2576  *	data has been pulled future pushes will overwrite the old data.
2577  */
skb_pull_data(struct sk_buff * skb,size_t len)2578 void *skb_pull_data(struct sk_buff *skb, size_t len)
2579 {
2580 	void *data = skb->data;
2581 
2582 	if (skb->len < len)
2583 		return NULL;
2584 
2585 	skb_pull(skb, len);
2586 
2587 	return data;
2588 }
2589 EXPORT_SYMBOL(skb_pull_data);
2590 
2591 /**
2592  *	skb_trim - remove end from a buffer
2593  *	@skb: buffer to alter
2594  *	@len: new length
2595  *
2596  *	Cut the length of a buffer down by removing data from the tail. If
2597  *	the buffer is already under the length specified it is not modified.
2598  *	The skb must be linear.
2599  */
skb_trim(struct sk_buff * skb,unsigned int len)2600 void skb_trim(struct sk_buff *skb, unsigned int len)
2601 {
2602 	if (skb->len > len)
2603 		__skb_trim(skb, len);
2604 }
2605 EXPORT_SYMBOL(skb_trim);
2606 
2607 /* Trims skb to length len. It can change skb pointers.
2608  */
2609 
___pskb_trim(struct sk_buff * skb,unsigned int len)2610 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2611 {
2612 	struct sk_buff **fragp;
2613 	struct sk_buff *frag;
2614 	int offset = skb_headlen(skb);
2615 	int nfrags = skb_shinfo(skb)->nr_frags;
2616 	int i;
2617 	int err;
2618 
2619 	if (skb_cloned(skb) &&
2620 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2621 		return err;
2622 
2623 	i = 0;
2624 	if (offset >= len)
2625 		goto drop_pages;
2626 
2627 	for (; i < nfrags; i++) {
2628 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2629 
2630 		if (end < len) {
2631 			offset = end;
2632 			continue;
2633 		}
2634 
2635 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2636 
2637 drop_pages:
2638 		skb_shinfo(skb)->nr_frags = i;
2639 
2640 		for (; i < nfrags; i++)
2641 			skb_frag_unref(skb, i);
2642 
2643 		if (skb_has_frag_list(skb))
2644 			skb_drop_fraglist(skb);
2645 		goto done;
2646 	}
2647 
2648 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2649 	     fragp = &frag->next) {
2650 		int end = offset + frag->len;
2651 
2652 		if (skb_shared(frag)) {
2653 			struct sk_buff *nfrag;
2654 
2655 			nfrag = skb_clone(frag, GFP_ATOMIC);
2656 			if (unlikely(!nfrag))
2657 				return -ENOMEM;
2658 
2659 			nfrag->next = frag->next;
2660 			consume_skb(frag);
2661 			frag = nfrag;
2662 			*fragp = frag;
2663 		}
2664 
2665 		if (end < len) {
2666 			offset = end;
2667 			continue;
2668 		}
2669 
2670 		if (end > len &&
2671 		    unlikely((err = pskb_trim(frag, len - offset))))
2672 			return err;
2673 
2674 		if (frag->next)
2675 			skb_drop_list(&frag->next);
2676 		break;
2677 	}
2678 
2679 done:
2680 	if (len > skb_headlen(skb)) {
2681 		skb->data_len -= skb->len - len;
2682 		skb->len       = len;
2683 	} else {
2684 		skb->len       = len;
2685 		skb->data_len  = 0;
2686 		skb_set_tail_pointer(skb, len);
2687 	}
2688 
2689 	if (!skb->sk || skb->destructor == sock_edemux)
2690 		skb_condense(skb);
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL(___pskb_trim);
2694 
2695 /* Note : use pskb_trim_rcsum() instead of calling this directly
2696  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2697 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2698 {
2699 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2700 		int delta = skb->len - len;
2701 
2702 		skb->csum = csum_block_sub(skb->csum,
2703 					   skb_checksum(skb, len, delta, 0),
2704 					   len);
2705 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2706 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2707 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2708 
2709 		if (offset + sizeof(__sum16) > hdlen)
2710 			return -EINVAL;
2711 	}
2712 	return __pskb_trim(skb, len);
2713 }
2714 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2715 
2716 /**
2717  *	__pskb_pull_tail - advance tail of skb header
2718  *	@skb: buffer to reallocate
2719  *	@delta: number of bytes to advance tail
2720  *
2721  *	The function makes a sense only on a fragmented &sk_buff,
2722  *	it expands header moving its tail forward and copying necessary
2723  *	data from fragmented part.
2724  *
2725  *	&sk_buff MUST have reference count of 1.
2726  *
2727  *	Returns %NULL (and &sk_buff does not change) if pull failed
2728  *	or value of new tail of skb in the case of success.
2729  *
2730  *	All the pointers pointing into skb header may change and must be
2731  *	reloaded after call to this function.
2732  */
2733 
2734 /* Moves tail of skb head forward, copying data from fragmented part,
2735  * when it is necessary.
2736  * 1. It may fail due to malloc failure.
2737  * 2. It may change skb pointers.
2738  *
2739  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2740  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2741 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2742 {
2743 	/* If skb has not enough free space at tail, get new one
2744 	 * plus 128 bytes for future expansions. If we have enough
2745 	 * room at tail, reallocate without expansion only if skb is cloned.
2746 	 */
2747 	int i, k, eat = (skb->tail + delta) - skb->end;
2748 
2749 	if (!skb_frags_readable(skb))
2750 		return NULL;
2751 
2752 	if (eat > 0 || skb_cloned(skb)) {
2753 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2754 				     GFP_ATOMIC))
2755 			return NULL;
2756 	}
2757 
2758 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2759 			     skb_tail_pointer(skb), delta));
2760 
2761 	/* Optimization: no fragments, no reasons to preestimate
2762 	 * size of pulled pages. Superb.
2763 	 */
2764 	if (!skb_has_frag_list(skb))
2765 		goto pull_pages;
2766 
2767 	/* Estimate size of pulled pages. */
2768 	eat = delta;
2769 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2770 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2771 
2772 		if (size >= eat)
2773 			goto pull_pages;
2774 		eat -= size;
2775 	}
2776 
2777 	/* If we need update frag list, we are in troubles.
2778 	 * Certainly, it is possible to add an offset to skb data,
2779 	 * but taking into account that pulling is expected to
2780 	 * be very rare operation, it is worth to fight against
2781 	 * further bloating skb head and crucify ourselves here instead.
2782 	 * Pure masohism, indeed. 8)8)
2783 	 */
2784 	if (eat) {
2785 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2786 		struct sk_buff *clone = NULL;
2787 		struct sk_buff *insp = NULL;
2788 
2789 		do {
2790 			if (list->len <= eat) {
2791 				/* Eaten as whole. */
2792 				eat -= list->len;
2793 				list = list->next;
2794 				insp = list;
2795 			} else {
2796 				/* Eaten partially. */
2797 				if (skb_is_gso(skb) && !list->head_frag &&
2798 				    skb_headlen(list))
2799 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2800 
2801 				if (skb_shared(list)) {
2802 					/* Sucks! We need to fork list. :-( */
2803 					clone = skb_clone(list, GFP_ATOMIC);
2804 					if (!clone)
2805 						return NULL;
2806 					insp = list->next;
2807 					list = clone;
2808 				} else {
2809 					/* This may be pulled without
2810 					 * problems. */
2811 					insp = list;
2812 				}
2813 				if (!pskb_pull(list, eat)) {
2814 					kfree_skb(clone);
2815 					return NULL;
2816 				}
2817 				break;
2818 			}
2819 		} while (eat);
2820 
2821 		/* Free pulled out fragments. */
2822 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2823 			skb_shinfo(skb)->frag_list = list->next;
2824 			consume_skb(list);
2825 		}
2826 		/* And insert new clone at head. */
2827 		if (clone) {
2828 			clone->next = list;
2829 			skb_shinfo(skb)->frag_list = clone;
2830 		}
2831 	}
2832 	/* Success! Now we may commit changes to skb data. */
2833 
2834 pull_pages:
2835 	eat = delta;
2836 	k = 0;
2837 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2838 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2839 
2840 		if (size <= eat) {
2841 			skb_frag_unref(skb, i);
2842 			eat -= size;
2843 		} else {
2844 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2845 
2846 			*frag = skb_shinfo(skb)->frags[i];
2847 			if (eat) {
2848 				skb_frag_off_add(frag, eat);
2849 				skb_frag_size_sub(frag, eat);
2850 				if (!i)
2851 					goto end;
2852 				eat = 0;
2853 			}
2854 			k++;
2855 		}
2856 	}
2857 	skb_shinfo(skb)->nr_frags = k;
2858 
2859 end:
2860 	skb->tail     += delta;
2861 	skb->data_len -= delta;
2862 
2863 	if (!skb->data_len)
2864 		skb_zcopy_clear(skb, false);
2865 
2866 	return skb_tail_pointer(skb);
2867 }
2868 EXPORT_SYMBOL(__pskb_pull_tail);
2869 
2870 /**
2871  *	skb_copy_bits - copy bits from skb to kernel buffer
2872  *	@skb: source skb
2873  *	@offset: offset in source
2874  *	@to: destination buffer
2875  *	@len: number of bytes to copy
2876  *
2877  *	Copy the specified number of bytes from the source skb to the
2878  *	destination buffer.
2879  *
2880  *	CAUTION ! :
2881  *		If its prototype is ever changed,
2882  *		check arch/{*}/net/{*}.S files,
2883  *		since it is called from BPF assembly code.
2884  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2885 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2886 {
2887 	int start = skb_headlen(skb);
2888 	struct sk_buff *frag_iter;
2889 	int i, copy;
2890 
2891 	if (offset > (int)skb->len - len)
2892 		goto fault;
2893 
2894 	/* Copy header. */
2895 	if ((copy = start - offset) > 0) {
2896 		if (copy > len)
2897 			copy = len;
2898 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2899 		if ((len -= copy) == 0)
2900 			return 0;
2901 		offset += copy;
2902 		to     += copy;
2903 	}
2904 
2905 	if (!skb_frags_readable(skb))
2906 		goto fault;
2907 
2908 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2909 		int end;
2910 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2911 
2912 		WARN_ON(start > offset + len);
2913 
2914 		end = start + skb_frag_size(f);
2915 		if ((copy = end - offset) > 0) {
2916 			u32 p_off, p_len, copied;
2917 			struct page *p;
2918 			u8 *vaddr;
2919 
2920 			if (copy > len)
2921 				copy = len;
2922 
2923 			skb_frag_foreach_page(f,
2924 					      skb_frag_off(f) + offset - start,
2925 					      copy, p, p_off, p_len, copied) {
2926 				vaddr = kmap_atomic(p);
2927 				memcpy(to + copied, vaddr + p_off, p_len);
2928 				kunmap_atomic(vaddr);
2929 			}
2930 
2931 			if ((len -= copy) == 0)
2932 				return 0;
2933 			offset += copy;
2934 			to     += copy;
2935 		}
2936 		start = end;
2937 	}
2938 
2939 	skb_walk_frags(skb, frag_iter) {
2940 		int end;
2941 
2942 		WARN_ON(start > offset + len);
2943 
2944 		end = start + frag_iter->len;
2945 		if ((copy = end - offset) > 0) {
2946 			if (copy > len)
2947 				copy = len;
2948 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2949 				goto fault;
2950 			if ((len -= copy) == 0)
2951 				return 0;
2952 			offset += copy;
2953 			to     += copy;
2954 		}
2955 		start = end;
2956 	}
2957 
2958 	if (!len)
2959 		return 0;
2960 
2961 fault:
2962 	return -EFAULT;
2963 }
2964 EXPORT_SYMBOL(skb_copy_bits);
2965 
2966 /*
2967  * Callback from splice_to_pipe(), if we need to release some pages
2968  * at the end of the spd in case we error'ed out in filling the pipe.
2969  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2970 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2971 {
2972 	put_page(spd->pages[i]);
2973 }
2974 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2975 static struct page *linear_to_page(struct page *page, unsigned int *len,
2976 				   unsigned int *offset,
2977 				   struct sock *sk)
2978 {
2979 	struct page_frag *pfrag = sk_page_frag(sk);
2980 
2981 	if (!sk_page_frag_refill(sk, pfrag))
2982 		return NULL;
2983 
2984 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2985 
2986 	memcpy(page_address(pfrag->page) + pfrag->offset,
2987 	       page_address(page) + *offset, *len);
2988 	*offset = pfrag->offset;
2989 	pfrag->offset += *len;
2990 
2991 	return pfrag->page;
2992 }
2993 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2994 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2995 			     struct page *page,
2996 			     unsigned int offset)
2997 {
2998 	return	spd->nr_pages &&
2999 		spd->pages[spd->nr_pages - 1] == page &&
3000 		(spd->partial[spd->nr_pages - 1].offset +
3001 		 spd->partial[spd->nr_pages - 1].len == offset);
3002 }
3003 
3004 /*
3005  * Fill page/offset/length into spd, if it can hold more pages.
3006  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3007 static bool spd_fill_page(struct splice_pipe_desc *spd,
3008 			  struct pipe_inode_info *pipe, struct page *page,
3009 			  unsigned int *len, unsigned int offset,
3010 			  bool linear,
3011 			  struct sock *sk)
3012 {
3013 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3014 		return true;
3015 
3016 	if (linear) {
3017 		page = linear_to_page(page, len, &offset, sk);
3018 		if (!page)
3019 			return true;
3020 	}
3021 	if (spd_can_coalesce(spd, page, offset)) {
3022 		spd->partial[spd->nr_pages - 1].len += *len;
3023 		return false;
3024 	}
3025 	get_page(page);
3026 	spd->pages[spd->nr_pages] = page;
3027 	spd->partial[spd->nr_pages].len = *len;
3028 	spd->partial[spd->nr_pages].offset = offset;
3029 	spd->nr_pages++;
3030 
3031 	return false;
3032 }
3033 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)3034 static bool __splice_segment(struct page *page, unsigned int poff,
3035 			     unsigned int plen, unsigned int *off,
3036 			     unsigned int *len,
3037 			     struct splice_pipe_desc *spd, bool linear,
3038 			     struct sock *sk,
3039 			     struct pipe_inode_info *pipe)
3040 {
3041 	if (!*len)
3042 		return true;
3043 
3044 	/* skip this segment if already processed */
3045 	if (*off >= plen) {
3046 		*off -= plen;
3047 		return false;
3048 	}
3049 
3050 	/* ignore any bits we already processed */
3051 	poff += *off;
3052 	plen -= *off;
3053 	*off = 0;
3054 
3055 	do {
3056 		unsigned int flen = min(*len, plen);
3057 
3058 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3059 				  linear, sk))
3060 			return true;
3061 		poff += flen;
3062 		plen -= flen;
3063 		*len -= flen;
3064 	} while (*len && plen);
3065 
3066 	return false;
3067 }
3068 
3069 /*
3070  * Map linear and fragment data from the skb to spd. It reports true if the
3071  * pipe is full or if we already spliced the requested length.
3072  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3073 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3074 			      unsigned int *offset, unsigned int *len,
3075 			      struct splice_pipe_desc *spd, struct sock *sk)
3076 {
3077 	int seg;
3078 	struct sk_buff *iter;
3079 
3080 	/* map the linear part :
3081 	 * If skb->head_frag is set, this 'linear' part is backed by a
3082 	 * fragment, and if the head is not shared with any clones then
3083 	 * we can avoid a copy since we own the head portion of this page.
3084 	 */
3085 	if (__splice_segment(virt_to_page(skb->data),
3086 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3087 			     skb_headlen(skb),
3088 			     offset, len, spd,
3089 			     skb_head_is_locked(skb),
3090 			     sk, pipe))
3091 		return true;
3092 
3093 	/*
3094 	 * then map the fragments
3095 	 */
3096 	if (!skb_frags_readable(skb))
3097 		return false;
3098 
3099 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3100 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3101 
3102 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3103 			return false;
3104 
3105 		if (__splice_segment(skb_frag_page(f),
3106 				     skb_frag_off(f), skb_frag_size(f),
3107 				     offset, len, spd, false, sk, pipe))
3108 			return true;
3109 	}
3110 
3111 	skb_walk_frags(skb, iter) {
3112 		if (*offset >= iter->len) {
3113 			*offset -= iter->len;
3114 			continue;
3115 		}
3116 		/* __skb_splice_bits() only fails if the output has no room
3117 		 * left, so no point in going over the frag_list for the error
3118 		 * case.
3119 		 */
3120 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3121 			return true;
3122 	}
3123 
3124 	return false;
3125 }
3126 
3127 /*
3128  * Map data from the skb to a pipe. Should handle both the linear part,
3129  * the fragments, and the frag list.
3130  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3131 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3132 		    struct pipe_inode_info *pipe, unsigned int tlen,
3133 		    unsigned int flags)
3134 {
3135 	struct partial_page partial[MAX_SKB_FRAGS];
3136 	struct page *pages[MAX_SKB_FRAGS];
3137 	struct splice_pipe_desc spd = {
3138 		.pages = pages,
3139 		.partial = partial,
3140 		.nr_pages_max = MAX_SKB_FRAGS,
3141 		.ops = &nosteal_pipe_buf_ops,
3142 		.spd_release = sock_spd_release,
3143 	};
3144 	int ret = 0;
3145 
3146 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3147 
3148 	if (spd.nr_pages)
3149 		ret = splice_to_pipe(pipe, &spd);
3150 
3151 	return ret;
3152 }
3153 EXPORT_SYMBOL_GPL(skb_splice_bits);
3154 
sendmsg_locked(struct sock * sk,struct msghdr * msg)3155 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3156 {
3157 	struct socket *sock = sk->sk_socket;
3158 	size_t size = msg_data_left(msg);
3159 
3160 	if (!sock)
3161 		return -EINVAL;
3162 
3163 	if (!sock->ops->sendmsg_locked)
3164 		return sock_no_sendmsg_locked(sk, msg, size);
3165 
3166 	return sock->ops->sendmsg_locked(sk, msg, size);
3167 }
3168 
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3169 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3170 {
3171 	struct socket *sock = sk->sk_socket;
3172 
3173 	if (!sock)
3174 		return -EINVAL;
3175 	return sock_sendmsg(sock, msg);
3176 }
3177 
3178 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg)3179 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3180 			   int len, sendmsg_func sendmsg)
3181 {
3182 	unsigned int orig_len = len;
3183 	struct sk_buff *head = skb;
3184 	unsigned short fragidx;
3185 	int slen, ret;
3186 
3187 do_frag_list:
3188 
3189 	/* Deal with head data */
3190 	while (offset < skb_headlen(skb) && len) {
3191 		struct kvec kv;
3192 		struct msghdr msg;
3193 
3194 		slen = min_t(int, len, skb_headlen(skb) - offset);
3195 		kv.iov_base = skb->data + offset;
3196 		kv.iov_len = slen;
3197 		memset(&msg, 0, sizeof(msg));
3198 		msg.msg_flags = MSG_DONTWAIT;
3199 
3200 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3201 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3202 				      sendmsg_unlocked, sk, &msg);
3203 		if (ret <= 0)
3204 			goto error;
3205 
3206 		offset += ret;
3207 		len -= ret;
3208 	}
3209 
3210 	/* All the data was skb head? */
3211 	if (!len)
3212 		goto out;
3213 
3214 	/* Make offset relative to start of frags */
3215 	offset -= skb_headlen(skb);
3216 
3217 	/* Find where we are in frag list */
3218 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3219 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3220 
3221 		if (offset < skb_frag_size(frag))
3222 			break;
3223 
3224 		offset -= skb_frag_size(frag);
3225 	}
3226 
3227 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3228 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3229 
3230 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3231 
3232 		while (slen) {
3233 			struct bio_vec bvec;
3234 			struct msghdr msg = {
3235 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3236 			};
3237 
3238 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3239 				      skb_frag_off(frag) + offset);
3240 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3241 				      slen);
3242 
3243 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3244 					      sendmsg_unlocked, sk, &msg);
3245 			if (ret <= 0)
3246 				goto error;
3247 
3248 			len -= ret;
3249 			offset += ret;
3250 			slen -= ret;
3251 		}
3252 
3253 		offset = 0;
3254 	}
3255 
3256 	if (len) {
3257 		/* Process any frag lists */
3258 
3259 		if (skb == head) {
3260 			if (skb_has_frag_list(skb)) {
3261 				skb = skb_shinfo(skb)->frag_list;
3262 				goto do_frag_list;
3263 			}
3264 		} else if (skb->next) {
3265 			skb = skb->next;
3266 			goto do_frag_list;
3267 		}
3268 	}
3269 
3270 out:
3271 	return orig_len - len;
3272 
3273 error:
3274 	return orig_len == len ? ret : orig_len - len;
3275 }
3276 
3277 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3278 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3279 			 int len)
3280 {
3281 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3282 }
3283 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3284 
3285 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3286 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3287 {
3288 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3289 }
3290 
3291 /**
3292  *	skb_store_bits - store bits from kernel buffer to skb
3293  *	@skb: destination buffer
3294  *	@offset: offset in destination
3295  *	@from: source buffer
3296  *	@len: number of bytes to copy
3297  *
3298  *	Copy the specified number of bytes from the source buffer to the
3299  *	destination skb.  This function handles all the messy bits of
3300  *	traversing fragment lists and such.
3301  */
3302 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3303 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3304 {
3305 	int start = skb_headlen(skb);
3306 	struct sk_buff *frag_iter;
3307 	int i, copy;
3308 
3309 	if (offset > (int)skb->len - len)
3310 		goto fault;
3311 
3312 	if ((copy = start - offset) > 0) {
3313 		if (copy > len)
3314 			copy = len;
3315 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3316 		if ((len -= copy) == 0)
3317 			return 0;
3318 		offset += copy;
3319 		from += copy;
3320 	}
3321 
3322 	if (!skb_frags_readable(skb))
3323 		goto fault;
3324 
3325 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3326 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3327 		int end;
3328 
3329 		WARN_ON(start > offset + len);
3330 
3331 		end = start + skb_frag_size(frag);
3332 		if ((copy = end - offset) > 0) {
3333 			u32 p_off, p_len, copied;
3334 			struct page *p;
3335 			u8 *vaddr;
3336 
3337 			if (copy > len)
3338 				copy = len;
3339 
3340 			skb_frag_foreach_page(frag,
3341 					      skb_frag_off(frag) + offset - start,
3342 					      copy, p, p_off, p_len, copied) {
3343 				vaddr = kmap_atomic(p);
3344 				memcpy(vaddr + p_off, from + copied, p_len);
3345 				kunmap_atomic(vaddr);
3346 			}
3347 
3348 			if ((len -= copy) == 0)
3349 				return 0;
3350 			offset += copy;
3351 			from += copy;
3352 		}
3353 		start = end;
3354 	}
3355 
3356 	skb_walk_frags(skb, frag_iter) {
3357 		int end;
3358 
3359 		WARN_ON(start > offset + len);
3360 
3361 		end = start + frag_iter->len;
3362 		if ((copy = end - offset) > 0) {
3363 			if (copy > len)
3364 				copy = len;
3365 			if (skb_store_bits(frag_iter, offset - start,
3366 					   from, copy))
3367 				goto fault;
3368 			if ((len -= copy) == 0)
3369 				return 0;
3370 			offset += copy;
3371 			from += copy;
3372 		}
3373 		start = end;
3374 	}
3375 	if (!len)
3376 		return 0;
3377 
3378 fault:
3379 	return -EFAULT;
3380 }
3381 EXPORT_SYMBOL(skb_store_bits);
3382 
3383 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)3384 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3385 		      __wsum csum, const struct skb_checksum_ops *ops)
3386 {
3387 	int start = skb_headlen(skb);
3388 	int i, copy = start - offset;
3389 	struct sk_buff *frag_iter;
3390 	int pos = 0;
3391 
3392 	/* Checksum header. */
3393 	if (copy > 0) {
3394 		if (copy > len)
3395 			copy = len;
3396 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3397 				       skb->data + offset, copy, csum);
3398 		if ((len -= copy) == 0)
3399 			return csum;
3400 		offset += copy;
3401 		pos	= copy;
3402 	}
3403 
3404 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3405 		return 0;
3406 
3407 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3408 		int end;
3409 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3410 
3411 		WARN_ON(start > offset + len);
3412 
3413 		end = start + skb_frag_size(frag);
3414 		if ((copy = end - offset) > 0) {
3415 			u32 p_off, p_len, copied;
3416 			struct page *p;
3417 			__wsum csum2;
3418 			u8 *vaddr;
3419 
3420 			if (copy > len)
3421 				copy = len;
3422 
3423 			skb_frag_foreach_page(frag,
3424 					      skb_frag_off(frag) + offset - start,
3425 					      copy, p, p_off, p_len, copied) {
3426 				vaddr = kmap_atomic(p);
3427 				csum2 = INDIRECT_CALL_1(ops->update,
3428 							csum_partial_ext,
3429 							vaddr + p_off, p_len, 0);
3430 				kunmap_atomic(vaddr);
3431 				csum = INDIRECT_CALL_1(ops->combine,
3432 						       csum_block_add_ext, csum,
3433 						       csum2, pos, p_len);
3434 				pos += p_len;
3435 			}
3436 
3437 			if (!(len -= copy))
3438 				return csum;
3439 			offset += copy;
3440 		}
3441 		start = end;
3442 	}
3443 
3444 	skb_walk_frags(skb, frag_iter) {
3445 		int end;
3446 
3447 		WARN_ON(start > offset + len);
3448 
3449 		end = start + frag_iter->len;
3450 		if ((copy = end - offset) > 0) {
3451 			__wsum csum2;
3452 			if (copy > len)
3453 				copy = len;
3454 			csum2 = __skb_checksum(frag_iter, offset - start,
3455 					       copy, 0, ops);
3456 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3457 					       csum, csum2, pos, copy);
3458 			if ((len -= copy) == 0)
3459 				return csum;
3460 			offset += copy;
3461 			pos    += copy;
3462 		}
3463 		start = end;
3464 	}
3465 	BUG_ON(len);
3466 
3467 	return csum;
3468 }
3469 EXPORT_SYMBOL(__skb_checksum);
3470 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3471 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3472 		    int len, __wsum csum)
3473 {
3474 	const struct skb_checksum_ops ops = {
3475 		.update  = csum_partial_ext,
3476 		.combine = csum_block_add_ext,
3477 	};
3478 
3479 	return __skb_checksum(skb, offset, len, csum, &ops);
3480 }
3481 EXPORT_SYMBOL(skb_checksum);
3482 
3483 /* Both of above in one bottle. */
3484 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3485 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3486 				    u8 *to, int len)
3487 {
3488 	int start = skb_headlen(skb);
3489 	int i, copy = start - offset;
3490 	struct sk_buff *frag_iter;
3491 	int pos = 0;
3492 	__wsum csum = 0;
3493 
3494 	/* Copy header. */
3495 	if (copy > 0) {
3496 		if (copy > len)
3497 			copy = len;
3498 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3499 						 copy);
3500 		if ((len -= copy) == 0)
3501 			return csum;
3502 		offset += copy;
3503 		to     += copy;
3504 		pos	= copy;
3505 	}
3506 
3507 	if (!skb_frags_readable(skb))
3508 		return 0;
3509 
3510 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3511 		int end;
3512 
3513 		WARN_ON(start > offset + len);
3514 
3515 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3516 		if ((copy = end - offset) > 0) {
3517 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3518 			u32 p_off, p_len, copied;
3519 			struct page *p;
3520 			__wsum csum2;
3521 			u8 *vaddr;
3522 
3523 			if (copy > len)
3524 				copy = len;
3525 
3526 			skb_frag_foreach_page(frag,
3527 					      skb_frag_off(frag) + offset - start,
3528 					      copy, p, p_off, p_len, copied) {
3529 				vaddr = kmap_atomic(p);
3530 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3531 								  to + copied,
3532 								  p_len);
3533 				kunmap_atomic(vaddr);
3534 				csum = csum_block_add(csum, csum2, pos);
3535 				pos += p_len;
3536 			}
3537 
3538 			if (!(len -= copy))
3539 				return csum;
3540 			offset += copy;
3541 			to     += copy;
3542 		}
3543 		start = end;
3544 	}
3545 
3546 	skb_walk_frags(skb, frag_iter) {
3547 		__wsum csum2;
3548 		int end;
3549 
3550 		WARN_ON(start > offset + len);
3551 
3552 		end = start + frag_iter->len;
3553 		if ((copy = end - offset) > 0) {
3554 			if (copy > len)
3555 				copy = len;
3556 			csum2 = skb_copy_and_csum_bits(frag_iter,
3557 						       offset - start,
3558 						       to, copy);
3559 			csum = csum_block_add(csum, csum2, pos);
3560 			if ((len -= copy) == 0)
3561 				return csum;
3562 			offset += copy;
3563 			to     += copy;
3564 			pos    += copy;
3565 		}
3566 		start = end;
3567 	}
3568 	BUG_ON(len);
3569 	return csum;
3570 }
3571 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3572 
__skb_checksum_complete_head(struct sk_buff * skb,int len)3573 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3574 {
3575 	__sum16 sum;
3576 
3577 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3578 	/* See comments in __skb_checksum_complete(). */
3579 	if (likely(!sum)) {
3580 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3581 		    !skb->csum_complete_sw)
3582 			netdev_rx_csum_fault(skb->dev, skb);
3583 	}
3584 	if (!skb_shared(skb))
3585 		skb->csum_valid = !sum;
3586 	return sum;
3587 }
3588 EXPORT_SYMBOL(__skb_checksum_complete_head);
3589 
3590 /* This function assumes skb->csum already holds pseudo header's checksum,
3591  * which has been changed from the hardware checksum, for example, by
3592  * __skb_checksum_validate_complete(). And, the original skb->csum must
3593  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3594  *
3595  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3596  * zero. The new checksum is stored back into skb->csum unless the skb is
3597  * shared.
3598  */
__skb_checksum_complete(struct sk_buff * skb)3599 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3600 {
3601 	__wsum csum;
3602 	__sum16 sum;
3603 
3604 	csum = skb_checksum(skb, 0, skb->len, 0);
3605 
3606 	sum = csum_fold(csum_add(skb->csum, csum));
3607 	/* This check is inverted, because we already knew the hardware
3608 	 * checksum is invalid before calling this function. So, if the
3609 	 * re-computed checksum is valid instead, then we have a mismatch
3610 	 * between the original skb->csum and skb_checksum(). This means either
3611 	 * the original hardware checksum is incorrect or we screw up skb->csum
3612 	 * when moving skb->data around.
3613 	 */
3614 	if (likely(!sum)) {
3615 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3616 		    !skb->csum_complete_sw)
3617 			netdev_rx_csum_fault(skb->dev, skb);
3618 	}
3619 
3620 	if (!skb_shared(skb)) {
3621 		/* Save full packet checksum */
3622 		skb->csum = csum;
3623 		skb->ip_summed = CHECKSUM_COMPLETE;
3624 		skb->csum_complete_sw = 1;
3625 		skb->csum_valid = !sum;
3626 	}
3627 
3628 	return sum;
3629 }
3630 EXPORT_SYMBOL(__skb_checksum_complete);
3631 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3632 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3633 {
3634 	net_warn_ratelimited(
3635 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3636 		__func__);
3637 	return 0;
3638 }
3639 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3640 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3641 				       int offset, int len)
3642 {
3643 	net_warn_ratelimited(
3644 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3645 		__func__);
3646 	return 0;
3647 }
3648 
3649 static const struct skb_checksum_ops default_crc32c_ops = {
3650 	.update  = warn_crc32c_csum_update,
3651 	.combine = warn_crc32c_csum_combine,
3652 };
3653 
3654 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3655 	&default_crc32c_ops;
3656 EXPORT_SYMBOL(crc32c_csum_stub);
3657 
3658  /**
3659  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3660  *	@from: source buffer
3661  *
3662  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3663  *	into skb_zerocopy().
3664  */
3665 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3666 skb_zerocopy_headlen(const struct sk_buff *from)
3667 {
3668 	unsigned int hlen = 0;
3669 
3670 	if (!from->head_frag ||
3671 	    skb_headlen(from) < L1_CACHE_BYTES ||
3672 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3673 		hlen = skb_headlen(from);
3674 		if (!hlen)
3675 			hlen = from->len;
3676 	}
3677 
3678 	if (skb_has_frag_list(from))
3679 		hlen = from->len;
3680 
3681 	return hlen;
3682 }
3683 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3684 
3685 /**
3686  *	skb_zerocopy - Zero copy skb to skb
3687  *	@to: destination buffer
3688  *	@from: source buffer
3689  *	@len: number of bytes to copy from source buffer
3690  *	@hlen: size of linear headroom in destination buffer
3691  *
3692  *	Copies up to `len` bytes from `from` to `to` by creating references
3693  *	to the frags in the source buffer.
3694  *
3695  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3696  *	headroom in the `to` buffer.
3697  *
3698  *	Return value:
3699  *	0: everything is OK
3700  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3701  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3702  */
3703 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3704 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3705 {
3706 	int i, j = 0;
3707 	int plen = 0; /* length of skb->head fragment */
3708 	int ret;
3709 	struct page *page;
3710 	unsigned int offset;
3711 
3712 	BUG_ON(!from->head_frag && !hlen);
3713 
3714 	/* dont bother with small payloads */
3715 	if (len <= skb_tailroom(to))
3716 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3717 
3718 	if (hlen) {
3719 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3720 		if (unlikely(ret))
3721 			return ret;
3722 		len -= hlen;
3723 	} else {
3724 		plen = min_t(int, skb_headlen(from), len);
3725 		if (plen) {
3726 			page = virt_to_head_page(from->head);
3727 			offset = from->data - (unsigned char *)page_address(page);
3728 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3729 					       offset, plen);
3730 			get_page(page);
3731 			j = 1;
3732 			len -= plen;
3733 		}
3734 	}
3735 
3736 	skb_len_add(to, len + plen);
3737 
3738 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3739 		skb_tx_error(from);
3740 		return -ENOMEM;
3741 	}
3742 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3743 
3744 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3745 		int size;
3746 
3747 		if (!len)
3748 			break;
3749 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3750 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3751 					len);
3752 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3753 		len -= size;
3754 		skb_frag_ref(to, j);
3755 		j++;
3756 	}
3757 	skb_shinfo(to)->nr_frags = j;
3758 
3759 	return 0;
3760 }
3761 EXPORT_SYMBOL_GPL(skb_zerocopy);
3762 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3763 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3764 {
3765 	__wsum csum;
3766 	long csstart;
3767 
3768 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3769 		csstart = skb_checksum_start_offset(skb);
3770 	else
3771 		csstart = skb_headlen(skb);
3772 
3773 	BUG_ON(csstart > skb_headlen(skb));
3774 
3775 	skb_copy_from_linear_data(skb, to, csstart);
3776 
3777 	csum = 0;
3778 	if (csstart != skb->len)
3779 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3780 					      skb->len - csstart);
3781 
3782 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3783 		long csstuff = csstart + skb->csum_offset;
3784 
3785 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3786 	}
3787 }
3788 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3789 
3790 /**
3791  *	skb_dequeue - remove from the head of the queue
3792  *	@list: list to dequeue from
3793  *
3794  *	Remove the head of the list. The list lock is taken so the function
3795  *	may be used safely with other locking list functions. The head item is
3796  *	returned or %NULL if the list is empty.
3797  */
3798 
skb_dequeue(struct sk_buff_head * list)3799 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3800 {
3801 	unsigned long flags;
3802 	struct sk_buff *result;
3803 
3804 	spin_lock_irqsave(&list->lock, flags);
3805 	result = __skb_dequeue(list);
3806 	spin_unlock_irqrestore(&list->lock, flags);
3807 	return result;
3808 }
3809 EXPORT_SYMBOL(skb_dequeue);
3810 
3811 /**
3812  *	skb_dequeue_tail - remove from the tail of the queue
3813  *	@list: list to dequeue from
3814  *
3815  *	Remove the tail of the list. The list lock is taken so the function
3816  *	may be used safely with other locking list functions. The tail item is
3817  *	returned or %NULL if the list is empty.
3818  */
skb_dequeue_tail(struct sk_buff_head * list)3819 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3820 {
3821 	unsigned long flags;
3822 	struct sk_buff *result;
3823 
3824 	spin_lock_irqsave(&list->lock, flags);
3825 	result = __skb_dequeue_tail(list);
3826 	spin_unlock_irqrestore(&list->lock, flags);
3827 	return result;
3828 }
3829 EXPORT_SYMBOL(skb_dequeue_tail);
3830 
3831 /**
3832  *	skb_queue_purge_reason - empty a list
3833  *	@list: list to empty
3834  *	@reason: drop reason
3835  *
3836  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3837  *	the list and one reference dropped. This function takes the list
3838  *	lock and is atomic with respect to other list locking functions.
3839  */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3840 void skb_queue_purge_reason(struct sk_buff_head *list,
3841 			    enum skb_drop_reason reason)
3842 {
3843 	struct sk_buff_head tmp;
3844 	unsigned long flags;
3845 
3846 	if (skb_queue_empty_lockless(list))
3847 		return;
3848 
3849 	__skb_queue_head_init(&tmp);
3850 
3851 	spin_lock_irqsave(&list->lock, flags);
3852 	skb_queue_splice_init(list, &tmp);
3853 	spin_unlock_irqrestore(&list->lock, flags);
3854 
3855 	__skb_queue_purge_reason(&tmp, reason);
3856 }
3857 EXPORT_SYMBOL(skb_queue_purge_reason);
3858 
3859 /**
3860  *	skb_rbtree_purge - empty a skb rbtree
3861  *	@root: root of the rbtree to empty
3862  *	Return value: the sum of truesizes of all purged skbs.
3863  *
3864  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3865  *	the list and one reference dropped. This function does not take
3866  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3867  *	out-of-order queue is protected by the socket lock).
3868  */
skb_rbtree_purge(struct rb_root * root)3869 unsigned int skb_rbtree_purge(struct rb_root *root)
3870 {
3871 	struct rb_node *p = rb_first(root);
3872 	unsigned int sum = 0;
3873 
3874 	while (p) {
3875 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3876 
3877 		p = rb_next(p);
3878 		rb_erase(&skb->rbnode, root);
3879 		sum += skb->truesize;
3880 		kfree_skb(skb);
3881 	}
3882 	return sum;
3883 }
3884 
skb_errqueue_purge(struct sk_buff_head * list)3885 void skb_errqueue_purge(struct sk_buff_head *list)
3886 {
3887 	struct sk_buff *skb, *next;
3888 	struct sk_buff_head kill;
3889 	unsigned long flags;
3890 
3891 	__skb_queue_head_init(&kill);
3892 
3893 	spin_lock_irqsave(&list->lock, flags);
3894 	skb_queue_walk_safe(list, skb, next) {
3895 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3896 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3897 			continue;
3898 		__skb_unlink(skb, list);
3899 		__skb_queue_tail(&kill, skb);
3900 	}
3901 	spin_unlock_irqrestore(&list->lock, flags);
3902 	__skb_queue_purge(&kill);
3903 }
3904 EXPORT_SYMBOL(skb_errqueue_purge);
3905 
3906 /**
3907  *	skb_queue_head - queue a buffer at the list head
3908  *	@list: list to use
3909  *	@newsk: buffer to queue
3910  *
3911  *	Queue a buffer at the start of the list. This function takes the
3912  *	list lock and can be used safely with other locking &sk_buff functions
3913  *	safely.
3914  *
3915  *	A buffer cannot be placed on two lists at the same time.
3916  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3917 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3918 {
3919 	unsigned long flags;
3920 
3921 	spin_lock_irqsave(&list->lock, flags);
3922 	__skb_queue_head(list, newsk);
3923 	spin_unlock_irqrestore(&list->lock, flags);
3924 }
3925 EXPORT_SYMBOL(skb_queue_head);
3926 
3927 /**
3928  *	skb_queue_tail - queue a buffer at the list tail
3929  *	@list: list to use
3930  *	@newsk: buffer to queue
3931  *
3932  *	Queue a buffer at the tail of the list. This function takes the
3933  *	list lock and can be used safely with other locking &sk_buff functions
3934  *	safely.
3935  *
3936  *	A buffer cannot be placed on two lists at the same time.
3937  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3938 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3939 {
3940 	unsigned long flags;
3941 
3942 	spin_lock_irqsave(&list->lock, flags);
3943 	__skb_queue_tail(list, newsk);
3944 	spin_unlock_irqrestore(&list->lock, flags);
3945 }
3946 EXPORT_SYMBOL(skb_queue_tail);
3947 
3948 /**
3949  *	skb_unlink	-	remove a buffer from a list
3950  *	@skb: buffer to remove
3951  *	@list: list to use
3952  *
3953  *	Remove a packet from a list. The list locks are taken and this
3954  *	function is atomic with respect to other list locked calls
3955  *
3956  *	You must know what list the SKB is on.
3957  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3958 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3959 {
3960 	unsigned long flags;
3961 
3962 	spin_lock_irqsave(&list->lock, flags);
3963 	__skb_unlink(skb, list);
3964 	spin_unlock_irqrestore(&list->lock, flags);
3965 }
3966 EXPORT_SYMBOL(skb_unlink);
3967 
3968 /**
3969  *	skb_append	-	append a buffer
3970  *	@old: buffer to insert after
3971  *	@newsk: buffer to insert
3972  *	@list: list to use
3973  *
3974  *	Place a packet after a given packet in a list. The list locks are taken
3975  *	and this function is atomic with respect to other list locked calls.
3976  *	A buffer cannot be placed on two lists at the same time.
3977  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3978 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3979 {
3980 	unsigned long flags;
3981 
3982 	spin_lock_irqsave(&list->lock, flags);
3983 	__skb_queue_after(list, old, newsk);
3984 	spin_unlock_irqrestore(&list->lock, flags);
3985 }
3986 EXPORT_SYMBOL(skb_append);
3987 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3988 static inline void skb_split_inside_header(struct sk_buff *skb,
3989 					   struct sk_buff* skb1,
3990 					   const u32 len, const int pos)
3991 {
3992 	int i;
3993 
3994 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3995 					 pos - len);
3996 	/* And move data appendix as is. */
3997 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3998 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3999 
4000 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4001 	skb1->unreadable	   = skb->unreadable;
4002 	skb_shinfo(skb)->nr_frags  = 0;
4003 	skb1->data_len		   = skb->data_len;
4004 	skb1->len		   += skb1->data_len;
4005 	skb->data_len		   = 0;
4006 	skb->len		   = len;
4007 	skb_set_tail_pointer(skb, len);
4008 }
4009 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4010 static inline void skb_split_no_header(struct sk_buff *skb,
4011 				       struct sk_buff* skb1,
4012 				       const u32 len, int pos)
4013 {
4014 	int i, k = 0;
4015 	const int nfrags = skb_shinfo(skb)->nr_frags;
4016 
4017 	skb_shinfo(skb)->nr_frags = 0;
4018 	skb1->len		  = skb1->data_len = skb->len - len;
4019 	skb->len		  = len;
4020 	skb->data_len		  = len - pos;
4021 
4022 	for (i = 0; i < nfrags; i++) {
4023 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4024 
4025 		if (pos + size > len) {
4026 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4027 
4028 			if (pos < len) {
4029 				/* Split frag.
4030 				 * We have two variants in this case:
4031 				 * 1. Move all the frag to the second
4032 				 *    part, if it is possible. F.e.
4033 				 *    this approach is mandatory for TUX,
4034 				 *    where splitting is expensive.
4035 				 * 2. Split is accurately. We make this.
4036 				 */
4037 				skb_frag_ref(skb, i);
4038 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4039 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4040 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4041 				skb_shinfo(skb)->nr_frags++;
4042 			}
4043 			k++;
4044 		} else
4045 			skb_shinfo(skb)->nr_frags++;
4046 		pos += size;
4047 	}
4048 	skb_shinfo(skb1)->nr_frags = k;
4049 
4050 	skb1->unreadable = skb->unreadable;
4051 }
4052 
4053 /**
4054  * skb_split - Split fragmented skb to two parts at length len.
4055  * @skb: the buffer to split
4056  * @skb1: the buffer to receive the second part
4057  * @len: new length for skb
4058  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4059 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4060 {
4061 	int pos = skb_headlen(skb);
4062 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4063 
4064 	skb_zcopy_downgrade_managed(skb);
4065 
4066 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4067 	skb_zerocopy_clone(skb1, skb, 0);
4068 	if (len < pos)	/* Split line is inside header. */
4069 		skb_split_inside_header(skb, skb1, len, pos);
4070 	else		/* Second chunk has no header, nothing to copy. */
4071 		skb_split_no_header(skb, skb1, len, pos);
4072 }
4073 EXPORT_SYMBOL(skb_split);
4074 
4075 /* Shifting from/to a cloned skb is a no-go.
4076  *
4077  * Caller cannot keep skb_shinfo related pointers past calling here!
4078  */
skb_prepare_for_shift(struct sk_buff * skb)4079 static int skb_prepare_for_shift(struct sk_buff *skb)
4080 {
4081 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4082 }
4083 
4084 /**
4085  * skb_shift - Shifts paged data partially from skb to another
4086  * @tgt: buffer into which tail data gets added
4087  * @skb: buffer from which the paged data comes from
4088  * @shiftlen: shift up to this many bytes
4089  *
4090  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4091  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4092  * It's up to caller to free skb if everything was shifted.
4093  *
4094  * If @tgt runs out of frags, the whole operation is aborted.
4095  *
4096  * Skb cannot include anything else but paged data while tgt is allowed
4097  * to have non-paged data as well.
4098  *
4099  * TODO: full sized shift could be optimized but that would need
4100  * specialized skb free'er to handle frags without up-to-date nr_frags.
4101  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4102 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4103 {
4104 	int from, to, merge, todo;
4105 	skb_frag_t *fragfrom, *fragto;
4106 
4107 	BUG_ON(shiftlen > skb->len);
4108 
4109 	if (skb_headlen(skb))
4110 		return 0;
4111 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4112 		return 0;
4113 
4114 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4115 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4116 
4117 	todo = shiftlen;
4118 	from = 0;
4119 	to = skb_shinfo(tgt)->nr_frags;
4120 	fragfrom = &skb_shinfo(skb)->frags[from];
4121 
4122 	/* Actual merge is delayed until the point when we know we can
4123 	 * commit all, so that we don't have to undo partial changes
4124 	 */
4125 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4126 			      skb_frag_off(fragfrom))) {
4127 		merge = -1;
4128 	} else {
4129 		merge = to - 1;
4130 
4131 		todo -= skb_frag_size(fragfrom);
4132 		if (todo < 0) {
4133 			if (skb_prepare_for_shift(skb) ||
4134 			    skb_prepare_for_shift(tgt))
4135 				return 0;
4136 
4137 			/* All previous frag pointers might be stale! */
4138 			fragfrom = &skb_shinfo(skb)->frags[from];
4139 			fragto = &skb_shinfo(tgt)->frags[merge];
4140 
4141 			skb_frag_size_add(fragto, shiftlen);
4142 			skb_frag_size_sub(fragfrom, shiftlen);
4143 			skb_frag_off_add(fragfrom, shiftlen);
4144 
4145 			goto onlymerged;
4146 		}
4147 
4148 		from++;
4149 	}
4150 
4151 	/* Skip full, not-fitting skb to avoid expensive operations */
4152 	if ((shiftlen == skb->len) &&
4153 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4154 		return 0;
4155 
4156 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4157 		return 0;
4158 
4159 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4160 		if (to == MAX_SKB_FRAGS)
4161 			return 0;
4162 
4163 		fragfrom = &skb_shinfo(skb)->frags[from];
4164 		fragto = &skb_shinfo(tgt)->frags[to];
4165 
4166 		if (todo >= skb_frag_size(fragfrom)) {
4167 			*fragto = *fragfrom;
4168 			todo -= skb_frag_size(fragfrom);
4169 			from++;
4170 			to++;
4171 
4172 		} else {
4173 			__skb_frag_ref(fragfrom);
4174 			skb_frag_page_copy(fragto, fragfrom);
4175 			skb_frag_off_copy(fragto, fragfrom);
4176 			skb_frag_size_set(fragto, todo);
4177 
4178 			skb_frag_off_add(fragfrom, todo);
4179 			skb_frag_size_sub(fragfrom, todo);
4180 			todo = 0;
4181 
4182 			to++;
4183 			break;
4184 		}
4185 	}
4186 
4187 	/* Ready to "commit" this state change to tgt */
4188 	skb_shinfo(tgt)->nr_frags = to;
4189 
4190 	if (merge >= 0) {
4191 		fragfrom = &skb_shinfo(skb)->frags[0];
4192 		fragto = &skb_shinfo(tgt)->frags[merge];
4193 
4194 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4195 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4196 	}
4197 
4198 	/* Reposition in the original skb */
4199 	to = 0;
4200 	while (from < skb_shinfo(skb)->nr_frags)
4201 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4202 	skb_shinfo(skb)->nr_frags = to;
4203 
4204 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4205 
4206 onlymerged:
4207 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4208 	 * the other hand might need it if it needs to be resent
4209 	 */
4210 	tgt->ip_summed = CHECKSUM_PARTIAL;
4211 	skb->ip_summed = CHECKSUM_PARTIAL;
4212 
4213 	skb_len_add(skb, -shiftlen);
4214 	skb_len_add(tgt, shiftlen);
4215 
4216 	return shiftlen;
4217 }
4218 
4219 /**
4220  * skb_prepare_seq_read - Prepare a sequential read of skb data
4221  * @skb: the buffer to read
4222  * @from: lower offset of data to be read
4223  * @to: upper offset of data to be read
4224  * @st: state variable
4225  *
4226  * Initializes the specified state variable. Must be called before
4227  * invoking skb_seq_read() for the first time.
4228  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4229 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4230 			  unsigned int to, struct skb_seq_state *st)
4231 {
4232 	st->lower_offset = from;
4233 	st->upper_offset = to;
4234 	st->root_skb = st->cur_skb = skb;
4235 	st->frag_idx = st->stepped_offset = 0;
4236 	st->frag_data = NULL;
4237 	st->frag_off = 0;
4238 }
4239 EXPORT_SYMBOL(skb_prepare_seq_read);
4240 
4241 /**
4242  * skb_seq_read - Sequentially read skb data
4243  * @consumed: number of bytes consumed by the caller so far
4244  * @data: destination pointer for data to be returned
4245  * @st: state variable
4246  *
4247  * Reads a block of skb data at @consumed relative to the
4248  * lower offset specified to skb_prepare_seq_read(). Assigns
4249  * the head of the data block to @data and returns the length
4250  * of the block or 0 if the end of the skb data or the upper
4251  * offset has been reached.
4252  *
4253  * The caller is not required to consume all of the data
4254  * returned, i.e. @consumed is typically set to the number
4255  * of bytes already consumed and the next call to
4256  * skb_seq_read() will return the remaining part of the block.
4257  *
4258  * Note 1: The size of each block of data returned can be arbitrary,
4259  *       this limitation is the cost for zerocopy sequential
4260  *       reads of potentially non linear data.
4261  *
4262  * Note 2: Fragment lists within fragments are not implemented
4263  *       at the moment, state->root_skb could be replaced with
4264  *       a stack for this purpose.
4265  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4266 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4267 			  struct skb_seq_state *st)
4268 {
4269 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4270 	skb_frag_t *frag;
4271 
4272 	if (unlikely(abs_offset >= st->upper_offset)) {
4273 		if (st->frag_data) {
4274 			kunmap_atomic(st->frag_data);
4275 			st->frag_data = NULL;
4276 		}
4277 		return 0;
4278 	}
4279 
4280 next_skb:
4281 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4282 
4283 	if (abs_offset < block_limit && !st->frag_data) {
4284 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4285 		return block_limit - abs_offset;
4286 	}
4287 
4288 	if (!skb_frags_readable(st->cur_skb))
4289 		return 0;
4290 
4291 	if (st->frag_idx == 0 && !st->frag_data)
4292 		st->stepped_offset += skb_headlen(st->cur_skb);
4293 
4294 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4295 		unsigned int pg_idx, pg_off, pg_sz;
4296 
4297 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4298 
4299 		pg_idx = 0;
4300 		pg_off = skb_frag_off(frag);
4301 		pg_sz = skb_frag_size(frag);
4302 
4303 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4304 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4305 			pg_off = offset_in_page(pg_off + st->frag_off);
4306 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4307 						    PAGE_SIZE - pg_off);
4308 		}
4309 
4310 		block_limit = pg_sz + st->stepped_offset;
4311 		if (abs_offset < block_limit) {
4312 			if (!st->frag_data)
4313 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4314 
4315 			*data = (u8 *)st->frag_data + pg_off +
4316 				(abs_offset - st->stepped_offset);
4317 
4318 			return block_limit - abs_offset;
4319 		}
4320 
4321 		if (st->frag_data) {
4322 			kunmap_atomic(st->frag_data);
4323 			st->frag_data = NULL;
4324 		}
4325 
4326 		st->stepped_offset += pg_sz;
4327 		st->frag_off += pg_sz;
4328 		if (st->frag_off == skb_frag_size(frag)) {
4329 			st->frag_off = 0;
4330 			st->frag_idx++;
4331 		}
4332 	}
4333 
4334 	if (st->frag_data) {
4335 		kunmap_atomic(st->frag_data);
4336 		st->frag_data = NULL;
4337 	}
4338 
4339 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4340 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4341 		st->frag_idx = 0;
4342 		goto next_skb;
4343 	} else if (st->cur_skb->next) {
4344 		st->cur_skb = st->cur_skb->next;
4345 		st->frag_idx = 0;
4346 		goto next_skb;
4347 	}
4348 
4349 	return 0;
4350 }
4351 EXPORT_SYMBOL(skb_seq_read);
4352 
4353 /**
4354  * skb_abort_seq_read - Abort a sequential read of skb data
4355  * @st: state variable
4356  *
4357  * Must be called if skb_seq_read() was not called until it
4358  * returned 0.
4359  */
skb_abort_seq_read(struct skb_seq_state * st)4360 void skb_abort_seq_read(struct skb_seq_state *st)
4361 {
4362 	if (st->frag_data)
4363 		kunmap_atomic(st->frag_data);
4364 }
4365 EXPORT_SYMBOL(skb_abort_seq_read);
4366 
4367 /**
4368  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4369  * @st: source skb_seq_state
4370  * @offset: offset in source
4371  * @to: destination buffer
4372  * @len: number of bytes to copy
4373  *
4374  * Copy @len bytes from @offset bytes into the source @st to the destination
4375  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4376  * call to this function. If offset needs to decrease from the previous use `st`
4377  * should be reset first.
4378  *
4379  * Return: 0 on success or -EINVAL if the copy ended early
4380  */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4381 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4382 {
4383 	const u8 *data;
4384 	u32 sqlen;
4385 
4386 	for (;;) {
4387 		sqlen = skb_seq_read(offset, &data, st);
4388 		if (sqlen == 0)
4389 			return -EINVAL;
4390 		if (sqlen >= len) {
4391 			memcpy(to, data, len);
4392 			return 0;
4393 		}
4394 		memcpy(to, data, sqlen);
4395 		to += sqlen;
4396 		offset += sqlen;
4397 		len -= sqlen;
4398 	}
4399 }
4400 EXPORT_SYMBOL(skb_copy_seq_read);
4401 
4402 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4403 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4404 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4405 					  struct ts_config *conf,
4406 					  struct ts_state *state)
4407 {
4408 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4409 }
4410 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4411 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4412 {
4413 	skb_abort_seq_read(TS_SKB_CB(state));
4414 }
4415 
4416 /**
4417  * skb_find_text - Find a text pattern in skb data
4418  * @skb: the buffer to look in
4419  * @from: search offset
4420  * @to: search limit
4421  * @config: textsearch configuration
4422  *
4423  * Finds a pattern in the skb data according to the specified
4424  * textsearch configuration. Use textsearch_next() to retrieve
4425  * subsequent occurrences of the pattern. Returns the offset
4426  * to the first occurrence or UINT_MAX if no match was found.
4427  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4428 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4429 			   unsigned int to, struct ts_config *config)
4430 {
4431 	unsigned int patlen = config->ops->get_pattern_len(config);
4432 	struct ts_state state;
4433 	unsigned int ret;
4434 
4435 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4436 
4437 	config->get_next_block = skb_ts_get_next_block;
4438 	config->finish = skb_ts_finish;
4439 
4440 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4441 
4442 	ret = textsearch_find(config, &state);
4443 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4444 }
4445 EXPORT_SYMBOL(skb_find_text);
4446 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4447 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4448 			 int offset, size_t size, size_t max_frags)
4449 {
4450 	int i = skb_shinfo(skb)->nr_frags;
4451 
4452 	if (skb_can_coalesce(skb, i, page, offset)) {
4453 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4454 	} else if (i < max_frags) {
4455 		skb_zcopy_downgrade_managed(skb);
4456 		get_page(page);
4457 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4458 	} else {
4459 		return -EMSGSIZE;
4460 	}
4461 
4462 	return 0;
4463 }
4464 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4465 
4466 /**
4467  *	skb_pull_rcsum - pull skb and update receive checksum
4468  *	@skb: buffer to update
4469  *	@len: length of data pulled
4470  *
4471  *	This function performs an skb_pull on the packet and updates
4472  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4473  *	receive path processing instead of skb_pull unless you know
4474  *	that the checksum difference is zero (e.g., a valid IP header)
4475  *	or you are setting ip_summed to CHECKSUM_NONE.
4476  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4477 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4478 {
4479 	unsigned char *data = skb->data;
4480 
4481 	BUG_ON(len > skb->len);
4482 	__skb_pull(skb, len);
4483 	skb_postpull_rcsum(skb, data, len);
4484 	return skb->data;
4485 }
4486 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4487 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4488 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4489 {
4490 	skb_frag_t head_frag;
4491 	struct page *page;
4492 
4493 	page = virt_to_head_page(frag_skb->head);
4494 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4495 				(unsigned char *)page_address(page),
4496 				skb_headlen(frag_skb));
4497 	return head_frag;
4498 }
4499 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4500 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4501 				 netdev_features_t features,
4502 				 unsigned int offset)
4503 {
4504 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4505 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4506 	unsigned int delta_truesize = 0;
4507 	unsigned int delta_len = 0;
4508 	struct sk_buff *tail = NULL;
4509 	struct sk_buff *nskb, *tmp;
4510 	int len_diff, err;
4511 
4512 	skb_push(skb, -skb_network_offset(skb) + offset);
4513 
4514 	/* Ensure the head is writeable before touching the shared info */
4515 	err = skb_unclone(skb, GFP_ATOMIC);
4516 	if (err)
4517 		goto err_linearize;
4518 
4519 	skb_shinfo(skb)->frag_list = NULL;
4520 
4521 	while (list_skb) {
4522 		nskb = list_skb;
4523 		list_skb = list_skb->next;
4524 
4525 		err = 0;
4526 		delta_truesize += nskb->truesize;
4527 		if (skb_shared(nskb)) {
4528 			tmp = skb_clone(nskb, GFP_ATOMIC);
4529 			if (tmp) {
4530 				consume_skb(nskb);
4531 				nskb = tmp;
4532 				err = skb_unclone(nskb, GFP_ATOMIC);
4533 			} else {
4534 				err = -ENOMEM;
4535 			}
4536 		}
4537 
4538 		if (!tail)
4539 			skb->next = nskb;
4540 		else
4541 			tail->next = nskb;
4542 
4543 		if (unlikely(err)) {
4544 			nskb->next = list_skb;
4545 			goto err_linearize;
4546 		}
4547 
4548 		tail = nskb;
4549 
4550 		delta_len += nskb->len;
4551 
4552 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4553 
4554 		skb_release_head_state(nskb);
4555 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4556 		__copy_skb_header(nskb, skb);
4557 
4558 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4559 		nskb->transport_header += len_diff;
4560 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4561 						 nskb->data - tnl_hlen,
4562 						 offset + tnl_hlen);
4563 
4564 		if (skb_needs_linearize(nskb, features) &&
4565 		    __skb_linearize(nskb))
4566 			goto err_linearize;
4567 	}
4568 
4569 	skb->truesize = skb->truesize - delta_truesize;
4570 	skb->data_len = skb->data_len - delta_len;
4571 	skb->len = skb->len - delta_len;
4572 
4573 	skb_gso_reset(skb);
4574 
4575 	skb->prev = tail;
4576 
4577 	if (skb_needs_linearize(skb, features) &&
4578 	    __skb_linearize(skb))
4579 		goto err_linearize;
4580 
4581 	skb_get(skb);
4582 
4583 	return skb;
4584 
4585 err_linearize:
4586 	kfree_skb_list(skb->next);
4587 	skb->next = NULL;
4588 	return ERR_PTR(-ENOMEM);
4589 }
4590 EXPORT_SYMBOL_GPL(skb_segment_list);
4591 
4592 /**
4593  *	skb_segment - Perform protocol segmentation on skb.
4594  *	@head_skb: buffer to segment
4595  *	@features: features for the output path (see dev->features)
4596  *
4597  *	This function performs segmentation on the given skb.  It returns
4598  *	a pointer to the first in a list of new skbs for the segments.
4599  *	In case of error it returns ERR_PTR(err).
4600  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4601 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4602 			    netdev_features_t features)
4603 {
4604 	struct sk_buff *segs = NULL;
4605 	struct sk_buff *tail = NULL;
4606 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4607 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4608 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4609 	unsigned int offset = doffset;
4610 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4611 	unsigned int partial_segs = 0;
4612 	unsigned int headroom;
4613 	unsigned int len = head_skb->len;
4614 	struct sk_buff *frag_skb;
4615 	skb_frag_t *frag;
4616 	__be16 proto;
4617 	bool csum, sg;
4618 	int err = -ENOMEM;
4619 	int i = 0;
4620 	int nfrags, pos;
4621 
4622 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4623 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4624 		struct sk_buff *check_skb;
4625 
4626 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4627 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4628 				/* gso_size is untrusted, and we have a frag_list with
4629 				 * a linear non head_frag item.
4630 				 *
4631 				 * If head_skb's headlen does not fit requested gso_size,
4632 				 * it means that the frag_list members do NOT terminate
4633 				 * on exact gso_size boundaries. Hence we cannot perform
4634 				 * skb_frag_t page sharing. Therefore we must fallback to
4635 				 * copying the frag_list skbs; we do so by disabling SG.
4636 				 */
4637 				features &= ~NETIF_F_SG;
4638 				break;
4639 			}
4640 		}
4641 	}
4642 
4643 	__skb_push(head_skb, doffset);
4644 	proto = skb_network_protocol(head_skb, NULL);
4645 	if (unlikely(!proto))
4646 		return ERR_PTR(-EINVAL);
4647 
4648 	sg = !!(features & NETIF_F_SG);
4649 	csum = !!can_checksum_protocol(features, proto);
4650 
4651 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4652 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4653 			struct sk_buff *iter;
4654 			unsigned int frag_len;
4655 
4656 			if (!list_skb ||
4657 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4658 				goto normal;
4659 
4660 			/* If we get here then all the required
4661 			 * GSO features except frag_list are supported.
4662 			 * Try to split the SKB to multiple GSO SKBs
4663 			 * with no frag_list.
4664 			 * Currently we can do that only when the buffers don't
4665 			 * have a linear part and all the buffers except
4666 			 * the last are of the same length.
4667 			 */
4668 			frag_len = list_skb->len;
4669 			skb_walk_frags(head_skb, iter) {
4670 				if (frag_len != iter->len && iter->next)
4671 					goto normal;
4672 				if (skb_headlen(iter) && !iter->head_frag)
4673 					goto normal;
4674 
4675 				len -= iter->len;
4676 			}
4677 
4678 			if (len != frag_len)
4679 				goto normal;
4680 		}
4681 
4682 		/* GSO partial only requires that we trim off any excess that
4683 		 * doesn't fit into an MSS sized block, so take care of that
4684 		 * now.
4685 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4686 		 */
4687 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4688 		if (partial_segs > 1)
4689 			mss *= partial_segs;
4690 		else
4691 			partial_segs = 0;
4692 	}
4693 
4694 normal:
4695 	headroom = skb_headroom(head_skb);
4696 	pos = skb_headlen(head_skb);
4697 
4698 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4699 		return ERR_PTR(-ENOMEM);
4700 
4701 	nfrags = skb_shinfo(head_skb)->nr_frags;
4702 	frag = skb_shinfo(head_skb)->frags;
4703 	frag_skb = head_skb;
4704 
4705 	do {
4706 		struct sk_buff *nskb;
4707 		skb_frag_t *nskb_frag;
4708 		int hsize;
4709 		int size;
4710 
4711 		if (unlikely(mss == GSO_BY_FRAGS)) {
4712 			len = list_skb->len;
4713 		} else {
4714 			len = head_skb->len - offset;
4715 			if (len > mss)
4716 				len = mss;
4717 		}
4718 
4719 		hsize = skb_headlen(head_skb) - offset;
4720 
4721 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4722 		    (skb_headlen(list_skb) == len || sg)) {
4723 			BUG_ON(skb_headlen(list_skb) > len);
4724 
4725 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4726 			if (unlikely(!nskb))
4727 				goto err;
4728 
4729 			i = 0;
4730 			nfrags = skb_shinfo(list_skb)->nr_frags;
4731 			frag = skb_shinfo(list_skb)->frags;
4732 			frag_skb = list_skb;
4733 			pos += skb_headlen(list_skb);
4734 
4735 			while (pos < offset + len) {
4736 				BUG_ON(i >= nfrags);
4737 
4738 				size = skb_frag_size(frag);
4739 				if (pos + size > offset + len)
4740 					break;
4741 
4742 				i++;
4743 				pos += size;
4744 				frag++;
4745 			}
4746 
4747 			list_skb = list_skb->next;
4748 
4749 			if (unlikely(pskb_trim(nskb, len))) {
4750 				kfree_skb(nskb);
4751 				goto err;
4752 			}
4753 
4754 			hsize = skb_end_offset(nskb);
4755 			if (skb_cow_head(nskb, doffset + headroom)) {
4756 				kfree_skb(nskb);
4757 				goto err;
4758 			}
4759 
4760 			nskb->truesize += skb_end_offset(nskb) - hsize;
4761 			skb_release_head_state(nskb);
4762 			__skb_push(nskb, doffset);
4763 		} else {
4764 			if (hsize < 0)
4765 				hsize = 0;
4766 			if (hsize > len || !sg)
4767 				hsize = len;
4768 
4769 			nskb = __alloc_skb(hsize + doffset + headroom,
4770 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4771 					   NUMA_NO_NODE);
4772 
4773 			if (unlikely(!nskb))
4774 				goto err;
4775 
4776 			skb_reserve(nskb, headroom);
4777 			__skb_put(nskb, doffset);
4778 		}
4779 
4780 		if (segs)
4781 			tail->next = nskb;
4782 		else
4783 			segs = nskb;
4784 		tail = nskb;
4785 
4786 		__copy_skb_header(nskb, head_skb);
4787 
4788 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4789 		skb_reset_mac_len(nskb);
4790 
4791 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4792 						 nskb->data - tnl_hlen,
4793 						 doffset + tnl_hlen);
4794 
4795 		if (nskb->len == len + doffset)
4796 			goto perform_csum_check;
4797 
4798 		if (!sg) {
4799 			if (!csum) {
4800 				if (!nskb->remcsum_offload)
4801 					nskb->ip_summed = CHECKSUM_NONE;
4802 				SKB_GSO_CB(nskb)->csum =
4803 					skb_copy_and_csum_bits(head_skb, offset,
4804 							       skb_put(nskb,
4805 								       len),
4806 							       len);
4807 				SKB_GSO_CB(nskb)->csum_start =
4808 					skb_headroom(nskb) + doffset;
4809 			} else {
4810 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4811 					goto err;
4812 			}
4813 			continue;
4814 		}
4815 
4816 		nskb_frag = skb_shinfo(nskb)->frags;
4817 
4818 		skb_copy_from_linear_data_offset(head_skb, offset,
4819 						 skb_put(nskb, hsize), hsize);
4820 
4821 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4822 					   SKBFL_SHARED_FRAG;
4823 
4824 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4825 			goto err;
4826 
4827 		while (pos < offset + len) {
4828 			if (i >= nfrags) {
4829 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4830 				    skb_zerocopy_clone(nskb, list_skb,
4831 						       GFP_ATOMIC))
4832 					goto err;
4833 
4834 				i = 0;
4835 				nfrags = skb_shinfo(list_skb)->nr_frags;
4836 				frag = skb_shinfo(list_skb)->frags;
4837 				frag_skb = list_skb;
4838 				if (!skb_headlen(list_skb)) {
4839 					BUG_ON(!nfrags);
4840 				} else {
4841 					BUG_ON(!list_skb->head_frag);
4842 
4843 					/* to make room for head_frag. */
4844 					i--;
4845 					frag--;
4846 				}
4847 
4848 				list_skb = list_skb->next;
4849 			}
4850 
4851 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4852 				     MAX_SKB_FRAGS)) {
4853 				net_warn_ratelimited(
4854 					"skb_segment: too many frags: %u %u\n",
4855 					pos, mss);
4856 				err = -EINVAL;
4857 				goto err;
4858 			}
4859 
4860 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4861 			__skb_frag_ref(nskb_frag);
4862 			size = skb_frag_size(nskb_frag);
4863 
4864 			if (pos < offset) {
4865 				skb_frag_off_add(nskb_frag, offset - pos);
4866 				skb_frag_size_sub(nskb_frag, offset - pos);
4867 			}
4868 
4869 			skb_shinfo(nskb)->nr_frags++;
4870 
4871 			if (pos + size <= offset + len) {
4872 				i++;
4873 				frag++;
4874 				pos += size;
4875 			} else {
4876 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4877 				goto skip_fraglist;
4878 			}
4879 
4880 			nskb_frag++;
4881 		}
4882 
4883 skip_fraglist:
4884 		nskb->data_len = len - hsize;
4885 		nskb->len += nskb->data_len;
4886 		nskb->truesize += nskb->data_len;
4887 
4888 perform_csum_check:
4889 		if (!csum) {
4890 			if (skb_has_shared_frag(nskb) &&
4891 			    __skb_linearize(nskb))
4892 				goto err;
4893 
4894 			if (!nskb->remcsum_offload)
4895 				nskb->ip_summed = CHECKSUM_NONE;
4896 			SKB_GSO_CB(nskb)->csum =
4897 				skb_checksum(nskb, doffset,
4898 					     nskb->len - doffset, 0);
4899 			SKB_GSO_CB(nskb)->csum_start =
4900 				skb_headroom(nskb) + doffset;
4901 		}
4902 	} while ((offset += len) < head_skb->len);
4903 
4904 	/* Some callers want to get the end of the list.
4905 	 * Put it in segs->prev to avoid walking the list.
4906 	 * (see validate_xmit_skb_list() for example)
4907 	 */
4908 	segs->prev = tail;
4909 
4910 	if (partial_segs) {
4911 		struct sk_buff *iter;
4912 		int type = skb_shinfo(head_skb)->gso_type;
4913 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4914 
4915 		/* Update type to add partial and then remove dodgy if set */
4916 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4917 		type &= ~SKB_GSO_DODGY;
4918 
4919 		/* Update GSO info and prepare to start updating headers on
4920 		 * our way back down the stack of protocols.
4921 		 */
4922 		for (iter = segs; iter; iter = iter->next) {
4923 			skb_shinfo(iter)->gso_size = gso_size;
4924 			skb_shinfo(iter)->gso_segs = partial_segs;
4925 			skb_shinfo(iter)->gso_type = type;
4926 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4927 		}
4928 
4929 		if (tail->len - doffset <= gso_size)
4930 			skb_shinfo(tail)->gso_size = 0;
4931 		else if (tail != segs)
4932 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4933 	}
4934 
4935 	/* Following permits correct backpressure, for protocols
4936 	 * using skb_set_owner_w().
4937 	 * Idea is to tranfert ownership from head_skb to last segment.
4938 	 */
4939 	if (head_skb->destructor == sock_wfree) {
4940 		swap(tail->truesize, head_skb->truesize);
4941 		swap(tail->destructor, head_skb->destructor);
4942 		swap(tail->sk, head_skb->sk);
4943 	}
4944 	return segs;
4945 
4946 err:
4947 	kfree_skb_list(segs);
4948 	return ERR_PTR(err);
4949 }
4950 EXPORT_SYMBOL_GPL(skb_segment);
4951 
4952 #ifdef CONFIG_SKB_EXTENSIONS
4953 #define SKB_EXT_ALIGN_VALUE	8
4954 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4955 
4956 static const u8 skb_ext_type_len[] = {
4957 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4958 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4959 #endif
4960 #ifdef CONFIG_XFRM
4961 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4962 #endif
4963 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4964 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4965 #endif
4966 #if IS_ENABLED(CONFIG_MPTCP)
4967 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4968 #endif
4969 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4970 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4971 #endif
4972 };
4973 
skb_ext_total_length(void)4974 static __always_inline unsigned int skb_ext_total_length(void)
4975 {
4976 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4977 	int i;
4978 
4979 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4980 		l += skb_ext_type_len[i];
4981 
4982 	return l;
4983 }
4984 
skb_extensions_init(void)4985 static void skb_extensions_init(void)
4986 {
4987 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4988 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4989 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4990 #endif
4991 
4992 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4993 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4994 					     0,
4995 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4996 					     NULL);
4997 }
4998 #else
skb_extensions_init(void)4999 static void skb_extensions_init(void) {}
5000 #endif
5001 
5002 /* The SKB kmem_cache slab is critical for network performance.  Never
5003  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5004  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5005  */
5006 #ifndef CONFIG_SLUB_TINY
5007 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5008 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5009 #define FLAG_SKB_NO_MERGE	0
5010 #endif
5011 
skb_init(void)5012 void __init skb_init(void)
5013 {
5014 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5015 					      sizeof(struct sk_buff),
5016 					      0,
5017 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5018 						FLAG_SKB_NO_MERGE,
5019 					      offsetof(struct sk_buff, cb),
5020 					      sizeof_field(struct sk_buff, cb),
5021 					      NULL);
5022 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5023 						sizeof(struct sk_buff_fclones),
5024 						0,
5025 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5026 						NULL);
5027 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5028 	 * struct skb_shared_info is located at the end of skb->head,
5029 	 * and should not be copied to/from user.
5030 	 */
5031 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5032 						SKB_SMALL_HEAD_CACHE_SIZE,
5033 						0,
5034 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5035 						0,
5036 						SKB_SMALL_HEAD_HEADROOM,
5037 						NULL);
5038 	skb_extensions_init();
5039 }
5040 
5041 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5042 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5043 	       unsigned int recursion_level)
5044 {
5045 	int start = skb_headlen(skb);
5046 	int i, copy = start - offset;
5047 	struct sk_buff *frag_iter;
5048 	int elt = 0;
5049 
5050 	if (unlikely(recursion_level >= 24))
5051 		return -EMSGSIZE;
5052 
5053 	if (copy > 0) {
5054 		if (copy > len)
5055 			copy = len;
5056 		sg_set_buf(sg, skb->data + offset, copy);
5057 		elt++;
5058 		if ((len -= copy) == 0)
5059 			return elt;
5060 		offset += copy;
5061 	}
5062 
5063 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5064 		int end;
5065 
5066 		WARN_ON(start > offset + len);
5067 
5068 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5069 		if ((copy = end - offset) > 0) {
5070 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5071 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5072 				return -EMSGSIZE;
5073 
5074 			if (copy > len)
5075 				copy = len;
5076 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5077 				    skb_frag_off(frag) + offset - start);
5078 			elt++;
5079 			if (!(len -= copy))
5080 				return elt;
5081 			offset += copy;
5082 		}
5083 		start = end;
5084 	}
5085 
5086 	skb_walk_frags(skb, frag_iter) {
5087 		int end, ret;
5088 
5089 		WARN_ON(start > offset + len);
5090 
5091 		end = start + frag_iter->len;
5092 		if ((copy = end - offset) > 0) {
5093 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5094 				return -EMSGSIZE;
5095 
5096 			if (copy > len)
5097 				copy = len;
5098 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5099 					      copy, recursion_level + 1);
5100 			if (unlikely(ret < 0))
5101 				return ret;
5102 			elt += ret;
5103 			if ((len -= copy) == 0)
5104 				return elt;
5105 			offset += copy;
5106 		}
5107 		start = end;
5108 	}
5109 	BUG_ON(len);
5110 	return elt;
5111 }
5112 
5113 /**
5114  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5115  *	@skb: Socket buffer containing the buffers to be mapped
5116  *	@sg: The scatter-gather list to map into
5117  *	@offset: The offset into the buffer's contents to start mapping
5118  *	@len: Length of buffer space to be mapped
5119  *
5120  *	Fill the specified scatter-gather list with mappings/pointers into a
5121  *	region of the buffer space attached to a socket buffer. Returns either
5122  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5123  *	could not fit.
5124  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5125 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5126 {
5127 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5128 
5129 	if (nsg <= 0)
5130 		return nsg;
5131 
5132 	sg_mark_end(&sg[nsg - 1]);
5133 
5134 	return nsg;
5135 }
5136 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5137 
5138 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5139  * sglist without mark the sg which contain last skb data as the end.
5140  * So the caller can mannipulate sg list as will when padding new data after
5141  * the first call without calling sg_unmark_end to expend sg list.
5142  *
5143  * Scenario to use skb_to_sgvec_nomark:
5144  * 1. sg_init_table
5145  * 2. skb_to_sgvec_nomark(payload1)
5146  * 3. skb_to_sgvec_nomark(payload2)
5147  *
5148  * This is equivalent to:
5149  * 1. sg_init_table
5150  * 2. skb_to_sgvec(payload1)
5151  * 3. sg_unmark_end
5152  * 4. skb_to_sgvec(payload2)
5153  *
5154  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5155  * is more preferable.
5156  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5157 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5158 			int offset, int len)
5159 {
5160 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5161 }
5162 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5163 
5164 
5165 
5166 /**
5167  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5168  *	@skb: The socket buffer to check.
5169  *	@tailbits: Amount of trailing space to be added
5170  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5171  *
5172  *	Make sure that the data buffers attached to a socket buffer are
5173  *	writable. If they are not, private copies are made of the data buffers
5174  *	and the socket buffer is set to use these instead.
5175  *
5176  *	If @tailbits is given, make sure that there is space to write @tailbits
5177  *	bytes of data beyond current end of socket buffer.  @trailer will be
5178  *	set to point to the skb in which this space begins.
5179  *
5180  *	The number of scatterlist elements required to completely map the
5181  *	COW'd and extended socket buffer will be returned.
5182  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5183 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5184 {
5185 	int copyflag;
5186 	int elt;
5187 	struct sk_buff *skb1, **skb_p;
5188 
5189 	/* If skb is cloned or its head is paged, reallocate
5190 	 * head pulling out all the pages (pages are considered not writable
5191 	 * at the moment even if they are anonymous).
5192 	 */
5193 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5194 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5195 		return -ENOMEM;
5196 
5197 	/* Easy case. Most of packets will go this way. */
5198 	if (!skb_has_frag_list(skb)) {
5199 		/* A little of trouble, not enough of space for trailer.
5200 		 * This should not happen, when stack is tuned to generate
5201 		 * good frames. OK, on miss we reallocate and reserve even more
5202 		 * space, 128 bytes is fair. */
5203 
5204 		if (skb_tailroom(skb) < tailbits &&
5205 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5206 			return -ENOMEM;
5207 
5208 		/* Voila! */
5209 		*trailer = skb;
5210 		return 1;
5211 	}
5212 
5213 	/* Misery. We are in troubles, going to mincer fragments... */
5214 
5215 	elt = 1;
5216 	skb_p = &skb_shinfo(skb)->frag_list;
5217 	copyflag = 0;
5218 
5219 	while ((skb1 = *skb_p) != NULL) {
5220 		int ntail = 0;
5221 
5222 		/* The fragment is partially pulled by someone,
5223 		 * this can happen on input. Copy it and everything
5224 		 * after it. */
5225 
5226 		if (skb_shared(skb1))
5227 			copyflag = 1;
5228 
5229 		/* If the skb is the last, worry about trailer. */
5230 
5231 		if (skb1->next == NULL && tailbits) {
5232 			if (skb_shinfo(skb1)->nr_frags ||
5233 			    skb_has_frag_list(skb1) ||
5234 			    skb_tailroom(skb1) < tailbits)
5235 				ntail = tailbits + 128;
5236 		}
5237 
5238 		if (copyflag ||
5239 		    skb_cloned(skb1) ||
5240 		    ntail ||
5241 		    skb_shinfo(skb1)->nr_frags ||
5242 		    skb_has_frag_list(skb1)) {
5243 			struct sk_buff *skb2;
5244 
5245 			/* Fuck, we are miserable poor guys... */
5246 			if (ntail == 0)
5247 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5248 			else
5249 				skb2 = skb_copy_expand(skb1,
5250 						       skb_headroom(skb1),
5251 						       ntail,
5252 						       GFP_ATOMIC);
5253 			if (unlikely(skb2 == NULL))
5254 				return -ENOMEM;
5255 
5256 			if (skb1->sk)
5257 				skb_set_owner_w(skb2, skb1->sk);
5258 
5259 			/* Looking around. Are we still alive?
5260 			 * OK, link new skb, drop old one */
5261 
5262 			skb2->next = skb1->next;
5263 			*skb_p = skb2;
5264 			kfree_skb(skb1);
5265 			skb1 = skb2;
5266 		}
5267 		elt++;
5268 		*trailer = skb1;
5269 		skb_p = &skb1->next;
5270 	}
5271 
5272 	return elt;
5273 }
5274 EXPORT_SYMBOL_GPL(skb_cow_data);
5275 
sock_rmem_free(struct sk_buff * skb)5276 static void sock_rmem_free(struct sk_buff *skb)
5277 {
5278 	struct sock *sk = skb->sk;
5279 
5280 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5281 }
5282 
skb_set_err_queue(struct sk_buff * skb)5283 static void skb_set_err_queue(struct sk_buff *skb)
5284 {
5285 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5286 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5287 	 */
5288 	skb->pkt_type = PACKET_OUTGOING;
5289 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5290 }
5291 
5292 /*
5293  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5294  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5295 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5296 {
5297 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5298 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5299 		return -ENOMEM;
5300 
5301 	skb_orphan(skb);
5302 	skb->sk = sk;
5303 	skb->destructor = sock_rmem_free;
5304 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5305 	skb_set_err_queue(skb);
5306 
5307 	/* before exiting rcu section, make sure dst is refcounted */
5308 	skb_dst_force(skb);
5309 
5310 	skb_queue_tail(&sk->sk_error_queue, skb);
5311 	if (!sock_flag(sk, SOCK_DEAD))
5312 		sk_error_report(sk);
5313 	return 0;
5314 }
5315 EXPORT_SYMBOL(sock_queue_err_skb);
5316 
is_icmp_err_skb(const struct sk_buff * skb)5317 static bool is_icmp_err_skb(const struct sk_buff *skb)
5318 {
5319 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5320 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5321 }
5322 
sock_dequeue_err_skb(struct sock * sk)5323 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5324 {
5325 	struct sk_buff_head *q = &sk->sk_error_queue;
5326 	struct sk_buff *skb, *skb_next = NULL;
5327 	bool icmp_next = false;
5328 	unsigned long flags;
5329 
5330 	if (skb_queue_empty_lockless(q))
5331 		return NULL;
5332 
5333 	spin_lock_irqsave(&q->lock, flags);
5334 	skb = __skb_dequeue(q);
5335 	if (skb && (skb_next = skb_peek(q))) {
5336 		icmp_next = is_icmp_err_skb(skb_next);
5337 		if (icmp_next)
5338 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5339 	}
5340 	spin_unlock_irqrestore(&q->lock, flags);
5341 
5342 	if (is_icmp_err_skb(skb) && !icmp_next)
5343 		sk->sk_err = 0;
5344 
5345 	if (skb_next)
5346 		sk_error_report(sk);
5347 
5348 	return skb;
5349 }
5350 EXPORT_SYMBOL(sock_dequeue_err_skb);
5351 
5352 /**
5353  * skb_clone_sk - create clone of skb, and take reference to socket
5354  * @skb: the skb to clone
5355  *
5356  * This function creates a clone of a buffer that holds a reference on
5357  * sk_refcnt.  Buffers created via this function are meant to be
5358  * returned using sock_queue_err_skb, or free via kfree_skb.
5359  *
5360  * When passing buffers allocated with this function to sock_queue_err_skb
5361  * it is necessary to wrap the call with sock_hold/sock_put in order to
5362  * prevent the socket from being released prior to being enqueued on
5363  * the sk_error_queue.
5364  */
skb_clone_sk(struct sk_buff * skb)5365 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5366 {
5367 	struct sock *sk = skb->sk;
5368 	struct sk_buff *clone;
5369 
5370 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5371 		return NULL;
5372 
5373 	clone = skb_clone(skb, GFP_ATOMIC);
5374 	if (!clone) {
5375 		sock_put(sk);
5376 		return NULL;
5377 	}
5378 
5379 	clone->sk = sk;
5380 	clone->destructor = sock_efree;
5381 
5382 	return clone;
5383 }
5384 EXPORT_SYMBOL(skb_clone_sk);
5385 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5386 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5387 					struct sock *sk,
5388 					int tstype,
5389 					bool opt_stats)
5390 {
5391 	struct sock_exterr_skb *serr;
5392 	int err;
5393 
5394 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5395 
5396 	serr = SKB_EXT_ERR(skb);
5397 	memset(serr, 0, sizeof(*serr));
5398 	serr->ee.ee_errno = ENOMSG;
5399 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5400 	serr->ee.ee_info = tstype;
5401 	serr->opt_stats = opt_stats;
5402 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5403 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5404 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5405 		if (sk_is_tcp(sk))
5406 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5407 	}
5408 
5409 	err = sock_queue_err_skb(sk, skb);
5410 
5411 	if (err)
5412 		kfree_skb(skb);
5413 }
5414 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5415 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5416 {
5417 	bool ret;
5418 
5419 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5420 		return true;
5421 
5422 	read_lock_bh(&sk->sk_callback_lock);
5423 	ret = sk->sk_socket && sk->sk_socket->file &&
5424 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5425 	read_unlock_bh(&sk->sk_callback_lock);
5426 	return ret;
5427 }
5428 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5429 void skb_complete_tx_timestamp(struct sk_buff *skb,
5430 			       struct skb_shared_hwtstamps *hwtstamps)
5431 {
5432 	struct sock *sk = skb->sk;
5433 
5434 	if (!skb_may_tx_timestamp(sk, false))
5435 		goto err;
5436 
5437 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5438 	 * but only if the socket refcount is not zero.
5439 	 */
5440 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5441 		*skb_hwtstamps(skb) = *hwtstamps;
5442 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5443 		sock_put(sk);
5444 		return;
5445 	}
5446 
5447 err:
5448 	kfree_skb(skb);
5449 }
5450 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5451 
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5452 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5453 		     const struct sk_buff *ack_skb,
5454 		     struct skb_shared_hwtstamps *hwtstamps,
5455 		     struct sock *sk, int tstype)
5456 {
5457 	struct sk_buff *skb;
5458 	bool tsonly, opt_stats = false;
5459 	u32 tsflags;
5460 
5461 	if (!sk)
5462 		return;
5463 
5464 	tsflags = READ_ONCE(sk->sk_tsflags);
5465 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5466 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5467 		return;
5468 
5469 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5470 	if (!skb_may_tx_timestamp(sk, tsonly))
5471 		return;
5472 
5473 	if (tsonly) {
5474 #ifdef CONFIG_INET
5475 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5476 		    sk_is_tcp(sk)) {
5477 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5478 							     ack_skb);
5479 			opt_stats = true;
5480 		} else
5481 #endif
5482 			skb = alloc_skb(0, GFP_ATOMIC);
5483 	} else {
5484 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5485 
5486 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5487 			kfree_skb(skb);
5488 			return;
5489 		}
5490 	}
5491 	if (!skb)
5492 		return;
5493 
5494 	if (tsonly) {
5495 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5496 					     SKBTX_ANY_TSTAMP;
5497 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5498 	}
5499 
5500 	if (hwtstamps)
5501 		*skb_hwtstamps(skb) = *hwtstamps;
5502 	else
5503 		__net_timestamp(skb);
5504 
5505 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5506 }
5507 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5508 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5509 void skb_tstamp_tx(struct sk_buff *orig_skb,
5510 		   struct skb_shared_hwtstamps *hwtstamps)
5511 {
5512 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5513 			       SCM_TSTAMP_SND);
5514 }
5515 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5516 
5517 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5518 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5519 {
5520 	struct sock *sk = skb->sk;
5521 	struct sock_exterr_skb *serr;
5522 	int err = 1;
5523 
5524 	skb->wifi_acked_valid = 1;
5525 	skb->wifi_acked = acked;
5526 
5527 	serr = SKB_EXT_ERR(skb);
5528 	memset(serr, 0, sizeof(*serr));
5529 	serr->ee.ee_errno = ENOMSG;
5530 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5531 
5532 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5533 	 * but only if the socket refcount is not zero.
5534 	 */
5535 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5536 		err = sock_queue_err_skb(sk, skb);
5537 		sock_put(sk);
5538 	}
5539 	if (err)
5540 		kfree_skb(skb);
5541 }
5542 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5543 #endif /* CONFIG_WIRELESS */
5544 
5545 /**
5546  * skb_partial_csum_set - set up and verify partial csum values for packet
5547  * @skb: the skb to set
5548  * @start: the number of bytes after skb->data to start checksumming.
5549  * @off: the offset from start to place the checksum.
5550  *
5551  * For untrusted partially-checksummed packets, we need to make sure the values
5552  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5553  *
5554  * This function checks and sets those values and skb->ip_summed: if this
5555  * returns false you should drop the packet.
5556  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5557 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5558 {
5559 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5560 	u32 csum_start = skb_headroom(skb) + (u32)start;
5561 
5562 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5563 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5564 				     start, off, skb_headroom(skb), skb_headlen(skb));
5565 		return false;
5566 	}
5567 	skb->ip_summed = CHECKSUM_PARTIAL;
5568 	skb->csum_start = csum_start;
5569 	skb->csum_offset = off;
5570 	skb->transport_header = csum_start;
5571 	return true;
5572 }
5573 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5574 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5575 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5576 			       unsigned int max)
5577 {
5578 	if (skb_headlen(skb) >= len)
5579 		return 0;
5580 
5581 	/* If we need to pullup then pullup to the max, so we
5582 	 * won't need to do it again.
5583 	 */
5584 	if (max > skb->len)
5585 		max = skb->len;
5586 
5587 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5588 		return -ENOMEM;
5589 
5590 	if (skb_headlen(skb) < len)
5591 		return -EPROTO;
5592 
5593 	return 0;
5594 }
5595 
5596 #define MAX_TCP_HDR_LEN (15 * 4)
5597 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5598 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5599 				      typeof(IPPROTO_IP) proto,
5600 				      unsigned int off)
5601 {
5602 	int err;
5603 
5604 	switch (proto) {
5605 	case IPPROTO_TCP:
5606 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5607 					  off + MAX_TCP_HDR_LEN);
5608 		if (!err && !skb_partial_csum_set(skb, off,
5609 						  offsetof(struct tcphdr,
5610 							   check)))
5611 			err = -EPROTO;
5612 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5613 
5614 	case IPPROTO_UDP:
5615 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5616 					  off + sizeof(struct udphdr));
5617 		if (!err && !skb_partial_csum_set(skb, off,
5618 						  offsetof(struct udphdr,
5619 							   check)))
5620 			err = -EPROTO;
5621 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5622 	}
5623 
5624 	return ERR_PTR(-EPROTO);
5625 }
5626 
5627 /* This value should be large enough to cover a tagged ethernet header plus
5628  * maximally sized IP and TCP or UDP headers.
5629  */
5630 #define MAX_IP_HDR_LEN 128
5631 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5632 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5633 {
5634 	unsigned int off;
5635 	bool fragment;
5636 	__sum16 *csum;
5637 	int err;
5638 
5639 	fragment = false;
5640 
5641 	err = skb_maybe_pull_tail(skb,
5642 				  sizeof(struct iphdr),
5643 				  MAX_IP_HDR_LEN);
5644 	if (err < 0)
5645 		goto out;
5646 
5647 	if (ip_is_fragment(ip_hdr(skb)))
5648 		fragment = true;
5649 
5650 	off = ip_hdrlen(skb);
5651 
5652 	err = -EPROTO;
5653 
5654 	if (fragment)
5655 		goto out;
5656 
5657 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5658 	if (IS_ERR(csum))
5659 		return PTR_ERR(csum);
5660 
5661 	if (recalculate)
5662 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5663 					   ip_hdr(skb)->daddr,
5664 					   skb->len - off,
5665 					   ip_hdr(skb)->protocol, 0);
5666 	err = 0;
5667 
5668 out:
5669 	return err;
5670 }
5671 
5672 /* This value should be large enough to cover a tagged ethernet header plus
5673  * an IPv6 header, all options, and a maximal TCP or UDP header.
5674  */
5675 #define MAX_IPV6_HDR_LEN 256
5676 
5677 #define OPT_HDR(type, skb, off) \
5678 	(type *)(skb_network_header(skb) + (off))
5679 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5680 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5681 {
5682 	int err;
5683 	u8 nexthdr;
5684 	unsigned int off;
5685 	unsigned int len;
5686 	bool fragment;
5687 	bool done;
5688 	__sum16 *csum;
5689 
5690 	fragment = false;
5691 	done = false;
5692 
5693 	off = sizeof(struct ipv6hdr);
5694 
5695 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5696 	if (err < 0)
5697 		goto out;
5698 
5699 	nexthdr = ipv6_hdr(skb)->nexthdr;
5700 
5701 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5702 	while (off <= len && !done) {
5703 		switch (nexthdr) {
5704 		case IPPROTO_DSTOPTS:
5705 		case IPPROTO_HOPOPTS:
5706 		case IPPROTO_ROUTING: {
5707 			struct ipv6_opt_hdr *hp;
5708 
5709 			err = skb_maybe_pull_tail(skb,
5710 						  off +
5711 						  sizeof(struct ipv6_opt_hdr),
5712 						  MAX_IPV6_HDR_LEN);
5713 			if (err < 0)
5714 				goto out;
5715 
5716 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5717 			nexthdr = hp->nexthdr;
5718 			off += ipv6_optlen(hp);
5719 			break;
5720 		}
5721 		case IPPROTO_AH: {
5722 			struct ip_auth_hdr *hp;
5723 
5724 			err = skb_maybe_pull_tail(skb,
5725 						  off +
5726 						  sizeof(struct ip_auth_hdr),
5727 						  MAX_IPV6_HDR_LEN);
5728 			if (err < 0)
5729 				goto out;
5730 
5731 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5732 			nexthdr = hp->nexthdr;
5733 			off += ipv6_authlen(hp);
5734 			break;
5735 		}
5736 		case IPPROTO_FRAGMENT: {
5737 			struct frag_hdr *hp;
5738 
5739 			err = skb_maybe_pull_tail(skb,
5740 						  off +
5741 						  sizeof(struct frag_hdr),
5742 						  MAX_IPV6_HDR_LEN);
5743 			if (err < 0)
5744 				goto out;
5745 
5746 			hp = OPT_HDR(struct frag_hdr, skb, off);
5747 
5748 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5749 				fragment = true;
5750 
5751 			nexthdr = hp->nexthdr;
5752 			off += sizeof(struct frag_hdr);
5753 			break;
5754 		}
5755 		default:
5756 			done = true;
5757 			break;
5758 		}
5759 	}
5760 
5761 	err = -EPROTO;
5762 
5763 	if (!done || fragment)
5764 		goto out;
5765 
5766 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5767 	if (IS_ERR(csum))
5768 		return PTR_ERR(csum);
5769 
5770 	if (recalculate)
5771 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5772 					 &ipv6_hdr(skb)->daddr,
5773 					 skb->len - off, nexthdr, 0);
5774 	err = 0;
5775 
5776 out:
5777 	return err;
5778 }
5779 
5780 /**
5781  * skb_checksum_setup - set up partial checksum offset
5782  * @skb: the skb to set up
5783  * @recalculate: if true the pseudo-header checksum will be recalculated
5784  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5785 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5786 {
5787 	int err;
5788 
5789 	switch (skb->protocol) {
5790 	case htons(ETH_P_IP):
5791 		err = skb_checksum_setup_ipv4(skb, recalculate);
5792 		break;
5793 
5794 	case htons(ETH_P_IPV6):
5795 		err = skb_checksum_setup_ipv6(skb, recalculate);
5796 		break;
5797 
5798 	default:
5799 		err = -EPROTO;
5800 		break;
5801 	}
5802 
5803 	return err;
5804 }
5805 EXPORT_SYMBOL(skb_checksum_setup);
5806 
5807 /**
5808  * skb_checksum_maybe_trim - maybe trims the given skb
5809  * @skb: the skb to check
5810  * @transport_len: the data length beyond the network header
5811  *
5812  * Checks whether the given skb has data beyond the given transport length.
5813  * If so, returns a cloned skb trimmed to this transport length.
5814  * Otherwise returns the provided skb. Returns NULL in error cases
5815  * (e.g. transport_len exceeds skb length or out-of-memory).
5816  *
5817  * Caller needs to set the skb transport header and free any returned skb if it
5818  * differs from the provided skb.
5819  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5820 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5821 					       unsigned int transport_len)
5822 {
5823 	struct sk_buff *skb_chk;
5824 	unsigned int len = skb_transport_offset(skb) + transport_len;
5825 	int ret;
5826 
5827 	if (skb->len < len)
5828 		return NULL;
5829 	else if (skb->len == len)
5830 		return skb;
5831 
5832 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5833 	if (!skb_chk)
5834 		return NULL;
5835 
5836 	ret = pskb_trim_rcsum(skb_chk, len);
5837 	if (ret) {
5838 		kfree_skb(skb_chk);
5839 		return NULL;
5840 	}
5841 
5842 	return skb_chk;
5843 }
5844 
5845 /**
5846  * skb_checksum_trimmed - validate checksum of an skb
5847  * @skb: the skb to check
5848  * @transport_len: the data length beyond the network header
5849  * @skb_chkf: checksum function to use
5850  *
5851  * Applies the given checksum function skb_chkf to the provided skb.
5852  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5853  *
5854  * If the skb has data beyond the given transport length, then a
5855  * trimmed & cloned skb is checked and returned.
5856  *
5857  * Caller needs to set the skb transport header and free any returned skb if it
5858  * differs from the provided skb.
5859  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5860 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5861 				     unsigned int transport_len,
5862 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5863 {
5864 	struct sk_buff *skb_chk;
5865 	unsigned int offset = skb_transport_offset(skb);
5866 	__sum16 ret;
5867 
5868 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5869 	if (!skb_chk)
5870 		goto err;
5871 
5872 	if (!pskb_may_pull(skb_chk, offset))
5873 		goto err;
5874 
5875 	skb_pull_rcsum(skb_chk, offset);
5876 	ret = skb_chkf(skb_chk);
5877 	skb_push_rcsum(skb_chk, offset);
5878 
5879 	if (ret)
5880 		goto err;
5881 
5882 	return skb_chk;
5883 
5884 err:
5885 	if (skb_chk && skb_chk != skb)
5886 		kfree_skb(skb_chk);
5887 
5888 	return NULL;
5889 
5890 }
5891 EXPORT_SYMBOL(skb_checksum_trimmed);
5892 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5893 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5894 {
5895 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5896 			     skb->dev->name);
5897 }
5898 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5899 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5900 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5901 {
5902 	if (head_stolen) {
5903 		skb_release_head_state(skb);
5904 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5905 	} else {
5906 		__kfree_skb(skb);
5907 	}
5908 }
5909 EXPORT_SYMBOL(kfree_skb_partial);
5910 
5911 /**
5912  * skb_try_coalesce - try to merge skb to prior one
5913  * @to: prior buffer
5914  * @from: buffer to add
5915  * @fragstolen: pointer to boolean
5916  * @delta_truesize: how much more was allocated than was requested
5917  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5918 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5919 		      bool *fragstolen, int *delta_truesize)
5920 {
5921 	struct skb_shared_info *to_shinfo, *from_shinfo;
5922 	int i, delta, len = from->len;
5923 
5924 	*fragstolen = false;
5925 
5926 	if (skb_cloned(to))
5927 		return false;
5928 
5929 	/* In general, avoid mixing page_pool and non-page_pool allocated
5930 	 * pages within the same SKB. In theory we could take full
5931 	 * references if @from is cloned and !@to->pp_recycle but its
5932 	 * tricky (due to potential race with the clone disappearing) and
5933 	 * rare, so not worth dealing with.
5934 	 */
5935 	if (to->pp_recycle != from->pp_recycle)
5936 		return false;
5937 
5938 	if (skb_frags_readable(from) != skb_frags_readable(to))
5939 		return false;
5940 
5941 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
5942 		if (len)
5943 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5944 		*delta_truesize = 0;
5945 		return true;
5946 	}
5947 
5948 	to_shinfo = skb_shinfo(to);
5949 	from_shinfo = skb_shinfo(from);
5950 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5951 		return false;
5952 	if (skb_zcopy(to) || skb_zcopy(from))
5953 		return false;
5954 
5955 	if (skb_headlen(from) != 0) {
5956 		struct page *page;
5957 		unsigned int offset;
5958 
5959 		if (to_shinfo->nr_frags +
5960 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5961 			return false;
5962 
5963 		if (skb_head_is_locked(from))
5964 			return false;
5965 
5966 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5967 
5968 		page = virt_to_head_page(from->head);
5969 		offset = from->data - (unsigned char *)page_address(page);
5970 
5971 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5972 				   page, offset, skb_headlen(from));
5973 		*fragstolen = true;
5974 	} else {
5975 		if (to_shinfo->nr_frags +
5976 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5977 			return false;
5978 
5979 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5980 	}
5981 
5982 	WARN_ON_ONCE(delta < len);
5983 
5984 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5985 	       from_shinfo->frags,
5986 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5987 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5988 
5989 	if (!skb_cloned(from))
5990 		from_shinfo->nr_frags = 0;
5991 
5992 	/* if the skb is not cloned this does nothing
5993 	 * since we set nr_frags to 0.
5994 	 */
5995 	if (skb_pp_frag_ref(from)) {
5996 		for (i = 0; i < from_shinfo->nr_frags; i++)
5997 			__skb_frag_ref(&from_shinfo->frags[i]);
5998 	}
5999 
6000 	to->truesize += delta;
6001 	to->len += len;
6002 	to->data_len += len;
6003 
6004 	*delta_truesize = delta;
6005 	return true;
6006 }
6007 EXPORT_SYMBOL(skb_try_coalesce);
6008 
6009 /**
6010  * skb_scrub_packet - scrub an skb
6011  *
6012  * @skb: buffer to clean
6013  * @xnet: packet is crossing netns
6014  *
6015  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6016  * into/from a tunnel. Some information have to be cleared during these
6017  * operations.
6018  * skb_scrub_packet can also be used to clean a skb before injecting it in
6019  * another namespace (@xnet == true). We have to clear all information in the
6020  * skb that could impact namespace isolation.
6021  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6022 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6023 {
6024 	skb->pkt_type = PACKET_HOST;
6025 	skb->skb_iif = 0;
6026 	skb->ignore_df = 0;
6027 	skb_dst_drop(skb);
6028 	skb_ext_reset(skb);
6029 	nf_reset_ct(skb);
6030 	nf_reset_trace(skb);
6031 
6032 #ifdef CONFIG_NET_SWITCHDEV
6033 	skb->offload_fwd_mark = 0;
6034 	skb->offload_l3_fwd_mark = 0;
6035 #endif
6036 	ipvs_reset(skb);
6037 
6038 	if (!xnet)
6039 		return;
6040 
6041 	skb->mark = 0;
6042 	skb_clear_tstamp(skb);
6043 }
6044 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6045 
skb_reorder_vlan_header(struct sk_buff * skb)6046 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6047 {
6048 	int mac_len, meta_len;
6049 	void *meta;
6050 
6051 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6052 		kfree_skb(skb);
6053 		return NULL;
6054 	}
6055 
6056 	mac_len = skb->data - skb_mac_header(skb);
6057 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6058 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6059 			mac_len - VLAN_HLEN - ETH_TLEN);
6060 	}
6061 
6062 	meta_len = skb_metadata_len(skb);
6063 	if (meta_len) {
6064 		meta = skb_metadata_end(skb) - meta_len;
6065 		memmove(meta + VLAN_HLEN, meta, meta_len);
6066 	}
6067 
6068 	skb->mac_header += VLAN_HLEN;
6069 	return skb;
6070 }
6071 
skb_vlan_untag(struct sk_buff * skb)6072 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6073 {
6074 	struct vlan_hdr *vhdr;
6075 	u16 vlan_tci;
6076 
6077 	if (unlikely(skb_vlan_tag_present(skb))) {
6078 		/* vlan_tci is already set-up so leave this for another time */
6079 		return skb;
6080 	}
6081 
6082 	skb = skb_share_check(skb, GFP_ATOMIC);
6083 	if (unlikely(!skb))
6084 		goto err_free;
6085 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6086 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6087 		goto err_free;
6088 
6089 	vhdr = (struct vlan_hdr *)skb->data;
6090 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6091 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6092 
6093 	skb_pull_rcsum(skb, VLAN_HLEN);
6094 	vlan_set_encap_proto(skb, vhdr);
6095 
6096 	skb = skb_reorder_vlan_header(skb);
6097 	if (unlikely(!skb))
6098 		goto err_free;
6099 
6100 	skb_reset_network_header(skb);
6101 	if (!skb_transport_header_was_set(skb))
6102 		skb_reset_transport_header(skb);
6103 	skb_reset_mac_len(skb);
6104 
6105 	return skb;
6106 
6107 err_free:
6108 	kfree_skb(skb);
6109 	return NULL;
6110 }
6111 EXPORT_SYMBOL(skb_vlan_untag);
6112 
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6113 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6114 {
6115 	if (!pskb_may_pull(skb, write_len))
6116 		return -ENOMEM;
6117 
6118 	if (!skb_frags_readable(skb))
6119 		return -EFAULT;
6120 
6121 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6122 		return 0;
6123 
6124 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6125 }
6126 EXPORT_SYMBOL(skb_ensure_writable);
6127 
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6128 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6129 {
6130 	int needed_headroom = dev->needed_headroom;
6131 	int needed_tailroom = dev->needed_tailroom;
6132 
6133 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6134 	 * that the tail tag does not fail at its role of being at the end of
6135 	 * the packet, once the conduit interface pads the frame. Account for
6136 	 * that pad length here, and pad later.
6137 	 */
6138 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6139 		needed_tailroom += ETH_ZLEN - skb->len;
6140 	/* skb_headroom() returns unsigned int... */
6141 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6142 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6143 
6144 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6145 		/* No reallocation needed, yay! */
6146 		return 0;
6147 
6148 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6149 				GFP_ATOMIC);
6150 }
6151 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6152 
6153 /* remove VLAN header from packet and update csum accordingly.
6154  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6155  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6156 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6157 {
6158 	int offset = skb->data - skb_mac_header(skb);
6159 	int err;
6160 
6161 	if (WARN_ONCE(offset,
6162 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6163 		      offset)) {
6164 		return -EINVAL;
6165 	}
6166 
6167 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6168 	if (unlikely(err))
6169 		return err;
6170 
6171 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6172 
6173 	vlan_remove_tag(skb, vlan_tci);
6174 
6175 	skb->mac_header += VLAN_HLEN;
6176 
6177 	if (skb_network_offset(skb) < ETH_HLEN)
6178 		skb_set_network_header(skb, ETH_HLEN);
6179 
6180 	skb_reset_mac_len(skb);
6181 
6182 	return err;
6183 }
6184 EXPORT_SYMBOL(__skb_vlan_pop);
6185 
6186 /* Pop a vlan tag either from hwaccel or from payload.
6187  * Expects skb->data at mac header.
6188  */
skb_vlan_pop(struct sk_buff * skb)6189 int skb_vlan_pop(struct sk_buff *skb)
6190 {
6191 	u16 vlan_tci;
6192 	__be16 vlan_proto;
6193 	int err;
6194 
6195 	if (likely(skb_vlan_tag_present(skb))) {
6196 		__vlan_hwaccel_clear_tag(skb);
6197 	} else {
6198 		if (unlikely(!eth_type_vlan(skb->protocol)))
6199 			return 0;
6200 
6201 		err = __skb_vlan_pop(skb, &vlan_tci);
6202 		if (err)
6203 			return err;
6204 	}
6205 	/* move next vlan tag to hw accel tag */
6206 	if (likely(!eth_type_vlan(skb->protocol)))
6207 		return 0;
6208 
6209 	vlan_proto = skb->protocol;
6210 	err = __skb_vlan_pop(skb, &vlan_tci);
6211 	if (unlikely(err))
6212 		return err;
6213 
6214 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6215 	return 0;
6216 }
6217 EXPORT_SYMBOL(skb_vlan_pop);
6218 
6219 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6220  * Expects skb->data at mac header.
6221  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6222 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6223 {
6224 	if (skb_vlan_tag_present(skb)) {
6225 		int offset = skb->data - skb_mac_header(skb);
6226 		int err;
6227 
6228 		if (WARN_ONCE(offset,
6229 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6230 			      offset)) {
6231 			return -EINVAL;
6232 		}
6233 
6234 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6235 					skb_vlan_tag_get(skb));
6236 		if (err)
6237 			return err;
6238 
6239 		skb->protocol = skb->vlan_proto;
6240 		skb->network_header -= VLAN_HLEN;
6241 
6242 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6243 	}
6244 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6245 	return 0;
6246 }
6247 EXPORT_SYMBOL(skb_vlan_push);
6248 
6249 /**
6250  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6251  *
6252  * @skb: Socket buffer to modify
6253  *
6254  * Drop the Ethernet header of @skb.
6255  *
6256  * Expects that skb->data points to the mac header and that no VLAN tags are
6257  * present.
6258  *
6259  * Returns 0 on success, -errno otherwise.
6260  */
skb_eth_pop(struct sk_buff * skb)6261 int skb_eth_pop(struct sk_buff *skb)
6262 {
6263 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6264 	    skb_network_offset(skb) < ETH_HLEN)
6265 		return -EPROTO;
6266 
6267 	skb_pull_rcsum(skb, ETH_HLEN);
6268 	skb_reset_mac_header(skb);
6269 	skb_reset_mac_len(skb);
6270 
6271 	return 0;
6272 }
6273 EXPORT_SYMBOL(skb_eth_pop);
6274 
6275 /**
6276  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6277  *
6278  * @skb: Socket buffer to modify
6279  * @dst: Destination MAC address of the new header
6280  * @src: Source MAC address of the new header
6281  *
6282  * Prepend @skb with a new Ethernet header.
6283  *
6284  * Expects that skb->data points to the mac header, which must be empty.
6285  *
6286  * Returns 0 on success, -errno otherwise.
6287  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6288 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6289 		 const unsigned char *src)
6290 {
6291 	struct ethhdr *eth;
6292 	int err;
6293 
6294 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6295 		return -EPROTO;
6296 
6297 	err = skb_cow_head(skb, sizeof(*eth));
6298 	if (err < 0)
6299 		return err;
6300 
6301 	skb_push(skb, sizeof(*eth));
6302 	skb_reset_mac_header(skb);
6303 	skb_reset_mac_len(skb);
6304 
6305 	eth = eth_hdr(skb);
6306 	ether_addr_copy(eth->h_dest, dst);
6307 	ether_addr_copy(eth->h_source, src);
6308 	eth->h_proto = skb->protocol;
6309 
6310 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6311 
6312 	return 0;
6313 }
6314 EXPORT_SYMBOL(skb_eth_push);
6315 
6316 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6317 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6318 			     __be16 ethertype)
6319 {
6320 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6321 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6322 
6323 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6324 	}
6325 
6326 	hdr->h_proto = ethertype;
6327 }
6328 
6329 /**
6330  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6331  *                   the packet
6332  *
6333  * @skb: buffer
6334  * @mpls_lse: MPLS label stack entry to push
6335  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6336  * @mac_len: length of the MAC header
6337  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6338  *            ethernet
6339  *
6340  * Expects skb->data at mac header.
6341  *
6342  * Returns 0 on success, -errno otherwise.
6343  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6344 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6345 		  int mac_len, bool ethernet)
6346 {
6347 	struct mpls_shim_hdr *lse;
6348 	int err;
6349 
6350 	if (unlikely(!eth_p_mpls(mpls_proto)))
6351 		return -EINVAL;
6352 
6353 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6354 	if (skb->encapsulation)
6355 		return -EINVAL;
6356 
6357 	err = skb_cow_head(skb, MPLS_HLEN);
6358 	if (unlikely(err))
6359 		return err;
6360 
6361 	if (!skb->inner_protocol) {
6362 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6363 		skb_set_inner_protocol(skb, skb->protocol);
6364 	}
6365 
6366 	skb_push(skb, MPLS_HLEN);
6367 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6368 		mac_len);
6369 	skb_reset_mac_header(skb);
6370 	skb_set_network_header(skb, mac_len);
6371 	skb_reset_mac_len(skb);
6372 
6373 	lse = mpls_hdr(skb);
6374 	lse->label_stack_entry = mpls_lse;
6375 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6376 
6377 	if (ethernet && mac_len >= ETH_HLEN)
6378 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6379 	skb->protocol = mpls_proto;
6380 
6381 	return 0;
6382 }
6383 EXPORT_SYMBOL_GPL(skb_mpls_push);
6384 
6385 /**
6386  * skb_mpls_pop() - pop the outermost MPLS header
6387  *
6388  * @skb: buffer
6389  * @next_proto: ethertype of header after popped MPLS header
6390  * @mac_len: length of the MAC header
6391  * @ethernet: flag to indicate if the packet is ethernet
6392  *
6393  * Expects skb->data at mac header.
6394  *
6395  * Returns 0 on success, -errno otherwise.
6396  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6397 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6398 		 bool ethernet)
6399 {
6400 	int err;
6401 
6402 	if (unlikely(!eth_p_mpls(skb->protocol)))
6403 		return 0;
6404 
6405 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6406 	if (unlikely(err))
6407 		return err;
6408 
6409 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6410 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6411 		mac_len);
6412 
6413 	__skb_pull(skb, MPLS_HLEN);
6414 	skb_reset_mac_header(skb);
6415 	skb_set_network_header(skb, mac_len);
6416 
6417 	if (ethernet && mac_len >= ETH_HLEN) {
6418 		struct ethhdr *hdr;
6419 
6420 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6421 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6422 		skb_mod_eth_type(skb, hdr, next_proto);
6423 	}
6424 	skb->protocol = next_proto;
6425 
6426 	return 0;
6427 }
6428 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6429 
6430 /**
6431  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6432  *
6433  * @skb: buffer
6434  * @mpls_lse: new MPLS label stack entry to update to
6435  *
6436  * Expects skb->data at mac header.
6437  *
6438  * Returns 0 on success, -errno otherwise.
6439  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6440 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6441 {
6442 	int err;
6443 
6444 	if (unlikely(!eth_p_mpls(skb->protocol)))
6445 		return -EINVAL;
6446 
6447 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6448 	if (unlikely(err))
6449 		return err;
6450 
6451 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6452 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6453 
6454 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6455 	}
6456 
6457 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6458 
6459 	return 0;
6460 }
6461 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6462 
6463 /**
6464  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6465  *
6466  * @skb: buffer
6467  *
6468  * Expects skb->data at mac header.
6469  *
6470  * Returns 0 on success, -errno otherwise.
6471  */
skb_mpls_dec_ttl(struct sk_buff * skb)6472 int skb_mpls_dec_ttl(struct sk_buff *skb)
6473 {
6474 	u32 lse;
6475 	u8 ttl;
6476 
6477 	if (unlikely(!eth_p_mpls(skb->protocol)))
6478 		return -EINVAL;
6479 
6480 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6481 		return -ENOMEM;
6482 
6483 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6484 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6485 	if (!--ttl)
6486 		return -EINVAL;
6487 
6488 	lse &= ~MPLS_LS_TTL_MASK;
6489 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6490 
6491 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6492 }
6493 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6494 
6495 /**
6496  * alloc_skb_with_frags - allocate skb with page frags
6497  *
6498  * @header_len: size of linear part
6499  * @data_len: needed length in frags
6500  * @order: max page order desired.
6501  * @errcode: pointer to error code if any
6502  * @gfp_mask: allocation mask
6503  *
6504  * This can be used to allocate a paged skb, given a maximal order for frags.
6505  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6506 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6507 				     unsigned long data_len,
6508 				     int order,
6509 				     int *errcode,
6510 				     gfp_t gfp_mask)
6511 {
6512 	unsigned long chunk;
6513 	struct sk_buff *skb;
6514 	struct page *page;
6515 	int nr_frags = 0;
6516 
6517 	*errcode = -EMSGSIZE;
6518 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6519 		return NULL;
6520 
6521 	*errcode = -ENOBUFS;
6522 	skb = alloc_skb(header_len, gfp_mask);
6523 	if (!skb)
6524 		return NULL;
6525 
6526 	while (data_len) {
6527 		if (nr_frags == MAX_SKB_FRAGS - 1)
6528 			goto failure;
6529 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6530 			order--;
6531 
6532 		if (order) {
6533 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6534 					   __GFP_COMP |
6535 					   __GFP_NOWARN,
6536 					   order);
6537 			if (!page) {
6538 				order--;
6539 				continue;
6540 			}
6541 		} else {
6542 			page = alloc_page(gfp_mask);
6543 			if (!page)
6544 				goto failure;
6545 		}
6546 		chunk = min_t(unsigned long, data_len,
6547 			      PAGE_SIZE << order);
6548 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6549 		nr_frags++;
6550 		skb->truesize += (PAGE_SIZE << order);
6551 		data_len -= chunk;
6552 	}
6553 	return skb;
6554 
6555 failure:
6556 	kfree_skb(skb);
6557 	return NULL;
6558 }
6559 EXPORT_SYMBOL(alloc_skb_with_frags);
6560 
6561 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6562 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6563 				    const int headlen, gfp_t gfp_mask)
6564 {
6565 	int i;
6566 	unsigned int size = skb_end_offset(skb);
6567 	int new_hlen = headlen - off;
6568 	u8 *data;
6569 
6570 	if (skb_pfmemalloc(skb))
6571 		gfp_mask |= __GFP_MEMALLOC;
6572 
6573 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6574 	if (!data)
6575 		return -ENOMEM;
6576 	size = SKB_WITH_OVERHEAD(size);
6577 
6578 	/* Copy real data, and all frags */
6579 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6580 	skb->len -= off;
6581 
6582 	memcpy((struct skb_shared_info *)(data + size),
6583 	       skb_shinfo(skb),
6584 	       offsetof(struct skb_shared_info,
6585 			frags[skb_shinfo(skb)->nr_frags]));
6586 	if (skb_cloned(skb)) {
6587 		/* drop the old head gracefully */
6588 		if (skb_orphan_frags(skb, gfp_mask)) {
6589 			skb_kfree_head(data, size);
6590 			return -ENOMEM;
6591 		}
6592 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6593 			skb_frag_ref(skb, i);
6594 		if (skb_has_frag_list(skb))
6595 			skb_clone_fraglist(skb);
6596 		skb_release_data(skb, SKB_CONSUMED);
6597 	} else {
6598 		/* we can reuse existing recount- all we did was
6599 		 * relocate values
6600 		 */
6601 		skb_free_head(skb);
6602 	}
6603 
6604 	skb->head = data;
6605 	skb->data = data;
6606 	skb->head_frag = 0;
6607 	skb_set_end_offset(skb, size);
6608 	skb_set_tail_pointer(skb, skb_headlen(skb));
6609 	skb_headers_offset_update(skb, 0);
6610 	skb->cloned = 0;
6611 	skb->hdr_len = 0;
6612 	skb->nohdr = 0;
6613 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6614 
6615 	return 0;
6616 }
6617 
6618 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6619 
6620 /* carve out the first eat bytes from skb's frag_list. May recurse into
6621  * pskb_carve()
6622  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6623 static int pskb_carve_frag_list(struct sk_buff *skb,
6624 				struct skb_shared_info *shinfo, int eat,
6625 				gfp_t gfp_mask)
6626 {
6627 	struct sk_buff *list = shinfo->frag_list;
6628 	struct sk_buff *clone = NULL;
6629 	struct sk_buff *insp = NULL;
6630 
6631 	do {
6632 		if (!list) {
6633 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6634 			return -EFAULT;
6635 		}
6636 		if (list->len <= eat) {
6637 			/* Eaten as whole. */
6638 			eat -= list->len;
6639 			list = list->next;
6640 			insp = list;
6641 		} else {
6642 			/* Eaten partially. */
6643 			if (skb_shared(list)) {
6644 				clone = skb_clone(list, gfp_mask);
6645 				if (!clone)
6646 					return -ENOMEM;
6647 				insp = list->next;
6648 				list = clone;
6649 			} else {
6650 				/* This may be pulled without problems. */
6651 				insp = list;
6652 			}
6653 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6654 				kfree_skb(clone);
6655 				return -ENOMEM;
6656 			}
6657 			break;
6658 		}
6659 	} while (eat);
6660 
6661 	/* Free pulled out fragments. */
6662 	while ((list = shinfo->frag_list) != insp) {
6663 		shinfo->frag_list = list->next;
6664 		consume_skb(list);
6665 	}
6666 	/* And insert new clone at head. */
6667 	if (clone) {
6668 		clone->next = list;
6669 		shinfo->frag_list = clone;
6670 	}
6671 	return 0;
6672 }
6673 
6674 /* carve off first len bytes from skb. Split line (off) is in the
6675  * non-linear part of skb
6676  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6677 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6678 				       int pos, gfp_t gfp_mask)
6679 {
6680 	int i, k = 0;
6681 	unsigned int size = skb_end_offset(skb);
6682 	u8 *data;
6683 	const int nfrags = skb_shinfo(skb)->nr_frags;
6684 	struct skb_shared_info *shinfo;
6685 
6686 	if (skb_pfmemalloc(skb))
6687 		gfp_mask |= __GFP_MEMALLOC;
6688 
6689 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6690 	if (!data)
6691 		return -ENOMEM;
6692 	size = SKB_WITH_OVERHEAD(size);
6693 
6694 	memcpy((struct skb_shared_info *)(data + size),
6695 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6696 	if (skb_orphan_frags(skb, gfp_mask)) {
6697 		skb_kfree_head(data, size);
6698 		return -ENOMEM;
6699 	}
6700 	shinfo = (struct skb_shared_info *)(data + size);
6701 	for (i = 0; i < nfrags; i++) {
6702 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6703 
6704 		if (pos + fsize > off) {
6705 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6706 
6707 			if (pos < off) {
6708 				/* Split frag.
6709 				 * We have two variants in this case:
6710 				 * 1. Move all the frag to the second
6711 				 *    part, if it is possible. F.e.
6712 				 *    this approach is mandatory for TUX,
6713 				 *    where splitting is expensive.
6714 				 * 2. Split is accurately. We make this.
6715 				 */
6716 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6717 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6718 			}
6719 			skb_frag_ref(skb, i);
6720 			k++;
6721 		}
6722 		pos += fsize;
6723 	}
6724 	shinfo->nr_frags = k;
6725 	if (skb_has_frag_list(skb))
6726 		skb_clone_fraglist(skb);
6727 
6728 	/* split line is in frag list */
6729 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6730 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6731 		if (skb_has_frag_list(skb))
6732 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6733 		skb_kfree_head(data, size);
6734 		return -ENOMEM;
6735 	}
6736 	skb_release_data(skb, SKB_CONSUMED);
6737 
6738 	skb->head = data;
6739 	skb->head_frag = 0;
6740 	skb->data = data;
6741 	skb_set_end_offset(skb, size);
6742 	skb_reset_tail_pointer(skb);
6743 	skb_headers_offset_update(skb, 0);
6744 	skb->cloned   = 0;
6745 	skb->hdr_len  = 0;
6746 	skb->nohdr    = 0;
6747 	skb->len -= off;
6748 	skb->data_len = skb->len;
6749 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6750 	return 0;
6751 }
6752 
6753 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6754 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6755 {
6756 	int headlen = skb_headlen(skb);
6757 
6758 	if (len < headlen)
6759 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6760 	else
6761 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6762 }
6763 
6764 /* Extract to_copy bytes starting at off from skb, and return this in
6765  * a new skb
6766  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6767 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6768 			     int to_copy, gfp_t gfp)
6769 {
6770 	struct sk_buff  *clone = skb_clone(skb, gfp);
6771 
6772 	if (!clone)
6773 		return NULL;
6774 
6775 	if (pskb_carve(clone, off, gfp) < 0 ||
6776 	    pskb_trim(clone, to_copy)) {
6777 		kfree_skb(clone);
6778 		return NULL;
6779 	}
6780 	return clone;
6781 }
6782 EXPORT_SYMBOL(pskb_extract);
6783 
6784 /**
6785  * skb_condense - try to get rid of fragments/frag_list if possible
6786  * @skb: buffer
6787  *
6788  * Can be used to save memory before skb is added to a busy queue.
6789  * If packet has bytes in frags and enough tail room in skb->head,
6790  * pull all of them, so that we can free the frags right now and adjust
6791  * truesize.
6792  * Notes:
6793  *	We do not reallocate skb->head thus can not fail.
6794  *	Caller must re-evaluate skb->truesize if needed.
6795  */
skb_condense(struct sk_buff * skb)6796 void skb_condense(struct sk_buff *skb)
6797 {
6798 	if (skb->data_len) {
6799 		if (skb->data_len > skb->end - skb->tail ||
6800 		    skb_cloned(skb) || !skb_frags_readable(skb))
6801 			return;
6802 
6803 		/* Nice, we can free page frag(s) right now */
6804 		__pskb_pull_tail(skb, skb->data_len);
6805 	}
6806 	/* At this point, skb->truesize might be over estimated,
6807 	 * because skb had a fragment, and fragments do not tell
6808 	 * their truesize.
6809 	 * When we pulled its content into skb->head, fragment
6810 	 * was freed, but __pskb_pull_tail() could not possibly
6811 	 * adjust skb->truesize, not knowing the frag truesize.
6812 	 */
6813 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6814 }
6815 EXPORT_SYMBOL(skb_condense);
6816 
6817 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6818 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6819 {
6820 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6821 }
6822 
6823 /**
6824  * __skb_ext_alloc - allocate a new skb extensions storage
6825  *
6826  * @flags: See kmalloc().
6827  *
6828  * Returns the newly allocated pointer. The pointer can later attached to a
6829  * skb via __skb_ext_set().
6830  * Note: caller must handle the skb_ext as an opaque data.
6831  */
__skb_ext_alloc(gfp_t flags)6832 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6833 {
6834 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6835 
6836 	if (new) {
6837 		memset(new->offset, 0, sizeof(new->offset));
6838 		refcount_set(&new->refcnt, 1);
6839 	}
6840 
6841 	return new;
6842 }
6843 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6844 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6845 					 unsigned int old_active)
6846 {
6847 	struct skb_ext *new;
6848 
6849 	if (refcount_read(&old->refcnt) == 1)
6850 		return old;
6851 
6852 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6853 	if (!new)
6854 		return NULL;
6855 
6856 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6857 	refcount_set(&new->refcnt, 1);
6858 
6859 #ifdef CONFIG_XFRM
6860 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6861 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6862 		unsigned int i;
6863 
6864 		for (i = 0; i < sp->len; i++)
6865 			xfrm_state_hold(sp->xvec[i]);
6866 	}
6867 #endif
6868 #ifdef CONFIG_MCTP_FLOWS
6869 	if (old_active & (1 << SKB_EXT_MCTP)) {
6870 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6871 
6872 		if (flow->key)
6873 			refcount_inc(&flow->key->refs);
6874 	}
6875 #endif
6876 	__skb_ext_put(old);
6877 	return new;
6878 }
6879 
6880 /**
6881  * __skb_ext_set - attach the specified extension storage to this skb
6882  * @skb: buffer
6883  * @id: extension id
6884  * @ext: extension storage previously allocated via __skb_ext_alloc()
6885  *
6886  * Existing extensions, if any, are cleared.
6887  *
6888  * Returns the pointer to the extension.
6889  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6890 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6891 		    struct skb_ext *ext)
6892 {
6893 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6894 
6895 	skb_ext_put(skb);
6896 	newlen = newoff + skb_ext_type_len[id];
6897 	ext->chunks = newlen;
6898 	ext->offset[id] = newoff;
6899 	skb->extensions = ext;
6900 	skb->active_extensions = 1 << id;
6901 	return skb_ext_get_ptr(ext, id);
6902 }
6903 
6904 /**
6905  * skb_ext_add - allocate space for given extension, COW if needed
6906  * @skb: buffer
6907  * @id: extension to allocate space for
6908  *
6909  * Allocates enough space for the given extension.
6910  * If the extension is already present, a pointer to that extension
6911  * is returned.
6912  *
6913  * If the skb was cloned, COW applies and the returned memory can be
6914  * modified without changing the extension space of clones buffers.
6915  *
6916  * Returns pointer to the extension or NULL on allocation failure.
6917  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6918 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6919 {
6920 	struct skb_ext *new, *old = NULL;
6921 	unsigned int newlen, newoff;
6922 
6923 	if (skb->active_extensions) {
6924 		old = skb->extensions;
6925 
6926 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6927 		if (!new)
6928 			return NULL;
6929 
6930 		if (__skb_ext_exist(new, id))
6931 			goto set_active;
6932 
6933 		newoff = new->chunks;
6934 	} else {
6935 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6936 
6937 		new = __skb_ext_alloc(GFP_ATOMIC);
6938 		if (!new)
6939 			return NULL;
6940 	}
6941 
6942 	newlen = newoff + skb_ext_type_len[id];
6943 	new->chunks = newlen;
6944 	new->offset[id] = newoff;
6945 set_active:
6946 	skb->slow_gro = 1;
6947 	skb->extensions = new;
6948 	skb->active_extensions |= 1 << id;
6949 	return skb_ext_get_ptr(new, id);
6950 }
6951 EXPORT_SYMBOL(skb_ext_add);
6952 
6953 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6954 static void skb_ext_put_sp(struct sec_path *sp)
6955 {
6956 	unsigned int i;
6957 
6958 	for (i = 0; i < sp->len; i++)
6959 		xfrm_state_put(sp->xvec[i]);
6960 }
6961 #endif
6962 
6963 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)6964 static void skb_ext_put_mctp(struct mctp_flow *flow)
6965 {
6966 	if (flow->key)
6967 		mctp_key_unref(flow->key);
6968 }
6969 #endif
6970 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6971 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6972 {
6973 	struct skb_ext *ext = skb->extensions;
6974 
6975 	skb->active_extensions &= ~(1 << id);
6976 	if (skb->active_extensions == 0) {
6977 		skb->extensions = NULL;
6978 		__skb_ext_put(ext);
6979 #ifdef CONFIG_XFRM
6980 	} else if (id == SKB_EXT_SEC_PATH &&
6981 		   refcount_read(&ext->refcnt) == 1) {
6982 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6983 
6984 		skb_ext_put_sp(sp);
6985 		sp->len = 0;
6986 #endif
6987 	}
6988 }
6989 EXPORT_SYMBOL(__skb_ext_del);
6990 
__skb_ext_put(struct skb_ext * ext)6991 void __skb_ext_put(struct skb_ext *ext)
6992 {
6993 	/* If this is last clone, nothing can increment
6994 	 * it after check passes.  Avoids one atomic op.
6995 	 */
6996 	if (refcount_read(&ext->refcnt) == 1)
6997 		goto free_now;
6998 
6999 	if (!refcount_dec_and_test(&ext->refcnt))
7000 		return;
7001 free_now:
7002 #ifdef CONFIG_XFRM
7003 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7004 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7005 #endif
7006 #ifdef CONFIG_MCTP_FLOWS
7007 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7008 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7009 #endif
7010 
7011 	kmem_cache_free(skbuff_ext_cache, ext);
7012 }
7013 EXPORT_SYMBOL(__skb_ext_put);
7014 #endif /* CONFIG_SKB_EXTENSIONS */
7015 
kfree_skb_napi_cache(struct sk_buff * skb)7016 static void kfree_skb_napi_cache(struct sk_buff *skb)
7017 {
7018 	/* if SKB is a clone, don't handle this case */
7019 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7020 		__kfree_skb(skb);
7021 		return;
7022 	}
7023 
7024 	local_bh_disable();
7025 	__napi_kfree_skb(skb, SKB_CONSUMED);
7026 	local_bh_enable();
7027 }
7028 
7029 /**
7030  * skb_attempt_defer_free - queue skb for remote freeing
7031  * @skb: buffer
7032  *
7033  * Put @skb in a per-cpu list, using the cpu which
7034  * allocated the skb/pages to reduce false sharing
7035  * and memory zone spinlock contention.
7036  */
skb_attempt_defer_free(struct sk_buff * skb)7037 void skb_attempt_defer_free(struct sk_buff *skb)
7038 {
7039 	int cpu = skb->alloc_cpu;
7040 	struct softnet_data *sd;
7041 	unsigned int defer_max;
7042 	bool kick;
7043 
7044 	if (cpu == raw_smp_processor_id() ||
7045 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7046 	    !cpu_online(cpu)) {
7047 nodefer:	kfree_skb_napi_cache(skb);
7048 		return;
7049 	}
7050 
7051 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7052 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7053 
7054 	sd = &per_cpu(softnet_data, cpu);
7055 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7056 	if (READ_ONCE(sd->defer_count) >= defer_max)
7057 		goto nodefer;
7058 
7059 	spin_lock_bh(&sd->defer_lock);
7060 	/* Send an IPI every time queue reaches half capacity. */
7061 	kick = sd->defer_count == (defer_max >> 1);
7062 	/* Paired with the READ_ONCE() few lines above */
7063 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7064 
7065 	skb->next = sd->defer_list;
7066 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7067 	WRITE_ONCE(sd->defer_list, skb);
7068 	spin_unlock_bh(&sd->defer_lock);
7069 
7070 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7071 	 * if we are unlucky enough (this seems very unlikely).
7072 	 */
7073 	if (unlikely(kick))
7074 		kick_defer_list_purge(sd, cpu);
7075 }
7076 
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7077 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7078 				 size_t offset, size_t len)
7079 {
7080 	const char *kaddr;
7081 	__wsum csum;
7082 
7083 	kaddr = kmap_local_page(page);
7084 	csum = csum_partial(kaddr + offset, len, 0);
7085 	kunmap_local(kaddr);
7086 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7087 }
7088 
7089 /**
7090  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7091  * @skb: The buffer to add pages to
7092  * @iter: Iterator representing the pages to be added
7093  * @maxsize: Maximum amount of pages to be added
7094  * @gfp: Allocation flags
7095  *
7096  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7097  * extracts pages from an iterator and adds them to the socket buffer if
7098  * possible, copying them to fragments if not possible (such as if they're slab
7099  * pages).
7100  *
7101  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7102  * insufficient space in the buffer to transfer anything.
7103  */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize,gfp_t gfp)7104 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7105 			     ssize_t maxsize, gfp_t gfp)
7106 {
7107 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7108 	struct page *pages[8], **ppages = pages;
7109 	ssize_t spliced = 0, ret = 0;
7110 	unsigned int i;
7111 
7112 	while (iter->count > 0) {
7113 		ssize_t space, nr, len;
7114 		size_t off;
7115 
7116 		ret = -EMSGSIZE;
7117 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7118 		if (space < 0)
7119 			break;
7120 
7121 		/* We might be able to coalesce without increasing nr_frags */
7122 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7123 
7124 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7125 		if (len <= 0) {
7126 			ret = len ?: -EIO;
7127 			break;
7128 		}
7129 
7130 		i = 0;
7131 		do {
7132 			struct page *page = pages[i++];
7133 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7134 
7135 			ret = -EIO;
7136 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7137 				goto out;
7138 
7139 			ret = skb_append_pagefrags(skb, page, off, part,
7140 						   frag_limit);
7141 			if (ret < 0) {
7142 				iov_iter_revert(iter, len);
7143 				goto out;
7144 			}
7145 
7146 			if (skb->ip_summed == CHECKSUM_NONE)
7147 				skb_splice_csum_page(skb, page, off, part);
7148 
7149 			off = 0;
7150 			spliced += part;
7151 			maxsize -= part;
7152 			len -= part;
7153 		} while (len > 0);
7154 
7155 		if (maxsize <= 0)
7156 			break;
7157 	}
7158 
7159 out:
7160 	skb_len_add(skb, spliced);
7161 	return spliced ?: ret;
7162 }
7163 EXPORT_SYMBOL(skb_splice_from_iter);
7164 
7165 static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7166 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7167 			     size_t len, void *to, void *priv2)
7168 {
7169 	__wsum *csum = priv2;
7170 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7171 
7172 	*csum = csum_block_add(*csum, next, progress);
7173 	return 0;
7174 }
7175 
7176 static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7177 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7178 				size_t len, void *to, void *priv2)
7179 {
7180 	__wsum next, *csum = priv2;
7181 
7182 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7183 	*csum = csum_block_add(*csum, next, progress);
7184 	return next ? 0 : len;
7185 }
7186 
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7187 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7188 				  __wsum *csum, struct iov_iter *i)
7189 {
7190 	size_t copied;
7191 
7192 	if (WARN_ON_ONCE(!i->data_source))
7193 		return false;
7194 	copied = iterate_and_advance2(i, bytes, addr, csum,
7195 				      copy_from_user_iter_csum,
7196 				      memcpy_from_iter_csum);
7197 	if (likely(copied == bytes))
7198 		return true;
7199 	iov_iter_revert(i, copied);
7200 	return false;
7201 }
7202 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7203