1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright (C) 2018 James.Bottomley@HansenPartnership.com
5 *
6 * Cryptographic helper routines for handling TPM2 sessions for
7 * authorization HMAC and request response encryption.
8 *
9 * The idea is to ensure that every TPM command is HMAC protected by a
10 * session, meaning in-flight tampering would be detected and in
11 * addition all sensitive inputs and responses should be encrypted.
12 *
13 * The basic way this works is to use a TPM feature called salted
14 * sessions where a random secret used in session construction is
15 * encrypted to the public part of a known TPM key. The problem is we
16 * have no known keys, so initially a primary Elliptic Curve key is
17 * derived from the NULL seed (we use EC because most TPMs generate
18 * these keys much faster than RSA ones). The curve used is NIST_P256
19 * because that's now mandated to be present in 'TCG TPM v2.0
20 * Provisioning Guidance'
21 *
22 * Threat problems: the initial TPM2_CreatePrimary is not (and cannot
23 * be) session protected, so a clever Man in the Middle could return a
24 * public key they control to this command and from there intercept
25 * and decode all subsequent session based transactions. The kernel
26 * cannot mitigate this threat but, after boot, userspace can get
27 * proof this has not happened by asking the TPM to certify the NULL
28 * key. This certification would chain back to the TPM Endorsement
29 * Certificate and prove the NULL seed primary had not been tampered
30 * with and thus all sessions must have been cryptographically secure.
31 * To assist with this, the initial NULL seed public key name is made
32 * available in a sysfs file.
33 *
34 * Use of these functions:
35 *
36 * The design is all the crypto, hash and hmac gunk is confined in this
37 * file and never needs to be seen even by the kernel internal user. To
38 * the user there's an init function tpm2_sessions_init() that needs to
39 * be called once per TPM which generates the NULL seed primary key.
40 *
41 * These are the usage functions:
42 *
43 * tpm2_end_auth_session() kills the session and frees the resources.
44 * Under normal operation this function is done by
45 * tpm_buf_check_hmac_response(), so this is only to be used on
46 * error legs where the latter is not executed.
47 * tpm_buf_append_name() to add a handle to the buffer. This must be
48 * used in place of the usual tpm_buf_append_u32() for adding
49 * handles because handles have to be processed specially when
50 * calculating the HMAC. In particular, for NV, volatile and
51 * permanent objects you now need to provide the name.
52 * tpm_buf_append_hmac_session() which appends the hmac session to the
53 * buf in the same way tpm_buf_append_auth does().
54 * tpm_buf_fill_hmac_session() This calculates the correct hash and
55 * places it in the buffer. It must be called after the complete
56 * command buffer is finalized so it can fill in the correct HMAC
57 * based on the parameters.
58 * tpm_buf_check_hmac_response() which checks the session response in
59 * the buffer and calculates what it should be. If there's a
60 * mismatch it will log a warning and return an error. If
61 * tpm_buf_append_hmac_session() did not specify
62 * TPM_SA_CONTINUE_SESSION then the session will be closed (if it
63 * hasn't been consumed) and the auth structure freed.
64 */
65
66 #include "tpm.h"
67 #include <linux/random.h>
68 #include <linux/scatterlist.h>
69 #include <linux/unaligned.h>
70 #include <crypto/kpp.h>
71 #include <crypto/ecdh.h>
72 #include <crypto/sha2.h>
73 #include <crypto/utils.h>
74
75 /* maximum number of names the TPM must remember for authorization */
76 #define AUTH_MAX_NAMES 3
77
78 #define AES_KEY_BYTES AES_KEYSIZE_128
79 #define AES_KEY_BITS (AES_KEY_BYTES*8)
80
81 /*
82 * This is the structure that carries all the auth information (like
83 * session handle, nonces, session key and auth) from use to use it is
84 * designed to be opaque to anything outside.
85 */
86 struct tpm2_auth {
87 u32 handle;
88 /*
89 * This has two meanings: before tpm_buf_fill_hmac_session()
90 * it marks the offset in the buffer of the start of the
91 * sessions (i.e. after all the handles). Once the buffer has
92 * been filled it markes the session number of our auth
93 * session so we can find it again in the response buffer.
94 *
95 * The two cases are distinguished because the first offset
96 * must always be greater than TPM_HEADER_SIZE and the second
97 * must be less than or equal to 5.
98 */
99 u32 session;
100 /*
101 * the size here is variable and set by the size of our_nonce
102 * which must be between 16 and the name hash length. we set
103 * the maximum sha256 size for the greatest protection
104 */
105 u8 our_nonce[SHA256_DIGEST_SIZE];
106 u8 tpm_nonce[SHA256_DIGEST_SIZE];
107 /*
108 * the salt is only used across the session command/response
109 * after that it can be used as a scratch area
110 */
111 union {
112 u8 salt[EC_PT_SZ];
113 /* scratch for key + IV */
114 u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
115 };
116 /*
117 * the session key and passphrase are the same size as the
118 * name digest (sha256 again). The session key is constant
119 * for the use of the session and the passphrase can change
120 * with every invocation.
121 *
122 * Note: these fields must be adjacent and in this order
123 * because several HMAC/KDF schemes use the combination of the
124 * session_key and passphrase.
125 */
126 u8 session_key[SHA256_DIGEST_SIZE];
127 u8 passphrase[SHA256_DIGEST_SIZE];
128 int passphrase_len;
129 struct crypto_aes_ctx aes_ctx;
130 /* saved session attributes: */
131 u8 attrs;
132 __be32 ordinal;
133
134 /*
135 * memory for three authorization handles. We know them by
136 * handle, but they are part of the session by name, which
137 * we must compute and remember
138 */
139 u32 name_h[AUTH_MAX_NAMES];
140 u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
141 };
142
143 #ifdef CONFIG_TCG_TPM2_HMAC
144 /*
145 * Name Size based on TPM algorithm (assumes no hash bigger than 255)
146 */
name_size(const u8 * name)147 static u8 name_size(const u8 *name)
148 {
149 static u8 size_map[] = {
150 [TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
151 [TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
152 [TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
153 [TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
154 };
155 u16 alg = get_unaligned_be16(name);
156 return size_map[alg] + 2;
157 }
158
tpm2_parse_read_public(char * name,struct tpm_buf * buf)159 static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
160 {
161 struct tpm_header *head = (struct tpm_header *)buf->data;
162 off_t offset = TPM_HEADER_SIZE;
163 u32 tot_len = be32_to_cpu(head->length);
164 u32 val;
165
166 /* we're starting after the header so adjust the length */
167 tot_len -= TPM_HEADER_SIZE;
168
169 /* skip public */
170 val = tpm_buf_read_u16(buf, &offset);
171 if (val > tot_len)
172 return -EINVAL;
173 offset += val;
174 /* name */
175 val = tpm_buf_read_u16(buf, &offset);
176 if (val != name_size(&buf->data[offset]))
177 return -EINVAL;
178 memcpy(name, &buf->data[offset], val);
179 /* forget the rest */
180 return 0;
181 }
182
tpm2_read_public(struct tpm_chip * chip,u32 handle,char * name)183 static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
184 {
185 struct tpm_buf buf;
186 int rc;
187
188 rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
189 if (rc)
190 return rc;
191
192 tpm_buf_append_u32(&buf, handle);
193 rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
194 if (rc == TPM2_RC_SUCCESS)
195 rc = tpm2_parse_read_public(name, &buf);
196
197 tpm_buf_destroy(&buf);
198
199 return rc;
200 }
201 #endif /* CONFIG_TCG_TPM2_HMAC */
202
203 /**
204 * tpm_buf_append_name() - add a handle area to the buffer
205 * @chip: the TPM chip structure
206 * @buf: The buffer to be appended
207 * @handle: The handle to be appended
208 * @name: The name of the handle (may be NULL)
209 *
210 * In order to compute session HMACs, we need to know the names of the
211 * objects pointed to by the handles. For most objects, this is simply
212 * the actual 4 byte handle or an empty buf (in these cases @name
213 * should be NULL) but for volatile objects, permanent objects and NV
214 * areas, the name is defined as the hash (according to the name
215 * algorithm which should be set to sha256) of the public area to
216 * which the two byte algorithm id has been appended. For these
217 * objects, the @name pointer should point to this. If a name is
218 * required but @name is NULL, then TPM2_ReadPublic() will be called
219 * on the handle to obtain the name.
220 *
221 * As with most tpm_buf operations, success is assumed because failure
222 * will be caused by an incorrect programming model and indicated by a
223 * kernel message.
224 */
tpm_buf_append_name(struct tpm_chip * chip,struct tpm_buf * buf,u32 handle,u8 * name)225 void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
226 u32 handle, u8 *name)
227 {
228 #ifdef CONFIG_TCG_TPM2_HMAC
229 enum tpm2_mso_type mso = tpm2_handle_mso(handle);
230 struct tpm2_auth *auth;
231 int slot;
232 #endif
233
234 if (!tpm2_chip_auth(chip)) {
235 tpm_buf_append_handle(chip, buf, handle);
236 return;
237 }
238
239 #ifdef CONFIG_TCG_TPM2_HMAC
240 slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4;
241 if (slot >= AUTH_MAX_NAMES) {
242 dev_err(&chip->dev, "TPM: too many handles\n");
243 return;
244 }
245 auth = chip->auth;
246 WARN(auth->session != tpm_buf_length(buf),
247 "name added in wrong place\n");
248 tpm_buf_append_u32(buf, handle);
249 auth->session += 4;
250
251 if (mso == TPM2_MSO_PERSISTENT ||
252 mso == TPM2_MSO_VOLATILE ||
253 mso == TPM2_MSO_NVRAM) {
254 if (!name)
255 tpm2_read_public(chip, handle, auth->name[slot]);
256 } else {
257 if (name)
258 dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
259 }
260
261 auth->name_h[slot] = handle;
262 if (name)
263 memcpy(auth->name[slot], name, name_size(name));
264 #endif
265 }
266 EXPORT_SYMBOL_GPL(tpm_buf_append_name);
267
tpm_buf_append_auth(struct tpm_chip * chip,struct tpm_buf * buf,u8 attributes,u8 * passphrase,int passphrase_len)268 void tpm_buf_append_auth(struct tpm_chip *chip, struct tpm_buf *buf,
269 u8 attributes, u8 *passphrase, int passphrase_len)
270 {
271 /* offset tells us where the sessions area begins */
272 int offset = buf->handles * 4 + TPM_HEADER_SIZE;
273 u32 len = 9 + passphrase_len;
274
275 if (tpm_buf_length(buf) != offset) {
276 /* not the first session so update the existing length */
277 len += get_unaligned_be32(&buf->data[offset]);
278 put_unaligned_be32(len, &buf->data[offset]);
279 } else {
280 tpm_buf_append_u32(buf, len);
281 }
282 /* auth handle */
283 tpm_buf_append_u32(buf, TPM2_RS_PW);
284 /* nonce */
285 tpm_buf_append_u16(buf, 0);
286 /* attributes */
287 tpm_buf_append_u8(buf, 0);
288 /* passphrase */
289 tpm_buf_append_u16(buf, passphrase_len);
290 tpm_buf_append(buf, passphrase, passphrase_len);
291 }
292
293 /**
294 * tpm_buf_append_hmac_session() - Append a TPM session element
295 * @chip: the TPM chip structure
296 * @buf: The buffer to be appended
297 * @attributes: The session attributes
298 * @passphrase: The session authority (NULL if none)
299 * @passphrase_len: The length of the session authority (0 if none)
300 *
301 * This fills in a session structure in the TPM command buffer, except
302 * for the HMAC which cannot be computed until the command buffer is
303 * complete. The type of session is controlled by the @attributes,
304 * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
305 * session won't terminate after tpm_buf_check_hmac_response(),
306 * TPM2_SA_DECRYPT which means this buffers first parameter should be
307 * encrypted with a session key and TPM2_SA_ENCRYPT, which means the
308 * response buffer's first parameter needs to be decrypted (confusing,
309 * but the defines are written from the point of view of the TPM).
310 *
311 * Any session appended by this command must be finalized by calling
312 * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
313 * and the TPM will reject the command.
314 *
315 * As with most tpm_buf operations, success is assumed because failure
316 * will be caused by an incorrect programming model and indicated by a
317 * kernel message.
318 */
tpm_buf_append_hmac_session(struct tpm_chip * chip,struct tpm_buf * buf,u8 attributes,u8 * passphrase,int passphrase_len)319 void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
320 u8 attributes, u8 *passphrase,
321 int passphrase_len)
322 {
323 #ifdef CONFIG_TCG_TPM2_HMAC
324 u8 nonce[SHA256_DIGEST_SIZE];
325 struct tpm2_auth *auth;
326 u32 len;
327 #endif
328
329 if (!tpm2_chip_auth(chip)) {
330 tpm_buf_append_auth(chip, buf, attributes, passphrase,
331 passphrase_len);
332 return;
333 }
334
335 #ifdef CONFIG_TCG_TPM2_HMAC
336 /* The first write to /dev/tpm{rm0} will flush the session. */
337 attributes |= TPM2_SA_CONTINUE_SESSION;
338
339 /*
340 * The Architecture Guide requires us to strip trailing zeros
341 * before computing the HMAC
342 */
343 while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0')
344 passphrase_len--;
345
346 auth = chip->auth;
347 auth->attrs = attributes;
348 auth->passphrase_len = passphrase_len;
349 if (passphrase_len)
350 memcpy(auth->passphrase, passphrase, passphrase_len);
351
352 if (auth->session != tpm_buf_length(buf)) {
353 /* we're not the first session */
354 len = get_unaligned_be32(&buf->data[auth->session]);
355 if (4 + len + auth->session != tpm_buf_length(buf)) {
356 WARN(1, "session length mismatch, cannot append");
357 return;
358 }
359
360 /* add our new session */
361 len += 9 + 2 * SHA256_DIGEST_SIZE;
362 put_unaligned_be32(len, &buf->data[auth->session]);
363 } else {
364 tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
365 }
366
367 /* random number for our nonce */
368 get_random_bytes(nonce, sizeof(nonce));
369 memcpy(auth->our_nonce, nonce, sizeof(nonce));
370 tpm_buf_append_u32(buf, auth->handle);
371 /* our new nonce */
372 tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
373 tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
374 tpm_buf_append_u8(buf, auth->attrs);
375 /* and put a placeholder for the hmac */
376 tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
377 tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
378 #endif
379 }
380 EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session);
381
382 #ifdef CONFIG_TCG_TPM2_HMAC
383
384 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
385 u32 *handle, u8 *name);
386
387 /*
388 * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
389 * otherwise standard tpm2_KDFa. Note output is in bytes not bits.
390 */
tpm2_KDFa(u8 * key,u32 key_len,const char * label,u8 * u,u8 * v,u32 bytes,u8 * out)391 static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
392 u8 *v, u32 bytes, u8 *out)
393 {
394 u32 counter = 1;
395 const __be32 bits = cpu_to_be32(bytes * 8);
396
397 while (bytes > 0) {
398 struct hmac_sha256_ctx hctx;
399 __be32 c = cpu_to_be32(counter);
400
401 hmac_sha256_init_usingrawkey(&hctx, key, key_len);
402 hmac_sha256_update(&hctx, (u8 *)&c, sizeof(c));
403 hmac_sha256_update(&hctx, label, strlen(label) + 1);
404 hmac_sha256_update(&hctx, u, SHA256_DIGEST_SIZE);
405 hmac_sha256_update(&hctx, v, SHA256_DIGEST_SIZE);
406 hmac_sha256_update(&hctx, (u8 *)&bits, sizeof(bits));
407 hmac_sha256_final(&hctx, out);
408
409 bytes -= SHA256_DIGEST_SIZE;
410 counter++;
411 out += SHA256_DIGEST_SIZE;
412 }
413 }
414
415 /*
416 * Somewhat of a bastardization of the real KDFe. We're assuming
417 * we're working with known point sizes for the input parameters and
418 * the hash algorithm is fixed at sha256. Because we know that the
419 * point size is 32 bytes like the hash size, there's no need to loop
420 * in this KDF.
421 */
tpm2_KDFe(u8 z[EC_PT_SZ],const char * str,u8 * pt_u,u8 * pt_v,u8 * out)422 static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
423 u8 *out)
424 {
425 struct sha256_ctx sctx;
426 /*
427 * this should be an iterative counter, but because we know
428 * we're only taking 32 bytes for the point using a sha256
429 * hash which is also 32 bytes, there's only one loop
430 */
431 __be32 c = cpu_to_be32(1);
432
433 sha256_init(&sctx);
434 /* counter (BE) */
435 sha256_update(&sctx, (u8 *)&c, sizeof(c));
436 /* secret value */
437 sha256_update(&sctx, z, EC_PT_SZ);
438 /* string including trailing zero */
439 sha256_update(&sctx, str, strlen(str)+1);
440 sha256_update(&sctx, pt_u, EC_PT_SZ);
441 sha256_update(&sctx, pt_v, EC_PT_SZ);
442 sha256_final(&sctx, out);
443 }
444
tpm_buf_append_salt(struct tpm_buf * buf,struct tpm_chip * chip,struct tpm2_auth * auth)445 static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip,
446 struct tpm2_auth *auth)
447 {
448 struct crypto_kpp *kpp;
449 struct kpp_request *req;
450 struct scatterlist s[2], d[1];
451 struct ecdh p = {0};
452 u8 encoded_key[EC_PT_SZ], *x, *y;
453 unsigned int buf_len;
454
455 /* secret is two sized points */
456 tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
457 /*
458 * we cheat here and append uninitialized data to form
459 * the points. All we care about is getting the two
460 * co-ordinate pointers, which will be used to overwrite
461 * the uninitialized data
462 */
463 tpm_buf_append_u16(buf, EC_PT_SZ);
464 x = &buf->data[tpm_buf_length(buf)];
465 tpm_buf_append(buf, encoded_key, EC_PT_SZ);
466 tpm_buf_append_u16(buf, EC_PT_SZ);
467 y = &buf->data[tpm_buf_length(buf)];
468 tpm_buf_append(buf, encoded_key, EC_PT_SZ);
469 sg_init_table(s, 2);
470 sg_set_buf(&s[0], x, EC_PT_SZ);
471 sg_set_buf(&s[1], y, EC_PT_SZ);
472
473 kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
474 if (IS_ERR(kpp)) {
475 dev_err(&chip->dev, "crypto ecdh allocation failed\n");
476 return;
477 }
478
479 buf_len = crypto_ecdh_key_len(&p);
480 if (sizeof(encoded_key) < buf_len) {
481 dev_err(&chip->dev, "salt buffer too small needs %d\n",
482 buf_len);
483 goto out;
484 }
485 crypto_ecdh_encode_key(encoded_key, buf_len, &p);
486 /* this generates a random private key */
487 crypto_kpp_set_secret(kpp, encoded_key, buf_len);
488
489 /* salt is now the public point of this private key */
490 req = kpp_request_alloc(kpp, GFP_KERNEL);
491 if (!req)
492 goto out;
493 kpp_request_set_input(req, NULL, 0);
494 kpp_request_set_output(req, s, EC_PT_SZ*2);
495 crypto_kpp_generate_public_key(req);
496 /*
497 * we're not done: now we have to compute the shared secret
498 * which is our private key multiplied by the tpm_key public
499 * point, we actually only take the x point and discard the y
500 * point and feed it through KDFe to get the final secret salt
501 */
502 sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
503 sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
504 kpp_request_set_input(req, s, EC_PT_SZ*2);
505 sg_init_one(d, auth->salt, EC_PT_SZ);
506 kpp_request_set_output(req, d, EC_PT_SZ);
507 crypto_kpp_compute_shared_secret(req);
508 kpp_request_free(req);
509
510 /*
511 * pass the shared secret through KDFe for salt. Note salt
512 * area is used both for input shared secret and output salt.
513 * This works because KDFe fully consumes the secret before it
514 * writes the salt
515 */
516 tpm2_KDFe(auth->salt, "SECRET", x, chip->null_ec_key_x, auth->salt);
517
518 out:
519 crypto_free_kpp(kpp);
520 }
521
522 /**
523 * tpm_buf_fill_hmac_session() - finalize the session HMAC
524 * @chip: the TPM chip structure
525 * @buf: The buffer to be appended
526 *
527 * This command must not be called until all of the parameters have
528 * been appended to @buf otherwise the computed HMAC will be
529 * incorrect.
530 *
531 * This function computes and fills in the session HMAC using the
532 * session key and, if TPM2_SA_DECRYPT was specified, computes the
533 * encryption key and encrypts the first parameter of the command
534 * buffer with it.
535 *
536 * As with most tpm_buf operations, success is assumed because failure
537 * will be caused by an incorrect programming model and indicated by a
538 * kernel message.
539 */
tpm_buf_fill_hmac_session(struct tpm_chip * chip,struct tpm_buf * buf)540 void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
541 {
542 u32 cc, handles, val;
543 struct tpm2_auth *auth = chip->auth;
544 int i;
545 struct tpm_header *head = (struct tpm_header *)buf->data;
546 off_t offset_s = TPM_HEADER_SIZE, offset_p;
547 u8 *hmac = NULL;
548 u32 attrs;
549 u8 cphash[SHA256_DIGEST_SIZE];
550 struct sha256_ctx sctx;
551 struct hmac_sha256_ctx hctx;
552
553 if (!auth)
554 return;
555
556 /* save the command code in BE format */
557 auth->ordinal = head->ordinal;
558
559 cc = be32_to_cpu(head->ordinal);
560
561 i = tpm2_find_cc(chip, cc);
562 if (i < 0) {
563 dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
564 return;
565 }
566 attrs = chip->cc_attrs_tbl[i];
567
568 handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
569
570 /*
571 * just check the names, it's easy to make mistakes. This
572 * would happen if someone added a handle via
573 * tpm_buf_append_u32() instead of tpm_buf_append_name()
574 */
575 for (i = 0; i < handles; i++) {
576 u32 handle = tpm_buf_read_u32(buf, &offset_s);
577
578 if (auth->name_h[i] != handle) {
579 dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
580 i);
581 return;
582 }
583 }
584 /* point offset_s to the start of the sessions */
585 val = tpm_buf_read_u32(buf, &offset_s);
586 /* point offset_p to the start of the parameters */
587 offset_p = offset_s + val;
588 for (i = 1; offset_s < offset_p; i++) {
589 u32 handle = tpm_buf_read_u32(buf, &offset_s);
590 u16 len;
591 u8 a;
592
593 /* nonce (already in auth) */
594 len = tpm_buf_read_u16(buf, &offset_s);
595 offset_s += len;
596
597 a = tpm_buf_read_u8(buf, &offset_s);
598
599 len = tpm_buf_read_u16(buf, &offset_s);
600 if (handle == auth->handle && auth->attrs == a) {
601 hmac = &buf->data[offset_s];
602 /*
603 * save our session number so we know which
604 * session in the response belongs to us
605 */
606 auth->session = i;
607 }
608
609 offset_s += len;
610 }
611 if (offset_s != offset_p) {
612 dev_err(&chip->dev, "TPM session length is incorrect\n");
613 return;
614 }
615 if (!hmac) {
616 dev_err(&chip->dev, "TPM could not find HMAC session\n");
617 return;
618 }
619
620 /* encrypt before HMAC */
621 if (auth->attrs & TPM2_SA_DECRYPT) {
622 u16 len;
623
624 /* need key and IV */
625 tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
626 + auth->passphrase_len, "CFB", auth->our_nonce,
627 auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
628 auth->scratch);
629
630 len = tpm_buf_read_u16(buf, &offset_p);
631 aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
632 aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
633 &buf->data[offset_p], len,
634 auth->scratch + AES_KEY_BYTES);
635 /* reset p to beginning of parameters for HMAC */
636 offset_p -= 2;
637 }
638
639 sha256_init(&sctx);
640 /* ordinal is already BE */
641 sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
642 /* add the handle names */
643 for (i = 0; i < handles; i++) {
644 enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
645
646 if (mso == TPM2_MSO_PERSISTENT ||
647 mso == TPM2_MSO_VOLATILE ||
648 mso == TPM2_MSO_NVRAM) {
649 sha256_update(&sctx, auth->name[i],
650 name_size(auth->name[i]));
651 } else {
652 __be32 h = cpu_to_be32(auth->name_h[i]);
653
654 sha256_update(&sctx, (u8 *)&h, 4);
655 }
656 }
657 if (offset_s != tpm_buf_length(buf))
658 sha256_update(&sctx, &buf->data[offset_s],
659 tpm_buf_length(buf) - offset_s);
660 sha256_final(&sctx, cphash);
661
662 /* now calculate the hmac */
663 hmac_sha256_init_usingrawkey(&hctx, auth->session_key,
664 sizeof(auth->session_key) +
665 auth->passphrase_len);
666 hmac_sha256_update(&hctx, cphash, sizeof(cphash));
667 hmac_sha256_update(&hctx, auth->our_nonce, sizeof(auth->our_nonce));
668 hmac_sha256_update(&hctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
669 hmac_sha256_update(&hctx, &auth->attrs, 1);
670 hmac_sha256_final(&hctx, hmac);
671 }
672 EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
673
674 /**
675 * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
676 * @chip: the TPM chip structure
677 * @buf: the original command buffer (which now contains the response)
678 * @rc: the return code from tpm_transmit_cmd
679 *
680 * If @rc is non zero, @buf may not contain an actual return, so @rc
681 * is passed through as the return and the session cleaned up and
682 * de-allocated if required (this is required if
683 * TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
684 *
685 * If @rc is zero, the response HMAC is computed against the returned
686 * @buf and matched to the TPM one in the session area. If there is a
687 * mismatch, an error is logged and -EINVAL returned.
688 *
689 * The reason for this is that the command issue and HMAC check
690 * sequence should look like:
691 *
692 * rc = tpm_transmit_cmd(...);
693 * rc = tpm_buf_check_hmac_response(&buf, auth, rc);
694 * if (rc)
695 * ...
696 *
697 * Which is easily layered into the current contrl flow.
698 *
699 * Returns: 0 on success or an error.
700 */
tpm_buf_check_hmac_response(struct tpm_chip * chip,struct tpm_buf * buf,int rc)701 int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
702 int rc)
703 {
704 struct tpm_header *head = (struct tpm_header *)buf->data;
705 struct tpm2_auth *auth = chip->auth;
706 off_t offset_s, offset_p;
707 u8 rphash[SHA256_DIGEST_SIZE];
708 u32 attrs, cc;
709 struct sha256_ctx sctx;
710 struct hmac_sha256_ctx hctx;
711 u16 tag = be16_to_cpu(head->tag);
712 int parm_len, len, i, handles;
713
714 if (!auth)
715 return rc;
716
717 cc = be32_to_cpu(auth->ordinal);
718
719 if (auth->session >= TPM_HEADER_SIZE) {
720 WARN(1, "tpm session not filled correctly\n");
721 goto out;
722 }
723
724 if (rc != 0)
725 /* pass non success rc through and close the session */
726 goto out;
727
728 rc = -EINVAL;
729 if (tag != TPM2_ST_SESSIONS) {
730 dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
731 goto out;
732 }
733
734 i = tpm2_find_cc(chip, cc);
735 if (i < 0)
736 goto out;
737 attrs = chip->cc_attrs_tbl[i];
738 handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
739
740 /* point to area beyond handles */
741 offset_s = TPM_HEADER_SIZE + handles * 4;
742 parm_len = tpm_buf_read_u32(buf, &offset_s);
743 offset_p = offset_s;
744 offset_s += parm_len;
745 /* skip over any sessions before ours */
746 for (i = 0; i < auth->session - 1; i++) {
747 len = tpm_buf_read_u16(buf, &offset_s);
748 offset_s += len + 1;
749 len = tpm_buf_read_u16(buf, &offset_s);
750 offset_s += len;
751 }
752 /* TPM nonce */
753 len = tpm_buf_read_u16(buf, &offset_s);
754 if (offset_s + len > tpm_buf_length(buf))
755 goto out;
756 if (len != SHA256_DIGEST_SIZE)
757 goto out;
758 memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
759 offset_s += len;
760 attrs = tpm_buf_read_u8(buf, &offset_s);
761 len = tpm_buf_read_u16(buf, &offset_s);
762 if (offset_s + len != tpm_buf_length(buf))
763 goto out;
764 if (len != SHA256_DIGEST_SIZE)
765 goto out;
766 /*
767 * offset_s points to the HMAC. now calculate comparison, beginning
768 * with rphash
769 */
770 sha256_init(&sctx);
771 /* yes, I know this is now zero, but it's what the standard says */
772 sha256_update(&sctx, (u8 *)&head->return_code,
773 sizeof(head->return_code));
774 /* ordinal is already BE */
775 sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
776 sha256_update(&sctx, &buf->data[offset_p], parm_len);
777 sha256_final(&sctx, rphash);
778
779 /* now calculate the hmac */
780 hmac_sha256_init_usingrawkey(&hctx, auth->session_key,
781 sizeof(auth->session_key) +
782 auth->passphrase_len);
783 hmac_sha256_update(&hctx, rphash, sizeof(rphash));
784 hmac_sha256_update(&hctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
785 hmac_sha256_update(&hctx, auth->our_nonce, sizeof(auth->our_nonce));
786 hmac_sha256_update(&hctx, &auth->attrs, 1);
787 /* we're done with the rphash, so put our idea of the hmac there */
788 hmac_sha256_final(&hctx, rphash);
789 if (crypto_memneq(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE)) {
790 dev_err(&chip->dev, "TPM: HMAC check failed\n");
791 goto out;
792 }
793 rc = 0;
794
795 /* now do response decryption */
796 if (auth->attrs & TPM2_SA_ENCRYPT) {
797 /* need key and IV */
798 tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
799 + auth->passphrase_len, "CFB", auth->tpm_nonce,
800 auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
801 auth->scratch);
802
803 len = tpm_buf_read_u16(buf, &offset_p);
804 aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
805 aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
806 &buf->data[offset_p], len,
807 auth->scratch + AES_KEY_BYTES);
808 }
809
810 out:
811 if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
812 if (rc)
813 /* manually close the session if it wasn't consumed */
814 tpm2_flush_context(chip, auth->handle);
815
816 kfree_sensitive(auth);
817 chip->auth = NULL;
818 } else {
819 /* reset for next use */
820 auth->session = TPM_HEADER_SIZE;
821 }
822
823 return rc;
824 }
825 EXPORT_SYMBOL(tpm_buf_check_hmac_response);
826
827 /**
828 * tpm2_end_auth_session() - kill the allocated auth session
829 * @chip: the TPM chip structure
830 *
831 * ends the session started by tpm2_start_auth_session and frees all
832 * the resources. Under normal conditions,
833 * tpm_buf_check_hmac_response() will correctly end the session if
834 * required, so this function is only for use in error legs that will
835 * bypass the normal invocation of tpm_buf_check_hmac_response().
836 */
tpm2_end_auth_session(struct tpm_chip * chip)837 void tpm2_end_auth_session(struct tpm_chip *chip)
838 {
839 struct tpm2_auth *auth = chip->auth;
840
841 if (!auth)
842 return;
843
844 tpm2_flush_context(chip, auth->handle);
845 kfree_sensitive(auth);
846 chip->auth = NULL;
847 }
848 EXPORT_SYMBOL(tpm2_end_auth_session);
849
tpm2_parse_start_auth_session(struct tpm2_auth * auth,struct tpm_buf * buf)850 static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
851 struct tpm_buf *buf)
852 {
853 struct tpm_header *head = (struct tpm_header *)buf->data;
854 u32 tot_len = be32_to_cpu(head->length);
855 off_t offset = TPM_HEADER_SIZE;
856 u32 val;
857
858 /* we're starting after the header so adjust the length */
859 tot_len -= TPM_HEADER_SIZE;
860
861 /* should have handle plus nonce */
862 if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
863 return -EINVAL;
864
865 auth->handle = tpm_buf_read_u32(buf, &offset);
866 val = tpm_buf_read_u16(buf, &offset);
867 if (val != sizeof(auth->tpm_nonce))
868 return -EINVAL;
869 memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
870 /* now compute the session key from the nonces */
871 tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
872 auth->our_nonce, sizeof(auth->session_key),
873 auth->session_key);
874
875 return 0;
876 }
877
tpm2_load_null(struct tpm_chip * chip,u32 * null_key)878 static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
879 {
880 unsigned int offset = 0; /* dummy offset for null seed context */
881 u8 name[SHA256_DIGEST_SIZE + 2];
882 u32 tmp_null_key;
883 int rc;
884
885 rc = tpm2_load_context(chip, chip->null_key_context, &offset,
886 &tmp_null_key);
887 if (rc != -EINVAL) {
888 if (!rc)
889 *null_key = tmp_null_key;
890 goto err;
891 }
892
893 /* Try to re-create null key, given the integrity failure: */
894 rc = tpm2_create_primary(chip, TPM2_RH_NULL, &tmp_null_key, name);
895 if (rc)
896 goto err;
897
898 /* Return null key if the name has not been changed: */
899 if (!memcmp(name, chip->null_key_name, sizeof(name))) {
900 *null_key = tmp_null_key;
901 return 0;
902 }
903
904 /* Deduce from the name change TPM interference: */
905 dev_err(&chip->dev, "null key integrity check failed\n");
906 tpm2_flush_context(chip, tmp_null_key);
907
908 err:
909 if (rc) {
910 chip->flags |= TPM_CHIP_FLAG_DISABLE;
911 rc = -ENODEV;
912 }
913 return rc;
914 }
915
916 /**
917 * tpm2_start_auth_session() - Create an a HMAC authentication session
918 * @chip: A TPM chip
919 *
920 * Loads the ephemeral key (null seed), and starts an HMAC authenticated
921 * session. The null seed is flushed before the return.
922 *
923 * Returns zero on success, or a POSIX error code.
924 */
tpm2_start_auth_session(struct tpm_chip * chip)925 int tpm2_start_auth_session(struct tpm_chip *chip)
926 {
927 struct tpm2_auth *auth;
928 struct tpm_buf buf;
929 u32 null_key;
930 int rc;
931
932 if (chip->auth) {
933 dev_dbg_once(&chip->dev, "auth session is active\n");
934 return 0;
935 }
936
937 auth = kzalloc(sizeof(*auth), GFP_KERNEL);
938 if (!auth)
939 return -ENOMEM;
940
941 rc = tpm2_load_null(chip, &null_key);
942 if (rc)
943 goto out;
944
945 auth->session = TPM_HEADER_SIZE;
946
947 rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
948 if (rc)
949 goto out;
950
951 /* salt key handle */
952 tpm_buf_append_u32(&buf, null_key);
953 /* bind key handle */
954 tpm_buf_append_u32(&buf, TPM2_RH_NULL);
955 /* nonce caller */
956 get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
957 tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
958 tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
959
960 /* append encrypted salt and squirrel away unencrypted in auth */
961 tpm_buf_append_salt(&buf, chip, auth);
962 /* session type (HMAC, audit or policy) */
963 tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
964
965 /* symmetric encryption parameters */
966 /* symmetric algorithm */
967 tpm_buf_append_u16(&buf, TPM_ALG_AES);
968 /* bits for symmetric algorithm */
969 tpm_buf_append_u16(&buf, AES_KEY_BITS);
970 /* symmetric algorithm mode (must be CFB) */
971 tpm_buf_append_u16(&buf, TPM_ALG_CFB);
972 /* hash algorithm for session */
973 tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
974
975 rc = tpm_ret_to_err(tpm_transmit_cmd(chip, &buf, 0, "StartAuthSession"));
976 tpm2_flush_context(chip, null_key);
977
978 if (rc == TPM2_RC_SUCCESS)
979 rc = tpm2_parse_start_auth_session(auth, &buf);
980
981 tpm_buf_destroy(&buf);
982
983 if (rc == TPM2_RC_SUCCESS) {
984 chip->auth = auth;
985 return 0;
986 }
987
988 out:
989 kfree_sensitive(auth);
990 return rc;
991 }
992 EXPORT_SYMBOL(tpm2_start_auth_session);
993
994 /*
995 * A mask containing the object attributes for the kernel held null primary key
996 * used in HMAC encryption. For more information on specific attributes look up
997 * to "8.3 TPMA_OBJECT (Object Attributes)".
998 */
999 #define TPM2_OA_NULL_KEY ( \
1000 TPM2_OA_NO_DA | \
1001 TPM2_OA_FIXED_TPM | \
1002 TPM2_OA_FIXED_PARENT | \
1003 TPM2_OA_SENSITIVE_DATA_ORIGIN | \
1004 TPM2_OA_USER_WITH_AUTH | \
1005 TPM2_OA_DECRYPT | \
1006 TPM2_OA_RESTRICTED)
1007
1008 /**
1009 * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
1010 *
1011 * @chip: The TPM the primary was created under
1012 * @buf: The response buffer from the chip
1013 * @handle: pointer to be filled in with the return handle of the primary
1014 * @hierarchy: The hierarchy the primary was created for
1015 * @name: pointer to be filled in with the primary key name
1016 *
1017 * Return:
1018 * * 0 - OK
1019 * * -errno - A system error
1020 * * TPM_RC - A TPM error
1021 */
tpm2_parse_create_primary(struct tpm_chip * chip,struct tpm_buf * buf,u32 * handle,u32 hierarchy,u8 * name)1022 static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
1023 u32 *handle, u32 hierarchy, u8 *name)
1024 {
1025 struct tpm_header *head = (struct tpm_header *)buf->data;
1026 off_t offset_r = TPM_HEADER_SIZE, offset_t;
1027 u16 len = TPM_HEADER_SIZE;
1028 u32 total_len = be32_to_cpu(head->length);
1029 u32 val, param_len, keyhandle;
1030
1031 keyhandle = tpm_buf_read_u32(buf, &offset_r);
1032 if (handle)
1033 *handle = keyhandle;
1034 else
1035 tpm2_flush_context(chip, keyhandle);
1036
1037 param_len = tpm_buf_read_u32(buf, &offset_r);
1038 /*
1039 * param_len doesn't include the header, but all the other
1040 * lengths and offsets do, so add it to parm len to make
1041 * the comparisons easier
1042 */
1043 param_len += TPM_HEADER_SIZE;
1044
1045 if (param_len + 8 > total_len)
1046 return -EINVAL;
1047 len = tpm_buf_read_u16(buf, &offset_r);
1048 offset_t = offset_r;
1049 if (name) {
1050 /*
1051 * now we have the public area, compute the name of
1052 * the object
1053 */
1054 put_unaligned_be16(TPM_ALG_SHA256, name);
1055 sha256(&buf->data[offset_r], len, name + 2);
1056 }
1057
1058 /* validate the public key */
1059 val = tpm_buf_read_u16(buf, &offset_t);
1060
1061 /* key type (must be what we asked for) */
1062 if (val != TPM_ALG_ECC)
1063 return -EINVAL;
1064 val = tpm_buf_read_u16(buf, &offset_t);
1065
1066 /* name algorithm */
1067 if (val != TPM_ALG_SHA256)
1068 return -EINVAL;
1069 val = tpm_buf_read_u32(buf, &offset_t);
1070
1071 /* object properties */
1072 if (val != TPM2_OA_NULL_KEY)
1073 return -EINVAL;
1074
1075 /* auth policy (empty) */
1076 val = tpm_buf_read_u16(buf, &offset_t);
1077 if (val != 0)
1078 return -EINVAL;
1079
1080 /* symmetric key parameters */
1081 val = tpm_buf_read_u16(buf, &offset_t);
1082 if (val != TPM_ALG_AES)
1083 return -EINVAL;
1084
1085 /* symmetric key length */
1086 val = tpm_buf_read_u16(buf, &offset_t);
1087 if (val != AES_KEY_BITS)
1088 return -EINVAL;
1089
1090 /* symmetric encryption scheme */
1091 val = tpm_buf_read_u16(buf, &offset_t);
1092 if (val != TPM_ALG_CFB)
1093 return -EINVAL;
1094
1095 /* signing scheme */
1096 val = tpm_buf_read_u16(buf, &offset_t);
1097 if (val != TPM_ALG_NULL)
1098 return -EINVAL;
1099
1100 /* ECC Curve */
1101 val = tpm_buf_read_u16(buf, &offset_t);
1102 if (val != TPM2_ECC_NIST_P256)
1103 return -EINVAL;
1104
1105 /* KDF Scheme */
1106 val = tpm_buf_read_u16(buf, &offset_t);
1107 if (val != TPM_ALG_NULL)
1108 return -EINVAL;
1109
1110 /* extract public key (x and y points) */
1111 val = tpm_buf_read_u16(buf, &offset_t);
1112 if (val != EC_PT_SZ)
1113 return -EINVAL;
1114 memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
1115 offset_t += val;
1116 val = tpm_buf_read_u16(buf, &offset_t);
1117 if (val != EC_PT_SZ)
1118 return -EINVAL;
1119 memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
1120 offset_t += val;
1121
1122 /* original length of the whole TPM2B */
1123 offset_r += len;
1124
1125 /* should have exactly consumed the TPM2B public structure */
1126 if (offset_t != offset_r)
1127 return -EINVAL;
1128 if (offset_r > param_len)
1129 return -EINVAL;
1130
1131 /* creation data (skip) */
1132 len = tpm_buf_read_u16(buf, &offset_r);
1133 offset_r += len;
1134 if (offset_r > param_len)
1135 return -EINVAL;
1136
1137 /* creation digest (must be sha256) */
1138 len = tpm_buf_read_u16(buf, &offset_r);
1139 offset_r += len;
1140 if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
1141 return -EINVAL;
1142
1143 /* TPMT_TK_CREATION follows */
1144 /* tag, must be TPM_ST_CREATION (0x8021) */
1145 val = tpm_buf_read_u16(buf, &offset_r);
1146 if (val != TPM2_ST_CREATION || offset_r > param_len)
1147 return -EINVAL;
1148
1149 /* hierarchy */
1150 val = tpm_buf_read_u32(buf, &offset_r);
1151 if (val != hierarchy || offset_r > param_len)
1152 return -EINVAL;
1153
1154 /* the ticket digest HMAC (might not be sha256) */
1155 len = tpm_buf_read_u16(buf, &offset_r);
1156 offset_r += len;
1157 if (offset_r > param_len)
1158 return -EINVAL;
1159
1160 /*
1161 * finally we have the name, which is a sha256 digest plus a 2
1162 * byte algorithm type
1163 */
1164 len = tpm_buf_read_u16(buf, &offset_r);
1165 if (offset_r + len != param_len + 8)
1166 return -EINVAL;
1167 if (len != SHA256_DIGEST_SIZE + 2)
1168 return -EINVAL;
1169
1170 if (memcmp(chip->null_key_name, &buf->data[offset_r],
1171 SHA256_DIGEST_SIZE + 2) != 0) {
1172 dev_err(&chip->dev, "NULL Seed name comparison failed\n");
1173 return -EINVAL;
1174 }
1175
1176 return 0;
1177 }
1178
1179 /**
1180 * tpm2_create_primary() - create a primary key using a fixed P-256 template
1181 *
1182 * @chip: the TPM chip to create under
1183 * @hierarchy: The hierarchy handle to create under
1184 * @handle: The returned volatile handle on success
1185 * @name: The name of the returned key
1186 *
1187 * For platforms that might not have a persistent primary, this can be
1188 * used to create one quickly on the fly (it uses Elliptic Curve not
1189 * RSA, so even slow TPMs can create one fast). The template uses the
1190 * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
1191 * elliptic curve (the only current one all TPM2s are required to
1192 * have) a sha256 name hash and no policy.
1193 *
1194 * Return:
1195 * * 0 - OK
1196 * * -errno - A system error
1197 * * TPM_RC - A TPM error
1198 */
tpm2_create_primary(struct tpm_chip * chip,u32 hierarchy,u32 * handle,u8 * name)1199 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
1200 u32 *handle, u8 *name)
1201 {
1202 int rc;
1203 struct tpm_buf buf;
1204 struct tpm_buf template;
1205
1206 rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
1207 if (rc)
1208 return rc;
1209
1210 rc = tpm_buf_init_sized(&template);
1211 if (rc) {
1212 tpm_buf_destroy(&buf);
1213 return rc;
1214 }
1215
1216 /*
1217 * create the template. Note: in order for userspace to
1218 * verify the security of the system, it will have to create
1219 * and certify this NULL primary, meaning all the template
1220 * parameters will have to be identical, so conform exactly to
1221 * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
1222 * key H template (H has zero size unique points)
1223 */
1224
1225 /* key type */
1226 tpm_buf_append_u16(&template, TPM_ALG_ECC);
1227
1228 /* name algorithm */
1229 tpm_buf_append_u16(&template, TPM_ALG_SHA256);
1230
1231 /* object properties */
1232 tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY);
1233
1234 /* sauth policy (empty) */
1235 tpm_buf_append_u16(&template, 0);
1236
1237 /* BEGIN parameters: key specific; for ECC*/
1238
1239 /* symmetric algorithm */
1240 tpm_buf_append_u16(&template, TPM_ALG_AES);
1241
1242 /* bits for symmetric algorithm */
1243 tpm_buf_append_u16(&template, AES_KEY_BITS);
1244
1245 /* algorithm mode (must be CFB) */
1246 tpm_buf_append_u16(&template, TPM_ALG_CFB);
1247
1248 /* scheme (NULL means any scheme) */
1249 tpm_buf_append_u16(&template, TPM_ALG_NULL);
1250
1251 /* ECC Curve ID */
1252 tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
1253
1254 /* KDF Scheme */
1255 tpm_buf_append_u16(&template, TPM_ALG_NULL);
1256
1257 /* unique: key specific; for ECC it is two zero size points */
1258 tpm_buf_append_u16(&template, 0);
1259 tpm_buf_append_u16(&template, 0);
1260
1261 /* END parameters */
1262
1263 /* primary handle */
1264 tpm_buf_append_u32(&buf, hierarchy);
1265 tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
1266
1267 /* sensitive create size is 4 for two empty buffers */
1268 tpm_buf_append_u16(&buf, 4);
1269
1270 /* sensitive create auth data (empty) */
1271 tpm_buf_append_u16(&buf, 0);
1272
1273 /* sensitive create sensitive data (empty) */
1274 tpm_buf_append_u16(&buf, 0);
1275
1276 /* the public template */
1277 tpm_buf_append(&buf, template.data, template.length);
1278 tpm_buf_destroy(&template);
1279
1280 /* outside info (empty) */
1281 tpm_buf_append_u16(&buf, 0);
1282
1283 /* creation PCR (none) */
1284 tpm_buf_append_u32(&buf, 0);
1285
1286 rc = tpm_transmit_cmd(chip, &buf, 0,
1287 "attempting to create NULL primary");
1288
1289 if (rc == TPM2_RC_SUCCESS)
1290 rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
1291 name);
1292
1293 tpm_buf_destroy(&buf);
1294
1295 return rc;
1296 }
1297
tpm2_create_null_primary(struct tpm_chip * chip)1298 static int tpm2_create_null_primary(struct tpm_chip *chip)
1299 {
1300 u32 null_key;
1301 int rc;
1302
1303 rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
1304 chip->null_key_name);
1305
1306 if (rc == TPM2_RC_SUCCESS) {
1307 unsigned int offset = 0; /* dummy offset for null key context */
1308
1309 rc = tpm2_save_context(chip, null_key, chip->null_key_context,
1310 sizeof(chip->null_key_context), &offset);
1311 tpm2_flush_context(chip, null_key);
1312 }
1313
1314 return rc;
1315 }
1316
1317 /**
1318 * tpm2_sessions_init() - start of day initialization for the sessions code
1319 * @chip: TPM chip
1320 *
1321 * Derive and context save the null primary and allocate memory in the
1322 * struct tpm_chip for the authorizations.
1323 *
1324 * Return:
1325 * * 0 - OK
1326 * * -errno - A system error
1327 * * TPM_RC - A TPM error
1328 */
tpm2_sessions_init(struct tpm_chip * chip)1329 int tpm2_sessions_init(struct tpm_chip *chip)
1330 {
1331 int rc;
1332
1333 rc = tpm2_create_null_primary(chip);
1334 if (rc) {
1335 dev_err(&chip->dev, "null key creation failed with %d\n", rc);
1336 return rc;
1337 }
1338
1339 return rc;
1340 }
1341 #endif /* CONFIG_TCG_TPM2_HMAC */
1342