xref: /linux/include/linux/mm.h (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39 
40 struct mempolicy;
41 struct anon_vma;
42 struct anon_vma_chain;
43 struct user_struct;
44 struct pt_regs;
45 struct folio_batch;
46 
47 void arch_mm_preinit(void);
48 void mm_core_init(void);
49 void init_mm_internals(void);
50 
51 extern atomic_long_t _totalram_pages;
totalram_pages(void)52 static inline unsigned long totalram_pages(void)
53 {
54 	return (unsigned long)atomic_long_read(&_totalram_pages);
55 }
56 
totalram_pages_inc(void)57 static inline void totalram_pages_inc(void)
58 {
59 	atomic_long_inc(&_totalram_pages);
60 }
61 
totalram_pages_dec(void)62 static inline void totalram_pages_dec(void)
63 {
64 	atomic_long_dec(&_totalram_pages);
65 }
66 
totalram_pages_add(long count)67 static inline void totalram_pages_add(long count)
68 {
69 	atomic_long_add(count, &_totalram_pages);
70 }
71 
72 extern void * high_memory;
73 
74 /*
75  * Convert between pages and MB
76  * 20 is the shift for 1MB (2^20 = 1MB)
77  * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages)
78  * So (20 - PAGE_SHIFT) converts between pages and MB
79  */
80 #define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT))
81 #define MB_TO_PAGES(mb)    ((mb) << (20 - PAGE_SHIFT))
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #ifndef DIRECT_MAP_PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
103 # else
104 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
105 # endif
106 #endif
107 
108 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
109 
110 #include <asm/page.h>
111 #include <asm/processor.h>
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 96
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statements if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 96);
158 
159 	switch (sizeof(struct page)) {
160 	case 96:
161 		_pp[11] = 0;
162 		fallthrough;
163 	case 88:
164 		_pp[10] = 0;
165 		fallthrough;
166 	case 80:
167 		_pp[9] = 0;
168 		fallthrough;
169 	case 72:
170 		_pp[8] = 0;
171 		fallthrough;
172 	case 64:
173 		_pp[7] = 0;
174 		fallthrough;
175 	case 56:
176 		_pp[6] = 0;
177 		_pp[5] = 0;
178 		_pp[4] = 0;
179 		_pp[3] = 0;
180 		_pp[2] = 0;
181 		_pp[1] = 0;
182 		_pp[0] = 0;
183 	}
184 }
185 #else
186 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
187 #endif
188 
189 /*
190  * Default maximum number of active map areas, this limits the number of vmas
191  * per mm struct. Users can overwrite this number by sysctl but there is a
192  * problem.
193  *
194  * When a program's coredump is generated as ELF format, a section is created
195  * per a vma. In ELF, the number of sections is represented in unsigned short.
196  * This means the number of sections should be smaller than 65535 at coredump.
197  * Because the kernel adds some informative sections to a image of program at
198  * generating coredump, we need some margin. The number of extra sections is
199  * 1-3 now and depends on arch. We use "5" as safe margin, here.
200  *
201  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
202  * not a hard limit any more. Although some userspace tools can be surprised by
203  * that.
204  */
205 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
206 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
207 
208 extern int sysctl_max_map_count;
209 
210 extern unsigned long sysctl_user_reserve_kbytes;
211 extern unsigned long sysctl_admin_reserve_kbytes;
212 
213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214 bool page_range_contiguous(const struct page *page, unsigned long nr_pages);
215 #else
page_range_contiguous(const struct page * page,unsigned long nr_pages)216 static inline bool page_range_contiguous(const struct page *page,
217 		unsigned long nr_pages)
218 {
219 	return true;
220 }
221 #endif
222 
223 /* to align the pointer to the (next) page boundary */
224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225 
226 /* to align the pointer to the (prev) page boundary */
227 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228 
229 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
230 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
231 
232 /**
233  * folio_page_idx - Return the number of a page in a folio.
234  * @folio: The folio.
235  * @page: The folio page.
236  *
237  * This function expects that the page is actually part of the folio.
238  * The returned number is relative to the start of the folio.
239  */
folio_page_idx(const struct folio * folio,const struct page * page)240 static inline unsigned long folio_page_idx(const struct folio *folio,
241 		const struct page *page)
242 {
243 	return page - &folio->page;
244 }
245 
lru_to_folio(struct list_head * head)246 static inline struct folio *lru_to_folio(struct list_head *head)
247 {
248 	return list_entry((head)->prev, struct folio, lru);
249 }
250 
251 void setup_initial_init_mm(void *start_code, void *end_code,
252 			   void *end_data, void *brk);
253 
254 /*
255  * Linux kernel virtual memory manager primitives.
256  * The idea being to have a "virtual" mm in the same way
257  * we have a virtual fs - giving a cleaner interface to the
258  * mm details, and allowing different kinds of memory mappings
259  * (from shared memory to executable loading to arbitrary
260  * mmap() functions).
261  */
262 
263 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
264 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
265 void vm_area_free(struct vm_area_struct *);
266 
267 #ifndef CONFIG_MMU
268 extern struct rb_root nommu_region_tree;
269 extern struct rw_semaphore nommu_region_sem;
270 
271 extern unsigned int kobjsize(const void *objp);
272 #endif
273 
274 /*
275  * vm_flags in vm_area_struct, see mm_types.h.
276  * When changing, update also include/trace/events/mmflags.h
277  */
278 
279 #define VM_NONE		0x00000000
280 
281 /**
282  * typedef vma_flag_t - specifies an individual VMA flag by bit number.
283  *
284  * This value is made type safe by sparse to avoid passing invalid flag values
285  * around.
286  */
287 typedef int __bitwise vma_flag_t;
288 
289 #define DECLARE_VMA_BIT(name, bitnum) \
290 	VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum)
291 #define DECLARE_VMA_BIT_ALIAS(name, aliased) \
292 	VMA_ ## name ## _BIT = (VMA_ ## aliased ## _BIT)
293 enum {
294 	DECLARE_VMA_BIT(READ, 0),
295 	DECLARE_VMA_BIT(WRITE, 1),
296 	DECLARE_VMA_BIT(EXEC, 2),
297 	DECLARE_VMA_BIT(SHARED, 3),
298 	/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
299 	DECLARE_VMA_BIT(MAYREAD, 4),	/* limits for mprotect() etc. */
300 	DECLARE_VMA_BIT(MAYWRITE, 5),
301 	DECLARE_VMA_BIT(MAYEXEC, 6),
302 	DECLARE_VMA_BIT(MAYSHARE, 7),
303 	DECLARE_VMA_BIT(GROWSDOWN, 8),	/* general info on the segment */
304 #ifdef CONFIG_MMU
305 	DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */
306 #else
307 	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
308 	DECLARE_VMA_BIT(MAYOVERLAY, 9),
309 #endif /* CONFIG_MMU */
310 	/* Page-ranges managed without "struct page", just pure PFN */
311 	DECLARE_VMA_BIT(PFNMAP, 10),
312 	DECLARE_VMA_BIT(MAYBE_GUARD, 11),
313 	DECLARE_VMA_BIT(UFFD_WP, 12),	/* wrprotect pages tracking */
314 	DECLARE_VMA_BIT(LOCKED, 13),
315 	DECLARE_VMA_BIT(IO, 14),	/* Memory mapped I/O or similar */
316 	DECLARE_VMA_BIT(SEQ_READ, 15),	/* App will access data sequentially */
317 	DECLARE_VMA_BIT(RAND_READ, 16),	/* App will not benefit from clustered reads */
318 	DECLARE_VMA_BIT(DONTCOPY, 17),	/* Do not copy this vma on fork */
319 	DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */
320 	DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */
321 	DECLARE_VMA_BIT(ACCOUNT, 20),	/* Is a VM accounted object */
322 	DECLARE_VMA_BIT(NORESERVE, 21),	/* should the VM suppress accounting */
323 	DECLARE_VMA_BIT(HUGETLB, 22),	/* Huge TLB Page VM */
324 	DECLARE_VMA_BIT(SYNC, 23),	/* Synchronous page faults */
325 	DECLARE_VMA_BIT(ARCH_1, 24),	/* Architecture-specific flag */
326 	DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */
327 	DECLARE_VMA_BIT(DONTDUMP, 26),	/* Do not include in the core dump */
328 	DECLARE_VMA_BIT(SOFTDIRTY, 27),	/* NOT soft dirty clean area */
329 	DECLARE_VMA_BIT(MIXEDMAP, 28),	/* Can contain struct page and pure PFN pages */
330 	DECLARE_VMA_BIT(HUGEPAGE, 29),	/* MADV_HUGEPAGE marked this vma */
331 	DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */
332 	DECLARE_VMA_BIT(MERGEABLE, 31),	/* KSM may merge identical pages */
333 	/* These bits are reused, we define specific uses below. */
334 	DECLARE_VMA_BIT(HIGH_ARCH_0, 32),
335 	DECLARE_VMA_BIT(HIGH_ARCH_1, 33),
336 	DECLARE_VMA_BIT(HIGH_ARCH_2, 34),
337 	DECLARE_VMA_BIT(HIGH_ARCH_3, 35),
338 	DECLARE_VMA_BIT(HIGH_ARCH_4, 36),
339 	DECLARE_VMA_BIT(HIGH_ARCH_5, 37),
340 	DECLARE_VMA_BIT(HIGH_ARCH_6, 38),
341 	/*
342 	 * This flag is used to connect VFIO to arch specific KVM code. It
343 	 * indicates that the memory under this VMA is safe for use with any
344 	 * non-cachable memory type inside KVM. Some VFIO devices, on some
345 	 * platforms, are thought to be unsafe and can cause machine crashes
346 	 * if KVM does not lock down the memory type.
347 	 */
348 	DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39),
349 #ifdef CONFIG_PPC32
350 	DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1),
351 #else
352 	DECLARE_VMA_BIT(DROPPABLE, 40),
353 #endif
354 	DECLARE_VMA_BIT(UFFD_MINOR, 41),
355 	DECLARE_VMA_BIT(SEALED, 42),
356 	/* Flags that reuse flags above. */
357 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0),
358 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1),
359 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2),
360 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3),
361 	DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4),
362 #if defined(CONFIG_X86_USER_SHADOW_STACK)
363 	/*
364 	 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
365 	 * support core mm.
366 	 *
367 	 * These VMAs will get a single end guard page. This helps userspace
368 	 * protect itself from attacks. A single page is enough for current
369 	 * shadow stack archs (x86). See the comments near alloc_shstk() in
370 	 * arch/x86/kernel/shstk.c for more details on the guard size.
371 	 */
372 	DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5),
373 #elif defined(CONFIG_ARM64_GCS)
374 	/*
375 	 * arm64's Guarded Control Stack implements similar functionality and
376 	 * has similar constraints to shadow stacks.
377 	 */
378 	DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6),
379 #endif
380 	DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1),		/* Strong Access Ordering (powerpc) */
381 	DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1),		/* parisc */
382 	DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1),	/* sparc64 */
383 	DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1),	/* arm64 */
384 	DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1),	/* sparc64, arm64 */
385 	DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1),	/* !CONFIG_MMU */
386 	DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4),	/* arm64 */
387 	DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */
388 #ifdef CONFIG_STACK_GROWSUP
389 	DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP),
390 	DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN),
391 #else
392 	DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN),
393 #endif
394 };
395 #undef DECLARE_VMA_BIT
396 #undef DECLARE_VMA_BIT_ALIAS
397 
398 #define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT)
399 #define VM_READ		INIT_VM_FLAG(READ)
400 #define VM_WRITE	INIT_VM_FLAG(WRITE)
401 #define VM_EXEC		INIT_VM_FLAG(EXEC)
402 #define VM_SHARED	INIT_VM_FLAG(SHARED)
403 #define VM_MAYREAD	INIT_VM_FLAG(MAYREAD)
404 #define VM_MAYWRITE	INIT_VM_FLAG(MAYWRITE)
405 #define VM_MAYEXEC	INIT_VM_FLAG(MAYEXEC)
406 #define VM_MAYSHARE	INIT_VM_FLAG(MAYSHARE)
407 #define VM_GROWSDOWN	INIT_VM_FLAG(GROWSDOWN)
408 #ifdef CONFIG_MMU
409 #define VM_UFFD_MISSING	INIT_VM_FLAG(UFFD_MISSING)
410 #else
411 #define VM_UFFD_MISSING	VM_NONE
412 #define VM_MAYOVERLAY	INIT_VM_FLAG(MAYOVERLAY)
413 #endif
414 #define VM_PFNMAP	INIT_VM_FLAG(PFNMAP)
415 #define VM_MAYBE_GUARD	INIT_VM_FLAG(MAYBE_GUARD)
416 #define VM_UFFD_WP	INIT_VM_FLAG(UFFD_WP)
417 #define VM_LOCKED	INIT_VM_FLAG(LOCKED)
418 #define VM_IO		INIT_VM_FLAG(IO)
419 #define VM_SEQ_READ	INIT_VM_FLAG(SEQ_READ)
420 #define VM_RAND_READ	INIT_VM_FLAG(RAND_READ)
421 #define VM_DONTCOPY	INIT_VM_FLAG(DONTCOPY)
422 #define VM_DONTEXPAND	INIT_VM_FLAG(DONTEXPAND)
423 #define VM_LOCKONFAULT	INIT_VM_FLAG(LOCKONFAULT)
424 #define VM_ACCOUNT	INIT_VM_FLAG(ACCOUNT)
425 #define VM_NORESERVE	INIT_VM_FLAG(NORESERVE)
426 #define VM_HUGETLB	INIT_VM_FLAG(HUGETLB)
427 #define VM_SYNC		INIT_VM_FLAG(SYNC)
428 #define VM_ARCH_1	INIT_VM_FLAG(ARCH_1)
429 #define VM_WIPEONFORK	INIT_VM_FLAG(WIPEONFORK)
430 #define VM_DONTDUMP	INIT_VM_FLAG(DONTDUMP)
431 #ifdef CONFIG_MEM_SOFT_DIRTY
432 #define VM_SOFTDIRTY	INIT_VM_FLAG(SOFTDIRTY)
433 #else
434 #define VM_SOFTDIRTY	VM_NONE
435 #endif
436 #define VM_MIXEDMAP	INIT_VM_FLAG(MIXEDMAP)
437 #define VM_HUGEPAGE	INIT_VM_FLAG(HUGEPAGE)
438 #define VM_NOHUGEPAGE	INIT_VM_FLAG(NOHUGEPAGE)
439 #define VM_MERGEABLE	INIT_VM_FLAG(MERGEABLE)
440 #define VM_STACK	INIT_VM_FLAG(STACK)
441 #ifdef CONFIG_STACK_GROWS_UP
442 #define VM_STACK_EARLY	INIT_VM_FLAG(STACK_EARLY)
443 #else
444 #define VM_STACK_EARLY	VM_NONE
445 #endif
446 #ifdef CONFIG_ARCH_HAS_PKEYS
447 #define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT)
448 /* Despite the naming, these are FLAGS not bits. */
449 #define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0)
450 #define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1)
451 #define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2)
452 #if CONFIG_ARCH_PKEY_BITS > 3
453 #define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3)
454 #else
455 #define VM_PKEY_BIT3  VM_NONE
456 #endif /* CONFIG_ARCH_PKEY_BITS > 3 */
457 #if CONFIG_ARCH_PKEY_BITS > 4
458 #define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4)
459 #else
460 #define VM_PKEY_BIT4  VM_NONE
461 #endif /* CONFIG_ARCH_PKEY_BITS > 4 */
462 #endif /* CONFIG_ARCH_HAS_PKEYS */
463 #if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS)
464 #define VM_SHADOW_STACK	INIT_VM_FLAG(SHADOW_STACK)
465 #else
466 #define VM_SHADOW_STACK	VM_NONE
467 #endif
468 #if defined(CONFIG_PPC64)
469 #define VM_SAO		INIT_VM_FLAG(SAO)
470 #elif defined(CONFIG_PARISC)
471 #define VM_GROWSUP	INIT_VM_FLAG(GROWSUP)
472 #elif defined(CONFIG_SPARC64)
473 #define VM_SPARC_ADI	INIT_VM_FLAG(SPARC_ADI)
474 #define VM_ARCH_CLEAR	INIT_VM_FLAG(ARCH_CLEAR)
475 #elif defined(CONFIG_ARM64)
476 #define VM_ARM64_BTI	INIT_VM_FLAG(ARM64_BTI)
477 #define VM_ARCH_CLEAR	INIT_VM_FLAG(ARCH_CLEAR)
478 #elif !defined(CONFIG_MMU)
479 #define VM_MAPPED_COPY	INIT_VM_FLAG(MAPPED_COPY)
480 #endif
481 #ifndef VM_GROWSUP
482 #define VM_GROWSUP	VM_NONE
483 #endif
484 #ifdef CONFIG_ARM64_MTE
485 #define VM_MTE		INIT_VM_FLAG(MTE)
486 #define VM_MTE_ALLOWED	INIT_VM_FLAG(MTE_ALLOWED)
487 #else
488 #define VM_MTE		VM_NONE
489 #define VM_MTE_ALLOWED	VM_NONE
490 #endif
491 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
492 #define VM_UFFD_MINOR	INIT_VM_FLAG(UFFD_MINOR)
493 #else
494 #define VM_UFFD_MINOR	VM_NONE
495 #endif
496 #ifdef CONFIG_64BIT
497 #define VM_ALLOW_ANY_UNCACHED	INIT_VM_FLAG(ALLOW_ANY_UNCACHED)
498 #define VM_SEALED		INIT_VM_FLAG(SEALED)
499 #else
500 #define VM_ALLOW_ANY_UNCACHED	VM_NONE
501 #define VM_SEALED		VM_NONE
502 #endif
503 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
504 #define VM_DROPPABLE		INIT_VM_FLAG(DROPPABLE)
505 #else
506 #define VM_DROPPABLE		VM_NONE
507 #endif
508 
509 /* Bits set in the VMA until the stack is in its final location */
510 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
511 
512 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
513 
514 /* Common data flag combinations */
515 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
516 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
517 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
518 				 VM_MAYWRITE | VM_MAYEXEC)
519 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
520 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
521 
522 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
523 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
524 #endif
525 
526 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
527 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
528 #endif
529 
530 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
531 
532 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
533 #define VM_SEALED_SYSMAP	VM_SEALED
534 #else
535 #define VM_SEALED_SYSMAP	VM_NONE
536 #endif
537 
538 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
539 
540 /* VMA basic access permission flags */
541 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
542 
543 /*
544  * Special vmas that are non-mergable, non-mlock()able.
545  */
546 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
547 
548 /*
549  * Physically remapped pages are special. Tell the
550  * rest of the world about it:
551  *   VM_IO tells people not to look at these pages
552  *	(accesses can have side effects).
553  *   VM_PFNMAP tells the core MM that the base pages are just
554  *	raw PFN mappings, and do not have a "struct page" associated
555  *	with them.
556  *   VM_DONTEXPAND
557  *      Disable vma merging and expanding with mremap().
558  *   VM_DONTDUMP
559  *      Omit vma from core dump, even when VM_IO turned off.
560  */
561 #define VM_REMAP_FLAGS (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP)
562 
563 /* This mask prevents VMA from being scanned with khugepaged */
564 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
565 
566 /* This mask defines which mm->def_flags a process can inherit its parent */
567 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
568 
569 /* This mask represents all the VMA flag bits used by mlock */
570 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
571 
572 /* These flags can be updated atomically via VMA/mmap read lock. */
573 #define VM_ATOMIC_SET_ALLOWED VM_MAYBE_GUARD
574 
575 /* Arch-specific flags to clear when updating VM flags on protection change */
576 #ifndef VM_ARCH_CLEAR
577 #define VM_ARCH_CLEAR	VM_NONE
578 #endif
579 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
580 
581 /*
582  * Flags which should be 'sticky' on merge - that is, flags which, when one VMA
583  * possesses it but the other does not, the merged VMA should nonetheless have
584  * applied to it:
585  *
586  *   VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its
587  *                  references cleared via /proc/$pid/clear_refs, any merged VMA
588  *                  should be considered soft-dirty also as it operates at a VMA
589  *                  granularity.
590  *
591  * VM_MAYBE_GUARD - If a VMA may have guard regions in place it implies that
592  *                  mapped page tables may contain metadata not described by the
593  *                  VMA and thus any merged VMA may also contain this metadata,
594  *                  and thus we must make this flag sticky.
595  */
596 #define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD)
597 
598 /*
599  * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one
600  * of these flags and the other not does not preclude a merge.
601  *
602  *    VM_STICKY - When merging VMAs, VMA flags must match, unless they are
603  *                'sticky'. If any sticky flags exist in either VMA, we simply
604  *                set all of them on the merged VMA.
605  */
606 #define VM_IGNORE_MERGE VM_STICKY
607 
608 /*
609  * Flags which should result in page tables being copied on fork. These are
610  * flags which indicate that the VMA maps page tables which cannot be
611  * reconsistuted upon page fault, so necessitate page table copying upon
612  *
613  * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be
614  *                           reasonably reconstructed on page fault.
615  *
616  *              VM_UFFD_WP - Encodes metadata about an installed uffd
617  *                           write protect handler, which cannot be
618  *                           reconstructed on page fault.
619  *
620  *                           We always copy pgtables when dst_vma has uffd-wp
621  *                           enabled even if it's file-backed
622  *                           (e.g. shmem). Because when uffd-wp is enabled,
623  *                           pgtable contains uffd-wp protection information,
624  *                           that's something we can't retrieve from page cache,
625  *                           and skip copying will lose those info.
626  *
627  *          VM_MAYBE_GUARD - Could contain page guard region markers which
628  *                           by design are a property of the page tables
629  *                           only and thus cannot be reconstructed on page
630  *                           fault.
631  */
632 #define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD)
633 
634 /*
635  * mapping from the currently active vm_flags protection bits (the
636  * low four bits) to a page protection mask..
637  */
638 
639 /*
640  * The default fault flags that should be used by most of the
641  * arch-specific page fault handlers.
642  */
643 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
644 			     FAULT_FLAG_KILLABLE | \
645 			     FAULT_FLAG_INTERRUPTIBLE)
646 
647 /**
648  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
649  * @flags: Fault flags.
650  *
651  * This is mostly used for places where we want to try to avoid taking
652  * the mmap_lock for too long a time when waiting for another condition
653  * to change, in which case we can try to be polite to release the
654  * mmap_lock in the first round to avoid potential starvation of other
655  * processes that would also want the mmap_lock.
656  *
657  * Return: true if the page fault allows retry and this is the first
658  * attempt of the fault handling; false otherwise.
659  */
fault_flag_allow_retry_first(enum fault_flag flags)660 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
661 {
662 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
663 	    (!(flags & FAULT_FLAG_TRIED));
664 }
665 
666 #define FAULT_FLAG_TRACE \
667 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
668 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
669 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
670 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
671 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
672 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
673 	{ FAULT_FLAG_USER,		"USER" }, \
674 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
675 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
676 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
677 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
678 
679 /*
680  * vm_fault is filled by the pagefault handler and passed to the vma's
681  * ->fault function. The vma's ->fault is responsible for returning a bitmask
682  * of VM_FAULT_xxx flags that give details about how the fault was handled.
683  *
684  * MM layer fills up gfp_mask for page allocations but fault handler might
685  * alter it if its implementation requires a different allocation context.
686  *
687  * pgoff should be used in favour of virtual_address, if possible.
688  */
689 struct vm_fault {
690 	const struct {
691 		struct vm_area_struct *vma;	/* Target VMA */
692 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
693 		pgoff_t pgoff;			/* Logical page offset based on vma */
694 		unsigned long address;		/* Faulting virtual address - masked */
695 		unsigned long real_address;	/* Faulting virtual address - unmasked */
696 	};
697 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
698 					 * XXX: should really be 'const' */
699 	pmd_t *pmd;			/* Pointer to pmd entry matching
700 					 * the 'address' */
701 	pud_t *pud;			/* Pointer to pud entry matching
702 					 * the 'address'
703 					 */
704 	union {
705 		pte_t orig_pte;		/* Value of PTE at the time of fault */
706 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
707 					 * used by PMD fault only.
708 					 */
709 	};
710 
711 	struct page *cow_page;		/* Page handler may use for COW fault */
712 	struct page *page;		/* ->fault handlers should return a
713 					 * page here, unless VM_FAULT_NOPAGE
714 					 * is set (which is also implied by
715 					 * VM_FAULT_ERROR).
716 					 */
717 	/* These three entries are valid only while holding ptl lock */
718 	pte_t *pte;			/* Pointer to pte entry matching
719 					 * the 'address'. NULL if the page
720 					 * table hasn't been allocated.
721 					 */
722 	spinlock_t *ptl;		/* Page table lock.
723 					 * Protects pte page table if 'pte'
724 					 * is not NULL, otherwise pmd.
725 					 */
726 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
727 					 * vm_ops->map_pages() sets up a page
728 					 * table from atomic context.
729 					 * do_fault_around() pre-allocates
730 					 * page table to avoid allocation from
731 					 * atomic context.
732 					 */
733 };
734 
735 /*
736  * These are the virtual MM functions - opening of an area, closing and
737  * unmapping it (needed to keep files on disk up-to-date etc), pointer
738  * to the functions called when a no-page or a wp-page exception occurs.
739  */
740 struct vm_operations_struct {
741 	void (*open)(struct vm_area_struct * area);
742 	/**
743 	 * @close: Called when the VMA is being removed from the MM.
744 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
745 	 */
746 	void (*close)(struct vm_area_struct * area);
747 	/* Called any time before splitting to check if it's allowed */
748 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
749 	int (*mremap)(struct vm_area_struct *area);
750 	/*
751 	 * Called by mprotect() to make driver-specific permission
752 	 * checks before mprotect() is finalised.   The VMA must not
753 	 * be modified.  Returns 0 if mprotect() can proceed.
754 	 */
755 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
756 			unsigned long end, unsigned long newflags);
757 	vm_fault_t (*fault)(struct vm_fault *vmf);
758 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
759 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
760 			pgoff_t start_pgoff, pgoff_t end_pgoff);
761 	unsigned long (*pagesize)(struct vm_area_struct * area);
762 
763 	/* notification that a previously read-only page is about to become
764 	 * writable, if an error is returned it will cause a SIGBUS */
765 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
766 
767 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
768 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
769 
770 	/* called by access_process_vm when get_user_pages() fails, typically
771 	 * for use by special VMAs. See also generic_access_phys() for a generic
772 	 * implementation useful for any iomem mapping.
773 	 */
774 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
775 		      void *buf, int len, int write);
776 
777 	/* Called by the /proc/PID/maps code to ask the vma whether it
778 	 * has a special name.  Returning non-NULL will also cause this
779 	 * vma to be dumped unconditionally. */
780 	const char *(*name)(struct vm_area_struct *vma);
781 
782 #ifdef CONFIG_NUMA
783 	/*
784 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
785 	 * to hold the policy upon return.  Caller should pass NULL @new to
786 	 * remove a policy and fall back to surrounding context--i.e. do not
787 	 * install a MPOL_DEFAULT policy, nor the task or system default
788 	 * mempolicy.
789 	 */
790 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
791 
792 	/*
793 	 * get_policy() op must add reference [mpol_get()] to any policy at
794 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
795 	 * in mm/mempolicy.c will do this automatically.
796 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
797 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
798 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
799 	 * must return NULL--i.e., do not "fallback" to task or system default
800 	 * policy.
801 	 */
802 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
803 					unsigned long addr, pgoff_t *ilx);
804 #endif
805 #ifdef CONFIG_FIND_NORMAL_PAGE
806 	/*
807 	 * Called by vm_normal_page() for special PTEs in @vma at @addr. This
808 	 * allows for returning a "normal" page from vm_normal_page() even
809 	 * though the PTE indicates that the "struct page" either does not exist
810 	 * or should not be touched: "special".
811 	 *
812 	 * Do not add new users: this really only works when a "normal" page
813 	 * was mapped, but then the PTE got changed to something weird (+
814 	 * marked special) that would not make pte_pfn() identify the originally
815 	 * inserted page.
816 	 */
817 	struct page *(*find_normal_page)(struct vm_area_struct *vma,
818 					 unsigned long addr);
819 #endif /* CONFIG_FIND_NORMAL_PAGE */
820 };
821 
822 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)823 static inline void vma_numab_state_init(struct vm_area_struct *vma)
824 {
825 	vma->numab_state = NULL;
826 }
vma_numab_state_free(struct vm_area_struct * vma)827 static inline void vma_numab_state_free(struct vm_area_struct *vma)
828 {
829 	kfree(vma->numab_state);
830 }
831 #else
vma_numab_state_init(struct vm_area_struct * vma)832 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)833 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
834 #endif /* CONFIG_NUMA_BALANCING */
835 
836 /*
837  * These must be here rather than mmap_lock.h as dependent on vm_fault type,
838  * declared in this header.
839  */
840 #ifdef CONFIG_PER_VMA_LOCK
release_fault_lock(struct vm_fault * vmf)841 static inline void release_fault_lock(struct vm_fault *vmf)
842 {
843 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
844 		vma_end_read(vmf->vma);
845 	else
846 		mmap_read_unlock(vmf->vma->vm_mm);
847 }
848 
assert_fault_locked(const struct vm_fault * vmf)849 static inline void assert_fault_locked(const struct vm_fault *vmf)
850 {
851 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
852 		vma_assert_locked(vmf->vma);
853 	else
854 		mmap_assert_locked(vmf->vma->vm_mm);
855 }
856 #else
release_fault_lock(struct vm_fault * vmf)857 static inline void release_fault_lock(struct vm_fault *vmf)
858 {
859 	mmap_read_unlock(vmf->vma->vm_mm);
860 }
861 
assert_fault_locked(const struct vm_fault * vmf)862 static inline void assert_fault_locked(const struct vm_fault *vmf)
863 {
864 	mmap_assert_locked(vmf->vma->vm_mm);
865 }
866 #endif /* CONFIG_PER_VMA_LOCK */
867 
mm_flags_test(int flag,const struct mm_struct * mm)868 static inline bool mm_flags_test(int flag, const struct mm_struct *mm)
869 {
870 	return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
871 }
872 
mm_flags_test_and_set(int flag,struct mm_struct * mm)873 static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm)
874 {
875 	return test_and_set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
876 }
877 
mm_flags_test_and_clear(int flag,struct mm_struct * mm)878 static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm)
879 {
880 	return test_and_clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
881 }
882 
mm_flags_set(int flag,struct mm_struct * mm)883 static inline void mm_flags_set(int flag, struct mm_struct *mm)
884 {
885 	set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
886 }
887 
mm_flags_clear(int flag,struct mm_struct * mm)888 static inline void mm_flags_clear(int flag, struct mm_struct *mm)
889 {
890 	clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
891 }
892 
mm_flags_clear_all(struct mm_struct * mm)893 static inline void mm_flags_clear_all(struct mm_struct *mm)
894 {
895 	bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS);
896 }
897 
898 extern const struct vm_operations_struct vma_dummy_vm_ops;
899 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)900 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
901 {
902 	memset(vma, 0, sizeof(*vma));
903 	vma->vm_mm = mm;
904 	vma->vm_ops = &vma_dummy_vm_ops;
905 	INIT_LIST_HEAD(&vma->anon_vma_chain);
906 	vma_lock_init(vma, false);
907 }
908 
909 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)910 static inline void vm_flags_init(struct vm_area_struct *vma,
911 				 vm_flags_t flags)
912 {
913 	VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
914 	vma_flags_clear_all(&vma->flags);
915 	vma_flags_overwrite_word(&vma->flags, flags);
916 }
917 
918 /*
919  * Use when VMA is part of the VMA tree and modifications need coordination
920  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
921  * it should be locked explicitly beforehand.
922  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)923 static inline void vm_flags_reset(struct vm_area_struct *vma,
924 				  vm_flags_t flags)
925 {
926 	VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
927 	vma_assert_write_locked(vma);
928 	vm_flags_init(vma, flags);
929 }
930 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)931 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
932 				       vm_flags_t flags)
933 {
934 	vma_assert_write_locked(vma);
935 	/*
936 	 * If VMA flags exist beyond the first system word, also clear these. It
937 	 * is assumed the write once behaviour is required only for the first
938 	 * system word.
939 	 */
940 	if (NUM_VMA_FLAG_BITS > BITS_PER_LONG) {
941 		unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags);
942 
943 		bitmap_zero(&bitmap[1], NUM_VMA_FLAG_BITS - BITS_PER_LONG);
944 	}
945 
946 	vma_flags_overwrite_word_once(&vma->flags, flags);
947 }
948 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)949 static inline void vm_flags_set(struct vm_area_struct *vma,
950 				vm_flags_t flags)
951 {
952 	vma_start_write(vma);
953 	vma_flags_set_word(&vma->flags, flags);
954 }
955 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)956 static inline void vm_flags_clear(struct vm_area_struct *vma,
957 				  vm_flags_t flags)
958 {
959 	VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY));
960 	vma_start_write(vma);
961 	vma_flags_clear_word(&vma->flags, flags);
962 }
963 
964 /*
965  * Use only if VMA is not part of the VMA tree or has no other users and
966  * therefore needs no locking.
967  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)968 static inline void __vm_flags_mod(struct vm_area_struct *vma,
969 				  vm_flags_t set, vm_flags_t clear)
970 {
971 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
972 }
973 
974 /*
975  * Use only when the order of set/clear operations is unimportant, otherwise
976  * use vm_flags_{set|clear} explicitly.
977  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)978 static inline void vm_flags_mod(struct vm_area_struct *vma,
979 				vm_flags_t set, vm_flags_t clear)
980 {
981 	vma_start_write(vma);
982 	__vm_flags_mod(vma, set, clear);
983 }
984 
__vma_flag_atomic_valid(struct vm_area_struct * vma,vma_flag_t bit)985 static inline bool __vma_flag_atomic_valid(struct vm_area_struct *vma,
986 					   vma_flag_t bit)
987 {
988 	const vm_flags_t mask = BIT((__force int)bit);
989 
990 	/* Only specific flags are permitted */
991 	if (WARN_ON_ONCE(!(mask & VM_ATOMIC_SET_ALLOWED)))
992 		return false;
993 
994 	return true;
995 }
996 
997 /*
998  * Set VMA flag atomically. Requires only VMA/mmap read lock. Only specific
999  * valid flags are allowed to do this.
1000  */
vma_flag_set_atomic(struct vm_area_struct * vma,vma_flag_t bit)1001 static inline void vma_flag_set_atomic(struct vm_area_struct *vma,
1002 				       vma_flag_t bit)
1003 {
1004 	unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags);
1005 
1006 	/* mmap read lock/VMA read lock must be held. */
1007 	if (!rwsem_is_locked(&vma->vm_mm->mmap_lock))
1008 		vma_assert_locked(vma);
1009 
1010 	if (__vma_flag_atomic_valid(vma, bit))
1011 		set_bit((__force int)bit, bitmap);
1012 }
1013 
1014 /*
1015  * Test for VMA flag atomically. Requires no locks. Only specific valid flags
1016  * are allowed to do this.
1017  *
1018  * This is necessarily racey, so callers must ensure that serialisation is
1019  * achieved through some other means, or that races are permissible.
1020  */
vma_flag_test_atomic(struct vm_area_struct * vma,vma_flag_t bit)1021 static inline bool vma_flag_test_atomic(struct vm_area_struct *vma,
1022 					vma_flag_t bit)
1023 {
1024 	if (__vma_flag_atomic_valid(vma, bit))
1025 		return test_bit((__force int)bit, &vma->vm_flags);
1026 
1027 	return false;
1028 }
1029 
vma_set_anonymous(struct vm_area_struct * vma)1030 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1031 {
1032 	vma->vm_ops = NULL;
1033 }
1034 
vma_is_anonymous(struct vm_area_struct * vma)1035 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1036 {
1037 	return !vma->vm_ops;
1038 }
1039 
1040 /*
1041  * Indicate if the VMA is a heap for the given task; for
1042  * /proc/PID/maps that is the heap of the main task.
1043  */
vma_is_initial_heap(const struct vm_area_struct * vma)1044 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1045 {
1046 	return vma->vm_start < vma->vm_mm->brk &&
1047 		vma->vm_end > vma->vm_mm->start_brk;
1048 }
1049 
1050 /*
1051  * Indicate if the VMA is a stack for the given task; for
1052  * /proc/PID/maps that is the stack of the main task.
1053  */
vma_is_initial_stack(const struct vm_area_struct * vma)1054 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1055 {
1056 	/*
1057 	 * We make no effort to guess what a given thread considers to be
1058 	 * its "stack".  It's not even well-defined for programs written
1059 	 * languages like Go.
1060 	 */
1061 	return vma->vm_start <= vma->vm_mm->start_stack &&
1062 		vma->vm_end >= vma->vm_mm->start_stack;
1063 }
1064 
vma_is_temporary_stack(const struct vm_area_struct * vma)1065 static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma)
1066 {
1067 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1068 
1069 	if (!maybe_stack)
1070 		return false;
1071 
1072 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1073 						VM_STACK_INCOMPLETE_SETUP)
1074 		return true;
1075 
1076 	return false;
1077 }
1078 
vma_is_foreign(const struct vm_area_struct * vma)1079 static inline bool vma_is_foreign(const struct vm_area_struct *vma)
1080 {
1081 	if (!current->mm)
1082 		return true;
1083 
1084 	if (current->mm != vma->vm_mm)
1085 		return true;
1086 
1087 	return false;
1088 }
1089 
vma_is_accessible(const struct vm_area_struct * vma)1090 static inline bool vma_is_accessible(const struct vm_area_struct *vma)
1091 {
1092 	return vma->vm_flags & VM_ACCESS_FLAGS;
1093 }
1094 
is_shared_maywrite(vm_flags_t vm_flags)1095 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1096 {
1097 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1098 		(VM_SHARED | VM_MAYWRITE);
1099 }
1100 
vma_is_shared_maywrite(const struct vm_area_struct * vma)1101 static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma)
1102 {
1103 	return is_shared_maywrite(vma->vm_flags);
1104 }
1105 
1106 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)1107 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1108 {
1109 	return mas_find(&vmi->mas, max - 1);
1110 }
1111 
vma_next(struct vma_iterator * vmi)1112 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1113 {
1114 	/*
1115 	 * Uses mas_find() to get the first VMA when the iterator starts.
1116 	 * Calling mas_next() could skip the first entry.
1117 	 */
1118 	return mas_find(&vmi->mas, ULONG_MAX);
1119 }
1120 
1121 static inline
vma_iter_next_range(struct vma_iterator * vmi)1122 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1123 {
1124 	return mas_next_range(&vmi->mas, ULONG_MAX);
1125 }
1126 
1127 
vma_prev(struct vma_iterator * vmi)1128 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1129 {
1130 	return mas_prev(&vmi->mas, 0);
1131 }
1132 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1133 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1134 			unsigned long start, unsigned long end, gfp_t gfp)
1135 {
1136 	__mas_set_range(&vmi->mas, start, end - 1);
1137 	mas_store_gfp(&vmi->mas, NULL, gfp);
1138 	if (unlikely(mas_is_err(&vmi->mas)))
1139 		return -ENOMEM;
1140 
1141 	return 0;
1142 }
1143 
1144 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1145 static inline void vma_iter_free(struct vma_iterator *vmi)
1146 {
1147 	mas_destroy(&vmi->mas);
1148 }
1149 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1150 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1151 				      struct vm_area_struct *vma)
1152 {
1153 	vmi->mas.index = vma->vm_start;
1154 	vmi->mas.last = vma->vm_end - 1;
1155 	mas_store(&vmi->mas, vma);
1156 	if (unlikely(mas_is_err(&vmi->mas)))
1157 		return -ENOMEM;
1158 
1159 	vma_mark_attached(vma);
1160 	return 0;
1161 }
1162 
vma_iter_invalidate(struct vma_iterator * vmi)1163 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1164 {
1165 	mas_pause(&vmi->mas);
1166 }
1167 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1168 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1169 {
1170 	mas_set(&vmi->mas, addr);
1171 }
1172 
1173 #define for_each_vma(__vmi, __vma)					\
1174 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1175 
1176 /* The MM code likes to work with exclusive end addresses */
1177 #define for_each_vma_range(__vmi, __vma, __end)				\
1178 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1179 
1180 #ifdef CONFIG_SHMEM
1181 /*
1182  * The vma_is_shmem is not inline because it is used only by slow
1183  * paths in userfault.
1184  */
1185 bool vma_is_shmem(const struct vm_area_struct *vma);
1186 bool vma_is_anon_shmem(const struct vm_area_struct *vma);
1187 #else
vma_is_shmem(const struct vm_area_struct * vma)1188 static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(const struct vm_area_struct * vma)1189 static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; }
1190 #endif
1191 
1192 int vma_is_stack_for_current(const struct vm_area_struct *vma);
1193 
1194 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1195 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1196 
1197 struct mmu_gather;
1198 struct inode;
1199 
1200 extern void prep_compound_page(struct page *page, unsigned int order);
1201 
folio_large_order(const struct folio * folio)1202 static inline unsigned int folio_large_order(const struct folio *folio)
1203 {
1204 	return folio->_flags_1 & 0xff;
1205 }
1206 
1207 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)1208 static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1209 {
1210 	return folio->_nr_pages;
1211 }
1212 #else
folio_large_nr_pages(const struct folio * folio)1213 static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1214 {
1215 	return 1L << folio_large_order(folio);
1216 }
1217 #endif
1218 
1219 /*
1220  * compound_order() can be called without holding a reference, which means
1221  * that niceties like page_folio() don't work.  These callers should be
1222  * prepared to handle wild return values.  For example, PG_head may be
1223  * set before the order is initialised, or this may be a tail page.
1224  * See compaction.c for some good examples.
1225  */
compound_order(const struct page * page)1226 static inline unsigned int compound_order(const struct page *page)
1227 {
1228 	const struct folio *folio = (struct folio *)page;
1229 
1230 	if (!test_bit(PG_head, &folio->flags.f))
1231 		return 0;
1232 	return folio_large_order(folio);
1233 }
1234 
1235 /**
1236  * folio_order - The allocation order of a folio.
1237  * @folio: The folio.
1238  *
1239  * A folio is composed of 2^order pages.  See get_order() for the definition
1240  * of order.
1241  *
1242  * Return: The order of the folio.
1243  */
folio_order(const struct folio * folio)1244 static inline unsigned int folio_order(const struct folio *folio)
1245 {
1246 	if (!folio_test_large(folio))
1247 		return 0;
1248 	return folio_large_order(folio);
1249 }
1250 
1251 /**
1252  * folio_reset_order - Reset the folio order and derived _nr_pages
1253  * @folio: The folio.
1254  *
1255  * Reset the order and derived _nr_pages to 0. Must only be used in the
1256  * process of splitting large folios.
1257  */
folio_reset_order(struct folio * folio)1258 static inline void folio_reset_order(struct folio *folio)
1259 {
1260 	if (WARN_ON_ONCE(!folio_test_large(folio)))
1261 		return;
1262 	folio->_flags_1 &= ~0xffUL;
1263 #ifdef NR_PAGES_IN_LARGE_FOLIO
1264 	folio->_nr_pages = 0;
1265 #endif
1266 }
1267 
1268 #include <linux/huge_mm.h>
1269 
1270 /*
1271  * Methods to modify the page usage count.
1272  *
1273  * What counts for a page usage:
1274  * - cache mapping   (page->mapping)
1275  * - private data    (page->private)
1276  * - page mapped in a task's page tables, each mapping
1277  *   is counted separately
1278  *
1279  * Also, many kernel routines increase the page count before a critical
1280  * routine so they can be sure the page doesn't go away from under them.
1281  */
1282 
1283 /*
1284  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1285  */
put_page_testzero(struct page * page)1286 static inline int put_page_testzero(struct page *page)
1287 {
1288 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1289 	return page_ref_dec_and_test(page);
1290 }
1291 
folio_put_testzero(struct folio * folio)1292 static inline int folio_put_testzero(struct folio *folio)
1293 {
1294 	return put_page_testzero(&folio->page);
1295 }
1296 
1297 /*
1298  * Try to grab a ref unless the page has a refcount of zero, return false if
1299  * that is the case.
1300  * This can be called when MMU is off so it must not access
1301  * any of the virtual mappings.
1302  */
get_page_unless_zero(struct page * page)1303 static inline bool get_page_unless_zero(struct page *page)
1304 {
1305 	return page_ref_add_unless(page, 1, 0);
1306 }
1307 
folio_get_nontail_page(struct page * page)1308 static inline struct folio *folio_get_nontail_page(struct page *page)
1309 {
1310 	if (unlikely(!get_page_unless_zero(page)))
1311 		return NULL;
1312 	return (struct folio *)page;
1313 }
1314 
1315 extern int page_is_ram(unsigned long pfn);
1316 
1317 enum {
1318 	REGION_INTERSECTS,
1319 	REGION_DISJOINT,
1320 	REGION_MIXED,
1321 };
1322 
1323 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1324 		      unsigned long desc);
1325 
1326 /* Support for virtually mapped pages */
1327 struct page *vmalloc_to_page(const void *addr);
1328 unsigned long vmalloc_to_pfn(const void *addr);
1329 
1330 /*
1331  * Determine if an address is within the vmalloc range
1332  *
1333  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1334  * is no special casing required.
1335  */
1336 #ifdef CONFIG_MMU
1337 extern bool is_vmalloc_addr(const void *x);
1338 extern int is_vmalloc_or_module_addr(const void *x);
1339 #else
is_vmalloc_addr(const void * x)1340 static inline bool is_vmalloc_addr(const void *x)
1341 {
1342 	return false;
1343 }
is_vmalloc_or_module_addr(const void * x)1344 static inline int is_vmalloc_or_module_addr(const void *x)
1345 {
1346 	return 0;
1347 }
1348 #endif
1349 
1350 /*
1351  * How many times the entire folio is mapped as a single unit (eg by a
1352  * PMD or PUD entry).  This is probably not what you want, except for
1353  * debugging purposes or implementation of other core folio_*() primitives.
1354  */
folio_entire_mapcount(const struct folio * folio)1355 static inline int folio_entire_mapcount(const struct folio *folio)
1356 {
1357 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1358 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1359 		return 0;
1360 	return atomic_read(&folio->_entire_mapcount) + 1;
1361 }
1362 
folio_large_mapcount(const struct folio * folio)1363 static inline int folio_large_mapcount(const struct folio *folio)
1364 {
1365 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1366 	return atomic_read(&folio->_large_mapcount) + 1;
1367 }
1368 
1369 /**
1370  * folio_mapcount() - Number of mappings of this folio.
1371  * @folio: The folio.
1372  *
1373  * The folio mapcount corresponds to the number of present user page table
1374  * entries that reference any part of a folio. Each such present user page
1375  * table entry must be paired with exactly on folio reference.
1376  *
1377  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1378  * exactly once.
1379  *
1380  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1381  * references the entire folio counts exactly once, even when such special
1382  * page table entries are comprised of multiple ordinary page table entries.
1383  *
1384  * Will report 0 for pages which cannot be mapped into userspace, such as
1385  * slab, page tables and similar.
1386  *
1387  * Return: The number of times this folio is mapped.
1388  */
folio_mapcount(const struct folio * folio)1389 static inline int folio_mapcount(const struct folio *folio)
1390 {
1391 	int mapcount;
1392 
1393 	if (likely(!folio_test_large(folio))) {
1394 		mapcount = atomic_read(&folio->_mapcount) + 1;
1395 		if (page_mapcount_is_type(mapcount))
1396 			mapcount = 0;
1397 		return mapcount;
1398 	}
1399 	return folio_large_mapcount(folio);
1400 }
1401 
1402 /**
1403  * folio_mapped - Is this folio mapped into userspace?
1404  * @folio: The folio.
1405  *
1406  * Return: True if any page in this folio is referenced by user page tables.
1407  */
folio_mapped(const struct folio * folio)1408 static inline bool folio_mapped(const struct folio *folio)
1409 {
1410 	return folio_mapcount(folio) >= 1;
1411 }
1412 
1413 /*
1414  * Return true if this page is mapped into pagetables.
1415  * For compound page it returns true if any sub-page of compound page is mapped,
1416  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1417  */
page_mapped(const struct page * page)1418 static inline bool page_mapped(const struct page *page)
1419 {
1420 	return folio_mapped(page_folio(page));
1421 }
1422 
virt_to_head_page(const void * x)1423 static inline struct page *virt_to_head_page(const void *x)
1424 {
1425 	struct page *page = virt_to_page(x);
1426 
1427 	return compound_head(page);
1428 }
1429 
virt_to_folio(const void * x)1430 static inline struct folio *virt_to_folio(const void *x)
1431 {
1432 	struct page *page = virt_to_page(x);
1433 
1434 	return page_folio(page);
1435 }
1436 
1437 void __folio_put(struct folio *folio);
1438 
1439 void split_page(struct page *page, unsigned int order);
1440 void folio_copy(struct folio *dst, struct folio *src);
1441 int folio_mc_copy(struct folio *dst, struct folio *src);
1442 
1443 unsigned long nr_free_buffer_pages(void);
1444 
1445 /* Returns the number of bytes in this potentially compound page. */
page_size(const struct page * page)1446 static inline unsigned long page_size(const struct page *page)
1447 {
1448 	return PAGE_SIZE << compound_order(page);
1449 }
1450 
1451 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1452 static inline unsigned int page_shift(struct page *page)
1453 {
1454 	return PAGE_SHIFT + compound_order(page);
1455 }
1456 
1457 /**
1458  * thp_order - Order of a transparent huge page.
1459  * @page: Head page of a transparent huge page.
1460  */
thp_order(struct page * page)1461 static inline unsigned int thp_order(struct page *page)
1462 {
1463 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1464 	return compound_order(page);
1465 }
1466 
1467 /**
1468  * thp_size - Size of a transparent huge page.
1469  * @page: Head page of a transparent huge page.
1470  *
1471  * Return: Number of bytes in this page.
1472  */
thp_size(struct page * page)1473 static inline unsigned long thp_size(struct page *page)
1474 {
1475 	return PAGE_SIZE << thp_order(page);
1476 }
1477 
1478 #ifdef CONFIG_MMU
1479 /*
1480  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1481  * servicing faults for write access.  In the normal case, do always want
1482  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1483  * that do not have writing enabled, when used by access_process_vm.
1484  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1485 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1486 {
1487 	if (likely(vma->vm_flags & VM_WRITE))
1488 		pte = pte_mkwrite(pte, vma);
1489 	return pte;
1490 }
1491 
1492 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1493 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1494 		struct page *page, unsigned int nr, unsigned long addr);
1495 
1496 vm_fault_t finish_fault(struct vm_fault *vmf);
1497 #endif
1498 
1499 /*
1500  * Multiple processes may "see" the same page. E.g. for untouched
1501  * mappings of /dev/null, all processes see the same page full of
1502  * zeroes, and text pages of executables and shared libraries have
1503  * only one copy in memory, at most, normally.
1504  *
1505  * For the non-reserved pages, page_count(page) denotes a reference count.
1506  *   page_count() == 0 means the page is free. page->lru is then used for
1507  *   freelist management in the buddy allocator.
1508  *   page_count() > 0  means the page has been allocated.
1509  *
1510  * Pages are allocated by the slab allocator in order to provide memory
1511  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1512  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1513  * unless a particular usage is carefully commented. (the responsibility of
1514  * freeing the kmalloc memory is the caller's, of course).
1515  *
1516  * A page may be used by anyone else who does a __get_free_page().
1517  * In this case, page_count still tracks the references, and should only
1518  * be used through the normal accessor functions. The top bits of page->flags
1519  * and page->virtual store page management information, but all other fields
1520  * are unused and could be used privately, carefully. The management of this
1521  * page is the responsibility of the one who allocated it, and those who have
1522  * subsequently been given references to it.
1523  *
1524  * The other pages (we may call them "pagecache pages") are completely
1525  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1526  * The following discussion applies only to them.
1527  *
1528  * A pagecache page contains an opaque `private' member, which belongs to the
1529  * page's address_space. Usually, this is the address of a circular list of
1530  * the page's disk buffers. PG_private must be set to tell the VM to call
1531  * into the filesystem to release these pages.
1532  *
1533  * A folio may belong to an inode's memory mapping. In this case,
1534  * folio->mapping points to the inode, and folio->index is the file
1535  * offset of the folio, in units of PAGE_SIZE.
1536  *
1537  * If pagecache pages are not associated with an inode, they are said to be
1538  * anonymous pages. These may become associated with the swapcache, and in that
1539  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1540  *
1541  * In either case (swapcache or inode backed), the pagecache itself holds one
1542  * reference to the page. Setting PG_private should also increment the
1543  * refcount. The each user mapping also has a reference to the page.
1544  *
1545  * The pagecache pages are stored in a per-mapping radix tree, which is
1546  * rooted at mapping->i_pages, and indexed by offset.
1547  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1548  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1549  *
1550  * All pagecache pages may be subject to I/O:
1551  * - inode pages may need to be read from disk,
1552  * - inode pages which have been modified and are MAP_SHARED may need
1553  *   to be written back to the inode on disk,
1554  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1555  *   modified may need to be swapped out to swap space and (later) to be read
1556  *   back into memory.
1557  */
1558 
1559 /* 127: arbitrary random number, small enough to assemble well */
1560 #define folio_ref_zero_or_close_to_overflow(folio) \
1561 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1562 
1563 /**
1564  * folio_get - Increment the reference count on a folio.
1565  * @folio: The folio.
1566  *
1567  * Context: May be called in any context, as long as you know that
1568  * you have a refcount on the folio.  If you do not already have one,
1569  * folio_try_get() may be the right interface for you to use.
1570  */
folio_get(struct folio * folio)1571 static inline void folio_get(struct folio *folio)
1572 {
1573 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1574 	folio_ref_inc(folio);
1575 }
1576 
get_page(struct page * page)1577 static inline void get_page(struct page *page)
1578 {
1579 	struct folio *folio = page_folio(page);
1580 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1581 		return;
1582 	if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1583 		return;
1584 	folio_get(folio);
1585 }
1586 
try_get_page(struct page * page)1587 static inline __must_check bool try_get_page(struct page *page)
1588 {
1589 	page = compound_head(page);
1590 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1591 		return false;
1592 	page_ref_inc(page);
1593 	return true;
1594 }
1595 
1596 /**
1597  * folio_put - Decrement the reference count on a folio.
1598  * @folio: The folio.
1599  *
1600  * If the folio's reference count reaches zero, the memory will be
1601  * released back to the page allocator and may be used by another
1602  * allocation immediately.  Do not access the memory or the struct folio
1603  * after calling folio_put() unless you can be sure that it wasn't the
1604  * last reference.
1605  *
1606  * Context: May be called in process or interrupt context, but not in NMI
1607  * context.  May be called while holding a spinlock.
1608  */
folio_put(struct folio * folio)1609 static inline void folio_put(struct folio *folio)
1610 {
1611 	if (folio_put_testzero(folio))
1612 		__folio_put(folio);
1613 }
1614 
1615 /**
1616  * folio_put_refs - Reduce the reference count on a folio.
1617  * @folio: The folio.
1618  * @refs: The amount to subtract from the folio's reference count.
1619  *
1620  * If the folio's reference count reaches zero, the memory will be
1621  * released back to the page allocator and may be used by another
1622  * allocation immediately.  Do not access the memory or the struct folio
1623  * after calling folio_put_refs() unless you can be sure that these weren't
1624  * the last references.
1625  *
1626  * Context: May be called in process or interrupt context, but not in NMI
1627  * context.  May be called while holding a spinlock.
1628  */
folio_put_refs(struct folio * folio,int refs)1629 static inline void folio_put_refs(struct folio *folio, int refs)
1630 {
1631 	if (folio_ref_sub_and_test(folio, refs))
1632 		__folio_put(folio);
1633 }
1634 
1635 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1636 
1637 /*
1638  * union release_pages_arg - an array of pages or folios
1639  *
1640  * release_pages() releases a simple array of multiple pages, and
1641  * accepts various different forms of said page array: either
1642  * a regular old boring array of pages, an array of folios, or
1643  * an array of encoded page pointers.
1644  *
1645  * The transparent union syntax for this kind of "any of these
1646  * argument types" is all kinds of ugly, so look away.
1647  */
1648 typedef union {
1649 	struct page **pages;
1650 	struct folio **folios;
1651 	struct encoded_page **encoded_pages;
1652 } release_pages_arg __attribute__ ((__transparent_union__));
1653 
1654 void release_pages(release_pages_arg, int nr);
1655 
1656 /**
1657  * folios_put - Decrement the reference count on an array of folios.
1658  * @folios: The folios.
1659  *
1660  * Like folio_put(), but for a batch of folios.  This is more efficient
1661  * than writing the loop yourself as it will optimise the locks which need
1662  * to be taken if the folios are freed.  The folios batch is returned
1663  * empty and ready to be reused for another batch; there is no need to
1664  * reinitialise it.
1665  *
1666  * Context: May be called in process or interrupt context, but not in NMI
1667  * context.  May be called while holding a spinlock.
1668  */
folios_put(struct folio_batch * folios)1669 static inline void folios_put(struct folio_batch *folios)
1670 {
1671 	folios_put_refs(folios, NULL);
1672 }
1673 
put_page(struct page * page)1674 static inline void put_page(struct page *page)
1675 {
1676 	struct folio *folio = page_folio(page);
1677 
1678 	if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1679 		return;
1680 
1681 	folio_put(folio);
1682 }
1683 
1684 /*
1685  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1686  * the page's refcount so that two separate items are tracked: the original page
1687  * reference count, and also a new count of how many pin_user_pages() calls were
1688  * made against the page. ("gup-pinned" is another term for the latter).
1689  *
1690  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1691  * distinct from normal pages. As such, the unpin_user_page() call (and its
1692  * variants) must be used in order to release gup-pinned pages.
1693  *
1694  * Choice of value:
1695  *
1696  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1697  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1698  * simpler, due to the fact that adding an even power of two to the page
1699  * refcount has the effect of using only the upper N bits, for the code that
1700  * counts up using the bias value. This means that the lower bits are left for
1701  * the exclusive use of the original code that increments and decrements by one
1702  * (or at least, by much smaller values than the bias value).
1703  *
1704  * Of course, once the lower bits overflow into the upper bits (and this is
1705  * OK, because subtraction recovers the original values), then visual inspection
1706  * no longer suffices to directly view the separate counts. However, for normal
1707  * applications that don't have huge page reference counts, this won't be an
1708  * issue.
1709  *
1710  * Locking: the lockless algorithm described in folio_try_get_rcu()
1711  * provides safe operation for get_user_pages(), folio_mkclean() and
1712  * other calls that race to set up page table entries.
1713  */
1714 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1715 
1716 void unpin_user_page(struct page *page);
1717 void unpin_folio(struct folio *folio);
1718 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1719 				 bool make_dirty);
1720 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1721 				      bool make_dirty);
1722 void unpin_user_pages(struct page **pages, unsigned long npages);
1723 void unpin_user_folio(struct folio *folio, unsigned long npages);
1724 void unpin_folios(struct folio **folios, unsigned long nfolios);
1725 
is_cow_mapping(vm_flags_t flags)1726 static inline bool is_cow_mapping(vm_flags_t flags)
1727 {
1728 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1729 }
1730 
1731 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1732 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1733 {
1734 	/*
1735 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1736 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1737 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1738 	 * underlying memory if ptrace is active, so this is only possible if
1739 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1740 	 * write permissions later.
1741 	 */
1742 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1743 }
1744 #endif
1745 
1746 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1747 #define SECTION_IN_PAGE_FLAGS
1748 #endif
1749 
1750 /*
1751  * The identification function is mainly used by the buddy allocator for
1752  * determining if two pages could be buddies. We are not really identifying
1753  * the zone since we could be using the section number id if we do not have
1754  * node id available in page flags.
1755  * We only guarantee that it will return the same value for two combinable
1756  * pages in a zone.
1757  */
page_zone_id(struct page * page)1758 static inline int page_zone_id(struct page *page)
1759 {
1760 	return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK;
1761 }
1762 
1763 #ifdef NODE_NOT_IN_PAGE_FLAGS
1764 int memdesc_nid(memdesc_flags_t mdf);
1765 #else
memdesc_nid(memdesc_flags_t mdf)1766 static inline int memdesc_nid(memdesc_flags_t mdf)
1767 {
1768 	return (mdf.f >> NODES_PGSHIFT) & NODES_MASK;
1769 }
1770 #endif
1771 
page_to_nid(const struct page * page)1772 static inline int page_to_nid(const struct page *page)
1773 {
1774 	return memdesc_nid(PF_POISONED_CHECK(page)->flags);
1775 }
1776 
folio_nid(const struct folio * folio)1777 static inline int folio_nid(const struct folio *folio)
1778 {
1779 	return memdesc_nid(folio->flags);
1780 }
1781 
1782 #ifdef CONFIG_NUMA_BALANCING
1783 /* page access time bits needs to hold at least 4 seconds */
1784 #define PAGE_ACCESS_TIME_MIN_BITS	12
1785 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1786 #define PAGE_ACCESS_TIME_BUCKETS				\
1787 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1788 #else
1789 #define PAGE_ACCESS_TIME_BUCKETS	0
1790 #endif
1791 
1792 #define PAGE_ACCESS_TIME_MASK				\
1793 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1794 
cpu_pid_to_cpupid(int cpu,int pid)1795 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1796 {
1797 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1798 }
1799 
cpupid_to_pid(int cpupid)1800 static inline int cpupid_to_pid(int cpupid)
1801 {
1802 	return cpupid & LAST__PID_MASK;
1803 }
1804 
cpupid_to_cpu(int cpupid)1805 static inline int cpupid_to_cpu(int cpupid)
1806 {
1807 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1808 }
1809 
cpupid_to_nid(int cpupid)1810 static inline int cpupid_to_nid(int cpupid)
1811 {
1812 	return cpu_to_node(cpupid_to_cpu(cpupid));
1813 }
1814 
cpupid_pid_unset(int cpupid)1815 static inline bool cpupid_pid_unset(int cpupid)
1816 {
1817 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1818 }
1819 
cpupid_cpu_unset(int cpupid)1820 static inline bool cpupid_cpu_unset(int cpupid)
1821 {
1822 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1823 }
1824 
__cpupid_match_pid(pid_t task_pid,int cpupid)1825 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1826 {
1827 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1828 }
1829 
1830 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1831 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1832 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1833 {
1834 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1835 }
1836 
folio_last_cpupid(struct folio * folio)1837 static inline int folio_last_cpupid(struct folio *folio)
1838 {
1839 	return folio->_last_cpupid;
1840 }
page_cpupid_reset_last(struct page * page)1841 static inline void page_cpupid_reset_last(struct page *page)
1842 {
1843 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1844 }
1845 #else
folio_last_cpupid(struct folio * folio)1846 static inline int folio_last_cpupid(struct folio *folio)
1847 {
1848 	return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1849 }
1850 
1851 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1852 
page_cpupid_reset_last(struct page * page)1853 static inline void page_cpupid_reset_last(struct page *page)
1854 {
1855 	page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1856 }
1857 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1858 
folio_xchg_access_time(struct folio * folio,int time)1859 static inline int folio_xchg_access_time(struct folio *folio, int time)
1860 {
1861 	int last_time;
1862 
1863 	last_time = folio_xchg_last_cpupid(folio,
1864 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1865 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1866 }
1867 
vma_set_access_pid_bit(struct vm_area_struct * vma)1868 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1869 {
1870 	unsigned int pid_bit;
1871 
1872 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1873 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1874 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1875 	}
1876 }
1877 
1878 bool folio_use_access_time(struct folio *folio);
1879 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1880 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1881 {
1882 	return folio_nid(folio); /* XXX */
1883 }
1884 
folio_xchg_access_time(struct folio * folio,int time)1885 static inline int folio_xchg_access_time(struct folio *folio, int time)
1886 {
1887 	return 0;
1888 }
1889 
folio_last_cpupid(struct folio * folio)1890 static inline int folio_last_cpupid(struct folio *folio)
1891 {
1892 	return folio_nid(folio); /* XXX */
1893 }
1894 
cpupid_to_nid(int cpupid)1895 static inline int cpupid_to_nid(int cpupid)
1896 {
1897 	return -1;
1898 }
1899 
cpupid_to_pid(int cpupid)1900 static inline int cpupid_to_pid(int cpupid)
1901 {
1902 	return -1;
1903 }
1904 
cpupid_to_cpu(int cpupid)1905 static inline int cpupid_to_cpu(int cpupid)
1906 {
1907 	return -1;
1908 }
1909 
cpu_pid_to_cpupid(int nid,int pid)1910 static inline int cpu_pid_to_cpupid(int nid, int pid)
1911 {
1912 	return -1;
1913 }
1914 
cpupid_pid_unset(int cpupid)1915 static inline bool cpupid_pid_unset(int cpupid)
1916 {
1917 	return true;
1918 }
1919 
page_cpupid_reset_last(struct page * page)1920 static inline void page_cpupid_reset_last(struct page *page)
1921 {
1922 }
1923 
cpupid_match_pid(struct task_struct * task,int cpupid)1924 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1925 {
1926 	return false;
1927 }
1928 
vma_set_access_pid_bit(struct vm_area_struct * vma)1929 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1930 {
1931 }
folio_use_access_time(struct folio * folio)1932 static inline bool folio_use_access_time(struct folio *folio)
1933 {
1934 	return false;
1935 }
1936 #endif /* CONFIG_NUMA_BALANCING */
1937 
1938 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1939 
1940 /*
1941  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1942  * setting tags for all pages to native kernel tag value 0xff, as the default
1943  * value 0x00 maps to 0xff.
1944  */
1945 
page_kasan_tag(const struct page * page)1946 static inline u8 page_kasan_tag(const struct page *page)
1947 {
1948 	u8 tag = KASAN_TAG_KERNEL;
1949 
1950 	if (kasan_enabled()) {
1951 		tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1952 		tag ^= 0xff;
1953 	}
1954 
1955 	return tag;
1956 }
1957 
page_kasan_tag_set(struct page * page,u8 tag)1958 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1959 {
1960 	unsigned long old_flags, flags;
1961 
1962 	if (!kasan_enabled())
1963 		return;
1964 
1965 	tag ^= 0xff;
1966 	old_flags = READ_ONCE(page->flags.f);
1967 	do {
1968 		flags = old_flags;
1969 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1970 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1971 	} while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags)));
1972 }
1973 
page_kasan_tag_reset(struct page * page)1974 static inline void page_kasan_tag_reset(struct page *page)
1975 {
1976 	if (kasan_enabled())
1977 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1978 }
1979 
1980 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1981 
page_kasan_tag(const struct page * page)1982 static inline u8 page_kasan_tag(const struct page *page)
1983 {
1984 	return 0xff;
1985 }
1986 
page_kasan_tag_set(struct page * page,u8 tag)1987 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1988 static inline void page_kasan_tag_reset(struct page *page) { }
1989 
1990 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1991 
page_zone(const struct page * page)1992 static inline struct zone *page_zone(const struct page *page)
1993 {
1994 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1995 }
1996 
page_pgdat(const struct page * page)1997 static inline pg_data_t *page_pgdat(const struct page *page)
1998 {
1999 	return NODE_DATA(page_to_nid(page));
2000 }
2001 
folio_pgdat(const struct folio * folio)2002 static inline pg_data_t *folio_pgdat(const struct folio *folio)
2003 {
2004 	return NODE_DATA(folio_nid(folio));
2005 }
2006 
folio_zone(const struct folio * folio)2007 static inline struct zone *folio_zone(const struct folio *folio)
2008 {
2009 	return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)];
2010 }
2011 
2012 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)2013 static inline void set_page_section(struct page *page, unsigned long section)
2014 {
2015 	page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
2016 	page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
2017 }
2018 
memdesc_section(memdesc_flags_t mdf)2019 static inline unsigned long memdesc_section(memdesc_flags_t mdf)
2020 {
2021 	return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
2022 }
2023 #else /* !SECTION_IN_PAGE_FLAGS */
memdesc_section(memdesc_flags_t mdf)2024 static inline unsigned long memdesc_section(memdesc_flags_t mdf)
2025 {
2026 	return 0;
2027 }
2028 #endif /* SECTION_IN_PAGE_FLAGS */
2029 
2030 /**
2031  * folio_pfn - Return the Page Frame Number of a folio.
2032  * @folio: The folio.
2033  *
2034  * A folio may contain multiple pages.  The pages have consecutive
2035  * Page Frame Numbers.
2036  *
2037  * Return: The Page Frame Number of the first page in the folio.
2038  */
folio_pfn(const struct folio * folio)2039 static inline unsigned long folio_pfn(const struct folio *folio)
2040 {
2041 	return page_to_pfn(&folio->page);
2042 }
2043 
pfn_folio(unsigned long pfn)2044 static inline struct folio *pfn_folio(unsigned long pfn)
2045 {
2046 	return page_folio(pfn_to_page(pfn));
2047 }
2048 
2049 #ifdef CONFIG_MMU
mk_pte(const struct page * page,pgprot_t pgprot)2050 static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot)
2051 {
2052 	return pfn_pte(page_to_pfn(page), pgprot);
2053 }
2054 
2055 /**
2056  * folio_mk_pte - Create a PTE for this folio
2057  * @folio: The folio to create a PTE for
2058  * @pgprot: The page protection bits to use
2059  *
2060  * Create a page table entry for the first page of this folio.
2061  * This is suitable for passing to set_ptes().
2062  *
2063  * Return: A page table entry suitable for mapping this folio.
2064  */
folio_mk_pte(const struct folio * folio,pgprot_t pgprot)2065 static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot)
2066 {
2067 	return pfn_pte(folio_pfn(folio), pgprot);
2068 }
2069 
2070 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2071 /**
2072  * folio_mk_pmd - Create a PMD for this folio
2073  * @folio: The folio to create a PMD for
2074  * @pgprot: The page protection bits to use
2075  *
2076  * Create a page table entry for the first page of this folio.
2077  * This is suitable for passing to set_pmd_at().
2078  *
2079  * Return: A page table entry suitable for mapping this folio.
2080  */
folio_mk_pmd(const struct folio * folio,pgprot_t pgprot)2081 static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot)
2082 {
2083 	return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
2084 }
2085 
2086 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2087 /**
2088  * folio_mk_pud - Create a PUD for this folio
2089  * @folio: The folio to create a PUD for
2090  * @pgprot: The page protection bits to use
2091  *
2092  * Create a page table entry for the first page of this folio.
2093  * This is suitable for passing to set_pud_at().
2094  *
2095  * Return: A page table entry suitable for mapping this folio.
2096  */
folio_mk_pud(const struct folio * folio,pgprot_t pgprot)2097 static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot)
2098 {
2099 	return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
2100 }
2101 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2102 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2103 #endif /* CONFIG_MMU */
2104 
folio_has_pincount(const struct folio * folio)2105 static inline bool folio_has_pincount(const struct folio *folio)
2106 {
2107 	if (IS_ENABLED(CONFIG_64BIT))
2108 		return folio_test_large(folio);
2109 	return folio_order(folio) > 1;
2110 }
2111 
2112 /**
2113  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
2114  * @folio: The folio.
2115  *
2116  * This function checks if a folio has been pinned via a call to
2117  * a function in the pin_user_pages() family.
2118  *
2119  * For small folios, the return value is partially fuzzy: false is not fuzzy,
2120  * because it means "definitely not pinned for DMA", but true means "probably
2121  * pinned for DMA, but possibly a false positive due to having at least
2122  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2123  *
2124  * False positives are OK, because: a) it's unlikely for a folio to
2125  * get that many refcounts, and b) all the callers of this routine are
2126  * expected to be able to deal gracefully with a false positive.
2127  *
2128  * For most large folios, the result will be exactly correct. That's because
2129  * we have more tracking data available: the _pincount field is used
2130  * instead of the GUP_PIN_COUNTING_BIAS scheme.
2131  *
2132  * For more information, please see Documentation/core-api/pin_user_pages.rst.
2133  *
2134  * Return: True, if it is likely that the folio has been "dma-pinned".
2135  * False, if the folio is definitely not dma-pinned.
2136  */
folio_maybe_dma_pinned(struct folio * folio)2137 static inline bool folio_maybe_dma_pinned(struct folio *folio)
2138 {
2139 	if (folio_has_pincount(folio))
2140 		return atomic_read(&folio->_pincount) > 0;
2141 
2142 	/*
2143 	 * folio_ref_count() is signed. If that refcount overflows, then
2144 	 * folio_ref_count() returns a negative value, and callers will avoid
2145 	 * further incrementing the refcount.
2146 	 *
2147 	 * Here, for that overflow case, use the sign bit to count a little
2148 	 * bit higher via unsigned math, and thus still get an accurate result.
2149 	 */
2150 	return ((unsigned int)folio_ref_count(folio)) >=
2151 		GUP_PIN_COUNTING_BIAS;
2152 }
2153 
2154 /*
2155  * This should most likely only be called during fork() to see whether we
2156  * should break the cow immediately for an anon page on the src mm.
2157  *
2158  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2159  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)2160 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2161 					  struct folio *folio)
2162 {
2163 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2164 
2165 	if (!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))
2166 		return false;
2167 
2168 	return folio_maybe_dma_pinned(folio);
2169 }
2170 
2171 /**
2172  * is_zero_page - Query if a page is a zero page
2173  * @page: The page to query
2174  *
2175  * This returns true if @page is one of the permanent zero pages.
2176  */
is_zero_page(const struct page * page)2177 static inline bool is_zero_page(const struct page *page)
2178 {
2179 	return is_zero_pfn(page_to_pfn(page));
2180 }
2181 
2182 /**
2183  * is_zero_folio - Query if a folio is a zero page
2184  * @folio: The folio to query
2185  *
2186  * This returns true if @folio is one of the permanent zero pages.
2187  */
is_zero_folio(const struct folio * folio)2188 static inline bool is_zero_folio(const struct folio *folio)
2189 {
2190 	return is_zero_page(&folio->page);
2191 }
2192 
2193 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2194 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2195 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2196 {
2197 #ifdef CONFIG_CMA
2198 	int mt = folio_migratetype(folio);
2199 
2200 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2201 		return false;
2202 #endif
2203 	/* The zero page can be "pinned" but gets special handling. */
2204 	if (is_zero_folio(folio))
2205 		return true;
2206 
2207 	/* Coherent device memory must always allow eviction. */
2208 	if (folio_is_device_coherent(folio))
2209 		return false;
2210 
2211 	/*
2212 	 * Filesystems can only tolerate transient delays to truncate and
2213 	 * hole-punch operations
2214 	 */
2215 	if (folio_is_fsdax(folio))
2216 		return false;
2217 
2218 	/* Otherwise, non-movable zone folios can be pinned. */
2219 	return !folio_is_zone_movable(folio);
2220 
2221 }
2222 #else
folio_is_longterm_pinnable(struct folio * folio)2223 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2224 {
2225 	return true;
2226 }
2227 #endif
2228 
set_page_zone(struct page * page,enum zone_type zone)2229 static inline void set_page_zone(struct page *page, enum zone_type zone)
2230 {
2231 	page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT);
2232 	page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2233 }
2234 
set_page_node(struct page * page,unsigned long node)2235 static inline void set_page_node(struct page *page, unsigned long node)
2236 {
2237 	page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT);
2238 	page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT;
2239 }
2240 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2241 static inline void set_page_links(struct page *page, enum zone_type zone,
2242 	unsigned long node, unsigned long pfn)
2243 {
2244 	set_page_zone(page, zone);
2245 	set_page_node(page, node);
2246 #ifdef SECTION_IN_PAGE_FLAGS
2247 	set_page_section(page, pfn_to_section_nr(pfn));
2248 #endif
2249 }
2250 
2251 /**
2252  * folio_nr_pages - The number of pages in the folio.
2253  * @folio: The folio.
2254  *
2255  * Return: A positive power of two.
2256  */
folio_nr_pages(const struct folio * folio)2257 static inline unsigned long folio_nr_pages(const struct folio *folio)
2258 {
2259 	if (!folio_test_large(folio))
2260 		return 1;
2261 	return folio_large_nr_pages(folio);
2262 }
2263 
2264 #if !defined(CONFIG_HAVE_GIGANTIC_FOLIOS)
2265 /*
2266  * We don't expect any folios that exceed buddy sizes (and consequently
2267  * memory sections).
2268  */
2269 #define MAX_FOLIO_ORDER		MAX_PAGE_ORDER
2270 #elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
2271 /*
2272  * Only pages within a single memory section are guaranteed to be
2273  * contiguous. By limiting folios to a single memory section, all folio
2274  * pages are guaranteed to be contiguous.
2275  */
2276 #define MAX_FOLIO_ORDER		PFN_SECTION_SHIFT
2277 #elif defined(CONFIG_HUGETLB_PAGE)
2278 /*
2279  * There is no real limit on the folio size. We limit them to the maximum we
2280  * currently expect (see CONFIG_HAVE_GIGANTIC_FOLIOS): with hugetlb, we expect
2281  * no folios larger than 16 GiB on 64bit and 1 GiB on 32bit.
2282  */
2283 #define MAX_FOLIO_ORDER		get_order(IS_ENABLED(CONFIG_64BIT) ? SZ_16G : SZ_1G)
2284 #else
2285 /*
2286  * Without hugetlb, gigantic folios that are bigger than a single PUD are
2287  * currently impossible.
2288  */
2289 #define MAX_FOLIO_ORDER		PUD_ORDER
2290 #endif
2291 
2292 #define MAX_FOLIO_NR_PAGES	(1UL << MAX_FOLIO_ORDER)
2293 
2294 /*
2295  * compound_nr() returns the number of pages in this potentially compound
2296  * page.  compound_nr() can be called on a tail page, and is defined to
2297  * return 1 in that case.
2298  */
compound_nr(const struct page * page)2299 static inline unsigned long compound_nr(const struct page *page)
2300 {
2301 	const struct folio *folio = (struct folio *)page;
2302 
2303 	if (!test_bit(PG_head, &folio->flags.f))
2304 		return 1;
2305 	return folio_large_nr_pages(folio);
2306 }
2307 
2308 /**
2309  * folio_next - Move to the next physical folio.
2310  * @folio: The folio we're currently operating on.
2311  *
2312  * If you have physically contiguous memory which may span more than
2313  * one folio (eg a &struct bio_vec), use this function to move from one
2314  * folio to the next.  Do not use it if the memory is only virtually
2315  * contiguous as the folios are almost certainly not adjacent to each
2316  * other.  This is the folio equivalent to writing ``page++``.
2317  *
2318  * Context: We assume that the folios are refcounted and/or locked at a
2319  * higher level and do not adjust the reference counts.
2320  * Return: The next struct folio.
2321  */
folio_next(struct folio * folio)2322 static inline struct folio *folio_next(struct folio *folio)
2323 {
2324 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2325 }
2326 
2327 /**
2328  * folio_shift - The size of the memory described by this folio.
2329  * @folio: The folio.
2330  *
2331  * A folio represents a number of bytes which is a power-of-two in size.
2332  * This function tells you which power-of-two the folio is.  See also
2333  * folio_size() and folio_order().
2334  *
2335  * Context: The caller should have a reference on the folio to prevent
2336  * it from being split.  It is not necessary for the folio to be locked.
2337  * Return: The base-2 logarithm of the size of this folio.
2338  */
folio_shift(const struct folio * folio)2339 static inline unsigned int folio_shift(const struct folio *folio)
2340 {
2341 	return PAGE_SHIFT + folio_order(folio);
2342 }
2343 
2344 /**
2345  * folio_size - The number of bytes in a folio.
2346  * @folio: The folio.
2347  *
2348  * Context: The caller should have a reference on the folio to prevent
2349  * it from being split.  It is not necessary for the folio to be locked.
2350  * Return: The number of bytes in this folio.
2351  */
folio_size(const struct folio * folio)2352 static inline size_t folio_size(const struct folio *folio)
2353 {
2354 	return PAGE_SIZE << folio_order(folio);
2355 }
2356 
2357 /**
2358  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2359  *			       tables of more than one MM
2360  * @folio: The folio.
2361  *
2362  * This function checks if the folio maybe currently mapped into more than one
2363  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2364  * MM ("mapped exclusively").
2365  *
2366  * For KSM folios, this function also returns "mapped shared" when a folio is
2367  * mapped multiple times into the same MM, because the individual page mappings
2368  * are independent.
2369  *
2370  * For small anonymous folios and anonymous hugetlb folios, the return
2371  * value will be exactly correct: non-KSM folios can only be mapped at most once
2372  * into an MM, and they cannot be partially mapped. KSM folios are
2373  * considered shared even if mapped multiple times into the same MM.
2374  *
2375  * For other folios, the result can be fuzzy:
2376  *    #. For partially-mappable large folios (THP), the return value can wrongly
2377  *       indicate "mapped shared" (false positive) if a folio was mapped by
2378  *       more than two MMs at one point in time.
2379  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2380  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2381  *       cover the same file range.
2382  *
2383  * Further, this function only considers current page table mappings that
2384  * are tracked using the folio mapcount(s).
2385  *
2386  * This function does not consider:
2387  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2388  *       pagecache, temporary unmapping for migration).
2389  *    #. If the folio is mapped differently (VM_PFNMAP).
2390  *    #. If hugetlb page table sharing applies. Callers might want to check
2391  *       hugetlb_pmd_shared().
2392  *
2393  * Return: Whether the folio is estimated to be mapped into more than one MM.
2394  */
folio_maybe_mapped_shared(struct folio * folio)2395 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2396 {
2397 	int mapcount = folio_mapcount(folio);
2398 
2399 	/* Only partially-mappable folios require more care. */
2400 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2401 		return mapcount > 1;
2402 
2403 	/*
2404 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2405 	 * simply assume "mapped shared", nobody should really care
2406 	 * about this for arbitrary kernel allocations.
2407 	 */
2408 	if (!IS_ENABLED(CONFIG_MM_ID))
2409 		return true;
2410 
2411 	/*
2412 	 * A single mapping implies "mapped exclusively", even if the
2413 	 * folio flag says something different: it's easier to handle this
2414 	 * case here instead of on the RMAP hot path.
2415 	 */
2416 	if (mapcount <= 1)
2417 		return false;
2418 	return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2419 }
2420 
2421 /**
2422  * folio_expected_ref_count - calculate the expected folio refcount
2423  * @folio: the folio
2424  *
2425  * Calculate the expected folio refcount, taking references from the pagecache,
2426  * swapcache, PG_private and page table mappings into account. Useful in
2427  * combination with folio_ref_count() to detect unexpected references (e.g.,
2428  * GUP or other temporary references).
2429  *
2430  * Does currently not consider references from the LRU cache. If the folio
2431  * was isolated from the LRU (which is the case during migration or split),
2432  * the LRU cache does not apply.
2433  *
2434  * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2435  * locked will return a stable result.
2436  *
2437  * Calling this function on a mapped folio will not result in a stable result,
2438  * because nothing stops additional page table mappings from coming (e.g.,
2439  * fork()) or going (e.g., munmap()).
2440  *
2441  * Calling this function without the folio lock will also not result in a
2442  * stable result: for example, the folio might get dropped from the swapcache
2443  * concurrently.
2444  *
2445  * However, even when called without the folio lock or on a mapped folio,
2446  * this function can be used to detect unexpected references early (for example,
2447  * if it makes sense to even lock the folio and unmap it).
2448  *
2449  * The caller must add any reference (e.g., from folio_try_get()) it might be
2450  * holding itself to the result.
2451  *
2452  * Returns the expected folio refcount.
2453  */
folio_expected_ref_count(const struct folio * folio)2454 static inline int folio_expected_ref_count(const struct folio *folio)
2455 {
2456 	const int order = folio_order(folio);
2457 	int ref_count = 0;
2458 
2459 	if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2460 		return 0;
2461 
2462 	if (folio_test_anon(folio)) {
2463 		/* One reference per page from the swapcache. */
2464 		ref_count += folio_test_swapcache(folio) << order;
2465 	} else {
2466 		/* One reference per page from the pagecache. */
2467 		ref_count += !!folio->mapping << order;
2468 		/* One reference from PG_private. */
2469 		ref_count += folio_test_private(folio);
2470 	}
2471 
2472 	/* One reference per page table mapping. */
2473 	return ref_count + folio_mapcount(folio);
2474 }
2475 
2476 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2477 static inline int arch_make_folio_accessible(struct folio *folio)
2478 {
2479 	return 0;
2480 }
2481 #endif
2482 
2483 /*
2484  * Some inline functions in vmstat.h depend on page_zone()
2485  */
2486 #include <linux/vmstat.h>
2487 
2488 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2489 #define HASHED_PAGE_VIRTUAL
2490 #endif
2491 
2492 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2493 static inline void *page_address(const struct page *page)
2494 {
2495 	return page->virtual;
2496 }
set_page_address(struct page * page,void * address)2497 static inline void set_page_address(struct page *page, void *address)
2498 {
2499 	page->virtual = address;
2500 }
2501 #define page_address_init()  do { } while(0)
2502 #endif
2503 
2504 #if defined(HASHED_PAGE_VIRTUAL)
2505 void *page_address(const struct page *page);
2506 void set_page_address(struct page *page, void *virtual);
2507 void page_address_init(void);
2508 #endif
2509 
lowmem_page_address(const struct page * page)2510 static __always_inline void *lowmem_page_address(const struct page *page)
2511 {
2512 	return page_to_virt(page);
2513 }
2514 
2515 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2516 #define page_address(page) lowmem_page_address(page)
2517 #define set_page_address(page, address)  do { } while(0)
2518 #define page_address_init()  do { } while(0)
2519 #endif
2520 
folio_address(const struct folio * folio)2521 static inline void *folio_address(const struct folio *folio)
2522 {
2523 	return page_address(&folio->page);
2524 }
2525 
2526 /*
2527  * Return true only if the page has been allocated with
2528  * ALLOC_NO_WATERMARKS and the low watermark was not
2529  * met implying that the system is under some pressure.
2530  */
page_is_pfmemalloc(const struct page * page)2531 static inline bool page_is_pfmemalloc(const struct page *page)
2532 {
2533 	/*
2534 	 * lru.next has bit 1 set if the page is allocated from the
2535 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2536 	 * they do not need to preserve that information.
2537 	 */
2538 	return (uintptr_t)page->lru.next & BIT(1);
2539 }
2540 
2541 /*
2542  * Return true only if the folio has been allocated with
2543  * ALLOC_NO_WATERMARKS and the low watermark was not
2544  * met implying that the system is under some pressure.
2545  */
folio_is_pfmemalloc(const struct folio * folio)2546 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2547 {
2548 	/*
2549 	 * lru.next has bit 1 set if the page is allocated from the
2550 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2551 	 * they do not need to preserve that information.
2552 	 */
2553 	return (uintptr_t)folio->lru.next & BIT(1);
2554 }
2555 
2556 /*
2557  * Only to be called by the page allocator on a freshly allocated
2558  * page.
2559  */
set_page_pfmemalloc(struct page * page)2560 static inline void set_page_pfmemalloc(struct page *page)
2561 {
2562 	page->lru.next = (void *)BIT(1);
2563 }
2564 
clear_page_pfmemalloc(struct page * page)2565 static inline void clear_page_pfmemalloc(struct page *page)
2566 {
2567 	page->lru.next = NULL;
2568 }
2569 
2570 /*
2571  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2572  */
2573 extern void pagefault_out_of_memory(void);
2574 
2575 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2576 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2577 
2578 /*
2579  * Parameter block passed down to zap_pte_range in exceptional cases.
2580  */
2581 struct zap_details {
2582 	struct folio *single_folio;	/* Locked folio to be unmapped */
2583 	bool even_cows;			/* Zap COWed private pages too? */
2584 	bool reclaim_pt;		/* Need reclaim page tables? */
2585 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2586 };
2587 
2588 /*
2589  * Whether to drop the pte markers, for example, the uffd-wp information for
2590  * file-backed memory.  This should only be specified when we will completely
2591  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2592  * default, the flag is not set.
2593  */
2594 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2595 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2596 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2597 
2598 #ifdef CONFIG_MMU
2599 extern bool can_do_mlock(void);
2600 #else
can_do_mlock(void)2601 static inline bool can_do_mlock(void) { return false; }
2602 #endif
2603 extern int user_shm_lock(size_t, struct ucounts *);
2604 extern void user_shm_unlock(size_t, struct ucounts *);
2605 
2606 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2607 			     pte_t pte);
2608 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2609 			     pte_t pte);
2610 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2611 				  unsigned long addr, pmd_t pmd);
2612 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2613 				pmd_t pmd);
2614 struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr,
2615 		pud_t pud);
2616 
2617 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2618 		  unsigned long size);
2619 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2620 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2621 static inline void zap_vma_pages(struct vm_area_struct *vma)
2622 {
2623 	zap_page_range_single(vma, vma->vm_start,
2624 			      vma->vm_end - vma->vm_start, NULL);
2625 }
2626 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2627 		struct vm_area_struct *start_vma, unsigned long start,
2628 		unsigned long end, unsigned long tree_end);
2629 
2630 struct mmu_notifier_range;
2631 
2632 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2633 		unsigned long end, unsigned long floor, unsigned long ceiling);
2634 int
2635 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2636 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2637 			void *buf, int len, int write);
2638 
2639 struct follow_pfnmap_args {
2640 	/**
2641 	 * Inputs:
2642 	 * @vma: Pointer to @vm_area_struct struct
2643 	 * @address: the virtual address to walk
2644 	 */
2645 	struct vm_area_struct *vma;
2646 	unsigned long address;
2647 	/**
2648 	 * Internals:
2649 	 *
2650 	 * The caller shouldn't touch any of these.
2651 	 */
2652 	spinlock_t *lock;
2653 	pte_t *ptep;
2654 	/**
2655 	 * Outputs:
2656 	 *
2657 	 * @pfn: the PFN of the address
2658 	 * @addr_mask: address mask covering pfn
2659 	 * @pgprot: the pgprot_t of the mapping
2660 	 * @writable: whether the mapping is writable
2661 	 * @special: whether the mapping is a special mapping (real PFN maps)
2662 	 */
2663 	unsigned long pfn;
2664 	unsigned long addr_mask;
2665 	pgprot_t pgprot;
2666 	bool writable;
2667 	bool special;
2668 };
2669 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2670 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2671 
2672 extern void truncate_pagecache(struct inode *inode, loff_t new);
2673 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2674 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2675 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2676 int generic_error_remove_folio(struct address_space *mapping,
2677 		struct folio *folio);
2678 
2679 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2680 		unsigned long address, struct pt_regs *regs);
2681 
2682 #ifdef CONFIG_MMU
2683 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2684 				  unsigned long address, unsigned int flags,
2685 				  struct pt_regs *regs);
2686 extern int fixup_user_fault(struct mm_struct *mm,
2687 			    unsigned long address, unsigned int fault_flags,
2688 			    bool *unlocked);
2689 void unmap_mapping_pages(struct address_space *mapping,
2690 		pgoff_t start, pgoff_t nr, bool even_cows);
2691 void unmap_mapping_range(struct address_space *mapping,
2692 		loff_t const holebegin, loff_t const holelen, int even_cows);
2693 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2694 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2695 					 unsigned long address, unsigned int flags,
2696 					 struct pt_regs *regs)
2697 {
2698 	/* should never happen if there's no MMU */
2699 	BUG();
2700 	return VM_FAULT_SIGBUS;
2701 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2702 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2703 		unsigned int fault_flags, bool *unlocked)
2704 {
2705 	/* should never happen if there's no MMU */
2706 	BUG();
2707 	return -EFAULT;
2708 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2709 static inline void unmap_mapping_pages(struct address_space *mapping,
2710 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2711 static inline void unmap_mapping_range(struct address_space *mapping,
2712 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2713 #endif
2714 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2715 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2716 		loff_t const holebegin, loff_t const holelen)
2717 {
2718 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2719 }
2720 
2721 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2722 						unsigned long addr);
2723 
2724 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2725 		void *buf, int len, unsigned int gup_flags);
2726 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2727 		void *buf, int len, unsigned int gup_flags);
2728 
2729 #ifdef CONFIG_BPF_SYSCALL
2730 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2731 			      void *buf, int len, unsigned int gup_flags);
2732 #endif
2733 
2734 long get_user_pages_remote(struct mm_struct *mm,
2735 			   unsigned long start, unsigned long nr_pages,
2736 			   unsigned int gup_flags, struct page **pages,
2737 			   int *locked);
2738 long pin_user_pages_remote(struct mm_struct *mm,
2739 			   unsigned long start, unsigned long nr_pages,
2740 			   unsigned int gup_flags, struct page **pages,
2741 			   int *locked);
2742 
2743 /*
2744  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2745  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2746 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2747 						    unsigned long addr,
2748 						    int gup_flags,
2749 						    struct vm_area_struct **vmap)
2750 {
2751 	struct page *page;
2752 	struct vm_area_struct *vma;
2753 	int got;
2754 
2755 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2756 		return ERR_PTR(-EINVAL);
2757 
2758 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2759 
2760 	if (got < 0)
2761 		return ERR_PTR(got);
2762 
2763 	vma = vma_lookup(mm, addr);
2764 	if (WARN_ON_ONCE(!vma)) {
2765 		put_page(page);
2766 		return ERR_PTR(-EINVAL);
2767 	}
2768 
2769 	*vmap = vma;
2770 	return page;
2771 }
2772 
2773 long get_user_pages(unsigned long start, unsigned long nr_pages,
2774 		    unsigned int gup_flags, struct page **pages);
2775 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2776 		    unsigned int gup_flags, struct page **pages);
2777 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2778 		    struct page **pages, unsigned int gup_flags);
2779 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2780 		    struct page **pages, unsigned int gup_flags);
2781 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2782 		      struct folio **folios, unsigned int max_folios,
2783 		      pgoff_t *offset);
2784 int folio_add_pins(struct folio *folio, unsigned int pins);
2785 
2786 int get_user_pages_fast(unsigned long start, int nr_pages,
2787 			unsigned int gup_flags, struct page **pages);
2788 int pin_user_pages_fast(unsigned long start, int nr_pages,
2789 			unsigned int gup_flags, struct page **pages);
2790 void folio_add_pin(struct folio *folio);
2791 
2792 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2793 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2794 			const struct task_struct *task, bool bypass_rlim);
2795 
2796 struct kvec;
2797 struct page *get_dump_page(unsigned long addr, int *locked);
2798 
2799 bool folio_mark_dirty(struct folio *folio);
2800 bool folio_mark_dirty_lock(struct folio *folio);
2801 bool set_page_dirty(struct page *page);
2802 int set_page_dirty_lock(struct page *page);
2803 
2804 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2805 
2806 /*
2807  * Flags used by change_protection().  For now we make it a bitmap so
2808  * that we can pass in multiple flags just like parameters.  However
2809  * for now all the callers are only use one of the flags at the same
2810  * time.
2811  */
2812 /*
2813  * Whether we should manually check if we can map individual PTEs writable,
2814  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2815  * PTEs automatically in a writable mapping.
2816  */
2817 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2818 /* Whether this protection change is for NUMA hints */
2819 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2820 /* Whether this change is for write protecting */
2821 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2822 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2823 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2824 					    MM_CP_UFFD_WP_RESOLVE)
2825 
2826 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2827 			     pte_t pte);
2828 extern long change_protection(struct mmu_gather *tlb,
2829 			      struct vm_area_struct *vma, unsigned long start,
2830 			      unsigned long end, unsigned long cp_flags);
2831 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2832 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2833 	  unsigned long start, unsigned long end, vm_flags_t newflags);
2834 
2835 /*
2836  * doesn't attempt to fault and will return short.
2837  */
2838 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2839 			     unsigned int gup_flags, struct page **pages);
2840 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2841 static inline bool get_user_page_fast_only(unsigned long addr,
2842 			unsigned int gup_flags, struct page **pagep)
2843 {
2844 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2845 }
2846 /*
2847  * per-process(per-mm_struct) statistics.
2848  */
get_mm_counter(struct mm_struct * mm,int member)2849 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2850 {
2851 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2852 }
2853 
get_mm_counter_sum(struct mm_struct * mm,int member)2854 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2855 {
2856 	return percpu_counter_sum_positive(&mm->rss_stat[member]);
2857 }
2858 
2859 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2860 
add_mm_counter(struct mm_struct * mm,int member,long value)2861 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2862 {
2863 	percpu_counter_add(&mm->rss_stat[member], value);
2864 
2865 	mm_trace_rss_stat(mm, member);
2866 }
2867 
inc_mm_counter(struct mm_struct * mm,int member)2868 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2869 {
2870 	percpu_counter_inc(&mm->rss_stat[member]);
2871 
2872 	mm_trace_rss_stat(mm, member);
2873 }
2874 
dec_mm_counter(struct mm_struct * mm,int member)2875 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2876 {
2877 	percpu_counter_dec(&mm->rss_stat[member]);
2878 
2879 	mm_trace_rss_stat(mm, member);
2880 }
2881 
2882 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2883 static inline int mm_counter_file(struct folio *folio)
2884 {
2885 	if (folio_test_swapbacked(folio))
2886 		return MM_SHMEMPAGES;
2887 	return MM_FILEPAGES;
2888 }
2889 
mm_counter(struct folio * folio)2890 static inline int mm_counter(struct folio *folio)
2891 {
2892 	if (folio_test_anon(folio))
2893 		return MM_ANONPAGES;
2894 	return mm_counter_file(folio);
2895 }
2896 
get_mm_rss(struct mm_struct * mm)2897 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2898 {
2899 	return get_mm_counter(mm, MM_FILEPAGES) +
2900 		get_mm_counter(mm, MM_ANONPAGES) +
2901 		get_mm_counter(mm, MM_SHMEMPAGES);
2902 }
2903 
get_mm_hiwater_rss(struct mm_struct * mm)2904 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2905 {
2906 	return max(mm->hiwater_rss, get_mm_rss(mm));
2907 }
2908 
get_mm_hiwater_vm(struct mm_struct * mm)2909 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2910 {
2911 	return max(mm->hiwater_vm, mm->total_vm);
2912 }
2913 
update_hiwater_rss(struct mm_struct * mm)2914 static inline void update_hiwater_rss(struct mm_struct *mm)
2915 {
2916 	unsigned long _rss = get_mm_rss(mm);
2917 
2918 	if (data_race(mm->hiwater_rss) < _rss)
2919 		data_race(mm->hiwater_rss = _rss);
2920 }
2921 
update_hiwater_vm(struct mm_struct * mm)2922 static inline void update_hiwater_vm(struct mm_struct *mm)
2923 {
2924 	if (mm->hiwater_vm < mm->total_vm)
2925 		mm->hiwater_vm = mm->total_vm;
2926 }
2927 
reset_mm_hiwater_rss(struct mm_struct * mm)2928 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2929 {
2930 	mm->hiwater_rss = get_mm_rss(mm);
2931 }
2932 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2933 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2934 					 struct mm_struct *mm)
2935 {
2936 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2937 
2938 	if (*maxrss < hiwater_rss)
2939 		*maxrss = hiwater_rss;
2940 }
2941 
2942 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2943 static inline int pte_special(pte_t pte)
2944 {
2945 	return 0;
2946 }
2947 
pte_mkspecial(pte_t pte)2948 static inline pte_t pte_mkspecial(pte_t pte)
2949 {
2950 	return pte;
2951 }
2952 #endif
2953 
2954 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2955 static inline bool pmd_special(pmd_t pmd)
2956 {
2957 	return false;
2958 }
2959 
pmd_mkspecial(pmd_t pmd)2960 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2961 {
2962 	return pmd;
2963 }
2964 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2965 
2966 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2967 static inline bool pud_special(pud_t pud)
2968 {
2969 	return false;
2970 }
2971 
pud_mkspecial(pud_t pud)2972 static inline pud_t pud_mkspecial(pud_t pud)
2973 {
2974 	return pud;
2975 }
2976 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2977 
2978 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2979 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2980 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2981 				    spinlock_t **ptl)
2982 {
2983 	pte_t *ptep;
2984 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2985 	return ptep;
2986 }
2987 
2988 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2989 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2990 						unsigned long address)
2991 {
2992 	return 0;
2993 }
2994 #else
2995 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2996 #endif
2997 
2998 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2999 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
3000 						unsigned long address)
3001 {
3002 	return 0;
3003 }
mm_inc_nr_puds(struct mm_struct * mm)3004 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)3005 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
3006 
3007 #else
3008 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
3009 
mm_inc_nr_puds(struct mm_struct * mm)3010 static inline void mm_inc_nr_puds(struct mm_struct *mm)
3011 {
3012 	if (mm_pud_folded(mm))
3013 		return;
3014 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
3015 }
3016 
mm_dec_nr_puds(struct mm_struct * mm)3017 static inline void mm_dec_nr_puds(struct mm_struct *mm)
3018 {
3019 	if (mm_pud_folded(mm))
3020 		return;
3021 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
3022 }
3023 #endif
3024 
3025 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)3026 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
3027 						unsigned long address)
3028 {
3029 	return 0;
3030 }
3031 
mm_inc_nr_pmds(struct mm_struct * mm)3032 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)3033 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
3034 
3035 #else
3036 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
3037 
mm_inc_nr_pmds(struct mm_struct * mm)3038 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
3039 {
3040 	if (mm_pmd_folded(mm))
3041 		return;
3042 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
3043 }
3044 
mm_dec_nr_pmds(struct mm_struct * mm)3045 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
3046 {
3047 	if (mm_pmd_folded(mm))
3048 		return;
3049 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
3050 }
3051 #endif
3052 
3053 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)3054 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
3055 {
3056 	atomic_long_set(&mm->pgtables_bytes, 0);
3057 }
3058 
mm_pgtables_bytes(const struct mm_struct * mm)3059 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
3060 {
3061 	return atomic_long_read(&mm->pgtables_bytes);
3062 }
3063 
mm_inc_nr_ptes(struct mm_struct * mm)3064 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
3065 {
3066 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
3067 }
3068 
mm_dec_nr_ptes(struct mm_struct * mm)3069 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
3070 {
3071 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
3072 }
3073 #else
3074 
mm_pgtables_bytes_init(struct mm_struct * mm)3075 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)3076 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
3077 {
3078 	return 0;
3079 }
3080 
mm_inc_nr_ptes(struct mm_struct * mm)3081 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)3082 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
3083 #endif
3084 
3085 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
3086 int __pte_alloc_kernel(pmd_t *pmd);
3087 
3088 #if defined(CONFIG_MMU)
3089 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)3090 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
3091 		unsigned long address)
3092 {
3093 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
3094 		NULL : p4d_offset(pgd, address);
3095 }
3096 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)3097 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
3098 		unsigned long address)
3099 {
3100 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
3101 		NULL : pud_offset(p4d, address);
3102 }
3103 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)3104 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3105 {
3106 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
3107 		NULL: pmd_offset(pud, address);
3108 }
3109 #endif /* CONFIG_MMU */
3110 
3111 enum pt_flags {
3112 	PT_kernel = PG_referenced,
3113 	PT_reserved = PG_reserved,
3114 	/* High bits are used for zone/node/section */
3115 };
3116 
virt_to_ptdesc(const void * x)3117 static inline struct ptdesc *virt_to_ptdesc(const void *x)
3118 {
3119 	return page_ptdesc(virt_to_page(x));
3120 }
3121 
3122 /**
3123  * ptdesc_address - Virtual address of page table.
3124  * @pt: Page table descriptor.
3125  *
3126  * Return: The first byte of the page table described by @pt.
3127  */
ptdesc_address(const struct ptdesc * pt)3128 static inline void *ptdesc_address(const struct ptdesc *pt)
3129 {
3130 	return folio_address(ptdesc_folio(pt));
3131 }
3132 
pagetable_is_reserved(struct ptdesc * pt)3133 static inline bool pagetable_is_reserved(struct ptdesc *pt)
3134 {
3135 	return test_bit(PT_reserved, &pt->pt_flags.f);
3136 }
3137 
3138 /**
3139  * ptdesc_set_kernel - Mark a ptdesc used to map the kernel
3140  * @ptdesc: The ptdesc to be marked
3141  *
3142  * Kernel page tables often need special handling. Set a flag so that
3143  * the handling code knows this ptdesc will not be used for userspace.
3144  */
ptdesc_set_kernel(struct ptdesc * ptdesc)3145 static inline void ptdesc_set_kernel(struct ptdesc *ptdesc)
3146 {
3147 	set_bit(PT_kernel, &ptdesc->pt_flags.f);
3148 }
3149 
3150 /**
3151  * ptdesc_clear_kernel - Mark a ptdesc as no longer used to map the kernel
3152  * @ptdesc: The ptdesc to be unmarked
3153  *
3154  * Use when the ptdesc is no longer used to map the kernel and no longer
3155  * needs special handling.
3156  */
ptdesc_clear_kernel(struct ptdesc * ptdesc)3157 static inline void ptdesc_clear_kernel(struct ptdesc *ptdesc)
3158 {
3159 	/*
3160 	 * Note: the 'PG_referenced' bit does not strictly need to be
3161 	 * cleared before freeing the page. But this is nice for
3162 	 * symmetry.
3163 	 */
3164 	clear_bit(PT_kernel, &ptdesc->pt_flags.f);
3165 }
3166 
3167 /**
3168  * ptdesc_test_kernel - Check if a ptdesc is used to map the kernel
3169  * @ptdesc: The ptdesc being tested
3170  *
3171  * Call to tell if the ptdesc used to map the kernel.
3172  */
ptdesc_test_kernel(const struct ptdesc * ptdesc)3173 static inline bool ptdesc_test_kernel(const struct ptdesc *ptdesc)
3174 {
3175 	return test_bit(PT_kernel, &ptdesc->pt_flags.f);
3176 }
3177 
3178 /**
3179  * pagetable_alloc - Allocate pagetables
3180  * @gfp:    GFP flags
3181  * @order:  desired pagetable order
3182  *
3183  * pagetable_alloc allocates memory for page tables as well as a page table
3184  * descriptor to describe that memory.
3185  *
3186  * Return: The ptdesc describing the allocated page tables.
3187  */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)3188 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
3189 {
3190 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
3191 
3192 	return page_ptdesc(page);
3193 }
3194 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
3195 
__pagetable_free(struct ptdesc * pt)3196 static inline void __pagetable_free(struct ptdesc *pt)
3197 {
3198 	struct page *page = ptdesc_page(pt);
3199 
3200 	__free_pages(page, compound_order(page));
3201 }
3202 
3203 #ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE
3204 void pagetable_free_kernel(struct ptdesc *pt);
3205 #else
pagetable_free_kernel(struct ptdesc * pt)3206 static inline void pagetable_free_kernel(struct ptdesc *pt)
3207 {
3208 	__pagetable_free(pt);
3209 }
3210 #endif
3211 /**
3212  * pagetable_free - Free pagetables
3213  * @pt:	The page table descriptor
3214  *
3215  * pagetable_free frees the memory of all page tables described by a page
3216  * table descriptor and the memory for the descriptor itself.
3217  */
pagetable_free(struct ptdesc * pt)3218 static inline void pagetable_free(struct ptdesc *pt)
3219 {
3220 	if (ptdesc_test_kernel(pt)) {
3221 		ptdesc_clear_kernel(pt);
3222 		pagetable_free_kernel(pt);
3223 	} else {
3224 		__pagetable_free(pt);
3225 	}
3226 }
3227 
3228 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3229 #if ALLOC_SPLIT_PTLOCKS
3230 void __init ptlock_cache_init(void);
3231 bool ptlock_alloc(struct ptdesc *ptdesc);
3232 void ptlock_free(struct ptdesc *ptdesc);
3233 
ptlock_ptr(struct ptdesc * ptdesc)3234 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3235 {
3236 	return ptdesc->ptl;
3237 }
3238 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)3239 static inline void ptlock_cache_init(void)
3240 {
3241 }
3242 
ptlock_alloc(struct ptdesc * ptdesc)3243 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3244 {
3245 	return true;
3246 }
3247 
ptlock_free(struct ptdesc * ptdesc)3248 static inline void ptlock_free(struct ptdesc *ptdesc)
3249 {
3250 }
3251 
ptlock_ptr(struct ptdesc * ptdesc)3252 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3253 {
3254 	return &ptdesc->ptl;
3255 }
3256 #endif /* ALLOC_SPLIT_PTLOCKS */
3257 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3258 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3259 {
3260 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3261 }
3262 
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3263 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3264 {
3265 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3266 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3267 	return ptlock_ptr(virt_to_ptdesc(pte));
3268 }
3269 
ptlock_init(struct ptdesc * ptdesc)3270 static inline bool ptlock_init(struct ptdesc *ptdesc)
3271 {
3272 	/*
3273 	 * prep_new_page() initialize page->private (and therefore page->ptl)
3274 	 * with 0. Make sure nobody took it in use in between.
3275 	 *
3276 	 * It can happen if arch try to use slab for page table allocation:
3277 	 * slab code uses page->slab_cache, which share storage with page->ptl.
3278 	 */
3279 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3280 	if (!ptlock_alloc(ptdesc))
3281 		return false;
3282 	spin_lock_init(ptlock_ptr(ptdesc));
3283 	return true;
3284 }
3285 
3286 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3287 /*
3288  * We use mm->page_table_lock to guard all pagetable pages of the mm.
3289  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3290 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3291 {
3292 	return &mm->page_table_lock;
3293 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3294 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3295 {
3296 	return &mm->page_table_lock;
3297 }
ptlock_cache_init(void)3298 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)3299 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)3300 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3301 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3302 
ptdesc_nr_pages(const struct ptdesc * ptdesc)3303 static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc)
3304 {
3305 	return compound_nr(ptdesc_page(ptdesc));
3306 }
3307 
__pagetable_ctor(struct ptdesc * ptdesc)3308 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3309 {
3310 	pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3311 
3312 	__SetPageTable(ptdesc_page(ptdesc));
3313 	mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc));
3314 }
3315 
pagetable_dtor(struct ptdesc * ptdesc)3316 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3317 {
3318 	pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3319 
3320 	ptlock_free(ptdesc);
3321 	__ClearPageTable(ptdesc_page(ptdesc));
3322 	mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc));
3323 }
3324 
pagetable_dtor_free(struct ptdesc * ptdesc)3325 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3326 {
3327 	pagetable_dtor(ptdesc);
3328 	pagetable_free(ptdesc);
3329 }
3330 
pagetable_pte_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3331 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
3332 				      struct ptdesc *ptdesc)
3333 {
3334 	if (mm != &init_mm && !ptlock_init(ptdesc))
3335 		return false;
3336 	__pagetable_ctor(ptdesc);
3337 	return true;
3338 }
3339 
3340 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3341 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3342 			pmd_t *pmdvalp)
3343 {
3344 	pte_t *pte;
3345 
3346 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3347 	return pte;
3348 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3349 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3350 {
3351 	return __pte_offset_map(pmd, addr, NULL);
3352 }
3353 
3354 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3355 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3356 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3357 			unsigned long addr, spinlock_t **ptlp)
3358 {
3359 	pte_t *pte;
3360 
3361 	__cond_lock(RCU, __cond_lock(*ptlp,
3362 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3363 	return pte;
3364 }
3365 
3366 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3367 				unsigned long addr, spinlock_t **ptlp);
3368 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3369 				unsigned long addr, pmd_t *pmdvalp,
3370 				spinlock_t **ptlp);
3371 
3372 #define pte_unmap_unlock(pte, ptl)	do {		\
3373 	spin_unlock(ptl);				\
3374 	pte_unmap(pte);					\
3375 } while (0)
3376 
3377 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3378 
3379 #define pte_alloc_map(mm, pmd, address)			\
3380 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3381 
3382 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3383 	(pte_alloc(mm, pmd) ?			\
3384 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3385 
3386 #define pte_alloc_kernel(pmd, address)			\
3387 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3388 		NULL: pte_offset_kernel(pmd, address))
3389 
3390 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3391 
pmd_pgtable_page(pmd_t * pmd)3392 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3393 {
3394 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3395 	return virt_to_page((void *)((unsigned long) pmd & mask));
3396 }
3397 
pmd_ptdesc(pmd_t * pmd)3398 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3399 {
3400 	return page_ptdesc(pmd_pgtable_page(pmd));
3401 }
3402 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3403 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3404 {
3405 	return ptlock_ptr(pmd_ptdesc(pmd));
3406 }
3407 
pmd_ptlock_init(struct ptdesc * ptdesc)3408 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3409 {
3410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3411 	ptdesc->pmd_huge_pte = NULL;
3412 #endif
3413 	return ptlock_init(ptdesc);
3414 }
3415 
3416 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3417 
3418 #else
3419 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3420 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3421 {
3422 	return &mm->page_table_lock;
3423 }
3424 
pmd_ptlock_init(struct ptdesc * ptdesc)3425 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3426 
3427 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3428 
3429 #endif
3430 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3431 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3432 {
3433 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3434 	spin_lock(ptl);
3435 	return ptl;
3436 }
3437 
pagetable_pmd_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3438 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3439 				      struct ptdesc *ptdesc)
3440 {
3441 	if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3442 		return false;
3443 	ptdesc_pmd_pts_init(ptdesc);
3444 	__pagetable_ctor(ptdesc);
3445 	return true;
3446 }
3447 
3448 /*
3449  * No scalability reason to split PUD locks yet, but follow the same pattern
3450  * as the PMD locks to make it easier if we decide to.  The VM should not be
3451  * considered ready to switch to split PUD locks yet; there may be places
3452  * which need to be converted from page_table_lock.
3453  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3454 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3455 {
3456 	return &mm->page_table_lock;
3457 }
3458 
pud_lock(struct mm_struct * mm,pud_t * pud)3459 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3460 {
3461 	spinlock_t *ptl = pud_lockptr(mm, pud);
3462 
3463 	spin_lock(ptl);
3464 	return ptl;
3465 }
3466 
pagetable_pud_ctor(struct ptdesc * ptdesc)3467 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3468 {
3469 	__pagetable_ctor(ptdesc);
3470 }
3471 
pagetable_p4d_ctor(struct ptdesc * ptdesc)3472 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3473 {
3474 	__pagetable_ctor(ptdesc);
3475 }
3476 
pagetable_pgd_ctor(struct ptdesc * ptdesc)3477 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3478 {
3479 	__pagetable_ctor(ptdesc);
3480 }
3481 
3482 extern void __init pagecache_init(void);
3483 extern void free_initmem(void);
3484 
3485 /*
3486  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3487  * into the buddy system. The freed pages will be poisoned with pattern
3488  * "poison" if it's within range [0, UCHAR_MAX].
3489  * Return pages freed into the buddy system.
3490  */
3491 extern unsigned long free_reserved_area(void *start, void *end,
3492 					int poison, const char *s);
3493 
3494 extern void adjust_managed_page_count(struct page *page, long count);
3495 
3496 extern void reserve_bootmem_region(phys_addr_t start,
3497 				   phys_addr_t end, int nid);
3498 
3499 /* Free the reserved page into the buddy system, so it gets managed. */
3500 void free_reserved_page(struct page *page);
3501 
mark_page_reserved(struct page * page)3502 static inline void mark_page_reserved(struct page *page)
3503 {
3504 	SetPageReserved(page);
3505 	adjust_managed_page_count(page, -1);
3506 }
3507 
free_reserved_ptdesc(struct ptdesc * pt)3508 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3509 {
3510 	free_reserved_page(ptdesc_page(pt));
3511 }
3512 
3513 /*
3514  * Default method to free all the __init memory into the buddy system.
3515  * The freed pages will be poisoned with pattern "poison" if it's within
3516  * range [0, UCHAR_MAX].
3517  * Return pages freed into the buddy system.
3518  */
free_initmem_default(int poison)3519 static inline unsigned long free_initmem_default(int poison)
3520 {
3521 	extern char __init_begin[], __init_end[];
3522 
3523 	return free_reserved_area(&__init_begin, &__init_end,
3524 				  poison, "unused kernel image (initmem)");
3525 }
3526 
get_num_physpages(void)3527 static inline unsigned long get_num_physpages(void)
3528 {
3529 	int nid;
3530 	unsigned long phys_pages = 0;
3531 
3532 	for_each_online_node(nid)
3533 		phys_pages += node_present_pages(nid);
3534 
3535 	return phys_pages;
3536 }
3537 
3538 /*
3539  * Using memblock node mappings, an architecture may initialise its
3540  * zones, allocate the backing mem_map and account for memory holes in an
3541  * architecture independent manner.
3542  *
3543  * An architecture is expected to register range of page frames backed by
3544  * physical memory with memblock_add[_node]() before calling
3545  * free_area_init() passing in the PFN each zone ends at. At a basic
3546  * usage, an architecture is expected to do something like
3547  *
3548  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3549  * 							 max_highmem_pfn};
3550  * for_each_valid_physical_page_range()
3551  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3552  * free_area_init(max_zone_pfns);
3553  */
3554 void free_area_init(unsigned long *max_zone_pfn);
3555 unsigned long node_map_pfn_alignment(void);
3556 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3557 						unsigned long end_pfn);
3558 extern void get_pfn_range_for_nid(unsigned int nid,
3559 			unsigned long *start_pfn, unsigned long *end_pfn);
3560 
3561 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3562 static inline int early_pfn_to_nid(unsigned long pfn)
3563 {
3564 	return 0;
3565 }
3566 #else
3567 /* please see mm/page_alloc.c */
3568 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3569 #endif
3570 
3571 extern void mem_init(void);
3572 extern void __init mmap_init(void);
3573 
3574 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3575 static inline void show_mem(void)
3576 {
3577 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3578 }
3579 extern long si_mem_available(void);
3580 extern void si_meminfo(struct sysinfo * val);
3581 extern void si_meminfo_node(struct sysinfo *val, int nid);
3582 
3583 extern __printf(3, 4)
3584 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3585 
3586 extern void setup_per_cpu_pageset(void);
3587 
3588 /* nommu.c */
3589 extern atomic_long_t mmap_pages_allocated;
3590 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3591 
3592 /* interval_tree.c */
3593 void vma_interval_tree_insert(struct vm_area_struct *node,
3594 			      struct rb_root_cached *root);
3595 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3596 				    struct vm_area_struct *prev,
3597 				    struct rb_root_cached *root);
3598 void vma_interval_tree_remove(struct vm_area_struct *node,
3599 			      struct rb_root_cached *root);
3600 struct vm_area_struct *vma_interval_tree_subtree_search(struct vm_area_struct *node,
3601 				unsigned long start, unsigned long last);
3602 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3603 				unsigned long start, unsigned long last);
3604 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3605 				unsigned long start, unsigned long last);
3606 
3607 #define vma_interval_tree_foreach(vma, root, start, last)		\
3608 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3609 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3610 
3611 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3612 				   struct rb_root_cached *root);
3613 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3614 				   struct rb_root_cached *root);
3615 struct anon_vma_chain *
3616 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3617 				  unsigned long start, unsigned long last);
3618 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3619 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3620 #ifdef CONFIG_DEBUG_VM_RB
3621 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3622 #endif
3623 
3624 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3625 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3626 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3627 
3628 /* mmap.c */
3629 extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin);
3630 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3631 extern void exit_mmap(struct mm_struct *);
3632 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3633 				 unsigned long addr, bool write);
3634 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3635 static inline int check_data_rlimit(unsigned long rlim,
3636 				    unsigned long new,
3637 				    unsigned long start,
3638 				    unsigned long end_data,
3639 				    unsigned long start_data)
3640 {
3641 	if (rlim < RLIM_INFINITY) {
3642 		if (((new - start) + (end_data - start_data)) > rlim)
3643 			return -ENOSPC;
3644 	}
3645 
3646 	return 0;
3647 }
3648 
3649 extern int mm_take_all_locks(struct mm_struct *mm);
3650 extern void mm_drop_all_locks(struct mm_struct *mm);
3651 
3652 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3653 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3654 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3655 extern struct file *get_task_exe_file(struct task_struct *task);
3656 
3657 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3658 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3659 
3660 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3661 				   const struct vm_special_mapping *sm);
3662 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3663 				   unsigned long addr, unsigned long len,
3664 				   vm_flags_t vm_flags,
3665 				   const struct vm_special_mapping *spec);
3666 
3667 unsigned long randomize_stack_top(unsigned long stack_top);
3668 unsigned long randomize_page(unsigned long start, unsigned long range);
3669 
3670 unsigned long
3671 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3672 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3673 
3674 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3675 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3676 		  unsigned long pgoff, unsigned long flags)
3677 {
3678 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3679 }
3680 
3681 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3682 	unsigned long len, unsigned long prot, unsigned long flags,
3683 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3684 	struct list_head *uf);
3685 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3686 			 unsigned long start, size_t len, struct list_head *uf,
3687 			 bool unlock);
3688 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3689 		    struct mm_struct *mm, unsigned long start,
3690 		    unsigned long end, struct list_head *uf, bool unlock);
3691 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3692 		     struct list_head *uf);
3693 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3694 
3695 #ifdef CONFIG_MMU
3696 extern int __mm_populate(unsigned long addr, unsigned long len,
3697 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3698 static inline void mm_populate(unsigned long addr, unsigned long len)
3699 {
3700 	/* Ignore errors */
3701 	(void) __mm_populate(addr, len, 1);
3702 }
3703 #else
mm_populate(unsigned long addr,unsigned long len)3704 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3705 #endif
3706 
3707 /* This takes the mm semaphore itself */
3708 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3709 extern int vm_munmap(unsigned long, size_t);
3710 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3711         unsigned long, unsigned long,
3712         unsigned long, unsigned long);
3713 
3714 struct vm_unmapped_area_info {
3715 #define VM_UNMAPPED_AREA_TOPDOWN 1
3716 	unsigned long flags;
3717 	unsigned long length;
3718 	unsigned long low_limit;
3719 	unsigned long high_limit;
3720 	unsigned long align_mask;
3721 	unsigned long align_offset;
3722 	unsigned long start_gap;
3723 };
3724 
3725 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3726 
3727 /* truncate.c */
3728 void truncate_inode_pages(struct address_space *mapping, loff_t lstart);
3729 void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart,
3730 		uoff_t lend);
3731 void truncate_inode_pages_final(struct address_space *mapping);
3732 
3733 /* generic vm_area_ops exported for stackable file systems */
3734 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3735 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3736 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3737 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3738 
3739 extern unsigned long stack_guard_gap;
3740 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3741 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3742 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3743 
3744 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3745 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3746 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3747 					     struct vm_area_struct **pprev);
3748 
3749 /*
3750  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3751  * NULL if none.  Assume start_addr < end_addr.
3752  */
3753 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3754 			unsigned long start_addr, unsigned long end_addr);
3755 
3756 /**
3757  * vma_lookup() - Find a VMA at a specific address
3758  * @mm: The process address space.
3759  * @addr: The user address.
3760  *
3761  * Return: The vm_area_struct at the given address, %NULL otherwise.
3762  */
3763 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3764 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3765 {
3766 	return mtree_load(&mm->mm_mt, addr);
3767 }
3768 
stack_guard_start_gap(const struct vm_area_struct * vma)3769 static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma)
3770 {
3771 	if (vma->vm_flags & VM_GROWSDOWN)
3772 		return stack_guard_gap;
3773 
3774 	/* See reasoning around the VM_SHADOW_STACK definition */
3775 	if (vma->vm_flags & VM_SHADOW_STACK)
3776 		return PAGE_SIZE;
3777 
3778 	return 0;
3779 }
3780 
vm_start_gap(const struct vm_area_struct * vma)3781 static inline unsigned long vm_start_gap(const struct vm_area_struct *vma)
3782 {
3783 	unsigned long gap = stack_guard_start_gap(vma);
3784 	unsigned long vm_start = vma->vm_start;
3785 
3786 	vm_start -= gap;
3787 	if (vm_start > vma->vm_start)
3788 		vm_start = 0;
3789 	return vm_start;
3790 }
3791 
vm_end_gap(const struct vm_area_struct * vma)3792 static inline unsigned long vm_end_gap(const struct vm_area_struct *vma)
3793 {
3794 	unsigned long vm_end = vma->vm_end;
3795 
3796 	if (vma->vm_flags & VM_GROWSUP) {
3797 		vm_end += stack_guard_gap;
3798 		if (vm_end < vma->vm_end)
3799 			vm_end = -PAGE_SIZE;
3800 	}
3801 	return vm_end;
3802 }
3803 
vma_pages(const struct vm_area_struct * vma)3804 static inline unsigned long vma_pages(const struct vm_area_struct *vma)
3805 {
3806 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3807 }
3808 
vma_desc_size(const struct vm_area_desc * desc)3809 static inline unsigned long vma_desc_size(const struct vm_area_desc *desc)
3810 {
3811 	return desc->end - desc->start;
3812 }
3813 
vma_desc_pages(const struct vm_area_desc * desc)3814 static inline unsigned long vma_desc_pages(const struct vm_area_desc *desc)
3815 {
3816 	return vma_desc_size(desc) >> PAGE_SHIFT;
3817 }
3818 
3819 /**
3820  * mmap_action_remap - helper for mmap_prepare hook to specify that a pure PFN
3821  * remap is required.
3822  * @desc: The VMA descriptor for the VMA requiring remap.
3823  * @start: The virtual address to start the remap from, must be within the VMA.
3824  * @start_pfn: The first PFN in the range to remap.
3825  * @size: The size of the range to remap, in bytes, at most spanning to the end
3826  * of the VMA.
3827  */
mmap_action_remap(struct vm_area_desc * desc,unsigned long start,unsigned long start_pfn,unsigned long size)3828 static inline void mmap_action_remap(struct vm_area_desc *desc,
3829 				     unsigned long start,
3830 				     unsigned long start_pfn,
3831 				     unsigned long size)
3832 {
3833 	struct mmap_action *action = &desc->action;
3834 
3835 	/* [start, start + size) must be within the VMA. */
3836 	WARN_ON_ONCE(start < desc->start || start >= desc->end);
3837 	WARN_ON_ONCE(start + size > desc->end);
3838 
3839 	action->type = MMAP_REMAP_PFN;
3840 	action->remap.start = start;
3841 	action->remap.start_pfn = start_pfn;
3842 	action->remap.size = size;
3843 	action->remap.pgprot = desc->page_prot;
3844 }
3845 
3846 /**
3847  * mmap_action_remap_full - helper for mmap_prepare hook to specify that the
3848  * entirety of a VMA should be PFN remapped.
3849  * @desc: The VMA descriptor for the VMA requiring remap.
3850  * @start_pfn: The first PFN in the range to remap.
3851  */
mmap_action_remap_full(struct vm_area_desc * desc,unsigned long start_pfn)3852 static inline void mmap_action_remap_full(struct vm_area_desc *desc,
3853 					  unsigned long start_pfn)
3854 {
3855 	mmap_action_remap(desc, desc->start, start_pfn, vma_desc_size(desc));
3856 }
3857 
3858 /**
3859  * mmap_action_ioremap - helper for mmap_prepare hook to specify that a pure PFN
3860  * I/O remap is required.
3861  * @desc: The VMA descriptor for the VMA requiring remap.
3862  * @start: The virtual address to start the remap from, must be within the VMA.
3863  * @start_pfn: The first PFN in the range to remap.
3864  * @size: The size of the range to remap, in bytes, at most spanning to the end
3865  * of the VMA.
3866  */
mmap_action_ioremap(struct vm_area_desc * desc,unsigned long start,unsigned long start_pfn,unsigned long size)3867 static inline void mmap_action_ioremap(struct vm_area_desc *desc,
3868 				       unsigned long start,
3869 				       unsigned long start_pfn,
3870 				       unsigned long size)
3871 {
3872 	mmap_action_remap(desc, start, start_pfn, size);
3873 	desc->action.type = MMAP_IO_REMAP_PFN;
3874 }
3875 
3876 /**
3877  * mmap_action_ioremap_full - helper for mmap_prepare hook to specify that the
3878  * entirety of a VMA should be PFN I/O remapped.
3879  * @desc: The VMA descriptor for the VMA requiring remap.
3880  * @start_pfn: The first PFN in the range to remap.
3881  */
mmap_action_ioremap_full(struct vm_area_desc * desc,unsigned long start_pfn)3882 static inline void mmap_action_ioremap_full(struct vm_area_desc *desc,
3883 					  unsigned long start_pfn)
3884 {
3885 	mmap_action_ioremap(desc, desc->start, start_pfn, vma_desc_size(desc));
3886 }
3887 
3888 void mmap_action_prepare(struct mmap_action *action,
3889 			 struct vm_area_desc *desc);
3890 int mmap_action_complete(struct mmap_action *action,
3891 			 struct vm_area_struct *vma);
3892 
3893 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3894 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3895 				unsigned long vm_start, unsigned long vm_end)
3896 {
3897 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3898 
3899 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3900 		vma = NULL;
3901 
3902 	return vma;
3903 }
3904 
range_in_vma(const struct vm_area_struct * vma,unsigned long start,unsigned long end)3905 static inline bool range_in_vma(const struct vm_area_struct *vma,
3906 				unsigned long start, unsigned long end)
3907 {
3908 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3909 }
3910 
3911 #ifdef CONFIG_MMU
3912 pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3913 void vma_set_page_prot(struct vm_area_struct *vma);
3914 #else
vm_get_page_prot(vm_flags_t vm_flags)3915 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3916 {
3917 	return __pgprot(0);
3918 }
vma_set_page_prot(struct vm_area_struct * vma)3919 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3920 {
3921 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3922 }
3923 #endif
3924 
3925 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3926 
3927 #ifdef CONFIG_NUMA_BALANCING
3928 unsigned long change_prot_numa(struct vm_area_struct *vma,
3929 			unsigned long start, unsigned long end);
3930 #endif
3931 
3932 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3933 		unsigned long addr);
3934 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3935 		    unsigned long pfn, unsigned long size, pgprot_t pgprot);
3936 
3937 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3938 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3939 			struct page **pages, unsigned long *num);
3940 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3941 				unsigned long num);
3942 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3943 				unsigned long num);
3944 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3945 			bool write);
3946 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3947 			unsigned long pfn);
3948 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3949 			unsigned long pfn, pgprot_t pgprot);
3950 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3951 			unsigned long pfn);
3952 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3953 		unsigned long addr, unsigned long pfn);
3954 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3955 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3956 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3957 				unsigned long addr, struct page *page)
3958 {
3959 	int err = vm_insert_page(vma, addr, page);
3960 
3961 	if (err == -ENOMEM)
3962 		return VM_FAULT_OOM;
3963 	if (err < 0 && err != -EBUSY)
3964 		return VM_FAULT_SIGBUS;
3965 
3966 	return VM_FAULT_NOPAGE;
3967 }
3968 
3969 #ifndef io_remap_pfn_range_pfn
io_remap_pfn_range_pfn(unsigned long pfn,unsigned long size)3970 static inline unsigned long io_remap_pfn_range_pfn(unsigned long pfn,
3971 		unsigned long size)
3972 {
3973 	return pfn;
3974 }
3975 #endif
3976 
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long orig_pfn,unsigned long size,pgprot_t orig_prot)3977 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3978 				     unsigned long addr, unsigned long orig_pfn,
3979 				     unsigned long size, pgprot_t orig_prot)
3980 {
3981 	const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
3982 	const pgprot_t prot = pgprot_decrypted(orig_prot);
3983 
3984 	return remap_pfn_range(vma, addr, pfn, size, prot);
3985 }
3986 
vmf_error(int err)3987 static inline vm_fault_t vmf_error(int err)
3988 {
3989 	if (err == -ENOMEM)
3990 		return VM_FAULT_OOM;
3991 	else if (err == -EHWPOISON)
3992 		return VM_FAULT_HWPOISON;
3993 	return VM_FAULT_SIGBUS;
3994 }
3995 
3996 /*
3997  * Convert errno to return value for ->page_mkwrite() calls.
3998  *
3999  * This should eventually be merged with vmf_error() above, but will need a
4000  * careful audit of all vmf_error() callers.
4001  */
vmf_fs_error(int err)4002 static inline vm_fault_t vmf_fs_error(int err)
4003 {
4004 	if (err == 0)
4005 		return VM_FAULT_LOCKED;
4006 	if (err == -EFAULT || err == -EAGAIN)
4007 		return VM_FAULT_NOPAGE;
4008 	if (err == -ENOMEM)
4009 		return VM_FAULT_OOM;
4010 	/* -ENOSPC, -EDQUOT, -EIO ... */
4011 	return VM_FAULT_SIGBUS;
4012 }
4013 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)4014 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
4015 {
4016 	if (vm_fault & VM_FAULT_OOM)
4017 		return -ENOMEM;
4018 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
4019 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
4020 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4021 		return -EFAULT;
4022 	return 0;
4023 }
4024 
4025 /*
4026  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
4027  * a (NUMA hinting) fault is required.
4028  */
gup_can_follow_protnone(const struct vm_area_struct * vma,unsigned int flags)4029 static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma,
4030 					   unsigned int flags)
4031 {
4032 	/*
4033 	 * If callers don't want to honor NUMA hinting faults, no need to
4034 	 * determine if we would actually have to trigger a NUMA hinting fault.
4035 	 */
4036 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
4037 		return true;
4038 
4039 	/*
4040 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
4041 	 *
4042 	 * Requiring a fault here even for inaccessible VMAs would mean that
4043 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
4044 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
4045 	 */
4046 	return !vma_is_accessible(vma);
4047 }
4048 
4049 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
4050 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
4051 			       unsigned long size, pte_fn_t fn, void *data);
4052 extern int apply_to_existing_page_range(struct mm_struct *mm,
4053 				   unsigned long address, unsigned long size,
4054 				   pte_fn_t fn, void *data);
4055 
4056 #ifdef CONFIG_PAGE_POISONING
4057 extern void __kernel_poison_pages(struct page *page, int numpages);
4058 extern void __kernel_unpoison_pages(struct page *page, int numpages);
4059 extern bool _page_poisoning_enabled_early;
4060 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)4061 static inline bool page_poisoning_enabled(void)
4062 {
4063 	return _page_poisoning_enabled_early;
4064 }
4065 /*
4066  * For use in fast paths after init_mem_debugging() has run, or when a
4067  * false negative result is not harmful when called too early.
4068  */
page_poisoning_enabled_static(void)4069 static inline bool page_poisoning_enabled_static(void)
4070 {
4071 	return static_branch_unlikely(&_page_poisoning_enabled);
4072 }
kernel_poison_pages(struct page * page,int numpages)4073 static inline void kernel_poison_pages(struct page *page, int numpages)
4074 {
4075 	if (page_poisoning_enabled_static())
4076 		__kernel_poison_pages(page, numpages);
4077 }
kernel_unpoison_pages(struct page * page,int numpages)4078 static inline void kernel_unpoison_pages(struct page *page, int numpages)
4079 {
4080 	if (page_poisoning_enabled_static())
4081 		__kernel_unpoison_pages(page, numpages);
4082 }
4083 #else
page_poisoning_enabled(void)4084 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)4085 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)4086 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)4087 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)4088 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
4089 #endif
4090 
4091 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)4092 static inline bool want_init_on_alloc(gfp_t flags)
4093 {
4094 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4095 				&init_on_alloc))
4096 		return true;
4097 	return flags & __GFP_ZERO;
4098 }
4099 
4100 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)4101 static inline bool want_init_on_free(void)
4102 {
4103 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
4104 				   &init_on_free);
4105 }
4106 
4107 extern bool _debug_pagealloc_enabled_early;
4108 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
4109 
debug_pagealloc_enabled(void)4110 static inline bool debug_pagealloc_enabled(void)
4111 {
4112 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
4113 		_debug_pagealloc_enabled_early;
4114 }
4115 
4116 /*
4117  * For use in fast paths after mem_debugging_and_hardening_init() has run,
4118  * or when a false negative result is not harmful when called too early.
4119  */
debug_pagealloc_enabled_static(void)4120 static inline bool debug_pagealloc_enabled_static(void)
4121 {
4122 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
4123 		return false;
4124 
4125 	return static_branch_unlikely(&_debug_pagealloc_enabled);
4126 }
4127 
4128 /*
4129  * To support DEBUG_PAGEALLOC architecture must ensure that
4130  * __kernel_map_pages() never fails
4131  */
4132 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
4133 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)4134 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
4135 {
4136 	if (debug_pagealloc_enabled_static())
4137 		__kernel_map_pages(page, numpages, 1);
4138 }
4139 
debug_pagealloc_unmap_pages(struct page * page,int numpages)4140 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
4141 {
4142 	if (debug_pagealloc_enabled_static())
4143 		__kernel_map_pages(page, numpages, 0);
4144 }
4145 
4146 extern unsigned int _debug_guardpage_minorder;
4147 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
4148 
debug_guardpage_minorder(void)4149 static inline unsigned int debug_guardpage_minorder(void)
4150 {
4151 	return _debug_guardpage_minorder;
4152 }
4153 
debug_guardpage_enabled(void)4154 static inline bool debug_guardpage_enabled(void)
4155 {
4156 	return static_branch_unlikely(&_debug_guardpage_enabled);
4157 }
4158 
page_is_guard(const struct page * page)4159 static inline bool page_is_guard(const struct page *page)
4160 {
4161 	if (!debug_guardpage_enabled())
4162 		return false;
4163 
4164 	return PageGuard(page);
4165 }
4166 
4167 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)4168 static inline bool set_page_guard(struct zone *zone, struct page *page,
4169 				  unsigned int order)
4170 {
4171 	if (!debug_guardpage_enabled())
4172 		return false;
4173 	return __set_page_guard(zone, page, order);
4174 }
4175 
4176 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)4177 static inline void clear_page_guard(struct zone *zone, struct page *page,
4178 				    unsigned int order)
4179 {
4180 	if (!debug_guardpage_enabled())
4181 		return;
4182 	__clear_page_guard(zone, page, order);
4183 }
4184 
4185 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)4186 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)4187 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)4188 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)4189 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(const struct page * page)4190 static inline bool page_is_guard(const struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)4191 static inline bool set_page_guard(struct zone *zone, struct page *page,
4192 			unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)4193 static inline void clear_page_guard(struct zone *zone, struct page *page,
4194 				unsigned int order) {}
4195 #endif	/* CONFIG_DEBUG_PAGEALLOC */
4196 
4197 #ifdef __HAVE_ARCH_GATE_AREA
4198 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
4199 extern int in_gate_area_no_mm(unsigned long addr);
4200 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
4201 #else
get_gate_vma(struct mm_struct * mm)4202 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4203 {
4204 	return NULL;
4205 }
in_gate_area_no_mm(unsigned long addr)4206 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)4207 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
4208 {
4209 	return 0;
4210 }
4211 #endif	/* __HAVE_ARCH_GATE_AREA */
4212 
4213 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm);
4214 
4215 void drop_slab(void);
4216 
4217 #ifndef CONFIG_MMU
4218 #define randomize_va_space 0
4219 #else
4220 extern int randomize_va_space;
4221 #endif
4222 
4223 const char * arch_vma_name(struct vm_area_struct *vma);
4224 #ifdef CONFIG_MMU
4225 void print_vma_addr(char *prefix, unsigned long rip);
4226 #else
print_vma_addr(char * prefix,unsigned long rip)4227 static inline void print_vma_addr(char *prefix, unsigned long rip)
4228 {
4229 }
4230 #endif
4231 
4232 void *sparse_buffer_alloc(unsigned long size);
4233 unsigned long section_map_size(void);
4234 struct page * __populate_section_memmap(unsigned long pfn,
4235 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
4236 		struct dev_pagemap *pgmap);
4237 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
4238 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
4239 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
4240 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
4241 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4242 			    struct vmem_altmap *altmap, unsigned long ptpfn,
4243 			    unsigned long flags);
4244 void *vmemmap_alloc_block(unsigned long size, int node);
4245 struct vmem_altmap;
4246 void *vmemmap_alloc_block_buf(unsigned long size, int node,
4247 			      struct vmem_altmap *altmap);
4248 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
4249 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
4250 		     unsigned long addr, unsigned long next);
4251 int vmemmap_check_pmd(pmd_t *pmd, int node,
4252 		      unsigned long addr, unsigned long next);
4253 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
4254 			       int node, struct vmem_altmap *altmap);
4255 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
4256 			       int node, struct vmem_altmap *altmap);
4257 int vmemmap_populate(unsigned long start, unsigned long end, int node,
4258 		struct vmem_altmap *altmap);
4259 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
4260 			 unsigned long headsize);
4261 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
4262 		     unsigned long headsize);
4263 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
4264 			  unsigned long headsize);
4265 void vmemmap_populate_print_last(void);
4266 #ifdef CONFIG_MEMORY_HOTPLUG
4267 void vmemmap_free(unsigned long start, unsigned long end,
4268 		struct vmem_altmap *altmap);
4269 #endif
4270 
4271 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(const struct vmem_altmap * altmap)4272 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
4273 {
4274 	/* number of pfns from base where pfn_to_page() is valid */
4275 	if (altmap)
4276 		return altmap->reserve + altmap->free;
4277 	return 0;
4278 }
4279 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)4280 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
4281 				    unsigned long nr_pfns)
4282 {
4283 	altmap->alloc -= nr_pfns;
4284 }
4285 #else
vmem_altmap_offset(const struct vmem_altmap * altmap)4286 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
4287 {
4288 	return 0;
4289 }
4290 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)4291 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
4292 				    unsigned long nr_pfns)
4293 {
4294 }
4295 #endif
4296 
4297 #define VMEMMAP_RESERVE_NR	2
4298 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)4299 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
4300 					  struct dev_pagemap *pgmap)
4301 {
4302 	unsigned long nr_pages;
4303 	unsigned long nr_vmemmap_pages;
4304 
4305 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
4306 		return false;
4307 
4308 	nr_pages = pgmap_vmemmap_nr(pgmap);
4309 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
4310 	/*
4311 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
4312 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
4313 	 */
4314 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4315 }
4316 /*
4317  * If we don't have an architecture override, use the generic rule
4318  */
4319 #ifndef vmemmap_can_optimize
4320 #define vmemmap_can_optimize __vmemmap_can_optimize
4321 #endif
4322 
4323 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)4324 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4325 					   struct dev_pagemap *pgmap)
4326 {
4327 	return false;
4328 }
4329 #endif
4330 
4331 enum mf_flags {
4332 	MF_COUNT_INCREASED = 1 << 0,
4333 	MF_ACTION_REQUIRED = 1 << 1,
4334 	MF_MUST_KILL = 1 << 2,
4335 	MF_SOFT_OFFLINE = 1 << 3,
4336 	MF_UNPOISON = 1 << 4,
4337 	MF_SW_SIMULATED = 1 << 5,
4338 	MF_NO_RETRY = 1 << 6,
4339 	MF_MEM_PRE_REMOVE = 1 << 7,
4340 };
4341 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4342 		      unsigned long count, int mf_flags);
4343 extern int memory_failure(unsigned long pfn, int flags);
4344 extern int unpoison_memory(unsigned long pfn);
4345 extern atomic_long_t num_poisoned_pages __read_mostly;
4346 extern int soft_offline_page(unsigned long pfn, int flags);
4347 #ifdef CONFIG_MEMORY_FAILURE
4348 /*
4349  * Sysfs entries for memory failure handling statistics.
4350  */
4351 extern const struct attribute_group memory_failure_attr_group;
4352 extern void memory_failure_queue(unsigned long pfn, int flags);
4353 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4354 					bool *migratable_cleared);
4355 void num_poisoned_pages_inc(unsigned long pfn);
4356 void num_poisoned_pages_sub(unsigned long pfn, long i);
4357 #else
memory_failure_queue(unsigned long pfn,int flags)4358 static inline void memory_failure_queue(unsigned long pfn, int flags)
4359 {
4360 }
4361 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)4362 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4363 					bool *migratable_cleared)
4364 {
4365 	return 0;
4366 }
4367 
num_poisoned_pages_inc(unsigned long pfn)4368 static inline void num_poisoned_pages_inc(unsigned long pfn)
4369 {
4370 }
4371 
num_poisoned_pages_sub(unsigned long pfn,long i)4372 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4373 {
4374 }
4375 #endif
4376 
4377 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4378 extern void memblk_nr_poison_inc(unsigned long pfn);
4379 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4380 #else
memblk_nr_poison_inc(unsigned long pfn)4381 static inline void memblk_nr_poison_inc(unsigned long pfn)
4382 {
4383 }
4384 
memblk_nr_poison_sub(unsigned long pfn,long i)4385 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4386 {
4387 }
4388 #endif
4389 
4390 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)4391 static inline int arch_memory_failure(unsigned long pfn, int flags)
4392 {
4393 	return -ENXIO;
4394 }
4395 #endif
4396 
4397 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)4398 static inline bool arch_is_platform_page(u64 paddr)
4399 {
4400 	return false;
4401 }
4402 #endif
4403 
4404 /*
4405  * Error handlers for various types of pages.
4406  */
4407 enum mf_result {
4408 	MF_IGNORED,	/* Error: cannot be handled */
4409 	MF_FAILED,	/* Error: handling failed */
4410 	MF_DELAYED,	/* Will be handled later */
4411 	MF_RECOVERED,	/* Successfully recovered */
4412 };
4413 
4414 enum mf_action_page_type {
4415 	MF_MSG_KERNEL,
4416 	MF_MSG_KERNEL_HIGH_ORDER,
4417 	MF_MSG_DIFFERENT_COMPOUND,
4418 	MF_MSG_HUGE,
4419 	MF_MSG_FREE_HUGE,
4420 	MF_MSG_GET_HWPOISON,
4421 	MF_MSG_UNMAP_FAILED,
4422 	MF_MSG_DIRTY_SWAPCACHE,
4423 	MF_MSG_CLEAN_SWAPCACHE,
4424 	MF_MSG_DIRTY_MLOCKED_LRU,
4425 	MF_MSG_CLEAN_MLOCKED_LRU,
4426 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4427 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4428 	MF_MSG_DIRTY_LRU,
4429 	MF_MSG_CLEAN_LRU,
4430 	MF_MSG_TRUNCATED_LRU,
4431 	MF_MSG_BUDDY,
4432 	MF_MSG_DAX,
4433 	MF_MSG_UNSPLIT_THP,
4434 	MF_MSG_ALREADY_POISONED,
4435 	MF_MSG_PFN_MAP,
4436 	MF_MSG_UNKNOWN,
4437 };
4438 
4439 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4440 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4441 int copy_user_large_folio(struct folio *dst, struct folio *src,
4442 			  unsigned long addr_hint,
4443 			  struct vm_area_struct *vma);
4444 long copy_folio_from_user(struct folio *dst_folio,
4445 			   const void __user *usr_src,
4446 			   bool allow_pagefault);
4447 
4448 /**
4449  * vma_is_special_huge - Are transhuge page-table entries considered special?
4450  * @vma: Pointer to the struct vm_area_struct to consider
4451  *
4452  * Whether transhuge page-table entries are considered "special" following
4453  * the definition in vm_normal_page().
4454  *
4455  * Return: true if transhuge page-table entries should be considered special,
4456  * false otherwise.
4457  */
vma_is_special_huge(const struct vm_area_struct * vma)4458 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4459 {
4460 	return vma_is_dax(vma) || (vma->vm_file &&
4461 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4462 }
4463 
4464 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4465 
4466 #if MAX_NUMNODES > 1
4467 void __init setup_nr_node_ids(void);
4468 #else
setup_nr_node_ids(void)4469 static inline void setup_nr_node_ids(void) {}
4470 #endif
4471 
4472 extern int memcmp_pages(struct page *page1, struct page *page2);
4473 
pages_identical(struct page * page1,struct page * page2)4474 static inline int pages_identical(struct page *page1, struct page *page2)
4475 {
4476 	return !memcmp_pages(page1, page2);
4477 }
4478 
4479 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4480 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4481 						pgoff_t first_index, pgoff_t nr,
4482 						pgoff_t bitmap_pgoff,
4483 						unsigned long *bitmap,
4484 						pgoff_t *start,
4485 						pgoff_t *end);
4486 
4487 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4488 				      pgoff_t first_index, pgoff_t nr);
4489 #endif
4490 
4491 #ifdef CONFIG_ANON_VMA_NAME
4492 int set_anon_vma_name(unsigned long addr, unsigned long size,
4493 		      const char __user *uname);
4494 #else
4495 static inline
set_anon_vma_name(unsigned long addr,unsigned long size,const char __user * uname)4496 int set_anon_vma_name(unsigned long addr, unsigned long size,
4497 		      const char __user *uname)
4498 {
4499 	return -EINVAL;
4500 }
4501 #endif
4502 
4503 #ifdef CONFIG_UNACCEPTED_MEMORY
4504 
4505 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4506 void accept_memory(phys_addr_t start, unsigned long size);
4507 
4508 #else
4509 
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4510 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4511 						    unsigned long size)
4512 {
4513 	return false;
4514 }
4515 
accept_memory(phys_addr_t start,unsigned long size)4516 static inline void accept_memory(phys_addr_t start, unsigned long size)
4517 {
4518 }
4519 
4520 #endif
4521 
pfn_is_unaccepted_memory(unsigned long pfn)4522 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4523 {
4524 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4525 }
4526 
4527 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4528 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4529 
4530 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4531 int reserve_mem_release_by_name(const char *name);
4532 
4533 #ifdef CONFIG_64BIT
4534 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4535 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4536 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4537 {
4538 	/* noop on 32 bit */
4539 	return 0;
4540 }
4541 #endif
4542 
4543 /*
4544  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4545  * be zeroed or not.
4546  */
user_alloc_needs_zeroing(void)4547 static inline bool user_alloc_needs_zeroing(void)
4548 {
4549 	/*
4550 	 * for user folios, arch with cache aliasing requires cache flush and
4551 	 * arc changes folio->flags to make icache coherent with dcache, so
4552 	 * always return false to make caller use
4553 	 * clear_user_page()/clear_user_highpage().
4554 	 */
4555 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4556 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4557 				   &init_on_alloc);
4558 }
4559 
4560 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4561 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4562 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4563 
4564 /*
4565  * DMA mapping IDs for page_pool
4566  *
4567  * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4568  * stashes it in the upper bits of page->pp_magic. We always want to be able to
4569  * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4570  * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4571  * (since it overlaps with page->lru.next), so we must ensure that we cannot
4572  * mistake a valid kernel pointer with any of the values we write into this
4573  * field.
4574  *
4575  * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4576  * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4577  * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4578  * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4579  * 0, we use the lowest bit of PAGE_OFFSET as the boundary if that value is
4580  * known at compile-time.
4581  *
4582  * If the value of PAGE_OFFSET is not known at compile time, or if it is too
4583  * small to leave at least 8 bits available above PP_SIGNATURE, we define the
4584  * number of bits to be 0, which turns off the DMA index tracking altogether
4585  * (see page_pool_register_dma_index()).
4586  */
4587 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4588 #if POISON_POINTER_DELTA > 0
4589 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4590  * index to not overlap with that if set
4591  */
4592 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4593 #else
4594 /* Use the lowest bit of PAGE_OFFSET if there's at least 8 bits available; see above */
4595 #define PP_DMA_INDEX_MIN_OFFSET (1 << (PP_DMA_INDEX_SHIFT + 8))
4596 #define PP_DMA_INDEX_BITS ((__builtin_constant_p(PAGE_OFFSET) && \
4597 			    PAGE_OFFSET >= PP_DMA_INDEX_MIN_OFFSET && \
4598 			    !(PAGE_OFFSET & (PP_DMA_INDEX_MIN_OFFSET - 1))) ? \
4599 			      MIN(32, __ffs(PAGE_OFFSET) - PP_DMA_INDEX_SHIFT) : 0)
4600 
4601 #endif
4602 
4603 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4604 				  PP_DMA_INDEX_SHIFT)
4605 
4606 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4607  * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4608  * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4609  * bits used for the DMA index. page_is_pfmemalloc() is checked in
4610  * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4611  */
4612 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4613 
4614 #ifdef CONFIG_PAGE_POOL
page_pool_page_is_pp(const struct page * page)4615 static inline bool page_pool_page_is_pp(const struct page *page)
4616 {
4617 	return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4618 }
4619 #else
page_pool_page_is_pp(const struct page * page)4620 static inline bool page_pool_page_is_pp(const struct page *page)
4621 {
4622 	return false;
4623 }
4624 #endif
4625 
4626 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4627 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4628 #define PAGE_SNAPSHOT_PG_IDLE  (1 << 2)
4629 
4630 struct page_snapshot {
4631 	struct folio folio_snapshot;
4632 	struct page page_snapshot;
4633 	unsigned long pfn;
4634 	unsigned long idx;
4635 	unsigned long flags;
4636 };
4637 
snapshot_page_is_faithful(const struct page_snapshot * ps)4638 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4639 {
4640 	return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4641 }
4642 
4643 void snapshot_page(struct page_snapshot *ps, const struct page *page);
4644 
4645 #endif /* _LINUX_MM_H */
4646