1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27
28 #include <linux/uaccess.h>
29
30 #include "internal.h"
31
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
35 {
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
51 return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54
55 /*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
always_delete_dentry(const struct dentry * dentry)59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64
65 const struct dentry_operations simple_dentry_operations = {
66 .d_delete = always_delete_dentry,
67 };
68 EXPORT_SYMBOL(simple_dentry_operations);
69
70 /*
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative. Set d_op to delete negative dentries.
73 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 {
76 if (dentry->d_name.len > NAME_MAX)
77 return ERR_PTR(-ENAMETOOLONG);
78 if (!dentry->d_sb->s_d_op)
79 d_set_d_op(dentry, &simple_dentry_operations);
80
81 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
82 return NULL;
83
84 d_add(dentry, NULL);
85 return NULL;
86 }
87 EXPORT_SYMBOL(simple_lookup);
88
dcache_dir_open(struct inode * inode,struct file * file)89 int dcache_dir_open(struct inode *inode, struct file *file)
90 {
91 file->private_data = d_alloc_cursor(file->f_path.dentry);
92
93 return file->private_data ? 0 : -ENOMEM;
94 }
95 EXPORT_SYMBOL(dcache_dir_open);
96
dcache_dir_close(struct inode * inode,struct file * file)97 int dcache_dir_close(struct inode *inode, struct file *file)
98 {
99 dput(file->private_data);
100 return 0;
101 }
102 EXPORT_SYMBOL(dcache_dir_close);
103
104 /* parent is locked at least shared */
105 /*
106 * Returns an element of siblings' list.
107 * We are looking for <count>th positive after <p>; if
108 * found, dentry is grabbed and returned to caller.
109 * If no such element exists, NULL is returned.
110 */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)111 static struct dentry *scan_positives(struct dentry *cursor,
112 struct hlist_node **p,
113 loff_t count,
114 struct dentry *last)
115 {
116 struct dentry *dentry = cursor->d_parent, *found = NULL;
117
118 spin_lock(&dentry->d_lock);
119 while (*p) {
120 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
121 p = &d->d_sib.next;
122 // we must at least skip cursors, to avoid livelocks
123 if (d->d_flags & DCACHE_DENTRY_CURSOR)
124 continue;
125 if (simple_positive(d) && !--count) {
126 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
127 if (simple_positive(d))
128 found = dget_dlock(d);
129 spin_unlock(&d->d_lock);
130 if (likely(found))
131 break;
132 count = 1;
133 }
134 if (need_resched()) {
135 if (!hlist_unhashed(&cursor->d_sib))
136 __hlist_del(&cursor->d_sib);
137 hlist_add_behind(&cursor->d_sib, &d->d_sib);
138 p = &cursor->d_sib.next;
139 spin_unlock(&dentry->d_lock);
140 cond_resched();
141 spin_lock(&dentry->d_lock);
142 }
143 }
144 spin_unlock(&dentry->d_lock);
145 dput(last);
146 return found;
147 }
148
dcache_dir_lseek(struct file * file,loff_t offset,int whence)149 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
150 {
151 struct dentry *dentry = file->f_path.dentry;
152 switch (whence) {
153 case 1:
154 offset += file->f_pos;
155 fallthrough;
156 case 0:
157 if (offset >= 0)
158 break;
159 fallthrough;
160 default:
161 return -EINVAL;
162 }
163 if (offset != file->f_pos) {
164 struct dentry *cursor = file->private_data;
165 struct dentry *to = NULL;
166
167 inode_lock_shared(dentry->d_inode);
168
169 if (offset > 2)
170 to = scan_positives(cursor, &dentry->d_children.first,
171 offset - 2, NULL);
172 spin_lock(&dentry->d_lock);
173 hlist_del_init(&cursor->d_sib);
174 if (to)
175 hlist_add_behind(&cursor->d_sib, &to->d_sib);
176 spin_unlock(&dentry->d_lock);
177 dput(to);
178
179 file->f_pos = offset;
180
181 inode_unlock_shared(dentry->d_inode);
182 }
183 return offset;
184 }
185 EXPORT_SYMBOL(dcache_dir_lseek);
186
187 /*
188 * Directory is locked and all positive dentries in it are safe, since
189 * for ramfs-type trees they can't go away without unlink() or rmdir(),
190 * both impossible due to the lock on directory.
191 */
192
dcache_readdir(struct file * file,struct dir_context * ctx)193 int dcache_readdir(struct file *file, struct dir_context *ctx)
194 {
195 struct dentry *dentry = file->f_path.dentry;
196 struct dentry *cursor = file->private_data;
197 struct dentry *next = NULL;
198 struct hlist_node **p;
199
200 if (!dir_emit_dots(file, ctx))
201 return 0;
202
203 if (ctx->pos == 2)
204 p = &dentry->d_children.first;
205 else
206 p = &cursor->d_sib.next;
207
208 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
209 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
210 d_inode(next)->i_ino,
211 fs_umode_to_dtype(d_inode(next)->i_mode)))
212 break;
213 ctx->pos++;
214 p = &next->d_sib.next;
215 }
216 spin_lock(&dentry->d_lock);
217 hlist_del_init(&cursor->d_sib);
218 if (next)
219 hlist_add_before(&cursor->d_sib, &next->d_sib);
220 spin_unlock(&dentry->d_lock);
221 dput(next);
222
223 return 0;
224 }
225 EXPORT_SYMBOL(dcache_readdir);
226
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)227 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
228 {
229 return -EISDIR;
230 }
231 EXPORT_SYMBOL(generic_read_dir);
232
233 const struct file_operations simple_dir_operations = {
234 .open = dcache_dir_open,
235 .release = dcache_dir_close,
236 .llseek = dcache_dir_lseek,
237 .read = generic_read_dir,
238 .iterate_shared = dcache_readdir,
239 .fsync = noop_fsync,
240 };
241 EXPORT_SYMBOL(simple_dir_operations);
242
243 const struct inode_operations simple_dir_inode_operations = {
244 .lookup = simple_lookup,
245 };
246 EXPORT_SYMBOL(simple_dir_inode_operations);
247
248 /* 0 is '.', 1 is '..', so always start with offset 2 or more */
249 enum {
250 DIR_OFFSET_MIN = 2,
251 };
252
offset_set(struct dentry * dentry,long offset)253 static void offset_set(struct dentry *dentry, long offset)
254 {
255 dentry->d_fsdata = (void *)offset;
256 }
257
dentry2offset(struct dentry * dentry)258 static long dentry2offset(struct dentry *dentry)
259 {
260 return (long)dentry->d_fsdata;
261 }
262
263 static struct lock_class_key simple_offset_lock_class;
264
265 /**
266 * simple_offset_init - initialize an offset_ctx
267 * @octx: directory offset map to be initialized
268 *
269 */
simple_offset_init(struct offset_ctx * octx)270 void simple_offset_init(struct offset_ctx *octx)
271 {
272 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
273 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
274 octx->next_offset = DIR_OFFSET_MIN;
275 }
276
277 /**
278 * simple_offset_add - Add an entry to a directory's offset map
279 * @octx: directory offset ctx to be updated
280 * @dentry: new dentry being added
281 *
282 * Returns zero on success. @octx and the dentry's offset are updated.
283 * Otherwise, a negative errno value is returned.
284 */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)285 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
286 {
287 unsigned long offset;
288 int ret;
289
290 if (dentry2offset(dentry) != 0)
291 return -EBUSY;
292
293 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
294 LONG_MAX, &octx->next_offset, GFP_KERNEL);
295 if (ret < 0)
296 return ret;
297
298 offset_set(dentry, offset);
299 return 0;
300 }
301
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)302 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
303 long offset)
304 {
305 int ret;
306
307 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
308 if (ret)
309 return ret;
310 offset_set(dentry, offset);
311 return 0;
312 }
313
314 /**
315 * simple_offset_remove - Remove an entry to a directory's offset map
316 * @octx: directory offset ctx to be updated
317 * @dentry: dentry being removed
318 *
319 */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)320 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
321 {
322 long offset;
323
324 offset = dentry2offset(dentry);
325 if (offset == 0)
326 return;
327
328 mtree_erase(&octx->mt, offset);
329 offset_set(dentry, 0);
330 }
331
332 /**
333 * simple_offset_empty - Check if a dentry can be unlinked
334 * @dentry: dentry to be tested
335 *
336 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
337 */
simple_offset_empty(struct dentry * dentry)338 int simple_offset_empty(struct dentry *dentry)
339 {
340 struct inode *inode = d_inode(dentry);
341 struct offset_ctx *octx;
342 struct dentry *child;
343 unsigned long index;
344 int ret = 1;
345
346 if (!inode || !S_ISDIR(inode->i_mode))
347 return ret;
348
349 index = DIR_OFFSET_MIN;
350 octx = inode->i_op->get_offset_ctx(inode);
351 mt_for_each(&octx->mt, child, index, LONG_MAX) {
352 spin_lock(&child->d_lock);
353 if (simple_positive(child)) {
354 spin_unlock(&child->d_lock);
355 ret = 0;
356 break;
357 }
358 spin_unlock(&child->d_lock);
359 }
360
361 return ret;
362 }
363
364 /**
365 * simple_offset_rename - handle directory offsets for rename
366 * @old_dir: parent directory of source entry
367 * @old_dentry: dentry of source entry
368 * @new_dir: parent_directory of destination entry
369 * @new_dentry: dentry of destination
370 *
371 * Caller provides appropriate serialization.
372 *
373 * User space expects the directory offset value of the replaced
374 * (new) directory entry to be unchanged after a rename.
375 *
376 * Returns zero on success, a negative errno value on failure.
377 */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)378 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
379 struct inode *new_dir, struct dentry *new_dentry)
380 {
381 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
382 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
383 long new_offset = dentry2offset(new_dentry);
384
385 simple_offset_remove(old_ctx, old_dentry);
386
387 if (new_offset) {
388 offset_set(new_dentry, 0);
389 return simple_offset_replace(new_ctx, old_dentry, new_offset);
390 }
391 return simple_offset_add(new_ctx, old_dentry);
392 }
393
394 /**
395 * simple_offset_rename_exchange - exchange rename with directory offsets
396 * @old_dir: parent of dentry being moved
397 * @old_dentry: dentry being moved
398 * @new_dir: destination parent
399 * @new_dentry: destination dentry
400 *
401 * This API preserves the directory offset values. Caller provides
402 * appropriate serialization.
403 *
404 * Returns zero on success. Otherwise a negative errno is returned and the
405 * rename is rolled back.
406 */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)407 int simple_offset_rename_exchange(struct inode *old_dir,
408 struct dentry *old_dentry,
409 struct inode *new_dir,
410 struct dentry *new_dentry)
411 {
412 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
413 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
414 long old_index = dentry2offset(old_dentry);
415 long new_index = dentry2offset(new_dentry);
416 int ret;
417
418 simple_offset_remove(old_ctx, old_dentry);
419 simple_offset_remove(new_ctx, new_dentry);
420
421 ret = simple_offset_replace(new_ctx, old_dentry, new_index);
422 if (ret)
423 goto out_restore;
424
425 ret = simple_offset_replace(old_ctx, new_dentry, old_index);
426 if (ret) {
427 simple_offset_remove(new_ctx, old_dentry);
428 goto out_restore;
429 }
430
431 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
432 if (ret) {
433 simple_offset_remove(new_ctx, old_dentry);
434 simple_offset_remove(old_ctx, new_dentry);
435 goto out_restore;
436 }
437 return 0;
438
439 out_restore:
440 (void)simple_offset_replace(old_ctx, old_dentry, old_index);
441 (void)simple_offset_replace(new_ctx, new_dentry, new_index);
442 return ret;
443 }
444
445 /**
446 * simple_offset_destroy - Release offset map
447 * @octx: directory offset ctx that is about to be destroyed
448 *
449 * During fs teardown (eg. umount), a directory's offset map might still
450 * contain entries. xa_destroy() cleans out anything that remains.
451 */
simple_offset_destroy(struct offset_ctx * octx)452 void simple_offset_destroy(struct offset_ctx *octx)
453 {
454 mtree_destroy(&octx->mt);
455 }
456
offset_dir_open(struct inode * inode,struct file * file)457 static int offset_dir_open(struct inode *inode, struct file *file)
458 {
459 struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode);
460
461 file->private_data = (void *)ctx->next_offset;
462 return 0;
463 }
464
465 /**
466 * offset_dir_llseek - Advance the read position of a directory descriptor
467 * @file: an open directory whose position is to be updated
468 * @offset: a byte offset
469 * @whence: enumerator describing the starting position for this update
470 *
471 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
472 *
473 * Returns the updated read position if successful; otherwise a
474 * negative errno is returned and the read position remains unchanged.
475 */
offset_dir_llseek(struct file * file,loff_t offset,int whence)476 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
477 {
478 struct inode *inode = file->f_inode;
479 struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode);
480
481 switch (whence) {
482 case SEEK_CUR:
483 offset += file->f_pos;
484 fallthrough;
485 case SEEK_SET:
486 if (offset >= 0)
487 break;
488 fallthrough;
489 default:
490 return -EINVAL;
491 }
492
493 /* In this case, ->private_data is protected by f_pos_lock */
494 if (!offset)
495 file->private_data = (void *)ctx->next_offset;
496 return vfs_setpos(file, offset, LONG_MAX);
497 }
498
offset_find_next(struct offset_ctx * octx,loff_t offset)499 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
500 {
501 MA_STATE(mas, &octx->mt, offset, offset);
502 struct dentry *child, *found = NULL;
503
504 rcu_read_lock();
505 child = mas_find(&mas, LONG_MAX);
506 if (!child)
507 goto out;
508 spin_lock(&child->d_lock);
509 if (simple_positive(child))
510 found = dget_dlock(child);
511 spin_unlock(&child->d_lock);
512 out:
513 rcu_read_unlock();
514 return found;
515 }
516
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)517 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
518 {
519 struct inode *inode = d_inode(dentry);
520 long offset = dentry2offset(dentry);
521
522 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
523 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
524 }
525
offset_iterate_dir(struct inode * inode,struct dir_context * ctx,long last_index)526 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx, long last_index)
527 {
528 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
529 struct dentry *dentry;
530
531 while (true) {
532 dentry = offset_find_next(octx, ctx->pos);
533 if (!dentry)
534 return;
535
536 if (dentry2offset(dentry) >= last_index) {
537 dput(dentry);
538 return;
539 }
540
541 if (!offset_dir_emit(ctx, dentry)) {
542 dput(dentry);
543 return;
544 }
545
546 ctx->pos = dentry2offset(dentry) + 1;
547 dput(dentry);
548 }
549 }
550
551 /**
552 * offset_readdir - Emit entries starting at offset @ctx->pos
553 * @file: an open directory to iterate over
554 * @ctx: directory iteration context
555 *
556 * Caller must hold @file's i_rwsem to prevent insertion or removal of
557 * entries during this call.
558 *
559 * On entry, @ctx->pos contains an offset that represents the first entry
560 * to be read from the directory.
561 *
562 * The operation continues until there are no more entries to read, or
563 * until the ctx->actor indicates there is no more space in the caller's
564 * output buffer.
565 *
566 * On return, @ctx->pos contains an offset that will read the next entry
567 * in this directory when offset_readdir() is called again with @ctx.
568 *
569 * Return values:
570 * %0 - Complete
571 */
offset_readdir(struct file * file,struct dir_context * ctx)572 static int offset_readdir(struct file *file, struct dir_context *ctx)
573 {
574 struct dentry *dir = file->f_path.dentry;
575 long last_index = (long)file->private_data;
576
577 lockdep_assert_held(&d_inode(dir)->i_rwsem);
578
579 if (!dir_emit_dots(file, ctx))
580 return 0;
581
582 offset_iterate_dir(d_inode(dir), ctx, last_index);
583 return 0;
584 }
585
586 const struct file_operations simple_offset_dir_operations = {
587 .open = offset_dir_open,
588 .llseek = offset_dir_llseek,
589 .iterate_shared = offset_readdir,
590 .read = generic_read_dir,
591 .fsync = noop_fsync,
592 };
593
find_next_child(struct dentry * parent,struct dentry * prev)594 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
595 {
596 struct dentry *child = NULL, *d;
597
598 spin_lock(&parent->d_lock);
599 d = prev ? d_next_sibling(prev) : d_first_child(parent);
600 hlist_for_each_entry_from(d, d_sib) {
601 if (simple_positive(d)) {
602 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
603 if (simple_positive(d))
604 child = dget_dlock(d);
605 spin_unlock(&d->d_lock);
606 if (likely(child))
607 break;
608 }
609 }
610 spin_unlock(&parent->d_lock);
611 dput(prev);
612 return child;
613 }
614
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))615 void simple_recursive_removal(struct dentry *dentry,
616 void (*callback)(struct dentry *))
617 {
618 struct dentry *this = dget(dentry);
619 while (true) {
620 struct dentry *victim = NULL, *child;
621 struct inode *inode = this->d_inode;
622
623 inode_lock(inode);
624 if (d_is_dir(this))
625 inode->i_flags |= S_DEAD;
626 while ((child = find_next_child(this, victim)) == NULL) {
627 // kill and ascend
628 // update metadata while it's still locked
629 inode_set_ctime_current(inode);
630 clear_nlink(inode);
631 inode_unlock(inode);
632 victim = this;
633 this = this->d_parent;
634 inode = this->d_inode;
635 inode_lock(inode);
636 if (simple_positive(victim)) {
637 d_invalidate(victim); // avoid lost mounts
638 if (d_is_dir(victim))
639 fsnotify_rmdir(inode, victim);
640 else
641 fsnotify_unlink(inode, victim);
642 if (callback)
643 callback(victim);
644 dput(victim); // unpin it
645 }
646 if (victim == dentry) {
647 inode_set_mtime_to_ts(inode,
648 inode_set_ctime_current(inode));
649 if (d_is_dir(dentry))
650 drop_nlink(inode);
651 inode_unlock(inode);
652 dput(dentry);
653 return;
654 }
655 }
656 inode_unlock(inode);
657 this = child;
658 }
659 }
660 EXPORT_SYMBOL(simple_recursive_removal);
661
662 static const struct super_operations simple_super_operations = {
663 .statfs = simple_statfs,
664 };
665
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)666 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
667 {
668 struct pseudo_fs_context *ctx = fc->fs_private;
669 struct inode *root;
670
671 s->s_maxbytes = MAX_LFS_FILESIZE;
672 s->s_blocksize = PAGE_SIZE;
673 s->s_blocksize_bits = PAGE_SHIFT;
674 s->s_magic = ctx->magic;
675 s->s_op = ctx->ops ?: &simple_super_operations;
676 s->s_xattr = ctx->xattr;
677 s->s_time_gran = 1;
678 root = new_inode(s);
679 if (!root)
680 return -ENOMEM;
681
682 /*
683 * since this is the first inode, make it number 1. New inodes created
684 * after this must take care not to collide with it (by passing
685 * max_reserved of 1 to iunique).
686 */
687 root->i_ino = 1;
688 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
689 simple_inode_init_ts(root);
690 s->s_root = d_make_root(root);
691 if (!s->s_root)
692 return -ENOMEM;
693 s->s_d_op = ctx->dops;
694 return 0;
695 }
696
pseudo_fs_get_tree(struct fs_context * fc)697 static int pseudo_fs_get_tree(struct fs_context *fc)
698 {
699 return get_tree_nodev(fc, pseudo_fs_fill_super);
700 }
701
pseudo_fs_free(struct fs_context * fc)702 static void pseudo_fs_free(struct fs_context *fc)
703 {
704 kfree(fc->fs_private);
705 }
706
707 static const struct fs_context_operations pseudo_fs_context_ops = {
708 .free = pseudo_fs_free,
709 .get_tree = pseudo_fs_get_tree,
710 };
711
712 /*
713 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
714 * will never be mountable)
715 */
init_pseudo(struct fs_context * fc,unsigned long magic)716 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
717 unsigned long magic)
718 {
719 struct pseudo_fs_context *ctx;
720
721 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
722 if (likely(ctx)) {
723 ctx->magic = magic;
724 fc->fs_private = ctx;
725 fc->ops = &pseudo_fs_context_ops;
726 fc->sb_flags |= SB_NOUSER;
727 fc->global = true;
728 }
729 return ctx;
730 }
731 EXPORT_SYMBOL(init_pseudo);
732
simple_open(struct inode * inode,struct file * file)733 int simple_open(struct inode *inode, struct file *file)
734 {
735 if (inode->i_private)
736 file->private_data = inode->i_private;
737 return 0;
738 }
739 EXPORT_SYMBOL(simple_open);
740
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)741 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
742 {
743 struct inode *inode = d_inode(old_dentry);
744
745 inode_set_mtime_to_ts(dir,
746 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
747 inc_nlink(inode);
748 ihold(inode);
749 dget(dentry);
750 d_instantiate(dentry, inode);
751 return 0;
752 }
753 EXPORT_SYMBOL(simple_link);
754
simple_empty(struct dentry * dentry)755 int simple_empty(struct dentry *dentry)
756 {
757 struct dentry *child;
758 int ret = 0;
759
760 spin_lock(&dentry->d_lock);
761 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
762 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
763 if (simple_positive(child)) {
764 spin_unlock(&child->d_lock);
765 goto out;
766 }
767 spin_unlock(&child->d_lock);
768 }
769 ret = 1;
770 out:
771 spin_unlock(&dentry->d_lock);
772 return ret;
773 }
774 EXPORT_SYMBOL(simple_empty);
775
simple_unlink(struct inode * dir,struct dentry * dentry)776 int simple_unlink(struct inode *dir, struct dentry *dentry)
777 {
778 struct inode *inode = d_inode(dentry);
779
780 inode_set_mtime_to_ts(dir,
781 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
782 drop_nlink(inode);
783 dput(dentry);
784 return 0;
785 }
786 EXPORT_SYMBOL(simple_unlink);
787
simple_rmdir(struct inode * dir,struct dentry * dentry)788 int simple_rmdir(struct inode *dir, struct dentry *dentry)
789 {
790 if (!simple_empty(dentry))
791 return -ENOTEMPTY;
792
793 drop_nlink(d_inode(dentry));
794 simple_unlink(dir, dentry);
795 drop_nlink(dir);
796 return 0;
797 }
798 EXPORT_SYMBOL(simple_rmdir);
799
800 /**
801 * simple_rename_timestamp - update the various inode timestamps for rename
802 * @old_dir: old parent directory
803 * @old_dentry: dentry that is being renamed
804 * @new_dir: new parent directory
805 * @new_dentry: target for rename
806 *
807 * POSIX mandates that the old and new parent directories have their ctime and
808 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
809 * their ctime updated.
810 */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)811 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
812 struct inode *new_dir, struct dentry *new_dentry)
813 {
814 struct inode *newino = d_inode(new_dentry);
815
816 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
817 if (new_dir != old_dir)
818 inode_set_mtime_to_ts(new_dir,
819 inode_set_ctime_current(new_dir));
820 inode_set_ctime_current(d_inode(old_dentry));
821 if (newino)
822 inode_set_ctime_current(newino);
823 }
824 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
825
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)826 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
827 struct inode *new_dir, struct dentry *new_dentry)
828 {
829 bool old_is_dir = d_is_dir(old_dentry);
830 bool new_is_dir = d_is_dir(new_dentry);
831
832 if (old_dir != new_dir && old_is_dir != new_is_dir) {
833 if (old_is_dir) {
834 drop_nlink(old_dir);
835 inc_nlink(new_dir);
836 } else {
837 drop_nlink(new_dir);
838 inc_nlink(old_dir);
839 }
840 }
841 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
842 return 0;
843 }
844 EXPORT_SYMBOL_GPL(simple_rename_exchange);
845
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)846 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
847 struct dentry *old_dentry, struct inode *new_dir,
848 struct dentry *new_dentry, unsigned int flags)
849 {
850 int they_are_dirs = d_is_dir(old_dentry);
851
852 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
853 return -EINVAL;
854
855 if (flags & RENAME_EXCHANGE)
856 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
857
858 if (!simple_empty(new_dentry))
859 return -ENOTEMPTY;
860
861 if (d_really_is_positive(new_dentry)) {
862 simple_unlink(new_dir, new_dentry);
863 if (they_are_dirs) {
864 drop_nlink(d_inode(new_dentry));
865 drop_nlink(old_dir);
866 }
867 } else if (they_are_dirs) {
868 drop_nlink(old_dir);
869 inc_nlink(new_dir);
870 }
871
872 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
873 return 0;
874 }
875 EXPORT_SYMBOL(simple_rename);
876
877 /**
878 * simple_setattr - setattr for simple filesystem
879 * @idmap: idmap of the target mount
880 * @dentry: dentry
881 * @iattr: iattr structure
882 *
883 * Returns 0 on success, -error on failure.
884 *
885 * simple_setattr is a simple ->setattr implementation without a proper
886 * implementation of size changes.
887 *
888 * It can either be used for in-memory filesystems or special files
889 * on simple regular filesystems. Anything that needs to change on-disk
890 * or wire state on size changes needs its own setattr method.
891 */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)892 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
893 struct iattr *iattr)
894 {
895 struct inode *inode = d_inode(dentry);
896 int error;
897
898 error = setattr_prepare(idmap, dentry, iattr);
899 if (error)
900 return error;
901
902 if (iattr->ia_valid & ATTR_SIZE)
903 truncate_setsize(inode, iattr->ia_size);
904 setattr_copy(idmap, inode, iattr);
905 mark_inode_dirty(inode);
906 return 0;
907 }
908 EXPORT_SYMBOL(simple_setattr);
909
simple_read_folio(struct file * file,struct folio * folio)910 static int simple_read_folio(struct file *file, struct folio *folio)
911 {
912 folio_zero_range(folio, 0, folio_size(folio));
913 flush_dcache_folio(folio);
914 folio_mark_uptodate(folio);
915 folio_unlock(folio);
916 return 0;
917 }
918
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)919 int simple_write_begin(struct file *file, struct address_space *mapping,
920 loff_t pos, unsigned len,
921 struct folio **foliop, void **fsdata)
922 {
923 struct folio *folio;
924
925 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
926 mapping_gfp_mask(mapping));
927 if (IS_ERR(folio))
928 return PTR_ERR(folio);
929
930 *foliop = folio;
931
932 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
933 size_t from = offset_in_folio(folio, pos);
934
935 folio_zero_segments(folio, 0, from,
936 from + len, folio_size(folio));
937 }
938 return 0;
939 }
940 EXPORT_SYMBOL(simple_write_begin);
941
942 /**
943 * simple_write_end - .write_end helper for non-block-device FSes
944 * @file: See .write_end of address_space_operations
945 * @mapping: "
946 * @pos: "
947 * @len: "
948 * @copied: "
949 * @folio: "
950 * @fsdata: "
951 *
952 * simple_write_end does the minimum needed for updating a folio after
953 * writing is done. It has the same API signature as the .write_end of
954 * address_space_operations vector. So it can just be set onto .write_end for
955 * FSes that don't need any other processing. i_mutex is assumed to be held.
956 * Block based filesystems should use generic_write_end().
957 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
958 * is not called, so a filesystem that actually does store data in .write_inode
959 * should extend on what's done here with a call to mark_inode_dirty() in the
960 * case that i_size has changed.
961 *
962 * Use *ONLY* with simple_read_folio()
963 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)964 static int simple_write_end(struct file *file, struct address_space *mapping,
965 loff_t pos, unsigned len, unsigned copied,
966 struct folio *folio, void *fsdata)
967 {
968 struct inode *inode = folio->mapping->host;
969 loff_t last_pos = pos + copied;
970
971 /* zero the stale part of the folio if we did a short copy */
972 if (!folio_test_uptodate(folio)) {
973 if (copied < len) {
974 size_t from = offset_in_folio(folio, pos);
975
976 folio_zero_range(folio, from + copied, len - copied);
977 }
978 folio_mark_uptodate(folio);
979 }
980 /*
981 * No need to use i_size_read() here, the i_size
982 * cannot change under us because we hold the i_mutex.
983 */
984 if (last_pos > inode->i_size)
985 i_size_write(inode, last_pos);
986
987 folio_mark_dirty(folio);
988 folio_unlock(folio);
989 folio_put(folio);
990
991 return copied;
992 }
993
994 /*
995 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
996 */
997 const struct address_space_operations ram_aops = {
998 .read_folio = simple_read_folio,
999 .write_begin = simple_write_begin,
1000 .write_end = simple_write_end,
1001 .dirty_folio = noop_dirty_folio,
1002 };
1003 EXPORT_SYMBOL(ram_aops);
1004
1005 /*
1006 * the inodes created here are not hashed. If you use iunique to generate
1007 * unique inode values later for this filesystem, then you must take care
1008 * to pass it an appropriate max_reserved value to avoid collisions.
1009 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1010 int simple_fill_super(struct super_block *s, unsigned long magic,
1011 const struct tree_descr *files)
1012 {
1013 struct inode *inode;
1014 struct dentry *dentry;
1015 int i;
1016
1017 s->s_blocksize = PAGE_SIZE;
1018 s->s_blocksize_bits = PAGE_SHIFT;
1019 s->s_magic = magic;
1020 s->s_op = &simple_super_operations;
1021 s->s_time_gran = 1;
1022
1023 inode = new_inode(s);
1024 if (!inode)
1025 return -ENOMEM;
1026 /*
1027 * because the root inode is 1, the files array must not contain an
1028 * entry at index 1
1029 */
1030 inode->i_ino = 1;
1031 inode->i_mode = S_IFDIR | 0755;
1032 simple_inode_init_ts(inode);
1033 inode->i_op = &simple_dir_inode_operations;
1034 inode->i_fop = &simple_dir_operations;
1035 set_nlink(inode, 2);
1036 s->s_root = d_make_root(inode);
1037 if (!s->s_root)
1038 return -ENOMEM;
1039 for (i = 0; !files->name || files->name[0]; i++, files++) {
1040 if (!files->name)
1041 continue;
1042
1043 /* warn if it tries to conflict with the root inode */
1044 if (unlikely(i == 1))
1045 printk(KERN_WARNING "%s: %s passed in a files array"
1046 "with an index of 1!\n", __func__,
1047 s->s_type->name);
1048
1049 dentry = d_alloc_name(s->s_root, files->name);
1050 if (!dentry)
1051 return -ENOMEM;
1052 inode = new_inode(s);
1053 if (!inode) {
1054 dput(dentry);
1055 return -ENOMEM;
1056 }
1057 inode->i_mode = S_IFREG | files->mode;
1058 simple_inode_init_ts(inode);
1059 inode->i_fop = files->ops;
1060 inode->i_ino = i;
1061 d_add(dentry, inode);
1062 }
1063 return 0;
1064 }
1065 EXPORT_SYMBOL(simple_fill_super);
1066
1067 static DEFINE_SPINLOCK(pin_fs_lock);
1068
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1069 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1070 {
1071 struct vfsmount *mnt = NULL;
1072 spin_lock(&pin_fs_lock);
1073 if (unlikely(!*mount)) {
1074 spin_unlock(&pin_fs_lock);
1075 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1076 if (IS_ERR(mnt))
1077 return PTR_ERR(mnt);
1078 spin_lock(&pin_fs_lock);
1079 if (!*mount)
1080 *mount = mnt;
1081 }
1082 mntget(*mount);
1083 ++*count;
1084 spin_unlock(&pin_fs_lock);
1085 mntput(mnt);
1086 return 0;
1087 }
1088 EXPORT_SYMBOL(simple_pin_fs);
1089
simple_release_fs(struct vfsmount ** mount,int * count)1090 void simple_release_fs(struct vfsmount **mount, int *count)
1091 {
1092 struct vfsmount *mnt;
1093 spin_lock(&pin_fs_lock);
1094 mnt = *mount;
1095 if (!--*count)
1096 *mount = NULL;
1097 spin_unlock(&pin_fs_lock);
1098 mntput(mnt);
1099 }
1100 EXPORT_SYMBOL(simple_release_fs);
1101
1102 /**
1103 * simple_read_from_buffer - copy data from the buffer to user space
1104 * @to: the user space buffer to read to
1105 * @count: the maximum number of bytes to read
1106 * @ppos: the current position in the buffer
1107 * @from: the buffer to read from
1108 * @available: the size of the buffer
1109 *
1110 * The simple_read_from_buffer() function reads up to @count bytes from the
1111 * buffer @from at offset @ppos into the user space address starting at @to.
1112 *
1113 * On success, the number of bytes read is returned and the offset @ppos is
1114 * advanced by this number, or negative value is returned on error.
1115 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1116 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1117 const void *from, size_t available)
1118 {
1119 loff_t pos = *ppos;
1120 size_t ret;
1121
1122 if (pos < 0)
1123 return -EINVAL;
1124 if (pos >= available || !count)
1125 return 0;
1126 if (count > available - pos)
1127 count = available - pos;
1128 ret = copy_to_user(to, from + pos, count);
1129 if (ret == count)
1130 return -EFAULT;
1131 count -= ret;
1132 *ppos = pos + count;
1133 return count;
1134 }
1135 EXPORT_SYMBOL(simple_read_from_buffer);
1136
1137 /**
1138 * simple_write_to_buffer - copy data from user space to the buffer
1139 * @to: the buffer to write to
1140 * @available: the size of the buffer
1141 * @ppos: the current position in the buffer
1142 * @from: the user space buffer to read from
1143 * @count: the maximum number of bytes to read
1144 *
1145 * The simple_write_to_buffer() function reads up to @count bytes from the user
1146 * space address starting at @from into the buffer @to at offset @ppos.
1147 *
1148 * On success, the number of bytes written is returned and the offset @ppos is
1149 * advanced by this number, or negative value is returned on error.
1150 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1151 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1152 const void __user *from, size_t count)
1153 {
1154 loff_t pos = *ppos;
1155 size_t res;
1156
1157 if (pos < 0)
1158 return -EINVAL;
1159 if (pos >= available || !count)
1160 return 0;
1161 if (count > available - pos)
1162 count = available - pos;
1163 res = copy_from_user(to + pos, from, count);
1164 if (res == count)
1165 return -EFAULT;
1166 count -= res;
1167 *ppos = pos + count;
1168 return count;
1169 }
1170 EXPORT_SYMBOL(simple_write_to_buffer);
1171
1172 /**
1173 * memory_read_from_buffer - copy data from the buffer
1174 * @to: the kernel space buffer to read to
1175 * @count: the maximum number of bytes to read
1176 * @ppos: the current position in the buffer
1177 * @from: the buffer to read from
1178 * @available: the size of the buffer
1179 *
1180 * The memory_read_from_buffer() function reads up to @count bytes from the
1181 * buffer @from at offset @ppos into the kernel space address starting at @to.
1182 *
1183 * On success, the number of bytes read is returned and the offset @ppos is
1184 * advanced by this number, or negative value is returned on error.
1185 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1186 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1187 const void *from, size_t available)
1188 {
1189 loff_t pos = *ppos;
1190
1191 if (pos < 0)
1192 return -EINVAL;
1193 if (pos >= available)
1194 return 0;
1195 if (count > available - pos)
1196 count = available - pos;
1197 memcpy(to, from + pos, count);
1198 *ppos = pos + count;
1199
1200 return count;
1201 }
1202 EXPORT_SYMBOL(memory_read_from_buffer);
1203
1204 /*
1205 * Transaction based IO.
1206 * The file expects a single write which triggers the transaction, and then
1207 * possibly a read which collects the result - which is stored in a
1208 * file-local buffer.
1209 */
1210
simple_transaction_set(struct file * file,size_t n)1211 void simple_transaction_set(struct file *file, size_t n)
1212 {
1213 struct simple_transaction_argresp *ar = file->private_data;
1214
1215 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1216
1217 /*
1218 * The barrier ensures that ar->size will really remain zero until
1219 * ar->data is ready for reading.
1220 */
1221 smp_mb();
1222 ar->size = n;
1223 }
1224 EXPORT_SYMBOL(simple_transaction_set);
1225
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1226 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1227 {
1228 struct simple_transaction_argresp *ar;
1229 static DEFINE_SPINLOCK(simple_transaction_lock);
1230
1231 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1232 return ERR_PTR(-EFBIG);
1233
1234 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1235 if (!ar)
1236 return ERR_PTR(-ENOMEM);
1237
1238 spin_lock(&simple_transaction_lock);
1239
1240 /* only one write allowed per open */
1241 if (file->private_data) {
1242 spin_unlock(&simple_transaction_lock);
1243 free_page((unsigned long)ar);
1244 return ERR_PTR(-EBUSY);
1245 }
1246
1247 file->private_data = ar;
1248
1249 spin_unlock(&simple_transaction_lock);
1250
1251 if (copy_from_user(ar->data, buf, size))
1252 return ERR_PTR(-EFAULT);
1253
1254 return ar->data;
1255 }
1256 EXPORT_SYMBOL(simple_transaction_get);
1257
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1258 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1259 {
1260 struct simple_transaction_argresp *ar = file->private_data;
1261
1262 if (!ar)
1263 return 0;
1264 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1265 }
1266 EXPORT_SYMBOL(simple_transaction_read);
1267
simple_transaction_release(struct inode * inode,struct file * file)1268 int simple_transaction_release(struct inode *inode, struct file *file)
1269 {
1270 free_page((unsigned long)file->private_data);
1271 return 0;
1272 }
1273 EXPORT_SYMBOL(simple_transaction_release);
1274
1275 /* Simple attribute files */
1276
1277 struct simple_attr {
1278 int (*get)(void *, u64 *);
1279 int (*set)(void *, u64);
1280 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1281 char set_buf[24];
1282 void *data;
1283 const char *fmt; /* format for read operation */
1284 struct mutex mutex; /* protects access to these buffers */
1285 };
1286
1287 /* simple_attr_open is called by an actual attribute open file operation
1288 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1289 int simple_attr_open(struct inode *inode, struct file *file,
1290 int (*get)(void *, u64 *), int (*set)(void *, u64),
1291 const char *fmt)
1292 {
1293 struct simple_attr *attr;
1294
1295 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1296 if (!attr)
1297 return -ENOMEM;
1298
1299 attr->get = get;
1300 attr->set = set;
1301 attr->data = inode->i_private;
1302 attr->fmt = fmt;
1303 mutex_init(&attr->mutex);
1304
1305 file->private_data = attr;
1306
1307 return nonseekable_open(inode, file);
1308 }
1309 EXPORT_SYMBOL_GPL(simple_attr_open);
1310
simple_attr_release(struct inode * inode,struct file * file)1311 int simple_attr_release(struct inode *inode, struct file *file)
1312 {
1313 kfree(file->private_data);
1314 return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1317
1318 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1319 ssize_t simple_attr_read(struct file *file, char __user *buf,
1320 size_t len, loff_t *ppos)
1321 {
1322 struct simple_attr *attr;
1323 size_t size;
1324 ssize_t ret;
1325
1326 attr = file->private_data;
1327
1328 if (!attr->get)
1329 return -EACCES;
1330
1331 ret = mutex_lock_interruptible(&attr->mutex);
1332 if (ret)
1333 return ret;
1334
1335 if (*ppos && attr->get_buf[0]) {
1336 /* continued read */
1337 size = strlen(attr->get_buf);
1338 } else {
1339 /* first read */
1340 u64 val;
1341 ret = attr->get(attr->data, &val);
1342 if (ret)
1343 goto out;
1344
1345 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1346 attr->fmt, (unsigned long long)val);
1347 }
1348
1349 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1350 out:
1351 mutex_unlock(&attr->mutex);
1352 return ret;
1353 }
1354 EXPORT_SYMBOL_GPL(simple_attr_read);
1355
1356 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1357 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1358 size_t len, loff_t *ppos, bool is_signed)
1359 {
1360 struct simple_attr *attr;
1361 unsigned long long val;
1362 size_t size;
1363 ssize_t ret;
1364
1365 attr = file->private_data;
1366 if (!attr->set)
1367 return -EACCES;
1368
1369 ret = mutex_lock_interruptible(&attr->mutex);
1370 if (ret)
1371 return ret;
1372
1373 ret = -EFAULT;
1374 size = min(sizeof(attr->set_buf) - 1, len);
1375 if (copy_from_user(attr->set_buf, buf, size))
1376 goto out;
1377
1378 attr->set_buf[size] = '\0';
1379 if (is_signed)
1380 ret = kstrtoll(attr->set_buf, 0, &val);
1381 else
1382 ret = kstrtoull(attr->set_buf, 0, &val);
1383 if (ret)
1384 goto out;
1385 ret = attr->set(attr->data, val);
1386 if (ret == 0)
1387 ret = len; /* on success, claim we got the whole input */
1388 out:
1389 mutex_unlock(&attr->mutex);
1390 return ret;
1391 }
1392
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1393 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1394 size_t len, loff_t *ppos)
1395 {
1396 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1397 }
1398 EXPORT_SYMBOL_GPL(simple_attr_write);
1399
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1400 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1401 size_t len, loff_t *ppos)
1402 {
1403 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1404 }
1405 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1406
1407 /**
1408 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1409 * @inode: the object to encode
1410 * @fh: where to store the file handle fragment
1411 * @max_len: maximum length to store there (in 4 byte units)
1412 * @parent: parent directory inode, if wanted
1413 *
1414 * This generic encode_fh function assumes that the 32 inode number
1415 * is suitable for locating an inode, and that the generation number
1416 * can be used to check that it is still valid. It places them in the
1417 * filehandle fragment where export_decode_fh expects to find them.
1418 */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1419 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1420 struct inode *parent)
1421 {
1422 struct fid *fid = (void *)fh;
1423 int len = *max_len;
1424 int type = FILEID_INO32_GEN;
1425
1426 if (parent && (len < 4)) {
1427 *max_len = 4;
1428 return FILEID_INVALID;
1429 } else if (len < 2) {
1430 *max_len = 2;
1431 return FILEID_INVALID;
1432 }
1433
1434 len = 2;
1435 fid->i32.ino = inode->i_ino;
1436 fid->i32.gen = inode->i_generation;
1437 if (parent) {
1438 fid->i32.parent_ino = parent->i_ino;
1439 fid->i32.parent_gen = parent->i_generation;
1440 len = 4;
1441 type = FILEID_INO32_GEN_PARENT;
1442 }
1443 *max_len = len;
1444 return type;
1445 }
1446 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1447
1448 /**
1449 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1450 * @sb: filesystem to do the file handle conversion on
1451 * @fid: file handle to convert
1452 * @fh_len: length of the file handle in bytes
1453 * @fh_type: type of file handle
1454 * @get_inode: filesystem callback to retrieve inode
1455 *
1456 * This function decodes @fid as long as it has one of the well-known
1457 * Linux filehandle types and calls @get_inode on it to retrieve the
1458 * inode for the object specified in the file handle.
1459 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1460 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1461 int fh_len, int fh_type, struct inode *(*get_inode)
1462 (struct super_block *sb, u64 ino, u32 gen))
1463 {
1464 struct inode *inode = NULL;
1465
1466 if (fh_len < 2)
1467 return NULL;
1468
1469 switch (fh_type) {
1470 case FILEID_INO32_GEN:
1471 case FILEID_INO32_GEN_PARENT:
1472 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1473 break;
1474 }
1475
1476 return d_obtain_alias(inode);
1477 }
1478 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1479
1480 /**
1481 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1482 * @sb: filesystem to do the file handle conversion on
1483 * @fid: file handle to convert
1484 * @fh_len: length of the file handle in bytes
1485 * @fh_type: type of file handle
1486 * @get_inode: filesystem callback to retrieve inode
1487 *
1488 * This function decodes @fid as long as it has one of the well-known
1489 * Linux filehandle types and calls @get_inode on it to retrieve the
1490 * inode for the _parent_ object specified in the file handle if it
1491 * is specified in the file handle, or NULL otherwise.
1492 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1493 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1494 int fh_len, int fh_type, struct inode *(*get_inode)
1495 (struct super_block *sb, u64 ino, u32 gen))
1496 {
1497 struct inode *inode = NULL;
1498
1499 if (fh_len <= 2)
1500 return NULL;
1501
1502 switch (fh_type) {
1503 case FILEID_INO32_GEN_PARENT:
1504 inode = get_inode(sb, fid->i32.parent_ino,
1505 (fh_len > 3 ? fid->i32.parent_gen : 0));
1506 break;
1507 }
1508
1509 return d_obtain_alias(inode);
1510 }
1511 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1512
1513 /**
1514 * __generic_file_fsync - generic fsync implementation for simple filesystems
1515 *
1516 * @file: file to synchronize
1517 * @start: start offset in bytes
1518 * @end: end offset in bytes (inclusive)
1519 * @datasync: only synchronize essential metadata if true
1520 *
1521 * This is a generic implementation of the fsync method for simple
1522 * filesystems which track all non-inode metadata in the buffers list
1523 * hanging off the address_space structure.
1524 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1525 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1526 int datasync)
1527 {
1528 struct inode *inode = file->f_mapping->host;
1529 int err;
1530 int ret;
1531
1532 err = file_write_and_wait_range(file, start, end);
1533 if (err)
1534 return err;
1535
1536 inode_lock(inode);
1537 ret = sync_mapping_buffers(inode->i_mapping);
1538 if (!(inode->i_state & I_DIRTY_ALL))
1539 goto out;
1540 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1541 goto out;
1542
1543 err = sync_inode_metadata(inode, 1);
1544 if (ret == 0)
1545 ret = err;
1546
1547 out:
1548 inode_unlock(inode);
1549 /* check and advance again to catch errors after syncing out buffers */
1550 err = file_check_and_advance_wb_err(file);
1551 if (ret == 0)
1552 ret = err;
1553 return ret;
1554 }
1555 EXPORT_SYMBOL(__generic_file_fsync);
1556
1557 /**
1558 * generic_file_fsync - generic fsync implementation for simple filesystems
1559 * with flush
1560 * @file: file to synchronize
1561 * @start: start offset in bytes
1562 * @end: end offset in bytes (inclusive)
1563 * @datasync: only synchronize essential metadata if true
1564 *
1565 */
1566
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1567 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1568 int datasync)
1569 {
1570 struct inode *inode = file->f_mapping->host;
1571 int err;
1572
1573 err = __generic_file_fsync(file, start, end, datasync);
1574 if (err)
1575 return err;
1576 return blkdev_issue_flush(inode->i_sb->s_bdev);
1577 }
1578 EXPORT_SYMBOL(generic_file_fsync);
1579
1580 /**
1581 * generic_check_addressable - Check addressability of file system
1582 * @blocksize_bits: log of file system block size
1583 * @num_blocks: number of blocks in file system
1584 *
1585 * Determine whether a file system with @num_blocks blocks (and a
1586 * block size of 2**@blocksize_bits) is addressable by the sector_t
1587 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1588 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1589 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1590 {
1591 u64 last_fs_block = num_blocks - 1;
1592 u64 last_fs_page =
1593 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1594
1595 if (unlikely(num_blocks == 0))
1596 return 0;
1597
1598 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1599 return -EINVAL;
1600
1601 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1602 (last_fs_page > (pgoff_t)(~0ULL))) {
1603 return -EFBIG;
1604 }
1605 return 0;
1606 }
1607 EXPORT_SYMBOL(generic_check_addressable);
1608
1609 /*
1610 * No-op implementation of ->fsync for in-memory filesystems.
1611 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1612 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1613 {
1614 return 0;
1615 }
1616 EXPORT_SYMBOL(noop_fsync);
1617
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1618 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1619 {
1620 /*
1621 * iomap based filesystems support direct I/O without need for
1622 * this callback. However, it still needs to be set in
1623 * inode->a_ops so that open/fcntl know that direct I/O is
1624 * generally supported.
1625 */
1626 return -EINVAL;
1627 }
1628 EXPORT_SYMBOL_GPL(noop_direct_IO);
1629
1630 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1631 void kfree_link(void *p)
1632 {
1633 kfree(p);
1634 }
1635 EXPORT_SYMBOL(kfree_link);
1636
alloc_anon_inode(struct super_block * s)1637 struct inode *alloc_anon_inode(struct super_block *s)
1638 {
1639 static const struct address_space_operations anon_aops = {
1640 .dirty_folio = noop_dirty_folio,
1641 };
1642 struct inode *inode = new_inode_pseudo(s);
1643
1644 if (!inode)
1645 return ERR_PTR(-ENOMEM);
1646
1647 inode->i_ino = get_next_ino();
1648 inode->i_mapping->a_ops = &anon_aops;
1649
1650 /*
1651 * Mark the inode dirty from the very beginning,
1652 * that way it will never be moved to the dirty
1653 * list because mark_inode_dirty() will think
1654 * that it already _is_ on the dirty list.
1655 */
1656 inode->i_state = I_DIRTY;
1657 inode->i_mode = S_IRUSR | S_IWUSR;
1658 inode->i_uid = current_fsuid();
1659 inode->i_gid = current_fsgid();
1660 inode->i_flags |= S_PRIVATE;
1661 simple_inode_init_ts(inode);
1662 return inode;
1663 }
1664 EXPORT_SYMBOL(alloc_anon_inode);
1665
1666 /**
1667 * simple_nosetlease - generic helper for prohibiting leases
1668 * @filp: file pointer
1669 * @arg: type of lease to obtain
1670 * @flp: new lease supplied for insertion
1671 * @priv: private data for lm_setup operation
1672 *
1673 * Generic helper for filesystems that do not wish to allow leases to be set.
1674 * All arguments are ignored and it just returns -EINVAL.
1675 */
1676 int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1677 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1678 void **priv)
1679 {
1680 return -EINVAL;
1681 }
1682 EXPORT_SYMBOL(simple_nosetlease);
1683
1684 /**
1685 * simple_get_link - generic helper to get the target of "fast" symlinks
1686 * @dentry: not used here
1687 * @inode: the symlink inode
1688 * @done: not used here
1689 *
1690 * Generic helper for filesystems to use for symlink inodes where a pointer to
1691 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1692 * since as an optimization the path lookup code uses any non-NULL ->i_link
1693 * directly, without calling ->get_link(). But ->get_link() still must be set,
1694 * to mark the inode_operations as being for a symlink.
1695 *
1696 * Return: the symlink target
1697 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1698 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1699 struct delayed_call *done)
1700 {
1701 return inode->i_link;
1702 }
1703 EXPORT_SYMBOL(simple_get_link);
1704
1705 const struct inode_operations simple_symlink_inode_operations = {
1706 .get_link = simple_get_link,
1707 };
1708 EXPORT_SYMBOL(simple_symlink_inode_operations);
1709
1710 /*
1711 * Operations for a permanently empty directory.
1712 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1713 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1714 {
1715 return ERR_PTR(-ENOENT);
1716 }
1717
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1718 static int empty_dir_setattr(struct mnt_idmap *idmap,
1719 struct dentry *dentry, struct iattr *attr)
1720 {
1721 return -EPERM;
1722 }
1723
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1724 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1725 {
1726 return -EOPNOTSUPP;
1727 }
1728
1729 static const struct inode_operations empty_dir_inode_operations = {
1730 .lookup = empty_dir_lookup,
1731 .setattr = empty_dir_setattr,
1732 .listxattr = empty_dir_listxattr,
1733 };
1734
empty_dir_llseek(struct file * file,loff_t offset,int whence)1735 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1736 {
1737 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1738 return generic_file_llseek_size(file, offset, whence, 2, 2);
1739 }
1740
empty_dir_readdir(struct file * file,struct dir_context * ctx)1741 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1742 {
1743 dir_emit_dots(file, ctx);
1744 return 0;
1745 }
1746
1747 static const struct file_operations empty_dir_operations = {
1748 .llseek = empty_dir_llseek,
1749 .read = generic_read_dir,
1750 .iterate_shared = empty_dir_readdir,
1751 .fsync = noop_fsync,
1752 };
1753
1754
make_empty_dir_inode(struct inode * inode)1755 void make_empty_dir_inode(struct inode *inode)
1756 {
1757 set_nlink(inode, 2);
1758 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1759 inode->i_uid = GLOBAL_ROOT_UID;
1760 inode->i_gid = GLOBAL_ROOT_GID;
1761 inode->i_rdev = 0;
1762 inode->i_size = 0;
1763 inode->i_blkbits = PAGE_SHIFT;
1764 inode->i_blocks = 0;
1765
1766 inode->i_op = &empty_dir_inode_operations;
1767 inode->i_opflags &= ~IOP_XATTR;
1768 inode->i_fop = &empty_dir_operations;
1769 }
1770
is_empty_dir_inode(struct inode * inode)1771 bool is_empty_dir_inode(struct inode *inode)
1772 {
1773 return (inode->i_fop == &empty_dir_operations) &&
1774 (inode->i_op == &empty_dir_inode_operations);
1775 }
1776
1777 #if IS_ENABLED(CONFIG_UNICODE)
1778 /**
1779 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1780 * @dentry: dentry whose name we are checking against
1781 * @len: len of name of dentry
1782 * @str: str pointer to name of dentry
1783 * @name: Name to compare against
1784 *
1785 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1786 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1787 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1788 const char *str, const struct qstr *name)
1789 {
1790 const struct dentry *parent;
1791 const struct inode *dir;
1792 char strbuf[DNAME_INLINE_LEN];
1793 struct qstr qstr;
1794
1795 /*
1796 * Attempt a case-sensitive match first. It is cheaper and
1797 * should cover most lookups, including all the sane
1798 * applications that expect a case-sensitive filesystem.
1799 *
1800 * This comparison is safe under RCU because the caller
1801 * guarantees the consistency between str and len. See
1802 * __d_lookup_rcu_op_compare() for details.
1803 */
1804 if (len == name->len && !memcmp(str, name->name, len))
1805 return 0;
1806
1807 parent = READ_ONCE(dentry->d_parent);
1808 dir = READ_ONCE(parent->d_inode);
1809 if (!dir || !IS_CASEFOLDED(dir))
1810 return 1;
1811
1812 /*
1813 * If the dentry name is stored in-line, then it may be concurrently
1814 * modified by a rename. If this happens, the VFS will eventually retry
1815 * the lookup, so it doesn't matter what ->d_compare() returns.
1816 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1817 * string. Therefore, we have to copy the name into a temporary buffer.
1818 */
1819 if (len <= DNAME_INLINE_LEN - 1) {
1820 memcpy(strbuf, str, len);
1821 strbuf[len] = 0;
1822 str = strbuf;
1823 /* prevent compiler from optimizing out the temporary buffer */
1824 barrier();
1825 }
1826 qstr.len = len;
1827 qstr.name = str;
1828
1829 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1830 }
1831 EXPORT_SYMBOL(generic_ci_d_compare);
1832
1833 /**
1834 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1835 * @dentry: dentry of the parent directory
1836 * @str: qstr of name whose hash we should fill in
1837 *
1838 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1839 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1840 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1841 {
1842 const struct inode *dir = READ_ONCE(dentry->d_inode);
1843 struct super_block *sb = dentry->d_sb;
1844 const struct unicode_map *um = sb->s_encoding;
1845 int ret;
1846
1847 if (!dir || !IS_CASEFOLDED(dir))
1848 return 0;
1849
1850 ret = utf8_casefold_hash(um, dentry, str);
1851 if (ret < 0 && sb_has_strict_encoding(sb))
1852 return -EINVAL;
1853 return 0;
1854 }
1855 EXPORT_SYMBOL(generic_ci_d_hash);
1856
1857 static const struct dentry_operations generic_ci_dentry_ops = {
1858 .d_hash = generic_ci_d_hash,
1859 .d_compare = generic_ci_d_compare,
1860 #ifdef CONFIG_FS_ENCRYPTION
1861 .d_revalidate = fscrypt_d_revalidate,
1862 #endif
1863 };
1864
1865 /**
1866 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1867 * This is a filesystem helper for comparison with directory entries.
1868 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1869 *
1870 * @parent: Inode of the parent of the dirent under comparison
1871 * @name: name under lookup.
1872 * @folded_name: Optional pre-folded name under lookup
1873 * @de_name: Dirent name.
1874 * @de_name_len: dirent name length.
1875 *
1876 * Test whether a case-insensitive directory entry matches the filename
1877 * being searched. If @folded_name is provided, it is used instead of
1878 * recalculating the casefold of @name.
1879 *
1880 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1881 * < 0 on error.
1882 */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1883 int generic_ci_match(const struct inode *parent,
1884 const struct qstr *name,
1885 const struct qstr *folded_name,
1886 const u8 *de_name, u32 de_name_len)
1887 {
1888 const struct super_block *sb = parent->i_sb;
1889 const struct unicode_map *um = sb->s_encoding;
1890 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1891 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1892 int res = 0;
1893
1894 if (IS_ENCRYPTED(parent)) {
1895 const struct fscrypt_str encrypted_name =
1896 FSTR_INIT((u8 *) de_name, de_name_len);
1897
1898 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1899 return -EINVAL;
1900
1901 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1902 if (!decrypted_name.name)
1903 return -ENOMEM;
1904 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1905 &decrypted_name);
1906 if (res < 0) {
1907 kfree(decrypted_name.name);
1908 return res;
1909 }
1910 dirent.name = decrypted_name.name;
1911 dirent.len = decrypted_name.len;
1912 }
1913
1914 /*
1915 * Attempt a case-sensitive match first. It is cheaper and
1916 * should cover most lookups, including all the sane
1917 * applications that expect a case-sensitive filesystem.
1918 */
1919
1920 if (dirent.len == name->len &&
1921 !memcmp(name->name, dirent.name, dirent.len))
1922 goto out;
1923
1924 if (folded_name->name)
1925 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1926 else
1927 res = utf8_strncasecmp(um, name, &dirent);
1928
1929 out:
1930 kfree(decrypted_name.name);
1931 if (res < 0 && sb_has_strict_encoding(sb)) {
1932 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1933 return 0;
1934 }
1935 return !res;
1936 }
1937 EXPORT_SYMBOL(generic_ci_match);
1938 #endif
1939
1940 #ifdef CONFIG_FS_ENCRYPTION
1941 static const struct dentry_operations generic_encrypted_dentry_ops = {
1942 .d_revalidate = fscrypt_d_revalidate,
1943 };
1944 #endif
1945
1946 /**
1947 * generic_set_sb_d_ops - helper for choosing the set of
1948 * filesystem-wide dentry operations for the enabled features
1949 * @sb: superblock to be configured
1950 *
1951 * Filesystems supporting casefolding and/or fscrypt can call this
1952 * helper at mount-time to configure sb->s_d_op to best set of dentry
1953 * operations required for the enabled features. The helper must be
1954 * called after these have been configured, but before the root dentry
1955 * is created.
1956 */
generic_set_sb_d_ops(struct super_block * sb)1957 void generic_set_sb_d_ops(struct super_block *sb)
1958 {
1959 #if IS_ENABLED(CONFIG_UNICODE)
1960 if (sb->s_encoding) {
1961 sb->s_d_op = &generic_ci_dentry_ops;
1962 return;
1963 }
1964 #endif
1965 #ifdef CONFIG_FS_ENCRYPTION
1966 if (sb->s_cop) {
1967 sb->s_d_op = &generic_encrypted_dentry_ops;
1968 return;
1969 }
1970 #endif
1971 }
1972 EXPORT_SYMBOL(generic_set_sb_d_ops);
1973
1974 /**
1975 * inode_maybe_inc_iversion - increments i_version
1976 * @inode: inode with the i_version that should be updated
1977 * @force: increment the counter even if it's not necessary?
1978 *
1979 * Every time the inode is modified, the i_version field must be seen to have
1980 * changed by any observer.
1981 *
1982 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1983 * the value, and clear the queried flag.
1984 *
1985 * In the common case where neither is set, then we can return "false" without
1986 * updating i_version.
1987 *
1988 * If this function returns false, and no other metadata has changed, then we
1989 * can avoid logging the metadata.
1990 */
inode_maybe_inc_iversion(struct inode * inode,bool force)1991 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1992 {
1993 u64 cur, new;
1994
1995 /*
1996 * The i_version field is not strictly ordered with any other inode
1997 * information, but the legacy inode_inc_iversion code used a spinlock
1998 * to serialize increments.
1999 *
2000 * We add a full memory barrier to ensure that any de facto ordering
2001 * with other state is preserved (either implicitly coming from cmpxchg
2002 * or explicitly from smp_mb if we don't know upfront if we will execute
2003 * the former).
2004 *
2005 * These barriers pair with inode_query_iversion().
2006 */
2007 cur = inode_peek_iversion_raw(inode);
2008 if (!force && !(cur & I_VERSION_QUERIED)) {
2009 smp_mb();
2010 cur = inode_peek_iversion_raw(inode);
2011 }
2012
2013 do {
2014 /* If flag is clear then we needn't do anything */
2015 if (!force && !(cur & I_VERSION_QUERIED))
2016 return false;
2017
2018 /* Since lowest bit is flag, add 2 to avoid it */
2019 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2020 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2021 return true;
2022 }
2023 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2024
2025 /**
2026 * inode_query_iversion - read i_version for later use
2027 * @inode: inode from which i_version should be read
2028 *
2029 * Read the inode i_version counter. This should be used by callers that wish
2030 * to store the returned i_version for later comparison. This will guarantee
2031 * that a later query of the i_version will result in a different value if
2032 * anything has changed.
2033 *
2034 * In this implementation, we fetch the current value, set the QUERIED flag and
2035 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2036 * that fails, we try again with the newly fetched value from the cmpxchg.
2037 */
inode_query_iversion(struct inode * inode)2038 u64 inode_query_iversion(struct inode *inode)
2039 {
2040 u64 cur, new;
2041 bool fenced = false;
2042
2043 /*
2044 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2045 * inode_maybe_inc_iversion(), see that routine for more details.
2046 */
2047 cur = inode_peek_iversion_raw(inode);
2048 do {
2049 /* If flag is already set, then no need to swap */
2050 if (cur & I_VERSION_QUERIED) {
2051 if (!fenced)
2052 smp_mb();
2053 break;
2054 }
2055
2056 fenced = true;
2057 new = cur | I_VERSION_QUERIED;
2058 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2059 return cur >> I_VERSION_QUERIED_SHIFT;
2060 }
2061 EXPORT_SYMBOL(inode_query_iversion);
2062
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2063 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2064 ssize_t direct_written, ssize_t buffered_written)
2065 {
2066 struct address_space *mapping = iocb->ki_filp->f_mapping;
2067 loff_t pos = iocb->ki_pos - buffered_written;
2068 loff_t end = iocb->ki_pos - 1;
2069 int err;
2070
2071 /*
2072 * If the buffered write fallback returned an error, we want to return
2073 * the number of bytes which were written by direct I/O, or the error
2074 * code if that was zero.
2075 *
2076 * Note that this differs from normal direct-io semantics, which will
2077 * return -EFOO even if some bytes were written.
2078 */
2079 if (unlikely(buffered_written < 0)) {
2080 if (direct_written)
2081 return direct_written;
2082 return buffered_written;
2083 }
2084
2085 /*
2086 * We need to ensure that the page cache pages are written to disk and
2087 * invalidated to preserve the expected O_DIRECT semantics.
2088 */
2089 err = filemap_write_and_wait_range(mapping, pos, end);
2090 if (err < 0) {
2091 /*
2092 * We don't know how much we wrote, so just return the number of
2093 * bytes which were direct-written
2094 */
2095 iocb->ki_pos -= buffered_written;
2096 if (direct_written)
2097 return direct_written;
2098 return err;
2099 }
2100 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2101 return direct_written + buffered_written;
2102 }
2103 EXPORT_SYMBOL_GPL(direct_write_fallback);
2104
2105 /**
2106 * simple_inode_init_ts - initialize the timestamps for a new inode
2107 * @inode: inode to be initialized
2108 *
2109 * When a new inode is created, most filesystems set the timestamps to the
2110 * current time. Add a helper to do this.
2111 */
simple_inode_init_ts(struct inode * inode)2112 struct timespec64 simple_inode_init_ts(struct inode *inode)
2113 {
2114 struct timespec64 ts = inode_set_ctime_current(inode);
2115
2116 inode_set_atime_to_ts(inode, ts);
2117 inode_set_mtime_to_ts(inode, ts);
2118 return ts;
2119 }
2120 EXPORT_SYMBOL(simple_inode_init_ts);
2121
get_stashed_dentry(struct dentry ** stashed)2122 static inline struct dentry *get_stashed_dentry(struct dentry **stashed)
2123 {
2124 struct dentry *dentry;
2125
2126 guard(rcu)();
2127 dentry = rcu_dereference(*stashed);
2128 if (!dentry)
2129 return NULL;
2130 if (!lockref_get_not_dead(&dentry->d_lockref))
2131 return NULL;
2132 return dentry;
2133 }
2134
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2135 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2136 struct super_block *sb,
2137 void *data)
2138 {
2139 struct dentry *dentry;
2140 struct inode *inode;
2141 const struct stashed_operations *sops = sb->s_fs_info;
2142 int ret;
2143
2144 inode = new_inode_pseudo(sb);
2145 if (!inode) {
2146 sops->put_data(data);
2147 return ERR_PTR(-ENOMEM);
2148 }
2149
2150 inode->i_flags |= S_IMMUTABLE;
2151 inode->i_mode = S_IFREG;
2152 simple_inode_init_ts(inode);
2153
2154 ret = sops->init_inode(inode, data);
2155 if (ret < 0) {
2156 iput(inode);
2157 return ERR_PTR(ret);
2158 }
2159
2160 /* Notice when this is changed. */
2161 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2162 WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2163
2164 dentry = d_alloc_anon(sb);
2165 if (!dentry) {
2166 iput(inode);
2167 return ERR_PTR(-ENOMEM);
2168 }
2169
2170 /* Store address of location where dentry's supposed to be stashed. */
2171 dentry->d_fsdata = stashed;
2172
2173 /* @data is now owned by the fs */
2174 d_instantiate(dentry, inode);
2175 return dentry;
2176 }
2177
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2178 static struct dentry *stash_dentry(struct dentry **stashed,
2179 struct dentry *dentry)
2180 {
2181 guard(rcu)();
2182 for (;;) {
2183 struct dentry *old;
2184
2185 /* Assume any old dentry was cleared out. */
2186 old = cmpxchg(stashed, NULL, dentry);
2187 if (likely(!old))
2188 return dentry;
2189
2190 /* Check if somebody else installed a reusable dentry. */
2191 if (lockref_get_not_dead(&old->d_lockref))
2192 return old;
2193
2194 /* There's an old dead dentry there, try to take it over. */
2195 if (likely(try_cmpxchg(stashed, &old, dentry)))
2196 return dentry;
2197 }
2198 }
2199
2200 /**
2201 * path_from_stashed - create path from stashed or new dentry
2202 * @stashed: where to retrieve or stash dentry
2203 * @mnt: mnt of the filesystems to use
2204 * @data: data to store in inode->i_private
2205 * @path: path to create
2206 *
2207 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2208 * is still valid then it will be reused. If the dentry isn't able the function
2209 * will allocate a new dentry and inode. It will then check again whether it
2210 * can reuse an existing dentry in case one has been added in the meantime or
2211 * update @stashed with the newly added dentry.
2212 *
2213 * Special-purpose helper for nsfs and pidfs.
2214 *
2215 * Return: On success zero and on failure a negative error is returned.
2216 */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2217 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2218 struct path *path)
2219 {
2220 struct dentry *dentry;
2221 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2222
2223 /* See if dentry can be reused. */
2224 path->dentry = get_stashed_dentry(stashed);
2225 if (path->dentry) {
2226 sops->put_data(data);
2227 goto out_path;
2228 }
2229
2230 /* Allocate a new dentry. */
2231 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2232 if (IS_ERR(dentry))
2233 return PTR_ERR(dentry);
2234
2235 /* Added a new dentry. @data is now owned by the filesystem. */
2236 path->dentry = stash_dentry(stashed, dentry);
2237 if (path->dentry != dentry)
2238 dput(dentry);
2239
2240 out_path:
2241 WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2242 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2243 path->mnt = mntget(mnt);
2244 return 0;
2245 }
2246
stashed_dentry_prune(struct dentry * dentry)2247 void stashed_dentry_prune(struct dentry *dentry)
2248 {
2249 struct dentry **stashed = dentry->d_fsdata;
2250 struct inode *inode = d_inode(dentry);
2251
2252 if (WARN_ON_ONCE(!stashed))
2253 return;
2254
2255 if (!inode)
2256 return;
2257
2258 /*
2259 * Only replace our own @dentry as someone else might've
2260 * already cleared out @dentry and stashed their own
2261 * dentry in there.
2262 */
2263 cmpxchg(stashed, dentry, NULL);
2264 }
2265