1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/ksm.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/backing-dev.h>
33 #include <linux/compaction.h>
34 #include <linux/syscalls.h>
35 #include <linux/compat.h>
36 #include <linux/hugetlb.h>
37 #include <linux/gfp.h>
38 #include <linux/page_idle.h>
39 #include <linux/page_owner.h>
40 #include <linux/sched/mm.h>
41 #include <linux/ptrace.h>
42 #include <linux/memory.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/pagewalk.h>
46
47 #include <asm/tlbflush.h>
48
49 #include <trace/events/migrate.h>
50
51 #include "internal.h"
52 #include "swap.h"
53
54 static const struct movable_operations *offline_movable_ops;
55 static const struct movable_operations *zsmalloc_movable_ops;
56
set_movable_ops(const struct movable_operations * ops,enum pagetype type)57 int set_movable_ops(const struct movable_operations *ops, enum pagetype type)
58 {
59 /*
60 * We only allow for selected types and don't handle concurrent
61 * registration attempts yet.
62 */
63 switch (type) {
64 case PGTY_offline:
65 if (offline_movable_ops && ops)
66 return -EBUSY;
67 offline_movable_ops = ops;
68 break;
69 case PGTY_zsmalloc:
70 if (zsmalloc_movable_ops && ops)
71 return -EBUSY;
72 zsmalloc_movable_ops = ops;
73 break;
74 default:
75 return -EINVAL;
76 }
77 return 0;
78 }
79 EXPORT_SYMBOL_GPL(set_movable_ops);
80
page_movable_ops(struct page * page)81 static const struct movable_operations *page_movable_ops(struct page *page)
82 {
83 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
84
85 /*
86 * If we enable page migration for a page of a certain type by marking
87 * it as movable, the page type must be sticky until the page gets freed
88 * back to the buddy.
89 */
90 if (PageOffline(page))
91 /* Only balloon compaction sets PageOffline pages movable. */
92 return offline_movable_ops;
93 if (PageZsmalloc(page))
94 return zsmalloc_movable_ops;
95
96 return NULL;
97 }
98
99 /**
100 * isolate_movable_ops_page - isolate a movable_ops page for migration
101 * @page: The page.
102 * @mode: The isolation mode.
103 *
104 * Try to isolate a movable_ops page for migration. Will fail if the page is
105 * not a movable_ops page, if the page is already isolated for migration
106 * or if the page was just was released by its owner.
107 *
108 * Once isolated, the page cannot get freed until it is either putback
109 * or migrated.
110 *
111 * Returns true if isolation succeeded, otherwise false.
112 */
isolate_movable_ops_page(struct page * page,isolate_mode_t mode)113 bool isolate_movable_ops_page(struct page *page, isolate_mode_t mode)
114 {
115 /*
116 * TODO: these pages will not be folios in the future. All
117 * folio dependencies will have to be removed.
118 */
119 struct folio *folio = folio_get_nontail_page(page);
120 const struct movable_operations *mops;
121
122 /*
123 * Avoid burning cycles with pages that are yet under __free_pages(),
124 * or just got freed under us.
125 *
126 * In case we 'win' a race for a movable page being freed under us and
127 * raise its refcount preventing __free_pages() from doing its job
128 * the put_page() at the end of this block will take care of
129 * release this page, thus avoiding a nasty leakage.
130 */
131 if (!folio)
132 goto out;
133
134 /*
135 * Check for movable_ops pages before taking the page lock because
136 * we use non-atomic bitops on newly allocated page flags so
137 * unconditionally grabbing the lock ruins page's owner side.
138 *
139 * Note that once a page has movable_ops, it will stay that way
140 * until the page was freed.
141 */
142 if (unlikely(!page_has_movable_ops(page)))
143 goto out_putfolio;
144
145 /*
146 * As movable pages are not isolated from LRU lists, concurrent
147 * compaction threads can race against page migration functions
148 * as well as race against the releasing a page.
149 *
150 * In order to avoid having an already isolated movable page
151 * being (wrongly) re-isolated while it is under migration,
152 * or to avoid attempting to isolate pages being released,
153 * lets be sure we have the page lock
154 * before proceeding with the movable page isolation steps.
155 */
156 if (unlikely(!folio_trylock(folio)))
157 goto out_putfolio;
158
159 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
160 if (PageMovableOpsIsolated(page))
161 goto out_no_isolated;
162
163 mops = page_movable_ops(page);
164 if (WARN_ON_ONCE(!mops))
165 goto out_no_isolated;
166
167 if (!mops->isolate_page(page, mode))
168 goto out_no_isolated;
169
170 /* Driver shouldn't use the isolated flag */
171 VM_WARN_ON_ONCE_PAGE(PageMovableOpsIsolated(page), page);
172 SetPageMovableOpsIsolated(page);
173 folio_unlock(folio);
174
175 return true;
176
177 out_no_isolated:
178 folio_unlock(folio);
179 out_putfolio:
180 folio_put(folio);
181 out:
182 return false;
183 }
184
185 /**
186 * putback_movable_ops_page - putback an isolated movable_ops page
187 * @page: The isolated page.
188 *
189 * Putback an isolated movable_ops page.
190 *
191 * After the page was putback, it might get freed instantly.
192 */
putback_movable_ops_page(struct page * page)193 static void putback_movable_ops_page(struct page *page)
194 {
195 /*
196 * TODO: these pages will not be folios in the future. All
197 * folio dependencies will have to be removed.
198 */
199 struct folio *folio = page_folio(page);
200
201 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page);
202 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(page), page);
203 folio_lock(folio);
204 page_movable_ops(page)->putback_page(page);
205 ClearPageMovableOpsIsolated(page);
206 folio_unlock(folio);
207 folio_put(folio);
208 }
209
210 /**
211 * migrate_movable_ops_page - migrate an isolated movable_ops page
212 * @dst: The destination page.
213 * @src: The source page.
214 * @mode: The migration mode.
215 *
216 * Migrate an isolated movable_ops page.
217 *
218 * If the src page was already released by its owner, the src page is
219 * un-isolated (putback) and migration succeeds; the migration core will be the
220 * owner of both pages.
221 *
222 * If the src page was not released by its owner and the migration was
223 * successful, the owner of the src page and the dst page are swapped and
224 * the src page is un-isolated.
225 *
226 * If migration fails, the ownership stays unmodified and the src page
227 * remains isolated: migration may be retried later or the page can be putback.
228 *
229 * TODO: migration core will treat both pages as folios and lock them before
230 * this call to unlock them after this call. Further, the folio refcounts on
231 * src and dst are also released by migration core. These pages will not be
232 * folios in the future, so that must be reworked.
233 *
234 * Returns MIGRATEPAGE_SUCCESS on success, otherwise a negative error
235 * code.
236 */
migrate_movable_ops_page(struct page * dst,struct page * src,enum migrate_mode mode)237 static int migrate_movable_ops_page(struct page *dst, struct page *src,
238 enum migrate_mode mode)
239 {
240 int rc = MIGRATEPAGE_SUCCESS;
241
242 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(src), src);
243 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(src), src);
244 rc = page_movable_ops(src)->migrate_page(dst, src, mode);
245 if (rc == MIGRATEPAGE_SUCCESS)
246 ClearPageMovableOpsIsolated(src);
247 return rc;
248 }
249
250 /*
251 * Put previously isolated pages back onto the appropriate lists
252 * from where they were once taken off for compaction/migration.
253 *
254 * This function shall be used whenever the isolated pageset has been
255 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
256 * and folio_isolate_hugetlb().
257 */
putback_movable_pages(struct list_head * l)258 void putback_movable_pages(struct list_head *l)
259 {
260 struct folio *folio;
261 struct folio *folio2;
262
263 list_for_each_entry_safe(folio, folio2, l, lru) {
264 if (unlikely(folio_test_hugetlb(folio))) {
265 folio_putback_hugetlb(folio);
266 continue;
267 }
268 list_del(&folio->lru);
269 if (unlikely(page_has_movable_ops(&folio->page))) {
270 putback_movable_ops_page(&folio->page);
271 } else {
272 node_stat_mod_folio(folio, NR_ISOLATED_ANON +
273 folio_is_file_lru(folio), -folio_nr_pages(folio));
274 folio_putback_lru(folio);
275 }
276 }
277 }
278
279 /* Must be called with an elevated refcount on the non-hugetlb folio */
isolate_folio_to_list(struct folio * folio,struct list_head * list)280 bool isolate_folio_to_list(struct folio *folio, struct list_head *list)
281 {
282 if (folio_test_hugetlb(folio))
283 return folio_isolate_hugetlb(folio, list);
284
285 if (page_has_movable_ops(&folio->page)) {
286 if (!isolate_movable_ops_page(&folio->page,
287 ISOLATE_UNEVICTABLE))
288 return false;
289 } else {
290 if (!folio_isolate_lru(folio))
291 return false;
292 node_stat_add_folio(folio, NR_ISOLATED_ANON +
293 folio_is_file_lru(folio));
294 }
295 list_add(&folio->lru, list);
296 return true;
297 }
298
try_to_map_unused_to_zeropage(struct page_vma_mapped_walk * pvmw,struct folio * folio,unsigned long idx)299 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw,
300 struct folio *folio,
301 unsigned long idx)
302 {
303 struct page *page = folio_page(folio, idx);
304 bool contains_data;
305 pte_t newpte;
306 void *addr;
307
308 if (PageCompound(page))
309 return false;
310 VM_BUG_ON_PAGE(!PageAnon(page), page);
311 VM_BUG_ON_PAGE(!PageLocked(page), page);
312 VM_BUG_ON_PAGE(pte_present(ptep_get(pvmw->pte)), page);
313
314 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) ||
315 mm_forbids_zeropage(pvmw->vma->vm_mm))
316 return false;
317
318 /*
319 * The pmd entry mapping the old thp was flushed and the pte mapping
320 * this subpage has been non present. If the subpage is only zero-filled
321 * then map it to the shared zeropage.
322 */
323 addr = kmap_local_page(page);
324 contains_data = memchr_inv(addr, 0, PAGE_SIZE);
325 kunmap_local(addr);
326
327 if (contains_data)
328 return false;
329
330 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address),
331 pvmw->vma->vm_page_prot));
332 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte);
333
334 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio));
335 return true;
336 }
337
338 struct rmap_walk_arg {
339 struct folio *folio;
340 bool map_unused_to_zeropage;
341 };
342
343 /*
344 * Restore a potential migration pte to a working pte entry
345 */
remove_migration_pte(struct folio * folio,struct vm_area_struct * vma,unsigned long addr,void * arg)346 static bool remove_migration_pte(struct folio *folio,
347 struct vm_area_struct *vma, unsigned long addr, void *arg)
348 {
349 struct rmap_walk_arg *rmap_walk_arg = arg;
350 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
351
352 while (page_vma_mapped_walk(&pvmw)) {
353 rmap_t rmap_flags = RMAP_NONE;
354 pte_t old_pte;
355 pte_t pte;
356 swp_entry_t entry;
357 struct page *new;
358 unsigned long idx = 0;
359
360 /* pgoff is invalid for ksm pages, but they are never large */
361 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
362 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
363 new = folio_page(folio, idx);
364
365 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
366 /* PMD-mapped THP migration entry */
367 if (!pvmw.pte) {
368 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
369 !folio_test_pmd_mappable(folio), folio);
370 remove_migration_pmd(&pvmw, new);
371 continue;
372 }
373 #endif
374 if (rmap_walk_arg->map_unused_to_zeropage &&
375 try_to_map_unused_to_zeropage(&pvmw, folio, idx))
376 continue;
377
378 folio_get(folio);
379 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
380 old_pte = ptep_get(pvmw.pte);
381
382 entry = pte_to_swp_entry(old_pte);
383 if (!is_migration_entry_young(entry))
384 pte = pte_mkold(pte);
385 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
386 pte = pte_mkdirty(pte);
387 if (pte_swp_soft_dirty(old_pte))
388 pte = pte_mksoft_dirty(pte);
389 else
390 pte = pte_clear_soft_dirty(pte);
391
392 if (is_writable_migration_entry(entry))
393 pte = pte_mkwrite(pte, vma);
394 else if (pte_swp_uffd_wp(old_pte))
395 pte = pte_mkuffd_wp(pte);
396
397 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
398 rmap_flags |= RMAP_EXCLUSIVE;
399
400 if (unlikely(is_device_private_page(new))) {
401 if (pte_write(pte))
402 entry = make_writable_device_private_entry(
403 page_to_pfn(new));
404 else
405 entry = make_readable_device_private_entry(
406 page_to_pfn(new));
407 pte = swp_entry_to_pte(entry);
408 if (pte_swp_soft_dirty(old_pte))
409 pte = pte_swp_mksoft_dirty(pte);
410 if (pte_swp_uffd_wp(old_pte))
411 pte = pte_swp_mkuffd_wp(pte);
412 }
413
414 #ifdef CONFIG_HUGETLB_PAGE
415 if (folio_test_hugetlb(folio)) {
416 struct hstate *h = hstate_vma(vma);
417 unsigned int shift = huge_page_shift(h);
418 unsigned long psize = huge_page_size(h);
419
420 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
421 if (folio_test_anon(folio))
422 hugetlb_add_anon_rmap(folio, vma, pvmw.address,
423 rmap_flags);
424 else
425 hugetlb_add_file_rmap(folio);
426 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
427 psize);
428 } else
429 #endif
430 {
431 if (folio_test_anon(folio))
432 folio_add_anon_rmap_pte(folio, new, vma,
433 pvmw.address, rmap_flags);
434 else
435 folio_add_file_rmap_pte(folio, new, vma);
436 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
437 }
438 if (READ_ONCE(vma->vm_flags) & VM_LOCKED)
439 mlock_drain_local();
440
441 trace_remove_migration_pte(pvmw.address, pte_val(pte),
442 compound_order(new));
443
444 /* No need to invalidate - it was non-present before */
445 update_mmu_cache(vma, pvmw.address, pvmw.pte);
446 }
447
448 return true;
449 }
450
451 /*
452 * Get rid of all migration entries and replace them by
453 * references to the indicated page.
454 */
remove_migration_ptes(struct folio * src,struct folio * dst,int flags)455 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags)
456 {
457 struct rmap_walk_arg rmap_walk_arg = {
458 .folio = src,
459 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE,
460 };
461
462 struct rmap_walk_control rwc = {
463 .rmap_one = remove_migration_pte,
464 .arg = &rmap_walk_arg,
465 };
466
467 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src);
468
469 if (flags & RMP_LOCKED)
470 rmap_walk_locked(dst, &rwc);
471 else
472 rmap_walk(dst, &rwc);
473 }
474
475 /*
476 * Something used the pte of a page under migration. We need to
477 * get to the page and wait until migration is finished.
478 * When we return from this function the fault will be retried.
479 */
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)480 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
481 unsigned long address)
482 {
483 spinlock_t *ptl;
484 pte_t *ptep;
485 pte_t pte;
486 swp_entry_t entry;
487
488 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
489 if (!ptep)
490 return;
491
492 pte = ptep_get(ptep);
493 pte_unmap(ptep);
494
495 if (!is_swap_pte(pte))
496 goto out;
497
498 entry = pte_to_swp_entry(pte);
499 if (!is_migration_entry(entry))
500 goto out;
501
502 migration_entry_wait_on_locked(entry, ptl);
503 return;
504 out:
505 spin_unlock(ptl);
506 }
507
508 #ifdef CONFIG_HUGETLB_PAGE
509 /*
510 * The vma read lock must be held upon entry. Holding that lock prevents either
511 * the pte or the ptl from being freed.
512 *
513 * This function will release the vma lock before returning.
514 */
migration_entry_wait_huge(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)515 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
516 {
517 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
518 pte_t pte;
519
520 hugetlb_vma_assert_locked(vma);
521 spin_lock(ptl);
522 pte = huge_ptep_get(vma->vm_mm, addr, ptep);
523
524 if (unlikely(!is_hugetlb_entry_migration(pte))) {
525 spin_unlock(ptl);
526 hugetlb_vma_unlock_read(vma);
527 } else {
528 /*
529 * If migration entry existed, safe to release vma lock
530 * here because the pgtable page won't be freed without the
531 * pgtable lock released. See comment right above pgtable
532 * lock release in migration_entry_wait_on_locked().
533 */
534 hugetlb_vma_unlock_read(vma);
535 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
536 }
537 }
538 #endif
539
540 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)541 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
542 {
543 spinlock_t *ptl;
544
545 ptl = pmd_lock(mm, pmd);
546 if (!is_pmd_migration_entry(*pmd))
547 goto unlock;
548 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
549 return;
550 unlock:
551 spin_unlock(ptl);
552 }
553 #endif
554
555 /*
556 * Replace the folio in the mapping.
557 *
558 * The number of remaining references must be:
559 * 1 for anonymous folios without a mapping
560 * 2 for folios with a mapping
561 * 3 for folios with a mapping and the private flag set.
562 */
__folio_migrate_mapping(struct address_space * mapping,struct folio * newfolio,struct folio * folio,int expected_count)563 static int __folio_migrate_mapping(struct address_space *mapping,
564 struct folio *newfolio, struct folio *folio, int expected_count)
565 {
566 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
567 struct zone *oldzone, *newzone;
568 int dirty;
569 long nr = folio_nr_pages(folio);
570 long entries, i;
571
572 if (!mapping) {
573 /* Take off deferred split queue while frozen and memcg set */
574 if (folio_test_large(folio) &&
575 folio_test_large_rmappable(folio)) {
576 if (!folio_ref_freeze(folio, expected_count))
577 return -EAGAIN;
578 folio_unqueue_deferred_split(folio);
579 folio_ref_unfreeze(folio, expected_count);
580 }
581
582 /* No turning back from here */
583 newfolio->index = folio->index;
584 newfolio->mapping = folio->mapping;
585 if (folio_test_anon(folio) && folio_test_large(folio))
586 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
587 if (folio_test_swapbacked(folio))
588 __folio_set_swapbacked(newfolio);
589
590 return MIGRATEPAGE_SUCCESS;
591 }
592
593 oldzone = folio_zone(folio);
594 newzone = folio_zone(newfolio);
595
596 xas_lock_irq(&xas);
597 if (!folio_ref_freeze(folio, expected_count)) {
598 xas_unlock_irq(&xas);
599 return -EAGAIN;
600 }
601
602 /* Take off deferred split queue while frozen and memcg set */
603 folio_unqueue_deferred_split(folio);
604
605 /*
606 * Now we know that no one else is looking at the folio:
607 * no turning back from here.
608 */
609 newfolio->index = folio->index;
610 newfolio->mapping = folio->mapping;
611 if (folio_test_anon(folio) && folio_test_large(folio))
612 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
613 folio_ref_add(newfolio, nr); /* add cache reference */
614 if (folio_test_swapbacked(folio))
615 __folio_set_swapbacked(newfolio);
616 if (folio_test_swapcache(folio)) {
617 folio_set_swapcache(newfolio);
618 newfolio->private = folio_get_private(folio);
619 entries = nr;
620 } else {
621 entries = 1;
622 }
623
624 /* Move dirty while folio refs frozen and newfolio not yet exposed */
625 dirty = folio_test_dirty(folio);
626 if (dirty) {
627 folio_clear_dirty(folio);
628 folio_set_dirty(newfolio);
629 }
630
631 /* Swap cache still stores N entries instead of a high-order entry */
632 for (i = 0; i < entries; i++) {
633 xas_store(&xas, newfolio);
634 xas_next(&xas);
635 }
636
637 /*
638 * Drop cache reference from old folio by unfreezing
639 * to one less reference.
640 * We know this isn't the last reference.
641 */
642 folio_ref_unfreeze(folio, expected_count - nr);
643
644 xas_unlock(&xas);
645 /* Leave irq disabled to prevent preemption while updating stats */
646
647 /*
648 * If moved to a different zone then also account
649 * the folio for that zone. Other VM counters will be
650 * taken care of when we establish references to the
651 * new folio and drop references to the old folio.
652 *
653 * Note that anonymous folios are accounted for
654 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
655 * are mapped to swap space.
656 */
657 if (newzone != oldzone) {
658 struct lruvec *old_lruvec, *new_lruvec;
659 struct mem_cgroup *memcg;
660
661 memcg = folio_memcg(folio);
662 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
663 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
664
665 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
666 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
667 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
668 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
669 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
670
671 if (folio_test_pmd_mappable(folio)) {
672 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
673 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
674 }
675 }
676 #ifdef CONFIG_SWAP
677 if (folio_test_swapcache(folio)) {
678 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
679 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
680 }
681 #endif
682 if (dirty && mapping_can_writeback(mapping)) {
683 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
684 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
685 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
686 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
687 }
688 }
689 local_irq_enable();
690
691 return MIGRATEPAGE_SUCCESS;
692 }
693
folio_migrate_mapping(struct address_space * mapping,struct folio * newfolio,struct folio * folio,int extra_count)694 int folio_migrate_mapping(struct address_space *mapping,
695 struct folio *newfolio, struct folio *folio, int extra_count)
696 {
697 int expected_count = folio_expected_ref_count(folio) + extra_count + 1;
698
699 if (folio_ref_count(folio) != expected_count)
700 return -EAGAIN;
701
702 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
703 }
704 EXPORT_SYMBOL(folio_migrate_mapping);
705
706 /*
707 * The expected number of remaining references is the same as that
708 * of folio_migrate_mapping().
709 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct folio * dst,struct folio * src)710 int migrate_huge_page_move_mapping(struct address_space *mapping,
711 struct folio *dst, struct folio *src)
712 {
713 XA_STATE(xas, &mapping->i_pages, folio_index(src));
714 int rc, expected_count = folio_expected_ref_count(src) + 1;
715
716 if (folio_ref_count(src) != expected_count)
717 return -EAGAIN;
718
719 rc = folio_mc_copy(dst, src);
720 if (unlikely(rc))
721 return rc;
722
723 xas_lock_irq(&xas);
724 if (!folio_ref_freeze(src, expected_count)) {
725 xas_unlock_irq(&xas);
726 return -EAGAIN;
727 }
728
729 dst->index = src->index;
730 dst->mapping = src->mapping;
731
732 folio_ref_add(dst, folio_nr_pages(dst));
733
734 xas_store(&xas, dst);
735
736 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
737
738 xas_unlock_irq(&xas);
739
740 return MIGRATEPAGE_SUCCESS;
741 }
742
743 /*
744 * Copy the flags and some other ancillary information
745 */
folio_migrate_flags(struct folio * newfolio,struct folio * folio)746 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
747 {
748 int cpupid;
749
750 if (folio_test_referenced(folio))
751 folio_set_referenced(newfolio);
752 if (folio_test_uptodate(folio))
753 folio_mark_uptodate(newfolio);
754 if (folio_test_clear_active(folio)) {
755 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
756 folio_set_active(newfolio);
757 } else if (folio_test_clear_unevictable(folio))
758 folio_set_unevictable(newfolio);
759 if (folio_test_workingset(folio))
760 folio_set_workingset(newfolio);
761 if (folio_test_checked(folio))
762 folio_set_checked(newfolio);
763 /*
764 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
765 * migration entries. We can still have PG_anon_exclusive set on an
766 * effectively unmapped and unreferenced first sub-pages of an
767 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
768 */
769 if (folio_test_mappedtodisk(folio))
770 folio_set_mappedtodisk(newfolio);
771
772 /* Move dirty on pages not done by folio_migrate_mapping() */
773 if (folio_test_dirty(folio))
774 folio_set_dirty(newfolio);
775
776 if (folio_test_young(folio))
777 folio_set_young(newfolio);
778 if (folio_test_idle(folio))
779 folio_set_idle(newfolio);
780
781 folio_migrate_refs(newfolio, folio);
782 /*
783 * Copy NUMA information to the new page, to prevent over-eager
784 * future migrations of this same page.
785 */
786 cpupid = folio_xchg_last_cpupid(folio, -1);
787 /*
788 * For memory tiering mode, when migrate between slow and fast
789 * memory node, reset cpupid, because that is used to record
790 * page access time in slow memory node.
791 */
792 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
793 bool f_toptier = node_is_toptier(folio_nid(folio));
794 bool t_toptier = node_is_toptier(folio_nid(newfolio));
795
796 if (f_toptier != t_toptier)
797 cpupid = -1;
798 }
799 folio_xchg_last_cpupid(newfolio, cpupid);
800
801 folio_migrate_ksm(newfolio, folio);
802 /*
803 * Please do not reorder this without considering how mm/ksm.c's
804 * ksm_get_folio() depends upon ksm_migrate_page() and the
805 * swapcache flag.
806 */
807 if (folio_test_swapcache(folio))
808 folio_clear_swapcache(folio);
809 folio_clear_private(folio);
810
811 /* page->private contains hugetlb specific flags */
812 if (!folio_test_hugetlb(folio))
813 folio->private = NULL;
814
815 /*
816 * If any waiters have accumulated on the new page then
817 * wake them up.
818 */
819 if (folio_test_writeback(newfolio))
820 folio_end_writeback(newfolio);
821
822 /*
823 * PG_readahead shares the same bit with PG_reclaim. The above
824 * end_page_writeback() may clear PG_readahead mistakenly, so set the
825 * bit after that.
826 */
827 if (folio_test_readahead(folio))
828 folio_set_readahead(newfolio);
829
830 folio_copy_owner(newfolio, folio);
831 pgalloc_tag_swap(newfolio, folio);
832
833 mem_cgroup_migrate(folio, newfolio);
834 }
835 EXPORT_SYMBOL(folio_migrate_flags);
836
837 /************************************************************
838 * Migration functions
839 ***********************************************************/
840
__migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,void * src_private,enum migrate_mode mode)841 static int __migrate_folio(struct address_space *mapping, struct folio *dst,
842 struct folio *src, void *src_private,
843 enum migrate_mode mode)
844 {
845 int rc, expected_count = folio_expected_ref_count(src) + 1;
846
847 /* Check whether src does not have extra refs before we do more work */
848 if (folio_ref_count(src) != expected_count)
849 return -EAGAIN;
850
851 rc = folio_mc_copy(dst, src);
852 if (unlikely(rc))
853 return rc;
854
855 rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
856 if (rc != MIGRATEPAGE_SUCCESS)
857 return rc;
858
859 if (src_private)
860 folio_attach_private(dst, folio_detach_private(src));
861
862 folio_migrate_flags(dst, src);
863 return MIGRATEPAGE_SUCCESS;
864 }
865
866 /**
867 * migrate_folio() - Simple folio migration.
868 * @mapping: The address_space containing the folio.
869 * @dst: The folio to migrate the data to.
870 * @src: The folio containing the current data.
871 * @mode: How to migrate the page.
872 *
873 * Common logic to directly migrate a single LRU folio suitable for
874 * folios that do not have private data.
875 *
876 * Folios are locked upon entry and exit.
877 */
migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)878 int migrate_folio(struct address_space *mapping, struct folio *dst,
879 struct folio *src, enum migrate_mode mode)
880 {
881 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
882 return __migrate_folio(mapping, dst, src, NULL, mode);
883 }
884 EXPORT_SYMBOL(migrate_folio);
885
886 #ifdef CONFIG_BUFFER_HEAD
887 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)888 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
889 enum migrate_mode mode)
890 {
891 struct buffer_head *bh = head;
892 struct buffer_head *failed_bh;
893
894 do {
895 if (!trylock_buffer(bh)) {
896 if (mode == MIGRATE_ASYNC)
897 goto unlock;
898 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
899 goto unlock;
900 lock_buffer(bh);
901 }
902
903 bh = bh->b_this_page;
904 } while (bh != head);
905
906 return true;
907
908 unlock:
909 /* We failed to lock the buffer and cannot stall. */
910 failed_bh = bh;
911 bh = head;
912 while (bh != failed_bh) {
913 unlock_buffer(bh);
914 bh = bh->b_this_page;
915 }
916
917 return false;
918 }
919
__buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode,bool check_refs)920 static int __buffer_migrate_folio(struct address_space *mapping,
921 struct folio *dst, struct folio *src, enum migrate_mode mode,
922 bool check_refs)
923 {
924 struct buffer_head *bh, *head;
925 int rc;
926 int expected_count;
927
928 head = folio_buffers(src);
929 if (!head)
930 return migrate_folio(mapping, dst, src, mode);
931
932 /* Check whether page does not have extra refs before we do more work */
933 expected_count = folio_expected_ref_count(src) + 1;
934 if (folio_ref_count(src) != expected_count)
935 return -EAGAIN;
936
937 if (!buffer_migrate_lock_buffers(head, mode))
938 return -EAGAIN;
939
940 if (check_refs) {
941 bool busy, migrating;
942 bool invalidated = false;
943
944 migrating = test_and_set_bit_lock(BH_Migrate, &head->b_state);
945 VM_WARN_ON_ONCE(migrating);
946 recheck_buffers:
947 busy = false;
948 spin_lock(&mapping->i_private_lock);
949 bh = head;
950 do {
951 if (atomic_read(&bh->b_count)) {
952 busy = true;
953 break;
954 }
955 bh = bh->b_this_page;
956 } while (bh != head);
957 spin_unlock(&mapping->i_private_lock);
958 if (busy) {
959 if (invalidated) {
960 rc = -EAGAIN;
961 goto unlock_buffers;
962 }
963 invalidate_bh_lrus();
964 invalidated = true;
965 goto recheck_buffers;
966 }
967 }
968
969 rc = filemap_migrate_folio(mapping, dst, src, mode);
970 if (rc != MIGRATEPAGE_SUCCESS)
971 goto unlock_buffers;
972
973 bh = head;
974 do {
975 folio_set_bh(bh, dst, bh_offset(bh));
976 bh = bh->b_this_page;
977 } while (bh != head);
978
979 unlock_buffers:
980 if (check_refs)
981 clear_bit_unlock(BH_Migrate, &head->b_state);
982 bh = head;
983 do {
984 unlock_buffer(bh);
985 bh = bh->b_this_page;
986 } while (bh != head);
987
988 return rc;
989 }
990
991 /**
992 * buffer_migrate_folio() - Migration function for folios with buffers.
993 * @mapping: The address space containing @src.
994 * @dst: The folio to migrate to.
995 * @src: The folio to migrate from.
996 * @mode: How to migrate the folio.
997 *
998 * This function can only be used if the underlying filesystem guarantees
999 * that no other references to @src exist. For example attached buffer
1000 * heads are accessed only under the folio lock. If your filesystem cannot
1001 * provide this guarantee, buffer_migrate_folio_norefs() may be more
1002 * appropriate.
1003 *
1004 * Return: 0 on success or a negative errno on failure.
1005 */
buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1006 int buffer_migrate_folio(struct address_space *mapping,
1007 struct folio *dst, struct folio *src, enum migrate_mode mode)
1008 {
1009 return __buffer_migrate_folio(mapping, dst, src, mode, false);
1010 }
1011 EXPORT_SYMBOL(buffer_migrate_folio);
1012
1013 /**
1014 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
1015 * @mapping: The address space containing @src.
1016 * @dst: The folio to migrate to.
1017 * @src: The folio to migrate from.
1018 * @mode: How to migrate the folio.
1019 *
1020 * Like buffer_migrate_folio() except that this variant is more careful
1021 * and checks that there are also no buffer head references. This function
1022 * is the right one for mappings where buffer heads are directly looked
1023 * up and referenced (such as block device mappings).
1024 *
1025 * Return: 0 on success or a negative errno on failure.
1026 */
buffer_migrate_folio_norefs(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1027 int buffer_migrate_folio_norefs(struct address_space *mapping,
1028 struct folio *dst, struct folio *src, enum migrate_mode mode)
1029 {
1030 return __buffer_migrate_folio(mapping, dst, src, mode, true);
1031 }
1032 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
1033 #endif /* CONFIG_BUFFER_HEAD */
1034
filemap_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1035 int filemap_migrate_folio(struct address_space *mapping,
1036 struct folio *dst, struct folio *src, enum migrate_mode mode)
1037 {
1038 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
1039 }
1040 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
1041
1042 /*
1043 * Default handling if a filesystem does not provide a migration function.
1044 */
fallback_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1045 static int fallback_migrate_folio(struct address_space *mapping,
1046 struct folio *dst, struct folio *src, enum migrate_mode mode)
1047 {
1048 WARN_ONCE(mapping->a_ops->writepages,
1049 "%ps does not implement migrate_folio\n",
1050 mapping->a_ops);
1051 if (folio_test_dirty(src))
1052 return -EBUSY;
1053
1054 /*
1055 * Filesystem may have private data at folio->private that we
1056 * can't migrate automatically.
1057 */
1058 if (!filemap_release_folio(src, GFP_KERNEL))
1059 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
1060
1061 return migrate_folio(mapping, dst, src, mode);
1062 }
1063
1064 /*
1065 * Move a src folio to a newly allocated dst folio.
1066 *
1067 * The src and dst folios are locked and the src folios was unmapped from
1068 * the page tables.
1069 *
1070 * On success, the src folio was replaced by the dst folio.
1071 *
1072 * Return value:
1073 * < 0 - error code
1074 * MIGRATEPAGE_SUCCESS - success
1075 */
move_to_new_folio(struct folio * dst,struct folio * src,enum migrate_mode mode)1076 static int move_to_new_folio(struct folio *dst, struct folio *src,
1077 enum migrate_mode mode)
1078 {
1079 struct address_space *mapping = folio_mapping(src);
1080 int rc = -EAGAIN;
1081
1082 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
1083 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
1084
1085 if (!mapping)
1086 rc = migrate_folio(mapping, dst, src, mode);
1087 else if (mapping_inaccessible(mapping))
1088 rc = -EOPNOTSUPP;
1089 else if (mapping->a_ops->migrate_folio)
1090 /*
1091 * Most folios have a mapping and most filesystems
1092 * provide a migrate_folio callback. Anonymous folios
1093 * are part of swap space which also has its own
1094 * migrate_folio callback. This is the most common path
1095 * for page migration.
1096 */
1097 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
1098 mode);
1099 else
1100 rc = fallback_migrate_folio(mapping, dst, src, mode);
1101
1102 if (rc == MIGRATEPAGE_SUCCESS) {
1103 /*
1104 * For pagecache folios, src->mapping must be cleared before src
1105 * is freed. Anonymous folios must stay anonymous until freed.
1106 */
1107 if (!folio_test_anon(src))
1108 src->mapping = NULL;
1109
1110 if (likely(!folio_is_zone_device(dst)))
1111 flush_dcache_folio(dst);
1112 }
1113 return rc;
1114 }
1115
1116 /*
1117 * To record some information during migration, we use unused private
1118 * field of struct folio of the newly allocated destination folio.
1119 * This is safe because nobody is using it except us.
1120 */
1121 enum {
1122 PAGE_WAS_MAPPED = BIT(0),
1123 PAGE_WAS_MLOCKED = BIT(1),
1124 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1125 };
1126
__migrate_folio_record(struct folio * dst,int old_page_state,struct anon_vma * anon_vma)1127 static void __migrate_folio_record(struct folio *dst,
1128 int old_page_state,
1129 struct anon_vma *anon_vma)
1130 {
1131 dst->private = (void *)anon_vma + old_page_state;
1132 }
1133
__migrate_folio_extract(struct folio * dst,int * old_page_state,struct anon_vma ** anon_vmap)1134 static void __migrate_folio_extract(struct folio *dst,
1135 int *old_page_state,
1136 struct anon_vma **anon_vmap)
1137 {
1138 unsigned long private = (unsigned long)dst->private;
1139
1140 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1141 *old_page_state = private & PAGE_OLD_STATES;
1142 dst->private = NULL;
1143 }
1144
1145 /* Restore the source folio to the original state upon failure */
migrate_folio_undo_src(struct folio * src,int page_was_mapped,struct anon_vma * anon_vma,bool locked,struct list_head * ret)1146 static void migrate_folio_undo_src(struct folio *src,
1147 int page_was_mapped,
1148 struct anon_vma *anon_vma,
1149 bool locked,
1150 struct list_head *ret)
1151 {
1152 if (page_was_mapped)
1153 remove_migration_ptes(src, src, 0);
1154 /* Drop an anon_vma reference if we took one */
1155 if (anon_vma)
1156 put_anon_vma(anon_vma);
1157 if (locked)
1158 folio_unlock(src);
1159 if (ret)
1160 list_move_tail(&src->lru, ret);
1161 }
1162
1163 /* Restore the destination folio to the original state upon failure */
migrate_folio_undo_dst(struct folio * dst,bool locked,free_folio_t put_new_folio,unsigned long private)1164 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1165 free_folio_t put_new_folio, unsigned long private)
1166 {
1167 if (locked)
1168 folio_unlock(dst);
1169 if (put_new_folio)
1170 put_new_folio(dst, private);
1171 else
1172 folio_put(dst);
1173 }
1174
1175 /* Cleanup src folio upon migration success */
migrate_folio_done(struct folio * src,enum migrate_reason reason)1176 static void migrate_folio_done(struct folio *src,
1177 enum migrate_reason reason)
1178 {
1179 if (likely(!page_has_movable_ops(&src->page)) && reason != MR_DEMOTION)
1180 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1181 folio_is_file_lru(src), -folio_nr_pages(src));
1182
1183 if (reason != MR_MEMORY_FAILURE)
1184 /* We release the page in page_handle_poison. */
1185 folio_put(src);
1186 }
1187
1188 /* Obtain the lock on page, remove all ptes. */
migrate_folio_unmap(new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,struct folio * src,struct folio ** dstp,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1189 static int migrate_folio_unmap(new_folio_t get_new_folio,
1190 free_folio_t put_new_folio, unsigned long private,
1191 struct folio *src, struct folio **dstp, enum migrate_mode mode,
1192 enum migrate_reason reason, struct list_head *ret)
1193 {
1194 struct folio *dst;
1195 int rc = -EAGAIN;
1196 int old_page_state = 0;
1197 struct anon_vma *anon_vma = NULL;
1198 bool locked = false;
1199 bool dst_locked = false;
1200
1201 if (folio_ref_count(src) == 1) {
1202 /* Folio was freed from under us. So we are done. */
1203 folio_clear_active(src);
1204 folio_clear_unevictable(src);
1205 /* free_pages_prepare() will clear PG_isolated. */
1206 list_del(&src->lru);
1207 migrate_folio_done(src, reason);
1208 return MIGRATEPAGE_SUCCESS;
1209 }
1210
1211 dst = get_new_folio(src, private);
1212 if (!dst)
1213 return -ENOMEM;
1214 *dstp = dst;
1215
1216 dst->private = NULL;
1217
1218 if (!folio_trylock(src)) {
1219 if (mode == MIGRATE_ASYNC)
1220 goto out;
1221
1222 /*
1223 * It's not safe for direct compaction to call lock_page.
1224 * For example, during page readahead pages are added locked
1225 * to the LRU. Later, when the IO completes the pages are
1226 * marked uptodate and unlocked. However, the queueing
1227 * could be merging multiple pages for one bio (e.g.
1228 * mpage_readahead). If an allocation happens for the
1229 * second or third page, the process can end up locking
1230 * the same page twice and deadlocking. Rather than
1231 * trying to be clever about what pages can be locked,
1232 * avoid the use of lock_page for direct compaction
1233 * altogether.
1234 */
1235 if (current->flags & PF_MEMALLOC)
1236 goto out;
1237
1238 /*
1239 * In "light" mode, we can wait for transient locks (eg
1240 * inserting a page into the page table), but it's not
1241 * worth waiting for I/O.
1242 */
1243 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1244 goto out;
1245
1246 folio_lock(src);
1247 }
1248 locked = true;
1249 if (folio_test_mlocked(src))
1250 old_page_state |= PAGE_WAS_MLOCKED;
1251
1252 if (folio_test_writeback(src)) {
1253 /*
1254 * Only in the case of a full synchronous migration is it
1255 * necessary to wait for PageWriteback. In the async case,
1256 * the retry loop is too short and in the sync-light case,
1257 * the overhead of stalling is too much
1258 */
1259 switch (mode) {
1260 case MIGRATE_SYNC:
1261 break;
1262 default:
1263 rc = -EBUSY;
1264 goto out;
1265 }
1266 folio_wait_writeback(src);
1267 }
1268
1269 /*
1270 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1271 * we cannot notice that anon_vma is freed while we migrate a page.
1272 * This get_anon_vma() delays freeing anon_vma pointer until the end
1273 * of migration. File cache pages are no problem because of page_lock()
1274 * File Caches may use write_page() or lock_page() in migration, then,
1275 * just care Anon page here.
1276 *
1277 * Only folio_get_anon_vma() understands the subtleties of
1278 * getting a hold on an anon_vma from outside one of its mms.
1279 * But if we cannot get anon_vma, then we won't need it anyway,
1280 * because that implies that the anon page is no longer mapped
1281 * (and cannot be remapped so long as we hold the page lock).
1282 */
1283 if (folio_test_anon(src) && !folio_test_ksm(src))
1284 anon_vma = folio_get_anon_vma(src);
1285
1286 /*
1287 * Block others from accessing the new page when we get around to
1288 * establishing additional references. We are usually the only one
1289 * holding a reference to dst at this point. We used to have a BUG
1290 * here if folio_trylock(dst) fails, but would like to allow for
1291 * cases where there might be a race with the previous use of dst.
1292 * This is much like races on refcount of oldpage: just don't BUG().
1293 */
1294 if (unlikely(!folio_trylock(dst)))
1295 goto out;
1296 dst_locked = true;
1297
1298 if (unlikely(page_has_movable_ops(&src->page))) {
1299 __migrate_folio_record(dst, old_page_state, anon_vma);
1300 return MIGRATEPAGE_UNMAP;
1301 }
1302
1303 /*
1304 * Corner case handling:
1305 * 1. When a new swap-cache page is read into, it is added to the LRU
1306 * and treated as swapcache but it has no rmap yet.
1307 * Calling try_to_unmap() against a src->mapping==NULL page will
1308 * trigger a BUG. So handle it here.
1309 * 2. An orphaned page (see truncate_cleanup_page) might have
1310 * fs-private metadata. The page can be picked up due to memory
1311 * offlining. Everywhere else except page reclaim, the page is
1312 * invisible to the vm, so the page can not be migrated. So try to
1313 * free the metadata, so the page can be freed.
1314 */
1315 if (!src->mapping) {
1316 if (folio_test_private(src)) {
1317 try_to_free_buffers(src);
1318 goto out;
1319 }
1320 } else if (folio_mapped(src)) {
1321 /* Establish migration ptes */
1322 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1323 !folio_test_ksm(src) && !anon_vma, src);
1324 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1325 old_page_state |= PAGE_WAS_MAPPED;
1326 }
1327
1328 if (!folio_mapped(src)) {
1329 __migrate_folio_record(dst, old_page_state, anon_vma);
1330 return MIGRATEPAGE_UNMAP;
1331 }
1332
1333 out:
1334 /*
1335 * A folio that has not been unmapped will be restored to
1336 * right list unless we want to retry.
1337 */
1338 if (rc == -EAGAIN)
1339 ret = NULL;
1340
1341 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1342 anon_vma, locked, ret);
1343 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1344
1345 return rc;
1346 }
1347
1348 /* Migrate the folio to the newly allocated folio in dst. */
migrate_folio_move(free_folio_t put_new_folio,unsigned long private,struct folio * src,struct folio * dst,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1349 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1350 struct folio *src, struct folio *dst,
1351 enum migrate_mode mode, enum migrate_reason reason,
1352 struct list_head *ret)
1353 {
1354 int rc;
1355 int old_page_state = 0;
1356 struct anon_vma *anon_vma = NULL;
1357 struct list_head *prev;
1358
1359 __migrate_folio_extract(dst, &old_page_state, &anon_vma);
1360 prev = dst->lru.prev;
1361 list_del(&dst->lru);
1362
1363 if (unlikely(page_has_movable_ops(&src->page))) {
1364 rc = migrate_movable_ops_page(&dst->page, &src->page, mode);
1365 if (rc)
1366 goto out;
1367 goto out_unlock_both;
1368 }
1369
1370 rc = move_to_new_folio(dst, src, mode);
1371 if (rc)
1372 goto out;
1373
1374 /*
1375 * When successful, push dst to LRU immediately: so that if it
1376 * turns out to be an mlocked page, remove_migration_ptes() will
1377 * automatically build up the correct dst->mlock_count for it.
1378 *
1379 * We would like to do something similar for the old page, when
1380 * unsuccessful, and other cases when a page has been temporarily
1381 * isolated from the unevictable LRU: but this case is the easiest.
1382 */
1383 folio_add_lru(dst);
1384 if (old_page_state & PAGE_WAS_MLOCKED)
1385 lru_add_drain();
1386
1387 if (old_page_state & PAGE_WAS_MAPPED)
1388 remove_migration_ptes(src, dst, 0);
1389
1390 out_unlock_both:
1391 folio_unlock(dst);
1392 folio_set_owner_migrate_reason(dst, reason);
1393 /*
1394 * If migration is successful, decrease refcount of dst,
1395 * which will not free the page because new page owner increased
1396 * refcounter.
1397 */
1398 folio_put(dst);
1399
1400 /*
1401 * A folio that has been migrated has all references removed
1402 * and will be freed.
1403 */
1404 list_del(&src->lru);
1405 /* Drop an anon_vma reference if we took one */
1406 if (anon_vma)
1407 put_anon_vma(anon_vma);
1408 folio_unlock(src);
1409 migrate_folio_done(src, reason);
1410
1411 return rc;
1412 out:
1413 /*
1414 * A folio that has not been migrated will be restored to
1415 * right list unless we want to retry.
1416 */
1417 if (rc == -EAGAIN) {
1418 list_add(&dst->lru, prev);
1419 __migrate_folio_record(dst, old_page_state, anon_vma);
1420 return rc;
1421 }
1422
1423 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1424 anon_vma, true, ret);
1425 migrate_folio_undo_dst(dst, true, put_new_folio, private);
1426
1427 return rc;
1428 }
1429
1430 /*
1431 * Counterpart of unmap_and_move_page() for hugepage migration.
1432 *
1433 * This function doesn't wait the completion of hugepage I/O
1434 * because there is no race between I/O and migration for hugepage.
1435 * Note that currently hugepage I/O occurs only in direct I/O
1436 * where no lock is held and PG_writeback is irrelevant,
1437 * and writeback status of all subpages are counted in the reference
1438 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1439 * under direct I/O, the reference of the head page is 512 and a bit more.)
1440 * This means that when we try to migrate hugepage whose subpages are
1441 * doing direct I/O, some references remain after try_to_unmap() and
1442 * hugepage migration fails without data corruption.
1443 *
1444 * There is also no race when direct I/O is issued on the page under migration,
1445 * because then pte is replaced with migration swap entry and direct I/O code
1446 * will wait in the page fault for migration to complete.
1447 */
unmap_and_move_huge_page(new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,struct folio * src,int force,enum migrate_mode mode,int reason,struct list_head * ret)1448 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1449 free_folio_t put_new_folio, unsigned long private,
1450 struct folio *src, int force, enum migrate_mode mode,
1451 int reason, struct list_head *ret)
1452 {
1453 struct folio *dst;
1454 int rc = -EAGAIN;
1455 int page_was_mapped = 0;
1456 struct anon_vma *anon_vma = NULL;
1457 struct address_space *mapping = NULL;
1458
1459 if (folio_ref_count(src) == 1) {
1460 /* page was freed from under us. So we are done. */
1461 folio_putback_hugetlb(src);
1462 return MIGRATEPAGE_SUCCESS;
1463 }
1464
1465 dst = get_new_folio(src, private);
1466 if (!dst)
1467 return -ENOMEM;
1468
1469 if (!folio_trylock(src)) {
1470 if (!force)
1471 goto out;
1472 switch (mode) {
1473 case MIGRATE_SYNC:
1474 break;
1475 default:
1476 goto out;
1477 }
1478 folio_lock(src);
1479 }
1480
1481 /*
1482 * Check for pages which are in the process of being freed. Without
1483 * folio_mapping() set, hugetlbfs specific move page routine will not
1484 * be called and we could leak usage counts for subpools.
1485 */
1486 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1487 rc = -EBUSY;
1488 goto out_unlock;
1489 }
1490
1491 if (folio_test_anon(src))
1492 anon_vma = folio_get_anon_vma(src);
1493
1494 if (unlikely(!folio_trylock(dst)))
1495 goto put_anon;
1496
1497 if (folio_mapped(src)) {
1498 enum ttu_flags ttu = 0;
1499
1500 if (!folio_test_anon(src)) {
1501 /*
1502 * In shared mappings, try_to_unmap could potentially
1503 * call huge_pmd_unshare. Because of this, take
1504 * semaphore in write mode here and set TTU_RMAP_LOCKED
1505 * to let lower levels know we have taken the lock.
1506 */
1507 mapping = hugetlb_folio_mapping_lock_write(src);
1508 if (unlikely(!mapping))
1509 goto unlock_put_anon;
1510
1511 ttu = TTU_RMAP_LOCKED;
1512 }
1513
1514 try_to_migrate(src, ttu);
1515 page_was_mapped = 1;
1516
1517 if (ttu & TTU_RMAP_LOCKED)
1518 i_mmap_unlock_write(mapping);
1519 }
1520
1521 if (!folio_mapped(src))
1522 rc = move_to_new_folio(dst, src, mode);
1523
1524 if (page_was_mapped)
1525 remove_migration_ptes(src,
1526 rc == MIGRATEPAGE_SUCCESS ? dst : src, 0);
1527
1528 unlock_put_anon:
1529 folio_unlock(dst);
1530
1531 put_anon:
1532 if (anon_vma)
1533 put_anon_vma(anon_vma);
1534
1535 if (rc == MIGRATEPAGE_SUCCESS) {
1536 move_hugetlb_state(src, dst, reason);
1537 put_new_folio = NULL;
1538 }
1539
1540 out_unlock:
1541 folio_unlock(src);
1542 out:
1543 if (rc == MIGRATEPAGE_SUCCESS)
1544 folio_putback_hugetlb(src);
1545 else if (rc != -EAGAIN)
1546 list_move_tail(&src->lru, ret);
1547
1548 /*
1549 * If migration was not successful and there's a freeing callback,
1550 * return the folio to that special allocator. Otherwise, simply drop
1551 * our additional reference.
1552 */
1553 if (put_new_folio)
1554 put_new_folio(dst, private);
1555 else
1556 folio_put(dst);
1557
1558 return rc;
1559 }
1560
try_split_folio(struct folio * folio,struct list_head * split_folios,enum migrate_mode mode)1561 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
1562 enum migrate_mode mode)
1563 {
1564 int rc;
1565
1566 if (mode == MIGRATE_ASYNC) {
1567 if (!folio_trylock(folio))
1568 return -EAGAIN;
1569 } else {
1570 folio_lock(folio);
1571 }
1572 rc = split_folio_to_list(folio, split_folios);
1573 folio_unlock(folio);
1574 if (!rc)
1575 list_move_tail(&folio->lru, split_folios);
1576
1577 return rc;
1578 }
1579
1580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1581 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR
1582 #else
1583 #define NR_MAX_BATCHED_MIGRATION 512
1584 #endif
1585 #define NR_MAX_MIGRATE_PAGES_RETRY 10
1586 #define NR_MAX_MIGRATE_ASYNC_RETRY 3
1587 #define NR_MAX_MIGRATE_SYNC_RETRY \
1588 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1589
1590 struct migrate_pages_stats {
1591 int nr_succeeded; /* Normal and large folios migrated successfully, in
1592 units of base pages */
1593 int nr_failed_pages; /* Normal and large folios failed to be migrated, in
1594 units of base pages. Untried folios aren't counted */
1595 int nr_thp_succeeded; /* THP migrated successfully */
1596 int nr_thp_failed; /* THP failed to be migrated */
1597 int nr_thp_split; /* THP split before migrating */
1598 int nr_split; /* Large folio (include THP) split before migrating */
1599 };
1600
1601 /*
1602 * Returns the number of hugetlb folios that were not migrated, or an error code
1603 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1604 * any more because the list has become empty or no retryable hugetlb folios
1605 * exist any more. It is caller's responsibility to call putback_movable_pages()
1606 * only if ret != 0.
1607 */
migrate_hugetlbs(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct migrate_pages_stats * stats,struct list_head * ret_folios)1608 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1609 free_folio_t put_new_folio, unsigned long private,
1610 enum migrate_mode mode, int reason,
1611 struct migrate_pages_stats *stats,
1612 struct list_head *ret_folios)
1613 {
1614 int retry = 1;
1615 int nr_failed = 0;
1616 int nr_retry_pages = 0;
1617 int pass = 0;
1618 struct folio *folio, *folio2;
1619 int rc, nr_pages;
1620
1621 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1622 retry = 0;
1623 nr_retry_pages = 0;
1624
1625 list_for_each_entry_safe(folio, folio2, from, lru) {
1626 if (!folio_test_hugetlb(folio))
1627 continue;
1628
1629 nr_pages = folio_nr_pages(folio);
1630
1631 cond_resched();
1632
1633 /*
1634 * Migratability of hugepages depends on architectures and
1635 * their size. This check is necessary because some callers
1636 * of hugepage migration like soft offline and memory
1637 * hotremove don't walk through page tables or check whether
1638 * the hugepage is pmd-based or not before kicking migration.
1639 */
1640 if (!hugepage_migration_supported(folio_hstate(folio))) {
1641 nr_failed++;
1642 stats->nr_failed_pages += nr_pages;
1643 list_move_tail(&folio->lru, ret_folios);
1644 continue;
1645 }
1646
1647 rc = unmap_and_move_huge_page(get_new_folio,
1648 put_new_folio, private,
1649 folio, pass > 2, mode,
1650 reason, ret_folios);
1651 /*
1652 * The rules are:
1653 * Success: hugetlb folio will be put back
1654 * -EAGAIN: stay on the from list
1655 * -ENOMEM: stay on the from list
1656 * Other errno: put on ret_folios list
1657 */
1658 switch(rc) {
1659 case -ENOMEM:
1660 /*
1661 * When memory is low, don't bother to try to migrate
1662 * other folios, just exit.
1663 */
1664 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1665 return -ENOMEM;
1666 case -EAGAIN:
1667 retry++;
1668 nr_retry_pages += nr_pages;
1669 break;
1670 case MIGRATEPAGE_SUCCESS:
1671 stats->nr_succeeded += nr_pages;
1672 break;
1673 default:
1674 /*
1675 * Permanent failure (-EBUSY, etc.):
1676 * unlike -EAGAIN case, the failed folio is
1677 * removed from migration folio list and not
1678 * retried in the next outer loop.
1679 */
1680 nr_failed++;
1681 stats->nr_failed_pages += nr_pages;
1682 break;
1683 }
1684 }
1685 }
1686 /*
1687 * nr_failed is number of hugetlb folios failed to be migrated. After
1688 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1689 * folios as failed.
1690 */
1691 nr_failed += retry;
1692 stats->nr_failed_pages += nr_retry_pages;
1693
1694 return nr_failed;
1695 }
1696
migrate_folios_move(struct list_head * src_folios,struct list_head * dst_folios,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct migrate_pages_stats * stats,int * retry,int * thp_retry,int * nr_failed,int * nr_retry_pages)1697 static void migrate_folios_move(struct list_head *src_folios,
1698 struct list_head *dst_folios,
1699 free_folio_t put_new_folio, unsigned long private,
1700 enum migrate_mode mode, int reason,
1701 struct list_head *ret_folios,
1702 struct migrate_pages_stats *stats,
1703 int *retry, int *thp_retry, int *nr_failed,
1704 int *nr_retry_pages)
1705 {
1706 struct folio *folio, *folio2, *dst, *dst2;
1707 bool is_thp;
1708 int nr_pages;
1709 int rc;
1710
1711 dst = list_first_entry(dst_folios, struct folio, lru);
1712 dst2 = list_next_entry(dst, lru);
1713 list_for_each_entry_safe(folio, folio2, src_folios, lru) {
1714 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1715 nr_pages = folio_nr_pages(folio);
1716
1717 cond_resched();
1718
1719 rc = migrate_folio_move(put_new_folio, private,
1720 folio, dst, mode,
1721 reason, ret_folios);
1722 /*
1723 * The rules are:
1724 * Success: folio will be freed
1725 * -EAGAIN: stay on the unmap_folios list
1726 * Other errno: put on ret_folios list
1727 */
1728 switch (rc) {
1729 case -EAGAIN:
1730 *retry += 1;
1731 *thp_retry += is_thp;
1732 *nr_retry_pages += nr_pages;
1733 break;
1734 case MIGRATEPAGE_SUCCESS:
1735 stats->nr_succeeded += nr_pages;
1736 stats->nr_thp_succeeded += is_thp;
1737 break;
1738 default:
1739 *nr_failed += 1;
1740 stats->nr_thp_failed += is_thp;
1741 stats->nr_failed_pages += nr_pages;
1742 break;
1743 }
1744 dst = dst2;
1745 dst2 = list_next_entry(dst, lru);
1746 }
1747 }
1748
migrate_folios_undo(struct list_head * src_folios,struct list_head * dst_folios,free_folio_t put_new_folio,unsigned long private,struct list_head * ret_folios)1749 static void migrate_folios_undo(struct list_head *src_folios,
1750 struct list_head *dst_folios,
1751 free_folio_t put_new_folio, unsigned long private,
1752 struct list_head *ret_folios)
1753 {
1754 struct folio *folio, *folio2, *dst, *dst2;
1755
1756 dst = list_first_entry(dst_folios, struct folio, lru);
1757 dst2 = list_next_entry(dst, lru);
1758 list_for_each_entry_safe(folio, folio2, src_folios, lru) {
1759 int old_page_state = 0;
1760 struct anon_vma *anon_vma = NULL;
1761
1762 __migrate_folio_extract(dst, &old_page_state, &anon_vma);
1763 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1764 anon_vma, true, ret_folios);
1765 list_del(&dst->lru);
1766 migrate_folio_undo_dst(dst, true, put_new_folio, private);
1767 dst = dst2;
1768 dst2 = list_next_entry(dst, lru);
1769 }
1770 }
1771
1772 /*
1773 * migrate_pages_batch() first unmaps folios in the from list as many as
1774 * possible, then move the unmapped folios.
1775 *
1776 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1777 * lock or bit when we have locked more than one folio. Which may cause
1778 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the
1779 * length of the from list must be <= 1.
1780 */
migrate_pages_batch(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct list_head * split_folios,struct migrate_pages_stats * stats,int nr_pass)1781 static int migrate_pages_batch(struct list_head *from,
1782 new_folio_t get_new_folio, free_folio_t put_new_folio,
1783 unsigned long private, enum migrate_mode mode, int reason,
1784 struct list_head *ret_folios, struct list_head *split_folios,
1785 struct migrate_pages_stats *stats, int nr_pass)
1786 {
1787 int retry = 1;
1788 int thp_retry = 1;
1789 int nr_failed = 0;
1790 int nr_retry_pages = 0;
1791 int pass = 0;
1792 bool is_thp = false;
1793 bool is_large = false;
1794 struct folio *folio, *folio2, *dst = NULL;
1795 int rc, rc_saved = 0, nr_pages;
1796 LIST_HEAD(unmap_folios);
1797 LIST_HEAD(dst_folios);
1798 bool nosplit = (reason == MR_NUMA_MISPLACED);
1799
1800 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1801 !list_empty(from) && !list_is_singular(from));
1802
1803 for (pass = 0; pass < nr_pass && retry; pass++) {
1804 retry = 0;
1805 thp_retry = 0;
1806 nr_retry_pages = 0;
1807
1808 list_for_each_entry_safe(folio, folio2, from, lru) {
1809 is_large = folio_test_large(folio);
1810 is_thp = folio_test_pmd_mappable(folio);
1811 nr_pages = folio_nr_pages(folio);
1812
1813 cond_resched();
1814
1815 /*
1816 * The rare folio on the deferred split list should
1817 * be split now. It should not count as a failure:
1818 * but increment nr_failed because, without doing so,
1819 * migrate_pages() may report success with (split but
1820 * unmigrated) pages still on its fromlist; whereas it
1821 * always reports success when its fromlist is empty.
1822 * stats->nr_thp_failed should be increased too,
1823 * otherwise stats inconsistency will happen when
1824 * migrate_pages_batch is called via migrate_pages()
1825 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1826 *
1827 * Only check it without removing it from the list.
1828 * Since the folio can be on deferred_split_scan()
1829 * local list and removing it can cause the local list
1830 * corruption. Folio split process below can handle it
1831 * with the help of folio_ref_freeze().
1832 *
1833 * nr_pages > 2 is needed to avoid checking order-1
1834 * page cache folios. They exist, in contrast to
1835 * non-existent order-1 anonymous folios, and do not
1836 * use _deferred_list.
1837 */
1838 if (nr_pages > 2 &&
1839 !list_empty(&folio->_deferred_list) &&
1840 folio_test_partially_mapped(folio)) {
1841 if (!try_split_folio(folio, split_folios, mode)) {
1842 nr_failed++;
1843 stats->nr_thp_failed += is_thp;
1844 stats->nr_thp_split += is_thp;
1845 stats->nr_split++;
1846 continue;
1847 }
1848 }
1849
1850 /*
1851 * Large folio migration might be unsupported or
1852 * the allocation might be failed so we should retry
1853 * on the same folio with the large folio split
1854 * to normal folios.
1855 *
1856 * Split folios are put in split_folios, and
1857 * we will migrate them after the rest of the
1858 * list is processed.
1859 */
1860 if (!thp_migration_supported() && is_thp) {
1861 nr_failed++;
1862 stats->nr_thp_failed++;
1863 if (!try_split_folio(folio, split_folios, mode)) {
1864 stats->nr_thp_split++;
1865 stats->nr_split++;
1866 continue;
1867 }
1868 stats->nr_failed_pages += nr_pages;
1869 list_move_tail(&folio->lru, ret_folios);
1870 continue;
1871 }
1872
1873 rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1874 private, folio, &dst, mode, reason,
1875 ret_folios);
1876 /*
1877 * The rules are:
1878 * Success: folio will be freed
1879 * Unmap: folio will be put on unmap_folios list,
1880 * dst folio put on dst_folios list
1881 * -EAGAIN: stay on the from list
1882 * -ENOMEM: stay on the from list
1883 * Other errno: put on ret_folios list
1884 */
1885 switch(rc) {
1886 case -ENOMEM:
1887 /*
1888 * When memory is low, don't bother to try to migrate
1889 * other folios, move unmapped folios, then exit.
1890 */
1891 nr_failed++;
1892 stats->nr_thp_failed += is_thp;
1893 /* Large folio NUMA faulting doesn't split to retry. */
1894 if (is_large && !nosplit) {
1895 int ret = try_split_folio(folio, split_folios, mode);
1896
1897 if (!ret) {
1898 stats->nr_thp_split += is_thp;
1899 stats->nr_split++;
1900 break;
1901 } else if (reason == MR_LONGTERM_PIN &&
1902 ret == -EAGAIN) {
1903 /*
1904 * Try again to split large folio to
1905 * mitigate the failure of longterm pinning.
1906 */
1907 retry++;
1908 thp_retry += is_thp;
1909 nr_retry_pages += nr_pages;
1910 /* Undo duplicated failure counting. */
1911 nr_failed--;
1912 stats->nr_thp_failed -= is_thp;
1913 break;
1914 }
1915 }
1916
1917 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1918 /* nr_failed isn't updated for not used */
1919 stats->nr_thp_failed += thp_retry;
1920 rc_saved = rc;
1921 if (list_empty(&unmap_folios))
1922 goto out;
1923 else
1924 goto move;
1925 case -EAGAIN:
1926 retry++;
1927 thp_retry += is_thp;
1928 nr_retry_pages += nr_pages;
1929 break;
1930 case MIGRATEPAGE_SUCCESS:
1931 stats->nr_succeeded += nr_pages;
1932 stats->nr_thp_succeeded += is_thp;
1933 break;
1934 case MIGRATEPAGE_UNMAP:
1935 list_move_tail(&folio->lru, &unmap_folios);
1936 list_add_tail(&dst->lru, &dst_folios);
1937 break;
1938 default:
1939 /*
1940 * Permanent failure (-EBUSY, etc.):
1941 * unlike -EAGAIN case, the failed folio is
1942 * removed from migration folio list and not
1943 * retried in the next outer loop.
1944 */
1945 nr_failed++;
1946 stats->nr_thp_failed += is_thp;
1947 stats->nr_failed_pages += nr_pages;
1948 break;
1949 }
1950 }
1951 }
1952 nr_failed += retry;
1953 stats->nr_thp_failed += thp_retry;
1954 stats->nr_failed_pages += nr_retry_pages;
1955 move:
1956 /* Flush TLBs for all unmapped folios */
1957 try_to_unmap_flush();
1958
1959 retry = 1;
1960 for (pass = 0; pass < nr_pass && retry; pass++) {
1961 retry = 0;
1962 thp_retry = 0;
1963 nr_retry_pages = 0;
1964
1965 /* Move the unmapped folios */
1966 migrate_folios_move(&unmap_folios, &dst_folios,
1967 put_new_folio, private, mode, reason,
1968 ret_folios, stats, &retry, &thp_retry,
1969 &nr_failed, &nr_retry_pages);
1970 }
1971 nr_failed += retry;
1972 stats->nr_thp_failed += thp_retry;
1973 stats->nr_failed_pages += nr_retry_pages;
1974
1975 rc = rc_saved ? : nr_failed;
1976 out:
1977 /* Cleanup remaining folios */
1978 migrate_folios_undo(&unmap_folios, &dst_folios,
1979 put_new_folio, private, ret_folios);
1980
1981 return rc;
1982 }
1983
migrate_pages_sync(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct list_head * split_folios,struct migrate_pages_stats * stats)1984 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1985 free_folio_t put_new_folio, unsigned long private,
1986 enum migrate_mode mode, int reason,
1987 struct list_head *ret_folios, struct list_head *split_folios,
1988 struct migrate_pages_stats *stats)
1989 {
1990 int rc, nr_failed = 0;
1991 LIST_HEAD(folios);
1992 struct migrate_pages_stats astats;
1993
1994 memset(&astats, 0, sizeof(astats));
1995 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1996 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1997 reason, &folios, split_folios, &astats,
1998 NR_MAX_MIGRATE_ASYNC_RETRY);
1999 stats->nr_succeeded += astats.nr_succeeded;
2000 stats->nr_thp_succeeded += astats.nr_thp_succeeded;
2001 stats->nr_thp_split += astats.nr_thp_split;
2002 stats->nr_split += astats.nr_split;
2003 if (rc < 0) {
2004 stats->nr_failed_pages += astats.nr_failed_pages;
2005 stats->nr_thp_failed += astats.nr_thp_failed;
2006 list_splice_tail(&folios, ret_folios);
2007 return rc;
2008 }
2009 stats->nr_thp_failed += astats.nr_thp_split;
2010 /*
2011 * Do not count rc, as pages will be retried below.
2012 * Count nr_split only, since it includes nr_thp_split.
2013 */
2014 nr_failed += astats.nr_split;
2015 /*
2016 * Fall back to migrate all failed folios one by one synchronously. All
2017 * failed folios except split THPs will be retried, so their failure
2018 * isn't counted
2019 */
2020 list_splice_tail_init(&folios, from);
2021 while (!list_empty(from)) {
2022 list_move(from->next, &folios);
2023 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2024 private, mode, reason, ret_folios,
2025 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
2026 list_splice_tail_init(&folios, ret_folios);
2027 if (rc < 0)
2028 return rc;
2029 nr_failed += rc;
2030 }
2031
2032 return nr_failed;
2033 }
2034
2035 /*
2036 * migrate_pages - migrate the folios specified in a list, to the free folios
2037 * supplied as the target for the page migration
2038 *
2039 * @from: The list of folios to be migrated.
2040 * @get_new_folio: The function used to allocate free folios to be used
2041 * as the target of the folio migration.
2042 * @put_new_folio: The function used to free target folios if migration
2043 * fails, or NULL if no special handling is necessary.
2044 * @private: Private data to be passed on to get_new_folio()
2045 * @mode: The migration mode that specifies the constraints for
2046 * folio migration, if any.
2047 * @reason: The reason for folio migration.
2048 * @ret_succeeded: Set to the number of folios migrated successfully if
2049 * the caller passes a non-NULL pointer.
2050 *
2051 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
2052 * are movable any more because the list has become empty or no retryable folios
2053 * exist any more. It is caller's responsibility to call putback_movable_pages()
2054 * only if ret != 0.
2055 *
2056 * Returns the number of {normal folio, large folio, hugetlb} that were not
2057 * migrated, or an error code. The number of large folio splits will be
2058 * considered as the number of non-migrated large folio, no matter how many
2059 * split folios of the large folio are migrated successfully.
2060 */
migrate_pages(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,unsigned int * ret_succeeded)2061 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
2062 free_folio_t put_new_folio, unsigned long private,
2063 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
2064 {
2065 int rc, rc_gather;
2066 int nr_pages;
2067 struct folio *folio, *folio2;
2068 LIST_HEAD(folios);
2069 LIST_HEAD(ret_folios);
2070 LIST_HEAD(split_folios);
2071 struct migrate_pages_stats stats;
2072
2073 trace_mm_migrate_pages_start(mode, reason);
2074
2075 memset(&stats, 0, sizeof(stats));
2076
2077 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
2078 mode, reason, &stats, &ret_folios);
2079 if (rc_gather < 0)
2080 goto out;
2081
2082 again:
2083 nr_pages = 0;
2084 list_for_each_entry_safe(folio, folio2, from, lru) {
2085 /* Retried hugetlb folios will be kept in list */
2086 if (folio_test_hugetlb(folio)) {
2087 list_move_tail(&folio->lru, &ret_folios);
2088 continue;
2089 }
2090
2091 nr_pages += folio_nr_pages(folio);
2092 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2093 break;
2094 }
2095 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2096 list_cut_before(&folios, from, &folio2->lru);
2097 else
2098 list_splice_init(from, &folios);
2099 if (mode == MIGRATE_ASYNC)
2100 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2101 private, mode, reason, &ret_folios,
2102 &split_folios, &stats,
2103 NR_MAX_MIGRATE_PAGES_RETRY);
2104 else
2105 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
2106 private, mode, reason, &ret_folios,
2107 &split_folios, &stats);
2108 list_splice_tail_init(&folios, &ret_folios);
2109 if (rc < 0) {
2110 rc_gather = rc;
2111 list_splice_tail(&split_folios, &ret_folios);
2112 goto out;
2113 }
2114 if (!list_empty(&split_folios)) {
2115 /*
2116 * Failure isn't counted since all split folios of a large folio
2117 * is counted as 1 failure already. And, we only try to migrate
2118 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2119 */
2120 migrate_pages_batch(&split_folios, get_new_folio,
2121 put_new_folio, private, MIGRATE_ASYNC, reason,
2122 &ret_folios, NULL, &stats, 1);
2123 list_splice_tail_init(&split_folios, &ret_folios);
2124 }
2125 rc_gather += rc;
2126 if (!list_empty(from))
2127 goto again;
2128 out:
2129 /*
2130 * Put the permanent failure folio back to migration list, they
2131 * will be put back to the right list by the caller.
2132 */
2133 list_splice(&ret_folios, from);
2134
2135 /*
2136 * Return 0 in case all split folios of fail-to-migrate large folios
2137 * are migrated successfully.
2138 */
2139 if (list_empty(from))
2140 rc_gather = 0;
2141
2142 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2143 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2144 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2145 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2146 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2147 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2148 stats.nr_thp_succeeded, stats.nr_thp_failed,
2149 stats.nr_thp_split, stats.nr_split, mode,
2150 reason);
2151
2152 if (ret_succeeded)
2153 *ret_succeeded = stats.nr_succeeded;
2154
2155 return rc_gather;
2156 }
2157
alloc_migration_target(struct folio * src,unsigned long private)2158 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2159 {
2160 struct migration_target_control *mtc;
2161 gfp_t gfp_mask;
2162 unsigned int order = 0;
2163 int nid;
2164 int zidx;
2165
2166 mtc = (struct migration_target_control *)private;
2167 gfp_mask = mtc->gfp_mask;
2168 nid = mtc->nid;
2169 if (nid == NUMA_NO_NODE)
2170 nid = folio_nid(src);
2171
2172 if (folio_test_hugetlb(src)) {
2173 struct hstate *h = folio_hstate(src);
2174
2175 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2176 return alloc_hugetlb_folio_nodemask(h, nid,
2177 mtc->nmask, gfp_mask,
2178 htlb_allow_alloc_fallback(mtc->reason));
2179 }
2180
2181 if (folio_test_large(src)) {
2182 /*
2183 * clear __GFP_RECLAIM to make the migration callback
2184 * consistent with regular THP allocations.
2185 */
2186 gfp_mask &= ~__GFP_RECLAIM;
2187 gfp_mask |= GFP_TRANSHUGE;
2188 order = folio_order(src);
2189 }
2190 zidx = zone_idx(folio_zone(src));
2191 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2192 gfp_mask |= __GFP_HIGHMEM;
2193
2194 return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2195 }
2196
2197 #ifdef CONFIG_NUMA
2198
store_status(int __user * status,int start,int value,int nr)2199 static int store_status(int __user *status, int start, int value, int nr)
2200 {
2201 while (nr-- > 0) {
2202 if (put_user(value, status + start))
2203 return -EFAULT;
2204 start++;
2205 }
2206
2207 return 0;
2208 }
2209
do_move_pages_to_node(struct list_head * pagelist,int node)2210 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2211 {
2212 int err;
2213 struct migration_target_control mtc = {
2214 .nid = node,
2215 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2216 .reason = MR_SYSCALL,
2217 };
2218
2219 err = migrate_pages(pagelist, alloc_migration_target, NULL,
2220 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2221 if (err)
2222 putback_movable_pages(pagelist);
2223 return err;
2224 }
2225
__add_folio_for_migration(struct folio * folio,int node,struct list_head * pagelist,bool migrate_all)2226 static int __add_folio_for_migration(struct folio *folio, int node,
2227 struct list_head *pagelist, bool migrate_all)
2228 {
2229 if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2230 return -EFAULT;
2231
2232 if (folio_is_zone_device(folio))
2233 return -ENOENT;
2234
2235 if (folio_nid(folio) == node)
2236 return 0;
2237
2238 if (folio_maybe_mapped_shared(folio) && !migrate_all)
2239 return -EACCES;
2240
2241 if (folio_test_hugetlb(folio)) {
2242 if (folio_isolate_hugetlb(folio, pagelist))
2243 return 1;
2244 } else if (folio_isolate_lru(folio)) {
2245 list_add_tail(&folio->lru, pagelist);
2246 node_stat_mod_folio(folio,
2247 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2248 folio_nr_pages(folio));
2249 return 1;
2250 }
2251 return -EBUSY;
2252 }
2253
2254 /*
2255 * Resolves the given address to a struct folio, isolates it from the LRU and
2256 * puts it to the given pagelist.
2257 * Returns:
2258 * errno - if the folio cannot be found/isolated
2259 * 0 - when it doesn't have to be migrated because it is already on the
2260 * target node
2261 * 1 - when it has been queued
2262 */
add_folio_for_migration(struct mm_struct * mm,const void __user * p,int node,struct list_head * pagelist,bool migrate_all)2263 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p,
2264 int node, struct list_head *pagelist, bool migrate_all)
2265 {
2266 struct vm_area_struct *vma;
2267 struct folio_walk fw;
2268 struct folio *folio;
2269 unsigned long addr;
2270 int err = -EFAULT;
2271
2272 mmap_read_lock(mm);
2273 addr = (unsigned long)untagged_addr_remote(mm, p);
2274
2275 vma = vma_lookup(mm, addr);
2276 if (vma && vma_migratable(vma)) {
2277 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2278 if (folio) {
2279 err = __add_folio_for_migration(folio, node, pagelist,
2280 migrate_all);
2281 folio_walk_end(&fw, vma);
2282 } else {
2283 err = -ENOENT;
2284 }
2285 }
2286 mmap_read_unlock(mm);
2287 return err;
2288 }
2289
move_pages_and_store_status(int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)2290 static int move_pages_and_store_status(int node,
2291 struct list_head *pagelist, int __user *status,
2292 int start, int i, unsigned long nr_pages)
2293 {
2294 int err;
2295
2296 if (list_empty(pagelist))
2297 return 0;
2298
2299 err = do_move_pages_to_node(pagelist, node);
2300 if (err) {
2301 /*
2302 * Positive err means the number of failed
2303 * pages to migrate. Since we are going to
2304 * abort and return the number of non-migrated
2305 * pages, so need to include the rest of the
2306 * nr_pages that have not been attempted as
2307 * well.
2308 */
2309 if (err > 0)
2310 err += nr_pages - i;
2311 return err;
2312 }
2313 return store_status(status, start, node, i - start);
2314 }
2315
2316 /*
2317 * Migrate an array of page address onto an array of nodes and fill
2318 * the corresponding array of status.
2319 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2320 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2321 unsigned long nr_pages,
2322 const void __user * __user *pages,
2323 const int __user *nodes,
2324 int __user *status, int flags)
2325 {
2326 compat_uptr_t __user *compat_pages = (void __user *)pages;
2327 int current_node = NUMA_NO_NODE;
2328 LIST_HEAD(pagelist);
2329 int start, i;
2330 int err = 0, err1;
2331
2332 lru_cache_disable();
2333
2334 for (i = start = 0; i < nr_pages; i++) {
2335 const void __user *p;
2336 int node;
2337
2338 err = -EFAULT;
2339 if (in_compat_syscall()) {
2340 compat_uptr_t cp;
2341
2342 if (get_user(cp, compat_pages + i))
2343 goto out_flush;
2344
2345 p = compat_ptr(cp);
2346 } else {
2347 if (get_user(p, pages + i))
2348 goto out_flush;
2349 }
2350 if (get_user(node, nodes + i))
2351 goto out_flush;
2352
2353 err = -ENODEV;
2354 if (node < 0 || node >= MAX_NUMNODES)
2355 goto out_flush;
2356 if (!node_state(node, N_MEMORY))
2357 goto out_flush;
2358
2359 err = -EACCES;
2360 if (!node_isset(node, task_nodes))
2361 goto out_flush;
2362
2363 if (current_node == NUMA_NO_NODE) {
2364 current_node = node;
2365 start = i;
2366 } else if (node != current_node) {
2367 err = move_pages_and_store_status(current_node,
2368 &pagelist, status, start, i, nr_pages);
2369 if (err)
2370 goto out;
2371 start = i;
2372 current_node = node;
2373 }
2374
2375 /*
2376 * Errors in the page lookup or isolation are not fatal and we simply
2377 * report them via status
2378 */
2379 err = add_folio_for_migration(mm, p, current_node, &pagelist,
2380 flags & MPOL_MF_MOVE_ALL);
2381
2382 if (err > 0) {
2383 /* The page is successfully queued for migration */
2384 continue;
2385 }
2386
2387 /*
2388 * If the page is already on the target node (!err), store the
2389 * node, otherwise, store the err.
2390 */
2391 err = store_status(status, i, err ? : current_node, 1);
2392 if (err)
2393 goto out_flush;
2394
2395 err = move_pages_and_store_status(current_node, &pagelist,
2396 status, start, i, nr_pages);
2397 if (err) {
2398 /* We have accounted for page i */
2399 if (err > 0)
2400 err--;
2401 goto out;
2402 }
2403 current_node = NUMA_NO_NODE;
2404 }
2405 out_flush:
2406 /* Make sure we do not overwrite the existing error */
2407 err1 = move_pages_and_store_status(current_node, &pagelist,
2408 status, start, i, nr_pages);
2409 if (err >= 0)
2410 err = err1;
2411 out:
2412 lru_cache_enable();
2413 return err;
2414 }
2415
2416 /*
2417 * Determine the nodes of an array of pages and store it in an array of status.
2418 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)2419 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2420 const void __user **pages, int *status)
2421 {
2422 unsigned long i;
2423
2424 mmap_read_lock(mm);
2425
2426 for (i = 0; i < nr_pages; i++) {
2427 unsigned long addr = (unsigned long)(*pages);
2428 struct vm_area_struct *vma;
2429 struct folio_walk fw;
2430 struct folio *folio;
2431 int err = -EFAULT;
2432
2433 vma = vma_lookup(mm, addr);
2434 if (!vma)
2435 goto set_status;
2436
2437 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2438 if (folio) {
2439 if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2440 err = -EFAULT;
2441 else if (folio_is_zone_device(folio))
2442 err = -ENOENT;
2443 else
2444 err = folio_nid(folio);
2445 folio_walk_end(&fw, vma);
2446 } else {
2447 err = -ENOENT;
2448 }
2449 set_status:
2450 *status = err;
2451
2452 pages++;
2453 status++;
2454 }
2455
2456 mmap_read_unlock(mm);
2457 }
2458
get_compat_pages_array(const void __user * chunk_pages[],const void __user * __user * pages,unsigned long chunk_offset,unsigned long chunk_nr)2459 static int get_compat_pages_array(const void __user *chunk_pages[],
2460 const void __user * __user *pages,
2461 unsigned long chunk_offset,
2462 unsigned long chunk_nr)
2463 {
2464 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2465 compat_uptr_t p;
2466 int i;
2467
2468 for (i = 0; i < chunk_nr; i++) {
2469 if (get_user(p, pages32 + chunk_offset + i))
2470 return -EFAULT;
2471 chunk_pages[i] = compat_ptr(p);
2472 }
2473
2474 return 0;
2475 }
2476
2477 /*
2478 * Determine the nodes of a user array of pages and store it in
2479 * a user array of status.
2480 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)2481 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2482 const void __user * __user *pages,
2483 int __user *status)
2484 {
2485 #define DO_PAGES_STAT_CHUNK_NR 16UL
2486 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2487 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2488 unsigned long chunk_offset = 0;
2489
2490 while (nr_pages) {
2491 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2492
2493 if (in_compat_syscall()) {
2494 if (get_compat_pages_array(chunk_pages, pages,
2495 chunk_offset, chunk_nr))
2496 break;
2497 } else {
2498 if (copy_from_user(chunk_pages, pages + chunk_offset,
2499 chunk_nr * sizeof(*chunk_pages)))
2500 break;
2501 }
2502
2503 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2504
2505 if (copy_to_user(status + chunk_offset, chunk_status,
2506 chunk_nr * sizeof(*status)))
2507 break;
2508
2509 chunk_offset += chunk_nr;
2510 nr_pages -= chunk_nr;
2511 }
2512 return nr_pages ? -EFAULT : 0;
2513 }
2514
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)2515 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2516 {
2517 struct task_struct *task;
2518 struct mm_struct *mm;
2519
2520 /*
2521 * There is no need to check if current process has the right to modify
2522 * the specified process when they are same.
2523 */
2524 if (!pid) {
2525 mmget(current->mm);
2526 *mem_nodes = cpuset_mems_allowed(current);
2527 return current->mm;
2528 }
2529
2530 task = find_get_task_by_vpid(pid);
2531 if (!task) {
2532 return ERR_PTR(-ESRCH);
2533 }
2534
2535 /*
2536 * Check if this process has the right to modify the specified
2537 * process. Use the regular "ptrace_may_access()" checks.
2538 */
2539 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2540 mm = ERR_PTR(-EPERM);
2541 goto out;
2542 }
2543
2544 mm = ERR_PTR(security_task_movememory(task));
2545 if (IS_ERR(mm))
2546 goto out;
2547 *mem_nodes = cpuset_mems_allowed(task);
2548 mm = get_task_mm(task);
2549 out:
2550 put_task_struct(task);
2551 if (!mm)
2552 mm = ERR_PTR(-EINVAL);
2553 return mm;
2554 }
2555
2556 /*
2557 * Move a list of pages in the address space of the currently executing
2558 * process.
2559 */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2560 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2561 const void __user * __user *pages,
2562 const int __user *nodes,
2563 int __user *status, int flags)
2564 {
2565 struct mm_struct *mm;
2566 int err;
2567 nodemask_t task_nodes;
2568
2569 /* Check flags */
2570 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2571 return -EINVAL;
2572
2573 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2574 return -EPERM;
2575
2576 mm = find_mm_struct(pid, &task_nodes);
2577 if (IS_ERR(mm))
2578 return PTR_ERR(mm);
2579
2580 if (nodes)
2581 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2582 nodes, status, flags);
2583 else
2584 err = do_pages_stat(mm, nr_pages, pages, status);
2585
2586 mmput(mm);
2587 return err;
2588 }
2589
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)2590 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2591 const void __user * __user *, pages,
2592 const int __user *, nodes,
2593 int __user *, status, int, flags)
2594 {
2595 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2596 }
2597
2598 #ifdef CONFIG_NUMA_BALANCING
2599 /*
2600 * Returns true if this is a safe migration target node for misplaced NUMA
2601 * pages. Currently it only checks the watermarks which is crude.
2602 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2603 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2604 unsigned long nr_migrate_pages)
2605 {
2606 int z;
2607
2608 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2609 struct zone *zone = pgdat->node_zones + z;
2610
2611 if (!managed_zone(zone))
2612 continue;
2613
2614 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2615 if (!zone_watermark_ok(zone, 0,
2616 high_wmark_pages(zone) +
2617 nr_migrate_pages,
2618 ZONE_MOVABLE, ALLOC_CMA))
2619 continue;
2620 return true;
2621 }
2622 return false;
2623 }
2624
alloc_misplaced_dst_folio(struct folio * src,unsigned long data)2625 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2626 unsigned long data)
2627 {
2628 int nid = (int) data;
2629 int order = folio_order(src);
2630 gfp_t gfp = __GFP_THISNODE;
2631
2632 if (order > 0)
2633 gfp |= GFP_TRANSHUGE_LIGHT;
2634 else {
2635 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2636 __GFP_NOWARN;
2637 gfp &= ~__GFP_RECLAIM;
2638 }
2639 return __folio_alloc_node(gfp, order, nid);
2640 }
2641
2642 /*
2643 * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2644 * permitted. Must be called with the PTL still held.
2645 */
migrate_misplaced_folio_prepare(struct folio * folio,struct vm_area_struct * vma,int node)2646 int migrate_misplaced_folio_prepare(struct folio *folio,
2647 struct vm_area_struct *vma, int node)
2648 {
2649 int nr_pages = folio_nr_pages(folio);
2650 pg_data_t *pgdat = NODE_DATA(node);
2651
2652 if (folio_is_file_lru(folio)) {
2653 /*
2654 * Do not migrate file folios that are mapped in multiple
2655 * processes with execute permissions as they are probably
2656 * shared libraries.
2657 *
2658 * See folio_maybe_mapped_shared() on possible imprecision
2659 * when we cannot easily detect if a folio is shared.
2660 */
2661 if ((vma->vm_flags & VM_EXEC) && folio_maybe_mapped_shared(folio))
2662 return -EACCES;
2663
2664 /*
2665 * Do not migrate dirty folios as not all filesystems can move
2666 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2667 * cycles.
2668 */
2669 if (folio_test_dirty(folio))
2670 return -EAGAIN;
2671 }
2672
2673 /* Avoid migrating to a node that is nearly full */
2674 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2675 int z;
2676
2677 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2678 return -EAGAIN;
2679 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2680 if (managed_zone(pgdat->node_zones + z))
2681 break;
2682 }
2683
2684 /*
2685 * If there are no managed zones, it should not proceed
2686 * further.
2687 */
2688 if (z < 0)
2689 return -EAGAIN;
2690
2691 wakeup_kswapd(pgdat->node_zones + z, 0,
2692 folio_order(folio), ZONE_MOVABLE);
2693 return -EAGAIN;
2694 }
2695
2696 if (!folio_isolate_lru(folio))
2697 return -EAGAIN;
2698
2699 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2700 nr_pages);
2701 return 0;
2702 }
2703
2704 /*
2705 * Attempt to migrate a misplaced folio to the specified destination
2706 * node. Caller is expected to have isolated the folio by calling
2707 * migrate_misplaced_folio_prepare(), which will result in an
2708 * elevated reference count on the folio. This function will un-isolate the
2709 * folio, dereferencing the folio before returning.
2710 */
migrate_misplaced_folio(struct folio * folio,int node)2711 int migrate_misplaced_folio(struct folio *folio, int node)
2712 {
2713 pg_data_t *pgdat = NODE_DATA(node);
2714 int nr_remaining;
2715 unsigned int nr_succeeded;
2716 LIST_HEAD(migratepages);
2717 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio);
2718 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2719
2720 list_add(&folio->lru, &migratepages);
2721 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2722 NULL, node, MIGRATE_ASYNC,
2723 MR_NUMA_MISPLACED, &nr_succeeded);
2724 if (nr_remaining && !list_empty(&migratepages))
2725 putback_movable_pages(&migratepages);
2726 if (nr_succeeded) {
2727 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2728 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded);
2729 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
2730 && !node_is_toptier(folio_nid(folio))
2731 && node_is_toptier(node))
2732 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded);
2733 }
2734 mem_cgroup_put(memcg);
2735 BUG_ON(!list_empty(&migratepages));
2736 return nr_remaining ? -EAGAIN : 0;
2737 }
2738 #endif /* CONFIG_NUMA_BALANCING */
2739 #endif /* CONFIG_NUMA */
2740