1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/overflow.h> 12 #include <linux/pci.h> 13 #include <linux/pci_regs.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/dma-direct.h> /* for bus_dma_region */ 18 19 #include <kunit/visibility.h> 20 21 /* Uncomment me to enable of_dump_addr() debugging output */ 22 // #define DEBUG 23 24 #include "of_private.h" 25 26 /* Callbacks for bus specific translators */ 27 struct of_bus { 28 const char *name; 29 const char *addresses; 30 int (*match)(struct device_node *parent); 31 void (*count_cells)(struct device_node *child, 32 int *addrc, int *sizec); 33 u64 (*map)(__be32 *addr, const __be32 *range, 34 int na, int ns, int pna, int fna); 35 int (*translate)(__be32 *addr, u64 offset, int na); 36 int flag_cells; 37 unsigned int (*get_flags)(const __be32 *addr); 38 }; 39 40 /* 41 * Default translator (generic bus) 42 */ 43 44 static void of_bus_default_count_cells(struct device_node *dev, 45 int *addrc, int *sizec) 46 { 47 if (addrc) 48 *addrc = of_n_addr_cells(dev); 49 if (sizec) 50 *sizec = of_n_size_cells(dev); 51 } 52 53 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 54 int na, int ns, int pna, int fna) 55 { 56 u64 cp, s, da; 57 58 cp = of_read_number(range + fna, na - fna); 59 s = of_read_number(range + na + pna, ns); 60 da = of_read_number(addr + fna, na - fna); 61 62 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 63 64 if (da < cp || da >= (cp + s)) 65 return OF_BAD_ADDR; 66 return da - cp; 67 } 68 69 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 70 { 71 u64 a = of_read_number(addr, na); 72 memset(addr, 0, na * 4); 73 a += offset; 74 if (na > 1) 75 addr[na - 2] = cpu_to_be32(a >> 32); 76 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 77 78 return 0; 79 } 80 81 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr) 82 { 83 return of_read_number(addr, 1); 84 } 85 86 static unsigned int of_bus_default_get_flags(const __be32 *addr) 87 { 88 return IORESOURCE_MEM; 89 } 90 91 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na, 92 int ns, int pna, int fna) 93 { 94 /* Check that flags match */ 95 if (*addr != *range) 96 return OF_BAD_ADDR; 97 98 return of_bus_default_map(addr, range, na, ns, pna, fna); 99 } 100 101 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na) 102 { 103 /* Keep "flags" part (high cell) in translated address */ 104 return of_bus_default_translate(addr + 1, offset, na - 1); 105 } 106 107 #ifdef CONFIG_PCI 108 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 109 { 110 unsigned int flags = 0; 111 u32 w = be32_to_cpup(addr); 112 113 if (!IS_ENABLED(CONFIG_PCI)) 114 return 0; 115 116 switch((w >> 24) & 0x03) { 117 case 0x01: 118 flags |= IORESOURCE_IO; 119 break; 120 case 0x02: /* 32 bits */ 121 flags |= IORESOURCE_MEM; 122 break; 123 124 case 0x03: /* 64 bits */ 125 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 126 break; 127 } 128 if (w & 0x40000000) 129 flags |= IORESOURCE_PREFETCH; 130 return flags; 131 } 132 133 /* 134 * PCI bus specific translator 135 */ 136 137 static bool of_node_is_pcie(const struct device_node *np) 138 { 139 bool is_pcie = of_node_name_eq(np, "pcie"); 140 141 if (is_pcie) 142 pr_warn_once("%pOF: Missing device_type\n", np); 143 144 return is_pcie; 145 } 146 147 static int of_bus_pci_match(struct device_node *np) 148 { 149 /* 150 * "pciex" is PCI Express 151 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 152 * "ht" is hypertransport 153 * 154 * If none of the device_type match, and that the node name is 155 * "pcie", accept the device as PCI (with a warning). 156 */ 157 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 158 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 159 of_node_is_pcie(np); 160 } 161 162 static void of_bus_pci_count_cells(struct device_node *np, 163 int *addrc, int *sizec) 164 { 165 if (addrc) 166 *addrc = 3; 167 if (sizec) 168 *sizec = 2; 169 } 170 171 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 172 int pna, int fna) 173 { 174 unsigned int af, rf; 175 176 af = of_bus_pci_get_flags(addr); 177 rf = of_bus_pci_get_flags(range); 178 179 /* Check address type match */ 180 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 181 return OF_BAD_ADDR; 182 183 return of_bus_default_map(addr, range, na, ns, pna, fna); 184 } 185 186 #endif /* CONFIG_PCI */ 187 188 VISIBLE_IF_KUNIT int __of_address_resource_bounds(struct resource *r, u64 start, u64 size) 189 { 190 if (overflows_type(start, r->start)) 191 return -EOVERFLOW; 192 193 r->start = start; 194 195 if (!size) 196 r->end = wrapping_sub(typeof(r->end), r->start, 1); 197 else if (size && check_add_overflow(r->start, size - 1, &r->end)) 198 return -EOVERFLOW; 199 200 return 0; 201 } 202 EXPORT_SYMBOL_IF_KUNIT(__of_address_resource_bounds); 203 204 /* 205 * of_pci_range_to_resource - Create a resource from an of_pci_range 206 * @range: the PCI range that describes the resource 207 * @np: device node where the range belongs to 208 * @res: pointer to a valid resource that will be updated to 209 * reflect the values contained in the range. 210 * 211 * Returns -EINVAL if the range cannot be converted to resource. 212 * 213 * Note that if the range is an IO range, the resource will be converted 214 * using pci_address_to_pio() which can fail if it is called too early or 215 * if the range cannot be matched to any host bridge IO space (our case here). 216 * To guard against that we try to register the IO range first. 217 * If that fails we know that pci_address_to_pio() will do too. 218 */ 219 int of_pci_range_to_resource(const struct of_pci_range *range, 220 const struct device_node *np, struct resource *res) 221 { 222 u64 start; 223 int err; 224 res->flags = range->flags; 225 res->parent = res->child = res->sibling = NULL; 226 res->name = np->full_name; 227 228 if (res->flags & IORESOURCE_IO) { 229 unsigned long port; 230 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 231 range->size); 232 if (err) 233 goto invalid_range; 234 port = pci_address_to_pio(range->cpu_addr); 235 if (port == (unsigned long)-1) { 236 err = -EINVAL; 237 goto invalid_range; 238 } 239 start = port; 240 } else { 241 start = range->cpu_addr; 242 } 243 return __of_address_resource_bounds(res, start, range->size); 244 245 invalid_range: 246 res->start = (resource_size_t)OF_BAD_ADDR; 247 res->end = (resource_size_t)OF_BAD_ADDR; 248 return err; 249 } 250 EXPORT_SYMBOL(of_pci_range_to_resource); 251 252 /* 253 * of_range_to_resource - Create a resource from a ranges entry 254 * @np: device node where the range belongs to 255 * @index: the 'ranges' index to convert to a resource 256 * @res: pointer to a valid resource that will be updated to 257 * reflect the values contained in the range. 258 * 259 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range 260 * cannot be converted to resource. 261 */ 262 int of_range_to_resource(struct device_node *np, int index, struct resource *res) 263 { 264 int ret, i = 0; 265 struct of_range_parser parser; 266 struct of_range range; 267 268 ret = of_range_parser_init(&parser, np); 269 if (ret) 270 return ret; 271 272 for_each_of_range(&parser, &range) 273 if (i++ == index) 274 return of_pci_range_to_resource(&range, np, res); 275 276 return -ENOENT; 277 } 278 EXPORT_SYMBOL(of_range_to_resource); 279 280 /* 281 * ISA bus specific translator 282 */ 283 284 static int of_bus_isa_match(struct device_node *np) 285 { 286 return of_node_name_eq(np, "isa"); 287 } 288 289 static void of_bus_isa_count_cells(struct device_node *child, 290 int *addrc, int *sizec) 291 { 292 if (addrc) 293 *addrc = 2; 294 if (sizec) 295 *sizec = 1; 296 } 297 298 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 299 int pna, int fna) 300 { 301 /* Check address type match */ 302 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 303 return OF_BAD_ADDR; 304 305 return of_bus_default_map(addr, range, na, ns, pna, fna); 306 } 307 308 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 309 { 310 unsigned int flags = 0; 311 u32 w = be32_to_cpup(addr); 312 313 if (w & 1) 314 flags |= IORESOURCE_IO; 315 else 316 flags |= IORESOURCE_MEM; 317 return flags; 318 } 319 320 static int of_bus_default_flags_match(struct device_node *np) 321 { 322 /* 323 * Check for presence first since of_bus_n_addr_cells() will warn when 324 * walking parent nodes. 325 */ 326 return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3); 327 } 328 329 static int of_bus_default_match(struct device_node *np) 330 { 331 return of_property_present(np, "#address-cells"); 332 } 333 334 /* 335 * Array of bus specific translators 336 */ 337 338 static const struct of_bus of_busses[] = { 339 #ifdef CONFIG_PCI 340 /* PCI */ 341 { 342 .name = "pci", 343 .addresses = "assigned-addresses", 344 .match = of_bus_pci_match, 345 .count_cells = of_bus_pci_count_cells, 346 .map = of_bus_pci_map, 347 .translate = of_bus_default_flags_translate, 348 .flag_cells = 1, 349 .get_flags = of_bus_pci_get_flags, 350 }, 351 #endif /* CONFIG_PCI */ 352 /* ISA */ 353 { 354 .name = "isa", 355 .addresses = "reg", 356 .match = of_bus_isa_match, 357 .count_cells = of_bus_isa_count_cells, 358 .map = of_bus_isa_map, 359 .translate = of_bus_default_flags_translate, 360 .flag_cells = 1, 361 .get_flags = of_bus_isa_get_flags, 362 }, 363 /* Default with flags cell */ 364 { 365 .name = "default-flags", 366 .addresses = "reg", 367 .match = of_bus_default_flags_match, 368 .count_cells = of_bus_default_count_cells, 369 .map = of_bus_default_flags_map, 370 .translate = of_bus_default_flags_translate, 371 .flag_cells = 1, 372 .get_flags = of_bus_default_flags_get_flags, 373 }, 374 /* Default */ 375 { 376 .name = "default", 377 .addresses = "reg", 378 .match = of_bus_default_match, 379 .count_cells = of_bus_default_count_cells, 380 .map = of_bus_default_map, 381 .translate = of_bus_default_translate, 382 .get_flags = of_bus_default_get_flags, 383 }, 384 }; 385 386 static const struct of_bus *of_match_bus(struct device_node *np) 387 { 388 int i; 389 390 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 391 if (!of_busses[i].match || of_busses[i].match(np)) 392 return &of_busses[i]; 393 return NULL; 394 } 395 396 static int of_empty_ranges_quirk(const struct device_node *np) 397 { 398 if (IS_ENABLED(CONFIG_PPC)) { 399 /* To save cycles, we cache the result for global "Mac" setting */ 400 static int quirk_state = -1; 401 402 /* PA-SEMI sdc DT bug */ 403 if (of_device_is_compatible(np, "1682m-sdc")) 404 return true; 405 406 /* Make quirk cached */ 407 if (quirk_state < 0) 408 quirk_state = 409 of_machine_is_compatible("Power Macintosh") || 410 of_machine_is_compatible("MacRISC"); 411 return quirk_state; 412 } 413 return false; 414 } 415 416 static int of_translate_one(const struct device_node *parent, const struct of_bus *bus, 417 const struct of_bus *pbus, __be32 *addr, 418 int na, int ns, int pna, const char *rprop) 419 { 420 const __be32 *ranges; 421 unsigned int rlen; 422 int rone; 423 u64 offset = OF_BAD_ADDR; 424 425 /* 426 * Normally, an absence of a "ranges" property means we are 427 * crossing a non-translatable boundary, and thus the addresses 428 * below the current cannot be converted to CPU physical ones. 429 * Unfortunately, while this is very clear in the spec, it's not 430 * what Apple understood, and they do have things like /uni-n or 431 * /ht nodes with no "ranges" property and a lot of perfectly 432 * useable mapped devices below them. Thus we treat the absence of 433 * "ranges" as equivalent to an empty "ranges" property which means 434 * a 1:1 translation at that level. It's up to the caller not to try 435 * to translate addresses that aren't supposed to be translated in 436 * the first place. --BenH. 437 * 438 * As far as we know, this damage only exists on Apple machines, so 439 * This code is only enabled on powerpc. --gcl 440 * 441 * This quirk also applies for 'dma-ranges' which frequently exist in 442 * child nodes without 'dma-ranges' in the parent nodes. --RobH 443 */ 444 ranges = of_get_property(parent, rprop, &rlen); 445 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 446 strcmp(rprop, "dma-ranges")) { 447 pr_debug("no ranges; cannot translate\n"); 448 return 1; 449 } 450 if (ranges == NULL || rlen == 0) { 451 offset = of_read_number(addr, na); 452 /* set address to zero, pass flags through */ 453 memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4); 454 pr_debug("empty ranges; 1:1 translation\n"); 455 goto finish; 456 } 457 458 pr_debug("walking ranges...\n"); 459 460 /* Now walk through the ranges */ 461 rlen /= 4; 462 rone = na + pna + ns; 463 for (; rlen >= rone; rlen -= rone, ranges += rone) { 464 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells); 465 if (offset != OF_BAD_ADDR) 466 break; 467 } 468 if (offset == OF_BAD_ADDR) { 469 pr_debug("not found !\n"); 470 return 1; 471 } 472 memcpy(addr, ranges + na, 4 * pna); 473 474 finish: 475 of_dump_addr("parent translation for:", addr, pna); 476 pr_debug("with offset: %llx\n", offset); 477 478 /* Translate it into parent bus space */ 479 return pbus->translate(addr, offset, pna); 480 } 481 482 /* 483 * Translate an address from the device-tree into a CPU physical address, 484 * this walks up the tree and applies the various bus mappings on the 485 * way. 486 * 487 * Note: We consider that crossing any level with #size-cells == 0 to mean 488 * that translation is impossible (that is we are not dealing with a value 489 * that can be mapped to a cpu physical address). This is not really specified 490 * that way, but this is traditionally the way IBM at least do things 491 * 492 * Whenever the translation fails, the *host pointer will be set to the 493 * device that had registered logical PIO mapping, and the return code is 494 * relative to that node. 495 */ 496 static u64 __of_translate_address(struct device_node *node, 497 struct device_node *(*get_parent)(const struct device_node *), 498 const __be32 *in_addr, const char *rprop, 499 struct device_node **host) 500 { 501 struct device_node *dev __free(device_node) = of_node_get(node); 502 struct device_node *parent __free(device_node) = get_parent(dev); 503 const struct of_bus *bus, *pbus; 504 __be32 addr[OF_MAX_ADDR_CELLS]; 505 int na, ns, pna, pns; 506 507 pr_debug("** translation for device %pOF **\n", dev); 508 509 *host = NULL; 510 511 if (parent == NULL) 512 return OF_BAD_ADDR; 513 bus = of_match_bus(parent); 514 if (!bus) 515 return OF_BAD_ADDR; 516 517 /* Count address cells & copy address locally */ 518 bus->count_cells(dev, &na, &ns); 519 if (!OF_CHECK_COUNTS(na, ns)) { 520 pr_debug("Bad cell count for %pOF\n", dev); 521 return OF_BAD_ADDR; 522 } 523 memcpy(addr, in_addr, na * 4); 524 525 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 526 bus->name, na, ns, parent); 527 of_dump_addr("translating address:", addr, na); 528 529 /* Translate */ 530 for (;;) { 531 struct logic_pio_hwaddr *iorange; 532 533 /* Switch to parent bus */ 534 of_node_put(dev); 535 dev = parent; 536 parent = get_parent(dev); 537 538 /* If root, we have finished */ 539 if (parent == NULL) { 540 pr_debug("reached root node\n"); 541 return of_read_number(addr, na); 542 } 543 544 /* 545 * For indirectIO device which has no ranges property, get 546 * the address from reg directly. 547 */ 548 iorange = find_io_range_by_fwnode(&dev->fwnode); 549 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 550 u64 result = of_read_number(addr + 1, na - 1); 551 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 552 dev, result); 553 *host = no_free_ptr(dev); 554 return result; 555 } 556 557 /* Get new parent bus and counts */ 558 pbus = of_match_bus(parent); 559 if (!pbus) 560 return OF_BAD_ADDR; 561 pbus->count_cells(dev, &pna, &pns); 562 if (!OF_CHECK_COUNTS(pna, pns)) { 563 pr_err("Bad cell count for %pOF\n", dev); 564 return OF_BAD_ADDR; 565 } 566 567 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 568 pbus->name, pna, pns, parent); 569 570 /* Apply bus translation */ 571 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 572 return OF_BAD_ADDR; 573 574 /* Complete the move up one level */ 575 na = pna; 576 ns = pns; 577 bus = pbus; 578 579 of_dump_addr("one level translation:", addr, na); 580 } 581 582 unreachable(); 583 } 584 585 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 586 { 587 struct device_node *host; 588 u64 ret; 589 590 ret = __of_translate_address(dev, of_get_parent, 591 in_addr, "ranges", &host); 592 if (host) { 593 of_node_put(host); 594 return OF_BAD_ADDR; 595 } 596 597 return ret; 598 } 599 EXPORT_SYMBOL(of_translate_address); 600 601 #ifdef CONFIG_HAS_DMA 602 struct device_node *__of_get_dma_parent(const struct device_node *np) 603 { 604 struct of_phandle_args args; 605 int ret, index; 606 607 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 608 if (index < 0) 609 return of_get_parent(np); 610 611 ret = of_parse_phandle_with_args(np, "interconnects", 612 "#interconnect-cells", 613 index, &args); 614 if (ret < 0) 615 return of_get_parent(np); 616 617 return args.np; 618 } 619 #endif 620 621 static struct device_node *of_get_next_dma_parent(struct device_node *np) 622 { 623 struct device_node *parent; 624 625 parent = __of_get_dma_parent(np); 626 of_node_put(np); 627 628 return parent; 629 } 630 631 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 632 { 633 struct device_node *host; 634 u64 ret; 635 636 ret = __of_translate_address(dev, __of_get_dma_parent, 637 in_addr, "dma-ranges", &host); 638 639 if (host) { 640 of_node_put(host); 641 return OF_BAD_ADDR; 642 } 643 644 return ret; 645 } 646 EXPORT_SYMBOL(of_translate_dma_address); 647 648 /** 649 * of_translate_dma_region - Translate device tree address and size tuple 650 * @dev: device tree node for which to translate 651 * @prop: pointer into array of cells 652 * @start: return value for the start of the DMA range 653 * @length: return value for the length of the DMA range 654 * 655 * Returns a pointer to the cell immediately following the translated DMA region. 656 */ 657 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, 658 phys_addr_t *start, size_t *length) 659 { 660 struct device_node *parent __free(device_node) = __of_get_dma_parent(dev); 661 u64 address, size; 662 int na, ns; 663 664 if (!parent) 665 return NULL; 666 667 na = of_bus_n_addr_cells(parent); 668 ns = of_bus_n_size_cells(parent); 669 670 address = of_translate_dma_address(dev, prop); 671 if (address == OF_BAD_ADDR) 672 return NULL; 673 674 size = of_read_number(prop + na, ns); 675 676 if (start) 677 *start = address; 678 679 if (length) 680 *length = size; 681 682 return prop + na + ns; 683 } 684 EXPORT_SYMBOL(of_translate_dma_region); 685 686 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, 687 u64 *size, unsigned int *flags) 688 { 689 const __be32 *prop; 690 unsigned int psize; 691 struct device_node *parent __free(device_node) = of_get_parent(dev); 692 const struct of_bus *bus; 693 int onesize, i, na, ns; 694 695 if (parent == NULL) 696 return NULL; 697 698 /* match the parent's bus type */ 699 bus = of_match_bus(parent); 700 if (!bus || (strcmp(bus->name, "pci") && (bar_no >= 0))) 701 return NULL; 702 703 /* Get "reg" or "assigned-addresses" property */ 704 prop = of_get_property(dev, bus->addresses, &psize); 705 if (prop == NULL) 706 return NULL; 707 psize /= 4; 708 709 bus->count_cells(dev, &na, &ns); 710 if (!OF_CHECK_ADDR_COUNT(na)) 711 return NULL; 712 713 onesize = na + ns; 714 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 715 u32 val = be32_to_cpu(prop[0]); 716 /* PCI bus matches on BAR number instead of index */ 717 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || 718 ((index >= 0) && (i == index))) { 719 if (size) 720 *size = of_read_number(prop + na, ns); 721 if (flags) 722 *flags = bus->get_flags(prop); 723 return prop; 724 } 725 } 726 return NULL; 727 } 728 EXPORT_SYMBOL(__of_get_address); 729 730 /** 731 * of_property_read_reg - Retrieve the specified "reg" entry index without translating 732 * @np: device tree node for which to retrieve "reg" from 733 * @idx: "reg" entry index to read 734 * @addr: return value for the untranslated address 735 * @size: return value for the entry size 736 * 737 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and 738 * size values filled in. 739 */ 740 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size) 741 { 742 const __be32 *prop = of_get_address(np, idx, size, NULL); 743 744 if (!prop) 745 return -EINVAL; 746 747 *addr = of_read_number(prop, of_n_addr_cells(np)); 748 749 return 0; 750 } 751 EXPORT_SYMBOL(of_property_read_reg); 752 753 static int parser_init(struct of_pci_range_parser *parser, 754 struct device_node *node, const char *name) 755 { 756 int rlen; 757 758 parser->node = node; 759 parser->pna = of_n_addr_cells(node); 760 parser->na = of_bus_n_addr_cells(node); 761 parser->ns = of_bus_n_size_cells(node); 762 parser->dma = !strcmp(name, "dma-ranges"); 763 parser->bus = of_match_bus(node); 764 765 parser->range = of_get_property(node, name, &rlen); 766 if (parser->range == NULL) 767 return -ENOENT; 768 769 parser->end = parser->range + rlen / sizeof(__be32); 770 771 return 0; 772 } 773 774 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 775 struct device_node *node) 776 { 777 return parser_init(parser, node, "ranges"); 778 } 779 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 780 781 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 782 struct device_node *node) 783 { 784 return parser_init(parser, node, "dma-ranges"); 785 } 786 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 787 #define of_dma_range_parser_init of_pci_dma_range_parser_init 788 789 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 790 struct of_pci_range *range) 791 { 792 int na = parser->na; 793 int ns = parser->ns; 794 int np = parser->pna + na + ns; 795 int busflag_na = parser->bus->flag_cells; 796 797 if (!range) 798 return NULL; 799 800 if (!parser->range || parser->range + np > parser->end) 801 return NULL; 802 803 range->flags = parser->bus->get_flags(parser->range); 804 805 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 806 807 if (parser->dma) 808 range->cpu_addr = of_translate_dma_address(parser->node, 809 parser->range + na); 810 else 811 range->cpu_addr = of_translate_address(parser->node, 812 parser->range + na); 813 814 range->parent_bus_addr = of_read_number(parser->range + na, parser->pna); 815 range->size = of_read_number(parser->range + parser->pna + na, ns); 816 817 parser->range += np; 818 819 /* Now consume following elements while they are contiguous */ 820 while (parser->range + np <= parser->end) { 821 u32 flags = 0; 822 u64 bus_addr, cpu_addr, size; 823 824 flags = parser->bus->get_flags(parser->range); 825 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 826 if (parser->dma) 827 cpu_addr = of_translate_dma_address(parser->node, 828 parser->range + na); 829 else 830 cpu_addr = of_translate_address(parser->node, 831 parser->range + na); 832 size = of_read_number(parser->range + parser->pna + na, ns); 833 834 if (flags != range->flags) 835 break; 836 if (bus_addr != range->bus_addr + range->size || 837 cpu_addr != range->cpu_addr + range->size) 838 break; 839 840 range->size += size; 841 parser->range += np; 842 } 843 844 return range; 845 } 846 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 847 848 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 849 u64 size) 850 { 851 u64 taddr; 852 unsigned long port; 853 struct device_node *host; 854 855 taddr = __of_translate_address(dev, of_get_parent, 856 in_addr, "ranges", &host); 857 if (host) { 858 /* host-specific port access */ 859 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 860 of_node_put(host); 861 } else { 862 /* memory-mapped I/O range */ 863 port = pci_address_to_pio(taddr); 864 } 865 866 if (port == (unsigned long)-1) 867 return OF_BAD_ADDR; 868 869 return port; 870 } 871 872 #ifdef CONFIG_HAS_DMA 873 /** 874 * of_dma_get_range - Get DMA range info and put it into a map array 875 * @np: device node to get DMA range info 876 * @map: dma range structure to return 877 * 878 * Look in bottom up direction for the first "dma-ranges" property 879 * and parse it. Put the information into a DMA offset map array. 880 * 881 * dma-ranges format: 882 * DMA addr (dma_addr) : naddr cells 883 * CPU addr (phys_addr_t) : pna cells 884 * size : nsize cells 885 * 886 * It returns -ENODEV if "dma-ranges" property was not found for this 887 * device in the DT. 888 */ 889 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 890 { 891 struct device_node *node __free(device_node) = of_node_get(np); 892 const __be32 *ranges = NULL; 893 bool found_dma_ranges = false; 894 struct of_range_parser parser; 895 struct of_range range; 896 struct bus_dma_region *r; 897 int len, num_ranges = 0; 898 899 while (node) { 900 ranges = of_get_property(node, "dma-ranges", &len); 901 902 /* Ignore empty ranges, they imply no translation required */ 903 if (ranges && len > 0) 904 break; 905 906 /* Once we find 'dma-ranges', then a missing one is an error */ 907 if (found_dma_ranges && !ranges) 908 return -ENODEV; 909 910 found_dma_ranges = true; 911 912 node = of_get_next_dma_parent(node); 913 } 914 915 if (!node || !ranges) { 916 pr_debug("no dma-ranges found for node(%pOF)\n", np); 917 return -ENODEV; 918 } 919 of_dma_range_parser_init(&parser, node); 920 for_each_of_range(&parser, &range) { 921 if (range.cpu_addr == OF_BAD_ADDR) { 922 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 923 range.bus_addr, node); 924 continue; 925 } 926 num_ranges++; 927 } 928 929 if (!num_ranges) 930 return -EINVAL; 931 932 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 933 if (!r) 934 return -ENOMEM; 935 936 /* 937 * Record all info in the generic DMA ranges array for struct device, 938 * returning an error if we don't find any parsable ranges. 939 */ 940 *map = r; 941 of_dma_range_parser_init(&parser, node); 942 for_each_of_range(&parser, &range) { 943 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 944 range.bus_addr, range.cpu_addr, range.size); 945 if (range.cpu_addr == OF_BAD_ADDR) 946 continue; 947 r->cpu_start = range.cpu_addr; 948 r->dma_start = range.bus_addr; 949 r->size = range.size; 950 r++; 951 } 952 return 0; 953 } 954 #endif /* CONFIG_HAS_DMA */ 955 956 /** 957 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 958 * @np: The node to start searching from or NULL to start from the root 959 * 960 * Gets the highest CPU physical address that is addressable by all DMA masters 961 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 962 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 963 */ 964 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 965 { 966 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 967 struct of_range_parser parser; 968 phys_addr_t subtree_max_addr; 969 struct device_node *child; 970 struct of_range range; 971 const __be32 *ranges; 972 u64 cpu_end = 0; 973 int len; 974 975 if (!np) 976 np = of_root; 977 978 ranges = of_get_property(np, "dma-ranges", &len); 979 if (ranges && len) { 980 of_dma_range_parser_init(&parser, np); 981 for_each_of_range(&parser, &range) 982 if (range.cpu_addr + range.size > cpu_end) 983 cpu_end = range.cpu_addr + range.size - 1; 984 985 if (max_cpu_addr > cpu_end) 986 max_cpu_addr = cpu_end; 987 } 988 989 for_each_available_child_of_node(np, child) { 990 subtree_max_addr = of_dma_get_max_cpu_address(child); 991 if (max_cpu_addr > subtree_max_addr) 992 max_cpu_addr = subtree_max_addr; 993 } 994 995 return max_cpu_addr; 996 } 997 998 /** 999 * of_dma_is_coherent - Check if device is coherent 1000 * @np: device node 1001 * 1002 * It returns true if "dma-coherent" property was found 1003 * for this device in the DT, or if DMA is coherent by 1004 * default for OF devices on the current platform and no 1005 * "dma-noncoherent" property was found for this device. 1006 */ 1007 bool of_dma_is_coherent(struct device_node *np) 1008 { 1009 struct device_node *node __free(device_node) = of_node_get(np); 1010 1011 while (node) { 1012 if (of_property_read_bool(node, "dma-coherent")) 1013 return true; 1014 1015 if (of_property_read_bool(node, "dma-noncoherent")) 1016 return false; 1017 1018 node = of_get_next_dma_parent(node); 1019 } 1020 return dma_default_coherent; 1021 } 1022 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1023 1024 /** 1025 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 1026 * @np: device node 1027 * 1028 * Returns true if the "nonposted-mmio" property was found for 1029 * the device's bus. 1030 */ 1031 static bool of_mmio_is_nonposted(const struct device_node *np) 1032 { 1033 struct device_node *parent __free(device_node) = of_get_parent(np); 1034 1035 if (of_property_read_bool(np, "nonposted-mmio")) 1036 return true; 1037 1038 return parent && of_property_read_bool(parent, "nonposted-mmio"); 1039 } 1040 1041 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, 1042 struct resource *r) 1043 { 1044 u64 taddr; 1045 const __be32 *addrp; 1046 u64 size; 1047 unsigned int flags; 1048 const char *name = NULL; 1049 1050 addrp = __of_get_address(dev, index, bar_no, &size, &flags); 1051 if (addrp == NULL) 1052 return -EINVAL; 1053 1054 /* Get optional "reg-names" property to add a name to a resource */ 1055 if (index >= 0) 1056 of_property_read_string_index(dev, "reg-names", index, &name); 1057 1058 if (flags & IORESOURCE_MEM) 1059 taddr = of_translate_address(dev, addrp); 1060 else if (flags & IORESOURCE_IO) 1061 taddr = of_translate_ioport(dev, addrp, size); 1062 else 1063 return -EINVAL; 1064 1065 if (taddr == OF_BAD_ADDR) 1066 return -EINVAL; 1067 memset(r, 0, sizeof(struct resource)); 1068 1069 if (of_mmio_is_nonposted(dev)) 1070 flags |= IORESOURCE_MEM_NONPOSTED; 1071 1072 r->flags = flags; 1073 r->name = name ? name : dev->full_name; 1074 1075 return __of_address_resource_bounds(r, taddr, size); 1076 } 1077 1078 /** 1079 * of_address_to_resource - Translate device tree address and return as resource 1080 * @dev: Caller's Device Node 1081 * @index: Index into the array 1082 * @r: Pointer to resource array 1083 * 1084 * Returns -EINVAL if the range cannot be converted to resource. 1085 * 1086 * Note that if your address is a PIO address, the conversion will fail if 1087 * the physical address can't be internally converted to an IO token with 1088 * pci_address_to_pio(), that is because it's either called too early or it 1089 * can't be matched to any host bridge IO space 1090 */ 1091 int of_address_to_resource(struct device_node *dev, int index, 1092 struct resource *r) 1093 { 1094 return __of_address_to_resource(dev, index, -1, r); 1095 } 1096 EXPORT_SYMBOL_GPL(of_address_to_resource); 1097 1098 int of_pci_address_to_resource(struct device_node *dev, int bar, 1099 struct resource *r) 1100 { 1101 1102 if (!IS_ENABLED(CONFIG_PCI)) 1103 return -ENOSYS; 1104 1105 return __of_address_to_resource(dev, -1, bar, r); 1106 } 1107 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 1108 1109 /** 1110 * of_iomap - Maps the memory mapped IO for a given device_node 1111 * @np: the device whose io range will be mapped 1112 * @index: index of the io range 1113 * 1114 * Returns a pointer to the mapped memory 1115 */ 1116 void __iomem *of_iomap(struct device_node *np, int index) 1117 { 1118 struct resource res; 1119 1120 if (of_address_to_resource(np, index, &res)) 1121 return NULL; 1122 1123 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1124 return ioremap_np(res.start, resource_size(&res)); 1125 else 1126 return ioremap(res.start, resource_size(&res)); 1127 } 1128 EXPORT_SYMBOL(of_iomap); 1129 1130 /* 1131 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 1132 * for a given device_node 1133 * @device: the device whose io range will be mapped 1134 * @index: index of the io range 1135 * @name: name "override" for the memory region request or NULL 1136 * 1137 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 1138 * error code on failure. Usage example: 1139 * 1140 * base = of_io_request_and_map(node, 0, "foo"); 1141 * if (IS_ERR(base)) 1142 * return PTR_ERR(base); 1143 */ 1144 void __iomem *of_io_request_and_map(struct device_node *np, int index, 1145 const char *name) 1146 { 1147 struct resource res; 1148 void __iomem *mem; 1149 1150 if (of_address_to_resource(np, index, &res)) 1151 return IOMEM_ERR_PTR(-EINVAL); 1152 1153 if (!name) 1154 name = res.name; 1155 if (!request_mem_region(res.start, resource_size(&res), name)) 1156 return IOMEM_ERR_PTR(-EBUSY); 1157 1158 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1159 mem = ioremap_np(res.start, resource_size(&res)); 1160 else 1161 mem = ioremap(res.start, resource_size(&res)); 1162 1163 if (!mem) { 1164 release_mem_region(res.start, resource_size(&res)); 1165 return IOMEM_ERR_PTR(-ENOMEM); 1166 } 1167 1168 return mem; 1169 } 1170 EXPORT_SYMBOL(of_io_request_and_map); 1171