xref: /linux/rust/kernel/driver.rs (revision eb3dad518e4da48ab6c6df16aa8895b8b0bd6ecf)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
4 //!
5 //! This documentation describes how to implement a bus specific driver API and how to align it with
6 //! the design of (bus specific) devices.
7 //!
8 //! Note: Readers are expected to know the content of the documentation of [`Device`] and
9 //! [`DeviceContext`].
10 //!
11 //! # Driver Trait
12 //!
13 //! The main driver interface is defined by a bus specific driver trait. For instance:
14 //!
15 //! ```ignore
16 //! pub trait Driver: Send {
17 //!     /// The type holding information about each device ID supported by the driver.
18 //!     type IdInfo: 'static;
19 //!
20 //!     /// The table of OF device ids supported by the driver.
21 //!     const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
22 //!
23 //!     /// The table of ACPI device ids supported by the driver.
24 //!     const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None;
25 //!
26 //!     /// Driver probe.
27 //!     fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> impl PinInit<Self, Error>;
28 //!
29 //!     /// Driver unbind (optional).
30 //!     fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
31 //!         let _ = (dev, this);
32 //!     }
33 //! }
34 //! ```
35 //!
36 //! For specific examples see:
37 //!
38 //! * [`platform::Driver`](kernel::platform::Driver)
39 #![cfg_attr(
40     CONFIG_AUXILIARY_BUS,
41     doc = "* [`auxiliary::Driver`](kernel::auxiliary::Driver)"
42 )]
43 #![cfg_attr(CONFIG_PCI, doc = "* [`pci::Driver`](kernel::pci::Driver)")]
44 //!
45 //! The `probe()` callback should return a `impl PinInit<Self, Error>`, i.e. the driver's private
46 //! data. The bus abstraction should store the pointer in the corresponding bus device. The generic
47 //! [`Device`] infrastructure provides common helpers for this purpose on its
48 //! [`Device<CoreInternal>`] implementation.
49 //!
50 //! All driver callbacks should provide a reference to the driver's private data. Once the driver
51 //! is unbound from the device, the bus abstraction should take back the ownership of the driver's
52 //! private data from the corresponding [`Device`] and [`drop`] it.
53 //!
54 //! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]).
55 //!
56 //! # Adapter
57 //!
58 //! The adapter implementation of a bus represents the abstraction layer between the C bus
59 //! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of
60 //! the [driver trait](#driver-trait).
61 //!
62 //! ```ignore
63 //! pub struct Adapter<T: Driver>;
64 //! ```
65 //!
66 //! There's a common [`Adapter`] trait that can be implemented to inherit common driver
67 //! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`].
68 //!
69 //! # Driver Registration
70 //!
71 //! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter)
72 //! should implement the [`RegistrationOps`] trait.
73 //!
74 //! This trait implementation can be used to create the actual registration with the common
75 //! [`Registration`] type.
76 //!
77 //! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which
78 //! creates a kernel module with exactly one [`Registration`] for the bus specific adapter.
79 //!
80 //! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro.
81 //!
82 //! # Device IDs
83 //!
84 //! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses
85 //! may need to implement their own device ID types.
86 //!
87 //! For this purpose the generic infrastructure in [`device_id`] should be used.
88 //!
89 //! [`Core`]: device::Core
90 //! [`Device`]: device::Device
91 //! [`Device<Core>`]: device::Device<device::Core>
92 //! [`Device<CoreInternal>`]: device::Device<device::CoreInternal>
93 //! [`DeviceContext`]: device::DeviceContext
94 //! [`device_id`]: kernel::device_id
95 //! [`module_driver`]: kernel::module_driver
96 
97 use crate::{
98     acpi,
99     device,
100     of,
101     prelude::*,
102     types::Opaque,
103     ThisModule, //
104 };
105 
106 /// Trait describing the layout of a specific device driver.
107 ///
108 /// This trait describes the layout of a specific driver structure, such as `struct pci_driver` or
109 /// `struct platform_driver`.
110 ///
111 /// # Safety
112 ///
113 /// Implementors must guarantee that:
114 /// - `DriverType` is `repr(C)`,
115 /// - `DriverData` is the type of the driver's device private data.
116 /// - `DriverType` embeds a valid `struct device_driver` at byte offset `DEVICE_DRIVER_OFFSET`.
117 pub unsafe trait DriverLayout {
118     /// The specific driver type embedding a `struct device_driver`.
119     type DriverType: Default;
120 
121     /// The type of the driver's device private data.
122     type DriverData;
123 
124     /// Byte offset of the embedded `struct device_driver` within `DriverType`.
125     ///
126     /// This must correspond exactly to the location of the embedded `struct device_driver` field.
127     const DEVICE_DRIVER_OFFSET: usize;
128 }
129 
130 /// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform,
131 /// Amba, etc.) to provide the corresponding subsystem specific implementation to register /
132 /// unregister a driver of the particular type (`DriverType`).
133 ///
134 /// For instance, the PCI subsystem would set `DriverType` to `bindings::pci_driver` and call
135 /// `bindings::__pci_register_driver` from `RegistrationOps::register` and
136 /// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`.
137 ///
138 /// # Safety
139 ///
140 /// A call to [`RegistrationOps::unregister`] for a given instance of `DriverType` is only valid if
141 /// a preceding call to [`RegistrationOps::register`] has been successful.
142 pub unsafe trait RegistrationOps: DriverLayout {
143     /// Registers a driver.
144     ///
145     /// # Safety
146     ///
147     /// On success, `reg` must remain pinned and valid until the matching call to
148     /// [`RegistrationOps::unregister`].
149     unsafe fn register(
150         reg: &Opaque<Self::DriverType>,
151         name: &'static CStr,
152         module: &'static ThisModule,
153     ) -> Result;
154 
155     /// Unregisters a driver previously registered with [`RegistrationOps::register`].
156     ///
157     /// # Safety
158     ///
159     /// Must only be called after a preceding successful call to [`RegistrationOps::register`] for
160     /// the same `reg`.
161     unsafe fn unregister(reg: &Opaque<Self::DriverType>);
162 }
163 
164 /// A [`Registration`] is a generic type that represents the registration of some driver type (e.g.
165 /// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that
166 /// implements the [`RegistrationOps`] trait, such that the generic `T::register` and
167 /// `T::unregister` calls result in the subsystem specific registration calls.
168 ///
169 ///Once the `Registration` structure is dropped, the driver is unregistered.
170 #[pin_data(PinnedDrop)]
171 pub struct Registration<T: RegistrationOps> {
172     #[pin]
173     reg: Opaque<T::DriverType>,
174 }
175 
176 // SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
177 // share references to it with multiple threads as nothing can be done.
178 unsafe impl<T: RegistrationOps> Sync for Registration<T> {}
179 
180 // SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
181 // any thread, so `Registration` is `Send`.
182 unsafe impl<T: RegistrationOps> Send for Registration<T> {}
183 
184 impl<T: RegistrationOps + 'static> Registration<T> {
185     extern "C" fn post_unbind_callback(dev: *mut bindings::device) {
186         // SAFETY: The driver core only ever calls the post unbind callback with a valid pointer to
187         // a `struct device`.
188         //
189         // INVARIANT: `dev` is valid for the duration of the `post_unbind_callback()`.
190         let dev = unsafe { &*dev.cast::<device::Device<device::CoreInternal>>() };
191 
192         // `remove()` and all devres callbacks have been completed at this point, hence drop the
193         // driver's device private data.
194         //
195         // SAFETY: By the safety requirements of the `Driver` trait, `T::DriverData` is the
196         // driver's device private data type.
197         drop(unsafe { dev.drvdata_obtain::<T::DriverData>() });
198     }
199 
200     /// Attach generic `struct device_driver` callbacks.
201     fn callbacks_attach(drv: &Opaque<T::DriverType>) {
202         let ptr = drv.get().cast::<u8>();
203 
204         // SAFETY:
205         // - `drv.get()` yields a valid pointer to `Self::DriverType`.
206         // - Adding `DEVICE_DRIVER_OFFSET` yields the address of the embedded `struct device_driver`
207         //   as guaranteed by the safety requirements of the `Driver` trait.
208         let base = unsafe { ptr.add(T::DEVICE_DRIVER_OFFSET) };
209 
210         // CAST: `base` points to the offset of the embedded `struct device_driver`.
211         let base = base.cast::<bindings::device_driver>();
212 
213         // SAFETY: It is safe to set the fields of `struct device_driver` on initialization.
214         unsafe { (*base).p_cb.post_unbind_rust = Some(Self::post_unbind_callback) };
215     }
216 
217     /// Creates a new instance of the registration object.
218     pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> {
219         try_pin_init!(Self {
220             reg <- Opaque::try_ffi_init(|ptr: *mut T::DriverType| {
221                 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write.
222                 unsafe { ptr.write(T::DriverType::default()) };
223 
224                 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has
225                 // just been initialised above, so it's also valid for read.
226                 let drv = unsafe { &*(ptr as *const Opaque<T::DriverType>) };
227 
228                 Self::callbacks_attach(drv);
229 
230                 // SAFETY: `drv` is guaranteed to be pinned until `T::unregister`.
231                 unsafe { T::register(drv, name, module) }
232             }),
233         })
234     }
235 }
236 
237 #[pinned_drop]
238 impl<T: RegistrationOps> PinnedDrop for Registration<T> {
239     fn drop(self: Pin<&mut Self>) {
240         // SAFETY: The existence of `self` guarantees that `self.reg` has previously been
241         // successfully registered with `T::register`
242         unsafe { T::unregister(&self.reg) };
243     }
244 }
245 
246 /// Declares a kernel module that exposes a single driver.
247 ///
248 /// It is meant to be used as a helper by other subsystems so they can more easily expose their own
249 /// macros.
250 #[macro_export]
251 macro_rules! module_driver {
252     (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
253         type Ops<$gen_type> = $driver_ops;
254 
255         #[$crate::prelude::pin_data]
256         struct DriverModule {
257             #[pin]
258             _driver: $crate::driver::Registration<Ops<$type>>,
259         }
260 
261         impl $crate::InPlaceModule for DriverModule {
262             fn init(
263                 module: &'static $crate::ThisModule
264             ) -> impl ::pin_init::PinInit<Self, $crate::error::Error> {
265                 $crate::try_pin_init!(Self {
266                     _driver <- $crate::driver::Registration::new(
267                         <Self as $crate::ModuleMetadata>::NAME,
268                         module,
269                     ),
270                 })
271             }
272         }
273 
274         $crate::prelude::module! {
275             type: DriverModule,
276             $($f)*
277         }
278     }
279 }
280 
281 /// The bus independent adapter to match a drivers and a devices.
282 ///
283 /// This trait should be implemented by the bus specific adapter, which represents the connection
284 /// of a device and a driver.
285 ///
286 /// It provides bus independent functions for device / driver interactions.
287 pub trait Adapter {
288     /// The type holding driver private data about each device id supported by the driver.
289     type IdInfo: 'static;
290 
291     /// The [`acpi::IdTable`] of the corresponding driver
292     fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>;
293 
294     /// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any.
295     ///
296     /// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`].
297     fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
298         #[cfg(not(CONFIG_ACPI))]
299         {
300             let _ = dev;
301             None
302         }
303 
304         #[cfg(CONFIG_ACPI)]
305         {
306             let table = Self::acpi_id_table()?;
307 
308             // SAFETY:
309             // - `table` has static lifetime, hence it's valid for read,
310             // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
311             let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) };
312 
313             if raw_id.is_null() {
314                 None
315             } else {
316                 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id`
317                 // and does not add additional invariants, so it's safe to transmute.
318                 let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() };
319 
320                 Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id)))
321             }
322         }
323     }
324 
325     /// The [`of::IdTable`] of the corresponding driver.
326     fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>;
327 
328     /// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any.
329     ///
330     /// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`].
331     fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
332         #[cfg(not(CONFIG_OF))]
333         {
334             let _ = dev;
335             None
336         }
337 
338         #[cfg(CONFIG_OF)]
339         {
340             let table = Self::of_id_table()?;
341 
342             // SAFETY:
343             // - `table` has static lifetime, hence it's valid for read,
344             // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
345             let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) };
346 
347             if raw_id.is_null() {
348                 None
349             } else {
350                 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id`
351                 // and does not add additional invariants, so it's safe to transmute.
352                 let id = unsafe { &*raw_id.cast::<of::DeviceId>() };
353 
354                 Some(
355                     table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index(
356                         id,
357                     )),
358                 )
359             }
360         }
361     }
362 
363     /// Returns the driver's private data from the matching entry of any of the ID tables, if any.
364     ///
365     /// If this returns `None`, it means that there is no match in any of the ID tables directly
366     /// associated with a [`device::Device`].
367     fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
368         let id = Self::acpi_id_info(dev);
369         if id.is_some() {
370             return id;
371         }
372 
373         let id = Self::of_id_info(dev);
374         if id.is_some() {
375             return id;
376         }
377 
378         None
379     }
380 }
381