xref: /linux/drivers/of/fdt.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/acpi.h>
12 #include <linux/crash_dump.h>
13 #include <linux/crc32.h>
14 #include <linux/kernel.h>
15 #include <linux/initrd.h>
16 #include <linux/memblock.h>
17 #include <linux/mutex.h>
18 #include <linux/of.h>
19 #include <linux/of_fdt.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by
37  * cmd_wrap_S_dtb in scripts/Makefile.dtbs
38  */
39 extern uint8_t __dtb_empty_root_begin[];
40 extern uint8_t __dtb_empty_root_end[];
41 
42 /*
43  * of_fdt_limit_memory - limit the number of regions in the /memory node
44  * @limit: maximum entries
45  *
46  * Adjust the flattened device tree to have at most 'limit' number of
47  * memory entries in the /memory node. This function may be called
48  * any time after initial_boot_param is set.
49  */
of_fdt_limit_memory(int limit)50 void __init of_fdt_limit_memory(int limit)
51 {
52 	int memory;
53 	int len;
54 	const void *val;
55 	int cell_size = sizeof(uint32_t)*(dt_root_addr_cells + dt_root_size_cells);
56 
57 	memory = fdt_path_offset(initial_boot_params, "/memory");
58 	if (memory > 0) {
59 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
60 		if (len > limit*cell_size) {
61 			len = limit*cell_size;
62 			pr_debug("Limiting number of entries to %d\n", limit);
63 			fdt_setprop(initial_boot_params, memory, "reg", val,
64 					len);
65 		}
66 	}
67 }
68 
of_fdt_device_is_available(const void * blob,unsigned long node)69 bool of_fdt_device_is_available(const void *blob, unsigned long node)
70 {
71 	const char *status = fdt_getprop(blob, node, "status", NULL);
72 
73 	if (!status)
74 		return true;
75 
76 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
77 		return true;
78 
79 	return false;
80 }
81 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)82 static void *unflatten_dt_alloc(void **mem, unsigned long size,
83 				       unsigned long align)
84 {
85 	void *res;
86 
87 	*mem = PTR_ALIGN(*mem, align);
88 	res = *mem;
89 	*mem += size;
90 
91 	return res;
92 }
93 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)94 static void populate_properties(const void *blob,
95 				int offset,
96 				void **mem,
97 				struct device_node *np,
98 				const char *nodename,
99 				bool dryrun)
100 {
101 	struct property *pp, **pprev = NULL;
102 	int cur;
103 	bool has_name = false;
104 
105 	pprev = &np->properties;
106 	for (cur = fdt_first_property_offset(blob, offset);
107 	     cur >= 0;
108 	     cur = fdt_next_property_offset(blob, cur)) {
109 		const __be32 *val;
110 		const char *pname;
111 		u32 sz;
112 
113 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
114 		if (!val) {
115 			pr_warn("Cannot locate property at 0x%x\n", cur);
116 			continue;
117 		}
118 
119 		if (!pname) {
120 			pr_warn("Cannot find property name at 0x%x\n", cur);
121 			continue;
122 		}
123 
124 		if (!strcmp(pname, "name"))
125 			has_name = true;
126 
127 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
128 					__alignof__(struct property));
129 		if (dryrun)
130 			continue;
131 
132 		/* We accept flattened tree phandles either in
133 		 * ePAPR-style "phandle" properties, or the
134 		 * legacy "linux,phandle" properties.  If both
135 		 * appear and have different values, things
136 		 * will get weird. Don't do that.
137 		 */
138 		if (!strcmp(pname, "phandle") ||
139 		    !strcmp(pname, "linux,phandle")) {
140 			if (!np->phandle)
141 				np->phandle = be32_to_cpup(val);
142 		}
143 
144 		/* And we process the "ibm,phandle" property
145 		 * used in pSeries dynamic device tree
146 		 * stuff
147 		 */
148 		if (!strcmp(pname, "ibm,phandle"))
149 			np->phandle = be32_to_cpup(val);
150 
151 		pp->name   = (char *)pname;
152 		pp->length = sz;
153 		pp->value  = (__be32 *)val;
154 		*pprev     = pp;
155 		pprev      = &pp->next;
156 	}
157 
158 	/* With version 0x10 we may not have the name property,
159 	 * recreate it here from the unit name if absent
160 	 */
161 	if (!has_name) {
162 		const char *p = nodename, *ps = p, *pa = NULL;
163 		int len;
164 
165 		while (*p) {
166 			if ((*p) == '@')
167 				pa = p;
168 			else if ((*p) == '/')
169 				ps = p + 1;
170 			p++;
171 		}
172 
173 		if (pa < ps)
174 			pa = p;
175 		len = (pa - ps) + 1;
176 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
177 					__alignof__(struct property));
178 		if (!dryrun) {
179 			pp->name   = "name";
180 			pp->length = len;
181 			pp->value  = pp + 1;
182 			*pprev     = pp;
183 			memcpy(pp->value, ps, len - 1);
184 			((char *)pp->value)[len - 1] = 0;
185 			pr_debug("fixed up name for %s -> %s\n",
186 				 nodename, (char *)pp->value);
187 		}
188 	}
189 }
190 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)191 static int populate_node(const void *blob,
192 			  int offset,
193 			  void **mem,
194 			  struct device_node *dad,
195 			  struct device_node **pnp,
196 			  bool dryrun)
197 {
198 	struct device_node *np;
199 	const char *pathp;
200 	int len;
201 
202 	pathp = fdt_get_name(blob, offset, &len);
203 	if (!pathp) {
204 		*pnp = NULL;
205 		return len;
206 	}
207 
208 	len++;
209 
210 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
211 				__alignof__(struct device_node));
212 	if (!dryrun) {
213 		char *fn;
214 		of_node_init(np);
215 		np->full_name = fn = ((char *)np) + sizeof(*np);
216 
217 		memcpy(fn, pathp, len);
218 
219 		if (dad != NULL) {
220 			np->parent = dad;
221 			np->sibling = dad->child;
222 			dad->child = np;
223 		}
224 	}
225 
226 	populate_properties(blob, offset, mem, np, pathp, dryrun);
227 	if (!dryrun) {
228 		np->name = of_get_property(np, "name", NULL);
229 		if (!np->name)
230 			np->name = "<NULL>";
231 	}
232 
233 	*pnp = np;
234 	return 0;
235 }
236 
reverse_nodes(struct device_node * parent)237 static void reverse_nodes(struct device_node *parent)
238 {
239 	struct device_node *child, *next;
240 
241 	/* In-depth first */
242 	child = parent->child;
243 	while (child) {
244 		reverse_nodes(child);
245 
246 		child = child->sibling;
247 	}
248 
249 	/* Reverse the nodes in the child list */
250 	child = parent->child;
251 	parent->child = NULL;
252 	while (child) {
253 		next = child->sibling;
254 
255 		child->sibling = parent->child;
256 		parent->child = child;
257 		child = next;
258 	}
259 }
260 
261 /**
262  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
263  * @blob: The parent device tree blob
264  * @mem: Memory chunk to use for allocating device nodes and properties
265  * @dad: Parent struct device_node
266  * @nodepp: The device_node tree created by the call
267  *
268  * Return: The size of unflattened device tree or error code
269  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)270 static int unflatten_dt_nodes(const void *blob,
271 			      void *mem,
272 			      struct device_node *dad,
273 			      struct device_node **nodepp)
274 {
275 	struct device_node *root;
276 	int offset = 0, depth = 0, initial_depth = 0;
277 #define FDT_MAX_DEPTH	64
278 	struct device_node *nps[FDT_MAX_DEPTH];
279 	void *base = mem;
280 	bool dryrun = !base;
281 	int ret;
282 
283 	if (nodepp)
284 		*nodepp = NULL;
285 
286 	/*
287 	 * We're unflattening device sub-tree if @dad is valid. There are
288 	 * possibly multiple nodes in the first level of depth. We need
289 	 * set @depth to 1 to make fdt_next_node() happy as it bails
290 	 * immediately when negative @depth is found. Otherwise, the device
291 	 * nodes except the first one won't be unflattened successfully.
292 	 */
293 	if (dad)
294 		depth = initial_depth = 1;
295 
296 	root = dad;
297 	nps[depth] = dad;
298 
299 	for (offset = 0;
300 	     offset >= 0 && depth >= initial_depth;
301 	     offset = fdt_next_node(blob, offset, &depth)) {
302 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
303 			continue;
304 
305 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
306 		    !of_fdt_device_is_available(blob, offset))
307 			continue;
308 
309 		ret = populate_node(blob, offset, &mem, nps[depth],
310 				   &nps[depth+1], dryrun);
311 		if (ret < 0)
312 			return ret;
313 
314 		if (!dryrun && nodepp && !*nodepp)
315 			*nodepp = nps[depth+1];
316 		if (!dryrun && !root)
317 			root = nps[depth+1];
318 	}
319 
320 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
321 		pr_err("Error %d processing FDT\n", offset);
322 		return -EINVAL;
323 	}
324 
325 	/*
326 	 * Reverse the child list. Some drivers assumes node order matches .dts
327 	 * node order
328 	 */
329 	if (!dryrun)
330 		reverse_nodes(root);
331 
332 	return mem - base;
333 }
334 
335 /**
336  * __unflatten_device_tree - create tree of device_nodes from flat blob
337  * @blob: The blob to expand
338  * @dad: Parent device node
339  * @mynodes: The device_node tree created by the call
340  * @dt_alloc: An allocator that provides a virtual address to memory
341  * for the resulting tree
342  * @detached: if true set OF_DETACHED on @mynodes
343  *
344  * unflattens a device-tree, creating the tree of struct device_node. It also
345  * fills the "name" and "type" pointers of the nodes so the normal device-tree
346  * walking functions can be used.
347  *
348  * Return: NULL on failure or the memory chunk containing the unflattened
349  * device tree on success.
350  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)351 void *__unflatten_device_tree(const void *blob,
352 			      struct device_node *dad,
353 			      struct device_node **mynodes,
354 			      void *(*dt_alloc)(u64 size, u64 align),
355 			      bool detached)
356 {
357 	int size;
358 	void *mem;
359 	int ret;
360 
361 	if (mynodes)
362 		*mynodes = NULL;
363 
364 	pr_debug(" -> unflatten_device_tree()\n");
365 
366 	if (!blob) {
367 		pr_debug("No device tree pointer\n");
368 		return NULL;
369 	}
370 
371 	pr_debug("Unflattening device tree:\n");
372 	pr_debug("magic: %08x\n", fdt_magic(blob));
373 	pr_debug("size: %08x\n", fdt_totalsize(blob));
374 	pr_debug("version: %08x\n", fdt_version(blob));
375 
376 	if (fdt_check_header(blob)) {
377 		pr_err("Invalid device tree blob header\n");
378 		return NULL;
379 	}
380 
381 	/* First pass, scan for size */
382 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
383 	if (size <= 0)
384 		return NULL;
385 
386 	size = ALIGN(size, 4);
387 	pr_debug("  size is %d, allocating...\n", size);
388 
389 	/* Allocate memory for the expanded device tree */
390 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
391 	if (!mem)
392 		return NULL;
393 
394 	memset(mem, 0, size);
395 
396 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
397 
398 	pr_debug("  unflattening %p...\n", mem);
399 
400 	/* Second pass, do actual unflattening */
401 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
402 
403 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
404 		pr_warn("End of tree marker overwritten: %08x\n",
405 			be32_to_cpup(mem + size));
406 
407 	if (ret <= 0)
408 		return NULL;
409 
410 	if (detached && mynodes && *mynodes) {
411 		of_node_set_flag(*mynodes, OF_DETACHED);
412 		pr_debug("unflattened tree is detached\n");
413 	}
414 
415 	pr_debug(" <- unflatten_device_tree()\n");
416 	return mem;
417 }
418 
kernel_tree_alloc(u64 size,u64 align)419 static void *kernel_tree_alloc(u64 size, u64 align)
420 {
421 	return kzalloc(size, GFP_KERNEL);
422 }
423 
424 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
425 
426 /**
427  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
428  * @blob: Flat device tree blob
429  * @dad: Parent device node
430  * @mynodes: The device tree created by the call
431  *
432  * unflattens the device-tree passed by the firmware, creating the
433  * tree of struct device_node. It also fills the "name" and "type"
434  * pointers of the nodes so the normal device-tree walking functions
435  * can be used.
436  *
437  * Return: NULL on failure or the memory chunk containing the unflattened
438  * device tree on success.
439  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)440 void *of_fdt_unflatten_tree(const unsigned long *blob,
441 			    struct device_node *dad,
442 			    struct device_node **mynodes)
443 {
444 	void *mem;
445 
446 	mutex_lock(&of_fdt_unflatten_mutex);
447 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
448 				      true);
449 	mutex_unlock(&of_fdt_unflatten_mutex);
450 
451 	return mem;
452 }
453 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
454 
455 /* Everything below here references initial_boot_params directly. */
456 int __initdata dt_root_addr_cells;
457 int __initdata dt_root_size_cells;
458 
459 void *initial_boot_params __ro_after_init;
460 phys_addr_t initial_boot_params_pa __ro_after_init;
461 
462 #ifdef CONFIG_OF_EARLY_FLATTREE
463 
464 static u32 of_fdt_crc32;
465 
466 /*
467  * fdt_reserve_elfcorehdr() - reserves memory for elf core header
468  *
469  * This function reserves the memory occupied by an elf core header
470  * described in the device tree. This region contains all the
471  * information about primary kernel's core image and is used by a dump
472  * capture kernel to access the system memory on primary kernel.
473  */
fdt_reserve_elfcorehdr(void)474 static void __init fdt_reserve_elfcorehdr(void)
475 {
476 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
477 		return;
478 
479 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
480 		pr_warn("elfcorehdr is overlapped\n");
481 		return;
482 	}
483 
484 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
485 
486 	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
487 		elfcorehdr_size >> 10, elfcorehdr_addr);
488 }
489 
490 /**
491  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
492  *
493  * This function grabs memory from early allocator for device exclusive use
494  * defined in device tree structures. It should be called by arch specific code
495  * once the early allocator (i.e. memblock) has been fully activated.
496  */
early_init_fdt_scan_reserved_mem(void)497 void __init early_init_fdt_scan_reserved_mem(void)
498 {
499 	int n;
500 	u64 base, size;
501 
502 	if (!initial_boot_params)
503 		return;
504 
505 	fdt_scan_reserved_mem();
506 	fdt_reserve_elfcorehdr();
507 
508 	/* Process header /memreserve/ fields */
509 	for (n = 0; ; n++) {
510 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
511 		if (!size)
512 			break;
513 		memblock_reserve(base, size);
514 	}
515 }
516 
517 /**
518  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
519  */
early_init_fdt_reserve_self(void)520 void __init early_init_fdt_reserve_self(void)
521 {
522 	if (!initial_boot_params)
523 		return;
524 
525 	/* Reserve the dtb region */
526 	memblock_reserve(__pa(initial_boot_params),
527 			 fdt_totalsize(initial_boot_params));
528 }
529 
530 /**
531  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
532  * @it: callback function
533  * @data: context data pointer
534  *
535  * This function is used to scan the flattened device-tree, it is
536  * used to extract the memory information at boot before we can
537  * unflatten the tree
538  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)539 int __init of_scan_flat_dt(int (*it)(unsigned long node,
540 				     const char *uname, int depth,
541 				     void *data),
542 			   void *data)
543 {
544 	const void *blob = initial_boot_params;
545 	const char *pathp;
546 	int offset, rc = 0, depth = -1;
547 
548 	if (!blob)
549 		return 0;
550 
551 	for (offset = fdt_next_node(blob, -1, &depth);
552 	     offset >= 0 && depth >= 0 && !rc;
553 	     offset = fdt_next_node(blob, offset, &depth)) {
554 
555 		pathp = fdt_get_name(blob, offset, NULL);
556 		rc = it(offset, pathp, depth, data);
557 	}
558 	return rc;
559 }
560 
561 /**
562  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
563  * @parent: parent node
564  * @it: callback function
565  * @data: context data pointer
566  *
567  * This function is used to scan sub-nodes of a node.
568  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)569 int __init of_scan_flat_dt_subnodes(unsigned long parent,
570 				    int (*it)(unsigned long node,
571 					      const char *uname,
572 					      void *data),
573 				    void *data)
574 {
575 	const void *blob = initial_boot_params;
576 	int node;
577 
578 	fdt_for_each_subnode(node, blob, parent) {
579 		const char *pathp;
580 		int rc;
581 
582 		pathp = fdt_get_name(blob, node, NULL);
583 		rc = it(node, pathp, data);
584 		if (rc)
585 			return rc;
586 	}
587 	return 0;
588 }
589 
590 /**
591  * of_get_flat_dt_subnode_by_name - get the subnode by given name
592  *
593  * @node: the parent node
594  * @uname: the name of subnode
595  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
596  */
597 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)598 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
599 {
600 	return fdt_subnode_offset(initial_boot_params, node, uname);
601 }
602 
603 /*
604  * of_get_flat_dt_root - find the root node in the flat blob
605  */
of_get_flat_dt_root(void)606 unsigned long __init of_get_flat_dt_root(void)
607 {
608 	return 0;
609 }
610 
611 /*
612  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
613  *
614  * This function can be used within scan_flattened_dt callback to get
615  * access to properties
616  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)617 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
618 				       int *size)
619 {
620 	return fdt_getprop(initial_boot_params, node, name, size);
621 }
622 
623 /**
624  * of_fdt_is_compatible - Return true if given node from the given blob has
625  * compat in its compatible list
626  * @blob: A device tree blob
627  * @node: node to test
628  * @compat: compatible string to compare with compatible list.
629  *
630  * Return: a non-zero value on match with smaller values returned for more
631  * specific compatible values.
632  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)633 static int of_fdt_is_compatible(const void *blob,
634 		      unsigned long node, const char *compat)
635 {
636 	const char *cp;
637 	int cplen;
638 	unsigned long l, score = 0;
639 
640 	cp = fdt_getprop(blob, node, "compatible", &cplen);
641 	if (cp == NULL)
642 		return 0;
643 	while (cplen > 0) {
644 		score++;
645 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
646 			return score;
647 		l = strlen(cp) + 1;
648 		cp += l;
649 		cplen -= l;
650 	}
651 
652 	return 0;
653 }
654 
655 /**
656  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
657  * @node: node to test
658  * @compat: compatible string to compare with compatible list.
659  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)660 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
661 {
662 	return of_fdt_is_compatible(initial_boot_params, node, compat);
663 }
664 
665 /*
666  * of_flat_dt_match - Return true if node matches a list of compatible values
667  */
of_flat_dt_match(unsigned long node,const char * const * compat)668 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
669 {
670 	unsigned int tmp, score = 0;
671 
672 	if (!compat)
673 		return 0;
674 
675 	while (*compat) {
676 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
677 		if (tmp && (score == 0 || (tmp < score)))
678 			score = tmp;
679 		compat++;
680 	}
681 
682 	return score;
683 }
684 
685 /*
686  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
687  */
of_get_flat_dt_phandle(unsigned long node)688 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
689 {
690 	return fdt_get_phandle(initial_boot_params, node);
691 }
692 
of_flat_dt_get_machine_name(void)693 const char * __init of_flat_dt_get_machine_name(void)
694 {
695 	const char *name;
696 	unsigned long dt_root = of_get_flat_dt_root();
697 
698 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
699 	if (!name)
700 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
701 	return name;
702 }
703 
704 /**
705  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
706  *
707  * @default_match: A machine specific ptr to return in case of no match.
708  * @get_next_compat: callback function to return next compatible match table.
709  *
710  * Iterate through machine match tables to find the best match for the machine
711  * compatible string in the FDT.
712  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))713 const void * __init of_flat_dt_match_machine(const void *default_match,
714 		const void * (*get_next_compat)(const char * const**))
715 {
716 	const void *data = NULL;
717 	const void *best_data = default_match;
718 	const char *const *compat;
719 	unsigned long dt_root;
720 	unsigned int best_score = ~1, score = 0;
721 
722 	dt_root = of_get_flat_dt_root();
723 	while ((data = get_next_compat(&compat))) {
724 		score = of_flat_dt_match(dt_root, compat);
725 		if (score > 0 && score < best_score) {
726 			best_data = data;
727 			best_score = score;
728 		}
729 	}
730 	if (!best_data) {
731 		const char *prop;
732 		int size;
733 
734 		pr_err("\n unrecognized device tree list:\n[ ");
735 
736 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
737 		if (prop) {
738 			while (size > 0) {
739 				printk("'%s' ", prop);
740 				size -= strlen(prop) + 1;
741 				prop += strlen(prop) + 1;
742 			}
743 		}
744 		printk("]\n\n");
745 		return NULL;
746 	}
747 
748 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
749 
750 	return best_data;
751 }
752 
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)753 static void __early_init_dt_declare_initrd(unsigned long start,
754 					   unsigned long end)
755 {
756 	/*
757 	 * __va() is not yet available this early on some platforms. In that
758 	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
759 	 * and does the VA conversion itself.
760 	 */
761 	if (!IS_ENABLED(CONFIG_ARM64) &&
762 	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
763 		initrd_start = (unsigned long)__va(start);
764 		initrd_end = (unsigned long)__va(end);
765 		initrd_below_start_ok = 1;
766 	}
767 }
768 
769 /**
770  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
771  * @node: reference to node containing initrd location ('chosen')
772  */
early_init_dt_check_for_initrd(unsigned long node)773 static void __init early_init_dt_check_for_initrd(unsigned long node)
774 {
775 	u64 start, end;
776 	int len;
777 	const __be32 *prop;
778 
779 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
780 		return;
781 
782 	pr_debug("Looking for initrd properties... ");
783 
784 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
785 	if (!prop)
786 		return;
787 	start = of_read_number(prop, len/4);
788 
789 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
790 	if (!prop)
791 		return;
792 	end = of_read_number(prop, len/4);
793 	if (start > end)
794 		return;
795 
796 	__early_init_dt_declare_initrd(start, end);
797 	phys_initrd_start = start;
798 	phys_initrd_size = end - start;
799 
800 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
801 }
802 
803 /**
804  * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
805  * tree
806  * @node: reference to node containing elfcorehdr location ('chosen')
807  */
early_init_dt_check_for_elfcorehdr(unsigned long node)808 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
809 {
810 	const __be32 *prop;
811 	int len;
812 
813 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
814 		return;
815 
816 	pr_debug("Looking for elfcorehdr property... ");
817 
818 	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
819 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
820 		return;
821 
822 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
823 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
824 
825 	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
826 		 elfcorehdr_addr, elfcorehdr_size);
827 }
828 
829 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
830 
831 /*
832  * The main usage of linux,usable-memory-range is for crash dump kernel.
833  * Originally, the number of usable-memory regions is one. Now there may
834  * be two regions, low region and high region.
835  * To make compatibility with existing user-space and older kdump, the low
836  * region is always the last range of linux,usable-memory-range if exist.
837  */
838 #define MAX_USABLE_RANGES		2
839 
840 /**
841  * early_init_dt_check_for_usable_mem_range - Decode usable memory range
842  * location from flat tree
843  */
early_init_dt_check_for_usable_mem_range(void)844 void __init early_init_dt_check_for_usable_mem_range(void)
845 {
846 	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
847 	const __be32 *prop, *endp;
848 	int len, i;
849 	unsigned long node = chosen_node_offset;
850 
851 	if ((long)node < 0)
852 		return;
853 
854 	pr_debug("Looking for usable-memory-range property... ");
855 
856 	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
857 	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
858 		return;
859 
860 	endp = prop + (len / sizeof(__be32));
861 	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
862 		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
863 		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
864 
865 		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
866 			 i, &rgn[i].base, &rgn[i].size);
867 	}
868 
869 	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
870 	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
871 		memblock_add(rgn[i].base, rgn[i].size);
872 }
873 
874 #ifdef CONFIG_SERIAL_EARLYCON
875 
early_init_dt_scan_chosen_stdout(void)876 int __init early_init_dt_scan_chosen_stdout(void)
877 {
878 	int offset;
879 	const char *p, *q, *options = NULL;
880 	int l;
881 	const struct earlycon_id *match;
882 	const void *fdt = initial_boot_params;
883 	int ret;
884 
885 	offset = fdt_path_offset(fdt, "/chosen");
886 	if (offset < 0)
887 		offset = fdt_path_offset(fdt, "/chosen@0");
888 	if (offset < 0)
889 		return -ENOENT;
890 
891 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
892 	if (!p)
893 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
894 	if (!p || !l)
895 		return -ENOENT;
896 
897 	q = strchrnul(p, ':');
898 	if (*q != '\0')
899 		options = q + 1;
900 	l = q - p;
901 
902 	/* Get the node specified by stdout-path */
903 	offset = fdt_path_offset_namelen(fdt, p, l);
904 	if (offset < 0) {
905 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
906 		return 0;
907 	}
908 
909 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
910 		if (!match->compatible[0])
911 			continue;
912 
913 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
914 			continue;
915 
916 		ret = of_setup_earlycon(match, offset, options);
917 		if (!ret || ret == -EALREADY)
918 			return 0;
919 	}
920 	return -ENODEV;
921 }
922 #endif
923 
924 /*
925  * early_init_dt_scan_root - fetch the top level address and size cells
926  */
early_init_dt_scan_root(void)927 int __init early_init_dt_scan_root(void)
928 {
929 	const __be32 *prop;
930 	const void *fdt = initial_boot_params;
931 	int node = fdt_path_offset(fdt, "/");
932 
933 	if (node < 0)
934 		return -ENODEV;
935 
936 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
937 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
938 
939 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
940 	if (!WARN(!prop, "No '#size-cells' in root node\n"))
941 		dt_root_size_cells = be32_to_cpup(prop);
942 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
943 
944 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
945 	if (!WARN(!prop, "No '#address-cells' in root node\n"))
946 		dt_root_addr_cells = be32_to_cpup(prop);
947 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
948 
949 	return 0;
950 }
951 
dt_mem_next_cell(int s,const __be32 ** cellp)952 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
953 {
954 	const __be32 *p = *cellp;
955 
956 	*cellp = p + s;
957 	return of_read_number(p, s);
958 }
959 
960 /*
961  * early_init_dt_scan_memory - Look for and parse memory nodes
962  */
early_init_dt_scan_memory(void)963 int __init early_init_dt_scan_memory(void)
964 {
965 	int node, found_memory = 0;
966 	const void *fdt = initial_boot_params;
967 
968 	fdt_for_each_subnode(node, fdt, 0) {
969 		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
970 		const __be32 *reg, *endp;
971 		int l;
972 		bool hotpluggable;
973 
974 		/* We are scanning "memory" nodes only */
975 		if (type == NULL || strcmp(type, "memory") != 0)
976 			continue;
977 
978 		if (!of_fdt_device_is_available(fdt, node))
979 			continue;
980 
981 		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
982 		if (reg == NULL)
983 			reg = of_get_flat_dt_prop(node, "reg", &l);
984 		if (reg == NULL)
985 			continue;
986 
987 		endp = reg + (l / sizeof(__be32));
988 		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
989 
990 		pr_debug("memory scan node %s, reg size %d,\n",
991 			 fdt_get_name(fdt, node, NULL), l);
992 
993 		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
994 			u64 base, size;
995 
996 			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
997 			size = dt_mem_next_cell(dt_root_size_cells, &reg);
998 
999 			if (size == 0)
1000 				continue;
1001 			pr_debug(" - %llx, %llx\n", base, size);
1002 
1003 			early_init_dt_add_memory_arch(base, size);
1004 
1005 			found_memory = 1;
1006 
1007 			if (!hotpluggable)
1008 				continue;
1009 
1010 			if (memblock_mark_hotplug(base, size))
1011 				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1012 					base, base + size);
1013 		}
1014 	}
1015 	return found_memory;
1016 }
1017 
early_init_dt_scan_chosen(char * cmdline)1018 int __init early_init_dt_scan_chosen(char *cmdline)
1019 {
1020 	int l, node;
1021 	const char *p;
1022 	const void *rng_seed;
1023 	const void *fdt = initial_boot_params;
1024 
1025 	node = fdt_path_offset(fdt, "/chosen");
1026 	if (node < 0)
1027 		node = fdt_path_offset(fdt, "/chosen@0");
1028 	if (node < 0)
1029 		/* Handle the cmdline config options even if no /chosen node */
1030 		goto handle_cmdline;
1031 
1032 	chosen_node_offset = node;
1033 
1034 	early_init_dt_check_for_initrd(node);
1035 	early_init_dt_check_for_elfcorehdr(node);
1036 
1037 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1038 	if (rng_seed && l > 0) {
1039 		add_bootloader_randomness(rng_seed, l);
1040 
1041 		/* try to clear seed so it won't be found. */
1042 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1043 
1044 		/* update CRC check value */
1045 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1046 				fdt_totalsize(initial_boot_params));
1047 	}
1048 
1049 	/* Retrieve command line */
1050 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1051 	if (p != NULL && l > 0)
1052 		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1053 
1054 handle_cmdline:
1055 	/*
1056 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1057 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1058 	 * is set in which case we override whatever was found earlier.
1059 	 */
1060 #ifdef CONFIG_CMDLINE
1061 #if defined(CONFIG_CMDLINE_EXTEND)
1062 	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1063 	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1064 #elif defined(CONFIG_CMDLINE_FORCE)
1065 	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1066 #else
1067 	/* No arguments from boot loader, use kernel's  cmdl*/
1068 	if (!((char *)cmdline)[0])
1069 		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1070 #endif
1071 #endif /* CONFIG_CMDLINE */
1072 
1073 	pr_debug("Command line is: %s\n", (char *)cmdline);
1074 
1075 	return 0;
1076 }
1077 
1078 #ifndef MIN_MEMBLOCK_ADDR
1079 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1080 #endif
1081 #ifndef MAX_MEMBLOCK_ADDR
1082 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1083 #endif
1084 
early_init_dt_add_memory_arch(u64 base,u64 size)1085 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1086 {
1087 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1088 
1089 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1090 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1091 			base, base + size);
1092 		return;
1093 	}
1094 
1095 	if (!PAGE_ALIGNED(base)) {
1096 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1097 		base = PAGE_ALIGN(base);
1098 	}
1099 	size &= PAGE_MASK;
1100 
1101 	if (base > MAX_MEMBLOCK_ADDR) {
1102 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1103 			base, base + size);
1104 		return;
1105 	}
1106 
1107 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1108 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1109 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1110 		size = MAX_MEMBLOCK_ADDR - base + 1;
1111 	}
1112 
1113 	if (base + size < phys_offset) {
1114 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1115 			base, base + size);
1116 		return;
1117 	}
1118 	if (base < phys_offset) {
1119 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1120 			base, phys_offset);
1121 		size -= phys_offset - base;
1122 		base = phys_offset;
1123 	}
1124 	memblock_add(base, size);
1125 }
1126 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1127 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1128 {
1129 	void *ptr = memblock_alloc(size, align);
1130 
1131 	if (!ptr)
1132 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1133 		      __func__, size, align);
1134 
1135 	return ptr;
1136 }
1137 
early_init_dt_verify(void * dt_virt,phys_addr_t dt_phys)1138 bool __init early_init_dt_verify(void *dt_virt, phys_addr_t dt_phys)
1139 {
1140 	if (!dt_virt)
1141 		return false;
1142 
1143 	/* check device tree validity */
1144 	if (fdt_check_header(dt_virt))
1145 		return false;
1146 
1147 	/* Setup flat device-tree pointer */
1148 	initial_boot_params = dt_virt;
1149 	initial_boot_params_pa = dt_phys;
1150 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1151 				fdt_totalsize(initial_boot_params));
1152 
1153 	/* Initialize {size,address}-cells info */
1154 	early_init_dt_scan_root();
1155 
1156 	return true;
1157 }
1158 
1159 
early_init_dt_scan_nodes(void)1160 void __init early_init_dt_scan_nodes(void)
1161 {
1162 	int rc;
1163 
1164 	/* Retrieve various information from the /chosen node */
1165 	rc = early_init_dt_scan_chosen(boot_command_line);
1166 	if (rc)
1167 		pr_warn("No chosen node found, continuing without\n");
1168 
1169 	/* Setup memory, calling early_init_dt_add_memory_arch */
1170 	early_init_dt_scan_memory();
1171 
1172 	/* Handle linux,usable-memory-range property */
1173 	early_init_dt_check_for_usable_mem_range();
1174 }
1175 
early_init_dt_scan(void * dt_virt,phys_addr_t dt_phys)1176 bool __init early_init_dt_scan(void *dt_virt, phys_addr_t dt_phys)
1177 {
1178 	bool status;
1179 
1180 	status = early_init_dt_verify(dt_virt, dt_phys);
1181 	if (!status)
1182 		return false;
1183 
1184 	early_init_dt_scan_nodes();
1185 	return true;
1186 }
1187 
copy_device_tree(void * fdt)1188 static void *__init copy_device_tree(void *fdt)
1189 {
1190 	int size;
1191 	void *dt;
1192 
1193 	size = fdt_totalsize(fdt);
1194 	dt = early_init_dt_alloc_memory_arch(size,
1195 					     roundup_pow_of_two(FDT_V17_SIZE));
1196 
1197 	if (dt)
1198 		memcpy(dt, fdt, size);
1199 
1200 	return dt;
1201 }
1202 
1203 /**
1204  * unflatten_device_tree - create tree of device_nodes from flat blob
1205  *
1206  * unflattens the device-tree passed by the firmware, creating the
1207  * tree of struct device_node. It also fills the "name" and "type"
1208  * pointers of the nodes so the normal device-tree walking functions
1209  * can be used.
1210  */
unflatten_device_tree(void)1211 void __init unflatten_device_tree(void)
1212 {
1213 	void *fdt = initial_boot_params;
1214 
1215 	/* Save the statically-placed regions in the reserved_mem array */
1216 	fdt_scan_reserved_mem_reg_nodes();
1217 
1218 	/* Don't use the bootloader provided DTB if ACPI is enabled */
1219 	if (!acpi_disabled)
1220 		fdt = NULL;
1221 
1222 	/*
1223 	 * Populate an empty root node when ACPI is enabled or bootloader
1224 	 * doesn't provide one.
1225 	 */
1226 	if (!fdt) {
1227 		fdt = (void *) __dtb_empty_root_begin;
1228 		/* fdt_totalsize() will be used for copy size */
1229 		if (fdt_totalsize(fdt) >
1230 		    __dtb_empty_root_end - __dtb_empty_root_begin) {
1231 			pr_err("invalid size in dtb_empty_root\n");
1232 			return;
1233 		}
1234 		of_fdt_crc32 = crc32_be(~0, fdt, fdt_totalsize(fdt));
1235 		fdt = copy_device_tree(fdt);
1236 	}
1237 
1238 	__unflatten_device_tree(fdt, NULL, &of_root,
1239 				early_init_dt_alloc_memory_arch, false);
1240 
1241 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1242 	of_alias_scan(early_init_dt_alloc_memory_arch);
1243 
1244 	unittest_unflatten_overlay_base();
1245 }
1246 
1247 /**
1248  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1249  *
1250  * Copies and unflattens the device-tree passed by the firmware, creating the
1251  * tree of struct device_node. It also fills the "name" and "type"
1252  * pointers of the nodes so the normal device-tree walking functions
1253  * can be used. This should only be used when the FDT memory has not been
1254  * reserved such is the case when the FDT is built-in to the kernel init
1255  * section. If the FDT memory is reserved already then unflatten_device_tree
1256  * should be used instead.
1257  */
unflatten_and_copy_device_tree(void)1258 void __init unflatten_and_copy_device_tree(void)
1259 {
1260 	if (initial_boot_params)
1261 		initial_boot_params = copy_device_tree(initial_boot_params);
1262 
1263 	unflatten_device_tree();
1264 }
1265 
1266 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1267 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1268 			       struct bin_attribute *bin_attr,
1269 			       char *buf, loff_t off, size_t count)
1270 {
1271 	memcpy(buf, initial_boot_params + off, count);
1272 	return count;
1273 }
1274 
of_fdt_raw_init(void)1275 static int __init of_fdt_raw_init(void)
1276 {
1277 	static struct bin_attribute of_fdt_raw_attr =
1278 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1279 
1280 	if (!initial_boot_params)
1281 		return 0;
1282 
1283 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1284 				     fdt_totalsize(initial_boot_params))) {
1285 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1286 		return 0;
1287 	}
1288 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1289 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1290 }
1291 late_initcall(of_fdt_raw_init);
1292 #endif
1293 
1294 #endif /* CONFIG_OF_EARLY_FLATTREE */
1295