xref: /linux/drivers/of/irq.c (revision 49d2cda7ca2e8e287617e7a5b7fae523eaece955)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Derived from arch/i386/kernel/irq.c
4  *    Copyright (C) 1992 Linus Torvalds
5  *  Adapted from arch/i386 by Gary Thomas
6  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7  *  Updated and modified by Cort Dougan <cort@fsmlabs.com>
8  *    Copyright (C) 1996-2001 Cort Dougan
9  *  Adapted for Power Macintosh by Paul Mackerras
10  *    Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
11  *
12  * This file contains the code used to make IRQ descriptions in the
13  * device tree to actual irq numbers on an interrupt controller
14  * driver.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/cleanup.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_irq.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 
29 #include "of_private.h"
30 
31 /**
32  * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
33  * @dev: Device node of the device whose interrupt is to be mapped
34  * @index: Index of the interrupt to map
35  *
36  * This function is a wrapper that chains of_irq_parse_one() and
37  * irq_create_of_mapping() to make things easier to callers
38  */
39 unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
40 {
41 	struct of_phandle_args oirq;
42 	unsigned int ret;
43 
44 	if (of_irq_parse_one(dev, index, &oirq))
45 		return 0;
46 
47 	ret = irq_create_of_mapping(&oirq);
48 	of_node_put(oirq.np);
49 
50 	return ret;
51 }
52 EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
53 
54 /**
55  * of_irq_find_parent - Given a device node, find its interrupt parent node
56  * @child: pointer to device node
57  *
58  * Return: A pointer to the interrupt parent node with refcount increased
59  * or NULL if the interrupt parent could not be determined.
60  */
61 struct device_node *of_irq_find_parent(struct device_node *child)
62 {
63 	struct device_node *p;
64 	phandle parent;
65 
66 	if (!of_node_get(child))
67 		return NULL;
68 
69 	do {
70 		if (of_property_read_u32(child, "interrupt-parent", &parent)) {
71 			p = of_get_parent(child);
72 		} else	{
73 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
74 				p = of_node_get(of_irq_dflt_pic);
75 			else
76 				p = of_find_node_by_phandle(parent);
77 		}
78 		of_node_put(child);
79 		child = p;
80 	} while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
81 
82 	return p;
83 }
84 EXPORT_SYMBOL_GPL(of_irq_find_parent);
85 
86 /*
87  * These interrupt controllers abuse interrupt-map for unspeakable
88  * reasons and rely on the core code to *ignore* it (the drivers do
89  * their own parsing of the property). The PAsemi entry covers a
90  * non-sensical interrupt-map that is better left ignored.
91  *
92  * If you think of adding to the list for something *new*, think
93  * again. There is a high chance that you will be sent back to the
94  * drawing board.
95  */
96 static const char * const of_irq_imap_abusers[] = {
97 	"CBEA,platform-spider-pic",
98 	"sti,platform-spider-pic",
99 	"realtek,rtl-intc",
100 	"fsl,ls1021a-extirq",
101 	"fsl,ls1043a-extirq",
102 	"fsl,ls1088a-extirq",
103 	"renesas,rza1-irqc",
104 	"pasemi,rootbus",
105 	NULL,
106 };
107 
108 const __be32 *of_irq_parse_imap_parent(const __be32 *imap, int len, struct of_phandle_args *out_irq)
109 {
110 	u32 intsize, addrsize;
111 	struct device_node *np;
112 
113 	/* Get the interrupt parent */
114 	if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
115 		np = of_node_get(of_irq_dflt_pic);
116 	else
117 		np = of_find_node_by_phandle(be32_to_cpup(imap));
118 	imap++;
119 	len--;
120 
121 	/* Check if not found */
122 	if (!np) {
123 		pr_debug(" -> imap parent not found !\n");
124 		return NULL;
125 	}
126 
127 	/* Get #interrupt-cells and #address-cells of new parent */
128 	if (of_property_read_u32(np, "#interrupt-cells",
129 					&intsize)) {
130 		pr_debug(" -> parent lacks #interrupt-cells!\n");
131 		of_node_put(np);
132 		return NULL;
133 	}
134 	if (of_property_read_u32(np, "#address-cells",
135 					&addrsize))
136 		addrsize = 0;
137 
138 	pr_debug(" -> intsize=%d, addrsize=%d\n",
139 		intsize, addrsize);
140 
141 	/* Check for malformed properties */
142 	if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)
143 		|| (len < (addrsize + intsize))) {
144 		of_node_put(np);
145 		return NULL;
146 	}
147 
148 	pr_debug(" -> imaplen=%d\n", len);
149 
150 	imap += addrsize + intsize;
151 
152 	out_irq->np = np;
153 	for (int i = 0; i < intsize; i++)
154 		out_irq->args[i] = be32_to_cpup(imap - intsize + i);
155 	out_irq->args_count = intsize;
156 
157 	return imap;
158 }
159 
160 int of_imap_parser_init(struct of_imap_parser *parser, struct device_node *node,
161 			struct of_imap_item *item)
162 {
163 	int imaplen;
164 	u32 tmp;
165 	int ret;
166 
167 	/*
168 	 * parent_offset is the offset where the parent part is starting.
169 	 * In other words, the offset where the parent interrupt controller
170 	 * phandle is present.
171 	 *
172 	 * Compute this offset (child #interrupt-cells + child #address-cells)
173 	 */
174 	parser->parent_offset = of_bus_n_addr_cells(node);
175 
176 	ret = of_property_read_u32(node, "#interrupt-cells", &tmp);
177 	if (ret)
178 		return ret;
179 
180 	parser->parent_offset += tmp;
181 
182 	if (WARN(parser->parent_offset > ARRAY_SIZE(item->child_imap),
183 		 "child part size = %u, cannot fit in array of %zu items",
184 		 parser->parent_offset, ARRAY_SIZE(item->child_imap)))
185 		return -EINVAL;
186 
187 	parser->imap = of_get_property(node, "interrupt-map", &imaplen);
188 	if (!parser->imap)
189 		return -ENOENT;
190 
191 	imaplen /= sizeof(*parser->imap);
192 	parser->imap_end = parser->imap + imaplen;
193 
194 	memset(item, 0, sizeof(*item));
195 	item->child_imap_count = parser->parent_offset;
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL_GPL(of_imap_parser_init);
200 
201 struct of_imap_item *of_imap_parser_one(struct of_imap_parser *parser,
202 					struct of_imap_item *item)
203 {
204 	const __be32 *imap_parent, *imap_next;
205 	int i;
206 
207 	/* Release previously get parent node */
208 	of_node_put(item->parent_args.np);
209 
210 	if (parser->imap + parser->parent_offset + 1 >= parser->imap_end)
211 		return NULL;
212 
213 	imap_parent = parser->imap + parser->parent_offset;
214 
215 	imap_next = of_irq_parse_imap_parent(imap_parent,
216 					     parser->imap_end - imap_parent,
217 					     &item->parent_args);
218 	if (!imap_next)
219 		return NULL;
220 
221 	for (i = 0; i < parser->parent_offset; i++)
222 		item->child_imap[i] = be32_to_cpu(*(parser->imap + i));
223 
224 	parser->imap = imap_next;
225 
226 	return item;
227 }
228 EXPORT_SYMBOL_GPL(of_imap_parser_one);
229 
230 /**
231  * of_irq_parse_raw - Low level interrupt tree parsing
232  * @addr:	address specifier (start of "reg" property of the device) in be32 format
233  * @out_irq:	structure of_phandle_args updated by this function
234  *
235  * This function is a low-level interrupt tree walking function. It
236  * can be used to do a partial walk with synthesized reg and interrupts
237  * properties, for example when resolving PCI interrupts when no device
238  * node exist for the parent. It takes an interrupt specifier structure as
239  * input, walks the tree looking for any interrupt-map properties, translates
240  * the specifier for each map, and then returns the translated map.
241  *
242  * Return: 0 on success and a negative number on error
243  *
244  * Note: refcount of node @out_irq->np is increased by 1 on success.
245  */
246 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
247 {
248 	struct device_node *ipar, *tnode, *old = NULL;
249 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
250 	const __be32 *match_array = initial_match_array;
251 	const __be32 *tmp, dummy_imask[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(~0) };
252 	u32 intsize = 1, addrsize;
253 	int i, rc = -EINVAL;
254 
255 #ifdef DEBUG
256 	of_print_phandle_args("of_irq_parse_raw: ", out_irq);
257 #endif
258 
259 	ipar = of_node_get(out_irq->np);
260 
261 	/* First get the #interrupt-cells property of the current cursor
262 	 * that tells us how to interpret the passed-in intspec. If there
263 	 * is none, we are nice and just walk up the tree
264 	 */
265 	do {
266 		if (!of_property_read_u32(ipar, "#interrupt-cells", &intsize))
267 			break;
268 		tnode = ipar;
269 		ipar = of_irq_find_parent(ipar);
270 		of_node_put(tnode);
271 	} while (ipar);
272 	if (ipar == NULL) {
273 		pr_debug(" -> no parent found !\n");
274 		goto fail;
275 	}
276 
277 	pr_debug("of_irq_parse_raw: ipar=%pOF, size=%d\n", ipar, intsize);
278 
279 	if (out_irq->args_count != intsize)
280 		goto fail;
281 
282 	/* Look for this #address-cells. We have to implement the old linux
283 	 * trick of looking for the parent here as some device-trees rely on it
284 	 */
285 	old = of_node_get(ipar);
286 	do {
287 		tmp = of_get_property(old, "#address-cells", NULL);
288 		tnode = of_get_parent(old);
289 		of_node_put(old);
290 		old = tnode;
291 	} while (old && tmp == NULL);
292 	of_node_put(old);
293 	old = NULL;
294 	addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
295 
296 	pr_debug(" -> addrsize=%d\n", addrsize);
297 
298 	/* Range check so that the temporary buffer doesn't overflow */
299 	if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) {
300 		rc = -EFAULT;
301 		goto fail;
302 	}
303 
304 	/* Precalculate the match array - this simplifies match loop */
305 	for (i = 0; i < addrsize; i++)
306 		initial_match_array[i] = addr ? addr[i] : 0;
307 	for (i = 0; i < intsize; i++)
308 		initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
309 
310 	/* Now start the actual "proper" walk of the interrupt tree */
311 	while (ipar != NULL) {
312 		int imaplen, match;
313 		const __be32 *imap, *oldimap, *imask;
314 		struct device_node *newpar;
315 		/*
316 		 * Now check if cursor is an interrupt-controller and
317 		 * if it is then we are done, unless there is an
318 		 * interrupt-map which takes precedence except on one
319 		 * of these broken platforms that want to parse
320 		 * interrupt-map themselves for $reason.
321 		 */
322 		bool intc = of_property_read_bool(ipar, "interrupt-controller");
323 
324 		imap = of_get_property(ipar, "interrupt-map", &imaplen);
325 		if (intc &&
326 		    (!imap || of_device_compatible_match(ipar, of_irq_imap_abusers))) {
327 			pr_debug(" -> got it !\n");
328 			return 0;
329 		}
330 
331 		/*
332 		 * interrupt-map parsing does not work without a reg
333 		 * property when #address-cells != 0
334 		 */
335 		if (addrsize && !addr) {
336 			pr_debug(" -> no reg passed in when needed !\n");
337 			goto fail;
338 		}
339 
340 		/* No interrupt map, check for an interrupt parent */
341 		if (imap == NULL) {
342 			pr_debug(" -> no map, getting parent\n");
343 			newpar = of_irq_find_parent(ipar);
344 			goto skiplevel;
345 		}
346 		imaplen /= sizeof(u32);
347 
348 		/* Look for a mask */
349 		imask = of_get_property(ipar, "interrupt-map-mask", NULL);
350 		if (!imask)
351 			imask = dummy_imask;
352 
353 		/* Parse interrupt-map */
354 		match = 0;
355 		while (imaplen > (addrsize + intsize + 1)) {
356 			/* Compare specifiers */
357 			match = 1;
358 			for (i = 0; i < (addrsize + intsize); i++, imaplen--)
359 				match &= !((match_array[i] ^ *imap++) & imask[i]);
360 
361 			pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
362 
363 			oldimap = imap;
364 			imap = of_irq_parse_imap_parent(oldimap, imaplen, out_irq);
365 			if (!imap)
366 				goto fail;
367 
368 			match &= of_device_is_available(out_irq->np);
369 			if (match)
370 				break;
371 
372 			of_node_put(out_irq->np);
373 			imaplen -= imap - oldimap;
374 			pr_debug(" -> imaplen=%d\n", imaplen);
375 		}
376 		if (!match)
377 			goto fail;
378 
379 		/*
380 		 * Successfully parsed an interrupt-map translation; copy new
381 		 * interrupt specifier into the out_irq structure
382 		 */
383 		match_array = oldimap + 1;
384 
385 		newpar = out_irq->np;
386 		intsize = out_irq->args_count;
387 		addrsize = (imap - match_array) - intsize;
388 
389 		if (ipar == newpar) {
390 			/*
391 			 * We got @ipar's refcount, but the refcount was
392 			 * gotten again by of_irq_parse_imap_parent() via its
393 			 * alias @newpar.
394 			 */
395 			of_node_put(ipar);
396 			pr_debug("%pOF interrupt-map entry to self\n", ipar);
397 			return 0;
398 		}
399 
400 	skiplevel:
401 		/* Iterate again with new parent */
402 		pr_debug(" -> new parent: %pOF\n", newpar);
403 		of_node_put(ipar);
404 		ipar = newpar;
405 		newpar = NULL;
406 	}
407 	rc = -ENOENT; /* No interrupt-map found */
408 
409  fail:
410 	of_node_put(ipar);
411 
412 	return rc;
413 }
414 EXPORT_SYMBOL_GPL(of_irq_parse_raw);
415 
416 /**
417  * of_irq_parse_one - Resolve an interrupt for a device
418  * @device: the device whose interrupt is to be resolved
419  * @index: index of the interrupt to resolve
420  * @out_irq: structure of_phandle_args filled by this function
421  *
422  * This function resolves an interrupt for a node by walking the interrupt tree,
423  * finding which interrupt controller node it is attached to, and returning the
424  * interrupt specifier that can be used to retrieve a Linux IRQ number.
425  *
426  * Note: refcount of node @out_irq->np is increased by 1 on success.
427  */
428 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
429 {
430 	struct device_node __free(device_node) *p = NULL;
431 	const __be32 *addr;
432 	u32 intsize;
433 	int i, res, addr_len;
434 	__be32 addr_buf[3] = { 0 };
435 
436 	pr_debug("of_irq_parse_one: dev=%pOF, index=%d\n", device, index);
437 
438 	/* OldWorld mac stuff is "special", handle out of line */
439 	if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
440 		return of_irq_parse_oldworld(device, index, out_irq);
441 
442 	/* Get the reg property (if any) */
443 	addr_len = 0;
444 	addr = of_get_property(device, "reg", &addr_len);
445 
446 	/* Prevent out-of-bounds read in case of longer interrupt parent address size */
447 	if (addr_len > sizeof(addr_buf))
448 		addr_len = sizeof(addr_buf);
449 	if (addr)
450 		memcpy(addr_buf, addr, addr_len);
451 
452 	/* Try the new-style interrupts-extended first */
453 	res = of_parse_phandle_with_args(device, "interrupts-extended",
454 					"#interrupt-cells", index, out_irq);
455 	if (!res) {
456 		p = out_irq->np;
457 	} else {
458 		/* Look for the interrupt parent. */
459 		p = of_irq_find_parent(device);
460 		/* Get size of interrupt specifier */
461 		if (!p || of_property_read_u32(p, "#interrupt-cells", &intsize))
462 			return -EINVAL;
463 
464 		pr_debug(" parent=%pOF, intsize=%d\n", p, intsize);
465 
466 		/* Copy intspec into irq structure */
467 		out_irq->np = p;
468 		out_irq->args_count = intsize;
469 		for (i = 0; i < intsize; i++) {
470 			res = of_property_read_u32_index(device, "interrupts",
471 							(index * intsize) + i,
472 							out_irq->args + i);
473 			if (res)
474 				return res;
475 		}
476 
477 		pr_debug(" intspec=%d\n", *out_irq->args);
478 	}
479 
480 	/* Check if there are any interrupt-map translations to process */
481 	return of_irq_parse_raw(addr_buf, out_irq);
482 }
483 EXPORT_SYMBOL_GPL(of_irq_parse_one);
484 
485 /**
486  * of_irq_to_resource - Decode a node's IRQ and return it as a resource
487  * @dev: pointer to device tree node
488  * @index: zero-based index of the irq
489  * @r: pointer to resource structure to return result into.
490  */
491 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
492 {
493 	int irq = of_irq_get(dev, index);
494 
495 	if (irq < 0)
496 		return irq;
497 
498 	/* Only dereference the resource if both the
499 	 * resource and the irq are valid. */
500 	if (r && irq) {
501 		const char *name = NULL;
502 
503 		memset(r, 0, sizeof(*r));
504 		/*
505 		 * Get optional "interrupt-names" property to add a name
506 		 * to the resource.
507 		 */
508 		of_property_read_string_index(dev, "interrupt-names", index,
509 					      &name);
510 
511 		*r = DEFINE_RES_IRQ_NAMED(irq, name ?: of_node_full_name(dev));
512 		r->flags |= irq_get_trigger_type(irq);
513 	}
514 
515 	return irq;
516 }
517 EXPORT_SYMBOL_GPL(of_irq_to_resource);
518 
519 /**
520  * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number
521  * @dev: pointer to device tree node
522  * @index: zero-based index of the IRQ
523  *
524  * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
525  * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
526  * of any other failure.
527  */
528 int of_irq_get(struct device_node *dev, int index)
529 {
530 	int rc;
531 	struct of_phandle_args oirq;
532 	struct irq_domain *domain;
533 
534 	rc = of_irq_parse_one(dev, index, &oirq);
535 	if (rc)
536 		return rc;
537 
538 	domain = irq_find_host(oirq.np);
539 	if (!domain) {
540 		rc = -EPROBE_DEFER;
541 		goto out;
542 	}
543 
544 	rc = irq_create_of_mapping(&oirq);
545 out:
546 	of_node_put(oirq.np);
547 
548 	return rc;
549 }
550 EXPORT_SYMBOL_GPL(of_irq_get);
551 
552 const struct cpumask *of_irq_get_affinity(struct device_node *dev, int index)
553 {
554 	struct of_phandle_args oirq;
555 	struct irq_fwspec_info info;
556 	struct irq_fwspec fwspec;
557 	int rc;
558 
559 	rc = of_irq_parse_one(dev, index, &oirq);
560 	if (rc)
561 		return NULL;
562 
563 	of_phandle_args_to_fwspec(oirq.np, oirq.args, oirq.args_count,
564 				  &fwspec);
565 
566 	if (irq_populate_fwspec_info(&fwspec, &info))
567 		return NULL;
568 
569 	return info.affinity;
570 }
571 
572 /**
573  * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number
574  * @dev: pointer to device tree node
575  * @name: IRQ name
576  *
577  * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
578  * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
579  * of any other failure.
580  */
581 int of_irq_get_byname(struct device_node *dev, const char *name)
582 {
583 	int index;
584 
585 	if (unlikely(!name))
586 		return -EINVAL;
587 
588 	index = of_property_match_string(dev, "interrupt-names", name);
589 	if (index < 0)
590 		return index;
591 
592 	return of_irq_get(dev, index);
593 }
594 EXPORT_SYMBOL_GPL(of_irq_get_byname);
595 
596 /**
597  * of_irq_count - Count the number of IRQs a node uses
598  * @dev: pointer to device tree node
599  */
600 int of_irq_count(struct device_node *dev)
601 {
602 	struct of_phandle_args irq;
603 	int nr = 0;
604 
605 	while (of_irq_parse_one(dev, nr, &irq) == 0) {
606 		of_node_put(irq.np);
607 		nr++;
608 	}
609 
610 	return nr;
611 }
612 EXPORT_SYMBOL_GPL(of_irq_count);
613 
614 /**
615  * of_irq_to_resource_table - Fill in resource table with node's IRQ info
616  * @dev: pointer to device tree node
617  * @res: array of resources to fill in
618  * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
619  *
620  * Return: The size of the filled in table (up to @nr_irqs).
621  */
622 int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
623 		int nr_irqs)
624 {
625 	int i;
626 
627 	for (i = 0; i < nr_irqs; i++, res++)
628 		if (of_irq_to_resource(dev, i, res) <= 0)
629 			break;
630 
631 	return i;
632 }
633 EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
634 
635 struct of_intc_desc {
636 	struct list_head	list;
637 	of_irq_init_cb_t	irq_init_cb;
638 	struct device_node	*dev;
639 	struct device_node	*interrupt_parent;
640 };
641 
642 /**
643  * of_irq_init - Scan and init matching interrupt controllers in DT
644  * @matches: 0 terminated array of nodes to match and init function to call
645  *
646  * This function scans the device tree for matching interrupt controller nodes,
647  * and calls their initialization functions in order with parents first.
648  */
649 void __init of_irq_init(const struct of_device_id *matches)
650 {
651 	const struct of_device_id *match;
652 	struct device_node *np, *parent = NULL;
653 	struct of_intc_desc *desc, *temp_desc;
654 	struct list_head intc_desc_list, intc_parent_list;
655 
656 	INIT_LIST_HEAD(&intc_desc_list);
657 	INIT_LIST_HEAD(&intc_parent_list);
658 
659 	for_each_matching_node_and_match(np, matches, &match) {
660 		if (!of_property_read_bool(np, "interrupt-controller") ||
661 				!of_device_is_available(np))
662 			continue;
663 
664 		if (WARN(!match->data, "of_irq_init: no init function for %s\n",
665 			 match->compatible))
666 			continue;
667 
668 		/*
669 		 * Here, we allocate and populate an of_intc_desc with the node
670 		 * pointer, interrupt-parent device_node etc.
671 		 */
672 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
673 		if (!desc) {
674 			of_node_put(np);
675 			goto err;
676 		}
677 
678 		desc->irq_init_cb = match->data;
679 		desc->dev = of_node_get(np);
680 		/*
681 		 * interrupts-extended can reference multiple parent domains.
682 		 * Arbitrarily pick the first one; assume any other parents
683 		 * are the same distance away from the root irq controller.
684 		 */
685 		desc->interrupt_parent = of_parse_phandle(np, "interrupts-extended", 0);
686 		if (!desc->interrupt_parent && of_property_present(np, "interrupts"))
687 			desc->interrupt_parent = of_irq_find_parent(np);
688 		else if (!desc->interrupt_parent)
689 			desc->interrupt_parent = of_parse_phandle(np, "interrupt-parent", 0);
690 		if (desc->interrupt_parent == np) {
691 			of_node_put(desc->interrupt_parent);
692 			desc->interrupt_parent = NULL;
693 		}
694 		list_add_tail(&desc->list, &intc_desc_list);
695 	}
696 
697 	/*
698 	 * The root irq controller is the one without an interrupt-parent.
699 	 * That one goes first, followed by the controllers that reference it,
700 	 * followed by the ones that reference the 2nd level controllers, etc.
701 	 */
702 	while (!list_empty(&intc_desc_list)) {
703 		/*
704 		 * Process all controllers with the current 'parent'.
705 		 * First pass will be looking for NULL as the parent.
706 		 * The assumption is that NULL parent means a root controller.
707 		 */
708 		list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
709 			int ret;
710 
711 			if (desc->interrupt_parent != parent)
712 				continue;
713 
714 			list_del(&desc->list);
715 
716 			of_node_set_flag(desc->dev, OF_POPULATED);
717 
718 			pr_debug("of_irq_init: init %pOF (%p), parent %p\n",
719 				 desc->dev,
720 				 desc->dev, desc->interrupt_parent);
721 			ret = desc->irq_init_cb(desc->dev,
722 						desc->interrupt_parent);
723 			if (ret) {
724 				pr_err("%s: Failed to init %pOF (%p), parent %p\n",
725 				       __func__, desc->dev, desc->dev,
726 				       desc->interrupt_parent);
727 				of_node_clear_flag(desc->dev, OF_POPULATED);
728 				of_node_put(desc->interrupt_parent);
729 				of_node_put(desc->dev);
730 				kfree(desc);
731 				continue;
732 			}
733 
734 			/*
735 			 * This one is now set up; add it to the parent list so
736 			 * its children can get processed in a subsequent pass.
737 			 */
738 			list_add_tail(&desc->list, &intc_parent_list);
739 		}
740 
741 		/* Get the next pending parent that might have children */
742 		desc = list_first_entry_or_null(&intc_parent_list,
743 						typeof(*desc), list);
744 		if (!desc) {
745 			pr_err("of_irq_init: children remain, but no parents\n");
746 			break;
747 		}
748 		list_del(&desc->list);
749 		parent = desc->dev;
750 		kfree(desc);
751 	}
752 
753 	list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
754 		list_del(&desc->list);
755 		kfree(desc);
756 	}
757 err:
758 	list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
759 		list_del(&desc->list);
760 		of_node_put(desc->interrupt_parent);
761 		of_node_put(desc->dev);
762 		kfree(desc);
763 	}
764 }
765 
766 static int of_check_msi_parent(struct device_node *dev_node, struct device_node **msi_node)
767 {
768 	struct of_phandle_args msi_spec;
769 	int ret;
770 
771 	/*
772 	 * An msi-parent phandle with a missing or == 0 #msi-cells
773 	 * property identifies a 1:1 ID translation mapping.
774 	 *
775 	 * Set the msi controller node if the firmware matches this
776 	 * condition.
777 	 */
778 	ret = of_parse_phandle_with_optional_args(dev_node, "msi-parent", "#msi-cells",
779 						  0, &msi_spec);
780 	if (ret)
781 		return ret;
782 
783 	if ((*msi_node && *msi_node != msi_spec.np) || msi_spec.args_count != 0)
784 		ret = -EINVAL;
785 
786 	if (!ret) {
787 		/* Return with a node reference held */
788 		*msi_node = msi_spec.np;
789 		return 0;
790 	}
791 	of_node_put(msi_spec.np);
792 
793 	return ret;
794 }
795 
796 /**
797  * of_msi_xlate - map a MSI ID and find relevant MSI controller node
798  * @dev: device for which the mapping is to be done.
799  * @msi_np: Pointer to target MSI controller node
800  * @id_in: Device ID.
801  *
802  * Walk up the device hierarchy looking for devices with a "msi-map"
803  * or "msi-parent" property. If found, apply the mapping to @id_in.
804  * If @msi_np points to a non-NULL device node pointer, only entries targeting
805  * that node will be matched; if it points to a NULL value, it will receive the
806  * device node of the first matching target phandle, with a reference held.
807  *
808  * Returns: The mapped MSI id.
809  */
810 u32 of_msi_xlate(struct device *dev, struct device_node **msi_np, u32 id_in)
811 {
812 	struct device *parent_dev;
813 	u32 id_out = id_in;
814 
815 	/*
816 	 * Walk up the device parent links looking for one with a
817 	 * "msi-map" or an "msi-parent" property.
818 	 */
819 	for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent) {
820 		if (!of_map_id(parent_dev->of_node, id_in, "msi-map",
821 				"msi-map-mask", msi_np, &id_out))
822 			break;
823 		if (!of_check_msi_parent(parent_dev->of_node, msi_np))
824 			break;
825 	}
826 	return id_out;
827 }
828 EXPORT_SYMBOL_GPL(of_msi_xlate);
829 
830 /**
831  * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain
832  * @dev: device for which the mapping is to be done.
833  * @id: Device ID.
834  * @bus_token: Bus token
835  *
836  * Walk up the device hierarchy looking for devices with a "msi-map"
837  * property.
838  *
839  * Returns: the MSI domain for this device (or NULL on failure)
840  */
841 struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 id,
842 						u32 bus_token)
843 {
844 	struct device_node *np = NULL;
845 
846 	of_msi_xlate(dev, &np, id);
847 	return irq_find_matching_host(np, bus_token);
848 }
849 
850 /**
851  * of_msi_get_domain - Use msi-parent to find the relevant MSI domain
852  * @dev: device for which the domain is requested
853  * @np: device node for @dev
854  * @token: bus type for this domain
855  *
856  * Parse the msi-parent property and returns the corresponding MSI domain.
857  *
858  * Returns: the MSI domain for this device (or NULL on failure).
859  */
860 struct irq_domain *of_msi_get_domain(struct device *dev,
861 				     const struct device_node *np,
862 				     enum irq_domain_bus_token token)
863 {
864 	struct of_phandle_iterator it;
865 	struct irq_domain *d;
866 	int err;
867 
868 	of_for_each_phandle(&it, err, np, "msi-parent", "#msi-cells", 0) {
869 		d = irq_find_matching_host(it.node, token);
870 		if (d) {
871 			of_node_put(it.node);
872 			return d;
873 		}
874 	}
875 
876 	return NULL;
877 }
878 EXPORT_SYMBOL_GPL(of_msi_get_domain);
879 
880 /**
881  * of_msi_configure - Set the msi_domain field of a device
882  * @dev: device structure to associate with an MSI irq domain
883  * @np: device node for that device
884  */
885 void of_msi_configure(struct device *dev, const struct device_node *np)
886 {
887 	dev_set_msi_domain(dev,
888 			   of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI));
889 }
890 EXPORT_SYMBOL_GPL(of_msi_configure);
891