1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * file.c 4 * 5 * File open, close, extend, truncate 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/fs.h> 12 #include <linux/types.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/pagemap.h> 16 #include <linux/uio.h> 17 #include <linux/sched.h> 18 #include <linux/splice.h> 19 #include <linux/mount.h> 20 #include <linux/writeback.h> 21 #include <linux/falloc.h> 22 #include <linux/filelock.h> 23 #include <linux/quotaops.h> 24 #include <linux/blkdev.h> 25 #include <linux/backing-dev.h> 26 27 #include <cluster/masklog.h> 28 29 #include "ocfs2.h" 30 31 #include "alloc.h" 32 #include "aops.h" 33 #include "dir.h" 34 #include "dlmglue.h" 35 #include "extent_map.h" 36 #include "file.h" 37 #include "sysfile.h" 38 #include "inode.h" 39 #include "ioctl.h" 40 #include "journal.h" 41 #include "locks.h" 42 #include "mmap.h" 43 #include "suballoc.h" 44 #include "super.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "quota.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 53 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 54 { 55 struct ocfs2_file_private *fp; 56 57 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 58 if (!fp) 59 return -ENOMEM; 60 61 fp->fp_file = file; 62 mutex_init(&fp->fp_mutex); 63 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 64 file->private_data = fp; 65 66 return 0; 67 } 68 69 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 70 { 71 struct ocfs2_file_private *fp = file->private_data; 72 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 73 74 if (fp) { 75 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 76 ocfs2_lock_res_free(&fp->fp_flock); 77 kfree(fp); 78 file->private_data = NULL; 79 } 80 } 81 82 static int ocfs2_file_open(struct inode *inode, struct file *file) 83 { 84 int status; 85 int mode = file->f_flags; 86 struct ocfs2_inode_info *oi = OCFS2_I(inode); 87 88 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 89 (unsigned long long)oi->ip_blkno, 90 file->f_path.dentry->d_name.len, 91 file->f_path.dentry->d_name.name, mode); 92 93 if (file->f_mode & FMODE_WRITE) { 94 status = dquot_initialize(inode); 95 if (status) 96 goto leave; 97 } 98 99 spin_lock(&oi->ip_lock); 100 101 /* Check that the inode hasn't been wiped from disk by another 102 * node. If it hasn't then we're safe as long as we hold the 103 * spin lock until our increment of open count. */ 104 if (oi->ip_flags & OCFS2_INODE_DELETED) { 105 spin_unlock(&oi->ip_lock); 106 107 status = -ENOENT; 108 goto leave; 109 } 110 111 if (mode & O_DIRECT) 112 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 113 114 oi->ip_open_count++; 115 spin_unlock(&oi->ip_lock); 116 117 status = ocfs2_init_file_private(inode, file); 118 if (status) { 119 /* 120 * We want to set open count back if we're failing the 121 * open. 122 */ 123 spin_lock(&oi->ip_lock); 124 oi->ip_open_count--; 125 spin_unlock(&oi->ip_lock); 126 } 127 128 file->f_mode |= FMODE_NOWAIT; 129 130 leave: 131 return status; 132 } 133 134 static int ocfs2_file_release(struct inode *inode, struct file *file) 135 { 136 struct ocfs2_inode_info *oi = OCFS2_I(inode); 137 138 spin_lock(&oi->ip_lock); 139 if (!--oi->ip_open_count) 140 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 141 142 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 143 oi->ip_blkno, 144 file->f_path.dentry->d_name.len, 145 file->f_path.dentry->d_name.name, 146 oi->ip_open_count); 147 spin_unlock(&oi->ip_lock); 148 149 ocfs2_free_file_private(inode, file); 150 151 return 0; 152 } 153 154 static int ocfs2_dir_open(struct inode *inode, struct file *file) 155 { 156 return ocfs2_init_file_private(inode, file); 157 } 158 159 static int ocfs2_dir_release(struct inode *inode, struct file *file) 160 { 161 ocfs2_free_file_private(inode, file); 162 return 0; 163 } 164 165 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 166 int datasync) 167 { 168 int err = 0; 169 struct inode *inode = file->f_mapping->host; 170 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 171 struct ocfs2_inode_info *oi = OCFS2_I(inode); 172 journal_t *journal = osb->journal->j_journal; 173 int ret; 174 tid_t commit_tid; 175 bool needs_barrier = false; 176 177 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 178 oi->ip_blkno, 179 file->f_path.dentry->d_name.len, 180 file->f_path.dentry->d_name.name, 181 (unsigned long long)datasync); 182 183 if (unlikely(ocfs2_emergency_state(osb))) 184 return -EROFS; 185 186 err = file_write_and_wait_range(file, start, end); 187 if (err) 188 return err; 189 190 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 191 if (journal->j_flags & JBD2_BARRIER && 192 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 193 needs_barrier = true; 194 err = jbd2_complete_transaction(journal, commit_tid); 195 if (needs_barrier) { 196 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 197 if (!err) 198 err = ret; 199 } 200 201 if (err) 202 mlog_errno(err); 203 204 return (err < 0) ? -EIO : 0; 205 } 206 207 int ocfs2_should_update_atime(struct inode *inode, 208 struct vfsmount *vfsmnt) 209 { 210 struct timespec64 now; 211 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 212 213 if (unlikely(ocfs2_emergency_state(osb))) 214 return 0; 215 216 if ((inode->i_flags & S_NOATIME) || 217 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 218 return 0; 219 220 /* 221 * We can be called with no vfsmnt structure - NFSD will 222 * sometimes do this. 223 * 224 * Note that our action here is different than touch_atime() - 225 * if we can't tell whether this is a noatime mount, then we 226 * don't know whether to trust the value of s_atime_quantum. 227 */ 228 if (vfsmnt == NULL) 229 return 0; 230 231 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 232 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 233 return 0; 234 235 if (vfsmnt->mnt_flags & MNT_RELATIME) { 236 struct timespec64 ctime = inode_get_ctime(inode); 237 struct timespec64 atime = inode_get_atime(inode); 238 struct timespec64 mtime = inode_get_mtime(inode); 239 240 if ((timespec64_compare(&atime, &mtime) <= 0) || 241 (timespec64_compare(&atime, &ctime) <= 0)) 242 return 1; 243 244 return 0; 245 } 246 247 now = current_time(inode); 248 if ((now.tv_sec - inode_get_atime_sec(inode) <= osb->s_atime_quantum)) 249 return 0; 250 else 251 return 1; 252 } 253 254 int ocfs2_update_inode_atime(struct inode *inode, 255 struct buffer_head *bh) 256 { 257 int ret; 258 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 259 handle_t *handle; 260 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 261 262 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 263 if (IS_ERR(handle)) { 264 ret = PTR_ERR(handle); 265 mlog_errno(ret); 266 goto out; 267 } 268 269 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 270 OCFS2_JOURNAL_ACCESS_WRITE); 271 if (ret) { 272 mlog_errno(ret); 273 goto out_commit; 274 } 275 276 /* 277 * Don't use ocfs2_mark_inode_dirty() here as we don't always 278 * have i_rwsem to guard against concurrent changes to other 279 * inode fields. 280 */ 281 inode_set_atime_to_ts(inode, current_time(inode)); 282 di->i_atime = cpu_to_le64(inode_get_atime_sec(inode)); 283 di->i_atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode)); 284 ocfs2_update_inode_fsync_trans(handle, inode, 0); 285 ocfs2_journal_dirty(handle, bh); 286 287 out_commit: 288 ocfs2_commit_trans(osb, handle); 289 out: 290 return ret; 291 } 292 293 int ocfs2_set_inode_size(handle_t *handle, 294 struct inode *inode, 295 struct buffer_head *fe_bh, 296 u64 new_i_size) 297 { 298 int status; 299 300 i_size_write(inode, new_i_size); 301 inode->i_blocks = ocfs2_inode_sector_count(inode); 302 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 303 304 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 305 if (status < 0) { 306 mlog_errno(status); 307 goto bail; 308 } 309 310 bail: 311 return status; 312 } 313 314 int ocfs2_simple_size_update(struct inode *inode, 315 struct buffer_head *di_bh, 316 u64 new_i_size) 317 { 318 int ret; 319 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 320 handle_t *handle = NULL; 321 322 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 323 if (IS_ERR(handle)) { 324 ret = PTR_ERR(handle); 325 mlog_errno(ret); 326 goto out; 327 } 328 329 ret = ocfs2_set_inode_size(handle, inode, di_bh, 330 new_i_size); 331 if (ret < 0) 332 mlog_errno(ret); 333 334 ocfs2_update_inode_fsync_trans(handle, inode, 0); 335 ocfs2_commit_trans(osb, handle); 336 out: 337 return ret; 338 } 339 340 static int ocfs2_cow_file_pos(struct inode *inode, 341 struct buffer_head *fe_bh, 342 u64 offset) 343 { 344 int status; 345 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 346 unsigned int num_clusters = 0; 347 unsigned int ext_flags = 0; 348 349 /* 350 * If the new offset is aligned to the range of the cluster, there is 351 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 352 * CoW either. 353 */ 354 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 355 return 0; 356 357 status = ocfs2_get_clusters(inode, cpos, &phys, 358 &num_clusters, &ext_flags); 359 if (status) { 360 mlog_errno(status); 361 goto out; 362 } 363 364 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 365 goto out; 366 367 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 368 369 out: 370 return status; 371 } 372 373 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 374 struct inode *inode, 375 struct buffer_head *fe_bh, 376 u64 new_i_size) 377 { 378 int status; 379 handle_t *handle; 380 struct ocfs2_dinode *di; 381 u64 cluster_bytes; 382 383 /* 384 * We need to CoW the cluster contains the offset if it is reflinked 385 * since we will call ocfs2_zero_range_for_truncate later which will 386 * write "0" from offset to the end of the cluster. 387 */ 388 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 389 if (status) { 390 mlog_errno(status); 391 return status; 392 } 393 394 /* TODO: This needs to actually orphan the inode in this 395 * transaction. */ 396 397 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 398 if (IS_ERR(handle)) { 399 status = PTR_ERR(handle); 400 mlog_errno(status); 401 goto out; 402 } 403 404 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 405 OCFS2_JOURNAL_ACCESS_WRITE); 406 if (status < 0) { 407 mlog_errno(status); 408 goto out_commit; 409 } 410 411 /* 412 * Do this before setting i_size. 413 */ 414 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 415 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 416 cluster_bytes); 417 if (status) { 418 mlog_errno(status); 419 goto out_commit; 420 } 421 422 i_size_write(inode, new_i_size); 423 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 424 425 di = (struct ocfs2_dinode *) fe_bh->b_data; 426 di->i_size = cpu_to_le64(new_i_size); 427 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode)); 428 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode)); 429 ocfs2_update_inode_fsync_trans(handle, inode, 0); 430 431 ocfs2_journal_dirty(handle, fe_bh); 432 433 out_commit: 434 ocfs2_commit_trans(osb, handle); 435 out: 436 return status; 437 } 438 439 int ocfs2_truncate_file(struct inode *inode, 440 struct buffer_head *di_bh, 441 u64 new_i_size) 442 { 443 int status = 0; 444 struct ocfs2_dinode *fe = NULL; 445 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 446 447 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 448 * already validated it */ 449 fe = (struct ocfs2_dinode *) di_bh->b_data; 450 451 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 452 (unsigned long long)le64_to_cpu(fe->i_size), 453 (unsigned long long)new_i_size); 454 455 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 456 "Inode %llu, inode i_size = %lld != di " 457 "i_size = %llu, i_flags = 0x%x\n", 458 (unsigned long long)OCFS2_I(inode)->ip_blkno, 459 i_size_read(inode), 460 (unsigned long long)le64_to_cpu(fe->i_size), 461 le32_to_cpu(fe->i_flags)); 462 463 if (new_i_size > le64_to_cpu(fe->i_size)) { 464 trace_ocfs2_truncate_file_error( 465 (unsigned long long)le64_to_cpu(fe->i_size), 466 (unsigned long long)new_i_size); 467 status = -EINVAL; 468 mlog_errno(status); 469 goto bail; 470 } 471 472 down_write(&OCFS2_I(inode)->ip_alloc_sem); 473 474 ocfs2_resv_discard(&osb->osb_la_resmap, 475 &OCFS2_I(inode)->ip_la_data_resv); 476 477 /* 478 * The inode lock forced other nodes to sync and drop their 479 * pages, which (correctly) happens even if we have a truncate 480 * without allocation change - ocfs2 cluster sizes can be much 481 * greater than page size, so we have to truncate them 482 * anyway. 483 */ 484 485 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 486 unmap_mapping_range(inode->i_mapping, 487 new_i_size + PAGE_SIZE - 1, 0, 1); 488 truncate_inode_pages(inode->i_mapping, new_i_size); 489 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 490 i_size_read(inode), 1); 491 if (status) 492 mlog_errno(status); 493 494 goto bail_unlock_sem; 495 } 496 497 /* alright, we're going to need to do a full blown alloc size 498 * change. Orphan the inode so that recovery can complete the 499 * truncate if necessary. This does the task of marking 500 * i_size. */ 501 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 502 if (status < 0) { 503 mlog_errno(status); 504 goto bail_unlock_sem; 505 } 506 507 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 508 truncate_inode_pages(inode->i_mapping, new_i_size); 509 510 status = ocfs2_commit_truncate(osb, inode, di_bh); 511 if (status < 0) { 512 mlog_errno(status); 513 goto bail_unlock_sem; 514 } 515 516 /* TODO: orphan dir cleanup here. */ 517 bail_unlock_sem: 518 up_write(&OCFS2_I(inode)->ip_alloc_sem); 519 520 bail: 521 if (!status && OCFS2_I(inode)->ip_clusters == 0) 522 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 523 524 return status; 525 } 526 527 /* 528 * extend file allocation only here. 529 * we'll update all the disk stuff, and oip->alloc_size 530 * 531 * expect stuff to be locked, a transaction started and enough data / 532 * metadata reservations in the contexts. 533 * 534 * Will return -EAGAIN, and a reason if a restart is needed. 535 * If passed in, *reason will always be set, even in error. 536 */ 537 int ocfs2_add_inode_data(struct ocfs2_super *osb, 538 struct inode *inode, 539 u32 *logical_offset, 540 u32 clusters_to_add, 541 int mark_unwritten, 542 struct buffer_head *fe_bh, 543 handle_t *handle, 544 struct ocfs2_alloc_context *data_ac, 545 struct ocfs2_alloc_context *meta_ac, 546 enum ocfs2_alloc_restarted *reason_ret) 547 { 548 struct ocfs2_extent_tree et; 549 550 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 551 return ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 552 clusters_to_add, mark_unwritten, 553 data_ac, meta_ac, reason_ret); 554 } 555 556 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 557 u32 clusters_to_add, int mark_unwritten) 558 { 559 int status = 0; 560 int restart_func = 0; 561 int credits; 562 u32 prev_clusters; 563 struct buffer_head *bh = NULL; 564 struct ocfs2_dinode *fe = NULL; 565 handle_t *handle = NULL; 566 struct ocfs2_alloc_context *data_ac = NULL; 567 struct ocfs2_alloc_context *meta_ac = NULL; 568 enum ocfs2_alloc_restarted why = RESTART_NONE; 569 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 570 struct ocfs2_extent_tree et; 571 int did_quota = 0; 572 573 /* 574 * Unwritten extent only exists for file systems which 575 * support holes. 576 */ 577 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 578 579 status = ocfs2_read_inode_block(inode, &bh); 580 if (status < 0) { 581 mlog_errno(status); 582 goto leave; 583 } 584 fe = (struct ocfs2_dinode *) bh->b_data; 585 586 restart_all: 587 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 588 589 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 590 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 591 &data_ac, &meta_ac); 592 if (status) { 593 mlog_errno(status); 594 goto leave; 595 } 596 597 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 598 handle = ocfs2_start_trans(osb, credits); 599 if (IS_ERR(handle)) { 600 status = PTR_ERR(handle); 601 handle = NULL; 602 mlog_errno(status); 603 goto leave; 604 } 605 606 restarted_transaction: 607 trace_ocfs2_extend_allocation( 608 (unsigned long long)OCFS2_I(inode)->ip_blkno, 609 (unsigned long long)i_size_read(inode), 610 le32_to_cpu(fe->i_clusters), clusters_to_add, 611 why, restart_func); 612 613 status = dquot_alloc_space_nodirty(inode, 614 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 615 if (status) 616 goto leave; 617 did_quota = 1; 618 619 /* reserve a write to the file entry early on - that we if we 620 * run out of credits in the allocation path, we can still 621 * update i_size. */ 622 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 623 OCFS2_JOURNAL_ACCESS_WRITE); 624 if (status < 0) { 625 mlog_errno(status); 626 goto leave; 627 } 628 629 prev_clusters = OCFS2_I(inode)->ip_clusters; 630 631 status = ocfs2_add_inode_data(osb, 632 inode, 633 &logical_start, 634 clusters_to_add, 635 mark_unwritten, 636 bh, 637 handle, 638 data_ac, 639 meta_ac, 640 &why); 641 if ((status < 0) && (status != -EAGAIN)) { 642 if (status != -ENOSPC) 643 mlog_errno(status); 644 goto leave; 645 } 646 ocfs2_update_inode_fsync_trans(handle, inode, 1); 647 ocfs2_journal_dirty(handle, bh); 648 649 spin_lock(&OCFS2_I(inode)->ip_lock); 650 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 651 spin_unlock(&OCFS2_I(inode)->ip_lock); 652 /* Release unused quota reservation */ 653 dquot_free_space(inode, 654 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 655 did_quota = 0; 656 657 if (why != RESTART_NONE && clusters_to_add) { 658 if (why == RESTART_META) { 659 restart_func = 1; 660 status = 0; 661 } else { 662 BUG_ON(why != RESTART_TRANS); 663 664 status = ocfs2_allocate_extend_trans(handle, 1); 665 if (status < 0) { 666 /* handle still has to be committed at 667 * this point. */ 668 status = -ENOMEM; 669 mlog_errno(status); 670 goto leave; 671 } 672 goto restarted_transaction; 673 } 674 } 675 676 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 677 le32_to_cpu(fe->i_clusters), 678 (unsigned long long)le64_to_cpu(fe->i_size), 679 OCFS2_I(inode)->ip_clusters, 680 (unsigned long long)i_size_read(inode)); 681 682 leave: 683 if (status < 0 && did_quota) 684 dquot_free_space(inode, 685 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 686 if (handle) { 687 ocfs2_commit_trans(osb, handle); 688 handle = NULL; 689 } 690 if (data_ac) { 691 ocfs2_free_alloc_context(data_ac); 692 data_ac = NULL; 693 } 694 if (meta_ac) { 695 ocfs2_free_alloc_context(meta_ac); 696 meta_ac = NULL; 697 } 698 if ((!status) && restart_func) { 699 restart_func = 0; 700 goto restart_all; 701 } 702 brelse(bh); 703 bh = NULL; 704 705 return status; 706 } 707 708 /* 709 * While a write will already be ordering the data, a truncate will not. 710 * Thus, we need to explicitly order the zeroed pages. 711 */ 712 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 713 struct buffer_head *di_bh, 714 loff_t start_byte, 715 loff_t length) 716 { 717 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 718 handle_t *handle = NULL; 719 int ret = 0; 720 721 if (!ocfs2_should_order_data(inode)) 722 goto out; 723 724 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 725 if (IS_ERR(handle)) { 726 ret = -ENOMEM; 727 mlog_errno(ret); 728 goto out; 729 } 730 731 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 732 if (ret < 0) { 733 mlog_errno(ret); 734 goto out; 735 } 736 737 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 738 OCFS2_JOURNAL_ACCESS_WRITE); 739 if (ret) 740 mlog_errno(ret); 741 ocfs2_update_inode_fsync_trans(handle, inode, 1); 742 743 out: 744 if (ret) { 745 if (!IS_ERR(handle)) 746 ocfs2_commit_trans(osb, handle); 747 handle = ERR_PTR(ret); 748 } 749 return handle; 750 } 751 752 /* Some parts of this taken from generic_cont_expand, which turned out 753 * to be too fragile to do exactly what we need without us having to 754 * worry about recursive locking in ->write_begin() and ->write_end(). */ 755 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 756 u64 abs_to, struct buffer_head *di_bh) 757 { 758 struct address_space *mapping = inode->i_mapping; 759 struct folio *folio; 760 unsigned long index = abs_from >> PAGE_SHIFT; 761 handle_t *handle; 762 int ret = 0; 763 unsigned zero_from, zero_to, block_start, block_end; 764 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 765 766 BUG_ON(abs_from >= abs_to); 767 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 768 BUG_ON(abs_from & (inode->i_blkbits - 1)); 769 770 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 771 abs_from, 772 abs_to - abs_from); 773 if (IS_ERR(handle)) { 774 ret = PTR_ERR(handle); 775 goto out; 776 } 777 778 folio = __filemap_get_folio(mapping, index, 779 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_NOFS); 780 if (IS_ERR(folio)) { 781 ret = PTR_ERR(folio); 782 mlog_errno(ret); 783 goto out_commit_trans; 784 } 785 786 /* Get the offsets within the folio that we want to zero */ 787 zero_from = offset_in_folio(folio, abs_from); 788 zero_to = offset_in_folio(folio, abs_to); 789 if (!zero_to) 790 zero_to = folio_size(folio); 791 792 trace_ocfs2_write_zero_page( 793 (unsigned long long)OCFS2_I(inode)->ip_blkno, 794 (unsigned long long)abs_from, 795 (unsigned long long)abs_to, 796 index, zero_from, zero_to); 797 798 /* We know that zero_from is block aligned */ 799 for (block_start = zero_from; block_start < zero_to; 800 block_start = block_end) { 801 block_end = block_start + i_blocksize(inode); 802 803 /* 804 * block_start is block-aligned. Bump it by one to force 805 * __block_write_begin and block_commit_write to zero the 806 * whole block. 807 */ 808 ret = __block_write_begin(folio, block_start + 1, 0, 809 ocfs2_get_block); 810 if (ret < 0) { 811 mlog_errno(ret); 812 goto out_unlock; 813 } 814 815 816 /* must not update i_size! */ 817 block_commit_write(folio, block_start + 1, block_start + 1); 818 } 819 820 /* 821 * fs-writeback will release the dirty pages without page lock 822 * whose offset are over inode size, the release happens at 823 * block_write_full_folio(). 824 */ 825 i_size_write(inode, abs_to); 826 inode->i_blocks = ocfs2_inode_sector_count(inode); 827 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 828 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 829 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode)); 830 di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode)); 831 di->i_mtime_nsec = di->i_ctime_nsec; 832 if (handle) { 833 ocfs2_journal_dirty(handle, di_bh); 834 ocfs2_update_inode_fsync_trans(handle, inode, 1); 835 } 836 837 out_unlock: 838 folio_unlock(folio); 839 folio_put(folio); 840 out_commit_trans: 841 if (handle) 842 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 843 out: 844 return ret; 845 } 846 847 /* 848 * Find the next range to zero. We do this in terms of bytes because 849 * that's what ocfs2_zero_extend() wants, and it is dealing with the 850 * pagecache. We may return multiple extents. 851 * 852 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 853 * needs to be zeroed. range_start and range_end return the next zeroing 854 * range. A subsequent call should pass the previous range_end as its 855 * zero_start. If range_end is 0, there's nothing to do. 856 * 857 * Unwritten extents are skipped over. Refcounted extents are CoWd. 858 */ 859 static int ocfs2_zero_extend_get_range(struct inode *inode, 860 struct buffer_head *di_bh, 861 u64 zero_start, u64 zero_end, 862 u64 *range_start, u64 *range_end) 863 { 864 int rc = 0, needs_cow = 0; 865 u32 p_cpos, zero_clusters = 0; 866 u32 zero_cpos = 867 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 868 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 869 unsigned int num_clusters = 0; 870 unsigned int ext_flags = 0; 871 872 while (zero_cpos < last_cpos) { 873 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 874 &num_clusters, &ext_flags); 875 if (rc) { 876 mlog_errno(rc); 877 goto out; 878 } 879 880 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 881 zero_clusters = num_clusters; 882 if (ext_flags & OCFS2_EXT_REFCOUNTED) 883 needs_cow = 1; 884 break; 885 } 886 887 zero_cpos += num_clusters; 888 } 889 if (!zero_clusters) { 890 *range_end = 0; 891 goto out; 892 } 893 894 while ((zero_cpos + zero_clusters) < last_cpos) { 895 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 896 &p_cpos, &num_clusters, 897 &ext_flags); 898 if (rc) { 899 mlog_errno(rc); 900 goto out; 901 } 902 903 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 904 break; 905 if (ext_flags & OCFS2_EXT_REFCOUNTED) 906 needs_cow = 1; 907 zero_clusters += num_clusters; 908 } 909 if ((zero_cpos + zero_clusters) > last_cpos) 910 zero_clusters = last_cpos - zero_cpos; 911 912 if (needs_cow) { 913 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 914 zero_clusters, UINT_MAX); 915 if (rc) { 916 mlog_errno(rc); 917 goto out; 918 } 919 } 920 921 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 922 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 923 zero_cpos + zero_clusters); 924 925 out: 926 return rc; 927 } 928 929 /* 930 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 931 * has made sure that the entire range needs zeroing. 932 */ 933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 934 u64 range_end, struct buffer_head *di_bh) 935 { 936 int rc = 0; 937 u64 next_pos; 938 u64 zero_pos = range_start; 939 940 trace_ocfs2_zero_extend_range( 941 (unsigned long long)OCFS2_I(inode)->ip_blkno, 942 (unsigned long long)range_start, 943 (unsigned long long)range_end); 944 BUG_ON(range_start >= range_end); 945 946 while (zero_pos < range_end) { 947 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 948 if (next_pos > range_end) 949 next_pos = range_end; 950 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 951 if (rc < 0) { 952 mlog_errno(rc); 953 break; 954 } 955 zero_pos = next_pos; 956 957 /* 958 * Very large extends have the potential to lock up 959 * the cpu for extended periods of time. 960 */ 961 cond_resched(); 962 } 963 964 return rc; 965 } 966 967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 968 loff_t zero_to_size) 969 { 970 int ret = 0; 971 u64 zero_start, range_start = 0, range_end = 0; 972 struct super_block *sb = inode->i_sb; 973 974 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 975 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 976 (unsigned long long)zero_start, 977 (unsigned long long)i_size_read(inode)); 978 while (zero_start < zero_to_size) { 979 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 980 zero_to_size, 981 &range_start, 982 &range_end); 983 if (ret) { 984 mlog_errno(ret); 985 break; 986 } 987 if (!range_end) 988 break; 989 /* Trim the ends */ 990 if (range_start < zero_start) 991 range_start = zero_start; 992 if (range_end > zero_to_size) 993 range_end = zero_to_size; 994 995 ret = ocfs2_zero_extend_range(inode, range_start, 996 range_end, di_bh); 997 if (ret) { 998 mlog_errno(ret); 999 break; 1000 } 1001 zero_start = range_end; 1002 } 1003 1004 return ret; 1005 } 1006 1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1008 u64 new_i_size, u64 zero_to) 1009 { 1010 int ret; 1011 u32 clusters_to_add; 1012 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1013 1014 /* 1015 * Only quota files call this without a bh, and they can't be 1016 * refcounted. 1017 */ 1018 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1019 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1020 1021 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1022 if (clusters_to_add < oi->ip_clusters) 1023 clusters_to_add = 0; 1024 else 1025 clusters_to_add -= oi->ip_clusters; 1026 1027 if (clusters_to_add) { 1028 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1029 clusters_to_add, 0); 1030 if (ret) { 1031 mlog_errno(ret); 1032 goto out; 1033 } 1034 } 1035 1036 /* 1037 * Call this even if we don't add any clusters to the tree. We 1038 * still need to zero the area between the old i_size and the 1039 * new i_size. 1040 */ 1041 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1042 if (ret < 0) 1043 mlog_errno(ret); 1044 1045 out: 1046 return ret; 1047 } 1048 1049 static int ocfs2_extend_file(struct inode *inode, 1050 struct buffer_head *di_bh, 1051 u64 new_i_size) 1052 { 1053 int ret = 0; 1054 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1055 1056 BUG_ON(!di_bh); 1057 1058 /* setattr sometimes calls us like this. */ 1059 if (new_i_size == 0) 1060 goto out; 1061 1062 if (i_size_read(inode) == new_i_size) 1063 goto out; 1064 BUG_ON(new_i_size < i_size_read(inode)); 1065 1066 /* 1067 * The alloc sem blocks people in read/write from reading our 1068 * allocation until we're done changing it. We depend on 1069 * i_rwsem to block other extend/truncate calls while we're 1070 * here. We even have to hold it for sparse files because there 1071 * might be some tail zeroing. 1072 */ 1073 down_write(&oi->ip_alloc_sem); 1074 1075 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1076 /* 1077 * We can optimize small extends by keeping the inodes 1078 * inline data. 1079 */ 1080 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1081 up_write(&oi->ip_alloc_sem); 1082 goto out_update_size; 1083 } 1084 1085 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1086 if (ret) { 1087 up_write(&oi->ip_alloc_sem); 1088 mlog_errno(ret); 1089 goto out; 1090 } 1091 } 1092 1093 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1094 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1095 else 1096 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1097 new_i_size); 1098 1099 up_write(&oi->ip_alloc_sem); 1100 1101 if (ret < 0) { 1102 mlog_errno(ret); 1103 goto out; 1104 } 1105 1106 out_update_size: 1107 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1108 if (ret < 0) 1109 mlog_errno(ret); 1110 1111 out: 1112 return ret; 1113 } 1114 1115 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1116 struct iattr *attr) 1117 { 1118 int status = 0, size_change; 1119 int inode_locked = 0; 1120 struct inode *inode = d_inode(dentry); 1121 struct super_block *sb = inode->i_sb; 1122 struct ocfs2_super *osb = OCFS2_SB(sb); 1123 struct buffer_head *bh = NULL; 1124 handle_t *handle = NULL; 1125 struct dquot *transfer_to[MAXQUOTAS] = { }; 1126 int qtype; 1127 int had_lock; 1128 struct ocfs2_lock_holder oh; 1129 1130 trace_ocfs2_setattr(inode, dentry, 1131 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1132 dentry->d_name.len, dentry->d_name.name, 1133 attr->ia_valid, 1134 attr->ia_valid & ATTR_MODE ? attr->ia_mode : 0, 1135 attr->ia_valid & ATTR_UID ? 1136 from_kuid(&init_user_ns, attr->ia_uid) : 0, 1137 attr->ia_valid & ATTR_GID ? 1138 from_kgid(&init_user_ns, attr->ia_gid) : 0); 1139 1140 status = ocfs2_emergency_state(osb); 1141 if (unlikely(status)) { 1142 mlog_errno(status); 1143 goto bail; 1144 } 1145 1146 /* ensuring we don't even attempt to truncate a symlink */ 1147 if (S_ISLNK(inode->i_mode)) 1148 attr->ia_valid &= ~ATTR_SIZE; 1149 1150 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1151 | ATTR_GID | ATTR_UID | ATTR_MODE) 1152 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1153 return 0; 1154 1155 status = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1156 if (status) 1157 return status; 1158 1159 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) { 1160 status = dquot_initialize(inode); 1161 if (status) 1162 return status; 1163 } 1164 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1165 if (size_change) { 1166 /* 1167 * Here we should wait dio to finish before inode lock 1168 * to avoid a deadlock between ocfs2_setattr() and 1169 * ocfs2_dio_end_io_write() 1170 */ 1171 inode_dio_wait(inode); 1172 1173 status = ocfs2_rw_lock(inode, 1); 1174 if (status < 0) { 1175 mlog_errno(status); 1176 goto bail; 1177 } 1178 } 1179 1180 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1181 if (had_lock < 0) { 1182 status = had_lock; 1183 goto bail_unlock_rw; 1184 } else if (had_lock) { 1185 /* 1186 * As far as we know, ocfs2_setattr() could only be the first 1187 * VFS entry point in the call chain of recursive cluster 1188 * locking issue. 1189 * 1190 * For instance: 1191 * chmod_common() 1192 * notify_change() 1193 * ocfs2_setattr() 1194 * posix_acl_chmod() 1195 * ocfs2_iop_get_acl() 1196 * 1197 * But, we're not 100% sure if it's always true, because the 1198 * ordering of the VFS entry points in the call chain is out 1199 * of our control. So, we'd better dump the stack here to 1200 * catch the other cases of recursive locking. 1201 */ 1202 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1203 dump_stack(); 1204 } 1205 inode_locked = 1; 1206 1207 if (size_change) { 1208 status = inode_newsize_ok(inode, attr->ia_size); 1209 if (status) 1210 goto bail_unlock; 1211 1212 if (i_size_read(inode) >= attr->ia_size) { 1213 if (ocfs2_should_order_data(inode)) { 1214 status = ocfs2_begin_ordered_truncate(inode, 1215 attr->ia_size); 1216 if (status) 1217 goto bail_unlock; 1218 } 1219 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1220 } else 1221 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1222 if (status < 0) { 1223 if (status != -ENOSPC) 1224 mlog_errno(status); 1225 status = -ENOSPC; 1226 goto bail_unlock; 1227 } 1228 } 1229 1230 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1231 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1232 /* 1233 * Gather pointers to quota structures so that allocation / 1234 * freeing of quota structures happens here and not inside 1235 * dquot_transfer() where we have problems with lock ordering 1236 */ 1237 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1239 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1240 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1241 if (IS_ERR(transfer_to[USRQUOTA])) { 1242 status = PTR_ERR(transfer_to[USRQUOTA]); 1243 transfer_to[USRQUOTA] = NULL; 1244 goto bail_unlock; 1245 } 1246 } 1247 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1248 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1249 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1250 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1251 if (IS_ERR(transfer_to[GRPQUOTA])) { 1252 status = PTR_ERR(transfer_to[GRPQUOTA]); 1253 transfer_to[GRPQUOTA] = NULL; 1254 goto bail_unlock; 1255 } 1256 } 1257 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1258 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1259 2 * ocfs2_quota_trans_credits(sb)); 1260 if (IS_ERR(handle)) { 1261 status = PTR_ERR(handle); 1262 mlog_errno(status); 1263 goto bail_unlock_alloc; 1264 } 1265 status = __dquot_transfer(inode, transfer_to); 1266 if (status < 0) 1267 goto bail_commit; 1268 } else { 1269 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1270 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1271 if (IS_ERR(handle)) { 1272 status = PTR_ERR(handle); 1273 mlog_errno(status); 1274 goto bail_unlock_alloc; 1275 } 1276 } 1277 1278 setattr_copy(&nop_mnt_idmap, inode, attr); 1279 mark_inode_dirty(inode); 1280 1281 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1282 if (status < 0) 1283 mlog_errno(status); 1284 1285 bail_commit: 1286 ocfs2_commit_trans(osb, handle); 1287 bail_unlock_alloc: 1288 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1289 bail_unlock: 1290 if (status && inode_locked) { 1291 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1292 inode_locked = 0; 1293 } 1294 bail_unlock_rw: 1295 if (size_change) 1296 ocfs2_rw_unlock(inode, 1); 1297 bail: 1298 1299 /* Release quota pointers in case we acquired them */ 1300 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1301 dqput(transfer_to[qtype]); 1302 1303 if (!status && attr->ia_valid & ATTR_MODE) { 1304 status = ocfs2_acl_chmod(inode, bh); 1305 if (status < 0) 1306 mlog_errno(status); 1307 } 1308 if (inode_locked) 1309 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1310 1311 brelse(bh); 1312 return status; 1313 } 1314 1315 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path, 1316 struct kstat *stat, u32 request_mask, unsigned int flags) 1317 { 1318 struct inode *inode = d_inode(path->dentry); 1319 struct super_block *sb = path->dentry->d_sb; 1320 struct ocfs2_super *osb = sb->s_fs_info; 1321 int err; 1322 1323 err = ocfs2_inode_revalidate(path->dentry); 1324 if (err) { 1325 if (err != -ENOENT) 1326 mlog_errno(err); 1327 goto bail; 1328 } 1329 1330 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1331 /* 1332 * If there is inline data in the inode, the inode will normally not 1333 * have data blocks allocated (it may have an external xattr block). 1334 * Report at least one sector for such files, so tools like tar, rsync, 1335 * others don't incorrectly think the file is completely sparse. 1336 */ 1337 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1338 stat->blocks += (stat->size + 511)>>9; 1339 1340 /* We set the blksize from the cluster size for performance */ 1341 stat->blksize = osb->s_clustersize; 1342 1343 bail: 1344 return err; 1345 } 1346 1347 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode, 1348 int mask) 1349 { 1350 int ret, had_lock; 1351 struct ocfs2_lock_holder oh; 1352 1353 if (mask & MAY_NOT_BLOCK) 1354 return -ECHILD; 1355 1356 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1357 if (had_lock < 0) { 1358 ret = had_lock; 1359 goto out; 1360 } else if (had_lock) { 1361 /* See comments in ocfs2_setattr() for details. 1362 * The call chain of this case could be: 1363 * do_sys_open() 1364 * may_open() 1365 * inode_permission() 1366 * ocfs2_permission() 1367 * ocfs2_iop_get_acl() 1368 */ 1369 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1370 dump_stack(); 1371 } 1372 1373 ret = generic_permission(&nop_mnt_idmap, inode, mask); 1374 1375 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1376 out: 1377 return ret; 1378 } 1379 1380 static int __ocfs2_write_remove_suid(struct inode *inode, 1381 struct buffer_head *bh) 1382 { 1383 int ret; 1384 handle_t *handle; 1385 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1386 struct ocfs2_dinode *di; 1387 1388 trace_ocfs2_write_remove_suid( 1389 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1390 inode->i_mode); 1391 1392 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1393 if (IS_ERR(handle)) { 1394 ret = PTR_ERR(handle); 1395 mlog_errno(ret); 1396 goto out; 1397 } 1398 1399 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1400 OCFS2_JOURNAL_ACCESS_WRITE); 1401 if (ret < 0) { 1402 mlog_errno(ret); 1403 goto out_trans; 1404 } 1405 1406 inode->i_mode &= ~S_ISUID; 1407 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1408 inode->i_mode &= ~S_ISGID; 1409 1410 di = (struct ocfs2_dinode *) bh->b_data; 1411 di->i_mode = cpu_to_le16(inode->i_mode); 1412 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1413 1414 ocfs2_journal_dirty(handle, bh); 1415 1416 out_trans: 1417 ocfs2_commit_trans(osb, handle); 1418 out: 1419 return ret; 1420 } 1421 1422 static int ocfs2_write_remove_suid(struct inode *inode) 1423 { 1424 int ret; 1425 struct buffer_head *bh = NULL; 1426 1427 ret = ocfs2_read_inode_block(inode, &bh); 1428 if (ret < 0) { 1429 mlog_errno(ret); 1430 goto out; 1431 } 1432 1433 ret = __ocfs2_write_remove_suid(inode, bh); 1434 out: 1435 brelse(bh); 1436 return ret; 1437 } 1438 1439 /* 1440 * Allocate enough extents to cover the region starting at byte offset 1441 * start for len bytes. Existing extents are skipped, any extents 1442 * added are marked as "unwritten". 1443 */ 1444 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1445 u64 start, u64 len) 1446 { 1447 int ret; 1448 u32 cpos, phys_cpos, clusters, alloc_size; 1449 u64 end = start + len; 1450 struct buffer_head *di_bh = NULL; 1451 1452 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1453 ret = ocfs2_read_inode_block(inode, &di_bh); 1454 if (ret) { 1455 mlog_errno(ret); 1456 goto out; 1457 } 1458 1459 /* 1460 * Nothing to do if the requested reservation range 1461 * fits within the inode. 1462 */ 1463 if (ocfs2_size_fits_inline_data(di_bh, end)) 1464 goto out; 1465 1466 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1467 if (ret) { 1468 mlog_errno(ret); 1469 goto out; 1470 } 1471 } 1472 1473 /* 1474 * We consider both start and len to be inclusive. 1475 */ 1476 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1477 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1478 clusters -= cpos; 1479 1480 while (clusters) { 1481 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1482 &alloc_size, NULL); 1483 if (ret) { 1484 mlog_errno(ret); 1485 goto out; 1486 } 1487 1488 /* 1489 * Hole or existing extent len can be arbitrary, so 1490 * cap it to our own allocation request. 1491 */ 1492 if (alloc_size > clusters) 1493 alloc_size = clusters; 1494 1495 if (phys_cpos) { 1496 /* 1497 * We already have an allocation at this 1498 * region so we can safely skip it. 1499 */ 1500 goto next; 1501 } 1502 1503 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1504 if (ret) { 1505 if (ret != -ENOSPC) 1506 mlog_errno(ret); 1507 goto out; 1508 } 1509 1510 next: 1511 cpos += alloc_size; 1512 clusters -= alloc_size; 1513 } 1514 1515 ret = 0; 1516 out: 1517 1518 brelse(di_bh); 1519 return ret; 1520 } 1521 1522 /* 1523 * Truncate a byte range, avoiding pages within partial clusters. This 1524 * preserves those pages for the zeroing code to write to. 1525 */ 1526 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1527 u64 byte_len) 1528 { 1529 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1530 loff_t start, end; 1531 struct address_space *mapping = inode->i_mapping; 1532 1533 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1534 end = byte_start + byte_len; 1535 end = end & ~(osb->s_clustersize - 1); 1536 1537 if (start < end) { 1538 unmap_mapping_range(mapping, start, end - start, 0); 1539 truncate_inode_pages_range(mapping, start, end - 1); 1540 } 1541 } 1542 1543 /* 1544 * zero out partial blocks of one cluster. 1545 * 1546 * start: file offset where zero starts, will be made upper block aligned. 1547 * len: it will be trimmed to the end of current cluster if "start + len" 1548 * is bigger than it. 1549 */ 1550 static int ocfs2_zeroout_partial_cluster(struct inode *inode, 1551 u64 start, u64 len) 1552 { 1553 int ret; 1554 u64 start_block, end_block, nr_blocks; 1555 u64 p_block, offset; 1556 u32 cluster, p_cluster, nr_clusters; 1557 struct super_block *sb = inode->i_sb; 1558 u64 end = ocfs2_align_bytes_to_clusters(sb, start); 1559 1560 if (start + len < end) 1561 end = start + len; 1562 1563 start_block = ocfs2_blocks_for_bytes(sb, start); 1564 end_block = ocfs2_blocks_for_bytes(sb, end); 1565 nr_blocks = end_block - start_block; 1566 if (!nr_blocks) 1567 return 0; 1568 1569 cluster = ocfs2_bytes_to_clusters(sb, start); 1570 ret = ocfs2_get_clusters(inode, cluster, &p_cluster, 1571 &nr_clusters, NULL); 1572 if (ret) 1573 return ret; 1574 if (!p_cluster) 1575 return 0; 1576 1577 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); 1578 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; 1579 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); 1580 } 1581 1582 static int ocfs2_zero_partial_clusters(struct inode *inode, 1583 u64 start, u64 len) 1584 { 1585 int ret = 0; 1586 u64 tmpend = 0; 1587 u64 end = start + len; 1588 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1589 unsigned int csize = osb->s_clustersize; 1590 handle_t *handle; 1591 loff_t isize = i_size_read(inode); 1592 1593 /* 1594 * The "start" and "end" values are NOT necessarily part of 1595 * the range whose allocation is being deleted. Rather, this 1596 * is what the user passed in with the request. We must zero 1597 * partial clusters here. There's no need to worry about 1598 * physical allocation - the zeroing code knows to skip holes. 1599 */ 1600 trace_ocfs2_zero_partial_clusters( 1601 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1602 (unsigned long long)start, (unsigned long long)end); 1603 1604 /* 1605 * If both edges are on a cluster boundary then there's no 1606 * zeroing required as the region is part of the allocation to 1607 * be truncated. 1608 */ 1609 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1610 goto out; 1611 1612 /* No page cache for EOF blocks, issue zero out to disk. */ 1613 if (end > isize) { 1614 /* 1615 * zeroout eof blocks in last cluster starting from 1616 * "isize" even "start" > "isize" because it is 1617 * complicated to zeroout just at "start" as "start" 1618 * may be not aligned with block size, buffer write 1619 * would be required to do that, but out of eof buffer 1620 * write is not supported. 1621 */ 1622 ret = ocfs2_zeroout_partial_cluster(inode, isize, 1623 end - isize); 1624 if (ret) { 1625 mlog_errno(ret); 1626 goto out; 1627 } 1628 if (start >= isize) 1629 goto out; 1630 end = isize; 1631 } 1632 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1633 if (IS_ERR(handle)) { 1634 ret = PTR_ERR(handle); 1635 mlog_errno(ret); 1636 goto out; 1637 } 1638 1639 /* 1640 * If start is on a cluster boundary and end is somewhere in another 1641 * cluster, we have not COWed the cluster starting at start, unless 1642 * end is also within the same cluster. So, in this case, we skip this 1643 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1644 * to the next one. 1645 */ 1646 if ((start & (csize - 1)) != 0) { 1647 /* 1648 * We want to get the byte offset of the end of the 1st 1649 * cluster. 1650 */ 1651 tmpend = (u64)osb->s_clustersize + 1652 (start & ~(osb->s_clustersize - 1)); 1653 if (tmpend > end) 1654 tmpend = end; 1655 1656 trace_ocfs2_zero_partial_clusters_range1( 1657 (unsigned long long)start, 1658 (unsigned long long)tmpend); 1659 1660 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1661 tmpend); 1662 if (ret) 1663 mlog_errno(ret); 1664 } 1665 1666 if (tmpend < end) { 1667 /* 1668 * This may make start and end equal, but the zeroing 1669 * code will skip any work in that case so there's no 1670 * need to catch it up here. 1671 */ 1672 start = end & ~(osb->s_clustersize - 1); 1673 1674 trace_ocfs2_zero_partial_clusters_range2( 1675 (unsigned long long)start, (unsigned long long)end); 1676 1677 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1678 if (ret) 1679 mlog_errno(ret); 1680 } 1681 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1682 1683 ocfs2_commit_trans(osb, handle); 1684 out: 1685 return ret; 1686 } 1687 1688 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1689 { 1690 int i; 1691 struct ocfs2_extent_rec *rec = NULL; 1692 1693 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1694 1695 rec = &el->l_recs[i]; 1696 1697 if (le32_to_cpu(rec->e_cpos) < pos) 1698 break; 1699 } 1700 1701 return i; 1702 } 1703 1704 /* 1705 * Helper to calculate the punching pos and length in one run, we handle the 1706 * following three cases in order: 1707 * 1708 * - remove the entire record 1709 * - remove a partial record 1710 * - no record needs to be removed (hole-punching completed) 1711 */ 1712 static void ocfs2_calc_trunc_pos(struct inode *inode, 1713 struct ocfs2_extent_list *el, 1714 struct ocfs2_extent_rec *rec, 1715 u32 trunc_start, u32 *trunc_cpos, 1716 u32 *trunc_len, u32 *trunc_end, 1717 u64 *blkno, int *done) 1718 { 1719 int ret = 0; 1720 u32 coff, range; 1721 1722 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1723 1724 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1725 /* 1726 * remove an entire extent record. 1727 */ 1728 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1729 /* 1730 * Skip holes if any. 1731 */ 1732 if (range < *trunc_end) 1733 *trunc_end = range; 1734 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1735 *blkno = le64_to_cpu(rec->e_blkno); 1736 *trunc_end = le32_to_cpu(rec->e_cpos); 1737 } else if (range > trunc_start) { 1738 /* 1739 * remove a partial extent record, which means we're 1740 * removing the last extent record. 1741 */ 1742 *trunc_cpos = trunc_start; 1743 /* 1744 * skip hole if any. 1745 */ 1746 if (range < *trunc_end) 1747 *trunc_end = range; 1748 *trunc_len = *trunc_end - trunc_start; 1749 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1750 *blkno = le64_to_cpu(rec->e_blkno) + 1751 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1752 *trunc_end = trunc_start; 1753 } else { 1754 /* 1755 * It may have two following possibilities: 1756 * 1757 * - last record has been removed 1758 * - trunc_start was within a hole 1759 * 1760 * both two cases mean the completion of hole punching. 1761 */ 1762 ret = 1; 1763 } 1764 1765 *done = ret; 1766 } 1767 1768 int ocfs2_remove_inode_range(struct inode *inode, 1769 struct buffer_head *di_bh, u64 byte_start, 1770 u64 byte_len) 1771 { 1772 int ret = 0, flags = 0, done = 0, i; 1773 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1774 u32 cluster_in_el; 1775 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1776 struct ocfs2_cached_dealloc_ctxt dealloc; 1777 struct address_space *mapping = inode->i_mapping; 1778 struct ocfs2_extent_tree et; 1779 struct ocfs2_path *path = NULL; 1780 struct ocfs2_extent_list *el = NULL; 1781 struct ocfs2_extent_rec *rec = NULL; 1782 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1783 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1784 1785 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1786 ocfs2_init_dealloc_ctxt(&dealloc); 1787 1788 trace_ocfs2_remove_inode_range( 1789 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1790 (unsigned long long)byte_start, 1791 (unsigned long long)byte_len); 1792 1793 if (byte_len == 0) 1794 return 0; 1795 1796 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1797 int id_count = ocfs2_max_inline_data_with_xattr(inode->i_sb, di); 1798 1799 if (byte_start > id_count || byte_start + byte_len > id_count) { 1800 ret = -EINVAL; 1801 mlog_errno(ret); 1802 goto out; 1803 } 1804 1805 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1806 byte_start + byte_len, 0); 1807 if (ret) { 1808 mlog_errno(ret); 1809 goto out; 1810 } 1811 /* 1812 * There's no need to get fancy with the page cache 1813 * truncate of an inline-data inode. We're talking 1814 * about less than a page here, which will be cached 1815 * in the dinode buffer anyway. 1816 */ 1817 unmap_mapping_range(mapping, 0, 0, 0); 1818 truncate_inode_pages(mapping, 0); 1819 goto out; 1820 } 1821 1822 /* 1823 * For reflinks, we may need to CoW 2 clusters which might be 1824 * partially zero'd later, if hole's start and end offset were 1825 * within one cluster(means is not exactly aligned to clustersize). 1826 */ 1827 1828 if (ocfs2_is_refcount_inode(inode)) { 1829 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1830 if (ret) { 1831 mlog_errno(ret); 1832 goto out; 1833 } 1834 1835 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1836 if (ret) { 1837 mlog_errno(ret); 1838 goto out; 1839 } 1840 } 1841 1842 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1843 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1844 cluster_in_el = trunc_end; 1845 1846 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1847 if (ret) { 1848 mlog_errno(ret); 1849 goto out; 1850 } 1851 1852 path = ocfs2_new_path_from_et(&et); 1853 if (!path) { 1854 ret = -ENOMEM; 1855 mlog_errno(ret); 1856 goto out; 1857 } 1858 1859 while (trunc_end > trunc_start) { 1860 1861 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1862 cluster_in_el); 1863 if (ret) { 1864 mlog_errno(ret); 1865 goto out; 1866 } 1867 1868 el = path_leaf_el(path); 1869 1870 i = ocfs2_find_rec(el, trunc_end); 1871 /* 1872 * Need to go to previous extent block. 1873 */ 1874 if (i < 0) { 1875 if (path->p_tree_depth == 0) 1876 break; 1877 1878 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1879 path, 1880 &cluster_in_el); 1881 if (ret) { 1882 mlog_errno(ret); 1883 goto out; 1884 } 1885 1886 /* 1887 * We've reached the leftmost extent block, 1888 * it's safe to leave. 1889 */ 1890 if (cluster_in_el == 0) 1891 break; 1892 1893 /* 1894 * The 'pos' searched for previous extent block is 1895 * always one cluster less than actual trunc_end. 1896 */ 1897 trunc_end = cluster_in_el + 1; 1898 1899 ocfs2_reinit_path(path, 1); 1900 1901 continue; 1902 1903 } else 1904 rec = &el->l_recs[i]; 1905 1906 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1907 &trunc_len, &trunc_end, &blkno, &done); 1908 if (done) 1909 break; 1910 1911 flags = rec->e_flags; 1912 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1913 1914 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1915 phys_cpos, trunc_len, flags, 1916 &dealloc, refcount_loc, false); 1917 if (ret < 0) { 1918 mlog_errno(ret); 1919 goto out; 1920 } 1921 1922 cluster_in_el = trunc_end; 1923 1924 ocfs2_reinit_path(path, 1); 1925 } 1926 1927 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1928 1929 out: 1930 ocfs2_free_path(path); 1931 ocfs2_schedule_truncate_log_flush(osb, 1); 1932 ocfs2_run_deallocs(osb, &dealloc); 1933 1934 return ret; 1935 } 1936 1937 /* 1938 * Parts of this function taken from xfs_change_file_space() 1939 */ 1940 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1941 loff_t f_pos, unsigned int cmd, 1942 struct ocfs2_space_resv *sr, 1943 int change_size) 1944 { 1945 int ret; 1946 s64 llen; 1947 loff_t size, orig_isize; 1948 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1949 struct buffer_head *di_bh = NULL; 1950 handle_t *handle; 1951 unsigned long long max_off = inode->i_sb->s_maxbytes; 1952 1953 if (unlikely(ocfs2_emergency_state(osb))) 1954 return -EROFS; 1955 1956 inode_lock(inode); 1957 1958 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 1959 inode_dio_wait(inode); 1960 /* 1961 * This prevents concurrent writes on other nodes 1962 */ 1963 ret = ocfs2_rw_lock(inode, 1); 1964 if (ret) { 1965 mlog_errno(ret); 1966 goto out; 1967 } 1968 1969 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1970 if (ret) { 1971 mlog_errno(ret); 1972 goto out_rw_unlock; 1973 } 1974 1975 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1976 ret = -EPERM; 1977 goto out_inode_unlock; 1978 } 1979 1980 switch (sr->l_whence) { 1981 case 0: /*SEEK_SET*/ 1982 break; 1983 case 1: /*SEEK_CUR*/ 1984 sr->l_start += f_pos; 1985 break; 1986 case 2: /*SEEK_END*/ 1987 sr->l_start += i_size_read(inode); 1988 break; 1989 default: 1990 ret = -EINVAL; 1991 goto out_inode_unlock; 1992 } 1993 sr->l_whence = 0; 1994 1995 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1996 1997 if (sr->l_start < 0 1998 || sr->l_start > max_off 1999 || (sr->l_start + llen) < 0 2000 || (sr->l_start + llen) > max_off) { 2001 ret = -EINVAL; 2002 goto out_inode_unlock; 2003 } 2004 size = sr->l_start + sr->l_len; 2005 2006 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 2007 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 2008 if (sr->l_len <= 0) { 2009 ret = -EINVAL; 2010 goto out_inode_unlock; 2011 } 2012 } 2013 2014 if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) { 2015 ret = __ocfs2_write_remove_suid(inode, di_bh); 2016 if (ret) { 2017 mlog_errno(ret); 2018 goto out_inode_unlock; 2019 } 2020 } 2021 2022 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2023 switch (cmd) { 2024 case OCFS2_IOC_RESVSP: 2025 case OCFS2_IOC_RESVSP64: 2026 /* 2027 * This takes unsigned offsets, but the signed ones we 2028 * pass have been checked against overflow above. 2029 */ 2030 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 2031 sr->l_len); 2032 break; 2033 case OCFS2_IOC_UNRESVSP: 2034 case OCFS2_IOC_UNRESVSP64: 2035 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 2036 sr->l_len); 2037 break; 2038 default: 2039 ret = -EINVAL; 2040 } 2041 2042 orig_isize = i_size_read(inode); 2043 /* zeroout eof blocks in the cluster. */ 2044 if (!ret && change_size && orig_isize < size) { 2045 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, 2046 size - orig_isize); 2047 if (!ret) 2048 i_size_write(inode, size); 2049 } 2050 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2051 if (ret) { 2052 mlog_errno(ret); 2053 goto out_inode_unlock; 2054 } 2055 2056 /* 2057 * We update c/mtime for these changes 2058 */ 2059 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 2060 if (IS_ERR(handle)) { 2061 ret = PTR_ERR(handle); 2062 mlog_errno(ret); 2063 goto out_inode_unlock; 2064 } 2065 2066 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2067 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 2068 if (ret < 0) 2069 mlog_errno(ret); 2070 2071 if (file && (file->f_flags & O_SYNC)) 2072 handle->h_sync = 1; 2073 2074 ocfs2_commit_trans(osb, handle); 2075 2076 out_inode_unlock: 2077 brelse(di_bh); 2078 ocfs2_inode_unlock(inode, 1); 2079 out_rw_unlock: 2080 ocfs2_rw_unlock(inode, 1); 2081 2082 out: 2083 inode_unlock(inode); 2084 return ret; 2085 } 2086 2087 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2088 struct ocfs2_space_resv *sr) 2089 { 2090 struct inode *inode = file_inode(file); 2091 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2092 int ret; 2093 2094 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2095 !ocfs2_writes_unwritten_extents(osb)) 2096 return -ENOTTY; 2097 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2098 !ocfs2_sparse_alloc(osb)) 2099 return -ENOTTY; 2100 2101 if (!S_ISREG(inode->i_mode)) 2102 return -EINVAL; 2103 2104 if (!(file->f_mode & FMODE_WRITE)) 2105 return -EBADF; 2106 2107 ret = mnt_want_write_file(file); 2108 if (ret) 2109 return ret; 2110 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2111 mnt_drop_write_file(file); 2112 return ret; 2113 } 2114 2115 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2116 loff_t len) 2117 { 2118 struct inode *inode = file_inode(file); 2119 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2120 struct ocfs2_space_resv sr; 2121 int change_size = 1; 2122 int cmd = OCFS2_IOC_RESVSP64; 2123 int ret = 0; 2124 2125 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2126 return -EOPNOTSUPP; 2127 if (!ocfs2_writes_unwritten_extents(osb)) 2128 return -EOPNOTSUPP; 2129 2130 if (mode & FALLOC_FL_KEEP_SIZE) { 2131 change_size = 0; 2132 } else { 2133 ret = inode_newsize_ok(inode, offset + len); 2134 if (ret) 2135 return ret; 2136 } 2137 2138 if (mode & FALLOC_FL_PUNCH_HOLE) 2139 cmd = OCFS2_IOC_UNRESVSP64; 2140 2141 sr.l_whence = 0; 2142 sr.l_start = (s64)offset; 2143 sr.l_len = (s64)len; 2144 2145 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2146 change_size); 2147 } 2148 2149 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2150 size_t count) 2151 { 2152 int ret = 0; 2153 unsigned int extent_flags; 2154 u32 cpos, clusters, extent_len, phys_cpos; 2155 struct super_block *sb = inode->i_sb; 2156 2157 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2158 !ocfs2_is_refcount_inode(inode) || 2159 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2160 return 0; 2161 2162 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2163 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2164 2165 while (clusters) { 2166 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2167 &extent_flags); 2168 if (ret < 0) { 2169 mlog_errno(ret); 2170 goto out; 2171 } 2172 2173 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2174 ret = 1; 2175 break; 2176 } 2177 2178 if (extent_len > clusters) 2179 extent_len = clusters; 2180 2181 clusters -= extent_len; 2182 cpos += extent_len; 2183 } 2184 out: 2185 return ret; 2186 } 2187 2188 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2189 { 2190 int blockmask = inode->i_sb->s_blocksize - 1; 2191 loff_t final_size = pos + count; 2192 2193 if ((pos & blockmask) || (final_size & blockmask)) 2194 return 1; 2195 return 0; 2196 } 2197 2198 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2199 struct buffer_head **di_bh, 2200 int meta_level, 2201 int write_sem, 2202 int wait) 2203 { 2204 int ret = 0; 2205 2206 if (wait) 2207 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2208 else 2209 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2210 if (ret < 0) 2211 goto out; 2212 2213 if (wait) { 2214 if (write_sem) 2215 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2216 else 2217 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2218 } else { 2219 if (write_sem) 2220 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2221 else 2222 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2223 2224 if (!ret) { 2225 ret = -EAGAIN; 2226 goto out_unlock; 2227 } 2228 } 2229 2230 return ret; 2231 2232 out_unlock: 2233 brelse(*di_bh); 2234 *di_bh = NULL; 2235 ocfs2_inode_unlock(inode, meta_level); 2236 out: 2237 return ret; 2238 } 2239 2240 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2241 struct buffer_head **di_bh, 2242 int meta_level, 2243 int write_sem) 2244 { 2245 if (write_sem) 2246 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2247 else 2248 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2249 2250 brelse(*di_bh); 2251 *di_bh = NULL; 2252 2253 if (meta_level >= 0) 2254 ocfs2_inode_unlock(inode, meta_level); 2255 } 2256 2257 static int ocfs2_prepare_inode_for_write(struct file *file, 2258 loff_t pos, size_t count, int wait) 2259 { 2260 int ret = 0, meta_level = 0, overwrite_io = 0; 2261 int write_sem = 0; 2262 struct dentry *dentry = file->f_path.dentry; 2263 struct inode *inode = d_inode(dentry); 2264 struct buffer_head *di_bh = NULL; 2265 u32 cpos; 2266 u32 clusters; 2267 2268 /* 2269 * We start with a read level meta lock and only jump to an ex 2270 * if we need to make modifications here. 2271 */ 2272 for(;;) { 2273 ret = ocfs2_inode_lock_for_extent_tree(inode, 2274 &di_bh, 2275 meta_level, 2276 write_sem, 2277 wait); 2278 if (ret < 0) { 2279 if (ret != -EAGAIN) 2280 mlog_errno(ret); 2281 goto out; 2282 } 2283 2284 /* 2285 * Check if IO will overwrite allocated blocks in case 2286 * IOCB_NOWAIT flag is set. 2287 */ 2288 if (!wait && !overwrite_io) { 2289 overwrite_io = 1; 2290 2291 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2292 if (ret < 0) { 2293 if (ret != -EAGAIN) 2294 mlog_errno(ret); 2295 goto out_unlock; 2296 } 2297 } 2298 2299 /* Clear suid / sgid if necessary. We do this here 2300 * instead of later in the write path because 2301 * remove_suid() calls ->setattr without any hint that 2302 * we may have already done our cluster locking. Since 2303 * ocfs2_setattr() *must* take cluster locks to 2304 * proceed, this will lead us to recursively lock the 2305 * inode. There's also the dinode i_size state which 2306 * can be lost via setattr during extending writes (we 2307 * set inode->i_size at the end of a write. */ 2308 if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) { 2309 if (meta_level == 0) { 2310 ocfs2_inode_unlock_for_extent_tree(inode, 2311 &di_bh, 2312 meta_level, 2313 write_sem); 2314 meta_level = 1; 2315 continue; 2316 } 2317 2318 ret = ocfs2_write_remove_suid(inode); 2319 if (ret < 0) { 2320 mlog_errno(ret); 2321 goto out_unlock; 2322 } 2323 } 2324 2325 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2326 if (ret == 1) { 2327 ocfs2_inode_unlock_for_extent_tree(inode, 2328 &di_bh, 2329 meta_level, 2330 write_sem); 2331 meta_level = 1; 2332 write_sem = 1; 2333 ret = ocfs2_inode_lock_for_extent_tree(inode, 2334 &di_bh, 2335 meta_level, 2336 write_sem, 2337 wait); 2338 if (ret < 0) { 2339 if (ret != -EAGAIN) 2340 mlog_errno(ret); 2341 goto out; 2342 } 2343 2344 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2345 clusters = 2346 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2347 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2348 } 2349 2350 if (ret < 0) { 2351 if (ret != -EAGAIN) 2352 mlog_errno(ret); 2353 goto out_unlock; 2354 } 2355 2356 break; 2357 } 2358 2359 out_unlock: 2360 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2361 pos, count, wait); 2362 2363 ocfs2_inode_unlock_for_extent_tree(inode, 2364 &di_bh, 2365 meta_level, 2366 write_sem); 2367 2368 out: 2369 return ret; 2370 } 2371 2372 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2373 struct iov_iter *from) 2374 { 2375 int rw_level; 2376 ssize_t written = 0; 2377 ssize_t ret; 2378 size_t count = iov_iter_count(from); 2379 struct file *file = iocb->ki_filp; 2380 struct inode *inode = file_inode(file); 2381 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2382 int full_coherency = !(osb->s_mount_opt & 2383 OCFS2_MOUNT_COHERENCY_BUFFERED); 2384 void *saved_ki_complete = NULL; 2385 int append_write = ((iocb->ki_pos + count) >= 2386 i_size_read(inode) ? 1 : 0); 2387 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2388 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2389 2390 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2391 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2392 file->f_path.dentry->d_name.len, 2393 file->f_path.dentry->d_name.name, 2394 (unsigned int)from->nr_segs); /* GRRRRR */ 2395 2396 if (!direct_io && nowait) 2397 return -EOPNOTSUPP; 2398 2399 if (count == 0) 2400 return 0; 2401 2402 if (nowait) { 2403 if (!inode_trylock(inode)) 2404 return -EAGAIN; 2405 } else 2406 inode_lock(inode); 2407 2408 ocfs2_iocb_init_rw_locked(iocb); 2409 2410 /* 2411 * Concurrent O_DIRECT writes are allowed with 2412 * mount_option "coherency=buffered". 2413 * For append write, we must take rw EX. 2414 */ 2415 rw_level = (!direct_io || full_coherency || append_write); 2416 2417 if (nowait) 2418 ret = ocfs2_try_rw_lock(inode, rw_level); 2419 else 2420 ret = ocfs2_rw_lock(inode, rw_level); 2421 if (ret < 0) { 2422 if (ret != -EAGAIN) 2423 mlog_errno(ret); 2424 goto out_mutex; 2425 } 2426 2427 /* 2428 * O_DIRECT writes with "coherency=full" need to take EX cluster 2429 * inode_lock to guarantee coherency. 2430 */ 2431 if (direct_io && full_coherency) { 2432 /* 2433 * We need to take and drop the inode lock to force 2434 * other nodes to drop their caches. Buffered I/O 2435 * already does this in write_begin(). 2436 */ 2437 if (nowait) 2438 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2439 else 2440 ret = ocfs2_inode_lock(inode, NULL, 1); 2441 if (ret < 0) { 2442 if (ret != -EAGAIN) 2443 mlog_errno(ret); 2444 goto out; 2445 } 2446 2447 ocfs2_inode_unlock(inode, 1); 2448 } 2449 2450 ret = generic_write_checks(iocb, from); 2451 if (ret <= 0) { 2452 if (ret) 2453 mlog_errno(ret); 2454 goto out; 2455 } 2456 count = ret; 2457 2458 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2459 if (ret < 0) { 2460 if (ret != -EAGAIN) 2461 mlog_errno(ret); 2462 goto out; 2463 } 2464 2465 if (direct_io && !is_sync_kiocb(iocb) && 2466 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2467 /* 2468 * Make it a sync io if it's an unaligned aio. 2469 */ 2470 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2471 } 2472 2473 /* communicate with ocfs2_dio_end_io */ 2474 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2475 2476 written = __generic_file_write_iter(iocb, from); 2477 /* buffered aio wouldn't have proper lock coverage today */ 2478 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2479 2480 /* 2481 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2482 * function pointer which is called when o_direct io completes so that 2483 * it can unlock our rw lock. 2484 * Unfortunately there are error cases which call end_io and others 2485 * that don't. so we don't have to unlock the rw_lock if either an 2486 * async dio is going to do it in the future or an end_io after an 2487 * error has already done it. 2488 */ 2489 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2490 rw_level = -1; 2491 } 2492 2493 if (unlikely(written <= 0)) 2494 goto out; 2495 2496 if (((file->f_flags & O_DSYNC) && !direct_io) || 2497 IS_SYNC(inode)) { 2498 ret = filemap_fdatawrite_range(file->f_mapping, 2499 iocb->ki_pos - written, 2500 iocb->ki_pos - 1); 2501 if (ret < 0) 2502 written = ret; 2503 2504 if (!ret) { 2505 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2506 if (ret < 0) 2507 written = ret; 2508 } 2509 2510 if (!ret) 2511 ret = filemap_fdatawait_range(file->f_mapping, 2512 iocb->ki_pos - written, 2513 iocb->ki_pos - 1); 2514 } 2515 2516 out: 2517 if (saved_ki_complete) 2518 xchg(&iocb->ki_complete, saved_ki_complete); 2519 2520 if (rw_level != -1) 2521 ocfs2_rw_unlock(inode, rw_level); 2522 2523 out_mutex: 2524 inode_unlock(inode); 2525 2526 if (written) 2527 ret = written; 2528 return ret; 2529 } 2530 2531 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2532 struct iov_iter *to) 2533 { 2534 int ret = 0, rw_level = -1, lock_level = 0; 2535 struct file *filp = iocb->ki_filp; 2536 struct inode *inode = file_inode(filp); 2537 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2538 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2539 2540 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2541 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2542 filp->f_path.dentry->d_name.len, 2543 filp->f_path.dentry->d_name.name, 2544 to->nr_segs); /* GRRRRR */ 2545 2546 2547 if (!inode) { 2548 ret = -EINVAL; 2549 mlog_errno(ret); 2550 goto bail; 2551 } 2552 2553 if (!direct_io && nowait) 2554 return -EOPNOTSUPP; 2555 2556 ocfs2_iocb_init_rw_locked(iocb); 2557 2558 /* 2559 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads 2560 * need locks to protect pending reads from racing with truncate. 2561 */ 2562 if (direct_io) { 2563 if (nowait) 2564 ret = ocfs2_try_rw_lock(inode, 0); 2565 else 2566 ret = ocfs2_rw_lock(inode, 0); 2567 2568 if (ret < 0) { 2569 if (ret != -EAGAIN) 2570 mlog_errno(ret); 2571 goto bail; 2572 } 2573 rw_level = 0; 2574 /* communicate with ocfs2_dio_end_io */ 2575 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2576 } 2577 2578 /* 2579 * We're fine letting folks race truncates and extending 2580 * writes with read across the cluster, just like they can 2581 * locally. Hence no rw_lock during read. 2582 * 2583 * Take and drop the meta data lock to update inode fields 2584 * like i_size. This allows the checks down below 2585 * copy_splice_read() a chance of actually working. 2586 */ 2587 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2588 !nowait); 2589 if (ret < 0) { 2590 if (ret != -EAGAIN) 2591 mlog_errno(ret); 2592 goto bail; 2593 } 2594 ocfs2_inode_unlock(inode, lock_level); 2595 2596 ret = generic_file_read_iter(iocb, to); 2597 trace_generic_file_read_iter_ret(ret); 2598 2599 /* buffered aio wouldn't have proper lock coverage today */ 2600 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2601 2602 /* see ocfs2_file_write_iter */ 2603 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2604 rw_level = -1; 2605 } 2606 2607 bail: 2608 if (rw_level != -1) 2609 ocfs2_rw_unlock(inode, rw_level); 2610 2611 return ret; 2612 } 2613 2614 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos, 2615 struct pipe_inode_info *pipe, 2616 size_t len, unsigned int flags) 2617 { 2618 struct inode *inode = file_inode(in); 2619 ssize_t ret = 0; 2620 int lock_level = 0; 2621 2622 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2623 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2624 in->f_path.dentry->d_name.len, 2625 in->f_path.dentry->d_name.name, 2626 flags); 2627 2628 /* 2629 * We're fine letting folks race truncates and extending writes with 2630 * read across the cluster, just like they can locally. Hence no 2631 * rw_lock during read. 2632 * 2633 * Take and drop the meta data lock to update inode fields like i_size. 2634 * This allows the checks down below filemap_splice_read() a chance of 2635 * actually working. 2636 */ 2637 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1); 2638 if (ret < 0) { 2639 if (ret != -EAGAIN) 2640 mlog_errno(ret); 2641 goto bail; 2642 } 2643 ocfs2_inode_unlock(inode, lock_level); 2644 2645 ret = filemap_splice_read(in, ppos, pipe, len, flags); 2646 trace_filemap_splice_read_ret(ret); 2647 bail: 2648 return ret; 2649 } 2650 2651 /* Refer generic_file_llseek_unlocked() */ 2652 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2653 { 2654 struct inode *inode = file->f_mapping->host; 2655 int ret = 0; 2656 2657 inode_lock(inode); 2658 2659 switch (whence) { 2660 case SEEK_SET: 2661 break; 2662 case SEEK_END: 2663 /* SEEK_END requires the OCFS2 inode lock for the file 2664 * because it references the file's size. 2665 */ 2666 ret = ocfs2_inode_lock(inode, NULL, 0); 2667 if (ret < 0) { 2668 mlog_errno(ret); 2669 goto out; 2670 } 2671 offset += i_size_read(inode); 2672 ocfs2_inode_unlock(inode, 0); 2673 break; 2674 case SEEK_CUR: 2675 if (offset == 0) { 2676 offset = file->f_pos; 2677 goto out; 2678 } 2679 offset += file->f_pos; 2680 break; 2681 case SEEK_DATA: 2682 case SEEK_HOLE: 2683 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2684 if (ret) 2685 goto out; 2686 break; 2687 default: 2688 ret = -EINVAL; 2689 goto out; 2690 } 2691 2692 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2693 2694 out: 2695 inode_unlock(inode); 2696 if (ret) 2697 return ret; 2698 return offset; 2699 } 2700 2701 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2702 struct file *file_out, loff_t pos_out, 2703 loff_t len, unsigned int remap_flags) 2704 { 2705 struct inode *inode_in = file_inode(file_in); 2706 struct inode *inode_out = file_inode(file_out); 2707 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2708 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2709 bool same_inode = (inode_in == inode_out); 2710 loff_t remapped = 0; 2711 ssize_t ret; 2712 2713 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2714 return -EINVAL; 2715 if (!ocfs2_refcount_tree(osb)) 2716 return -EOPNOTSUPP; 2717 if (unlikely(ocfs2_emergency_state(osb))) 2718 return -EROFS; 2719 2720 /* Lock both files against IO */ 2721 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2722 if (ret) 2723 return ret; 2724 2725 /* Check file eligibility and prepare for block sharing. */ 2726 ret = -EINVAL; 2727 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2728 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2729 goto out_unlock; 2730 2731 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2732 &len, remap_flags); 2733 if (ret < 0 || len == 0) 2734 goto out_unlock; 2735 2736 /* Lock out changes to the allocation maps and remap. */ 2737 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2738 if (!same_inode) 2739 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2740 SINGLE_DEPTH_NESTING); 2741 2742 /* Zap any page cache for the destination file's range. */ 2743 truncate_inode_pages_range(&inode_out->i_data, 2744 round_down(pos_out, PAGE_SIZE), 2745 round_up(pos_out + len, PAGE_SIZE) - 1); 2746 2747 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2748 inode_out, out_bh, pos_out, len); 2749 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2750 if (!same_inode) 2751 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2752 if (remapped < 0) { 2753 ret = remapped; 2754 mlog_errno(ret); 2755 goto out_unlock; 2756 } 2757 2758 /* 2759 * Empty the extent map so that we may get the right extent 2760 * record from the disk. 2761 */ 2762 ocfs2_extent_map_trunc(inode_in, 0); 2763 ocfs2_extent_map_trunc(inode_out, 0); 2764 2765 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2766 if (ret) { 2767 mlog_errno(ret); 2768 goto out_unlock; 2769 } 2770 2771 out_unlock: 2772 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2773 return remapped > 0 ? remapped : ret; 2774 } 2775 2776 static loff_t ocfs2_dir_llseek(struct file *file, loff_t offset, int whence) 2777 { 2778 struct ocfs2_file_private *fp = file->private_data; 2779 2780 return generic_llseek_cookie(file, offset, whence, &fp->cookie); 2781 } 2782 2783 const struct inode_operations ocfs2_file_iops = { 2784 .setattr = ocfs2_setattr, 2785 .getattr = ocfs2_getattr, 2786 .permission = ocfs2_permission, 2787 .listxattr = ocfs2_listxattr, 2788 .fiemap = ocfs2_fiemap, 2789 .get_inode_acl = ocfs2_iop_get_acl, 2790 .set_acl = ocfs2_iop_set_acl, 2791 .fileattr_get = ocfs2_fileattr_get, 2792 .fileattr_set = ocfs2_fileattr_set, 2793 }; 2794 2795 const struct inode_operations ocfs2_special_file_iops = { 2796 .setattr = ocfs2_setattr, 2797 .getattr = ocfs2_getattr, 2798 .listxattr = ocfs2_listxattr, 2799 .permission = ocfs2_permission, 2800 .get_inode_acl = ocfs2_iop_get_acl, 2801 .set_acl = ocfs2_iop_set_acl, 2802 }; 2803 2804 /* 2805 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2806 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2807 */ 2808 const struct file_operations ocfs2_fops = { 2809 .llseek = ocfs2_file_llseek, 2810 .mmap_prepare = ocfs2_mmap_prepare, 2811 .fsync = ocfs2_sync_file, 2812 .release = ocfs2_file_release, 2813 .open = ocfs2_file_open, 2814 .read_iter = ocfs2_file_read_iter, 2815 .write_iter = ocfs2_file_write_iter, 2816 .unlocked_ioctl = ocfs2_ioctl, 2817 #ifdef CONFIG_COMPAT 2818 .compat_ioctl = ocfs2_compat_ioctl, 2819 #endif 2820 .lock = ocfs2_lock, 2821 .flock = ocfs2_flock, 2822 .splice_read = ocfs2_file_splice_read, 2823 .splice_write = iter_file_splice_write, 2824 .fallocate = ocfs2_fallocate, 2825 .remap_file_range = ocfs2_remap_file_range, 2826 .fop_flags = FOP_ASYNC_LOCK, 2827 .setlease = generic_setlease, 2828 }; 2829 2830 WRAP_DIR_ITER(ocfs2_readdir) // FIXME! 2831 const struct file_operations ocfs2_dops = { 2832 .llseek = ocfs2_dir_llseek, 2833 .read = generic_read_dir, 2834 .iterate_shared = shared_ocfs2_readdir, 2835 .fsync = ocfs2_sync_file, 2836 .release = ocfs2_dir_release, 2837 .open = ocfs2_dir_open, 2838 .unlocked_ioctl = ocfs2_ioctl, 2839 #ifdef CONFIG_COMPAT 2840 .compat_ioctl = ocfs2_compat_ioctl, 2841 #endif 2842 .lock = ocfs2_lock, 2843 .flock = ocfs2_flock, 2844 .fop_flags = FOP_ASYNC_LOCK, 2845 .setlease = generic_setlease, 2846 }; 2847 2848 /* 2849 * POSIX-lockless variants of our file_operations. 2850 * 2851 * These will be used if the underlying cluster stack does not support 2852 * posix file locking, if the user passes the "localflocks" mount 2853 * option, or if we have a local-only fs. 2854 * 2855 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2856 * so we still want it in the case of no stack support for 2857 * plocks. Internally, it will do the right thing when asked to ignore 2858 * the cluster. 2859 */ 2860 const struct file_operations ocfs2_fops_no_plocks = { 2861 .llseek = ocfs2_file_llseek, 2862 .mmap_prepare = ocfs2_mmap_prepare, 2863 .fsync = ocfs2_sync_file, 2864 .release = ocfs2_file_release, 2865 .open = ocfs2_file_open, 2866 .read_iter = ocfs2_file_read_iter, 2867 .write_iter = ocfs2_file_write_iter, 2868 .unlocked_ioctl = ocfs2_ioctl, 2869 #ifdef CONFIG_COMPAT 2870 .compat_ioctl = ocfs2_compat_ioctl, 2871 #endif 2872 .flock = ocfs2_flock, 2873 .splice_read = filemap_splice_read, 2874 .splice_write = iter_file_splice_write, 2875 .fallocate = ocfs2_fallocate, 2876 .remap_file_range = ocfs2_remap_file_range, 2877 .setlease = generic_setlease, 2878 }; 2879 2880 const struct file_operations ocfs2_dops_no_plocks = { 2881 .llseek = ocfs2_dir_llseek, 2882 .read = generic_read_dir, 2883 .iterate_shared = shared_ocfs2_readdir, 2884 .fsync = ocfs2_sync_file, 2885 .release = ocfs2_dir_release, 2886 .open = ocfs2_dir_open, 2887 .unlocked_ioctl = ocfs2_ioctl, 2888 #ifdef CONFIG_COMPAT 2889 .compat_ioctl = ocfs2_compat_ioctl, 2890 #endif 2891 .flock = ocfs2_flock, 2892 .setlease = generic_setlease, 2893 }; 2894