xref: /linux/fs/ocfs2/journal.c (revision ebaeabfa5ab711a9b69b686d58329e258fdae75f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19 
20 #include <cluster/masklog.h>
21 
22 #include "ocfs2.h"
23 
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40 
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43 
44 DEFINE_SPINLOCK(trans_inc_lock);
45 
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47 
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 			      int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 				      int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 				 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 				 int slot,
60 				 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 					    int slot_num,
64 					    struct ocfs2_dinode *la_dinode,
65 					    struct ocfs2_dinode *tl_dinode,
66 					    struct ocfs2_quota_recovery *qrec,
67 					    enum ocfs2_orphan_reco_type orphan_reco_type);
68 
ocfs2_wait_on_mount(struct ocfs2_super * osb)69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 	return __ocfs2_wait_on_mount(osb, 0);
72 }
73 
ocfs2_wait_on_quotas(struct ocfs2_super * osb)74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 1);
77 }
78 
79 /*
80  * This replay_map is to track online/offline slots, so we could recover
81  * offline slots during recovery and mount
82  */
83 
84 enum ocfs2_replay_state {
85 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
86 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
87 	REPLAY_DONE 		/* Replay was already queued */
88 };
89 
90 struct ocfs2_replay_map {
91 	unsigned int rm_slots;
92 	enum ocfs2_replay_state rm_state;
93 	unsigned char rm_replay_slots[] __counted_by(rm_slots);
94 };
95 
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98 	if (!osb->replay_map)
99 		return;
100 
101 	/* If we've already queued the replay, we don't have any more to do */
102 	if (osb->replay_map->rm_state == REPLAY_DONE)
103 		return;
104 
105 	osb->replay_map->rm_state = state;
106 }
107 
ocfs2_compute_replay_slots(struct ocfs2_super * osb)108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110 	struct ocfs2_replay_map *replay_map;
111 	int i, node_num;
112 
113 	/* If replay map is already set, we don't do it again */
114 	if (osb->replay_map)
115 		return 0;
116 
117 	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 					 osb->max_slots),
119 			     GFP_KERNEL);
120 	if (!replay_map) {
121 		mlog_errno(-ENOMEM);
122 		return -ENOMEM;
123 	}
124 
125 	spin_lock(&osb->osb_lock);
126 
127 	replay_map->rm_slots = osb->max_slots;
128 	replay_map->rm_state = REPLAY_UNNEEDED;
129 
130 	/* set rm_replay_slots for offline slot(s) */
131 	for (i = 0; i < replay_map->rm_slots; i++) {
132 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 			replay_map->rm_replay_slots[i] = 1;
134 	}
135 
136 	osb->replay_map = replay_map;
137 	spin_unlock(&osb->osb_lock);
138 	return 0;
139 }
140 
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 		enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144 	struct ocfs2_replay_map *replay_map = osb->replay_map;
145 	int i;
146 
147 	if (!replay_map)
148 		return;
149 
150 	if (replay_map->rm_state != REPLAY_NEEDED)
151 		return;
152 
153 	for (i = 0; i < replay_map->rm_slots; i++)
154 		if (replay_map->rm_replay_slots[i])
155 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 							NULL, NULL,
157 							orphan_reco_type);
158 	replay_map->rm_state = REPLAY_DONE;
159 }
160 
ocfs2_free_replay_slots(struct ocfs2_super * osb)161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163 	struct ocfs2_replay_map *replay_map = osb->replay_map;
164 
165 	if (!osb->replay_map)
166 		return;
167 
168 	kfree(replay_map);
169 	osb->replay_map = NULL;
170 }
171 
ocfs2_recovery_init(struct ocfs2_super * osb)172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174 	struct ocfs2_recovery_map *rm;
175 
176 	mutex_init(&osb->recovery_lock);
177 	osb->recovery_state = OCFS2_REC_ENABLED;
178 	osb->recovery_thread_task = NULL;
179 	init_waitqueue_head(&osb->recovery_event);
180 
181 	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 		     GFP_KERNEL);
183 	if (!rm) {
184 		mlog_errno(-ENOMEM);
185 		return -ENOMEM;
186 	}
187 
188 	osb->recovery_map = rm;
189 
190 	return 0;
191 }
192 
ocfs2_recovery_thread_running(struct ocfs2_super * osb)193 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
194 {
195 	return osb->recovery_thread_task != NULL;
196 }
197 
ocfs2_recovery_disable(struct ocfs2_super * osb,enum ocfs2_recovery_state state)198 static void ocfs2_recovery_disable(struct ocfs2_super *osb,
199 				   enum ocfs2_recovery_state state)
200 {
201 	mutex_lock(&osb->recovery_lock);
202 	/*
203 	 * If recovery thread is not running, we can directly transition to
204 	 * final state.
205 	 */
206 	if (!ocfs2_recovery_thread_running(osb)) {
207 		osb->recovery_state = state + 1;
208 		goto out_lock;
209 	}
210 	osb->recovery_state = state;
211 	/* Wait for recovery thread to acknowledge state transition */
212 	wait_event_cmd(osb->recovery_event,
213 		       !ocfs2_recovery_thread_running(osb) ||
214 				osb->recovery_state >= state + 1,
215 		       mutex_unlock(&osb->recovery_lock),
216 		       mutex_lock(&osb->recovery_lock));
217 out_lock:
218 	mutex_unlock(&osb->recovery_lock);
219 
220 	/*
221 	 * At this point we know that no more recovery work can be queued so
222 	 * wait for any recovery completion work to complete.
223 	 */
224 	if (osb->ocfs2_wq)
225 		flush_workqueue(osb->ocfs2_wq);
226 }
227 
ocfs2_recovery_disable_quota(struct ocfs2_super * osb)228 void ocfs2_recovery_disable_quota(struct ocfs2_super *osb)
229 {
230 	ocfs2_recovery_disable(osb, OCFS2_REC_QUOTA_WANT_DISABLE);
231 }
232 
ocfs2_recovery_exit(struct ocfs2_super * osb)233 void ocfs2_recovery_exit(struct ocfs2_super *osb)
234 {
235 	struct ocfs2_recovery_map *rm;
236 
237 	/* disable any new recovery threads and wait for any currently
238 	 * running ones to exit. Do this before setting the vol_state. */
239 	ocfs2_recovery_disable(osb, OCFS2_REC_WANT_DISABLE);
240 
241 	/*
242 	 * Now that recovery is shut down, and the osb is about to be
243 	 * freed,  the osb_lock is not taken here.
244 	 */
245 	rm = osb->recovery_map;
246 	/* XXX: Should we bug if there are dirty entries? */
247 
248 	kfree(rm);
249 }
250 
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)251 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
252 				     unsigned int node_num)
253 {
254 	int i;
255 	struct ocfs2_recovery_map *rm = osb->recovery_map;
256 
257 	assert_spin_locked(&osb->osb_lock);
258 
259 	for (i = 0; i < rm->rm_used; i++) {
260 		if (rm->rm_entries[i] == node_num)
261 			return 1;
262 	}
263 
264 	return 0;
265 }
266 
267 /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)268 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
269 				  unsigned int node_num)
270 {
271 	struct ocfs2_recovery_map *rm = osb->recovery_map;
272 
273 	spin_lock(&osb->osb_lock);
274 	if (__ocfs2_recovery_map_test(osb, node_num)) {
275 		spin_unlock(&osb->osb_lock);
276 		return 1;
277 	}
278 
279 	/* XXX: Can this be exploited? Not from o2dlm... */
280 	BUG_ON(rm->rm_used >= osb->max_slots);
281 
282 	rm->rm_entries[rm->rm_used] = node_num;
283 	rm->rm_used++;
284 	spin_unlock(&osb->osb_lock);
285 
286 	return 0;
287 }
288 
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)289 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
290 				     unsigned int node_num)
291 {
292 	int i;
293 	struct ocfs2_recovery_map *rm = osb->recovery_map;
294 
295 	spin_lock(&osb->osb_lock);
296 
297 	for (i = 0; i < rm->rm_used; i++) {
298 		if (rm->rm_entries[i] == node_num)
299 			break;
300 	}
301 
302 	if (i < rm->rm_used) {
303 		/* XXX: be careful with the pointer math */
304 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
305 			(rm->rm_used - i - 1) * sizeof(unsigned int));
306 		rm->rm_used--;
307 	}
308 
309 	spin_unlock(&osb->osb_lock);
310 }
311 
ocfs2_commit_cache(struct ocfs2_super * osb)312 static int ocfs2_commit_cache(struct ocfs2_super *osb)
313 {
314 	int status = 0;
315 	unsigned int flushed;
316 	struct ocfs2_journal *journal = NULL;
317 
318 	journal = osb->journal;
319 
320 	/* Flush all pending commits and checkpoint the journal. */
321 	down_write(&journal->j_trans_barrier);
322 
323 	flushed = atomic_read(&journal->j_num_trans);
324 	trace_ocfs2_commit_cache_begin(flushed);
325 	if (flushed == 0) {
326 		up_write(&journal->j_trans_barrier);
327 		goto finally;
328 	}
329 
330 	jbd2_journal_lock_updates(journal->j_journal);
331 	status = jbd2_journal_flush(journal->j_journal, 0);
332 	jbd2_journal_unlock_updates(journal->j_journal);
333 	if (status < 0) {
334 		up_write(&journal->j_trans_barrier);
335 		mlog_errno(status);
336 		goto finally;
337 	}
338 
339 	ocfs2_inc_trans_id(journal);
340 
341 	flushed = atomic_read(&journal->j_num_trans);
342 	atomic_set(&journal->j_num_trans, 0);
343 	up_write(&journal->j_trans_barrier);
344 
345 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
346 
347 	ocfs2_wake_downconvert_thread(osb);
348 	wake_up(&journal->j_checkpointed);
349 finally:
350 	return status;
351 }
352 
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)353 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
354 {
355 	journal_t *journal = osb->journal->j_journal;
356 	handle_t *handle;
357 
358 	BUG_ON(!osb || !osb->journal->j_journal);
359 
360 	if (ocfs2_is_hard_readonly(osb))
361 		return ERR_PTR(-EROFS);
362 
363 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
364 	BUG_ON(max_buffs <= 0);
365 
366 	/* Nested transaction? Just return the handle... */
367 	if (journal_current_handle())
368 		return jbd2_journal_start(journal, max_buffs);
369 
370 	sb_start_intwrite(osb->sb);
371 
372 	down_read(&osb->journal->j_trans_barrier);
373 
374 	handle = jbd2_journal_start(journal, max_buffs);
375 	if (IS_ERR(handle)) {
376 		up_read(&osb->journal->j_trans_barrier);
377 		sb_end_intwrite(osb->sb);
378 
379 		mlog_errno(PTR_ERR(handle));
380 
381 		if (is_journal_aborted(journal)) {
382 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
383 			handle = ERR_PTR(-EROFS);
384 		}
385 	} else {
386 		if (!ocfs2_mount_local(osb))
387 			atomic_inc(&(osb->journal->j_num_trans));
388 	}
389 
390 	return handle;
391 }
392 
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)393 int ocfs2_commit_trans(struct ocfs2_super *osb,
394 		       handle_t *handle)
395 {
396 	int ret, nested;
397 	struct ocfs2_journal *journal = osb->journal;
398 
399 	BUG_ON(!handle);
400 
401 	nested = handle->h_ref > 1;
402 	ret = jbd2_journal_stop(handle);
403 	if (ret < 0)
404 		mlog_errno(ret);
405 
406 	if (!nested) {
407 		up_read(&journal->j_trans_barrier);
408 		sb_end_intwrite(osb->sb);
409 	}
410 
411 	return ret;
412 }
413 
414 /*
415  * 'nblocks' is what you want to add to the current transaction.
416  *
417  * This might call jbd2_journal_restart() which will commit dirty buffers
418  * and then restart the transaction. Before calling
419  * ocfs2_extend_trans(), any changed blocks should have been
420  * dirtied. After calling it, all blocks which need to be changed must
421  * go through another set of journal_access/journal_dirty calls.
422  *
423  * WARNING: This will not release any semaphores or disk locks taken
424  * during the transaction, so make sure they were taken *before*
425  * start_trans or we'll have ordering deadlocks.
426  *
427  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
428  * good because transaction ids haven't yet been recorded on the
429  * cluster locks associated with this handle.
430  */
ocfs2_extend_trans(handle_t * handle,int nblocks)431 int ocfs2_extend_trans(handle_t *handle, int nblocks)
432 {
433 	int status, old_nblocks;
434 
435 	BUG_ON(!handle);
436 	BUG_ON(nblocks < 0);
437 
438 	if (!nblocks)
439 		return 0;
440 
441 	old_nblocks = jbd2_handle_buffer_credits(handle);
442 
443 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
444 
445 #ifdef CONFIG_OCFS2_DEBUG_FS
446 	status = 1;
447 #else
448 	status = jbd2_journal_extend(handle, nblocks, 0);
449 	if (status < 0) {
450 		mlog_errno(status);
451 		goto bail;
452 	}
453 #endif
454 
455 	if (status > 0) {
456 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
457 		status = jbd2_journal_restart(handle,
458 					      old_nblocks + nblocks);
459 		if (status < 0) {
460 			mlog_errno(status);
461 			goto bail;
462 		}
463 	}
464 
465 	status = 0;
466 bail:
467 	return status;
468 }
469 
470 /*
471  * Make sure handle has at least 'nblocks' credits available. If it does not
472  * have that many credits available, we will try to extend the handle to have
473  * enough credits. If that fails, we will restart transaction to have enough
474  * credits. Similar notes regarding data consistency and locking implications
475  * as for ocfs2_extend_trans() apply here.
476  */
ocfs2_assure_trans_credits(handle_t * handle,int nblocks)477 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
478 {
479 	int old_nblks = jbd2_handle_buffer_credits(handle);
480 
481 	trace_ocfs2_assure_trans_credits(old_nblks);
482 	if (old_nblks >= nblocks)
483 		return 0;
484 	return ocfs2_extend_trans(handle, nblocks - old_nblks);
485 }
486 
487 /*
488  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
489  * If that fails, restart the transaction & regain write access for the
490  * buffer head which is used for metadata modifications.
491  * Taken from Ext4: extend_or_restart_transaction()
492  */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)493 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
494 {
495 	int status, old_nblks;
496 
497 	BUG_ON(!handle);
498 
499 	old_nblks = jbd2_handle_buffer_credits(handle);
500 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
501 
502 	if (old_nblks < thresh)
503 		return 0;
504 
505 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
506 	if (status < 0) {
507 		mlog_errno(status);
508 		goto bail;
509 	}
510 
511 	if (status > 0) {
512 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
513 		if (status < 0)
514 			mlog_errno(status);
515 	}
516 
517 bail:
518 	return status;
519 }
520 
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)521 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
522 {
523 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
524 }
525 
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)526 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
527 				 struct buffer_head *bh,
528 				 void *data, size_t size)
529 {
530 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
531 
532 	/*
533 	 * We aren't guaranteed to have the superblock here, so we
534 	 * must unconditionally compute the ecc data.
535 	 * __ocfs2_journal_access() will only set the triggers if
536 	 * metaecc is enabled.
537 	 */
538 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
539 }
540 
541 /*
542  * Quota blocks have their own trigger because the struct ocfs2_block_check
543  * offset depends on the blocksize.
544  */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)545 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
546 				 struct buffer_head *bh,
547 				 void *data, size_t size)
548 {
549 	struct ocfs2_disk_dqtrailer *dqt =
550 		ocfs2_block_dqtrailer(size, data);
551 
552 	/*
553 	 * We aren't guaranteed to have the superblock here, so we
554 	 * must unconditionally compute the ecc data.
555 	 * __ocfs2_journal_access() will only set the triggers if
556 	 * metaecc is enabled.
557 	 */
558 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
559 }
560 
561 /*
562  * Directory blocks also have their own trigger because the
563  * struct ocfs2_block_check offset depends on the blocksize.
564  */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)565 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
566 				 struct buffer_head *bh,
567 				 void *data, size_t size)
568 {
569 	struct ocfs2_dir_block_trailer *trailer =
570 		ocfs2_dir_trailer_from_size(size, data);
571 
572 	/*
573 	 * We aren't guaranteed to have the superblock here, so we
574 	 * must unconditionally compute the ecc data.
575 	 * __ocfs2_journal_access() will only set the triggers if
576 	 * metaecc is enabled.
577 	 */
578 	ocfs2_block_check_compute(data, size, &trailer->db_check);
579 }
580 
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)581 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
582 				struct buffer_head *bh)
583 {
584 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
585 
586 	mlog(ML_ERROR,
587 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
588 	     "bh->b_blocknr = %llu\n",
589 	     (unsigned long)bh,
590 	     (unsigned long long)bh->b_blocknr);
591 
592 	ocfs2_error(ot->sb,
593 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
594 }
595 
ocfs2_setup_csum_triggers(struct super_block * sb,enum ocfs2_journal_trigger_type type,struct ocfs2_triggers * ot)596 static void ocfs2_setup_csum_triggers(struct super_block *sb,
597 				      enum ocfs2_journal_trigger_type type,
598 				      struct ocfs2_triggers *ot)
599 {
600 	BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
601 
602 	switch (type) {
603 	case OCFS2_JTR_DI:
604 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
605 		ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
606 		break;
607 	case OCFS2_JTR_EB:
608 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609 		ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
610 		break;
611 	case OCFS2_JTR_RB:
612 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613 		ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
614 		break;
615 	case OCFS2_JTR_GD:
616 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
617 		ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
618 		break;
619 	case OCFS2_JTR_DB:
620 		ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
621 		break;
622 	case OCFS2_JTR_XB:
623 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
624 		ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
625 		break;
626 	case OCFS2_JTR_DQ:
627 		ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
628 		break;
629 	case OCFS2_JTR_DR:
630 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
631 		ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
632 		break;
633 	case OCFS2_JTR_DL:
634 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
635 		ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
636 		break;
637 	case OCFS2_JTR_NONE:
638 		/* To make compiler happy... */
639 		return;
640 	}
641 
642 	ot->ot_triggers.t_abort = ocfs2_abort_trigger;
643 	ot->sb = sb;
644 }
645 
ocfs2_initialize_journal_triggers(struct super_block * sb,struct ocfs2_triggers triggers[])646 void ocfs2_initialize_journal_triggers(struct super_block *sb,
647 				       struct ocfs2_triggers triggers[])
648 {
649 	enum ocfs2_journal_trigger_type type;
650 
651 	for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
652 		ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
653 }
654 
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)655 static int __ocfs2_journal_access(handle_t *handle,
656 				  struct ocfs2_caching_info *ci,
657 				  struct buffer_head *bh,
658 				  struct ocfs2_triggers *triggers,
659 				  int type)
660 {
661 	int status;
662 	struct ocfs2_super *osb =
663 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
664 
665 	BUG_ON(!ci || !ci->ci_ops);
666 	BUG_ON(!handle);
667 	BUG_ON(!bh);
668 
669 	trace_ocfs2_journal_access(
670 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
671 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
672 
673 	/* we can safely remove this assertion after testing. */
674 	if (!buffer_uptodate(bh)) {
675 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
676 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
677 		     (unsigned long long)bh->b_blocknr, bh->b_state);
678 
679 		lock_buffer(bh);
680 		/*
681 		 * A previous transaction with a couple of buffer heads fail
682 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
683 		 * For current transaction, the bh is just among those error
684 		 * bhs which previous transaction handle. We can't just clear
685 		 * its BH_Write_EIO and reuse directly, since other bhs are
686 		 * not written to disk yet and that will cause metadata
687 		 * inconsistency. So we should set fs read-only to avoid
688 		 * further damage.
689 		 */
690 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
691 			unlock_buffer(bh);
692 			return ocfs2_error(osb->sb, "A previous attempt to "
693 					"write this buffer head failed\n");
694 		}
695 		unlock_buffer(bh);
696 	}
697 
698 	/* Set the current transaction information on the ci so
699 	 * that the locking code knows whether it can drop it's locks
700 	 * on this ci or not. We're protected from the commit
701 	 * thread updating the current transaction id until
702 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
703 	 * j_trans_barrier for us. */
704 	ocfs2_set_ci_lock_trans(osb->journal, ci);
705 
706 	ocfs2_metadata_cache_io_lock(ci);
707 	switch (type) {
708 	case OCFS2_JOURNAL_ACCESS_CREATE:
709 	case OCFS2_JOURNAL_ACCESS_WRITE:
710 		status = jbd2_journal_get_write_access(handle, bh);
711 		break;
712 
713 	case OCFS2_JOURNAL_ACCESS_UNDO:
714 		status = jbd2_journal_get_undo_access(handle, bh);
715 		break;
716 
717 	default:
718 		status = -EINVAL;
719 		mlog(ML_ERROR, "Unknown access type!\n");
720 	}
721 	if (!status && ocfs2_meta_ecc(osb) && triggers)
722 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
723 	ocfs2_metadata_cache_io_unlock(ci);
724 
725 	if (status < 0)
726 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
727 		     status, type);
728 
729 	return status;
730 }
731 
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)732 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
733 			    struct buffer_head *bh, int type)
734 {
735 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
736 
737 	return __ocfs2_journal_access(handle, ci, bh,
738 				      &osb->s_journal_triggers[OCFS2_JTR_DI],
739 				      type);
740 }
741 
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)742 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
743 			    struct buffer_head *bh, int type)
744 {
745 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
746 
747 	return __ocfs2_journal_access(handle, ci, bh,
748 				      &osb->s_journal_triggers[OCFS2_JTR_EB],
749 				      type);
750 }
751 
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)752 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
753 			    struct buffer_head *bh, int type)
754 {
755 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
756 
757 	return __ocfs2_journal_access(handle, ci, bh,
758 				      &osb->s_journal_triggers[OCFS2_JTR_RB],
759 				      type);
760 }
761 
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)762 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
763 			    struct buffer_head *bh, int type)
764 {
765 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
766 
767 	return __ocfs2_journal_access(handle, ci, bh,
768 				     &osb->s_journal_triggers[OCFS2_JTR_GD],
769 				     type);
770 }
771 
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)772 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
773 			    struct buffer_head *bh, int type)
774 {
775 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
776 
777 	return __ocfs2_journal_access(handle, ci, bh,
778 				     &osb->s_journal_triggers[OCFS2_JTR_DB],
779 				     type);
780 }
781 
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)782 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
783 			    struct buffer_head *bh, int type)
784 {
785 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
786 
787 	return __ocfs2_journal_access(handle, ci, bh,
788 				     &osb->s_journal_triggers[OCFS2_JTR_XB],
789 				     type);
790 }
791 
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)792 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
793 			    struct buffer_head *bh, int type)
794 {
795 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
796 
797 	return __ocfs2_journal_access(handle, ci, bh,
798 				     &osb->s_journal_triggers[OCFS2_JTR_DQ],
799 				     type);
800 }
801 
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)802 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
803 			    struct buffer_head *bh, int type)
804 {
805 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
806 
807 	return __ocfs2_journal_access(handle, ci, bh,
808 				     &osb->s_journal_triggers[OCFS2_JTR_DR],
809 				     type);
810 }
811 
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)812 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
813 			    struct buffer_head *bh, int type)
814 {
815 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
816 
817 	return __ocfs2_journal_access(handle, ci, bh,
818 				     &osb->s_journal_triggers[OCFS2_JTR_DL],
819 				     type);
820 }
821 
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)822 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
823 			 struct buffer_head *bh, int type)
824 {
825 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
826 }
827 
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)828 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
829 {
830 	int status;
831 
832 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
833 
834 	status = jbd2_journal_dirty_metadata(handle, bh);
835 	if (status) {
836 		mlog_errno(status);
837 		if (!is_handle_aborted(handle)) {
838 			journal_t *journal = handle->h_transaction->t_journal;
839 
840 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
841 			     "handle type %u started at line %u, credits %u/%u "
842 			     "errcode %d. Aborting transaction and journal.\n",
843 			     handle->h_type, handle->h_line_no,
844 			     handle->h_requested_credits,
845 			     jbd2_handle_buffer_credits(handle), status);
846 			handle->h_err = status;
847 			jbd2_journal_abort_handle(handle);
848 			jbd2_journal_abort(journal, status);
849 		}
850 	}
851 }
852 
853 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
854 
ocfs2_set_journal_params(struct ocfs2_super * osb)855 void ocfs2_set_journal_params(struct ocfs2_super *osb)
856 {
857 	journal_t *journal = osb->journal->j_journal;
858 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
859 
860 	if (osb->osb_commit_interval)
861 		commit_interval = osb->osb_commit_interval;
862 
863 	write_lock(&journal->j_state_lock);
864 	journal->j_commit_interval = commit_interval;
865 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
866 		journal->j_flags |= JBD2_BARRIER;
867 	else
868 		journal->j_flags &= ~JBD2_BARRIER;
869 	write_unlock(&journal->j_state_lock);
870 }
871 
872 /*
873  * alloc & initialize skeleton for journal structure.
874  * ocfs2_journal_init() will make fs have journal ability.
875  */
ocfs2_journal_alloc(struct ocfs2_super * osb)876 int ocfs2_journal_alloc(struct ocfs2_super *osb)
877 {
878 	int status = 0;
879 	struct ocfs2_journal *journal;
880 
881 	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
882 	if (!journal) {
883 		mlog(ML_ERROR, "unable to alloc journal\n");
884 		status = -ENOMEM;
885 		goto bail;
886 	}
887 	osb->journal = journal;
888 	journal->j_osb = osb;
889 
890 	atomic_set(&journal->j_num_trans, 0);
891 	init_rwsem(&journal->j_trans_barrier);
892 	init_waitqueue_head(&journal->j_checkpointed);
893 	spin_lock_init(&journal->j_lock);
894 	journal->j_trans_id = 1UL;
895 	INIT_LIST_HEAD(&journal->j_la_cleanups);
896 	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
897 	journal->j_state = OCFS2_JOURNAL_FREE;
898 
899 bail:
900 	return status;
901 }
902 
ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)903 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
904 {
905 	return filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
906 			jinode->i_dirty_start, jinode->i_dirty_end);
907 }
908 
ocfs2_journal_init(struct ocfs2_super * osb,int * dirty)909 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
910 {
911 	int status = -1;
912 	struct inode *inode = NULL; /* the journal inode */
913 	journal_t *j_journal = NULL;
914 	struct ocfs2_journal *journal = osb->journal;
915 	struct ocfs2_dinode *di = NULL;
916 	struct buffer_head *bh = NULL;
917 	int inode_lock = 0;
918 
919 	BUG_ON(!journal);
920 	/* already have the inode for our journal */
921 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
922 					    osb->slot_num);
923 	if (inode == NULL) {
924 		status = -EACCES;
925 		mlog_errno(status);
926 		goto done;
927 	}
928 	if (is_bad_inode(inode)) {
929 		mlog(ML_ERROR, "access error (bad inode)\n");
930 		iput(inode);
931 		inode = NULL;
932 		status = -EACCES;
933 		goto done;
934 	}
935 
936 	SET_INODE_JOURNAL(inode);
937 	OCFS2_I(inode)->ip_open_count++;
938 
939 	/* Skip recovery waits here - journal inode metadata never
940 	 * changes in a live cluster so it can be considered an
941 	 * exception to the rule. */
942 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
943 	if (status < 0) {
944 		if (status != -ERESTARTSYS)
945 			mlog(ML_ERROR, "Could not get lock on journal!\n");
946 		goto done;
947 	}
948 
949 	inode_lock = 1;
950 	di = (struct ocfs2_dinode *)bh->b_data;
951 
952 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
953 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
954 		     i_size_read(inode));
955 		status = -EINVAL;
956 		goto done;
957 	}
958 
959 	trace_ocfs2_journal_init(i_size_read(inode),
960 				 (unsigned long long)inode->i_blocks,
961 				 OCFS2_I(inode)->ip_clusters);
962 
963 	/* call the kernels journal init function now */
964 	j_journal = jbd2_journal_init_inode(inode);
965 	if (IS_ERR(j_journal)) {
966 		mlog(ML_ERROR, "Linux journal layer error\n");
967 		status = PTR_ERR(j_journal);
968 		goto done;
969 	}
970 
971 	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
972 
973 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
974 		  OCFS2_JOURNAL_DIRTY_FL);
975 
976 	journal->j_journal = j_journal;
977 	journal->j_journal->j_submit_inode_data_buffers =
978 		ocfs2_journal_submit_inode_data_buffers;
979 	journal->j_journal->j_finish_inode_data_buffers =
980 		jbd2_journal_finish_inode_data_buffers;
981 	journal->j_inode = inode;
982 	journal->j_bh = bh;
983 
984 	ocfs2_set_journal_params(osb);
985 
986 	journal->j_state = OCFS2_JOURNAL_LOADED;
987 
988 	status = 0;
989 done:
990 	if (status < 0) {
991 		if (inode_lock)
992 			ocfs2_inode_unlock(inode, 1);
993 		brelse(bh);
994 		if (inode) {
995 			OCFS2_I(inode)->ip_open_count--;
996 			iput(inode);
997 		}
998 	}
999 
1000 	return status;
1001 }
1002 
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)1003 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
1004 {
1005 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
1006 }
1007 
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)1008 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
1009 {
1010 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
1011 }
1012 
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)1013 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
1014 				      int dirty, int replayed)
1015 {
1016 	int status;
1017 	unsigned int flags;
1018 	struct ocfs2_journal *journal = osb->journal;
1019 	struct buffer_head *bh = journal->j_bh;
1020 	struct ocfs2_dinode *fe;
1021 
1022 	fe = (struct ocfs2_dinode *)bh->b_data;
1023 
1024 	/* The journal bh on the osb always comes from ocfs2_journal_init()
1025 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
1026 	 * code bug if we mess it up. */
1027 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1028 
1029 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1030 	if (dirty)
1031 		flags |= OCFS2_JOURNAL_DIRTY_FL;
1032 	else
1033 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1034 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1035 
1036 	if (replayed)
1037 		ocfs2_bump_recovery_generation(fe);
1038 
1039 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1040 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1041 	if (status < 0)
1042 		mlog_errno(status);
1043 
1044 	return status;
1045 }
1046 
1047 /*
1048  * If the journal has been kmalloc'd it needs to be freed after this
1049  * call.
1050  */
ocfs2_journal_shutdown(struct ocfs2_super * osb)1051 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1052 {
1053 	struct ocfs2_journal *journal = NULL;
1054 	int status = 0;
1055 	struct inode *inode = NULL;
1056 	int num_running_trans = 0;
1057 
1058 	BUG_ON(!osb);
1059 
1060 	journal = osb->journal;
1061 	if (!journal)
1062 		goto done;
1063 
1064 	inode = journal->j_inode;
1065 
1066 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1067 		goto done;
1068 
1069 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1070 	if (!igrab(inode))
1071 		BUG();
1072 
1073 	num_running_trans = atomic_read(&(journal->j_num_trans));
1074 	trace_ocfs2_journal_shutdown(num_running_trans);
1075 
1076 	/* Do a commit_cache here. It will flush our journal, *and*
1077 	 * release any locks that are still held.
1078 	 * set the SHUTDOWN flag and release the trans lock.
1079 	 * the commit thread will take the trans lock for us below. */
1080 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1081 
1082 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1083 	 * drop the trans_lock (which we want to hold until we
1084 	 * completely destroy the journal. */
1085 	if (osb->commit_task) {
1086 		/* Wait for the commit thread */
1087 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1088 		kthread_stop(osb->commit_task);
1089 		osb->commit_task = NULL;
1090 	}
1091 
1092 	BUG_ON(atomic_read(&(journal->j_num_trans)) != 0);
1093 
1094 	if (ocfs2_mount_local(osb) &&
1095 	    (journal->j_journal->j_flags & JBD2_LOADED)) {
1096 		jbd2_journal_lock_updates(journal->j_journal);
1097 		status = jbd2_journal_flush(journal->j_journal, 0);
1098 		jbd2_journal_unlock_updates(journal->j_journal);
1099 		if (status < 0)
1100 			mlog_errno(status);
1101 	}
1102 
1103 	/* Shutdown the kernel journal system */
1104 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1105 		/*
1106 		 * Do not toggle if flush was unsuccessful otherwise
1107 		 * will leave dirty metadata in a "clean" journal
1108 		 */
1109 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1110 		if (status < 0)
1111 			mlog_errno(status);
1112 	}
1113 	journal->j_journal = NULL;
1114 
1115 	OCFS2_I(inode)->ip_open_count--;
1116 
1117 	/* unlock our journal */
1118 	ocfs2_inode_unlock(inode, 1);
1119 
1120 	brelse(journal->j_bh);
1121 	journal->j_bh = NULL;
1122 
1123 	journal->j_state = OCFS2_JOURNAL_FREE;
1124 
1125 done:
1126 	iput(inode);
1127 	kfree(journal);
1128 	osb->journal = NULL;
1129 }
1130 
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1131 static void ocfs2_clear_journal_error(struct super_block *sb,
1132 				      journal_t *journal,
1133 				      int slot)
1134 {
1135 	int olderr;
1136 
1137 	olderr = jbd2_journal_errno(journal);
1138 	if (olderr) {
1139 		mlog(ML_ERROR, "File system error %d recorded in "
1140 		     "journal %u.\n", olderr, slot);
1141 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1142 		     sb->s_id);
1143 
1144 		jbd2_journal_ack_err(journal);
1145 		jbd2_journal_clear_err(journal);
1146 	}
1147 }
1148 
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1149 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1150 {
1151 	int status = 0;
1152 	struct ocfs2_super *osb;
1153 
1154 	BUG_ON(!journal);
1155 
1156 	osb = journal->j_osb;
1157 
1158 	status = jbd2_journal_load(journal->j_journal);
1159 	if (status < 0) {
1160 		mlog(ML_ERROR, "Failed to load journal!\n");
1161 		goto done;
1162 	}
1163 
1164 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1165 
1166 	if (replayed) {
1167 		jbd2_journal_lock_updates(journal->j_journal);
1168 		status = jbd2_journal_flush(journal->j_journal, 0);
1169 		jbd2_journal_unlock_updates(journal->j_journal);
1170 		if (status < 0)
1171 			mlog_errno(status);
1172 	}
1173 
1174 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1175 	if (status < 0) {
1176 		mlog_errno(status);
1177 		goto done;
1178 	}
1179 
1180 	/* Launch the commit thread */
1181 	if (!local) {
1182 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1183 				"ocfs2cmt-%s", osb->uuid_str);
1184 		if (IS_ERR(osb->commit_task)) {
1185 			status = PTR_ERR(osb->commit_task);
1186 			osb->commit_task = NULL;
1187 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1188 			     "error=%d", status);
1189 			goto done;
1190 		}
1191 	} else
1192 		osb->commit_task = NULL;
1193 
1194 done:
1195 	return status;
1196 }
1197 
1198 
1199 /* 'full' flag tells us whether we clear out all blocks or if we just
1200  * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1201 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1202 {
1203 	int status;
1204 
1205 	BUG_ON(!journal);
1206 
1207 	status = jbd2_journal_wipe(journal->j_journal, full);
1208 	if (status < 0) {
1209 		mlog_errno(status);
1210 		goto bail;
1211 	}
1212 
1213 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1214 	if (status < 0)
1215 		mlog_errno(status);
1216 
1217 bail:
1218 	return status;
1219 }
1220 
ocfs2_recovery_completed(struct ocfs2_super * osb)1221 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1222 {
1223 	int empty;
1224 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1225 
1226 	spin_lock(&osb->osb_lock);
1227 	empty = (rm->rm_used == 0);
1228 	spin_unlock(&osb->osb_lock);
1229 
1230 	return empty;
1231 }
1232 
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1233 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1234 {
1235 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1236 }
1237 
1238 /*
1239  * JBD Might read a cached version of another nodes journal file. We
1240  * don't want this as this file changes often and we get no
1241  * notification on those changes. The only way to be sure that we've
1242  * got the most up to date version of those blocks then is to force
1243  * read them off disk. Just searching through the buffer cache won't
1244  * work as there may be pages backing this file which are still marked
1245  * up to date. We know things can't change on this file underneath us
1246  * as we have the lock by now :)
1247  */
ocfs2_force_read_journal(struct inode * inode)1248 static int ocfs2_force_read_journal(struct inode *inode)
1249 {
1250 	int status = 0;
1251 	int i;
1252 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1253 	struct buffer_head *bh = NULL;
1254 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1255 
1256 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1257 	v_blkno = 0;
1258 	while (v_blkno < num_blocks) {
1259 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1260 						     &p_blkno, &p_blocks, NULL);
1261 		if (status < 0) {
1262 			mlog_errno(status);
1263 			goto bail;
1264 		}
1265 
1266 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1267 			bh = __find_get_block_nonatomic(osb->sb->s_bdev, p_blkno,
1268 					osb->sb->s_blocksize);
1269 			/* block not cached. */
1270 			if (!bh)
1271 				continue;
1272 
1273 			brelse(bh);
1274 			bh = NULL;
1275 			/* We are reading journal data which should not
1276 			 * be put in the uptodate cache.
1277 			 */
1278 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1279 			if (status < 0) {
1280 				mlog_errno(status);
1281 				goto bail;
1282 			}
1283 
1284 			brelse(bh);
1285 			bh = NULL;
1286 		}
1287 
1288 		v_blkno += p_blocks;
1289 	}
1290 
1291 bail:
1292 	return status;
1293 }
1294 
1295 struct ocfs2_la_recovery_item {
1296 	struct list_head	lri_list;
1297 	int			lri_slot;
1298 	struct ocfs2_dinode	*lri_la_dinode;
1299 	struct ocfs2_dinode	*lri_tl_dinode;
1300 	struct ocfs2_quota_recovery *lri_qrec;
1301 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1302 };
1303 
1304 /* Does the second half of the recovery process. By this point, the
1305  * node is marked clean and can actually be considered recovered,
1306  * hence it's no longer in the recovery map, but there's still some
1307  * cleanup we can do which shouldn't happen within the recovery thread
1308  * as locking in that context becomes very difficult if we are to take
1309  * recovering nodes into account.
1310  *
1311  * NOTE: This function can and will sleep on recovery of other nodes
1312  * during cluster locking, just like any other ocfs2 process.
1313  */
ocfs2_complete_recovery(struct work_struct * work)1314 void ocfs2_complete_recovery(struct work_struct *work)
1315 {
1316 	int ret = 0;
1317 	struct ocfs2_journal *journal =
1318 		container_of(work, struct ocfs2_journal, j_recovery_work);
1319 	struct ocfs2_super *osb = journal->j_osb;
1320 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1321 	struct ocfs2_la_recovery_item *item, *n;
1322 	struct ocfs2_quota_recovery *qrec;
1323 	enum ocfs2_orphan_reco_type orphan_reco_type;
1324 	LIST_HEAD(tmp_la_list);
1325 
1326 	trace_ocfs2_complete_recovery(
1327 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1328 
1329 	spin_lock(&journal->j_lock);
1330 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1331 	spin_unlock(&journal->j_lock);
1332 
1333 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1334 		list_del_init(&item->lri_list);
1335 
1336 		ocfs2_wait_on_quotas(osb);
1337 
1338 		la_dinode = item->lri_la_dinode;
1339 		tl_dinode = item->lri_tl_dinode;
1340 		qrec = item->lri_qrec;
1341 		orphan_reco_type = item->lri_orphan_reco_type;
1342 
1343 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1344 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1345 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1346 			qrec);
1347 
1348 		if (la_dinode) {
1349 			ret = ocfs2_complete_local_alloc_recovery(osb,
1350 								  la_dinode);
1351 			if (ret < 0)
1352 				mlog_errno(ret);
1353 
1354 			kfree(la_dinode);
1355 		}
1356 
1357 		if (tl_dinode) {
1358 			ret = ocfs2_complete_truncate_log_recovery(osb,
1359 								   tl_dinode);
1360 			if (ret < 0)
1361 				mlog_errno(ret);
1362 
1363 			kfree(tl_dinode);
1364 		}
1365 
1366 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1367 				orphan_reco_type);
1368 		if (ret < 0)
1369 			mlog_errno(ret);
1370 
1371 		if (qrec) {
1372 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1373 							  item->lri_slot);
1374 			if (ret < 0)
1375 				mlog_errno(ret);
1376 			/* Recovery info is already freed now */
1377 		}
1378 
1379 		kfree(item);
1380 	}
1381 
1382 	trace_ocfs2_complete_recovery_end(ret);
1383 }
1384 
1385 /* NOTE: This function always eats your references to la_dinode and
1386  * tl_dinode, either manually on error, or by passing them to
1387  * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1388 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1389 					    int slot_num,
1390 					    struct ocfs2_dinode *la_dinode,
1391 					    struct ocfs2_dinode *tl_dinode,
1392 					    struct ocfs2_quota_recovery *qrec,
1393 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1394 {
1395 	struct ocfs2_la_recovery_item *item;
1396 
1397 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1398 	if (!item) {
1399 		/* Though we wish to avoid it, we are in fact safe in
1400 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1401 		 * than capable of reclaiming unused space. */
1402 		kfree(la_dinode);
1403 		kfree(tl_dinode);
1404 
1405 		if (qrec)
1406 			ocfs2_free_quota_recovery(qrec);
1407 
1408 		mlog_errno(-ENOMEM);
1409 		return;
1410 	}
1411 
1412 	INIT_LIST_HEAD(&item->lri_list);
1413 	item->lri_la_dinode = la_dinode;
1414 	item->lri_slot = slot_num;
1415 	item->lri_tl_dinode = tl_dinode;
1416 	item->lri_qrec = qrec;
1417 	item->lri_orphan_reco_type = orphan_reco_type;
1418 
1419 	spin_lock(&journal->j_lock);
1420 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1421 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1422 	spin_unlock(&journal->j_lock);
1423 }
1424 
1425 /* Called by the mount code to queue recovery the last part of
1426  * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1427 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1428 {
1429 	struct ocfs2_journal *journal = osb->journal;
1430 
1431 	if (ocfs2_is_hard_readonly(osb))
1432 		return;
1433 
1434 	/* No need to queue up our truncate_log as regular cleanup will catch
1435 	 * that */
1436 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1437 					osb->local_alloc_copy, NULL, NULL,
1438 					ORPHAN_NEED_TRUNCATE);
1439 	ocfs2_schedule_truncate_log_flush(osb, 0);
1440 
1441 	osb->local_alloc_copy = NULL;
1442 
1443 	/* queue to recover orphan slots for all offline slots */
1444 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1445 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1446 	ocfs2_free_replay_slots(osb);
1447 }
1448 
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1449 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1450 {
1451 	if (osb->quota_rec) {
1452 		ocfs2_queue_recovery_completion(osb->journal,
1453 						osb->slot_num,
1454 						NULL,
1455 						NULL,
1456 						osb->quota_rec,
1457 						ORPHAN_NEED_TRUNCATE);
1458 		osb->quota_rec = NULL;
1459 	}
1460 }
1461 
__ocfs2_recovery_thread(void * arg)1462 static int __ocfs2_recovery_thread(void *arg)
1463 {
1464 	int status, node_num, slot_num;
1465 	struct ocfs2_super *osb = arg;
1466 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1467 	int *rm_quota = NULL;
1468 	int rm_quota_used = 0, i;
1469 	struct ocfs2_quota_recovery *qrec;
1470 
1471 	/* Whether the quota supported. */
1472 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1473 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1474 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1475 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1476 
1477 	status = ocfs2_wait_on_mount(osb);
1478 	if (status < 0) {
1479 		goto bail;
1480 	}
1481 
1482 	if (quota_enabled) {
1483 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1484 		if (!rm_quota) {
1485 			status = -ENOMEM;
1486 			goto bail;
1487 		}
1488 	}
1489 restart:
1490 	if (quota_enabled) {
1491 		mutex_lock(&osb->recovery_lock);
1492 		/* Confirm that recovery thread will no longer recover quotas */
1493 		if (osb->recovery_state == OCFS2_REC_QUOTA_WANT_DISABLE) {
1494 			osb->recovery_state = OCFS2_REC_QUOTA_DISABLED;
1495 			wake_up(&osb->recovery_event);
1496 		}
1497 		if (osb->recovery_state >= OCFS2_REC_QUOTA_DISABLED)
1498 			quota_enabled = 0;
1499 		mutex_unlock(&osb->recovery_lock);
1500 	}
1501 
1502 	status = ocfs2_super_lock(osb, 1);
1503 	if (status < 0) {
1504 		mlog_errno(status);
1505 		goto bail;
1506 	}
1507 
1508 	status = ocfs2_compute_replay_slots(osb);
1509 	if (status < 0)
1510 		mlog_errno(status);
1511 
1512 	/* queue recovery for our own slot */
1513 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1514 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1515 
1516 	spin_lock(&osb->osb_lock);
1517 	while (rm->rm_used) {
1518 		/* It's always safe to remove entry zero, as we won't
1519 		 * clear it until ocfs2_recover_node() has succeeded. */
1520 		node_num = rm->rm_entries[0];
1521 		spin_unlock(&osb->osb_lock);
1522 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1523 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1524 		if (slot_num == -ENOENT) {
1525 			status = 0;
1526 			goto skip_recovery;
1527 		}
1528 
1529 		/* It is a bit subtle with quota recovery. We cannot do it
1530 		 * immediately because we have to obtain cluster locks from
1531 		 * quota files and we also don't want to just skip it because
1532 		 * then quota usage would be out of sync until some node takes
1533 		 * the slot. So we remember which nodes need quota recovery
1534 		 * and when everything else is done, we recover quotas. */
1535 		if (quota_enabled) {
1536 			for (i = 0; i < rm_quota_used
1537 					&& rm_quota[i] != slot_num; i++)
1538 				;
1539 
1540 			if (i == rm_quota_used)
1541 				rm_quota[rm_quota_used++] = slot_num;
1542 		}
1543 
1544 		status = ocfs2_recover_node(osb, node_num, slot_num);
1545 skip_recovery:
1546 		if (!status) {
1547 			ocfs2_recovery_map_clear(osb, node_num);
1548 		} else {
1549 			mlog(ML_ERROR,
1550 			     "Error %d recovering node %d on device (%u,%u)!\n",
1551 			     status, node_num,
1552 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1553 			mlog(ML_ERROR, "Volume requires unmount.\n");
1554 		}
1555 
1556 		spin_lock(&osb->osb_lock);
1557 	}
1558 	spin_unlock(&osb->osb_lock);
1559 	trace_ocfs2_recovery_thread_end(status);
1560 
1561 	/* Refresh all journal recovery generations from disk */
1562 	status = ocfs2_check_journals_nolocks(osb);
1563 	status = (status == -EROFS) ? 0 : status;
1564 	if (status < 0)
1565 		mlog_errno(status);
1566 
1567 	/* Now it is right time to recover quotas... We have to do this under
1568 	 * superblock lock so that no one can start using the slot (and crash)
1569 	 * before we recover it */
1570 	if (quota_enabled) {
1571 		for (i = 0; i < rm_quota_used; i++) {
1572 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1573 			if (IS_ERR(qrec)) {
1574 				status = PTR_ERR(qrec);
1575 				mlog_errno(status);
1576 				continue;
1577 			}
1578 			ocfs2_queue_recovery_completion(osb->journal,
1579 					rm_quota[i],
1580 					NULL, NULL, qrec,
1581 					ORPHAN_NEED_TRUNCATE);
1582 		}
1583 	}
1584 
1585 	ocfs2_super_unlock(osb, 1);
1586 
1587 	/* queue recovery for offline slots */
1588 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1589 
1590 bail:
1591 	mutex_lock(&osb->recovery_lock);
1592 	if (!status && !ocfs2_recovery_completed(osb)) {
1593 		mutex_unlock(&osb->recovery_lock);
1594 		goto restart;
1595 	}
1596 
1597 	ocfs2_free_replay_slots(osb);
1598 	osb->recovery_thread_task = NULL;
1599 	if (osb->recovery_state == OCFS2_REC_WANT_DISABLE)
1600 		osb->recovery_state = OCFS2_REC_DISABLED;
1601 	wake_up(&osb->recovery_event);
1602 
1603 	mutex_unlock(&osb->recovery_lock);
1604 
1605 	kfree(rm_quota);
1606 
1607 	return status;
1608 }
1609 
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1610 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1611 {
1612 	int was_set = -1;
1613 
1614 	mutex_lock(&osb->recovery_lock);
1615 	if (osb->recovery_state < OCFS2_REC_WANT_DISABLE)
1616 		was_set = ocfs2_recovery_map_set(osb, node_num);
1617 
1618 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1619 		osb->recovery_state, osb->recovery_thread_task, was_set);
1620 
1621 	if (osb->recovery_state >= OCFS2_REC_WANT_DISABLE)
1622 		goto out;
1623 
1624 	if (osb->recovery_thread_task)
1625 		goto out;
1626 
1627 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1628 			"ocfs2rec-%s", osb->uuid_str);
1629 	if (IS_ERR(osb->recovery_thread_task)) {
1630 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1631 		osb->recovery_thread_task = NULL;
1632 	}
1633 
1634 out:
1635 	mutex_unlock(&osb->recovery_lock);
1636 	wake_up(&osb->recovery_event);
1637 }
1638 
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1639 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1640 				    int slot_num,
1641 				    struct buffer_head **bh,
1642 				    struct inode **ret_inode)
1643 {
1644 	int status = -EACCES;
1645 	struct inode *inode = NULL;
1646 
1647 	BUG_ON(slot_num >= osb->max_slots);
1648 
1649 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1650 					    slot_num);
1651 	if (!inode || is_bad_inode(inode)) {
1652 		mlog_errno(status);
1653 		goto bail;
1654 	}
1655 	SET_INODE_JOURNAL(inode);
1656 
1657 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1658 	if (status < 0) {
1659 		mlog_errno(status);
1660 		goto bail;
1661 	}
1662 
1663 	status = 0;
1664 
1665 bail:
1666 	if (inode) {
1667 		if (status || !ret_inode)
1668 			iput(inode);
1669 		else
1670 			*ret_inode = inode;
1671 	}
1672 	return status;
1673 }
1674 
1675 /* Does the actual journal replay and marks the journal inode as
1676  * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1677 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1678 				int node_num,
1679 				int slot_num)
1680 {
1681 	int status;
1682 	int got_lock = 0;
1683 	unsigned int flags;
1684 	struct inode *inode = NULL;
1685 	struct ocfs2_dinode *fe;
1686 	journal_t *journal = NULL;
1687 	struct buffer_head *bh = NULL;
1688 	u32 slot_reco_gen;
1689 
1690 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1691 	if (status) {
1692 		mlog_errno(status);
1693 		goto done;
1694 	}
1695 
1696 	fe = (struct ocfs2_dinode *)bh->b_data;
1697 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1698 	brelse(bh);
1699 	bh = NULL;
1700 
1701 	/*
1702 	 * As the fs recovery is asynchronous, there is a small chance that
1703 	 * another node mounted (and recovered) the slot before the recovery
1704 	 * thread could get the lock. To handle that, we dirty read the journal
1705 	 * inode for that slot to get the recovery generation. If it is
1706 	 * different than what we expected, the slot has been recovered.
1707 	 * If not, it needs recovery.
1708 	 */
1709 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1710 		trace_ocfs2_replay_journal_recovered(slot_num,
1711 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1712 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1713 		status = -EBUSY;
1714 		goto done;
1715 	}
1716 
1717 	/* Continue with recovery as the journal has not yet been recovered */
1718 
1719 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1720 	if (status < 0) {
1721 		trace_ocfs2_replay_journal_lock_err(status);
1722 		if (status != -ERESTARTSYS)
1723 			mlog(ML_ERROR, "Could not lock journal!\n");
1724 		goto done;
1725 	}
1726 	got_lock = 1;
1727 
1728 	fe = (struct ocfs2_dinode *) bh->b_data;
1729 
1730 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1731 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1732 
1733 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1734 		trace_ocfs2_replay_journal_skip(node_num);
1735 		/* Refresh recovery generation for the slot */
1736 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1737 		goto done;
1738 	}
1739 
1740 	/* we need to run complete recovery for offline orphan slots */
1741 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1742 
1743 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1744 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1745 	       MINOR(osb->sb->s_dev));
1746 
1747 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1748 
1749 	status = ocfs2_force_read_journal(inode);
1750 	if (status < 0) {
1751 		mlog_errno(status);
1752 		goto done;
1753 	}
1754 
1755 	journal = jbd2_journal_init_inode(inode);
1756 	if (IS_ERR(journal)) {
1757 		mlog(ML_ERROR, "Linux journal layer error\n");
1758 		status = PTR_ERR(journal);
1759 		goto done;
1760 	}
1761 
1762 	status = jbd2_journal_load(journal);
1763 	if (status < 0) {
1764 		mlog_errno(status);
1765 		BUG_ON(!igrab(inode));
1766 		jbd2_journal_destroy(journal);
1767 		goto done;
1768 	}
1769 
1770 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1771 
1772 	/* wipe the journal */
1773 	jbd2_journal_lock_updates(journal);
1774 	status = jbd2_journal_flush(journal, 0);
1775 	jbd2_journal_unlock_updates(journal);
1776 	if (status < 0)
1777 		mlog_errno(status);
1778 
1779 	/* This will mark the node clean */
1780 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1781 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1782 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1783 
1784 	/* Increment recovery generation to indicate successful recovery */
1785 	ocfs2_bump_recovery_generation(fe);
1786 	osb->slot_recovery_generations[slot_num] =
1787 					ocfs2_get_recovery_generation(fe);
1788 
1789 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1790 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1791 	if (status < 0)
1792 		mlog_errno(status);
1793 
1794 	BUG_ON(!igrab(inode));
1795 
1796 	jbd2_journal_destroy(journal);
1797 
1798 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1799 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1800 	       MINOR(osb->sb->s_dev));
1801 done:
1802 	/* drop the lock on this nodes journal */
1803 	if (got_lock)
1804 		ocfs2_inode_unlock(inode, 1);
1805 
1806 	iput(inode);
1807 	brelse(bh);
1808 
1809 	return status;
1810 }
1811 
1812 /*
1813  * Do the most important parts of node recovery:
1814  *  - Replay it's journal
1815  *  - Stamp a clean local allocator file
1816  *  - Stamp a clean truncate log
1817  *  - Mark the node clean
1818  *
1819  * If this function completes without error, a node in OCFS2 can be
1820  * said to have been safely recovered. As a result, failure during the
1821  * second part of a nodes recovery process (local alloc recovery) is
1822  * far less concerning.
1823  */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1824 static int ocfs2_recover_node(struct ocfs2_super *osb,
1825 			      int node_num, int slot_num)
1826 {
1827 	int status = 0;
1828 	struct ocfs2_dinode *la_copy = NULL;
1829 	struct ocfs2_dinode *tl_copy = NULL;
1830 
1831 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1832 
1833 	/* Should not ever be called to recover ourselves -- in that
1834 	 * case we should've called ocfs2_journal_load instead. */
1835 	BUG_ON(osb->node_num == node_num);
1836 
1837 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1838 	if (status < 0) {
1839 		if (status == -EBUSY) {
1840 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1841 			status = 0;
1842 			goto done;
1843 		}
1844 		mlog_errno(status);
1845 		goto done;
1846 	}
1847 
1848 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1849 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1850 	if (status < 0) {
1851 		mlog_errno(status);
1852 		goto done;
1853 	}
1854 
1855 	/* An error from begin_truncate_log_recovery is not
1856 	 * serious enough to warrant halting the rest of
1857 	 * recovery. */
1858 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1859 	if (status < 0)
1860 		mlog_errno(status);
1861 
1862 	/* Likewise, this would be a strange but ultimately not so
1863 	 * harmful place to get an error... */
1864 	status = ocfs2_clear_slot(osb, slot_num);
1865 	if (status < 0)
1866 		mlog_errno(status);
1867 
1868 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1869 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1870 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1871 
1872 	status = 0;
1873 done:
1874 
1875 	return status;
1876 }
1877 
1878 /* Test node liveness by trylocking his journal. If we get the lock,
1879  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1880  * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1881 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1882 				 int slot_num)
1883 {
1884 	int status, flags;
1885 	struct inode *inode = NULL;
1886 
1887 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1888 					    slot_num);
1889 	if (inode == NULL) {
1890 		mlog(ML_ERROR, "access error\n");
1891 		status = -EACCES;
1892 		goto bail;
1893 	}
1894 	if (is_bad_inode(inode)) {
1895 		mlog(ML_ERROR, "access error (bad inode)\n");
1896 		iput(inode);
1897 		inode = NULL;
1898 		status = -EACCES;
1899 		goto bail;
1900 	}
1901 	SET_INODE_JOURNAL(inode);
1902 
1903 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1904 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1905 	if (status < 0) {
1906 		if (status != -EAGAIN)
1907 			mlog_errno(status);
1908 		goto bail;
1909 	}
1910 
1911 	ocfs2_inode_unlock(inode, 1);
1912 bail:
1913 	iput(inode);
1914 
1915 	return status;
1916 }
1917 
1918 /* Call this underneath ocfs2_super_lock. It also assumes that the
1919  * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1920 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1921 {
1922 	unsigned int node_num;
1923 	int status, i;
1924 	u32 gen;
1925 	struct buffer_head *bh = NULL;
1926 	struct ocfs2_dinode *di;
1927 
1928 	/* This is called with the super block cluster lock, so we
1929 	 * know that the slot map can't change underneath us. */
1930 
1931 	for (i = 0; i < osb->max_slots; i++) {
1932 		/* Read journal inode to get the recovery generation */
1933 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1934 		if (status) {
1935 			mlog_errno(status);
1936 			goto bail;
1937 		}
1938 		di = (struct ocfs2_dinode *)bh->b_data;
1939 		gen = ocfs2_get_recovery_generation(di);
1940 		brelse(bh);
1941 		bh = NULL;
1942 
1943 		spin_lock(&osb->osb_lock);
1944 		osb->slot_recovery_generations[i] = gen;
1945 
1946 		trace_ocfs2_mark_dead_nodes(i,
1947 					    osb->slot_recovery_generations[i]);
1948 
1949 		if (i == osb->slot_num) {
1950 			spin_unlock(&osb->osb_lock);
1951 			continue;
1952 		}
1953 
1954 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1955 		if (status == -ENOENT) {
1956 			spin_unlock(&osb->osb_lock);
1957 			continue;
1958 		}
1959 
1960 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1961 			spin_unlock(&osb->osb_lock);
1962 			continue;
1963 		}
1964 		spin_unlock(&osb->osb_lock);
1965 
1966 		/* Ok, we have a slot occupied by another node which
1967 		 * is not in the recovery map. We trylock his journal
1968 		 * file here to test if he's alive. */
1969 		status = ocfs2_trylock_journal(osb, i);
1970 		if (!status) {
1971 			/* Since we're called from mount, we know that
1972 			 * the recovery thread can't race us on
1973 			 * setting / checking the recovery bits. */
1974 			ocfs2_recovery_thread(osb, node_num);
1975 		} else if ((status < 0) && (status != -EAGAIN)) {
1976 			mlog_errno(status);
1977 			goto bail;
1978 		}
1979 	}
1980 
1981 	status = 0;
1982 bail:
1983 	return status;
1984 }
1985 
1986 /*
1987  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1988  * randomness to the timeout to minimize multiple nodes firing the timer at the
1989  * same time.
1990  */
ocfs2_orphan_scan_timeout(void)1991 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1992 {
1993 	unsigned long time;
1994 
1995 	get_random_bytes(&time, sizeof(time));
1996 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1997 	return msecs_to_jiffies(time);
1998 }
1999 
2000 /*
2001  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
2002  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
2003  * is done to catch any orphans that are left over in orphan directories.
2004  *
2005  * It scans all slots, even ones that are in use. It does so to handle the
2006  * case described below:
2007  *
2008  *   Node 1 has an inode it was using. The dentry went away due to memory
2009  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
2010  *   has the open lock.
2011  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
2012  *   but node 1 has no dentry and doesn't get the message. It trylocks the
2013  *   open lock, sees that another node has a PR, and does nothing.
2014  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
2015  *   open lock, sees the PR still, and does nothing.
2016  *   Basically, we have to trigger an orphan iput on node 1. The only way
2017  *   for this to happen is if node 1 runs node 2's orphan dir.
2018  *
2019  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
2020  * seconds.  It gets an EX lock on os_lockres and checks sequence number
2021  * stored in LVB. If the sequence number has changed, it means some other
2022  * node has done the scan.  This node skips the scan and tracks the
2023  * sequence number.  If the sequence number didn't change, it means a scan
2024  * hasn't happened.  The node queues a scan and increments the
2025  * sequence number in the LVB.
2026  */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)2027 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
2028 {
2029 	struct ocfs2_orphan_scan *os;
2030 	int status, i;
2031 	u32 seqno = 0;
2032 
2033 	os = &osb->osb_orphan_scan;
2034 
2035 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2036 		goto out;
2037 
2038 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2039 					    atomic_read(&os->os_state));
2040 
2041 	status = ocfs2_orphan_scan_lock(osb, &seqno);
2042 	if (status < 0) {
2043 		if (status != -EAGAIN)
2044 			mlog_errno(status);
2045 		goto out;
2046 	}
2047 
2048 	/* Do no queue the tasks if the volume is being umounted */
2049 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2050 		goto unlock;
2051 
2052 	if (os->os_seqno != seqno) {
2053 		os->os_seqno = seqno;
2054 		goto unlock;
2055 	}
2056 
2057 	for (i = 0; i < osb->max_slots; i++)
2058 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2059 						NULL, ORPHAN_NO_NEED_TRUNCATE);
2060 	/*
2061 	 * We queued a recovery on orphan slots, increment the sequence
2062 	 * number and update LVB so other node will skip the scan for a while
2063 	 */
2064 	seqno++;
2065 	os->os_count++;
2066 	os->os_scantime = ktime_get_seconds();
2067 unlock:
2068 	ocfs2_orphan_scan_unlock(osb, seqno);
2069 out:
2070 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2071 					  atomic_read(&os->os_state));
2072 	return;
2073 }
2074 
2075 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)2076 static void ocfs2_orphan_scan_work(struct work_struct *work)
2077 {
2078 	struct ocfs2_orphan_scan *os;
2079 	struct ocfs2_super *osb;
2080 
2081 	os = container_of(work, struct ocfs2_orphan_scan,
2082 			  os_orphan_scan_work.work);
2083 	osb = os->os_osb;
2084 
2085 	mutex_lock(&os->os_lock);
2086 	ocfs2_queue_orphan_scan(osb);
2087 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2088 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2089 				      ocfs2_orphan_scan_timeout());
2090 	mutex_unlock(&os->os_lock);
2091 }
2092 
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)2093 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2094 {
2095 	struct ocfs2_orphan_scan *os;
2096 
2097 	os = &osb->osb_orphan_scan;
2098 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2099 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2100 		mutex_lock(&os->os_lock);
2101 		cancel_delayed_work(&os->os_orphan_scan_work);
2102 		mutex_unlock(&os->os_lock);
2103 	}
2104 }
2105 
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2106 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2107 {
2108 	struct ocfs2_orphan_scan *os;
2109 
2110 	os = &osb->osb_orphan_scan;
2111 	os->os_osb = osb;
2112 	os->os_count = 0;
2113 	os->os_seqno = 0;
2114 	mutex_init(&os->os_lock);
2115 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2116 }
2117 
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2118 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2119 {
2120 	struct ocfs2_orphan_scan *os;
2121 
2122 	os = &osb->osb_orphan_scan;
2123 	os->os_scantime = ktime_get_seconds();
2124 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2125 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2126 	else {
2127 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2128 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2129 				   ocfs2_orphan_scan_timeout());
2130 	}
2131 }
2132 
2133 struct ocfs2_orphan_filldir_priv {
2134 	struct dir_context	ctx;
2135 	struct inode		*head;
2136 	struct ocfs2_super	*osb;
2137 	enum ocfs2_orphan_reco_type orphan_reco_type;
2138 };
2139 
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2140 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2141 				int name_len, loff_t pos, u64 ino,
2142 				unsigned type)
2143 {
2144 	struct ocfs2_orphan_filldir_priv *p =
2145 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2146 	struct inode *iter;
2147 
2148 	if (name_len == 1 && !strncmp(".", name, 1))
2149 		return true;
2150 	if (name_len == 2 && !strncmp("..", name, 2))
2151 		return true;
2152 
2153 	/* do not include dio entry in case of orphan scan */
2154 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2155 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2156 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2157 		return true;
2158 
2159 	/* Skip bad inodes so that recovery can continue */
2160 	iter = ocfs2_iget(p->osb, ino,
2161 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2162 	if (IS_ERR(iter))
2163 		return true;
2164 
2165 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2166 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2167 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2168 
2169 	/* Skip inodes which are already added to recover list, since dio may
2170 	 * happen concurrently with unlink/rename */
2171 	if (OCFS2_I(iter)->ip_next_orphan) {
2172 		iput(iter);
2173 		return true;
2174 	}
2175 
2176 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2177 	/* No locking is required for the next_orphan queue as there
2178 	 * is only ever a single process doing orphan recovery. */
2179 	OCFS2_I(iter)->ip_next_orphan = p->head;
2180 	p->head = iter;
2181 
2182 	return true;
2183 }
2184 
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2185 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2186 			       int slot,
2187 			       struct inode **head,
2188 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2189 {
2190 	int status;
2191 	struct inode *orphan_dir_inode = NULL;
2192 	struct ocfs2_orphan_filldir_priv priv = {
2193 		.ctx.actor = ocfs2_orphan_filldir,
2194 		.osb = osb,
2195 		.head = *head,
2196 		.orphan_reco_type = orphan_reco_type
2197 	};
2198 
2199 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2200 						       ORPHAN_DIR_SYSTEM_INODE,
2201 						       slot);
2202 	if  (!orphan_dir_inode) {
2203 		status = -ENOENT;
2204 		mlog_errno(status);
2205 		return status;
2206 	}
2207 
2208 	inode_lock(orphan_dir_inode);
2209 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2210 	if (status < 0) {
2211 		mlog_errno(status);
2212 		goto out;
2213 	}
2214 
2215 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2216 	if (status) {
2217 		mlog_errno(status);
2218 		goto out_cluster;
2219 	}
2220 
2221 	*head = priv.head;
2222 
2223 out_cluster:
2224 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2225 out:
2226 	inode_unlock(orphan_dir_inode);
2227 	iput(orphan_dir_inode);
2228 	return status;
2229 }
2230 
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2231 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2232 					      int slot)
2233 {
2234 	int ret;
2235 
2236 	spin_lock(&osb->osb_lock);
2237 	ret = !osb->osb_orphan_wipes[slot];
2238 	spin_unlock(&osb->osb_lock);
2239 	return ret;
2240 }
2241 
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2242 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2243 					     int slot)
2244 {
2245 	spin_lock(&osb->osb_lock);
2246 	/* Mark ourselves such that new processes in delete_inode()
2247 	 * know to quit early. */
2248 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2249 	while (osb->osb_orphan_wipes[slot]) {
2250 		/* If any processes are already in the middle of an
2251 		 * orphan wipe on this dir, then we need to wait for
2252 		 * them. */
2253 		spin_unlock(&osb->osb_lock);
2254 		wait_event_interruptible(osb->osb_wipe_event,
2255 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2256 		spin_lock(&osb->osb_lock);
2257 	}
2258 	spin_unlock(&osb->osb_lock);
2259 }
2260 
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2261 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2262 					      int slot)
2263 {
2264 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2265 }
2266 
2267 /*
2268  * Orphan recovery. Each mounted node has it's own orphan dir which we
2269  * must run during recovery. Our strategy here is to build a list of
2270  * the inodes in the orphan dir and iget/iput them. The VFS does
2271  * (most) of the rest of the work.
2272  *
2273  * Orphan recovery can happen at any time, not just mount so we have a
2274  * couple of extra considerations.
2275  *
2276  * - We grab as many inodes as we can under the orphan dir lock -
2277  *   doing iget() outside the orphan dir risks getting a reference on
2278  *   an invalid inode.
2279  * - We must be sure not to deadlock with other processes on the
2280  *   system wanting to run delete_inode(). This can happen when they go
2281  *   to lock the orphan dir and the orphan recovery process attempts to
2282  *   iget() inside the orphan dir lock. This can be avoided by
2283  *   advertising our state to ocfs2_delete_inode().
2284  */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2285 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2286 				 int slot,
2287 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2288 {
2289 	int ret = 0;
2290 	struct inode *inode = NULL;
2291 	struct inode *iter;
2292 	struct ocfs2_inode_info *oi;
2293 	struct buffer_head *di_bh = NULL;
2294 	struct ocfs2_dinode *di = NULL;
2295 
2296 	trace_ocfs2_recover_orphans(slot);
2297 
2298 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2299 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2300 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2301 
2302 	/* Error here should be noted, but we want to continue with as
2303 	 * many queued inodes as we've got. */
2304 	if (ret)
2305 		mlog_errno(ret);
2306 
2307 	while (inode) {
2308 		oi = OCFS2_I(inode);
2309 		trace_ocfs2_recover_orphans_iput(
2310 					(unsigned long long)oi->ip_blkno);
2311 
2312 		iter = oi->ip_next_orphan;
2313 		oi->ip_next_orphan = NULL;
2314 
2315 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2316 			inode_lock(inode);
2317 			ret = ocfs2_rw_lock(inode, 1);
2318 			if (ret < 0) {
2319 				mlog_errno(ret);
2320 				goto unlock_mutex;
2321 			}
2322 			/*
2323 			 * We need to take and drop the inode lock to
2324 			 * force read inode from disk.
2325 			 */
2326 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2327 			if (ret) {
2328 				mlog_errno(ret);
2329 				goto unlock_rw;
2330 			}
2331 
2332 			di = (struct ocfs2_dinode *)di_bh->b_data;
2333 
2334 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2335 				ret = ocfs2_truncate_file(inode, di_bh,
2336 						i_size_read(inode));
2337 				if (ret < 0) {
2338 					if (ret != -ENOSPC)
2339 						mlog_errno(ret);
2340 					goto unlock_inode;
2341 				}
2342 
2343 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2344 						di_bh, 0, 0);
2345 				if (ret)
2346 					mlog_errno(ret);
2347 			}
2348 unlock_inode:
2349 			ocfs2_inode_unlock(inode, 1);
2350 			brelse(di_bh);
2351 			di_bh = NULL;
2352 unlock_rw:
2353 			ocfs2_rw_unlock(inode, 1);
2354 unlock_mutex:
2355 			inode_unlock(inode);
2356 
2357 			/* clear dio flag in ocfs2_inode_info */
2358 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2359 		} else {
2360 			spin_lock(&oi->ip_lock);
2361 			/* Set the proper information to get us going into
2362 			 * ocfs2_delete_inode. */
2363 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2364 			spin_unlock(&oi->ip_lock);
2365 		}
2366 
2367 		iput(inode);
2368 		inode = iter;
2369 	}
2370 
2371 	return ret;
2372 }
2373 
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2374 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2375 {
2376 	/* This check is good because ocfs2 will wait on our recovery
2377 	 * thread before changing it to something other than MOUNTED
2378 	 * or DISABLED. */
2379 	wait_event(osb->osb_mount_event,
2380 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2381 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2382 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2383 
2384 	/* If there's an error on mount, then we may never get to the
2385 	 * MOUNTED flag, but this is set right before
2386 	 * dismount_volume() so we can trust it. */
2387 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2388 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2389 		mlog(0, "mount error, exiting!\n");
2390 		return -EBUSY;
2391 	}
2392 
2393 	return 0;
2394 }
2395 
ocfs2_commit_thread(void * arg)2396 static int ocfs2_commit_thread(void *arg)
2397 {
2398 	int status;
2399 	struct ocfs2_super *osb = arg;
2400 	struct ocfs2_journal *journal = osb->journal;
2401 
2402 	/* we can trust j_num_trans here because _should_stop() is only set in
2403 	 * shutdown and nobody other than ourselves should be able to start
2404 	 * transactions.  committing on shutdown might take a few iterations
2405 	 * as final transactions put deleted inodes on the list */
2406 	while (!(kthread_should_stop() &&
2407 		 atomic_read(&journal->j_num_trans) == 0)) {
2408 
2409 		wait_event_interruptible(osb->checkpoint_event,
2410 					 atomic_read(&journal->j_num_trans)
2411 					 || kthread_should_stop());
2412 
2413 		status = ocfs2_commit_cache(osb);
2414 		if (status < 0) {
2415 			static unsigned long abort_warn_time;
2416 
2417 			/* Warn about this once per minute */
2418 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2419 				mlog(ML_ERROR, "status = %d, journal is "
2420 						"already aborted.\n", status);
2421 			/*
2422 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2423 			 * non-zero value.  Sleep here to avoid a busy-wait
2424 			 * loop.
2425 			 */
2426 			msleep_interruptible(1000);
2427 		}
2428 
2429 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2430 			mlog(ML_KTHREAD,
2431 			     "commit_thread: %u transactions pending on "
2432 			     "shutdown\n",
2433 			     atomic_read(&journal->j_num_trans));
2434 		}
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 /* Reads all the journal inodes without taking any cluster locks. Used
2441  * for hard readonly access to determine whether any journal requires
2442  * recovery. Also used to refresh the recovery generation numbers after
2443  * a journal has been recovered by another node.
2444  */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2445 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2446 {
2447 	int ret = 0;
2448 	unsigned int slot;
2449 	struct buffer_head *di_bh = NULL;
2450 	struct ocfs2_dinode *di;
2451 	int journal_dirty = 0;
2452 
2453 	for(slot = 0; slot < osb->max_slots; slot++) {
2454 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2455 		if (ret) {
2456 			mlog_errno(ret);
2457 			goto out;
2458 		}
2459 
2460 		di = (struct ocfs2_dinode *) di_bh->b_data;
2461 
2462 		osb->slot_recovery_generations[slot] =
2463 					ocfs2_get_recovery_generation(di);
2464 
2465 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2466 		    OCFS2_JOURNAL_DIRTY_FL)
2467 			journal_dirty = 1;
2468 
2469 		brelse(di_bh);
2470 		di_bh = NULL;
2471 	}
2472 
2473 out:
2474 	if (journal_dirty)
2475 		ret = -EROFS;
2476 	return ret;
2477 }
2478