1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * journal.c
4 *
5 * Defines functions of journalling api
6 *
7 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19
20 #include <cluster/masklog.h>
21
22 #include "ocfs2.h"
23
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43
44 DEFINE_SPINLOCK(trans_inc_lock);
45
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 int slot,
60 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 int slot_num,
64 struct ocfs2_dinode *la_dinode,
65 struct ocfs2_dinode *tl_dinode,
66 struct ocfs2_quota_recovery *qrec,
67 enum ocfs2_orphan_reco_type orphan_reco_type);
68
ocfs2_wait_on_mount(struct ocfs2_super * osb)69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 return __ocfs2_wait_on_mount(osb, 0);
72 }
73
ocfs2_wait_on_quotas(struct ocfs2_super * osb)74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 return __ocfs2_wait_on_mount(osb, 1);
77 }
78
79 /*
80 * This replay_map is to track online/offline slots, so we could recover
81 * offline slots during recovery and mount
82 */
83
84 enum ocfs2_replay_state {
85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
87 REPLAY_DONE /* Replay was already queued */
88 };
89
90 struct ocfs2_replay_map {
91 unsigned int rm_slots;
92 enum ocfs2_replay_state rm_state;
93 unsigned char rm_replay_slots[] __counted_by(rm_slots);
94 };
95
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98 if (!osb->replay_map)
99 return;
100
101 /* If we've already queued the replay, we don't have any more to do */
102 if (osb->replay_map->rm_state == REPLAY_DONE)
103 return;
104
105 osb->replay_map->rm_state = state;
106 }
107
ocfs2_compute_replay_slots(struct ocfs2_super * osb)108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110 struct ocfs2_replay_map *replay_map;
111 int i, node_num;
112
113 /* If replay map is already set, we don't do it again */
114 if (osb->replay_map)
115 return 0;
116
117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 osb->max_slots),
119 GFP_KERNEL);
120 if (!replay_map) {
121 mlog_errno(-ENOMEM);
122 return -ENOMEM;
123 }
124
125 spin_lock(&osb->osb_lock);
126
127 replay_map->rm_slots = osb->max_slots;
128 replay_map->rm_state = REPLAY_UNNEEDED;
129
130 /* set rm_replay_slots for offline slot(s) */
131 for (i = 0; i < replay_map->rm_slots; i++) {
132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 replay_map->rm_replay_slots[i] = 1;
134 }
135
136 osb->replay_map = replay_map;
137 spin_unlock(&osb->osb_lock);
138 return 0;
139 }
140
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144 struct ocfs2_replay_map *replay_map = osb->replay_map;
145 int i;
146
147 if (!replay_map)
148 return;
149
150 if (replay_map->rm_state != REPLAY_NEEDED)
151 return;
152
153 for (i = 0; i < replay_map->rm_slots; i++)
154 if (replay_map->rm_replay_slots[i])
155 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 NULL, NULL,
157 orphan_reco_type);
158 replay_map->rm_state = REPLAY_DONE;
159 }
160
ocfs2_free_replay_slots(struct ocfs2_super * osb)161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163 struct ocfs2_replay_map *replay_map = osb->replay_map;
164
165 if (!osb->replay_map)
166 return;
167
168 kfree(replay_map);
169 osb->replay_map = NULL;
170 }
171
ocfs2_recovery_init(struct ocfs2_super * osb)172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174 struct ocfs2_recovery_map *rm;
175
176 mutex_init(&osb->recovery_lock);
177 osb->recovery_state = OCFS2_REC_ENABLED;
178 osb->recovery_thread_task = NULL;
179 init_waitqueue_head(&osb->recovery_event);
180
181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 GFP_KERNEL);
183 if (!rm) {
184 mlog_errno(-ENOMEM);
185 return -ENOMEM;
186 }
187
188 osb->recovery_map = rm;
189
190 return 0;
191 }
192
ocfs2_recovery_thread_running(struct ocfs2_super * osb)193 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
194 {
195 return osb->recovery_thread_task != NULL;
196 }
197
ocfs2_recovery_disable(struct ocfs2_super * osb,enum ocfs2_recovery_state state)198 static void ocfs2_recovery_disable(struct ocfs2_super *osb,
199 enum ocfs2_recovery_state state)
200 {
201 mutex_lock(&osb->recovery_lock);
202 /*
203 * If recovery thread is not running, we can directly transition to
204 * final state.
205 */
206 if (!ocfs2_recovery_thread_running(osb)) {
207 osb->recovery_state = state + 1;
208 goto out_lock;
209 }
210 osb->recovery_state = state;
211 /* Wait for recovery thread to acknowledge state transition */
212 wait_event_cmd(osb->recovery_event,
213 !ocfs2_recovery_thread_running(osb) ||
214 osb->recovery_state >= state + 1,
215 mutex_unlock(&osb->recovery_lock),
216 mutex_lock(&osb->recovery_lock));
217 out_lock:
218 mutex_unlock(&osb->recovery_lock);
219
220 /*
221 * At this point we know that no more recovery work can be queued so
222 * wait for any recovery completion work to complete.
223 */
224 if (osb->ocfs2_wq)
225 flush_workqueue(osb->ocfs2_wq);
226 }
227
ocfs2_recovery_disable_quota(struct ocfs2_super * osb)228 void ocfs2_recovery_disable_quota(struct ocfs2_super *osb)
229 {
230 ocfs2_recovery_disable(osb, OCFS2_REC_QUOTA_WANT_DISABLE);
231 }
232
ocfs2_recovery_exit(struct ocfs2_super * osb)233 void ocfs2_recovery_exit(struct ocfs2_super *osb)
234 {
235 struct ocfs2_recovery_map *rm;
236
237 /* disable any new recovery threads and wait for any currently
238 * running ones to exit. Do this before setting the vol_state. */
239 ocfs2_recovery_disable(osb, OCFS2_REC_WANT_DISABLE);
240
241 /*
242 * Now that recovery is shut down, and the osb is about to be
243 * freed, the osb_lock is not taken here.
244 */
245 rm = osb->recovery_map;
246 /* XXX: Should we bug if there are dirty entries? */
247
248 kfree(rm);
249 }
250
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)251 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
252 unsigned int node_num)
253 {
254 int i;
255 struct ocfs2_recovery_map *rm = osb->recovery_map;
256
257 assert_spin_locked(&osb->osb_lock);
258
259 for (i = 0; i < rm->rm_used; i++) {
260 if (rm->rm_entries[i] == node_num)
261 return 1;
262 }
263
264 return 0;
265 }
266
267 /* Behaves like test-and-set. Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)268 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
269 unsigned int node_num)
270 {
271 struct ocfs2_recovery_map *rm = osb->recovery_map;
272
273 spin_lock(&osb->osb_lock);
274 if (__ocfs2_recovery_map_test(osb, node_num)) {
275 spin_unlock(&osb->osb_lock);
276 return 1;
277 }
278
279 /* XXX: Can this be exploited? Not from o2dlm... */
280 BUG_ON(rm->rm_used >= osb->max_slots);
281
282 rm->rm_entries[rm->rm_used] = node_num;
283 rm->rm_used++;
284 spin_unlock(&osb->osb_lock);
285
286 return 0;
287 }
288
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)289 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
290 unsigned int node_num)
291 {
292 int i;
293 struct ocfs2_recovery_map *rm = osb->recovery_map;
294
295 spin_lock(&osb->osb_lock);
296
297 for (i = 0; i < rm->rm_used; i++) {
298 if (rm->rm_entries[i] == node_num)
299 break;
300 }
301
302 if (i < rm->rm_used) {
303 /* XXX: be careful with the pointer math */
304 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
305 (rm->rm_used - i - 1) * sizeof(unsigned int));
306 rm->rm_used--;
307 }
308
309 spin_unlock(&osb->osb_lock);
310 }
311
ocfs2_commit_cache(struct ocfs2_super * osb)312 static int ocfs2_commit_cache(struct ocfs2_super *osb)
313 {
314 int status = 0;
315 unsigned int flushed;
316 struct ocfs2_journal *journal = NULL;
317
318 journal = osb->journal;
319
320 /* Flush all pending commits and checkpoint the journal. */
321 down_write(&journal->j_trans_barrier);
322
323 flushed = atomic_read(&journal->j_num_trans);
324 trace_ocfs2_commit_cache_begin(flushed);
325 if (flushed == 0) {
326 up_write(&journal->j_trans_barrier);
327 goto finally;
328 }
329
330 jbd2_journal_lock_updates(journal->j_journal);
331 status = jbd2_journal_flush(journal->j_journal, 0);
332 jbd2_journal_unlock_updates(journal->j_journal);
333 if (status < 0) {
334 up_write(&journal->j_trans_barrier);
335 mlog_errno(status);
336 goto finally;
337 }
338
339 ocfs2_inc_trans_id(journal);
340
341 flushed = atomic_read(&journal->j_num_trans);
342 atomic_set(&journal->j_num_trans, 0);
343 up_write(&journal->j_trans_barrier);
344
345 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
346
347 ocfs2_wake_downconvert_thread(osb);
348 wake_up(&journal->j_checkpointed);
349 finally:
350 return status;
351 }
352
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)353 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
354 {
355 journal_t *journal = osb->journal->j_journal;
356 handle_t *handle;
357
358 BUG_ON(!osb || !osb->journal->j_journal);
359
360 if (ocfs2_is_hard_readonly(osb))
361 return ERR_PTR(-EROFS);
362
363 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
364 BUG_ON(max_buffs <= 0);
365
366 /* Nested transaction? Just return the handle... */
367 if (journal_current_handle())
368 return jbd2_journal_start(journal, max_buffs);
369
370 sb_start_intwrite(osb->sb);
371
372 down_read(&osb->journal->j_trans_barrier);
373
374 handle = jbd2_journal_start(journal, max_buffs);
375 if (IS_ERR(handle)) {
376 up_read(&osb->journal->j_trans_barrier);
377 sb_end_intwrite(osb->sb);
378
379 mlog_errno(PTR_ERR(handle));
380
381 if (is_journal_aborted(journal)) {
382 ocfs2_abort(osb->sb, "Detected aborted journal\n");
383 handle = ERR_PTR(-EROFS);
384 }
385 } else {
386 if (!ocfs2_mount_local(osb))
387 atomic_inc(&(osb->journal->j_num_trans));
388 }
389
390 return handle;
391 }
392
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)393 int ocfs2_commit_trans(struct ocfs2_super *osb,
394 handle_t *handle)
395 {
396 int ret, nested;
397 struct ocfs2_journal *journal = osb->journal;
398
399 BUG_ON(!handle);
400
401 nested = handle->h_ref > 1;
402 ret = jbd2_journal_stop(handle);
403 if (ret < 0)
404 mlog_errno(ret);
405
406 if (!nested) {
407 up_read(&journal->j_trans_barrier);
408 sb_end_intwrite(osb->sb);
409 }
410
411 return ret;
412 }
413
414 /*
415 * 'nblocks' is what you want to add to the current transaction.
416 *
417 * This might call jbd2_journal_restart() which will commit dirty buffers
418 * and then restart the transaction. Before calling
419 * ocfs2_extend_trans(), any changed blocks should have been
420 * dirtied. After calling it, all blocks which need to be changed must
421 * go through another set of journal_access/journal_dirty calls.
422 *
423 * WARNING: This will not release any semaphores or disk locks taken
424 * during the transaction, so make sure they were taken *before*
425 * start_trans or we'll have ordering deadlocks.
426 *
427 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
428 * good because transaction ids haven't yet been recorded on the
429 * cluster locks associated with this handle.
430 */
ocfs2_extend_trans(handle_t * handle,int nblocks)431 int ocfs2_extend_trans(handle_t *handle, int nblocks)
432 {
433 int status, old_nblocks;
434
435 BUG_ON(!handle);
436 BUG_ON(nblocks < 0);
437
438 if (!nblocks)
439 return 0;
440
441 old_nblocks = jbd2_handle_buffer_credits(handle);
442
443 trace_ocfs2_extend_trans(old_nblocks, nblocks);
444
445 #ifdef CONFIG_OCFS2_DEBUG_FS
446 status = 1;
447 #else
448 status = jbd2_journal_extend(handle, nblocks, 0);
449 if (status < 0) {
450 mlog_errno(status);
451 goto bail;
452 }
453 #endif
454
455 if (status > 0) {
456 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
457 status = jbd2_journal_restart(handle,
458 old_nblocks + nblocks);
459 if (status < 0) {
460 mlog_errno(status);
461 goto bail;
462 }
463 }
464
465 status = 0;
466 bail:
467 return status;
468 }
469
470 /*
471 * Make sure handle has at least 'nblocks' credits available. If it does not
472 * have that many credits available, we will try to extend the handle to have
473 * enough credits. If that fails, we will restart transaction to have enough
474 * credits. Similar notes regarding data consistency and locking implications
475 * as for ocfs2_extend_trans() apply here.
476 */
ocfs2_assure_trans_credits(handle_t * handle,int nblocks)477 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
478 {
479 int old_nblks = jbd2_handle_buffer_credits(handle);
480
481 trace_ocfs2_assure_trans_credits(old_nblks);
482 if (old_nblks >= nblocks)
483 return 0;
484 return ocfs2_extend_trans(handle, nblocks - old_nblks);
485 }
486
487 /*
488 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
489 * If that fails, restart the transaction & regain write access for the
490 * buffer head which is used for metadata modifications.
491 * Taken from Ext4: extend_or_restart_transaction()
492 */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)493 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
494 {
495 int status, old_nblks;
496
497 BUG_ON(!handle);
498
499 old_nblks = jbd2_handle_buffer_credits(handle);
500 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
501
502 if (old_nblks < thresh)
503 return 0;
504
505 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
506 if (status < 0) {
507 mlog_errno(status);
508 goto bail;
509 }
510
511 if (status > 0) {
512 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
513 if (status < 0)
514 mlog_errno(status);
515 }
516
517 bail:
518 return status;
519 }
520
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)521 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
522 {
523 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
524 }
525
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)526 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
527 struct buffer_head *bh,
528 void *data, size_t size)
529 {
530 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
531
532 /*
533 * We aren't guaranteed to have the superblock here, so we
534 * must unconditionally compute the ecc data.
535 * __ocfs2_journal_access() will only set the triggers if
536 * metaecc is enabled.
537 */
538 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
539 }
540
541 /*
542 * Quota blocks have their own trigger because the struct ocfs2_block_check
543 * offset depends on the blocksize.
544 */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)545 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
546 struct buffer_head *bh,
547 void *data, size_t size)
548 {
549 struct ocfs2_disk_dqtrailer *dqt =
550 ocfs2_block_dqtrailer(size, data);
551
552 /*
553 * We aren't guaranteed to have the superblock here, so we
554 * must unconditionally compute the ecc data.
555 * __ocfs2_journal_access() will only set the triggers if
556 * metaecc is enabled.
557 */
558 ocfs2_block_check_compute(data, size, &dqt->dq_check);
559 }
560
561 /*
562 * Directory blocks also have their own trigger because the
563 * struct ocfs2_block_check offset depends on the blocksize.
564 */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)565 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh,
567 void *data, size_t size)
568 {
569 struct ocfs2_dir_block_trailer *trailer =
570 ocfs2_dir_trailer_from_size(size, data);
571
572 /*
573 * We aren't guaranteed to have the superblock here, so we
574 * must unconditionally compute the ecc data.
575 * __ocfs2_journal_access() will only set the triggers if
576 * metaecc is enabled.
577 */
578 ocfs2_block_check_compute(data, size, &trailer->db_check);
579 }
580
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)581 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
582 struct buffer_head *bh)
583 {
584 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
585
586 mlog(ML_ERROR,
587 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
588 "bh->b_blocknr = %llu\n",
589 (unsigned long)bh,
590 (unsigned long long)bh->b_blocknr);
591
592 ocfs2_error(ot->sb,
593 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
594 }
595
ocfs2_setup_csum_triggers(struct super_block * sb,enum ocfs2_journal_trigger_type type,struct ocfs2_triggers * ot)596 static void ocfs2_setup_csum_triggers(struct super_block *sb,
597 enum ocfs2_journal_trigger_type type,
598 struct ocfs2_triggers *ot)
599 {
600 BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
601
602 switch (type) {
603 case OCFS2_JTR_DI:
604 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
605 ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
606 break;
607 case OCFS2_JTR_EB:
608 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609 ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
610 break;
611 case OCFS2_JTR_RB:
612 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613 ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
614 break;
615 case OCFS2_JTR_GD:
616 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
617 ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
618 break;
619 case OCFS2_JTR_DB:
620 ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
621 break;
622 case OCFS2_JTR_XB:
623 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
624 ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
625 break;
626 case OCFS2_JTR_DQ:
627 ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
628 break;
629 case OCFS2_JTR_DR:
630 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
631 ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
632 break;
633 case OCFS2_JTR_DL:
634 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
635 ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
636 break;
637 case OCFS2_JTR_NONE:
638 /* To make compiler happy... */
639 return;
640 }
641
642 ot->ot_triggers.t_abort = ocfs2_abort_trigger;
643 ot->sb = sb;
644 }
645
ocfs2_initialize_journal_triggers(struct super_block * sb,struct ocfs2_triggers triggers[])646 void ocfs2_initialize_journal_triggers(struct super_block *sb,
647 struct ocfs2_triggers triggers[])
648 {
649 enum ocfs2_journal_trigger_type type;
650
651 for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
652 ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
653 }
654
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)655 static int __ocfs2_journal_access(handle_t *handle,
656 struct ocfs2_caching_info *ci,
657 struct buffer_head *bh,
658 struct ocfs2_triggers *triggers,
659 int type)
660 {
661 int status;
662 struct ocfs2_super *osb =
663 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
664
665 BUG_ON(!ci || !ci->ci_ops);
666 BUG_ON(!handle);
667 BUG_ON(!bh);
668
669 trace_ocfs2_journal_access(
670 (unsigned long long)ocfs2_metadata_cache_owner(ci),
671 (unsigned long long)bh->b_blocknr, type, bh->b_size);
672
673 /* we can safely remove this assertion after testing. */
674 if (!buffer_uptodate(bh)) {
675 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
676 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
677 (unsigned long long)bh->b_blocknr, bh->b_state);
678
679 lock_buffer(bh);
680 /*
681 * A previous transaction with a couple of buffer heads fail
682 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
683 * For current transaction, the bh is just among those error
684 * bhs which previous transaction handle. We can't just clear
685 * its BH_Write_EIO and reuse directly, since other bhs are
686 * not written to disk yet and that will cause metadata
687 * inconsistency. So we should set fs read-only to avoid
688 * further damage.
689 */
690 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
691 unlock_buffer(bh);
692 return ocfs2_error(osb->sb, "A previous attempt to "
693 "write this buffer head failed\n");
694 }
695 unlock_buffer(bh);
696 }
697
698 /* Set the current transaction information on the ci so
699 * that the locking code knows whether it can drop it's locks
700 * on this ci or not. We're protected from the commit
701 * thread updating the current transaction id until
702 * ocfs2_commit_trans() because ocfs2_start_trans() took
703 * j_trans_barrier for us. */
704 ocfs2_set_ci_lock_trans(osb->journal, ci);
705
706 ocfs2_metadata_cache_io_lock(ci);
707 switch (type) {
708 case OCFS2_JOURNAL_ACCESS_CREATE:
709 case OCFS2_JOURNAL_ACCESS_WRITE:
710 status = jbd2_journal_get_write_access(handle, bh);
711 break;
712
713 case OCFS2_JOURNAL_ACCESS_UNDO:
714 status = jbd2_journal_get_undo_access(handle, bh);
715 break;
716
717 default:
718 status = -EINVAL;
719 mlog(ML_ERROR, "Unknown access type!\n");
720 }
721 if (!status && ocfs2_meta_ecc(osb) && triggers)
722 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
723 ocfs2_metadata_cache_io_unlock(ci);
724
725 if (status < 0)
726 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
727 status, type);
728
729 return status;
730 }
731
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)732 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
733 struct buffer_head *bh, int type)
734 {
735 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
736
737 return __ocfs2_journal_access(handle, ci, bh,
738 &osb->s_journal_triggers[OCFS2_JTR_DI],
739 type);
740 }
741
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)742 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
743 struct buffer_head *bh, int type)
744 {
745 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
746
747 return __ocfs2_journal_access(handle, ci, bh,
748 &osb->s_journal_triggers[OCFS2_JTR_EB],
749 type);
750 }
751
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)752 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
753 struct buffer_head *bh, int type)
754 {
755 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
756
757 return __ocfs2_journal_access(handle, ci, bh,
758 &osb->s_journal_triggers[OCFS2_JTR_RB],
759 type);
760 }
761
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)762 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
763 struct buffer_head *bh, int type)
764 {
765 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
766
767 return __ocfs2_journal_access(handle, ci, bh,
768 &osb->s_journal_triggers[OCFS2_JTR_GD],
769 type);
770 }
771
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)772 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
773 struct buffer_head *bh, int type)
774 {
775 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
776
777 return __ocfs2_journal_access(handle, ci, bh,
778 &osb->s_journal_triggers[OCFS2_JTR_DB],
779 type);
780 }
781
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)782 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
783 struct buffer_head *bh, int type)
784 {
785 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
786
787 return __ocfs2_journal_access(handle, ci, bh,
788 &osb->s_journal_triggers[OCFS2_JTR_XB],
789 type);
790 }
791
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)792 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
793 struct buffer_head *bh, int type)
794 {
795 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
796
797 return __ocfs2_journal_access(handle, ci, bh,
798 &osb->s_journal_triggers[OCFS2_JTR_DQ],
799 type);
800 }
801
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)802 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
803 struct buffer_head *bh, int type)
804 {
805 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
806
807 return __ocfs2_journal_access(handle, ci, bh,
808 &osb->s_journal_triggers[OCFS2_JTR_DR],
809 type);
810 }
811
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)812 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
813 struct buffer_head *bh, int type)
814 {
815 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
816
817 return __ocfs2_journal_access(handle, ci, bh,
818 &osb->s_journal_triggers[OCFS2_JTR_DL],
819 type);
820 }
821
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)822 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
823 struct buffer_head *bh, int type)
824 {
825 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
826 }
827
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)828 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
829 {
830 int status;
831
832 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
833
834 status = jbd2_journal_dirty_metadata(handle, bh);
835 if (status) {
836 mlog_errno(status);
837 if (!is_handle_aborted(handle)) {
838 journal_t *journal = handle->h_transaction->t_journal;
839
840 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
841 "handle type %u started at line %u, credits %u/%u "
842 "errcode %d. Aborting transaction and journal.\n",
843 handle->h_type, handle->h_line_no,
844 handle->h_requested_credits,
845 jbd2_handle_buffer_credits(handle), status);
846 handle->h_err = status;
847 jbd2_journal_abort_handle(handle);
848 jbd2_journal_abort(journal, status);
849 }
850 }
851 }
852
853 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
854
ocfs2_set_journal_params(struct ocfs2_super * osb)855 void ocfs2_set_journal_params(struct ocfs2_super *osb)
856 {
857 journal_t *journal = osb->journal->j_journal;
858 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
859
860 if (osb->osb_commit_interval)
861 commit_interval = osb->osb_commit_interval;
862
863 write_lock(&journal->j_state_lock);
864 journal->j_commit_interval = commit_interval;
865 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
866 journal->j_flags |= JBD2_BARRIER;
867 else
868 journal->j_flags &= ~JBD2_BARRIER;
869 write_unlock(&journal->j_state_lock);
870 }
871
872 /*
873 * alloc & initialize skeleton for journal structure.
874 * ocfs2_journal_init() will make fs have journal ability.
875 */
ocfs2_journal_alloc(struct ocfs2_super * osb)876 int ocfs2_journal_alloc(struct ocfs2_super *osb)
877 {
878 int status = 0;
879 struct ocfs2_journal *journal;
880
881 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
882 if (!journal) {
883 mlog(ML_ERROR, "unable to alloc journal\n");
884 status = -ENOMEM;
885 goto bail;
886 }
887 osb->journal = journal;
888 journal->j_osb = osb;
889
890 atomic_set(&journal->j_num_trans, 0);
891 init_rwsem(&journal->j_trans_barrier);
892 init_waitqueue_head(&journal->j_checkpointed);
893 spin_lock_init(&journal->j_lock);
894 journal->j_trans_id = 1UL;
895 INIT_LIST_HEAD(&journal->j_la_cleanups);
896 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
897 journal->j_state = OCFS2_JOURNAL_FREE;
898
899 bail:
900 return status;
901 }
902
ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)903 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
904 {
905 return filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
906 jinode->i_dirty_start, jinode->i_dirty_end);
907 }
908
ocfs2_journal_init(struct ocfs2_super * osb,int * dirty)909 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
910 {
911 int status = -1;
912 struct inode *inode = NULL; /* the journal inode */
913 journal_t *j_journal = NULL;
914 struct ocfs2_journal *journal = osb->journal;
915 struct ocfs2_dinode *di = NULL;
916 struct buffer_head *bh = NULL;
917 int inode_lock = 0;
918
919 BUG_ON(!journal);
920 /* already have the inode for our journal */
921 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
922 osb->slot_num);
923 if (inode == NULL) {
924 status = -EACCES;
925 mlog_errno(status);
926 goto done;
927 }
928 if (is_bad_inode(inode)) {
929 mlog(ML_ERROR, "access error (bad inode)\n");
930 iput(inode);
931 inode = NULL;
932 status = -EACCES;
933 goto done;
934 }
935
936 SET_INODE_JOURNAL(inode);
937 OCFS2_I(inode)->ip_open_count++;
938
939 /* Skip recovery waits here - journal inode metadata never
940 * changes in a live cluster so it can be considered an
941 * exception to the rule. */
942 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
943 if (status < 0) {
944 if (status != -ERESTARTSYS)
945 mlog(ML_ERROR, "Could not get lock on journal!\n");
946 goto done;
947 }
948
949 inode_lock = 1;
950 di = (struct ocfs2_dinode *)bh->b_data;
951
952 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
953 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
954 i_size_read(inode));
955 status = -EINVAL;
956 goto done;
957 }
958
959 trace_ocfs2_journal_init(i_size_read(inode),
960 (unsigned long long)inode->i_blocks,
961 OCFS2_I(inode)->ip_clusters);
962
963 /* call the kernels journal init function now */
964 j_journal = jbd2_journal_init_inode(inode);
965 if (IS_ERR(j_journal)) {
966 mlog(ML_ERROR, "Linux journal layer error\n");
967 status = PTR_ERR(j_journal);
968 goto done;
969 }
970
971 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
972
973 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
974 OCFS2_JOURNAL_DIRTY_FL);
975
976 journal->j_journal = j_journal;
977 journal->j_journal->j_submit_inode_data_buffers =
978 ocfs2_journal_submit_inode_data_buffers;
979 journal->j_journal->j_finish_inode_data_buffers =
980 jbd2_journal_finish_inode_data_buffers;
981 journal->j_inode = inode;
982 journal->j_bh = bh;
983
984 ocfs2_set_journal_params(osb);
985
986 journal->j_state = OCFS2_JOURNAL_LOADED;
987
988 status = 0;
989 done:
990 if (status < 0) {
991 if (inode_lock)
992 ocfs2_inode_unlock(inode, 1);
993 brelse(bh);
994 if (inode) {
995 OCFS2_I(inode)->ip_open_count--;
996 iput(inode);
997 }
998 }
999
1000 return status;
1001 }
1002
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)1003 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
1004 {
1005 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
1006 }
1007
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)1008 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
1009 {
1010 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
1011 }
1012
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)1013 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
1014 int dirty, int replayed)
1015 {
1016 int status;
1017 unsigned int flags;
1018 struct ocfs2_journal *journal = osb->journal;
1019 struct buffer_head *bh = journal->j_bh;
1020 struct ocfs2_dinode *fe;
1021
1022 fe = (struct ocfs2_dinode *)bh->b_data;
1023
1024 /* The journal bh on the osb always comes from ocfs2_journal_init()
1025 * and was validated there inside ocfs2_inode_lock_full(). It's a
1026 * code bug if we mess it up. */
1027 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1028
1029 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1030 if (dirty)
1031 flags |= OCFS2_JOURNAL_DIRTY_FL;
1032 else
1033 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1034 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1035
1036 if (replayed)
1037 ocfs2_bump_recovery_generation(fe);
1038
1039 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1040 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1041 if (status < 0)
1042 mlog_errno(status);
1043
1044 return status;
1045 }
1046
1047 /*
1048 * If the journal has been kmalloc'd it needs to be freed after this
1049 * call.
1050 */
ocfs2_journal_shutdown(struct ocfs2_super * osb)1051 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1052 {
1053 struct ocfs2_journal *journal = NULL;
1054 int status = 0;
1055 struct inode *inode = NULL;
1056 int num_running_trans = 0;
1057
1058 BUG_ON(!osb);
1059
1060 journal = osb->journal;
1061 if (!journal)
1062 goto done;
1063
1064 inode = journal->j_inode;
1065
1066 if (journal->j_state != OCFS2_JOURNAL_LOADED)
1067 goto done;
1068
1069 /* need to inc inode use count - jbd2_journal_destroy will iput. */
1070 if (!igrab(inode))
1071 BUG();
1072
1073 num_running_trans = atomic_read(&(journal->j_num_trans));
1074 trace_ocfs2_journal_shutdown(num_running_trans);
1075
1076 /* Do a commit_cache here. It will flush our journal, *and*
1077 * release any locks that are still held.
1078 * set the SHUTDOWN flag and release the trans lock.
1079 * the commit thread will take the trans lock for us below. */
1080 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1081
1082 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1083 * drop the trans_lock (which we want to hold until we
1084 * completely destroy the journal. */
1085 if (osb->commit_task) {
1086 /* Wait for the commit thread */
1087 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1088 kthread_stop(osb->commit_task);
1089 osb->commit_task = NULL;
1090 }
1091
1092 BUG_ON(atomic_read(&(journal->j_num_trans)) != 0);
1093
1094 if (ocfs2_mount_local(osb) &&
1095 (journal->j_journal->j_flags & JBD2_LOADED)) {
1096 jbd2_journal_lock_updates(journal->j_journal);
1097 status = jbd2_journal_flush(journal->j_journal, 0);
1098 jbd2_journal_unlock_updates(journal->j_journal);
1099 if (status < 0)
1100 mlog_errno(status);
1101 }
1102
1103 /* Shutdown the kernel journal system */
1104 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1105 /*
1106 * Do not toggle if flush was unsuccessful otherwise
1107 * will leave dirty metadata in a "clean" journal
1108 */
1109 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1110 if (status < 0)
1111 mlog_errno(status);
1112 }
1113 journal->j_journal = NULL;
1114
1115 OCFS2_I(inode)->ip_open_count--;
1116
1117 /* unlock our journal */
1118 ocfs2_inode_unlock(inode, 1);
1119
1120 brelse(journal->j_bh);
1121 journal->j_bh = NULL;
1122
1123 journal->j_state = OCFS2_JOURNAL_FREE;
1124
1125 done:
1126 iput(inode);
1127 kfree(journal);
1128 osb->journal = NULL;
1129 }
1130
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1131 static void ocfs2_clear_journal_error(struct super_block *sb,
1132 journal_t *journal,
1133 int slot)
1134 {
1135 int olderr;
1136
1137 olderr = jbd2_journal_errno(journal);
1138 if (olderr) {
1139 mlog(ML_ERROR, "File system error %d recorded in "
1140 "journal %u.\n", olderr, slot);
1141 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1142 sb->s_id);
1143
1144 jbd2_journal_ack_err(journal);
1145 jbd2_journal_clear_err(journal);
1146 }
1147 }
1148
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1149 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1150 {
1151 int status = 0;
1152 struct ocfs2_super *osb;
1153
1154 BUG_ON(!journal);
1155
1156 osb = journal->j_osb;
1157
1158 status = jbd2_journal_load(journal->j_journal);
1159 if (status < 0) {
1160 mlog(ML_ERROR, "Failed to load journal!\n");
1161 goto done;
1162 }
1163
1164 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1165
1166 if (replayed) {
1167 jbd2_journal_lock_updates(journal->j_journal);
1168 status = jbd2_journal_flush(journal->j_journal, 0);
1169 jbd2_journal_unlock_updates(journal->j_journal);
1170 if (status < 0)
1171 mlog_errno(status);
1172 }
1173
1174 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1175 if (status < 0) {
1176 mlog_errno(status);
1177 goto done;
1178 }
1179
1180 /* Launch the commit thread */
1181 if (!local) {
1182 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1183 "ocfs2cmt-%s", osb->uuid_str);
1184 if (IS_ERR(osb->commit_task)) {
1185 status = PTR_ERR(osb->commit_task);
1186 osb->commit_task = NULL;
1187 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1188 "error=%d", status);
1189 goto done;
1190 }
1191 } else
1192 osb->commit_task = NULL;
1193
1194 done:
1195 return status;
1196 }
1197
1198
1199 /* 'full' flag tells us whether we clear out all blocks or if we just
1200 * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1201 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1202 {
1203 int status;
1204
1205 BUG_ON(!journal);
1206
1207 status = jbd2_journal_wipe(journal->j_journal, full);
1208 if (status < 0) {
1209 mlog_errno(status);
1210 goto bail;
1211 }
1212
1213 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1214 if (status < 0)
1215 mlog_errno(status);
1216
1217 bail:
1218 return status;
1219 }
1220
ocfs2_recovery_completed(struct ocfs2_super * osb)1221 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1222 {
1223 int empty;
1224 struct ocfs2_recovery_map *rm = osb->recovery_map;
1225
1226 spin_lock(&osb->osb_lock);
1227 empty = (rm->rm_used == 0);
1228 spin_unlock(&osb->osb_lock);
1229
1230 return empty;
1231 }
1232
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1233 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1234 {
1235 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1236 }
1237
1238 /*
1239 * JBD Might read a cached version of another nodes journal file. We
1240 * don't want this as this file changes often and we get no
1241 * notification on those changes. The only way to be sure that we've
1242 * got the most up to date version of those blocks then is to force
1243 * read them off disk. Just searching through the buffer cache won't
1244 * work as there may be pages backing this file which are still marked
1245 * up to date. We know things can't change on this file underneath us
1246 * as we have the lock by now :)
1247 */
ocfs2_force_read_journal(struct inode * inode)1248 static int ocfs2_force_read_journal(struct inode *inode)
1249 {
1250 int status = 0;
1251 int i;
1252 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1253 struct buffer_head *bh = NULL;
1254 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1255
1256 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1257 v_blkno = 0;
1258 while (v_blkno < num_blocks) {
1259 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1260 &p_blkno, &p_blocks, NULL);
1261 if (status < 0) {
1262 mlog_errno(status);
1263 goto bail;
1264 }
1265
1266 for (i = 0; i < p_blocks; i++, p_blkno++) {
1267 bh = __find_get_block_nonatomic(osb->sb->s_bdev, p_blkno,
1268 osb->sb->s_blocksize);
1269 /* block not cached. */
1270 if (!bh)
1271 continue;
1272
1273 brelse(bh);
1274 bh = NULL;
1275 /* We are reading journal data which should not
1276 * be put in the uptodate cache.
1277 */
1278 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1279 if (status < 0) {
1280 mlog_errno(status);
1281 goto bail;
1282 }
1283
1284 brelse(bh);
1285 bh = NULL;
1286 }
1287
1288 v_blkno += p_blocks;
1289 }
1290
1291 bail:
1292 return status;
1293 }
1294
1295 struct ocfs2_la_recovery_item {
1296 struct list_head lri_list;
1297 int lri_slot;
1298 struct ocfs2_dinode *lri_la_dinode;
1299 struct ocfs2_dinode *lri_tl_dinode;
1300 struct ocfs2_quota_recovery *lri_qrec;
1301 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1302 };
1303
1304 /* Does the second half of the recovery process. By this point, the
1305 * node is marked clean and can actually be considered recovered,
1306 * hence it's no longer in the recovery map, but there's still some
1307 * cleanup we can do which shouldn't happen within the recovery thread
1308 * as locking in that context becomes very difficult if we are to take
1309 * recovering nodes into account.
1310 *
1311 * NOTE: This function can and will sleep on recovery of other nodes
1312 * during cluster locking, just like any other ocfs2 process.
1313 */
ocfs2_complete_recovery(struct work_struct * work)1314 void ocfs2_complete_recovery(struct work_struct *work)
1315 {
1316 int ret = 0;
1317 struct ocfs2_journal *journal =
1318 container_of(work, struct ocfs2_journal, j_recovery_work);
1319 struct ocfs2_super *osb = journal->j_osb;
1320 struct ocfs2_dinode *la_dinode, *tl_dinode;
1321 struct ocfs2_la_recovery_item *item, *n;
1322 struct ocfs2_quota_recovery *qrec;
1323 enum ocfs2_orphan_reco_type orphan_reco_type;
1324 LIST_HEAD(tmp_la_list);
1325
1326 trace_ocfs2_complete_recovery(
1327 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1328
1329 spin_lock(&journal->j_lock);
1330 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1331 spin_unlock(&journal->j_lock);
1332
1333 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1334 list_del_init(&item->lri_list);
1335
1336 ocfs2_wait_on_quotas(osb);
1337
1338 la_dinode = item->lri_la_dinode;
1339 tl_dinode = item->lri_tl_dinode;
1340 qrec = item->lri_qrec;
1341 orphan_reco_type = item->lri_orphan_reco_type;
1342
1343 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1344 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1345 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1346 qrec);
1347
1348 if (la_dinode) {
1349 ret = ocfs2_complete_local_alloc_recovery(osb,
1350 la_dinode);
1351 if (ret < 0)
1352 mlog_errno(ret);
1353
1354 kfree(la_dinode);
1355 }
1356
1357 if (tl_dinode) {
1358 ret = ocfs2_complete_truncate_log_recovery(osb,
1359 tl_dinode);
1360 if (ret < 0)
1361 mlog_errno(ret);
1362
1363 kfree(tl_dinode);
1364 }
1365
1366 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1367 orphan_reco_type);
1368 if (ret < 0)
1369 mlog_errno(ret);
1370
1371 if (qrec) {
1372 ret = ocfs2_finish_quota_recovery(osb, qrec,
1373 item->lri_slot);
1374 if (ret < 0)
1375 mlog_errno(ret);
1376 /* Recovery info is already freed now */
1377 }
1378
1379 kfree(item);
1380 }
1381
1382 trace_ocfs2_complete_recovery_end(ret);
1383 }
1384
1385 /* NOTE: This function always eats your references to la_dinode and
1386 * tl_dinode, either manually on error, or by passing them to
1387 * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1388 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1389 int slot_num,
1390 struct ocfs2_dinode *la_dinode,
1391 struct ocfs2_dinode *tl_dinode,
1392 struct ocfs2_quota_recovery *qrec,
1393 enum ocfs2_orphan_reco_type orphan_reco_type)
1394 {
1395 struct ocfs2_la_recovery_item *item;
1396
1397 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1398 if (!item) {
1399 /* Though we wish to avoid it, we are in fact safe in
1400 * skipping local alloc cleanup as fsck.ocfs2 is more
1401 * than capable of reclaiming unused space. */
1402 kfree(la_dinode);
1403 kfree(tl_dinode);
1404
1405 if (qrec)
1406 ocfs2_free_quota_recovery(qrec);
1407
1408 mlog_errno(-ENOMEM);
1409 return;
1410 }
1411
1412 INIT_LIST_HEAD(&item->lri_list);
1413 item->lri_la_dinode = la_dinode;
1414 item->lri_slot = slot_num;
1415 item->lri_tl_dinode = tl_dinode;
1416 item->lri_qrec = qrec;
1417 item->lri_orphan_reco_type = orphan_reco_type;
1418
1419 spin_lock(&journal->j_lock);
1420 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1421 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1422 spin_unlock(&journal->j_lock);
1423 }
1424
1425 /* Called by the mount code to queue recovery the last part of
1426 * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1427 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1428 {
1429 struct ocfs2_journal *journal = osb->journal;
1430
1431 if (ocfs2_is_hard_readonly(osb))
1432 return;
1433
1434 /* No need to queue up our truncate_log as regular cleanup will catch
1435 * that */
1436 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1437 osb->local_alloc_copy, NULL, NULL,
1438 ORPHAN_NEED_TRUNCATE);
1439 ocfs2_schedule_truncate_log_flush(osb, 0);
1440
1441 osb->local_alloc_copy = NULL;
1442
1443 /* queue to recover orphan slots for all offline slots */
1444 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1445 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1446 ocfs2_free_replay_slots(osb);
1447 }
1448
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1449 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1450 {
1451 if (osb->quota_rec) {
1452 ocfs2_queue_recovery_completion(osb->journal,
1453 osb->slot_num,
1454 NULL,
1455 NULL,
1456 osb->quota_rec,
1457 ORPHAN_NEED_TRUNCATE);
1458 osb->quota_rec = NULL;
1459 }
1460 }
1461
__ocfs2_recovery_thread(void * arg)1462 static int __ocfs2_recovery_thread(void *arg)
1463 {
1464 int status, node_num, slot_num;
1465 struct ocfs2_super *osb = arg;
1466 struct ocfs2_recovery_map *rm = osb->recovery_map;
1467 int *rm_quota = NULL;
1468 int rm_quota_used = 0, i;
1469 struct ocfs2_quota_recovery *qrec;
1470
1471 /* Whether the quota supported. */
1472 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1473 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1474 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1475 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1476
1477 status = ocfs2_wait_on_mount(osb);
1478 if (status < 0) {
1479 goto bail;
1480 }
1481
1482 if (quota_enabled) {
1483 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1484 if (!rm_quota) {
1485 status = -ENOMEM;
1486 goto bail;
1487 }
1488 }
1489 restart:
1490 if (quota_enabled) {
1491 mutex_lock(&osb->recovery_lock);
1492 /* Confirm that recovery thread will no longer recover quotas */
1493 if (osb->recovery_state == OCFS2_REC_QUOTA_WANT_DISABLE) {
1494 osb->recovery_state = OCFS2_REC_QUOTA_DISABLED;
1495 wake_up(&osb->recovery_event);
1496 }
1497 if (osb->recovery_state >= OCFS2_REC_QUOTA_DISABLED)
1498 quota_enabled = 0;
1499 mutex_unlock(&osb->recovery_lock);
1500 }
1501
1502 status = ocfs2_super_lock(osb, 1);
1503 if (status < 0) {
1504 mlog_errno(status);
1505 goto bail;
1506 }
1507
1508 status = ocfs2_compute_replay_slots(osb);
1509 if (status < 0)
1510 mlog_errno(status);
1511
1512 /* queue recovery for our own slot */
1513 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1514 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1515
1516 spin_lock(&osb->osb_lock);
1517 while (rm->rm_used) {
1518 /* It's always safe to remove entry zero, as we won't
1519 * clear it until ocfs2_recover_node() has succeeded. */
1520 node_num = rm->rm_entries[0];
1521 spin_unlock(&osb->osb_lock);
1522 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1523 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1524 if (slot_num == -ENOENT) {
1525 status = 0;
1526 goto skip_recovery;
1527 }
1528
1529 /* It is a bit subtle with quota recovery. We cannot do it
1530 * immediately because we have to obtain cluster locks from
1531 * quota files and we also don't want to just skip it because
1532 * then quota usage would be out of sync until some node takes
1533 * the slot. So we remember which nodes need quota recovery
1534 * and when everything else is done, we recover quotas. */
1535 if (quota_enabled) {
1536 for (i = 0; i < rm_quota_used
1537 && rm_quota[i] != slot_num; i++)
1538 ;
1539
1540 if (i == rm_quota_used)
1541 rm_quota[rm_quota_used++] = slot_num;
1542 }
1543
1544 status = ocfs2_recover_node(osb, node_num, slot_num);
1545 skip_recovery:
1546 if (!status) {
1547 ocfs2_recovery_map_clear(osb, node_num);
1548 } else {
1549 mlog(ML_ERROR,
1550 "Error %d recovering node %d on device (%u,%u)!\n",
1551 status, node_num,
1552 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1553 mlog(ML_ERROR, "Volume requires unmount.\n");
1554 }
1555
1556 spin_lock(&osb->osb_lock);
1557 }
1558 spin_unlock(&osb->osb_lock);
1559 trace_ocfs2_recovery_thread_end(status);
1560
1561 /* Refresh all journal recovery generations from disk */
1562 status = ocfs2_check_journals_nolocks(osb);
1563 status = (status == -EROFS) ? 0 : status;
1564 if (status < 0)
1565 mlog_errno(status);
1566
1567 /* Now it is right time to recover quotas... We have to do this under
1568 * superblock lock so that no one can start using the slot (and crash)
1569 * before we recover it */
1570 if (quota_enabled) {
1571 for (i = 0; i < rm_quota_used; i++) {
1572 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1573 if (IS_ERR(qrec)) {
1574 status = PTR_ERR(qrec);
1575 mlog_errno(status);
1576 continue;
1577 }
1578 ocfs2_queue_recovery_completion(osb->journal,
1579 rm_quota[i],
1580 NULL, NULL, qrec,
1581 ORPHAN_NEED_TRUNCATE);
1582 }
1583 }
1584
1585 ocfs2_super_unlock(osb, 1);
1586
1587 /* queue recovery for offline slots */
1588 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1589
1590 bail:
1591 mutex_lock(&osb->recovery_lock);
1592 if (!status && !ocfs2_recovery_completed(osb)) {
1593 mutex_unlock(&osb->recovery_lock);
1594 goto restart;
1595 }
1596
1597 ocfs2_free_replay_slots(osb);
1598 osb->recovery_thread_task = NULL;
1599 if (osb->recovery_state == OCFS2_REC_WANT_DISABLE)
1600 osb->recovery_state = OCFS2_REC_DISABLED;
1601 wake_up(&osb->recovery_event);
1602
1603 mutex_unlock(&osb->recovery_lock);
1604
1605 kfree(rm_quota);
1606
1607 return status;
1608 }
1609
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1610 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1611 {
1612 int was_set = -1;
1613
1614 mutex_lock(&osb->recovery_lock);
1615 if (osb->recovery_state < OCFS2_REC_WANT_DISABLE)
1616 was_set = ocfs2_recovery_map_set(osb, node_num);
1617
1618 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1619 osb->recovery_state, osb->recovery_thread_task, was_set);
1620
1621 if (osb->recovery_state >= OCFS2_REC_WANT_DISABLE)
1622 goto out;
1623
1624 if (osb->recovery_thread_task)
1625 goto out;
1626
1627 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1628 "ocfs2rec-%s", osb->uuid_str);
1629 if (IS_ERR(osb->recovery_thread_task)) {
1630 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1631 osb->recovery_thread_task = NULL;
1632 }
1633
1634 out:
1635 mutex_unlock(&osb->recovery_lock);
1636 wake_up(&osb->recovery_event);
1637 }
1638
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1639 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1640 int slot_num,
1641 struct buffer_head **bh,
1642 struct inode **ret_inode)
1643 {
1644 int status = -EACCES;
1645 struct inode *inode = NULL;
1646
1647 BUG_ON(slot_num >= osb->max_slots);
1648
1649 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1650 slot_num);
1651 if (!inode || is_bad_inode(inode)) {
1652 mlog_errno(status);
1653 goto bail;
1654 }
1655 SET_INODE_JOURNAL(inode);
1656
1657 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1658 if (status < 0) {
1659 mlog_errno(status);
1660 goto bail;
1661 }
1662
1663 status = 0;
1664
1665 bail:
1666 if (inode) {
1667 if (status || !ret_inode)
1668 iput(inode);
1669 else
1670 *ret_inode = inode;
1671 }
1672 return status;
1673 }
1674
1675 /* Does the actual journal replay and marks the journal inode as
1676 * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1677 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1678 int node_num,
1679 int slot_num)
1680 {
1681 int status;
1682 int got_lock = 0;
1683 unsigned int flags;
1684 struct inode *inode = NULL;
1685 struct ocfs2_dinode *fe;
1686 journal_t *journal = NULL;
1687 struct buffer_head *bh = NULL;
1688 u32 slot_reco_gen;
1689
1690 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1691 if (status) {
1692 mlog_errno(status);
1693 goto done;
1694 }
1695
1696 fe = (struct ocfs2_dinode *)bh->b_data;
1697 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1698 brelse(bh);
1699 bh = NULL;
1700
1701 /*
1702 * As the fs recovery is asynchronous, there is a small chance that
1703 * another node mounted (and recovered) the slot before the recovery
1704 * thread could get the lock. To handle that, we dirty read the journal
1705 * inode for that slot to get the recovery generation. If it is
1706 * different than what we expected, the slot has been recovered.
1707 * If not, it needs recovery.
1708 */
1709 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1710 trace_ocfs2_replay_journal_recovered(slot_num,
1711 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1712 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1713 status = -EBUSY;
1714 goto done;
1715 }
1716
1717 /* Continue with recovery as the journal has not yet been recovered */
1718
1719 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1720 if (status < 0) {
1721 trace_ocfs2_replay_journal_lock_err(status);
1722 if (status != -ERESTARTSYS)
1723 mlog(ML_ERROR, "Could not lock journal!\n");
1724 goto done;
1725 }
1726 got_lock = 1;
1727
1728 fe = (struct ocfs2_dinode *) bh->b_data;
1729
1730 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1731 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1732
1733 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1734 trace_ocfs2_replay_journal_skip(node_num);
1735 /* Refresh recovery generation for the slot */
1736 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1737 goto done;
1738 }
1739
1740 /* we need to run complete recovery for offline orphan slots */
1741 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1742
1743 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1744 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1745 MINOR(osb->sb->s_dev));
1746
1747 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1748
1749 status = ocfs2_force_read_journal(inode);
1750 if (status < 0) {
1751 mlog_errno(status);
1752 goto done;
1753 }
1754
1755 journal = jbd2_journal_init_inode(inode);
1756 if (IS_ERR(journal)) {
1757 mlog(ML_ERROR, "Linux journal layer error\n");
1758 status = PTR_ERR(journal);
1759 goto done;
1760 }
1761
1762 status = jbd2_journal_load(journal);
1763 if (status < 0) {
1764 mlog_errno(status);
1765 BUG_ON(!igrab(inode));
1766 jbd2_journal_destroy(journal);
1767 goto done;
1768 }
1769
1770 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1771
1772 /* wipe the journal */
1773 jbd2_journal_lock_updates(journal);
1774 status = jbd2_journal_flush(journal, 0);
1775 jbd2_journal_unlock_updates(journal);
1776 if (status < 0)
1777 mlog_errno(status);
1778
1779 /* This will mark the node clean */
1780 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1781 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1782 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1783
1784 /* Increment recovery generation to indicate successful recovery */
1785 ocfs2_bump_recovery_generation(fe);
1786 osb->slot_recovery_generations[slot_num] =
1787 ocfs2_get_recovery_generation(fe);
1788
1789 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1790 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1791 if (status < 0)
1792 mlog_errno(status);
1793
1794 BUG_ON(!igrab(inode));
1795
1796 jbd2_journal_destroy(journal);
1797
1798 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1799 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1800 MINOR(osb->sb->s_dev));
1801 done:
1802 /* drop the lock on this nodes journal */
1803 if (got_lock)
1804 ocfs2_inode_unlock(inode, 1);
1805
1806 iput(inode);
1807 brelse(bh);
1808
1809 return status;
1810 }
1811
1812 /*
1813 * Do the most important parts of node recovery:
1814 * - Replay it's journal
1815 * - Stamp a clean local allocator file
1816 * - Stamp a clean truncate log
1817 * - Mark the node clean
1818 *
1819 * If this function completes without error, a node in OCFS2 can be
1820 * said to have been safely recovered. As a result, failure during the
1821 * second part of a nodes recovery process (local alloc recovery) is
1822 * far less concerning.
1823 */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1824 static int ocfs2_recover_node(struct ocfs2_super *osb,
1825 int node_num, int slot_num)
1826 {
1827 int status = 0;
1828 struct ocfs2_dinode *la_copy = NULL;
1829 struct ocfs2_dinode *tl_copy = NULL;
1830
1831 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1832
1833 /* Should not ever be called to recover ourselves -- in that
1834 * case we should've called ocfs2_journal_load instead. */
1835 BUG_ON(osb->node_num == node_num);
1836
1837 status = ocfs2_replay_journal(osb, node_num, slot_num);
1838 if (status < 0) {
1839 if (status == -EBUSY) {
1840 trace_ocfs2_recover_node_skip(slot_num, node_num);
1841 status = 0;
1842 goto done;
1843 }
1844 mlog_errno(status);
1845 goto done;
1846 }
1847
1848 /* Stamp a clean local alloc file AFTER recovering the journal... */
1849 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1850 if (status < 0) {
1851 mlog_errno(status);
1852 goto done;
1853 }
1854
1855 /* An error from begin_truncate_log_recovery is not
1856 * serious enough to warrant halting the rest of
1857 * recovery. */
1858 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1859 if (status < 0)
1860 mlog_errno(status);
1861
1862 /* Likewise, this would be a strange but ultimately not so
1863 * harmful place to get an error... */
1864 status = ocfs2_clear_slot(osb, slot_num);
1865 if (status < 0)
1866 mlog_errno(status);
1867
1868 /* This will kfree the memory pointed to by la_copy and tl_copy */
1869 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1870 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1871
1872 status = 0;
1873 done:
1874
1875 return status;
1876 }
1877
1878 /* Test node liveness by trylocking his journal. If we get the lock,
1879 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1880 * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1881 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1882 int slot_num)
1883 {
1884 int status, flags;
1885 struct inode *inode = NULL;
1886
1887 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1888 slot_num);
1889 if (inode == NULL) {
1890 mlog(ML_ERROR, "access error\n");
1891 status = -EACCES;
1892 goto bail;
1893 }
1894 if (is_bad_inode(inode)) {
1895 mlog(ML_ERROR, "access error (bad inode)\n");
1896 iput(inode);
1897 inode = NULL;
1898 status = -EACCES;
1899 goto bail;
1900 }
1901 SET_INODE_JOURNAL(inode);
1902
1903 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1904 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1905 if (status < 0) {
1906 if (status != -EAGAIN)
1907 mlog_errno(status);
1908 goto bail;
1909 }
1910
1911 ocfs2_inode_unlock(inode, 1);
1912 bail:
1913 iput(inode);
1914
1915 return status;
1916 }
1917
1918 /* Call this underneath ocfs2_super_lock. It also assumes that the
1919 * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1920 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1921 {
1922 unsigned int node_num;
1923 int status, i;
1924 u32 gen;
1925 struct buffer_head *bh = NULL;
1926 struct ocfs2_dinode *di;
1927
1928 /* This is called with the super block cluster lock, so we
1929 * know that the slot map can't change underneath us. */
1930
1931 for (i = 0; i < osb->max_slots; i++) {
1932 /* Read journal inode to get the recovery generation */
1933 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1934 if (status) {
1935 mlog_errno(status);
1936 goto bail;
1937 }
1938 di = (struct ocfs2_dinode *)bh->b_data;
1939 gen = ocfs2_get_recovery_generation(di);
1940 brelse(bh);
1941 bh = NULL;
1942
1943 spin_lock(&osb->osb_lock);
1944 osb->slot_recovery_generations[i] = gen;
1945
1946 trace_ocfs2_mark_dead_nodes(i,
1947 osb->slot_recovery_generations[i]);
1948
1949 if (i == osb->slot_num) {
1950 spin_unlock(&osb->osb_lock);
1951 continue;
1952 }
1953
1954 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1955 if (status == -ENOENT) {
1956 spin_unlock(&osb->osb_lock);
1957 continue;
1958 }
1959
1960 if (__ocfs2_recovery_map_test(osb, node_num)) {
1961 spin_unlock(&osb->osb_lock);
1962 continue;
1963 }
1964 spin_unlock(&osb->osb_lock);
1965
1966 /* Ok, we have a slot occupied by another node which
1967 * is not in the recovery map. We trylock his journal
1968 * file here to test if he's alive. */
1969 status = ocfs2_trylock_journal(osb, i);
1970 if (!status) {
1971 /* Since we're called from mount, we know that
1972 * the recovery thread can't race us on
1973 * setting / checking the recovery bits. */
1974 ocfs2_recovery_thread(osb, node_num);
1975 } else if ((status < 0) && (status != -EAGAIN)) {
1976 mlog_errno(status);
1977 goto bail;
1978 }
1979 }
1980
1981 status = 0;
1982 bail:
1983 return status;
1984 }
1985
1986 /*
1987 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1988 * randomness to the timeout to minimize multiple nodes firing the timer at the
1989 * same time.
1990 */
ocfs2_orphan_scan_timeout(void)1991 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1992 {
1993 unsigned long time;
1994
1995 get_random_bytes(&time, sizeof(time));
1996 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1997 return msecs_to_jiffies(time);
1998 }
1999
2000 /*
2001 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
2002 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
2003 * is done to catch any orphans that are left over in orphan directories.
2004 *
2005 * It scans all slots, even ones that are in use. It does so to handle the
2006 * case described below:
2007 *
2008 * Node 1 has an inode it was using. The dentry went away due to memory
2009 * pressure. Node 1 closes the inode, but it's on the free list. The node
2010 * has the open lock.
2011 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
2012 * but node 1 has no dentry and doesn't get the message. It trylocks the
2013 * open lock, sees that another node has a PR, and does nothing.
2014 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
2015 * open lock, sees the PR still, and does nothing.
2016 * Basically, we have to trigger an orphan iput on node 1. The only way
2017 * for this to happen is if node 1 runs node 2's orphan dir.
2018 *
2019 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
2020 * seconds. It gets an EX lock on os_lockres and checks sequence number
2021 * stored in LVB. If the sequence number has changed, it means some other
2022 * node has done the scan. This node skips the scan and tracks the
2023 * sequence number. If the sequence number didn't change, it means a scan
2024 * hasn't happened. The node queues a scan and increments the
2025 * sequence number in the LVB.
2026 */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)2027 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
2028 {
2029 struct ocfs2_orphan_scan *os;
2030 int status, i;
2031 u32 seqno = 0;
2032
2033 os = &osb->osb_orphan_scan;
2034
2035 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2036 goto out;
2037
2038 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2039 atomic_read(&os->os_state));
2040
2041 status = ocfs2_orphan_scan_lock(osb, &seqno);
2042 if (status < 0) {
2043 if (status != -EAGAIN)
2044 mlog_errno(status);
2045 goto out;
2046 }
2047
2048 /* Do no queue the tasks if the volume is being umounted */
2049 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2050 goto unlock;
2051
2052 if (os->os_seqno != seqno) {
2053 os->os_seqno = seqno;
2054 goto unlock;
2055 }
2056
2057 for (i = 0; i < osb->max_slots; i++)
2058 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2059 NULL, ORPHAN_NO_NEED_TRUNCATE);
2060 /*
2061 * We queued a recovery on orphan slots, increment the sequence
2062 * number and update LVB so other node will skip the scan for a while
2063 */
2064 seqno++;
2065 os->os_count++;
2066 os->os_scantime = ktime_get_seconds();
2067 unlock:
2068 ocfs2_orphan_scan_unlock(osb, seqno);
2069 out:
2070 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2071 atomic_read(&os->os_state));
2072 return;
2073 }
2074
2075 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)2076 static void ocfs2_orphan_scan_work(struct work_struct *work)
2077 {
2078 struct ocfs2_orphan_scan *os;
2079 struct ocfs2_super *osb;
2080
2081 os = container_of(work, struct ocfs2_orphan_scan,
2082 os_orphan_scan_work.work);
2083 osb = os->os_osb;
2084
2085 mutex_lock(&os->os_lock);
2086 ocfs2_queue_orphan_scan(osb);
2087 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2088 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2089 ocfs2_orphan_scan_timeout());
2090 mutex_unlock(&os->os_lock);
2091 }
2092
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)2093 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2094 {
2095 struct ocfs2_orphan_scan *os;
2096
2097 os = &osb->osb_orphan_scan;
2098 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2099 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2100 mutex_lock(&os->os_lock);
2101 cancel_delayed_work(&os->os_orphan_scan_work);
2102 mutex_unlock(&os->os_lock);
2103 }
2104 }
2105
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2106 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2107 {
2108 struct ocfs2_orphan_scan *os;
2109
2110 os = &osb->osb_orphan_scan;
2111 os->os_osb = osb;
2112 os->os_count = 0;
2113 os->os_seqno = 0;
2114 mutex_init(&os->os_lock);
2115 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2116 }
2117
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2118 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2119 {
2120 struct ocfs2_orphan_scan *os;
2121
2122 os = &osb->osb_orphan_scan;
2123 os->os_scantime = ktime_get_seconds();
2124 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2125 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2126 else {
2127 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2128 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2129 ocfs2_orphan_scan_timeout());
2130 }
2131 }
2132
2133 struct ocfs2_orphan_filldir_priv {
2134 struct dir_context ctx;
2135 struct inode *head;
2136 struct ocfs2_super *osb;
2137 enum ocfs2_orphan_reco_type orphan_reco_type;
2138 };
2139
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2140 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2141 int name_len, loff_t pos, u64 ino,
2142 unsigned type)
2143 {
2144 struct ocfs2_orphan_filldir_priv *p =
2145 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2146 struct inode *iter;
2147
2148 if (name_len == 1 && !strncmp(".", name, 1))
2149 return true;
2150 if (name_len == 2 && !strncmp("..", name, 2))
2151 return true;
2152
2153 /* do not include dio entry in case of orphan scan */
2154 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2155 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2156 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2157 return true;
2158
2159 /* Skip bad inodes so that recovery can continue */
2160 iter = ocfs2_iget(p->osb, ino,
2161 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2162 if (IS_ERR(iter))
2163 return true;
2164
2165 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2166 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2167 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2168
2169 /* Skip inodes which are already added to recover list, since dio may
2170 * happen concurrently with unlink/rename */
2171 if (OCFS2_I(iter)->ip_next_orphan) {
2172 iput(iter);
2173 return true;
2174 }
2175
2176 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2177 /* No locking is required for the next_orphan queue as there
2178 * is only ever a single process doing orphan recovery. */
2179 OCFS2_I(iter)->ip_next_orphan = p->head;
2180 p->head = iter;
2181
2182 return true;
2183 }
2184
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2185 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2186 int slot,
2187 struct inode **head,
2188 enum ocfs2_orphan_reco_type orphan_reco_type)
2189 {
2190 int status;
2191 struct inode *orphan_dir_inode = NULL;
2192 struct ocfs2_orphan_filldir_priv priv = {
2193 .ctx.actor = ocfs2_orphan_filldir,
2194 .osb = osb,
2195 .head = *head,
2196 .orphan_reco_type = orphan_reco_type
2197 };
2198
2199 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2200 ORPHAN_DIR_SYSTEM_INODE,
2201 slot);
2202 if (!orphan_dir_inode) {
2203 status = -ENOENT;
2204 mlog_errno(status);
2205 return status;
2206 }
2207
2208 inode_lock(orphan_dir_inode);
2209 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2210 if (status < 0) {
2211 mlog_errno(status);
2212 goto out;
2213 }
2214
2215 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2216 if (status) {
2217 mlog_errno(status);
2218 goto out_cluster;
2219 }
2220
2221 *head = priv.head;
2222
2223 out_cluster:
2224 ocfs2_inode_unlock(orphan_dir_inode, 0);
2225 out:
2226 inode_unlock(orphan_dir_inode);
2227 iput(orphan_dir_inode);
2228 return status;
2229 }
2230
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2231 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2232 int slot)
2233 {
2234 int ret;
2235
2236 spin_lock(&osb->osb_lock);
2237 ret = !osb->osb_orphan_wipes[slot];
2238 spin_unlock(&osb->osb_lock);
2239 return ret;
2240 }
2241
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2242 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2243 int slot)
2244 {
2245 spin_lock(&osb->osb_lock);
2246 /* Mark ourselves such that new processes in delete_inode()
2247 * know to quit early. */
2248 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2249 while (osb->osb_orphan_wipes[slot]) {
2250 /* If any processes are already in the middle of an
2251 * orphan wipe on this dir, then we need to wait for
2252 * them. */
2253 spin_unlock(&osb->osb_lock);
2254 wait_event_interruptible(osb->osb_wipe_event,
2255 ocfs2_orphan_recovery_can_continue(osb, slot));
2256 spin_lock(&osb->osb_lock);
2257 }
2258 spin_unlock(&osb->osb_lock);
2259 }
2260
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2261 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2262 int slot)
2263 {
2264 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2265 }
2266
2267 /*
2268 * Orphan recovery. Each mounted node has it's own orphan dir which we
2269 * must run during recovery. Our strategy here is to build a list of
2270 * the inodes in the orphan dir and iget/iput them. The VFS does
2271 * (most) of the rest of the work.
2272 *
2273 * Orphan recovery can happen at any time, not just mount so we have a
2274 * couple of extra considerations.
2275 *
2276 * - We grab as many inodes as we can under the orphan dir lock -
2277 * doing iget() outside the orphan dir risks getting a reference on
2278 * an invalid inode.
2279 * - We must be sure not to deadlock with other processes on the
2280 * system wanting to run delete_inode(). This can happen when they go
2281 * to lock the orphan dir and the orphan recovery process attempts to
2282 * iget() inside the orphan dir lock. This can be avoided by
2283 * advertising our state to ocfs2_delete_inode().
2284 */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2285 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2286 int slot,
2287 enum ocfs2_orphan_reco_type orphan_reco_type)
2288 {
2289 int ret = 0;
2290 struct inode *inode = NULL;
2291 struct inode *iter;
2292 struct ocfs2_inode_info *oi;
2293 struct buffer_head *di_bh = NULL;
2294 struct ocfs2_dinode *di = NULL;
2295
2296 trace_ocfs2_recover_orphans(slot);
2297
2298 ocfs2_mark_recovering_orphan_dir(osb, slot);
2299 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2300 ocfs2_clear_recovering_orphan_dir(osb, slot);
2301
2302 /* Error here should be noted, but we want to continue with as
2303 * many queued inodes as we've got. */
2304 if (ret)
2305 mlog_errno(ret);
2306
2307 while (inode) {
2308 oi = OCFS2_I(inode);
2309 trace_ocfs2_recover_orphans_iput(
2310 (unsigned long long)oi->ip_blkno);
2311
2312 iter = oi->ip_next_orphan;
2313 oi->ip_next_orphan = NULL;
2314
2315 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2316 inode_lock(inode);
2317 ret = ocfs2_rw_lock(inode, 1);
2318 if (ret < 0) {
2319 mlog_errno(ret);
2320 goto unlock_mutex;
2321 }
2322 /*
2323 * We need to take and drop the inode lock to
2324 * force read inode from disk.
2325 */
2326 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2327 if (ret) {
2328 mlog_errno(ret);
2329 goto unlock_rw;
2330 }
2331
2332 di = (struct ocfs2_dinode *)di_bh->b_data;
2333
2334 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2335 ret = ocfs2_truncate_file(inode, di_bh,
2336 i_size_read(inode));
2337 if (ret < 0) {
2338 if (ret != -ENOSPC)
2339 mlog_errno(ret);
2340 goto unlock_inode;
2341 }
2342
2343 ret = ocfs2_del_inode_from_orphan(osb, inode,
2344 di_bh, 0, 0);
2345 if (ret)
2346 mlog_errno(ret);
2347 }
2348 unlock_inode:
2349 ocfs2_inode_unlock(inode, 1);
2350 brelse(di_bh);
2351 di_bh = NULL;
2352 unlock_rw:
2353 ocfs2_rw_unlock(inode, 1);
2354 unlock_mutex:
2355 inode_unlock(inode);
2356
2357 /* clear dio flag in ocfs2_inode_info */
2358 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2359 } else {
2360 spin_lock(&oi->ip_lock);
2361 /* Set the proper information to get us going into
2362 * ocfs2_delete_inode. */
2363 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2364 spin_unlock(&oi->ip_lock);
2365 }
2366
2367 iput(inode);
2368 inode = iter;
2369 }
2370
2371 return ret;
2372 }
2373
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2374 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2375 {
2376 /* This check is good because ocfs2 will wait on our recovery
2377 * thread before changing it to something other than MOUNTED
2378 * or DISABLED. */
2379 wait_event(osb->osb_mount_event,
2380 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2381 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2382 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2383
2384 /* If there's an error on mount, then we may never get to the
2385 * MOUNTED flag, but this is set right before
2386 * dismount_volume() so we can trust it. */
2387 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2388 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2389 mlog(0, "mount error, exiting!\n");
2390 return -EBUSY;
2391 }
2392
2393 return 0;
2394 }
2395
ocfs2_commit_thread(void * arg)2396 static int ocfs2_commit_thread(void *arg)
2397 {
2398 int status;
2399 struct ocfs2_super *osb = arg;
2400 struct ocfs2_journal *journal = osb->journal;
2401
2402 /* we can trust j_num_trans here because _should_stop() is only set in
2403 * shutdown and nobody other than ourselves should be able to start
2404 * transactions. committing on shutdown might take a few iterations
2405 * as final transactions put deleted inodes on the list */
2406 while (!(kthread_should_stop() &&
2407 atomic_read(&journal->j_num_trans) == 0)) {
2408
2409 wait_event_interruptible(osb->checkpoint_event,
2410 atomic_read(&journal->j_num_trans)
2411 || kthread_should_stop());
2412
2413 status = ocfs2_commit_cache(osb);
2414 if (status < 0) {
2415 static unsigned long abort_warn_time;
2416
2417 /* Warn about this once per minute */
2418 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2419 mlog(ML_ERROR, "status = %d, journal is "
2420 "already aborted.\n", status);
2421 /*
2422 * After ocfs2_commit_cache() fails, j_num_trans has a
2423 * non-zero value. Sleep here to avoid a busy-wait
2424 * loop.
2425 */
2426 msleep_interruptible(1000);
2427 }
2428
2429 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2430 mlog(ML_KTHREAD,
2431 "commit_thread: %u transactions pending on "
2432 "shutdown\n",
2433 atomic_read(&journal->j_num_trans));
2434 }
2435 }
2436
2437 return 0;
2438 }
2439
2440 /* Reads all the journal inodes without taking any cluster locks. Used
2441 * for hard readonly access to determine whether any journal requires
2442 * recovery. Also used to refresh the recovery generation numbers after
2443 * a journal has been recovered by another node.
2444 */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2445 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2446 {
2447 int ret = 0;
2448 unsigned int slot;
2449 struct buffer_head *di_bh = NULL;
2450 struct ocfs2_dinode *di;
2451 int journal_dirty = 0;
2452
2453 for(slot = 0; slot < osb->max_slots; slot++) {
2454 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2455 if (ret) {
2456 mlog_errno(ret);
2457 goto out;
2458 }
2459
2460 di = (struct ocfs2_dinode *) di_bh->b_data;
2461
2462 osb->slot_recovery_generations[slot] =
2463 ocfs2_get_recovery_generation(di);
2464
2465 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2466 OCFS2_JOURNAL_DIRTY_FL)
2467 journal_dirty = 1;
2468
2469 brelse(di_bh);
2470 di_bh = NULL;
2471 }
2472
2473 out:
2474 if (journal_dirty)
2475 ret = -EROFS;
2476 return ret;
2477 }
2478