xref: /linux/drivers/hwmon/occ/common.c (revision 24770983ccfec854d89da9d87ca5f2c9efc695fc)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3 
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/property.h>
14 #include <linux/sysfs.h>
15 #include <linux/unaligned.h>
16 
17 #include "common.h"
18 
19 #define EXTN_FLAG_SENSOR_ID		BIT(7)
20 
21 #define OCC_ERROR_COUNT_THRESHOLD	2	/* required by OCC spec */
22 
23 #define OCC_STATE_SAFE			4
24 #define OCC_SAFE_TIMEOUT		msecs_to_jiffies(60000) /* 1 min */
25 
26 #define OCC_UPDATE_FREQUENCY		msecs_to_jiffies(1000)
27 
28 #define OCC_TEMP_SENSOR_FAULT		0xFF
29 
30 #define OCC_FRU_TYPE_VRM		3
31 
32 /* OCC sensor type and version definitions */
33 
34 struct temp_sensor_1 {
35 	u16 sensor_id;
36 	u16 value;
37 } __packed;
38 
39 struct temp_sensor_2 {
40 	u32 sensor_id;
41 	u8 fru_type;
42 	u8 value;
43 } __packed;
44 
45 struct temp_sensor_10 {
46 	u32 sensor_id;
47 	u8 fru_type;
48 	u8 value;
49 	u8 throttle;
50 	u8 reserved;
51 } __packed;
52 
53 struct freq_sensor_1 {
54 	u16 sensor_id;
55 	u16 value;
56 } __packed;
57 
58 struct freq_sensor_2 {
59 	u32 sensor_id;
60 	u16 value;
61 } __packed;
62 
63 struct power_sensor_1 {
64 	u16 sensor_id;
65 	u32 update_tag;
66 	u32 accumulator;
67 	u16 value;
68 } __packed;
69 
70 struct power_sensor_2 {
71 	u32 sensor_id;
72 	u8 function_id;
73 	u8 apss_channel;
74 	u16 reserved;
75 	u32 update_tag;
76 	u64 accumulator;
77 	u16 value;
78 } __packed;
79 
80 struct power_sensor_data {
81 	u16 value;
82 	u32 update_tag;
83 	u64 accumulator;
84 } __packed;
85 
86 struct power_sensor_data_and_time {
87 	u16 update_time;
88 	u16 value;
89 	u32 update_tag;
90 	u64 accumulator;
91 } __packed;
92 
93 struct power_sensor_a0 {
94 	u32 sensor_id;
95 	struct power_sensor_data_and_time system;
96 	u32 reserved;
97 	struct power_sensor_data_and_time proc;
98 	struct power_sensor_data vdd;
99 	struct power_sensor_data vdn;
100 } __packed;
101 
102 struct caps_sensor_2 {
103 	u16 cap;
104 	u16 system_power;
105 	u16 n_cap;
106 	u16 max;
107 	u16 min;
108 	u16 user;
109 	u8 user_source;
110 } __packed;
111 
112 struct caps_sensor_3 {
113 	u16 cap;
114 	u16 system_power;
115 	u16 n_cap;
116 	u16 max;
117 	u16 hard_min;
118 	u16 soft_min;
119 	u16 user;
120 	u8 user_source;
121 } __packed;
122 
123 struct extended_sensor {
124 	union {
125 		u8 name[4];
126 		u32 sensor_id;
127 	};
128 	u8 flags;
129 	u8 reserved;
130 	u8 data[6];
131 } __packed;
132 
occ_poll(struct occ * occ)133 static int occ_poll(struct occ *occ)
134 {
135 	int rc;
136 	u8 cmd[7];
137 	struct occ_poll_response_header *header;
138 
139 	/* big endian */
140 	cmd[0] = 0;			/* sequence number */
141 	cmd[1] = 0;			/* cmd type */
142 	cmd[2] = 0;			/* data length msb */
143 	cmd[3] = 1;			/* data length lsb */
144 	cmd[4] = occ->poll_cmd_data;	/* data */
145 	cmd[5] = 0;			/* checksum msb */
146 	cmd[6] = 0;			/* checksum lsb */
147 
148 	/* mutex should already be locked if necessary */
149 	rc = occ->send_cmd(occ, cmd, sizeof(cmd), &occ->resp, sizeof(occ->resp));
150 	if (rc) {
151 		occ->last_error = rc;
152 		if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
153 			occ->error = rc;
154 
155 		goto done;
156 	}
157 
158 	/* clear error since communication was successful */
159 	occ->error_count = 0;
160 	occ->last_error = 0;
161 	occ->error = 0;
162 
163 	/* check for safe state */
164 	header = (struct occ_poll_response_header *)occ->resp.data;
165 	if (header->occ_state == OCC_STATE_SAFE) {
166 		if (occ->last_safe) {
167 			if (time_after(jiffies,
168 				       occ->last_safe + OCC_SAFE_TIMEOUT))
169 				occ->error = -EHOSTDOWN;
170 		} else {
171 			occ->last_safe = jiffies;
172 		}
173 	} else {
174 		occ->last_safe = 0;
175 	}
176 
177 done:
178 	occ_sysfs_poll_done(occ);
179 	return rc;
180 }
181 
occ_set_user_power_cap(struct occ * occ,u16 user_power_cap)182 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
183 {
184 	int rc;
185 	u8 cmd[8];
186 	u8 resp[8];
187 	__be16 user_power_cap_be = cpu_to_be16(user_power_cap);
188 
189 	cmd[0] = 0;	/* sequence number */
190 	cmd[1] = 0x22;	/* cmd type */
191 	cmd[2] = 0;	/* data length msb */
192 	cmd[3] = 2;	/* data length lsb */
193 
194 	memcpy(&cmd[4], &user_power_cap_be, 2);
195 
196 	cmd[6] = 0;	/* checksum msb */
197 	cmd[7] = 0;	/* checksum lsb */
198 
199 	rc = mutex_lock_interruptible(&occ->lock);
200 	if (rc)
201 		return rc;
202 
203 	rc = occ->send_cmd(occ, cmd, sizeof(cmd), resp, sizeof(resp));
204 
205 	mutex_unlock(&occ->lock);
206 
207 	return rc;
208 }
209 
occ_update_response(struct occ * occ)210 int occ_update_response(struct occ *occ)
211 {
212 	int rc = mutex_lock_interruptible(&occ->lock);
213 
214 	if (rc)
215 		return rc;
216 
217 	/* limit the maximum rate of polling the OCC */
218 	if (time_after(jiffies, occ->next_update)) {
219 		rc = occ_poll(occ);
220 		occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
221 	} else {
222 		rc = occ->last_error;
223 	}
224 
225 	mutex_unlock(&occ->lock);
226 	return rc;
227 }
228 
occ_show_temp_1(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t occ_show_temp_1(struct device *dev,
230 			       struct device_attribute *attr, char *buf)
231 {
232 	int rc;
233 	u32 val = 0;
234 	struct temp_sensor_1 *temp;
235 	struct occ *occ = dev_get_drvdata(dev);
236 	struct occ_sensors *sensors = &occ->sensors;
237 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
238 
239 	rc = occ_update_response(occ);
240 	if (rc)
241 		return rc;
242 
243 	temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
244 
245 	switch (sattr->nr) {
246 	case 0:
247 		val = get_unaligned_be16(&temp->sensor_id);
248 		break;
249 	case 1:
250 		/*
251 		 * If a sensor reading has expired and couldn't be refreshed,
252 		 * OCC returns 0xFFFF for that sensor.
253 		 */
254 		if (temp->value == 0xFFFF)
255 			return -EREMOTEIO;
256 		val = get_unaligned_be16(&temp->value) * 1000;
257 		break;
258 	default:
259 		return -EINVAL;
260 	}
261 
262 	return sysfs_emit(buf, "%u\n", val);
263 }
264 
occ_show_temp_2(struct device * dev,struct device_attribute * attr,char * buf)265 static ssize_t occ_show_temp_2(struct device *dev,
266 			       struct device_attribute *attr, char *buf)
267 {
268 	int rc;
269 	u32 val = 0;
270 	struct temp_sensor_2 *temp;
271 	struct occ *occ = dev_get_drvdata(dev);
272 	struct occ_sensors *sensors = &occ->sensors;
273 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
274 
275 	rc = occ_update_response(occ);
276 	if (rc)
277 		return rc;
278 
279 	temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
280 
281 	switch (sattr->nr) {
282 	case 0:
283 		val = get_unaligned_be32(&temp->sensor_id);
284 		break;
285 	case 1:
286 		val = temp->value;
287 		if (val == OCC_TEMP_SENSOR_FAULT)
288 			return -EREMOTEIO;
289 
290 		/*
291 		 * VRM doesn't return temperature, only alarm bit. This
292 		 * attribute maps to tempX_alarm instead of tempX_input for
293 		 * VRM
294 		 */
295 		if (temp->fru_type != OCC_FRU_TYPE_VRM) {
296 			/* sensor not ready */
297 			if (val == 0)
298 				return -EAGAIN;
299 
300 			val *= 1000;
301 		}
302 		break;
303 	case 2:
304 		val = temp->fru_type;
305 		break;
306 	case 3:
307 		val = temp->value == OCC_TEMP_SENSOR_FAULT;
308 		break;
309 	default:
310 		return -EINVAL;
311 	}
312 
313 	return sysfs_emit(buf, "%u\n", val);
314 }
315 
occ_show_temp_10(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t occ_show_temp_10(struct device *dev,
317 				struct device_attribute *attr, char *buf)
318 {
319 	int rc;
320 	u32 val = 0;
321 	struct temp_sensor_10 *temp;
322 	struct occ *occ = dev_get_drvdata(dev);
323 	struct occ_sensors *sensors = &occ->sensors;
324 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
325 
326 	rc = occ_update_response(occ);
327 	if (rc)
328 		return rc;
329 
330 	temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
331 
332 	switch (sattr->nr) {
333 	case 0:
334 		val = get_unaligned_be32(&temp->sensor_id);
335 		break;
336 	case 1:
337 		val = temp->value;
338 		if (val == OCC_TEMP_SENSOR_FAULT)
339 			return -EREMOTEIO;
340 
341 		/* sensor not ready */
342 		if (val == 0)
343 			return -EAGAIN;
344 
345 		val *= 1000;
346 		break;
347 	case 2:
348 		val = temp->fru_type;
349 		break;
350 	case 3:
351 		val = temp->value == OCC_TEMP_SENSOR_FAULT;
352 		break;
353 	case 4:
354 		val = temp->throttle * 1000;
355 		break;
356 	default:
357 		return -EINVAL;
358 	}
359 
360 	return sysfs_emit(buf, "%u\n", val);
361 }
362 
occ_show_freq_1(struct device * dev,struct device_attribute * attr,char * buf)363 static ssize_t occ_show_freq_1(struct device *dev,
364 			       struct device_attribute *attr, char *buf)
365 {
366 	int rc;
367 	u16 val = 0;
368 	struct freq_sensor_1 *freq;
369 	struct occ *occ = dev_get_drvdata(dev);
370 	struct occ_sensors *sensors = &occ->sensors;
371 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
372 
373 	rc = occ_update_response(occ);
374 	if (rc)
375 		return rc;
376 
377 	freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
378 
379 	switch (sattr->nr) {
380 	case 0:
381 		val = get_unaligned_be16(&freq->sensor_id);
382 		break;
383 	case 1:
384 		val = get_unaligned_be16(&freq->value);
385 		break;
386 	default:
387 		return -EINVAL;
388 	}
389 
390 	return sysfs_emit(buf, "%u\n", val);
391 }
392 
occ_show_freq_2(struct device * dev,struct device_attribute * attr,char * buf)393 static ssize_t occ_show_freq_2(struct device *dev,
394 			       struct device_attribute *attr, char *buf)
395 {
396 	int rc;
397 	u32 val = 0;
398 	struct freq_sensor_2 *freq;
399 	struct occ *occ = dev_get_drvdata(dev);
400 	struct occ_sensors *sensors = &occ->sensors;
401 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
402 
403 	rc = occ_update_response(occ);
404 	if (rc)
405 		return rc;
406 
407 	freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
408 
409 	switch (sattr->nr) {
410 	case 0:
411 		val = get_unaligned_be32(&freq->sensor_id);
412 		break;
413 	case 1:
414 		val = get_unaligned_be16(&freq->value);
415 		break;
416 	default:
417 		return -EINVAL;
418 	}
419 
420 	return sysfs_emit(buf, "%u\n", val);
421 }
422 
occ_show_power_1(struct device * dev,struct device_attribute * attr,char * buf)423 static ssize_t occ_show_power_1(struct device *dev,
424 				struct device_attribute *attr, char *buf)
425 {
426 	int rc;
427 	u64 val = 0;
428 	struct power_sensor_1 *power;
429 	struct occ *occ = dev_get_drvdata(dev);
430 	struct occ_sensors *sensors = &occ->sensors;
431 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
432 
433 	rc = occ_update_response(occ);
434 	if (rc)
435 		return rc;
436 
437 	power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
438 
439 	switch (sattr->nr) {
440 	case 0:
441 		val = get_unaligned_be16(&power->sensor_id);
442 		break;
443 	case 1:
444 		val = get_unaligned_be32(&power->accumulator) /
445 			get_unaligned_be32(&power->update_tag);
446 		val *= 1000000ULL;
447 		break;
448 	case 2:
449 		val = (u64)get_unaligned_be32(&power->update_tag) *
450 			   occ->powr_sample_time_us;
451 		break;
452 	case 3:
453 		val = get_unaligned_be16(&power->value) * 1000000ULL;
454 		break;
455 	default:
456 		return -EINVAL;
457 	}
458 
459 	return sysfs_emit(buf, "%llu\n", val);
460 }
461 
occ_get_powr_avg(u64 accum,u32 samples)462 static u64 occ_get_powr_avg(u64 accum, u32 samples)
463 {
464 	return (samples == 0) ? 0 :
465 		mul_u64_u32_div(accum, 1000000UL, samples);
466 }
467 
occ_show_power_2(struct device * dev,struct device_attribute * attr,char * buf)468 static ssize_t occ_show_power_2(struct device *dev,
469 				struct device_attribute *attr, char *buf)
470 {
471 	int rc;
472 	u64 val = 0;
473 	struct power_sensor_2 *power;
474 	struct occ *occ = dev_get_drvdata(dev);
475 	struct occ_sensors *sensors = &occ->sensors;
476 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
477 
478 	rc = occ_update_response(occ);
479 	if (rc)
480 		return rc;
481 
482 	power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
483 
484 	switch (sattr->nr) {
485 	case 0:
486 		return sysfs_emit(buf, "%u_%u_%u\n",
487 				  get_unaligned_be32(&power->sensor_id),
488 				  power->function_id, power->apss_channel);
489 	case 1:
490 		val = occ_get_powr_avg(get_unaligned_be64(&power->accumulator),
491 				       get_unaligned_be32(&power->update_tag));
492 		break;
493 	case 2:
494 		val = (u64)get_unaligned_be32(&power->update_tag) *
495 			   occ->powr_sample_time_us;
496 		break;
497 	case 3:
498 		val = get_unaligned_be16(&power->value) * 1000000ULL;
499 		break;
500 	default:
501 		return -EINVAL;
502 	}
503 
504 	return sysfs_emit(buf, "%llu\n", val);
505 }
506 
occ_show_power_a0(struct device * dev,struct device_attribute * attr,char * buf)507 static ssize_t occ_show_power_a0(struct device *dev,
508 				 struct device_attribute *attr, char *buf)
509 {
510 	int rc;
511 	u64 val = 0;
512 	struct power_sensor_a0 *power;
513 	struct occ *occ = dev_get_drvdata(dev);
514 	struct occ_sensors *sensors = &occ->sensors;
515 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
516 
517 	rc = occ_update_response(occ);
518 	if (rc)
519 		return rc;
520 
521 	power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
522 
523 	switch (sattr->nr) {
524 	case 0:
525 		return sysfs_emit(buf, "%u_system\n",
526 				  get_unaligned_be32(&power->sensor_id));
527 	case 1:
528 		val = occ_get_powr_avg(get_unaligned_be64(&power->system.accumulator),
529 				       get_unaligned_be32(&power->system.update_tag));
530 		break;
531 	case 2:
532 		val = (u64)get_unaligned_be32(&power->system.update_tag) *
533 			   occ->powr_sample_time_us;
534 		break;
535 	case 3:
536 		val = get_unaligned_be16(&power->system.value) * 1000000ULL;
537 		break;
538 	case 4:
539 		return sysfs_emit(buf, "%u_proc\n",
540 				  get_unaligned_be32(&power->sensor_id));
541 	case 5:
542 		val = occ_get_powr_avg(get_unaligned_be64(&power->proc.accumulator),
543 				       get_unaligned_be32(&power->proc.update_tag));
544 		break;
545 	case 6:
546 		val = (u64)get_unaligned_be32(&power->proc.update_tag) *
547 			   occ->powr_sample_time_us;
548 		break;
549 	case 7:
550 		val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
551 		break;
552 	case 8:
553 		return sysfs_emit(buf, "%u_vdd\n",
554 				  get_unaligned_be32(&power->sensor_id));
555 	case 9:
556 		val = occ_get_powr_avg(get_unaligned_be64(&power->vdd.accumulator),
557 				       get_unaligned_be32(&power->vdd.update_tag));
558 		break;
559 	case 10:
560 		val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
561 			   occ->powr_sample_time_us;
562 		break;
563 	case 11:
564 		val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
565 		break;
566 	case 12:
567 		return sysfs_emit(buf, "%u_vdn\n",
568 				  get_unaligned_be32(&power->sensor_id));
569 	case 13:
570 		val = occ_get_powr_avg(get_unaligned_be64(&power->vdn.accumulator),
571 				       get_unaligned_be32(&power->vdn.update_tag));
572 		break;
573 	case 14:
574 		val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
575 			   occ->powr_sample_time_us;
576 		break;
577 	case 15:
578 		val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
579 		break;
580 	default:
581 		return -EINVAL;
582 	}
583 
584 	return sysfs_emit(buf, "%llu\n", val);
585 }
586 
occ_show_caps_1_2(struct device * dev,struct device_attribute * attr,char * buf)587 static ssize_t occ_show_caps_1_2(struct device *dev,
588 				 struct device_attribute *attr, char *buf)
589 {
590 	int rc;
591 	u64 val = 0;
592 	struct caps_sensor_2 *caps;
593 	struct occ *occ = dev_get_drvdata(dev);
594 	struct occ_sensors *sensors = &occ->sensors;
595 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
596 
597 	rc = occ_update_response(occ);
598 	if (rc)
599 		return rc;
600 
601 	caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
602 
603 	switch (sattr->nr) {
604 	case 0:
605 		return sysfs_emit(buf, "system\n");
606 	case 1:
607 		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
608 		break;
609 	case 2:
610 		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
611 		break;
612 	case 3:
613 		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
614 		break;
615 	case 4:
616 		val = get_unaligned_be16(&caps->max) * 1000000ULL;
617 		break;
618 	case 5:
619 		val = get_unaligned_be16(&caps->min) * 1000000ULL;
620 		break;
621 	case 6:
622 		val = get_unaligned_be16(&caps->user) * 1000000ULL;
623 		break;
624 	case 7:
625 		if (occ->sensors.caps.version == 1)
626 			return -EINVAL;
627 
628 		val = caps->user_source;
629 		break;
630 	default:
631 		return -EINVAL;
632 	}
633 
634 	return sysfs_emit(buf, "%llu\n", val);
635 }
636 
occ_show_caps_3(struct device * dev,struct device_attribute * attr,char * buf)637 static ssize_t occ_show_caps_3(struct device *dev,
638 			       struct device_attribute *attr, char *buf)
639 {
640 	int rc;
641 	u64 val = 0;
642 	struct caps_sensor_3 *caps;
643 	struct occ *occ = dev_get_drvdata(dev);
644 	struct occ_sensors *sensors = &occ->sensors;
645 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
646 
647 	rc = occ_update_response(occ);
648 	if (rc)
649 		return rc;
650 
651 	caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
652 
653 	switch (sattr->nr) {
654 	case 0:
655 		return sysfs_emit(buf, "system\n");
656 	case 1:
657 		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
658 		break;
659 	case 2:
660 		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
661 		break;
662 	case 3:
663 		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
664 		break;
665 	case 4:
666 		val = get_unaligned_be16(&caps->max) * 1000000ULL;
667 		break;
668 	case 5:
669 		val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
670 		break;
671 	case 6:
672 		val = get_unaligned_be16(&caps->user) * 1000000ULL;
673 		break;
674 	case 7:
675 		val = caps->user_source;
676 		break;
677 	case 8:
678 		val = get_unaligned_be16(&caps->soft_min) * 1000000ULL;
679 		break;
680 	default:
681 		return -EINVAL;
682 	}
683 
684 	return sysfs_emit(buf, "%llu\n", val);
685 }
686 
occ_store_caps_user(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)687 static ssize_t occ_store_caps_user(struct device *dev,
688 				   struct device_attribute *attr,
689 				   const char *buf, size_t count)
690 {
691 	int rc;
692 	u16 user_power_cap;
693 	unsigned long long value;
694 	struct occ *occ = dev_get_drvdata(dev);
695 
696 	rc = kstrtoull(buf, 0, &value);
697 	if (rc)
698 		return rc;
699 
700 	user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
701 
702 	rc = occ_set_user_power_cap(occ, user_power_cap);
703 	if (rc)
704 		return rc;
705 
706 	return count;
707 }
708 
occ_show_extended(struct device * dev,struct device_attribute * attr,char * buf)709 static ssize_t occ_show_extended(struct device *dev,
710 				 struct device_attribute *attr, char *buf)
711 {
712 	int rc;
713 	struct extended_sensor *extn;
714 	struct occ *occ = dev_get_drvdata(dev);
715 	struct occ_sensors *sensors = &occ->sensors;
716 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
717 
718 	rc = occ_update_response(occ);
719 	if (rc)
720 		return rc;
721 
722 	extn = ((struct extended_sensor *)sensors->extended.data) +
723 		sattr->index;
724 
725 	switch (sattr->nr) {
726 	case 0:
727 		if (extn->flags & EXTN_FLAG_SENSOR_ID) {
728 			rc = sysfs_emit(buf, "%u",
729 					get_unaligned_be32(&extn->sensor_id));
730 		} else {
731 			rc = sysfs_emit(buf, "%4phN\n", extn->name);
732 		}
733 		break;
734 	case 1:
735 		rc = sysfs_emit(buf, "%02x\n", extn->flags);
736 		break;
737 	case 2:
738 		rc = sysfs_emit(buf, "%6phN\n", extn->data);
739 		break;
740 	default:
741 		return -EINVAL;
742 	}
743 
744 	return rc;
745 }
746 
747 /*
748  * A helper to make it easier to define an occ_attribute. Since these
749  * are dynamically allocated, we cannot use the existing kernel macros which
750  * stringify the name argument.
751  */
occ_init_attribute(struct occ_attribute * attr,int mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int nr,int index,const char * fmt,...)752 static void occ_init_attribute(struct occ_attribute *attr, int mode,
753 	ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf),
754 	ssize_t (*store)(struct device *dev, struct device_attribute *attr,
755 				   const char *buf, size_t count),
756 	int nr, int index, const char *fmt, ...)
757 {
758 	va_list args;
759 
760 	va_start(args, fmt);
761 	vsnprintf(attr->name, sizeof(attr->name), fmt, args);
762 	va_end(args);
763 
764 	attr->sensor.dev_attr.attr.name = attr->name;
765 	attr->sensor.dev_attr.attr.mode = mode;
766 	attr->sensor.dev_attr.show = show;
767 	attr->sensor.dev_attr.store = store;
768 	attr->sensor.index = index;
769 	attr->sensor.nr = nr;
770 }
771 
772 /*
773  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
774  * use our own instead of the built-in hwmon attribute types.
775  */
occ_setup_sensor_attrs(struct occ * occ)776 static int occ_setup_sensor_attrs(struct occ *occ)
777 {
778 	unsigned int i, s, num_attrs = 0;
779 	struct device *dev = occ->bus_dev;
780 	struct occ_sensors *sensors = &occ->sensors;
781 	struct occ_attribute *attr;
782 	struct temp_sensor_2 *temp;
783 	ssize_t (*show_temp)(struct device *, struct device_attribute *,
784 			     char *) = occ_show_temp_1;
785 	ssize_t (*show_freq)(struct device *, struct device_attribute *,
786 			     char *) = occ_show_freq_1;
787 	ssize_t (*show_power)(struct device *, struct device_attribute *,
788 			      char *) = occ_show_power_1;
789 	ssize_t (*show_caps)(struct device *, struct device_attribute *,
790 			     char *) = occ_show_caps_1_2;
791 
792 	switch (sensors->temp.version) {
793 	case 1:
794 		num_attrs += (sensors->temp.num_sensors * 2);
795 		break;
796 	case 2:
797 		num_attrs += (sensors->temp.num_sensors * 4);
798 		show_temp = occ_show_temp_2;
799 		break;
800 	case 0x10:
801 		num_attrs += (sensors->temp.num_sensors * 5);
802 		show_temp = occ_show_temp_10;
803 		break;
804 	default:
805 		sensors->temp.num_sensors = 0;
806 	}
807 
808 	switch (sensors->freq.version) {
809 	case 2:
810 		show_freq = occ_show_freq_2;
811 		fallthrough;
812 	case 1:
813 		num_attrs += (sensors->freq.num_sensors * 2);
814 		break;
815 	default:
816 		sensors->freq.num_sensors = 0;
817 	}
818 
819 	switch (sensors->power.version) {
820 	case 2:
821 		show_power = occ_show_power_2;
822 		fallthrough;
823 	case 1:
824 		num_attrs += (sensors->power.num_sensors * 4);
825 		break;
826 	case 0xA0:
827 		num_attrs += (sensors->power.num_sensors * 16);
828 		show_power = occ_show_power_a0;
829 		break;
830 	default:
831 		sensors->power.num_sensors = 0;
832 	}
833 
834 	switch (sensors->caps.version) {
835 	case 1:
836 		num_attrs += (sensors->caps.num_sensors * 7);
837 		break;
838 	case 2:
839 		num_attrs += (sensors->caps.num_sensors * 8);
840 		break;
841 	case 3:
842 		show_caps = occ_show_caps_3;
843 		num_attrs += (sensors->caps.num_sensors * 9);
844 		break;
845 	default:
846 		sensors->caps.num_sensors = 0;
847 	}
848 
849 	switch (sensors->extended.version) {
850 	case 1:
851 		num_attrs += (sensors->extended.num_sensors * 3);
852 		break;
853 	default:
854 		sensors->extended.num_sensors = 0;
855 	}
856 
857 	occ->attrs = devm_kcalloc(dev, num_attrs, sizeof(*occ->attrs),
858 				  GFP_KERNEL);
859 	if (!occ->attrs)
860 		return -ENOMEM;
861 
862 	/* null-terminated list */
863 	occ->group.attrs = devm_kcalloc(dev, num_attrs + 1,
864 					sizeof(*occ->group.attrs),
865 					GFP_KERNEL);
866 	if (!occ->group.attrs)
867 		return -ENOMEM;
868 
869 	attr = occ->attrs;
870 
871 	for (i = 0; i < sensors->temp.num_sensors; ++i) {
872 		s = i + 1;
873 		temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
874 
875 		occ_init_attribute(attr, 0444, show_temp, NULL,
876 				   0, i, "temp%d_label", s);
877 		attr++;
878 
879 		if (sensors->temp.version == 2 &&
880 		    temp->fru_type == OCC_FRU_TYPE_VRM) {
881 			occ_init_attribute(attr, 0444, show_temp, NULL,
882 					   1, i, "temp%d_alarm", s);
883 		} else {
884 			occ_init_attribute(attr, 0444, show_temp, NULL,
885 					   1, i, "temp%d_input", s);
886 		}
887 
888 		attr++;
889 
890 		if (sensors->temp.version > 1) {
891 			occ_init_attribute(attr, 0444, show_temp, NULL,
892 					   2, i, "temp%d_fru_type", s);
893 			attr++;
894 
895 			occ_init_attribute(attr, 0444, show_temp, NULL,
896 					   3, i, "temp%d_fault", s);
897 			attr++;
898 
899 			if (sensors->temp.version == 0x10) {
900 				occ_init_attribute(attr, 0444, show_temp, NULL,
901 						   4, i, "temp%d_max", s);
902 				attr++;
903 			}
904 		}
905 	}
906 
907 	for (i = 0; i < sensors->freq.num_sensors; ++i) {
908 		s = i + 1;
909 
910 		occ_init_attribute(attr, 0444, show_freq, NULL,
911 				   0, i, "freq%d_label", s);
912 		attr++;
913 
914 		occ_init_attribute(attr, 0444, show_freq, NULL,
915 				   1, i, "freq%d_input", s);
916 		attr++;
917 	}
918 
919 	if (sensors->power.version == 0xA0) {
920 		/*
921 		 * Special case for many-attribute power sensor. Split it into
922 		 * a sensor number per power type, emulating several sensors.
923 		 */
924 		for (i = 0; i < sensors->power.num_sensors; ++i) {
925 			unsigned int j;
926 			unsigned int nr = 0;
927 
928 			s = (i * 4) + 1;
929 
930 			for (j = 0; j < 4; ++j) {
931 				occ_init_attribute(attr, 0444, show_power,
932 						   NULL, nr++, i,
933 						   "power%d_label", s);
934 				attr++;
935 
936 				occ_init_attribute(attr, 0444, show_power,
937 						   NULL, nr++, i,
938 						   "power%d_average", s);
939 				attr++;
940 
941 				occ_init_attribute(attr, 0444, show_power,
942 						   NULL, nr++, i,
943 						   "power%d_average_interval", s);
944 				attr++;
945 
946 				occ_init_attribute(attr, 0444, show_power,
947 						   NULL, nr++, i,
948 						   "power%d_input", s);
949 				attr++;
950 
951 				s++;
952 			}
953 		}
954 
955 		s = (sensors->power.num_sensors * 4) + 1;
956 	} else {
957 		for (i = 0; i < sensors->power.num_sensors; ++i) {
958 			s = i + 1;
959 
960 			occ_init_attribute(attr, 0444, show_power, NULL,
961 					   0, i, "power%d_label", s);
962 			attr++;
963 
964 			occ_init_attribute(attr, 0444, show_power, NULL,
965 					   1, i, "power%d_average", s);
966 			attr++;
967 
968 			occ_init_attribute(attr, 0444, show_power, NULL,
969 					   2, i, "power%d_average_interval", s);
970 			attr++;
971 
972 			occ_init_attribute(attr, 0444, show_power, NULL,
973 					   3, i, "power%d_input", s);
974 			attr++;
975 		}
976 
977 		s = sensors->power.num_sensors + 1;
978 	}
979 
980 	if (sensors->caps.num_sensors >= 1) {
981 		occ_init_attribute(attr, 0444, show_caps, NULL,
982 				   0, 0, "power%d_label", s);
983 		attr++;
984 
985 		occ_init_attribute(attr, 0444, show_caps, NULL,
986 				   1, 0, "power%d_cap", s);
987 		attr++;
988 
989 		occ_init_attribute(attr, 0444, show_caps, NULL,
990 				   2, 0, "power%d_input", s);
991 		attr++;
992 
993 		occ_init_attribute(attr, 0444, show_caps, NULL,
994 				   3, 0, "power%d_cap_not_redundant", s);
995 		attr++;
996 
997 		occ_init_attribute(attr, 0444, show_caps, NULL,
998 				   4, 0, "power%d_cap_max", s);
999 		attr++;
1000 
1001 		occ_init_attribute(attr, 0444, show_caps, NULL,
1002 				   5, 0, "power%d_cap_min", s);
1003 		attr++;
1004 
1005 		occ_init_attribute(attr, 0644, show_caps, occ_store_caps_user,
1006 				   6, 0, "power%d_cap_user", s);
1007 		attr++;
1008 
1009 		if (sensors->caps.version > 1) {
1010 			occ_init_attribute(attr, 0444, show_caps, NULL,
1011 					   7, 0, "power%d_cap_user_source", s);
1012 			attr++;
1013 
1014 			if (sensors->caps.version > 2) {
1015 				occ_init_attribute(attr, 0444, show_caps, NULL,
1016 						   8, 0,
1017 						   "power%d_cap_min_soft", s);
1018 				attr++;
1019 			}
1020 		}
1021 	}
1022 
1023 	for (i = 0; i < sensors->extended.num_sensors; ++i) {
1024 		s = i + 1;
1025 
1026 		occ_init_attribute(attr, 0444, occ_show_extended, NULL,
1027 				   0, i, "extn%d_label", s);
1028 		attr++;
1029 
1030 		occ_init_attribute(attr, 0444, occ_show_extended, NULL,
1031 				   1, i, "extn%d_flags", s);
1032 		attr++;
1033 
1034 		occ_init_attribute(attr, 0444, occ_show_extended, NULL,
1035 				   2, i, "extn%d_input", s);
1036 		attr++;
1037 	}
1038 
1039 	/* put the sensors in the group */
1040 	for (i = 0; i < num_attrs; ++i) {
1041 		sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1042 		occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /* only need to do this once at startup, as OCC won't change sensors on us */
occ_parse_poll_response(struct occ * occ)1049 static void occ_parse_poll_response(struct occ *occ)
1050 {
1051 	unsigned int i, old_offset, offset = 0, size = 0;
1052 	struct occ_sensor *sensor;
1053 	struct occ_sensors *sensors = &occ->sensors;
1054 	struct occ_response *resp = &occ->resp;
1055 	struct occ_poll_response *poll =
1056 		(struct occ_poll_response *)&resp->data[0];
1057 	struct occ_poll_response_header *header = &poll->header;
1058 	struct occ_sensor_data_block *block = &poll->block;
1059 
1060 	dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1061 		 header->occ_code_level);
1062 
1063 	for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1064 		block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1065 		old_offset = offset;
1066 		offset = (block->header.num_sensors *
1067 			  block->header.sensor_length) + sizeof(block->header);
1068 		size += offset;
1069 
1070 		/* validate all the length/size fields */
1071 		if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1072 			dev_warn(occ->bus_dev, "exceeded response buffer\n");
1073 			return;
1074 		}
1075 
1076 		dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1077 			old_offset, offset - 1, block->header.eye_catcher,
1078 			block->header.num_sensors);
1079 
1080 		/* match sensor block type */
1081 		if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1082 			sensor = &sensors->temp;
1083 		else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1084 			sensor = &sensors->freq;
1085 		else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1086 			sensor = &sensors->power;
1087 		else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1088 			sensor = &sensors->caps;
1089 		else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1090 			sensor = &sensors->extended;
1091 		else {
1092 			dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1093 				 block->header.eye_catcher);
1094 			continue;
1095 		}
1096 
1097 		sensor->num_sensors = block->header.num_sensors;
1098 		sensor->version = block->header.sensor_format;
1099 		sensor->data = &block->data;
1100 	}
1101 
1102 	dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1103 		sizeof(*header), size + sizeof(*header));
1104 }
1105 
occ_active(struct occ * occ,bool active)1106 int occ_active(struct occ *occ, bool active)
1107 {
1108 	int rc = mutex_lock_interruptible(&occ->lock);
1109 
1110 	if (rc)
1111 		return rc;
1112 
1113 	if (active) {
1114 		if (occ->active) {
1115 			rc = -EALREADY;
1116 			goto unlock;
1117 		}
1118 
1119 		occ->error_count = 0;
1120 		occ->last_safe = 0;
1121 
1122 		rc = occ_poll(occ);
1123 		if (rc < 0) {
1124 			dev_err(occ->bus_dev,
1125 				"failed to get OCC poll response=%02x: %d\n",
1126 				occ->resp.return_status, rc);
1127 			goto unlock;
1128 		}
1129 
1130 		occ->active = true;
1131 		occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1132 		occ_parse_poll_response(occ);
1133 
1134 		rc = occ_setup_sensor_attrs(occ);
1135 		if (rc) {
1136 			dev_err(occ->bus_dev,
1137 				"failed to setup sensor attrs: %d\n", rc);
1138 			goto unlock;
1139 		}
1140 
1141 		occ->hwmon = hwmon_device_register_with_groups(occ->bus_dev,
1142 							       "occ", occ,
1143 							       occ->groups);
1144 		if (IS_ERR(occ->hwmon)) {
1145 			rc = PTR_ERR(occ->hwmon);
1146 			occ->hwmon = NULL;
1147 			dev_err(occ->bus_dev,
1148 				"failed to register hwmon device: %d\n", rc);
1149 			goto unlock;
1150 		}
1151 	} else {
1152 		if (!occ->active) {
1153 			rc = -EALREADY;
1154 			goto unlock;
1155 		}
1156 
1157 		if (occ->hwmon)
1158 			hwmon_device_unregister(occ->hwmon);
1159 		occ->active = false;
1160 		occ->hwmon = NULL;
1161 	}
1162 
1163 unlock:
1164 	mutex_unlock(&occ->lock);
1165 	return rc;
1166 }
1167 
occ_setup(struct occ * occ)1168 int occ_setup(struct occ *occ)
1169 {
1170 	int rc;
1171 
1172 	mutex_init(&occ->lock);
1173 	occ->groups[0] = &occ->group;
1174 
1175 	rc = occ_setup_sysfs(occ);
1176 	if (rc) {
1177 		dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1178 		return rc;
1179 	}
1180 
1181 	if (!device_property_read_bool(occ->bus_dev, "ibm,no-poll-on-init")) {
1182 		rc = occ_active(occ, true);
1183 		if (rc)
1184 			occ_shutdown_sysfs(occ);
1185 	}
1186 
1187 	return rc;
1188 }
1189 EXPORT_SYMBOL_GPL(occ_setup);
1190 
occ_shutdown(struct occ * occ)1191 void occ_shutdown(struct occ *occ)
1192 {
1193 	mutex_lock(&occ->lock);
1194 
1195 	occ_shutdown_sysfs(occ);
1196 
1197 	if (occ->hwmon)
1198 		hwmon_device_unregister(occ->hwmon);
1199 	occ->hwmon = NULL;
1200 
1201 	mutex_unlock(&occ->lock);
1202 }
1203 EXPORT_SYMBOL_GPL(occ_shutdown);
1204 
1205 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1206 MODULE_DESCRIPTION("Common OCC hwmon code");
1207 MODULE_LICENSE("GPL");
1208