1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * processor_idle - idle state submodule to the ACPI processor driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
12 */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h> /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <linux/minmax.h>
23 #include <linux/perf_event.h>
24 #include <acpi/processor.h>
25 #include <linux/context_tracking.h>
26
27 #include "internal.h"
28
29 /*
30 * Include the apic definitions for x86 to have the APIC timer related defines
31 * available also for UP (on SMP it gets magically included via linux/smp.h).
32 * asm/acpi.h is not an option, as it would require more include magic. Also
33 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
34 */
35 #ifdef CONFIG_X86
36 #include <asm/apic.h>
37 #include <asm/cpu.h>
38 #endif
39
40 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
41
42 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
43 module_param(max_cstate, uint, 0400);
44 static bool nocst __read_mostly;
45 module_param(nocst, bool, 0400);
46 static bool bm_check_disable __read_mostly;
47 module_param(bm_check_disable, bool, 0400);
48
49 static unsigned int latency_factor __read_mostly = 2;
50 module_param(latency_factor, uint, 0644);
51
52 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
53
54 static struct cpuidle_driver acpi_idle_driver = {
55 .name = "acpi_idle",
56 .owner = THIS_MODULE,
57 };
58
59 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
acpi_idle_rescan_dead_smt_siblings(void)60 void acpi_idle_rescan_dead_smt_siblings(void)
61 {
62 if (cpuidle_get_driver() == &acpi_idle_driver)
63 arch_cpu_rescan_dead_smt_siblings();
64 }
65
66 static
67 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
68
disabled_by_idle_boot_param(void)69 static int disabled_by_idle_boot_param(void)
70 {
71 return boot_option_idle_override == IDLE_POLL ||
72 boot_option_idle_override == IDLE_HALT;
73 }
74
75 /*
76 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
77 * For now disable this. Probably a bug somewhere else.
78 *
79 * To skip this limit, boot/load with a large max_cstate limit.
80 */
set_max_cstate(const struct dmi_system_id * id)81 static int set_max_cstate(const struct dmi_system_id *id)
82 {
83 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
84 return 0;
85
86 pr_notice("%s detected - limiting to C%ld max_cstate."
87 " Override with \"processor.max_cstate=%d\"\n", id->ident,
88 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
89
90 max_cstate = (long)id->driver_data;
91
92 return 0;
93 }
94
95 static const struct dmi_system_id processor_power_dmi_table[] = {
96 { set_max_cstate, "Clevo 5600D", {
97 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
98 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
99 (void *)2},
100 { set_max_cstate, "Pavilion zv5000", {
101 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
102 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
103 (void *)1},
104 { set_max_cstate, "Asus L8400B", {
105 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
106 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
107 (void *)1},
108 {},
109 };
110
111
112 /*
113 * Callers should disable interrupts before the call and enable
114 * interrupts after return.
115 */
acpi_safe_halt(void)116 static void __cpuidle acpi_safe_halt(void)
117 {
118 if (!tif_need_resched()) {
119 raw_safe_halt();
120 raw_local_irq_disable();
121 }
122 }
123
124 #ifdef ARCH_APICTIMER_STOPS_ON_C3
125
126 /*
127 * Some BIOS implementations switch to C3 in the published C2 state.
128 * This seems to be a common problem on AMD boxen, but other vendors
129 * are affected too. We pick the most conservative approach: we assume
130 * that the local APIC stops in both C2 and C3.
131 */
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cx)132 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
133 struct acpi_processor_cx *cx)
134 {
135 struct acpi_processor_power *pwr = &pr->power;
136 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
137
138 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
139 return;
140
141 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
142 type = ACPI_STATE_C1;
143
144 /*
145 * Check, if one of the previous states already marked the lapic
146 * unstable
147 */
148 if (pwr->timer_broadcast_on_state < state)
149 return;
150
151 if (cx->type >= type)
152 pr->power.timer_broadcast_on_state = state;
153 }
154
__lapic_timer_propagate_broadcast(void * arg)155 static void __lapic_timer_propagate_broadcast(void *arg)
156 {
157 struct acpi_processor *pr = arg;
158
159 if (pr->power.timer_broadcast_on_state < INT_MAX)
160 tick_broadcast_enable();
161 else
162 tick_broadcast_disable();
163 }
164
lapic_timer_propagate_broadcast(struct acpi_processor * pr)165 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
166 {
167 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
168 (void *)pr, 1);
169 }
170
171 /* Power(C) State timer broadcast control */
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)172 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
173 struct acpi_processor_cx *cx)
174 {
175 return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
176 }
177
178 #else
179
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cstate)180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181 struct acpi_processor_cx *cstate) { }
lapic_timer_propagate_broadcast(struct acpi_processor * pr)182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)184 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
185 struct acpi_processor_cx *cx)
186 {
187 return false;
188 }
189
190 #endif
191
192 #if defined(CONFIG_X86)
tsc_check_state(int state)193 static void tsc_check_state(int state)
194 {
195 switch (boot_cpu_data.x86_vendor) {
196 case X86_VENDOR_HYGON:
197 case X86_VENDOR_AMD:
198 case X86_VENDOR_INTEL:
199 case X86_VENDOR_CENTAUR:
200 case X86_VENDOR_ZHAOXIN:
201 /*
202 * AMD Fam10h TSC will tick in all
203 * C/P/S0/S1 states when this bit is set.
204 */
205 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
206 return;
207 fallthrough;
208 default:
209 /* TSC could halt in idle, so notify users */
210 if (state > ACPI_STATE_C1)
211 mark_tsc_unstable("TSC halts in idle");
212 }
213 }
214 #else
tsc_check_state(int state)215 static void tsc_check_state(int state) { return; }
216 #endif
217
acpi_processor_get_power_info_fadt(struct acpi_processor * pr)218 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
219 {
220
221 if (!pr->pblk)
222 return -ENODEV;
223
224 /* if info is obtained from pblk/fadt, type equals state */
225 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
226 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
227
228 #ifndef CONFIG_HOTPLUG_CPU
229 /*
230 * Check for P_LVL2_UP flag before entering C2 and above on
231 * an SMP system.
232 */
233 if ((num_online_cpus() > 1) &&
234 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
235 return -ENODEV;
236 #endif
237
238 /* determine C2 and C3 address from pblk */
239 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
240 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
241
242 /* determine latencies from FADT */
243 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
244 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
245
246 /*
247 * FADT specified C2 latency must be less than or equal to
248 * 100 microseconds.
249 */
250 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
251 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
252 acpi_gbl_FADT.c2_latency);
253 /* invalidate C2 */
254 pr->power.states[ACPI_STATE_C2].address = 0;
255 }
256
257 /*
258 * FADT supplied C3 latency must be less than or equal to
259 * 1000 microseconds.
260 */
261 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
262 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
263 acpi_gbl_FADT.c3_latency);
264 /* invalidate C3 */
265 pr->power.states[ACPI_STATE_C3].address = 0;
266 }
267
268 acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
269 pr->power.states[ACPI_STATE_C2].address,
270 pr->power.states[ACPI_STATE_C3].address);
271
272 snprintf(pr->power.states[ACPI_STATE_C2].desc,
273 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
274 pr->power.states[ACPI_STATE_C2].address);
275 snprintf(pr->power.states[ACPI_STATE_C3].desc,
276 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
277 pr->power.states[ACPI_STATE_C3].address);
278
279 if (!pr->power.states[ACPI_STATE_C2].address &&
280 !pr->power.states[ACPI_STATE_C3].address)
281 return -ENODEV;
282
283 return 0;
284 }
285
acpi_processor_get_power_info_default(struct acpi_processor * pr)286 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
287 {
288 if (!pr->power.states[ACPI_STATE_C1].valid) {
289 /* set the first C-State to C1 */
290 /* all processors need to support C1 */
291 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
292 pr->power.states[ACPI_STATE_C1].valid = 1;
293 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
294
295 snprintf(pr->power.states[ACPI_STATE_C1].desc,
296 ACPI_CX_DESC_LEN, "ACPI HLT");
297 }
298 /* the C0 state only exists as a filler in our array */
299 pr->power.states[ACPI_STATE_C0].valid = 1;
300 return 0;
301 }
302
acpi_processor_get_power_info_cst(struct acpi_processor * pr)303 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
304 {
305 int ret;
306
307 if (nocst)
308 return -ENODEV;
309
310 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
311 if (ret)
312 return ret;
313
314 if (!pr->power.count)
315 return -EFAULT;
316
317 pr->flags.has_cst = 1;
318 return 0;
319 }
320
acpi_processor_power_verify_c3(struct acpi_processor * pr,struct acpi_processor_cx * cx)321 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
322 struct acpi_processor_cx *cx)
323 {
324 static int bm_check_flag = -1;
325 static int bm_control_flag = -1;
326
327
328 if (!cx->address)
329 return;
330
331 /*
332 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
333 * DMA transfers are used by any ISA device to avoid livelock.
334 * Note that we could disable Type-F DMA (as recommended by
335 * the erratum), but this is known to disrupt certain ISA
336 * devices thus we take the conservative approach.
337 */
338 if (errata.piix4.fdma) {
339 acpi_handle_debug(pr->handle,
340 "C3 not supported on PIIX4 with Type-F DMA\n");
341 return;
342 }
343
344 /* All the logic here assumes flags.bm_check is same across all CPUs */
345 if (bm_check_flag == -1) {
346 /* Determine whether bm_check is needed based on CPU */
347 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
348 bm_check_flag = pr->flags.bm_check;
349 bm_control_flag = pr->flags.bm_control;
350 } else {
351 pr->flags.bm_check = bm_check_flag;
352 pr->flags.bm_control = bm_control_flag;
353 }
354
355 if (pr->flags.bm_check) {
356 if (!pr->flags.bm_control) {
357 if (pr->flags.has_cst != 1) {
358 /* bus mastering control is necessary */
359 acpi_handle_debug(pr->handle,
360 "C3 support requires BM control\n");
361 return;
362 } else {
363 /* Here we enter C3 without bus mastering */
364 acpi_handle_debug(pr->handle,
365 "C3 support without BM control\n");
366 }
367 }
368 } else {
369 /*
370 * WBINVD should be set in fadt, for C3 state to be
371 * supported on when bm_check is not required.
372 */
373 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
374 acpi_handle_debug(pr->handle,
375 "Cache invalidation should work properly"
376 " for C3 to be enabled on SMP systems\n");
377 return;
378 }
379 }
380
381 /*
382 * Otherwise we've met all of our C3 requirements.
383 * Normalize the C3 latency to expidite policy. Enable
384 * checking of bus mastering status (bm_check) so we can
385 * use this in our C3 policy
386 */
387 cx->valid = 1;
388
389 /*
390 * On older chipsets, BM_RLD needs to be set
391 * in order for Bus Master activity to wake the
392 * system from C3. Newer chipsets handle DMA
393 * during C3 automatically and BM_RLD is a NOP.
394 * In either case, the proper way to
395 * handle BM_RLD is to set it and leave it set.
396 */
397 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
398 }
399
acpi_cst_latency_sort(struct acpi_processor_cx * states,size_t length)400 static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
401 {
402 int i, j, k;
403
404 for (i = 1; i < length; i++) {
405 if (!states[i].valid)
406 continue;
407
408 for (j = i - 1, k = i; j >= 0; j--) {
409 if (!states[j].valid)
410 continue;
411
412 if (states[j].latency > states[k].latency)
413 swap(states[j].latency, states[k].latency);
414
415 k = j;
416 }
417 }
418 }
419
acpi_processor_power_verify(struct acpi_processor * pr)420 static int acpi_processor_power_verify(struct acpi_processor *pr)
421 {
422 unsigned int i;
423 unsigned int working = 0;
424 unsigned int last_latency = 0;
425 unsigned int last_type = 0;
426 bool buggy_latency = false;
427
428 pr->power.timer_broadcast_on_state = INT_MAX;
429
430 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
431 struct acpi_processor_cx *cx = &pr->power.states[i];
432
433 switch (cx->type) {
434 case ACPI_STATE_C1:
435 cx->valid = 1;
436 break;
437
438 case ACPI_STATE_C2:
439 if (!cx->address)
440 break;
441 cx->valid = 1;
442 break;
443
444 case ACPI_STATE_C3:
445 acpi_processor_power_verify_c3(pr, cx);
446 break;
447 }
448 if (!cx->valid)
449 continue;
450 if (cx->type >= last_type && cx->latency < last_latency)
451 buggy_latency = true;
452 last_latency = cx->latency;
453 last_type = cx->type;
454
455 lapic_timer_check_state(i, pr, cx);
456 tsc_check_state(cx->type);
457 working++;
458 }
459
460 if (buggy_latency) {
461 pr_notice("FW issue: working around C-state latencies out of order\n");
462 acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
463 }
464
465 lapic_timer_propagate_broadcast(pr);
466
467 return working;
468 }
469
acpi_processor_get_cstate_info(struct acpi_processor * pr)470 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
471 {
472 int result;
473
474 /* NOTE: the idle thread may not be running while calling
475 * this function */
476
477 /* Zero initialize all the C-states info. */
478 memset(pr->power.states, 0, sizeof(pr->power.states));
479
480 result = acpi_processor_get_power_info_cst(pr);
481 if (result == -ENODEV)
482 result = acpi_processor_get_power_info_fadt(pr);
483
484 if (result)
485 return result;
486
487 acpi_processor_get_power_info_default(pr);
488
489 pr->power.count = acpi_processor_power_verify(pr);
490 pr->flags.power = 1;
491
492 return 0;
493 }
494
495 /**
496 * acpi_idle_bm_check - checks if bus master activity was detected
497 */
acpi_idle_bm_check(void)498 static int acpi_idle_bm_check(void)
499 {
500 u32 bm_status = 0;
501
502 if (bm_check_disable)
503 return 0;
504
505 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
506 if (bm_status)
507 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
508 /*
509 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
510 * the true state of bus mastering activity; forcing us to
511 * manually check the BMIDEA bit of each IDE channel.
512 */
513 else if (errata.piix4.bmisx) {
514 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
515 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
516 bm_status = 1;
517 }
518 return bm_status;
519 }
520
io_idle(unsigned long addr)521 static __cpuidle void io_idle(unsigned long addr)
522 {
523 /* IO port based C-state */
524 inb(addr);
525
526 #ifdef CONFIG_X86
527 /* No delay is needed if we are in guest */
528 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
529 return;
530 /*
531 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
532 * not this code. Assume that any Intel systems using this
533 * are ancient and may need the dummy wait. This also assumes
534 * that the motivating chipset issue was Intel-only.
535 */
536 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
537 return;
538 #endif
539 /*
540 * Dummy wait op - must do something useless after P_LVL2 read
541 * because chipsets cannot guarantee that STPCLK# signal gets
542 * asserted in time to freeze execution properly
543 *
544 * This workaround has been in place since the original ACPI
545 * implementation was merged, circa 2002.
546 *
547 * If a profile is pointing to this instruction, please first
548 * consider moving your system to a more modern idle
549 * mechanism.
550 */
551 inl(acpi_gbl_FADT.xpm_timer_block.address);
552 }
553
554 /**
555 * acpi_idle_do_entry - enter idle state using the appropriate method
556 * @cx: cstate data
557 *
558 * Caller disables interrupt before call and enables interrupt after return.
559 */
acpi_idle_do_entry(struct acpi_processor_cx * cx)560 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
561 {
562 perf_lopwr_cb(true);
563
564 if (cx->entry_method == ACPI_CSTATE_FFH) {
565 /* Call into architectural FFH based C-state */
566 acpi_processor_ffh_cstate_enter(cx);
567 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
568 acpi_safe_halt();
569 } else {
570 io_idle(cx->address);
571 }
572
573 perf_lopwr_cb(false);
574 }
575
576 /**
577 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
578 * @dev: the target CPU
579 * @index: the index of suggested state
580 */
acpi_idle_play_dead(struct cpuidle_device * dev,int index)581 static void acpi_idle_play_dead(struct cpuidle_device *dev, int index)
582 {
583 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
584
585 ACPI_FLUSH_CPU_CACHE();
586
587 while (1) {
588
589 if (cx->entry_method == ACPI_CSTATE_HALT)
590 raw_safe_halt();
591 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
592 io_idle(cx->address);
593 } else if (cx->entry_method == ACPI_CSTATE_FFH) {
594 acpi_processor_ffh_play_dead(cx);
595 } else
596 return;
597 }
598 }
599
acpi_idle_fallback_to_c1(struct acpi_processor * pr)600 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
601 {
602 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
603 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
604 }
605
606 static int c3_cpu_count;
607 static DEFINE_RAW_SPINLOCK(c3_lock);
608
609 /**
610 * acpi_idle_enter_bm - enters C3 with proper BM handling
611 * @drv: cpuidle driver
612 * @pr: Target processor
613 * @cx: Target state context
614 * @index: index of target state
615 */
acpi_idle_enter_bm(struct cpuidle_driver * drv,struct acpi_processor * pr,struct acpi_processor_cx * cx,int index)616 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
617 struct acpi_processor *pr,
618 struct acpi_processor_cx *cx,
619 int index)
620 {
621 static struct acpi_processor_cx safe_cx = {
622 .entry_method = ACPI_CSTATE_HALT,
623 };
624
625 /*
626 * disable bus master
627 * bm_check implies we need ARB_DIS
628 * bm_control implies whether we can do ARB_DIS
629 *
630 * That leaves a case where bm_check is set and bm_control is not set.
631 * In that case we cannot do much, we enter C3 without doing anything.
632 */
633 bool dis_bm = pr->flags.bm_control;
634
635 instrumentation_begin();
636
637 /* If we can skip BM, demote to a safe state. */
638 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
639 dis_bm = false;
640 index = drv->safe_state_index;
641 if (index >= 0) {
642 cx = this_cpu_read(acpi_cstate[index]);
643 } else {
644 cx = &safe_cx;
645 index = -EBUSY;
646 }
647 }
648
649 if (dis_bm) {
650 raw_spin_lock(&c3_lock);
651 c3_cpu_count++;
652 /* Disable bus master arbitration when all CPUs are in C3 */
653 if (c3_cpu_count == num_online_cpus())
654 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
655 raw_spin_unlock(&c3_lock);
656 }
657
658 ct_cpuidle_enter();
659
660 acpi_idle_do_entry(cx);
661
662 ct_cpuidle_exit();
663
664 /* Re-enable bus master arbitration */
665 if (dis_bm) {
666 raw_spin_lock(&c3_lock);
667 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
668 c3_cpu_count--;
669 raw_spin_unlock(&c3_lock);
670 }
671
672 instrumentation_end();
673
674 return index;
675 }
676
acpi_idle_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)677 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
678 struct cpuidle_driver *drv, int index)
679 {
680 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
681 struct acpi_processor *pr;
682
683 pr = __this_cpu_read(processors);
684 if (unlikely(!pr))
685 return -EINVAL;
686
687 if (cx->type != ACPI_STATE_C1) {
688 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
689 return acpi_idle_enter_bm(drv, pr, cx, index);
690
691 /* C2 to C1 demotion. */
692 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
693 index = ACPI_IDLE_STATE_START;
694 cx = per_cpu(acpi_cstate[index], dev->cpu);
695 }
696 }
697
698 if (cx->type == ACPI_STATE_C3)
699 ACPI_FLUSH_CPU_CACHE();
700
701 acpi_idle_do_entry(cx);
702
703 return index;
704 }
705
acpi_idle_enter_s2idle(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)706 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
707 struct cpuidle_driver *drv, int index)
708 {
709 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
710
711 if (cx->type == ACPI_STATE_C3) {
712 struct acpi_processor *pr = __this_cpu_read(processors);
713
714 if (unlikely(!pr))
715 return 0;
716
717 if (pr->flags.bm_check) {
718 u8 bm_sts_skip = cx->bm_sts_skip;
719
720 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
721 cx->bm_sts_skip = 1;
722 acpi_idle_enter_bm(drv, pr, cx, index);
723 cx->bm_sts_skip = bm_sts_skip;
724
725 return 0;
726 } else {
727 ACPI_FLUSH_CPU_CACHE();
728 }
729 }
730 acpi_idle_do_entry(cx);
731
732 return 0;
733 }
734
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)735 static void acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
736 struct cpuidle_device *dev)
737 {
738 int i, count = ACPI_IDLE_STATE_START;
739 struct acpi_processor_cx *cx;
740
741 if (max_cstate == 0)
742 max_cstate = 1;
743
744 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
745 cx = &pr->power.states[i];
746
747 if (!cx->valid)
748 continue;
749
750 per_cpu(acpi_cstate[count], dev->cpu) = cx;
751
752 count++;
753 if (count == CPUIDLE_STATE_MAX)
754 break;
755 }
756 }
757
acpi_processor_setup_cstates(struct acpi_processor * pr)758 static void acpi_processor_setup_cstates(struct acpi_processor *pr)
759 {
760 int i, count;
761 struct acpi_processor_cx *cx;
762 struct cpuidle_state *state;
763 struct cpuidle_driver *drv = &acpi_idle_driver;
764
765 if (max_cstate == 0)
766 max_cstate = 1;
767
768 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
769 cpuidle_poll_state_init(drv);
770 count = 1;
771 } else {
772 count = 0;
773 }
774
775 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
776 cx = &pr->power.states[i];
777
778 if (!cx->valid)
779 continue;
780
781 state = &drv->states[count];
782 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
783 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
784 state->exit_latency = cx->latency;
785 state->target_residency = cx->latency * latency_factor;
786 state->enter = acpi_idle_enter;
787
788 state->flags = 0;
789
790 state->enter_dead = acpi_idle_play_dead;
791
792 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2)
793 drv->safe_state_index = count;
794
795 /*
796 * Halt-induced C1 is not good for ->enter_s2idle, because it
797 * re-enables interrupts on exit. Moreover, C1 is generally not
798 * particularly interesting from the suspend-to-idle angle, so
799 * avoid C1 and the situations in which we may need to fall back
800 * to it altogether.
801 */
802 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
803 state->enter_s2idle = acpi_idle_enter_s2idle;
804
805 if (lapic_timer_needs_broadcast(pr, cx))
806 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
807
808 if (cx->type == ACPI_STATE_C3) {
809 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
810 if (pr->flags.bm_check)
811 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
812 }
813
814 count++;
815 if (count == CPUIDLE_STATE_MAX)
816 break;
817 }
818
819 drv->state_count = count;
820 }
821
acpi_processor_cstate_first_run_checks(void)822 static inline void acpi_processor_cstate_first_run_checks(void)
823 {
824 static int first_run;
825
826 if (first_run)
827 return;
828 dmi_check_system(processor_power_dmi_table);
829 max_cstate = acpi_processor_cstate_check(max_cstate);
830 if (max_cstate < ACPI_C_STATES_MAX)
831 pr_notice("processor limited to max C-state %d\n", max_cstate);
832
833 first_run++;
834
835 if (nocst)
836 return;
837
838 acpi_processor_claim_cst_control();
839 }
840 #else
841
disabled_by_idle_boot_param(void)842 static inline int disabled_by_idle_boot_param(void) { return 0; }
acpi_processor_cstate_first_run_checks(void)843 static inline void acpi_processor_cstate_first_run_checks(void) { }
acpi_processor_get_cstate_info(struct acpi_processor * pr)844 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
845 {
846 return -ENODEV;
847 }
848
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)849 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
850 struct cpuidle_device *dev)
851 {
852 return -EINVAL;
853 }
854
acpi_processor_setup_cstates(struct acpi_processor * pr)855 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
856 {
857 return -EINVAL;
858 }
859
860 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
861
862 struct acpi_lpi_states_array {
863 unsigned int size;
864 unsigned int composite_states_size;
865 struct acpi_lpi_state *entries;
866 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
867 };
868
obj_get_integer(union acpi_object * obj,u32 * value)869 static int obj_get_integer(union acpi_object *obj, u32 *value)
870 {
871 if (obj->type != ACPI_TYPE_INTEGER)
872 return -EINVAL;
873
874 *value = obj->integer.value;
875 return 0;
876 }
877
acpi_processor_evaluate_lpi(acpi_handle handle,struct acpi_lpi_states_array * info)878 static int acpi_processor_evaluate_lpi(acpi_handle handle,
879 struct acpi_lpi_states_array *info)
880 {
881 acpi_status status;
882 int ret = 0;
883 int pkg_count, state_idx = 1, loop;
884 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
885 union acpi_object *lpi_data;
886 struct acpi_lpi_state *lpi_state;
887
888 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
889 if (ACPI_FAILURE(status)) {
890 acpi_handle_debug(handle, "No _LPI, giving up\n");
891 return -ENODEV;
892 }
893
894 lpi_data = buffer.pointer;
895
896 /* There must be at least 4 elements = 3 elements + 1 package */
897 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
898 lpi_data->package.count < 4) {
899 pr_debug("not enough elements in _LPI\n");
900 ret = -ENODATA;
901 goto end;
902 }
903
904 pkg_count = lpi_data->package.elements[2].integer.value;
905
906 /* Validate number of power states. */
907 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
908 pr_debug("count given by _LPI is not valid\n");
909 ret = -ENODATA;
910 goto end;
911 }
912
913 lpi_state = kzalloc_objs(*lpi_state, pkg_count, GFP_KERNEL);
914 if (!lpi_state) {
915 ret = -ENOMEM;
916 goto end;
917 }
918
919 info->size = pkg_count;
920 info->entries = lpi_state;
921
922 /* LPI States start at index 3 */
923 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
924 union acpi_object *element, *pkg_elem, *obj;
925
926 element = &lpi_data->package.elements[loop];
927 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
928 continue;
929
930 pkg_elem = element->package.elements;
931
932 obj = pkg_elem + 6;
933 if (obj->type == ACPI_TYPE_BUFFER) {
934 struct acpi_power_register *reg;
935
936 reg = (struct acpi_power_register *)obj->buffer.pointer;
937 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
938 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
939 continue;
940
941 lpi_state->address = reg->address;
942 lpi_state->entry_method =
943 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
944 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
945 } else if (obj->type == ACPI_TYPE_INTEGER) {
946 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
947 lpi_state->address = obj->integer.value;
948 } else {
949 pr_debug("Entry method of state-%d is invalid, disable it.\n",
950 state_idx);
951 continue;
952 }
953
954 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
955
956 obj = pkg_elem + 9;
957 if (obj->type == ACPI_TYPE_STRING)
958 strscpy(lpi_state->desc, obj->string.pointer,
959 ACPI_CX_DESC_LEN);
960
961 lpi_state->index = state_idx;
962 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
963 pr_debug("No min. residency found, assuming 10 us\n");
964 lpi_state->min_residency = 10;
965 }
966
967 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
968 pr_debug("No wakeup residency found, assuming 10 us\n");
969 lpi_state->wake_latency = 10;
970 }
971
972 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
973 lpi_state->flags = 0;
974
975 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
976 lpi_state->arch_flags = 0;
977
978 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
979 lpi_state->res_cnt_freq = 1;
980
981 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
982 lpi_state->enable_parent_state = 0;
983 }
984
985 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
986 end:
987 kfree(buffer.pointer);
988 return ret;
989 }
990
991 /**
992 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
993 *
994 * @local: local LPI state
995 * @parent: parent LPI state
996 * @result: composite LPI state
997 */
combine_lpi_states(struct acpi_lpi_state * local,struct acpi_lpi_state * parent,struct acpi_lpi_state * result)998 static bool combine_lpi_states(struct acpi_lpi_state *local,
999 struct acpi_lpi_state *parent,
1000 struct acpi_lpi_state *result)
1001 {
1002 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1003 if (!parent->address) /* 0 means autopromotable */
1004 return false;
1005 result->address = local->address + parent->address;
1006 } else {
1007 result->address = parent->address;
1008 }
1009
1010 result->min_residency = max(local->min_residency, parent->min_residency);
1011 result->wake_latency = local->wake_latency + parent->wake_latency;
1012 result->enable_parent_state = parent->enable_parent_state;
1013 result->entry_method = local->entry_method;
1014
1015 result->flags = parent->flags;
1016 result->arch_flags = parent->arch_flags;
1017 result->index = parent->index;
1018
1019 strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1020 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1021 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1022 return true;
1023 }
1024
1025 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1026
stash_composite_state(struct acpi_lpi_states_array * curr_level,struct acpi_lpi_state * t)1027 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1028 struct acpi_lpi_state *t)
1029 {
1030 curr_level->composite_states[curr_level->composite_states_size++] = t;
1031 }
1032
flatten_lpi_states(struct acpi_processor * pr,unsigned int flat_state_cnt,struct acpi_lpi_states_array * curr_level,struct acpi_lpi_states_array * prev_level)1033 static unsigned int flatten_lpi_states(struct acpi_processor *pr,
1034 unsigned int flat_state_cnt,
1035 struct acpi_lpi_states_array *curr_level,
1036 struct acpi_lpi_states_array *prev_level)
1037 {
1038 int i, j, state_count = curr_level->size;
1039 struct acpi_lpi_state *p, *t = curr_level->entries;
1040
1041 curr_level->composite_states_size = 0;
1042 for (j = 0; j < state_count; j++, t++) {
1043 struct acpi_lpi_state *flpi;
1044
1045 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1046 continue;
1047
1048 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1049 pr_warn("Limiting number of LPI states to max (%d)\n",
1050 ACPI_PROCESSOR_MAX_POWER);
1051 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1052 break;
1053 }
1054
1055 flpi = &pr->power.lpi_states[flat_state_cnt];
1056
1057 if (!prev_level) { /* leaf/processor node */
1058 memcpy(flpi, t, sizeof(*t));
1059 stash_composite_state(curr_level, flpi);
1060 flat_state_cnt++;
1061 continue;
1062 }
1063
1064 for (i = 0; i < prev_level->composite_states_size; i++) {
1065 p = prev_level->composite_states[i];
1066 if (t->index <= p->enable_parent_state &&
1067 combine_lpi_states(p, t, flpi)) {
1068 stash_composite_state(curr_level, flpi);
1069 flat_state_cnt++;
1070 flpi++;
1071 }
1072 }
1073 }
1074
1075 kfree(curr_level->entries);
1076 return flat_state_cnt;
1077 }
1078
acpi_processor_ffh_lpi_probe(unsigned int cpu)1079 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1080 {
1081 return -EOPNOTSUPP;
1082 }
1083
acpi_processor_get_lpi_info(struct acpi_processor * pr)1084 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1085 {
1086 int ret, i;
1087 acpi_status status;
1088 acpi_handle handle = pr->handle, pr_ahandle;
1089 struct acpi_device *d = NULL;
1090 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1091 unsigned int state_count;
1092
1093 /* make sure our architecture has support */
1094 ret = acpi_processor_ffh_lpi_probe(pr->id);
1095 if (ret == -EOPNOTSUPP)
1096 return ret;
1097
1098 if (!osc_pc_lpi_support_confirmed)
1099 return -EOPNOTSUPP;
1100
1101 if (!acpi_has_method(handle, "_LPI"))
1102 return -EINVAL;
1103
1104 prev = &info[0];
1105 curr = &info[1];
1106 handle = pr->handle;
1107 ret = acpi_processor_evaluate_lpi(handle, prev);
1108 if (ret)
1109 return ret;
1110 state_count = flatten_lpi_states(pr, 0, prev, NULL);
1111
1112 status = acpi_get_parent(handle, &pr_ahandle);
1113 while (ACPI_SUCCESS(status)) {
1114 d = acpi_fetch_acpi_dev(pr_ahandle);
1115 if (!d)
1116 break;
1117
1118 handle = pr_ahandle;
1119
1120 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1121 break;
1122
1123 /* can be optional ? */
1124 if (!acpi_has_method(handle, "_LPI"))
1125 break;
1126
1127 ret = acpi_processor_evaluate_lpi(handle, curr);
1128 if (ret)
1129 break;
1130
1131 /* flatten all the LPI states in this level of hierarchy */
1132 state_count = flatten_lpi_states(pr, state_count, curr, prev);
1133
1134 tmp = prev, prev = curr, curr = tmp;
1135
1136 status = acpi_get_parent(handle, &pr_ahandle);
1137 }
1138
1139 /* reset the index after flattening */
1140 for (i = 0; i < state_count; i++)
1141 pr->power.lpi_states[i].index = i;
1142
1143 pr->power.count = state_count;
1144
1145 /* Tell driver that _LPI is supported. */
1146 pr->flags.has_lpi = 1;
1147 pr->flags.power = 1;
1148
1149 return 0;
1150 }
1151
acpi_processor_ffh_lpi_enter(struct acpi_lpi_state * lpi)1152 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1153 {
1154 return -ENODEV;
1155 }
1156
1157 /**
1158 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1159 * @dev: the target CPU
1160 * @drv: cpuidle driver containing cpuidle state info
1161 * @index: index of target state
1162 *
1163 * Return: 0 for success or negative value for error
1164 */
acpi_idle_lpi_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)1165 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1166 struct cpuidle_driver *drv, int index)
1167 {
1168 struct acpi_processor *pr;
1169 struct acpi_lpi_state *lpi;
1170
1171 pr = __this_cpu_read(processors);
1172
1173 if (unlikely(!pr))
1174 return -EINVAL;
1175
1176 lpi = &pr->power.lpi_states[index];
1177 if (lpi->entry_method == ACPI_CSTATE_FFH)
1178 return acpi_processor_ffh_lpi_enter(lpi);
1179
1180 return -EINVAL;
1181 }
1182
acpi_processor_setup_lpi_states(struct acpi_processor * pr)1183 static void acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1184 {
1185 int i;
1186 struct acpi_lpi_state *lpi;
1187 struct cpuidle_state *state;
1188 struct cpuidle_driver *drv = &acpi_idle_driver;
1189
1190 if (!pr->flags.has_lpi)
1191 return;
1192
1193 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1194 lpi = &pr->power.lpi_states[i];
1195
1196 state = &drv->states[i];
1197 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1198 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1199 state->exit_latency = lpi->wake_latency;
1200 state->target_residency = lpi->min_residency;
1201 state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1202 if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1203 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1204 state->enter = acpi_idle_lpi_enter;
1205 drv->safe_state_index = i;
1206 }
1207
1208 drv->state_count = i;
1209 }
1210
1211 /**
1212 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1213 * global state data i.e. idle routines
1214 *
1215 * @pr: the ACPI processor
1216 */
acpi_processor_setup_cpuidle_states(struct acpi_processor * pr)1217 static void acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1218 {
1219 int i;
1220 struct cpuidle_driver *drv = &acpi_idle_driver;
1221
1222 if (!pr->flags.power_setup_done || !pr->flags.power)
1223 return;
1224
1225 drv->safe_state_index = -1;
1226 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1227 drv->states[i].name[0] = '\0';
1228 drv->states[i].desc[0] = '\0';
1229 }
1230
1231 if (pr->flags.has_lpi) {
1232 acpi_processor_setup_lpi_states(pr);
1233 return;
1234 }
1235
1236 acpi_processor_setup_cstates(pr);
1237 }
1238
1239 /**
1240 * acpi_processor_setup_cpuidle_dev - configures CPUIDLE
1241 * device i.e. per-cpu data
1242 *
1243 * @pr: the ACPI processor
1244 * @dev : the cpuidle device
1245 */
acpi_processor_setup_cpuidle_dev(struct acpi_processor * pr,struct cpuidle_device * dev)1246 static void acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1247 struct cpuidle_device *dev)
1248 {
1249 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1250 return;
1251
1252 dev->cpu = pr->id;
1253 if (!pr->flags.has_lpi)
1254 acpi_processor_setup_cpuidle_cx(pr, dev);
1255 }
1256
acpi_processor_get_power_info(struct acpi_processor * pr)1257 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1258 {
1259 int ret;
1260
1261 ret = acpi_processor_get_lpi_info(pr);
1262 if (ret)
1263 return acpi_processor_get_cstate_info(pr);
1264
1265 if (pr->flags.has_lpi) {
1266 ret = acpi_processor_ffh_lpi_probe(pr->id);
1267 if (ret)
1268 pr_err("CPU%u: Invalid FFH LPI data\n", pr->id);
1269 }
1270
1271 return ret;
1272 }
1273
acpi_processor_hotplug(struct acpi_processor * pr)1274 int acpi_processor_hotplug(struct acpi_processor *pr)
1275 {
1276 int ret = 0;
1277 struct cpuidle_device *dev;
1278
1279 if (disabled_by_idle_boot_param())
1280 return 0;
1281
1282 if (!pr->flags.power_setup_done)
1283 return -ENODEV;
1284
1285 dev = per_cpu(acpi_cpuidle_device, pr->id);
1286 cpuidle_pause_and_lock();
1287 cpuidle_disable_device(dev);
1288 ret = acpi_processor_get_power_info(pr);
1289 if (!ret && pr->flags.power) {
1290 acpi_processor_setup_cpuidle_dev(pr, dev);
1291 ret = cpuidle_enable_device(dev);
1292 }
1293 cpuidle_resume_and_unlock();
1294
1295 return ret;
1296 }
1297
acpi_processor_power_state_has_changed(struct acpi_processor * pr)1298 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1299 {
1300 int cpu;
1301 struct acpi_processor *_pr;
1302 struct cpuidle_device *dev;
1303
1304 if (disabled_by_idle_boot_param())
1305 return 0;
1306
1307 if (!pr->flags.power_setup_done)
1308 return -ENODEV;
1309
1310 /*
1311 * FIXME: Design the ACPI notification to make it once per
1312 * system instead of once per-cpu. This condition is a hack
1313 * to make the code that updates C-States be called once.
1314 */
1315
1316 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1317
1318 /* Protect against cpu-hotplug */
1319 cpus_read_lock();
1320 cpuidle_pause_and_lock();
1321
1322 /* Disable all cpuidle devices */
1323 for_each_online_cpu(cpu) {
1324 _pr = per_cpu(processors, cpu);
1325 if (!_pr || !_pr->flags.power_setup_done)
1326 continue;
1327 dev = per_cpu(acpi_cpuidle_device, cpu);
1328 cpuidle_disable_device(dev);
1329 }
1330
1331 /* Populate Updated C-state information */
1332 acpi_processor_get_power_info(pr);
1333 acpi_processor_setup_cpuidle_states(pr);
1334
1335 /* Enable all cpuidle devices */
1336 for_each_online_cpu(cpu) {
1337 _pr = per_cpu(processors, cpu);
1338 if (!_pr || !_pr->flags.power_setup_done)
1339 continue;
1340 acpi_processor_get_power_info(_pr);
1341 if (_pr->flags.power) {
1342 dev = per_cpu(acpi_cpuidle_device, cpu);
1343 acpi_processor_setup_cpuidle_dev(_pr, dev);
1344 cpuidle_enable_device(dev);
1345 }
1346 }
1347 cpuidle_resume_and_unlock();
1348 cpus_read_unlock();
1349 }
1350
1351 return 0;
1352 }
1353
acpi_processor_register_idle_driver(void)1354 void acpi_processor_register_idle_driver(void)
1355 {
1356 struct acpi_processor *pr;
1357 int ret = -ENODEV;
1358 int cpu;
1359
1360 /*
1361 * ACPI idle driver is used by all possible CPUs.
1362 * Use the processor power info of one in them to set up idle states.
1363 * Note that the existing idle handler will be used on platforms that
1364 * only support C1.
1365 */
1366 for_each_possible_cpu(cpu) {
1367 pr = per_cpu(processors, cpu);
1368 if (!pr)
1369 continue;
1370
1371 acpi_processor_cstate_first_run_checks();
1372 ret = acpi_processor_get_power_info(pr);
1373 if (!ret) {
1374 pr->flags.power_setup_done = 1;
1375 acpi_processor_setup_cpuidle_states(pr);
1376 break;
1377 }
1378 }
1379
1380 if (ret) {
1381 pr_debug("No ACPI power information from any CPUs.\n");
1382 return;
1383 }
1384
1385 ret = cpuidle_register_driver(&acpi_idle_driver);
1386 if (ret) {
1387 pr_debug("register %s failed.\n", acpi_idle_driver.name);
1388 return;
1389 }
1390 pr_debug("%s registered with cpuidle.\n", acpi_idle_driver.name);
1391 }
1392
acpi_processor_unregister_idle_driver(void)1393 void acpi_processor_unregister_idle_driver(void)
1394 {
1395 cpuidle_unregister_driver(&acpi_idle_driver);
1396 }
1397
acpi_processor_power_init(struct acpi_processor * pr)1398 void acpi_processor_power_init(struct acpi_processor *pr)
1399 {
1400 struct cpuidle_device *dev;
1401
1402 /*
1403 * The code below only works if the current cpuidle driver is the ACPI
1404 * idle driver.
1405 */
1406 if (cpuidle_get_driver() != &acpi_idle_driver)
1407 return;
1408
1409 if (disabled_by_idle_boot_param())
1410 return;
1411
1412 acpi_processor_cstate_first_run_checks();
1413
1414 if (!acpi_processor_get_power_info(pr))
1415 pr->flags.power_setup_done = 1;
1416
1417 if (!pr->flags.power)
1418 return;
1419
1420 dev = kzalloc_obj(*dev, GFP_KERNEL);
1421 if (!dev)
1422 return;
1423
1424 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1425
1426 acpi_processor_setup_cpuidle_dev(pr, dev);
1427
1428 /*
1429 * Register a cpuidle device for this CPU. The cpuidle driver using
1430 * this device is expected to be registered.
1431 */
1432 if (cpuidle_register_device(dev)) {
1433 per_cpu(acpi_cpuidle_device, pr->id) = NULL;
1434 kfree(dev);
1435 }
1436 }
1437
acpi_processor_power_exit(struct acpi_processor * pr)1438 void acpi_processor_power_exit(struct acpi_processor *pr)
1439 {
1440 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1441
1442 if (disabled_by_idle_boot_param())
1443 return;
1444
1445 if (pr->flags.power) {
1446 cpuidle_unregister_device(dev);
1447 kfree(dev);
1448 }
1449
1450 pr->flags.power_setup_done = 0;
1451 }
1452
1453 MODULE_IMPORT_NS("ACPI_PROCESSOR_IDLE");
1454