1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * OPEN Alliance 10BASE‑T1x MAC‑PHY Serial Interface framework
4 *
5 * Author: Parthiban Veerasooran <parthiban.veerasooran@microchip.com>
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/iopoll.h>
10 #include <linux/mdio.h>
11 #include <linux/phy.h>
12 #include <linux/oa_tc6.h>
13
14 /* OPEN Alliance TC6 registers */
15 /* Standard Capabilities Register */
16 #define OA_TC6_REG_STDCAP 0x0002
17 #define STDCAP_DIRECT_PHY_REG_ACCESS BIT(8)
18
19 /* Reset Control and Status Register */
20 #define OA_TC6_REG_RESET 0x0003
21 #define RESET_SWRESET BIT(0) /* Software Reset */
22
23 /* Configuration Register #0 */
24 #define OA_TC6_REG_CONFIG0 0x0004
25 #define CONFIG0_SYNC BIT(15)
26 #define CONFIG0_ZARFE_ENABLE BIT(12)
27
28 /* Status Register #0 */
29 #define OA_TC6_REG_STATUS0 0x0008
30 #define STATUS0_RESETC BIT(6) /* Reset Complete */
31 #define STATUS0_HEADER_ERROR BIT(5)
32 #define STATUS0_LOSS_OF_FRAME_ERROR BIT(4)
33 #define STATUS0_RX_BUFFER_OVERFLOW_ERROR BIT(3)
34 #define STATUS0_TX_PROTOCOL_ERROR BIT(0)
35
36 /* Buffer Status Register */
37 #define OA_TC6_REG_BUFFER_STATUS 0x000B
38 #define BUFFER_STATUS_TX_CREDITS_AVAILABLE GENMASK(15, 8)
39 #define BUFFER_STATUS_RX_CHUNKS_AVAILABLE GENMASK(7, 0)
40
41 /* Interrupt Mask Register #0 */
42 #define OA_TC6_REG_INT_MASK0 0x000C
43 #define INT_MASK0_HEADER_ERR_MASK BIT(5)
44 #define INT_MASK0_LOSS_OF_FRAME_ERR_MASK BIT(4)
45 #define INT_MASK0_RX_BUFFER_OVERFLOW_ERR_MASK BIT(3)
46 #define INT_MASK0_TX_PROTOCOL_ERR_MASK BIT(0)
47
48 /* PHY Clause 22 registers base address and mask */
49 #define OA_TC6_PHY_STD_REG_ADDR_BASE 0xFF00
50 #define OA_TC6_PHY_STD_REG_ADDR_MASK 0x1F
51
52 /* Control command header */
53 #define OA_TC6_CTRL_HEADER_DATA_NOT_CTRL BIT(31)
54 #define OA_TC6_CTRL_HEADER_WRITE_NOT_READ BIT(29)
55 #define OA_TC6_CTRL_HEADER_MEM_MAP_SELECTOR GENMASK(27, 24)
56 #define OA_TC6_CTRL_HEADER_ADDR GENMASK(23, 8)
57 #define OA_TC6_CTRL_HEADER_LENGTH GENMASK(7, 1)
58 #define OA_TC6_CTRL_HEADER_PARITY BIT(0)
59
60 /* Data header */
61 #define OA_TC6_DATA_HEADER_DATA_NOT_CTRL BIT(31)
62 #define OA_TC6_DATA_HEADER_DATA_VALID BIT(21)
63 #define OA_TC6_DATA_HEADER_START_VALID BIT(20)
64 #define OA_TC6_DATA_HEADER_START_WORD_OFFSET GENMASK(19, 16)
65 #define OA_TC6_DATA_HEADER_END_VALID BIT(14)
66 #define OA_TC6_DATA_HEADER_END_BYTE_OFFSET GENMASK(13, 8)
67 #define OA_TC6_DATA_HEADER_PARITY BIT(0)
68
69 /* Data footer */
70 #define OA_TC6_DATA_FOOTER_EXTENDED_STS BIT(31)
71 #define OA_TC6_DATA_FOOTER_RXD_HEADER_BAD BIT(30)
72 #define OA_TC6_DATA_FOOTER_CONFIG_SYNC BIT(29)
73 #define OA_TC6_DATA_FOOTER_RX_CHUNKS GENMASK(28, 24)
74 #define OA_TC6_DATA_FOOTER_DATA_VALID BIT(21)
75 #define OA_TC6_DATA_FOOTER_START_VALID BIT(20)
76 #define OA_TC6_DATA_FOOTER_START_WORD_OFFSET GENMASK(19, 16)
77 #define OA_TC6_DATA_FOOTER_END_VALID BIT(14)
78 #define OA_TC6_DATA_FOOTER_END_BYTE_OFFSET GENMASK(13, 8)
79 #define OA_TC6_DATA_FOOTER_TX_CREDITS GENMASK(5, 1)
80
81 /* PHY – Clause 45 registers memory map selector (MMS) as per table 6 in the
82 * OPEN Alliance specification.
83 */
84 #define OA_TC6_PHY_C45_PCS_MMS2 2 /* MMD 3 */
85 #define OA_TC6_PHY_C45_PMA_PMD_MMS3 3 /* MMD 1 */
86 #define OA_TC6_PHY_C45_VS_PLCA_MMS4 4 /* MMD 31 */
87 #define OA_TC6_PHY_C45_AUTO_NEG_MMS5 5 /* MMD 7 */
88 #define OA_TC6_PHY_C45_POWER_UNIT_MMS6 6 /* MMD 13 */
89
90 #define OA_TC6_CTRL_HEADER_SIZE 4
91 #define OA_TC6_CTRL_REG_VALUE_SIZE 4
92 #define OA_TC6_CTRL_IGNORED_SIZE 4
93 #define OA_TC6_CTRL_MAX_REGISTERS 128
94 #define OA_TC6_CTRL_SPI_BUF_SIZE (OA_TC6_CTRL_HEADER_SIZE +\
95 (OA_TC6_CTRL_MAX_REGISTERS *\
96 OA_TC6_CTRL_REG_VALUE_SIZE) +\
97 OA_TC6_CTRL_IGNORED_SIZE)
98 #define OA_TC6_CHUNK_PAYLOAD_SIZE 64
99 #define OA_TC6_DATA_HEADER_SIZE 4
100 #define OA_TC6_CHUNK_SIZE (OA_TC6_DATA_HEADER_SIZE +\
101 OA_TC6_CHUNK_PAYLOAD_SIZE)
102 #define OA_TC6_MAX_TX_CHUNKS 48
103 #define OA_TC6_SPI_DATA_BUF_SIZE (OA_TC6_MAX_TX_CHUNKS *\
104 OA_TC6_CHUNK_SIZE)
105 #define STATUS0_RESETC_POLL_DELAY 1000
106 #define STATUS0_RESETC_POLL_TIMEOUT 1000000
107
108 /* Internal structure for MAC-PHY drivers */
109 struct oa_tc6 {
110 struct device *dev;
111 struct net_device *netdev;
112 struct phy_device *phydev;
113 struct mii_bus *mdiobus;
114 struct spi_device *spi;
115 struct mutex spi_ctrl_lock; /* Protects spi control transfer */
116 spinlock_t tx_skb_lock; /* Protects tx skb handling */
117 void *spi_ctrl_tx_buf;
118 void *spi_ctrl_rx_buf;
119 void *spi_data_tx_buf;
120 void *spi_data_rx_buf;
121 struct sk_buff *ongoing_tx_skb;
122 struct sk_buff *waiting_tx_skb;
123 struct sk_buff *rx_skb;
124 struct task_struct *spi_thread;
125 wait_queue_head_t spi_wq;
126 u16 tx_skb_offset;
127 u16 spi_data_tx_buf_offset;
128 u16 tx_credits;
129 u8 rx_chunks_available;
130 bool rx_buf_overflow;
131 bool int_flag;
132 };
133
134 enum oa_tc6_header_type {
135 OA_TC6_CTRL_HEADER,
136 OA_TC6_DATA_HEADER,
137 };
138
139 enum oa_tc6_register_op {
140 OA_TC6_CTRL_REG_READ = 0,
141 OA_TC6_CTRL_REG_WRITE = 1,
142 };
143
144 enum oa_tc6_data_valid_info {
145 OA_TC6_DATA_INVALID,
146 OA_TC6_DATA_VALID,
147 };
148
149 enum oa_tc6_data_start_valid_info {
150 OA_TC6_DATA_START_INVALID,
151 OA_TC6_DATA_START_VALID,
152 };
153
154 enum oa_tc6_data_end_valid_info {
155 OA_TC6_DATA_END_INVALID,
156 OA_TC6_DATA_END_VALID,
157 };
158
oa_tc6_spi_transfer(struct oa_tc6 * tc6,enum oa_tc6_header_type header_type,u16 length)159 static int oa_tc6_spi_transfer(struct oa_tc6 *tc6,
160 enum oa_tc6_header_type header_type, u16 length)
161 {
162 struct spi_transfer xfer = { 0 };
163 struct spi_message msg;
164
165 if (header_type == OA_TC6_DATA_HEADER) {
166 xfer.tx_buf = tc6->spi_data_tx_buf;
167 xfer.rx_buf = tc6->spi_data_rx_buf;
168 } else {
169 xfer.tx_buf = tc6->spi_ctrl_tx_buf;
170 xfer.rx_buf = tc6->spi_ctrl_rx_buf;
171 }
172 xfer.len = length;
173
174 spi_message_init(&msg);
175 spi_message_add_tail(&xfer, &msg);
176
177 return spi_sync(tc6->spi, &msg);
178 }
179
oa_tc6_get_parity(u32 p)180 static int oa_tc6_get_parity(u32 p)
181 {
182 /* Public domain code snippet, lifted from
183 * http://www-graphics.stanford.edu/~seander/bithacks.html
184 */
185 p ^= p >> 1;
186 p ^= p >> 2;
187 p = (p & 0x11111111U) * 0x11111111U;
188
189 /* Odd parity is used here */
190 return !((p >> 28) & 1);
191 }
192
oa_tc6_prepare_ctrl_header(u32 addr,u8 length,enum oa_tc6_register_op reg_op)193 static __be32 oa_tc6_prepare_ctrl_header(u32 addr, u8 length,
194 enum oa_tc6_register_op reg_op)
195 {
196 u32 header;
197
198 header = FIELD_PREP(OA_TC6_CTRL_HEADER_DATA_NOT_CTRL,
199 OA_TC6_CTRL_HEADER) |
200 FIELD_PREP(OA_TC6_CTRL_HEADER_WRITE_NOT_READ, reg_op) |
201 FIELD_PREP(OA_TC6_CTRL_HEADER_MEM_MAP_SELECTOR, addr >> 16) |
202 FIELD_PREP(OA_TC6_CTRL_HEADER_ADDR, addr) |
203 FIELD_PREP(OA_TC6_CTRL_HEADER_LENGTH, length - 1);
204 header |= FIELD_PREP(OA_TC6_CTRL_HEADER_PARITY,
205 oa_tc6_get_parity(header));
206
207 return cpu_to_be32(header);
208 }
209
oa_tc6_update_ctrl_write_data(struct oa_tc6 * tc6,u32 value[],u8 length)210 static void oa_tc6_update_ctrl_write_data(struct oa_tc6 *tc6, u32 value[],
211 u8 length)
212 {
213 __be32 *tx_buf = tc6->spi_ctrl_tx_buf + OA_TC6_CTRL_HEADER_SIZE;
214
215 for (int i = 0; i < length; i++)
216 *tx_buf++ = cpu_to_be32(value[i]);
217 }
218
oa_tc6_calculate_ctrl_buf_size(u8 length)219 static u16 oa_tc6_calculate_ctrl_buf_size(u8 length)
220 {
221 /* Control command consists 4 bytes header + 4 bytes register value for
222 * each register + 4 bytes ignored value.
223 */
224 return OA_TC6_CTRL_HEADER_SIZE + OA_TC6_CTRL_REG_VALUE_SIZE * length +
225 OA_TC6_CTRL_IGNORED_SIZE;
226 }
227
oa_tc6_prepare_ctrl_spi_buf(struct oa_tc6 * tc6,u32 address,u32 value[],u8 length,enum oa_tc6_register_op reg_op)228 static void oa_tc6_prepare_ctrl_spi_buf(struct oa_tc6 *tc6, u32 address,
229 u32 value[], u8 length,
230 enum oa_tc6_register_op reg_op)
231 {
232 __be32 *tx_buf = tc6->spi_ctrl_tx_buf;
233
234 *tx_buf = oa_tc6_prepare_ctrl_header(address, length, reg_op);
235
236 if (reg_op == OA_TC6_CTRL_REG_WRITE)
237 oa_tc6_update_ctrl_write_data(tc6, value, length);
238 }
239
oa_tc6_check_ctrl_write_reply(struct oa_tc6 * tc6,u8 size)240 static int oa_tc6_check_ctrl_write_reply(struct oa_tc6 *tc6, u8 size)
241 {
242 u8 *tx_buf = tc6->spi_ctrl_tx_buf;
243 u8 *rx_buf = tc6->spi_ctrl_rx_buf;
244
245 rx_buf += OA_TC6_CTRL_IGNORED_SIZE;
246
247 /* The echoed control write must match with the one that was
248 * transmitted.
249 */
250 if (memcmp(tx_buf, rx_buf, size - OA_TC6_CTRL_IGNORED_SIZE))
251 return -EPROTO;
252
253 return 0;
254 }
255
oa_tc6_check_ctrl_read_reply(struct oa_tc6 * tc6,u8 size)256 static int oa_tc6_check_ctrl_read_reply(struct oa_tc6 *tc6, u8 size)
257 {
258 u32 *rx_buf = tc6->spi_ctrl_rx_buf + OA_TC6_CTRL_IGNORED_SIZE;
259 u32 *tx_buf = tc6->spi_ctrl_tx_buf;
260
261 /* The echoed control read header must match with the one that was
262 * transmitted.
263 */
264 if (*tx_buf != *rx_buf)
265 return -EPROTO;
266
267 return 0;
268 }
269
oa_tc6_copy_ctrl_read_data(struct oa_tc6 * tc6,u32 value[],u8 length)270 static void oa_tc6_copy_ctrl_read_data(struct oa_tc6 *tc6, u32 value[],
271 u8 length)
272 {
273 __be32 *rx_buf = tc6->spi_ctrl_rx_buf + OA_TC6_CTRL_IGNORED_SIZE +
274 OA_TC6_CTRL_HEADER_SIZE;
275
276 for (int i = 0; i < length; i++)
277 value[i] = be32_to_cpu(*rx_buf++);
278 }
279
oa_tc6_perform_ctrl(struct oa_tc6 * tc6,u32 address,u32 value[],u8 length,enum oa_tc6_register_op reg_op)280 static int oa_tc6_perform_ctrl(struct oa_tc6 *tc6, u32 address, u32 value[],
281 u8 length, enum oa_tc6_register_op reg_op)
282 {
283 u16 size;
284 int ret;
285
286 /* Prepare control command and copy to SPI control buffer */
287 oa_tc6_prepare_ctrl_spi_buf(tc6, address, value, length, reg_op);
288
289 size = oa_tc6_calculate_ctrl_buf_size(length);
290
291 /* Perform SPI transfer */
292 ret = oa_tc6_spi_transfer(tc6, OA_TC6_CTRL_HEADER, size);
293 if (ret) {
294 dev_err(&tc6->spi->dev, "SPI transfer failed for control: %d\n",
295 ret);
296 return ret;
297 }
298
299 /* Check echoed/received control write command reply for errors */
300 if (reg_op == OA_TC6_CTRL_REG_WRITE)
301 return oa_tc6_check_ctrl_write_reply(tc6, size);
302
303 /* Check echoed/received control read command reply for errors */
304 ret = oa_tc6_check_ctrl_read_reply(tc6, size);
305 if (ret)
306 return ret;
307
308 oa_tc6_copy_ctrl_read_data(tc6, value, length);
309
310 return 0;
311 }
312
313 /**
314 * oa_tc6_read_registers - function for reading multiple consecutive registers.
315 * @tc6: oa_tc6 struct.
316 * @address: address of the first register to be read in the MAC-PHY.
317 * @value: values to be read from the starting register address @address.
318 * @length: number of consecutive registers to be read from @address.
319 *
320 * Maximum of 128 consecutive registers can be read starting at @address.
321 *
322 * Return: 0 on success otherwise failed.
323 */
oa_tc6_read_registers(struct oa_tc6 * tc6,u32 address,u32 value[],u8 length)324 int oa_tc6_read_registers(struct oa_tc6 *tc6, u32 address, u32 value[],
325 u8 length)
326 {
327 int ret;
328
329 if (!length || length > OA_TC6_CTRL_MAX_REGISTERS) {
330 dev_err(&tc6->spi->dev, "Invalid register length parameter\n");
331 return -EINVAL;
332 }
333
334 mutex_lock(&tc6->spi_ctrl_lock);
335 ret = oa_tc6_perform_ctrl(tc6, address, value, length,
336 OA_TC6_CTRL_REG_READ);
337 mutex_unlock(&tc6->spi_ctrl_lock);
338
339 return ret;
340 }
341 EXPORT_SYMBOL_GPL(oa_tc6_read_registers);
342
343 /**
344 * oa_tc6_read_register - function for reading a MAC-PHY register.
345 * @tc6: oa_tc6 struct.
346 * @address: register address of the MAC-PHY to be read.
347 * @value: value read from the @address register address of the MAC-PHY.
348 *
349 * Return: 0 on success otherwise failed.
350 */
oa_tc6_read_register(struct oa_tc6 * tc6,u32 address,u32 * value)351 int oa_tc6_read_register(struct oa_tc6 *tc6, u32 address, u32 *value)
352 {
353 return oa_tc6_read_registers(tc6, address, value, 1);
354 }
355 EXPORT_SYMBOL_GPL(oa_tc6_read_register);
356
357 /**
358 * oa_tc6_write_registers - function for writing multiple consecutive registers.
359 * @tc6: oa_tc6 struct.
360 * @address: address of the first register to be written in the MAC-PHY.
361 * @value: values to be written from the starting register address @address.
362 * @length: number of consecutive registers to be written from @address.
363 *
364 * Maximum of 128 consecutive registers can be written starting at @address.
365 *
366 * Return: 0 on success otherwise failed.
367 */
oa_tc6_write_registers(struct oa_tc6 * tc6,u32 address,u32 value[],u8 length)368 int oa_tc6_write_registers(struct oa_tc6 *tc6, u32 address, u32 value[],
369 u8 length)
370 {
371 int ret;
372
373 if (!length || length > OA_TC6_CTRL_MAX_REGISTERS) {
374 dev_err(&tc6->spi->dev, "Invalid register length parameter\n");
375 return -EINVAL;
376 }
377
378 mutex_lock(&tc6->spi_ctrl_lock);
379 ret = oa_tc6_perform_ctrl(tc6, address, value, length,
380 OA_TC6_CTRL_REG_WRITE);
381 mutex_unlock(&tc6->spi_ctrl_lock);
382
383 return ret;
384 }
385 EXPORT_SYMBOL_GPL(oa_tc6_write_registers);
386
387 /**
388 * oa_tc6_write_register - function for writing a MAC-PHY register.
389 * @tc6: oa_tc6 struct.
390 * @address: register address of the MAC-PHY to be written.
391 * @value: value to be written in the @address register address of the MAC-PHY.
392 *
393 * Return: 0 on success otherwise failed.
394 */
oa_tc6_write_register(struct oa_tc6 * tc6,u32 address,u32 value)395 int oa_tc6_write_register(struct oa_tc6 *tc6, u32 address, u32 value)
396 {
397 return oa_tc6_write_registers(tc6, address, &value, 1);
398 }
399 EXPORT_SYMBOL_GPL(oa_tc6_write_register);
400
oa_tc6_check_phy_reg_direct_access_capability(struct oa_tc6 * tc6)401 static int oa_tc6_check_phy_reg_direct_access_capability(struct oa_tc6 *tc6)
402 {
403 u32 regval;
404 int ret;
405
406 ret = oa_tc6_read_register(tc6, OA_TC6_REG_STDCAP, ®val);
407 if (ret)
408 return ret;
409
410 if (!(regval & STDCAP_DIRECT_PHY_REG_ACCESS))
411 return -ENODEV;
412
413 return 0;
414 }
415
oa_tc6_handle_link_change(struct net_device * netdev)416 static void oa_tc6_handle_link_change(struct net_device *netdev)
417 {
418 phy_print_status(netdev->phydev);
419 }
420
oa_tc6_mdiobus_read(struct mii_bus * bus,int addr,int regnum)421 static int oa_tc6_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
422 {
423 struct oa_tc6 *tc6 = bus->priv;
424 u32 regval;
425 bool ret;
426
427 ret = oa_tc6_read_register(tc6, OA_TC6_PHY_STD_REG_ADDR_BASE |
428 (regnum & OA_TC6_PHY_STD_REG_ADDR_MASK),
429 ®val);
430 if (ret)
431 return ret;
432
433 return regval;
434 }
435
oa_tc6_mdiobus_write(struct mii_bus * bus,int addr,int regnum,u16 val)436 static int oa_tc6_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
437 u16 val)
438 {
439 struct oa_tc6 *tc6 = bus->priv;
440
441 return oa_tc6_write_register(tc6, OA_TC6_PHY_STD_REG_ADDR_BASE |
442 (regnum & OA_TC6_PHY_STD_REG_ADDR_MASK),
443 val);
444 }
445
oa_tc6_get_phy_c45_mms(int devnum)446 static int oa_tc6_get_phy_c45_mms(int devnum)
447 {
448 switch (devnum) {
449 case MDIO_MMD_PCS:
450 return OA_TC6_PHY_C45_PCS_MMS2;
451 case MDIO_MMD_PMAPMD:
452 return OA_TC6_PHY_C45_PMA_PMD_MMS3;
453 case MDIO_MMD_VEND2:
454 return OA_TC6_PHY_C45_VS_PLCA_MMS4;
455 case MDIO_MMD_AN:
456 return OA_TC6_PHY_C45_AUTO_NEG_MMS5;
457 case MDIO_MMD_POWER_UNIT:
458 return OA_TC6_PHY_C45_POWER_UNIT_MMS6;
459 default:
460 return -EOPNOTSUPP;
461 }
462 }
463
oa_tc6_mdiobus_read_c45(struct mii_bus * bus,int addr,int devnum,int regnum)464 static int oa_tc6_mdiobus_read_c45(struct mii_bus *bus, int addr, int devnum,
465 int regnum)
466 {
467 struct oa_tc6 *tc6 = bus->priv;
468 u32 regval;
469 int ret;
470
471 ret = oa_tc6_get_phy_c45_mms(devnum);
472 if (ret < 0)
473 return ret;
474
475 ret = oa_tc6_read_register(tc6, (ret << 16) | regnum, ®val);
476 if (ret)
477 return ret;
478
479 return regval;
480 }
481
oa_tc6_mdiobus_write_c45(struct mii_bus * bus,int addr,int devnum,int regnum,u16 val)482 static int oa_tc6_mdiobus_write_c45(struct mii_bus *bus, int addr, int devnum,
483 int regnum, u16 val)
484 {
485 struct oa_tc6 *tc6 = bus->priv;
486 int ret;
487
488 ret = oa_tc6_get_phy_c45_mms(devnum);
489 if (ret < 0)
490 return ret;
491
492 return oa_tc6_write_register(tc6, (ret << 16) | regnum, val);
493 }
494
oa_tc6_mdiobus_register(struct oa_tc6 * tc6)495 static int oa_tc6_mdiobus_register(struct oa_tc6 *tc6)
496 {
497 int ret;
498
499 tc6->mdiobus = mdiobus_alloc();
500 if (!tc6->mdiobus) {
501 netdev_err(tc6->netdev, "MDIO bus alloc failed\n");
502 return -ENOMEM;
503 }
504
505 tc6->mdiobus->priv = tc6;
506 tc6->mdiobus->read = oa_tc6_mdiobus_read;
507 tc6->mdiobus->write = oa_tc6_mdiobus_write;
508 /* OPEN Alliance 10BASE-T1x compliance MAC-PHYs will have both C22 and
509 * C45 registers space. If the PHY is discovered via C22 bus protocol it
510 * assumes it uses C22 protocol and always uses C22 registers indirect
511 * access to access C45 registers. This is because, we don't have a
512 * clean separation between C22/C45 register space and C22/C45 MDIO bus
513 * protocols. Resulting, PHY C45 registers direct access can't be used
514 * which can save multiple SPI bus access. To support this feature, PHY
515 * drivers can set .read_mmd/.write_mmd in the PHY driver to call
516 * .read_c45/.write_c45. Ex: drivers/net/phy/microchip_t1s.c
517 */
518 tc6->mdiobus->read_c45 = oa_tc6_mdiobus_read_c45;
519 tc6->mdiobus->write_c45 = oa_tc6_mdiobus_write_c45;
520 tc6->mdiobus->name = "oa-tc6-mdiobus";
521 tc6->mdiobus->parent = tc6->dev;
522
523 snprintf(tc6->mdiobus->id, ARRAY_SIZE(tc6->mdiobus->id), "%s",
524 dev_name(&tc6->spi->dev));
525
526 ret = mdiobus_register(tc6->mdiobus);
527 if (ret) {
528 netdev_err(tc6->netdev, "Could not register MDIO bus\n");
529 mdiobus_free(tc6->mdiobus);
530 return ret;
531 }
532
533 return 0;
534 }
535
oa_tc6_mdiobus_unregister(struct oa_tc6 * tc6)536 static void oa_tc6_mdiobus_unregister(struct oa_tc6 *tc6)
537 {
538 mdiobus_unregister(tc6->mdiobus);
539 mdiobus_free(tc6->mdiobus);
540 }
541
oa_tc6_phy_init(struct oa_tc6 * tc6)542 static int oa_tc6_phy_init(struct oa_tc6 *tc6)
543 {
544 int ret;
545
546 ret = oa_tc6_check_phy_reg_direct_access_capability(tc6);
547 if (ret) {
548 netdev_err(tc6->netdev,
549 "Direct PHY register access is not supported by the MAC-PHY\n");
550 return ret;
551 }
552
553 ret = oa_tc6_mdiobus_register(tc6);
554 if (ret)
555 return ret;
556
557 tc6->phydev = phy_find_first(tc6->mdiobus);
558 if (!tc6->phydev) {
559 netdev_err(tc6->netdev, "No PHY found\n");
560 oa_tc6_mdiobus_unregister(tc6);
561 return -ENODEV;
562 }
563
564 tc6->phydev->is_internal = true;
565 ret = phy_connect_direct(tc6->netdev, tc6->phydev,
566 &oa_tc6_handle_link_change,
567 PHY_INTERFACE_MODE_INTERNAL);
568 if (ret) {
569 netdev_err(tc6->netdev, "Can't attach PHY to %s\n",
570 tc6->mdiobus->id);
571 oa_tc6_mdiobus_unregister(tc6);
572 return ret;
573 }
574
575 phy_attached_info(tc6->netdev->phydev);
576
577 return 0;
578 }
579
oa_tc6_phy_exit(struct oa_tc6 * tc6)580 static void oa_tc6_phy_exit(struct oa_tc6 *tc6)
581 {
582 phy_disconnect(tc6->phydev);
583 oa_tc6_mdiobus_unregister(tc6);
584 }
585
oa_tc6_read_status0(struct oa_tc6 * tc6)586 static int oa_tc6_read_status0(struct oa_tc6 *tc6)
587 {
588 u32 regval;
589 int ret;
590
591 ret = oa_tc6_read_register(tc6, OA_TC6_REG_STATUS0, ®val);
592 if (ret) {
593 dev_err(&tc6->spi->dev, "STATUS0 register read failed: %d\n",
594 ret);
595 return 0;
596 }
597
598 return regval;
599 }
600
oa_tc6_sw_reset_macphy(struct oa_tc6 * tc6)601 static int oa_tc6_sw_reset_macphy(struct oa_tc6 *tc6)
602 {
603 u32 regval = RESET_SWRESET;
604 int ret;
605
606 ret = oa_tc6_write_register(tc6, OA_TC6_REG_RESET, regval);
607 if (ret)
608 return ret;
609
610 /* Poll for soft reset complete for every 1ms until 1s timeout */
611 ret = readx_poll_timeout(oa_tc6_read_status0, tc6, regval,
612 regval & STATUS0_RESETC,
613 STATUS0_RESETC_POLL_DELAY,
614 STATUS0_RESETC_POLL_TIMEOUT);
615 if (ret)
616 return -ENODEV;
617
618 /* Clear the reset complete status */
619 return oa_tc6_write_register(tc6, OA_TC6_REG_STATUS0, regval);
620 }
621
oa_tc6_unmask_macphy_error_interrupts(struct oa_tc6 * tc6)622 static int oa_tc6_unmask_macphy_error_interrupts(struct oa_tc6 *tc6)
623 {
624 u32 regval;
625 int ret;
626
627 ret = oa_tc6_read_register(tc6, OA_TC6_REG_INT_MASK0, ®val);
628 if (ret)
629 return ret;
630
631 regval &= ~(INT_MASK0_TX_PROTOCOL_ERR_MASK |
632 INT_MASK0_RX_BUFFER_OVERFLOW_ERR_MASK |
633 INT_MASK0_LOSS_OF_FRAME_ERR_MASK |
634 INT_MASK0_HEADER_ERR_MASK);
635
636 return oa_tc6_write_register(tc6, OA_TC6_REG_INT_MASK0, regval);
637 }
638
oa_tc6_enable_data_transfer(struct oa_tc6 * tc6)639 static int oa_tc6_enable_data_transfer(struct oa_tc6 *tc6)
640 {
641 u32 value;
642 int ret;
643
644 ret = oa_tc6_read_register(tc6, OA_TC6_REG_CONFIG0, &value);
645 if (ret)
646 return ret;
647
648 /* Enable configuration synchronization for data transfer */
649 value |= CONFIG0_SYNC;
650
651 return oa_tc6_write_register(tc6, OA_TC6_REG_CONFIG0, value);
652 }
653
oa_tc6_cleanup_ongoing_rx_skb(struct oa_tc6 * tc6)654 static void oa_tc6_cleanup_ongoing_rx_skb(struct oa_tc6 *tc6)
655 {
656 if (tc6->rx_skb) {
657 tc6->netdev->stats.rx_dropped++;
658 kfree_skb(tc6->rx_skb);
659 tc6->rx_skb = NULL;
660 }
661 }
662
oa_tc6_cleanup_ongoing_tx_skb(struct oa_tc6 * tc6)663 static void oa_tc6_cleanup_ongoing_tx_skb(struct oa_tc6 *tc6)
664 {
665 if (tc6->ongoing_tx_skb) {
666 tc6->netdev->stats.tx_dropped++;
667 kfree_skb(tc6->ongoing_tx_skb);
668 tc6->ongoing_tx_skb = NULL;
669 }
670 }
671
oa_tc6_process_extended_status(struct oa_tc6 * tc6)672 static int oa_tc6_process_extended_status(struct oa_tc6 *tc6)
673 {
674 u32 value;
675 int ret;
676
677 ret = oa_tc6_read_register(tc6, OA_TC6_REG_STATUS0, &value);
678 if (ret) {
679 netdev_err(tc6->netdev, "STATUS0 register read failed: %d\n",
680 ret);
681 return ret;
682 }
683
684 /* Clear the error interrupts status */
685 ret = oa_tc6_write_register(tc6, OA_TC6_REG_STATUS0, value);
686 if (ret) {
687 netdev_err(tc6->netdev, "STATUS0 register write failed: %d\n",
688 ret);
689 return ret;
690 }
691
692 if (FIELD_GET(STATUS0_RX_BUFFER_OVERFLOW_ERROR, value)) {
693 tc6->rx_buf_overflow = true;
694 oa_tc6_cleanup_ongoing_rx_skb(tc6);
695 net_err_ratelimited("%s: Receive buffer overflow error\n",
696 tc6->netdev->name);
697 return -EAGAIN;
698 }
699 if (FIELD_GET(STATUS0_TX_PROTOCOL_ERROR, value)) {
700 netdev_err(tc6->netdev, "Transmit protocol error\n");
701 return -ENODEV;
702 }
703 /* TODO: Currently loss of frame and header errors are treated as
704 * non-recoverable errors. They will be handled in the next version.
705 */
706 if (FIELD_GET(STATUS0_LOSS_OF_FRAME_ERROR, value)) {
707 netdev_err(tc6->netdev, "Loss of frame error\n");
708 return -ENODEV;
709 }
710 if (FIELD_GET(STATUS0_HEADER_ERROR, value)) {
711 netdev_err(tc6->netdev, "Header error\n");
712 return -ENODEV;
713 }
714
715 return 0;
716 }
717
oa_tc6_process_rx_chunk_footer(struct oa_tc6 * tc6,u32 footer)718 static int oa_tc6_process_rx_chunk_footer(struct oa_tc6 *tc6, u32 footer)
719 {
720 /* Process rx chunk footer for the following,
721 * 1. tx credits
722 * 2. errors if any from MAC-PHY
723 * 3. receive chunks available
724 */
725 tc6->tx_credits = FIELD_GET(OA_TC6_DATA_FOOTER_TX_CREDITS, footer);
726 tc6->rx_chunks_available = FIELD_GET(OA_TC6_DATA_FOOTER_RX_CHUNKS,
727 footer);
728
729 if (FIELD_GET(OA_TC6_DATA_FOOTER_EXTENDED_STS, footer)) {
730 int ret = oa_tc6_process_extended_status(tc6);
731
732 if (ret)
733 return ret;
734 }
735
736 /* TODO: Currently received header bad and configuration unsync errors
737 * are treated as non-recoverable errors. They will be handled in the
738 * next version.
739 */
740 if (FIELD_GET(OA_TC6_DATA_FOOTER_RXD_HEADER_BAD, footer)) {
741 netdev_err(tc6->netdev, "Rxd header bad error\n");
742 return -ENODEV;
743 }
744
745 if (!FIELD_GET(OA_TC6_DATA_FOOTER_CONFIG_SYNC, footer)) {
746 netdev_err(tc6->netdev, "Config unsync error\n");
747 return -ENODEV;
748 }
749
750 return 0;
751 }
752
oa_tc6_submit_rx_skb(struct oa_tc6 * tc6)753 static void oa_tc6_submit_rx_skb(struct oa_tc6 *tc6)
754 {
755 tc6->rx_skb->protocol = eth_type_trans(tc6->rx_skb, tc6->netdev);
756 tc6->netdev->stats.rx_packets++;
757 tc6->netdev->stats.rx_bytes += tc6->rx_skb->len;
758
759 netif_rx(tc6->rx_skb);
760
761 tc6->rx_skb = NULL;
762 }
763
oa_tc6_update_rx_skb(struct oa_tc6 * tc6,u8 * payload,u8 length)764 static void oa_tc6_update_rx_skb(struct oa_tc6 *tc6, u8 *payload, u8 length)
765 {
766 memcpy(skb_put(tc6->rx_skb, length), payload, length);
767 }
768
oa_tc6_allocate_rx_skb(struct oa_tc6 * tc6)769 static int oa_tc6_allocate_rx_skb(struct oa_tc6 *tc6)
770 {
771 tc6->rx_skb = netdev_alloc_skb_ip_align(tc6->netdev, tc6->netdev->mtu +
772 ETH_HLEN + ETH_FCS_LEN);
773 if (!tc6->rx_skb) {
774 tc6->netdev->stats.rx_dropped++;
775 return -ENOMEM;
776 }
777
778 return 0;
779 }
780
oa_tc6_prcs_complete_rx_frame(struct oa_tc6 * tc6,u8 * payload,u16 size)781 static int oa_tc6_prcs_complete_rx_frame(struct oa_tc6 *tc6, u8 *payload,
782 u16 size)
783 {
784 int ret;
785
786 ret = oa_tc6_allocate_rx_skb(tc6);
787 if (ret)
788 return ret;
789
790 oa_tc6_update_rx_skb(tc6, payload, size);
791
792 oa_tc6_submit_rx_skb(tc6);
793
794 return 0;
795 }
796
oa_tc6_prcs_rx_frame_start(struct oa_tc6 * tc6,u8 * payload,u16 size)797 static int oa_tc6_prcs_rx_frame_start(struct oa_tc6 *tc6, u8 *payload, u16 size)
798 {
799 int ret;
800
801 ret = oa_tc6_allocate_rx_skb(tc6);
802 if (ret)
803 return ret;
804
805 oa_tc6_update_rx_skb(tc6, payload, size);
806
807 return 0;
808 }
809
oa_tc6_prcs_rx_frame_end(struct oa_tc6 * tc6,u8 * payload,u16 size)810 static void oa_tc6_prcs_rx_frame_end(struct oa_tc6 *tc6, u8 *payload, u16 size)
811 {
812 oa_tc6_update_rx_skb(tc6, payload, size);
813
814 oa_tc6_submit_rx_skb(tc6);
815 }
816
oa_tc6_prcs_ongoing_rx_frame(struct oa_tc6 * tc6,u8 * payload,u32 footer)817 static void oa_tc6_prcs_ongoing_rx_frame(struct oa_tc6 *tc6, u8 *payload,
818 u32 footer)
819 {
820 oa_tc6_update_rx_skb(tc6, payload, OA_TC6_CHUNK_PAYLOAD_SIZE);
821 }
822
oa_tc6_prcs_rx_chunk_payload(struct oa_tc6 * tc6,u8 * data,u32 footer)823 static int oa_tc6_prcs_rx_chunk_payload(struct oa_tc6 *tc6, u8 *data,
824 u32 footer)
825 {
826 u8 start_byte_offset = FIELD_GET(OA_TC6_DATA_FOOTER_START_WORD_OFFSET,
827 footer) * sizeof(u32);
828 u8 end_byte_offset = FIELD_GET(OA_TC6_DATA_FOOTER_END_BYTE_OFFSET,
829 footer);
830 bool start_valid = FIELD_GET(OA_TC6_DATA_FOOTER_START_VALID, footer);
831 bool end_valid = FIELD_GET(OA_TC6_DATA_FOOTER_END_VALID, footer);
832 u16 size;
833
834 /* Restart the new rx frame after receiving rx buffer overflow error */
835 if (start_valid && tc6->rx_buf_overflow)
836 tc6->rx_buf_overflow = false;
837
838 if (tc6->rx_buf_overflow)
839 return 0;
840
841 /* Process the chunk with complete rx frame */
842 if (start_valid && end_valid && start_byte_offset < end_byte_offset) {
843 size = end_byte_offset + 1 - start_byte_offset;
844 return oa_tc6_prcs_complete_rx_frame(tc6,
845 &data[start_byte_offset],
846 size);
847 }
848
849 /* Process the chunk with only rx frame start */
850 if (start_valid && !end_valid) {
851 size = OA_TC6_CHUNK_PAYLOAD_SIZE - start_byte_offset;
852 return oa_tc6_prcs_rx_frame_start(tc6,
853 &data[start_byte_offset],
854 size);
855 }
856
857 /* Process the chunk with only rx frame end */
858 if (end_valid && !start_valid) {
859 size = end_byte_offset + 1;
860 oa_tc6_prcs_rx_frame_end(tc6, data, size);
861 return 0;
862 }
863
864 /* Process the chunk with previous rx frame end and next rx frame
865 * start.
866 */
867 if (start_valid && end_valid && start_byte_offset > end_byte_offset) {
868 /* After rx buffer overflow error received, there might be a
869 * possibility of getting an end valid of a previously
870 * incomplete rx frame along with the new rx frame start valid.
871 */
872 if (tc6->rx_skb) {
873 size = end_byte_offset + 1;
874 oa_tc6_prcs_rx_frame_end(tc6, data, size);
875 }
876 size = OA_TC6_CHUNK_PAYLOAD_SIZE - start_byte_offset;
877 return oa_tc6_prcs_rx_frame_start(tc6,
878 &data[start_byte_offset],
879 size);
880 }
881
882 /* Process the chunk with ongoing rx frame data */
883 oa_tc6_prcs_ongoing_rx_frame(tc6, data, footer);
884
885 return 0;
886 }
887
oa_tc6_get_rx_chunk_footer(struct oa_tc6 * tc6,u16 footer_offset)888 static u32 oa_tc6_get_rx_chunk_footer(struct oa_tc6 *tc6, u16 footer_offset)
889 {
890 u8 *rx_buf = tc6->spi_data_rx_buf;
891 __be32 footer;
892
893 footer = *((__be32 *)&rx_buf[footer_offset]);
894
895 return be32_to_cpu(footer);
896 }
897
oa_tc6_process_spi_data_rx_buf(struct oa_tc6 * tc6,u16 length)898 static int oa_tc6_process_spi_data_rx_buf(struct oa_tc6 *tc6, u16 length)
899 {
900 u16 no_of_rx_chunks = length / OA_TC6_CHUNK_SIZE;
901 u32 footer;
902 int ret;
903
904 /* All the rx chunks in the receive SPI data buffer are examined here */
905 for (int i = 0; i < no_of_rx_chunks; i++) {
906 /* Last 4 bytes in each received chunk consist footer info */
907 footer = oa_tc6_get_rx_chunk_footer(tc6, i * OA_TC6_CHUNK_SIZE +
908 OA_TC6_CHUNK_PAYLOAD_SIZE);
909
910 ret = oa_tc6_process_rx_chunk_footer(tc6, footer);
911 if (ret)
912 return ret;
913
914 /* If there is a data valid chunks then process it for the
915 * information needed to determine the validity and the location
916 * of the receive frame data.
917 */
918 if (FIELD_GET(OA_TC6_DATA_FOOTER_DATA_VALID, footer)) {
919 u8 *payload = tc6->spi_data_rx_buf + i *
920 OA_TC6_CHUNK_SIZE;
921
922 ret = oa_tc6_prcs_rx_chunk_payload(tc6, payload,
923 footer);
924 if (ret)
925 return ret;
926 }
927 }
928
929 return 0;
930 }
931
oa_tc6_prepare_data_header(bool data_valid,bool start_valid,bool end_valid,u8 end_byte_offset)932 static __be32 oa_tc6_prepare_data_header(bool data_valid, bool start_valid,
933 bool end_valid, u8 end_byte_offset)
934 {
935 u32 header = FIELD_PREP(OA_TC6_DATA_HEADER_DATA_NOT_CTRL,
936 OA_TC6_DATA_HEADER) |
937 FIELD_PREP(OA_TC6_DATA_HEADER_DATA_VALID, data_valid) |
938 FIELD_PREP(OA_TC6_DATA_HEADER_START_VALID, start_valid) |
939 FIELD_PREP(OA_TC6_DATA_HEADER_END_VALID, end_valid) |
940 FIELD_PREP(OA_TC6_DATA_HEADER_END_BYTE_OFFSET,
941 end_byte_offset);
942
943 header |= FIELD_PREP(OA_TC6_DATA_HEADER_PARITY,
944 oa_tc6_get_parity(header));
945
946 return cpu_to_be32(header);
947 }
948
oa_tc6_add_tx_skb_to_spi_buf(struct oa_tc6 * tc6)949 static void oa_tc6_add_tx_skb_to_spi_buf(struct oa_tc6 *tc6)
950 {
951 enum oa_tc6_data_end_valid_info end_valid = OA_TC6_DATA_END_INVALID;
952 __be32 *tx_buf = tc6->spi_data_tx_buf + tc6->spi_data_tx_buf_offset;
953 u16 remaining_len = tc6->ongoing_tx_skb->len - tc6->tx_skb_offset;
954 u8 *tx_skb_data = tc6->ongoing_tx_skb->data + tc6->tx_skb_offset;
955 enum oa_tc6_data_start_valid_info start_valid;
956 u8 end_byte_offset = 0;
957 u16 length_to_copy;
958
959 /* Initial value is assigned here to avoid more than 80 characters in
960 * the declaration place.
961 */
962 start_valid = OA_TC6_DATA_START_INVALID;
963
964 /* Set start valid if the current tx chunk contains the start of the tx
965 * ethernet frame.
966 */
967 if (!tc6->tx_skb_offset)
968 start_valid = OA_TC6_DATA_START_VALID;
969
970 /* If the remaining tx skb length is more than the chunk payload size of
971 * 64 bytes then copy only 64 bytes and leave the ongoing tx skb for
972 * next tx chunk.
973 */
974 length_to_copy = min_t(u16, remaining_len, OA_TC6_CHUNK_PAYLOAD_SIZE);
975
976 /* Copy the tx skb data to the tx chunk payload buffer */
977 memcpy(tx_buf + 1, tx_skb_data, length_to_copy);
978 tc6->tx_skb_offset += length_to_copy;
979
980 /* Set end valid if the current tx chunk contains the end of the tx
981 * ethernet frame.
982 */
983 if (tc6->ongoing_tx_skb->len == tc6->tx_skb_offset) {
984 end_valid = OA_TC6_DATA_END_VALID;
985 end_byte_offset = length_to_copy - 1;
986 tc6->tx_skb_offset = 0;
987 tc6->netdev->stats.tx_bytes += tc6->ongoing_tx_skb->len;
988 tc6->netdev->stats.tx_packets++;
989 kfree_skb(tc6->ongoing_tx_skb);
990 tc6->ongoing_tx_skb = NULL;
991 }
992
993 *tx_buf = oa_tc6_prepare_data_header(OA_TC6_DATA_VALID, start_valid,
994 end_valid, end_byte_offset);
995 tc6->spi_data_tx_buf_offset += OA_TC6_CHUNK_SIZE;
996 }
997
oa_tc6_prepare_spi_tx_buf_for_tx_skbs(struct oa_tc6 * tc6)998 static u16 oa_tc6_prepare_spi_tx_buf_for_tx_skbs(struct oa_tc6 *tc6)
999 {
1000 u16 used_tx_credits;
1001
1002 /* Get tx skbs and convert them into tx chunks based on the tx credits
1003 * available.
1004 */
1005 for (used_tx_credits = 0; used_tx_credits < tc6->tx_credits;
1006 used_tx_credits++) {
1007 if (!tc6->ongoing_tx_skb) {
1008 spin_lock_bh(&tc6->tx_skb_lock);
1009 tc6->ongoing_tx_skb = tc6->waiting_tx_skb;
1010 tc6->waiting_tx_skb = NULL;
1011 spin_unlock_bh(&tc6->tx_skb_lock);
1012 }
1013 if (!tc6->ongoing_tx_skb)
1014 break;
1015 oa_tc6_add_tx_skb_to_spi_buf(tc6);
1016 }
1017
1018 return used_tx_credits * OA_TC6_CHUNK_SIZE;
1019 }
1020
oa_tc6_add_empty_chunks_to_spi_buf(struct oa_tc6 * tc6,u16 needed_empty_chunks)1021 static void oa_tc6_add_empty_chunks_to_spi_buf(struct oa_tc6 *tc6,
1022 u16 needed_empty_chunks)
1023 {
1024 __be32 header;
1025
1026 header = oa_tc6_prepare_data_header(OA_TC6_DATA_INVALID,
1027 OA_TC6_DATA_START_INVALID,
1028 OA_TC6_DATA_END_INVALID, 0);
1029
1030 while (needed_empty_chunks--) {
1031 __be32 *tx_buf = tc6->spi_data_tx_buf +
1032 tc6->spi_data_tx_buf_offset;
1033
1034 *tx_buf = header;
1035 tc6->spi_data_tx_buf_offset += OA_TC6_CHUNK_SIZE;
1036 }
1037 }
1038
oa_tc6_prepare_spi_tx_buf_for_rx_chunks(struct oa_tc6 * tc6,u16 len)1039 static u16 oa_tc6_prepare_spi_tx_buf_for_rx_chunks(struct oa_tc6 *tc6, u16 len)
1040 {
1041 u16 tx_chunks = len / OA_TC6_CHUNK_SIZE;
1042 u16 needed_empty_chunks;
1043
1044 /* If there are more chunks to receive than to transmit, we need to add
1045 * enough empty tx chunks to allow the reception of the excess rx
1046 * chunks.
1047 */
1048 if (tx_chunks >= tc6->rx_chunks_available)
1049 return len;
1050
1051 needed_empty_chunks = tc6->rx_chunks_available - tx_chunks;
1052
1053 oa_tc6_add_empty_chunks_to_spi_buf(tc6, needed_empty_chunks);
1054
1055 return needed_empty_chunks * OA_TC6_CHUNK_SIZE + len;
1056 }
1057
oa_tc6_try_spi_transfer(struct oa_tc6 * tc6)1058 static int oa_tc6_try_spi_transfer(struct oa_tc6 *tc6)
1059 {
1060 int ret;
1061
1062 while (true) {
1063 u16 spi_len = 0;
1064
1065 tc6->spi_data_tx_buf_offset = 0;
1066
1067 if (tc6->ongoing_tx_skb || tc6->waiting_tx_skb)
1068 spi_len = oa_tc6_prepare_spi_tx_buf_for_tx_skbs(tc6);
1069
1070 spi_len = oa_tc6_prepare_spi_tx_buf_for_rx_chunks(tc6, spi_len);
1071
1072 if (tc6->int_flag) {
1073 tc6->int_flag = false;
1074 if (spi_len == 0) {
1075 oa_tc6_add_empty_chunks_to_spi_buf(tc6, 1);
1076 spi_len = OA_TC6_CHUNK_SIZE;
1077 }
1078 }
1079
1080 if (spi_len == 0)
1081 break;
1082
1083 ret = oa_tc6_spi_transfer(tc6, OA_TC6_DATA_HEADER, spi_len);
1084 if (ret) {
1085 netdev_err(tc6->netdev, "SPI data transfer failed: %d\n",
1086 ret);
1087 return ret;
1088 }
1089
1090 ret = oa_tc6_process_spi_data_rx_buf(tc6, spi_len);
1091 if (ret) {
1092 if (ret == -EAGAIN)
1093 continue;
1094
1095 oa_tc6_cleanup_ongoing_tx_skb(tc6);
1096 oa_tc6_cleanup_ongoing_rx_skb(tc6);
1097 netdev_err(tc6->netdev, "Device error: %d\n", ret);
1098 return ret;
1099 }
1100
1101 if (!tc6->waiting_tx_skb && netif_queue_stopped(tc6->netdev))
1102 netif_wake_queue(tc6->netdev);
1103 }
1104
1105 return 0;
1106 }
1107
oa_tc6_spi_thread_handler(void * data)1108 static int oa_tc6_spi_thread_handler(void *data)
1109 {
1110 struct oa_tc6 *tc6 = data;
1111 int ret;
1112
1113 while (likely(!kthread_should_stop())) {
1114 /* This kthread will be waken up if there is a tx skb or mac-phy
1115 * interrupt to perform spi transfer with tx chunks.
1116 */
1117 wait_event_interruptible(tc6->spi_wq, tc6->int_flag ||
1118 (tc6->waiting_tx_skb &&
1119 tc6->tx_credits) ||
1120 kthread_should_stop());
1121
1122 if (kthread_should_stop())
1123 break;
1124
1125 ret = oa_tc6_try_spi_transfer(tc6);
1126 if (ret)
1127 return ret;
1128 }
1129
1130 return 0;
1131 }
1132
oa_tc6_update_buffer_status_from_register(struct oa_tc6 * tc6)1133 static int oa_tc6_update_buffer_status_from_register(struct oa_tc6 *tc6)
1134 {
1135 u32 value;
1136 int ret;
1137
1138 /* Initially tx credits and rx chunks available to be updated from the
1139 * register as there is no data transfer performed yet. Later they will
1140 * be updated from the rx footer.
1141 */
1142 ret = oa_tc6_read_register(tc6, OA_TC6_REG_BUFFER_STATUS, &value);
1143 if (ret)
1144 return ret;
1145
1146 tc6->tx_credits = FIELD_GET(BUFFER_STATUS_TX_CREDITS_AVAILABLE, value);
1147 tc6->rx_chunks_available = FIELD_GET(BUFFER_STATUS_RX_CHUNKS_AVAILABLE,
1148 value);
1149
1150 return 0;
1151 }
1152
oa_tc6_macphy_isr(int irq,void * data)1153 static irqreturn_t oa_tc6_macphy_isr(int irq, void *data)
1154 {
1155 struct oa_tc6 *tc6 = data;
1156
1157 /* MAC-PHY interrupt can occur for the following reasons.
1158 * - availability of tx credits if it was 0 before and not reported in
1159 * the previous rx footer.
1160 * - availability of rx chunks if it was 0 before and not reported in
1161 * the previous rx footer.
1162 * - extended status event not reported in the previous rx footer.
1163 */
1164 tc6->int_flag = true;
1165 /* Wake spi kthread to perform spi transfer */
1166 wake_up_interruptible(&tc6->spi_wq);
1167
1168 return IRQ_HANDLED;
1169 }
1170
1171 /**
1172 * oa_tc6_zero_align_receive_frame_enable - function to enable zero align
1173 * receive frame feature.
1174 * @tc6: oa_tc6 struct.
1175 *
1176 * Return: 0 on success otherwise failed.
1177 */
oa_tc6_zero_align_receive_frame_enable(struct oa_tc6 * tc6)1178 int oa_tc6_zero_align_receive_frame_enable(struct oa_tc6 *tc6)
1179 {
1180 u32 regval;
1181 int ret;
1182
1183 ret = oa_tc6_read_register(tc6, OA_TC6_REG_CONFIG0, ®val);
1184 if (ret)
1185 return ret;
1186
1187 /* Set Zero-Align Receive Frame Enable */
1188 regval |= CONFIG0_ZARFE_ENABLE;
1189
1190 return oa_tc6_write_register(tc6, OA_TC6_REG_CONFIG0, regval);
1191 }
1192 EXPORT_SYMBOL_GPL(oa_tc6_zero_align_receive_frame_enable);
1193
1194 /**
1195 * oa_tc6_start_xmit - function for sending the tx skb which consists ethernet
1196 * frame.
1197 * @tc6: oa_tc6 struct.
1198 * @skb: socket buffer in which the ethernet frame is stored.
1199 *
1200 * Return: NETDEV_TX_OK if the transmit ethernet frame skb added in the tx_skb_q
1201 * otherwise returns NETDEV_TX_BUSY.
1202 */
oa_tc6_start_xmit(struct oa_tc6 * tc6,struct sk_buff * skb)1203 netdev_tx_t oa_tc6_start_xmit(struct oa_tc6 *tc6, struct sk_buff *skb)
1204 {
1205 if (tc6->waiting_tx_skb) {
1206 netif_stop_queue(tc6->netdev);
1207 return NETDEV_TX_BUSY;
1208 }
1209
1210 if (skb_linearize(skb)) {
1211 dev_kfree_skb_any(skb);
1212 tc6->netdev->stats.tx_dropped++;
1213 return NETDEV_TX_OK;
1214 }
1215
1216 spin_lock_bh(&tc6->tx_skb_lock);
1217 tc6->waiting_tx_skb = skb;
1218 spin_unlock_bh(&tc6->tx_skb_lock);
1219
1220 /* Wake spi kthread to perform spi transfer */
1221 wake_up_interruptible(&tc6->spi_wq);
1222
1223 return NETDEV_TX_OK;
1224 }
1225 EXPORT_SYMBOL_GPL(oa_tc6_start_xmit);
1226
1227 /**
1228 * oa_tc6_init - allocates and initializes oa_tc6 structure.
1229 * @spi: device with which data will be exchanged.
1230 * @netdev: network device interface structure.
1231 *
1232 * Return: pointer reference to the oa_tc6 structure if the MAC-PHY
1233 * initialization is successful otherwise NULL.
1234 */
oa_tc6_init(struct spi_device * spi,struct net_device * netdev)1235 struct oa_tc6 *oa_tc6_init(struct spi_device *spi, struct net_device *netdev)
1236 {
1237 struct oa_tc6 *tc6;
1238 int ret;
1239
1240 tc6 = devm_kzalloc(&spi->dev, sizeof(*tc6), GFP_KERNEL);
1241 if (!tc6)
1242 return NULL;
1243
1244 tc6->spi = spi;
1245 tc6->netdev = netdev;
1246 SET_NETDEV_DEV(netdev, &spi->dev);
1247 mutex_init(&tc6->spi_ctrl_lock);
1248 spin_lock_init(&tc6->tx_skb_lock);
1249
1250 /* Set the SPI controller to pump at realtime priority */
1251 tc6->spi->rt = true;
1252 spi_setup(tc6->spi);
1253
1254 tc6->spi_ctrl_tx_buf = devm_kzalloc(&tc6->spi->dev,
1255 OA_TC6_CTRL_SPI_BUF_SIZE,
1256 GFP_KERNEL);
1257 if (!tc6->spi_ctrl_tx_buf)
1258 return NULL;
1259
1260 tc6->spi_ctrl_rx_buf = devm_kzalloc(&tc6->spi->dev,
1261 OA_TC6_CTRL_SPI_BUF_SIZE,
1262 GFP_KERNEL);
1263 if (!tc6->spi_ctrl_rx_buf)
1264 return NULL;
1265
1266 tc6->spi_data_tx_buf = devm_kzalloc(&tc6->spi->dev,
1267 OA_TC6_SPI_DATA_BUF_SIZE,
1268 GFP_KERNEL);
1269 if (!tc6->spi_data_tx_buf)
1270 return NULL;
1271
1272 tc6->spi_data_rx_buf = devm_kzalloc(&tc6->spi->dev,
1273 OA_TC6_SPI_DATA_BUF_SIZE,
1274 GFP_KERNEL);
1275 if (!tc6->spi_data_rx_buf)
1276 return NULL;
1277
1278 ret = oa_tc6_sw_reset_macphy(tc6);
1279 if (ret) {
1280 dev_err(&tc6->spi->dev,
1281 "MAC-PHY software reset failed: %d\n", ret);
1282 return NULL;
1283 }
1284
1285 ret = oa_tc6_unmask_macphy_error_interrupts(tc6);
1286 if (ret) {
1287 dev_err(&tc6->spi->dev,
1288 "MAC-PHY error interrupts unmask failed: %d\n", ret);
1289 return NULL;
1290 }
1291
1292 ret = oa_tc6_phy_init(tc6);
1293 if (ret) {
1294 dev_err(&tc6->spi->dev,
1295 "MAC internal PHY initialization failed: %d\n", ret);
1296 return NULL;
1297 }
1298
1299 ret = oa_tc6_enable_data_transfer(tc6);
1300 if (ret) {
1301 dev_err(&tc6->spi->dev, "Failed to enable data transfer: %d\n",
1302 ret);
1303 goto phy_exit;
1304 }
1305
1306 ret = oa_tc6_update_buffer_status_from_register(tc6);
1307 if (ret) {
1308 dev_err(&tc6->spi->dev,
1309 "Failed to update buffer status: %d\n", ret);
1310 goto phy_exit;
1311 }
1312
1313 init_waitqueue_head(&tc6->spi_wq);
1314
1315 tc6->spi_thread = kthread_run(oa_tc6_spi_thread_handler, tc6,
1316 "oa-tc6-spi-thread");
1317 if (IS_ERR(tc6->spi_thread)) {
1318 dev_err(&tc6->spi->dev, "Failed to create SPI thread\n");
1319 goto phy_exit;
1320 }
1321
1322 sched_set_fifo(tc6->spi_thread);
1323
1324 ret = devm_request_irq(&tc6->spi->dev, tc6->spi->irq, oa_tc6_macphy_isr,
1325 IRQF_TRIGGER_FALLING, dev_name(&tc6->spi->dev),
1326 tc6);
1327 if (ret) {
1328 dev_err(&tc6->spi->dev, "Failed to request macphy isr %d\n",
1329 ret);
1330 goto kthread_stop;
1331 }
1332
1333 /* oa_tc6_sw_reset_macphy() function resets and clears the MAC-PHY reset
1334 * complete status. IRQ is also asserted on reset completion and it is
1335 * remain asserted until MAC-PHY receives a data chunk. So performing an
1336 * empty data chunk transmission will deassert the IRQ. Refer section
1337 * 7.7 and 9.2.8.8 in the OPEN Alliance specification for more details.
1338 */
1339 tc6->int_flag = true;
1340 wake_up_interruptible(&tc6->spi_wq);
1341
1342 return tc6;
1343
1344 kthread_stop:
1345 kthread_stop(tc6->spi_thread);
1346 phy_exit:
1347 oa_tc6_phy_exit(tc6);
1348 return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(oa_tc6_init);
1351
1352 /**
1353 * oa_tc6_exit - exit function.
1354 * @tc6: oa_tc6 struct.
1355 */
oa_tc6_exit(struct oa_tc6 * tc6)1356 void oa_tc6_exit(struct oa_tc6 *tc6)
1357 {
1358 oa_tc6_phy_exit(tc6);
1359 kthread_stop(tc6->spi_thread);
1360 dev_kfree_skb_any(tc6->ongoing_tx_skb);
1361 dev_kfree_skb_any(tc6->waiting_tx_skb);
1362 dev_kfree_skb_any(tc6->rx_skb);
1363 }
1364 EXPORT_SYMBOL_GPL(oa_tc6_exit);
1365
1366 MODULE_DESCRIPTION("OPEN Alliance 10BASE‑T1x MAC‑PHY Serial Interface Lib");
1367 MODULE_AUTHOR("Parthiban Veerasooran <parthiban.veerasooran@microchip.com>");
1368 MODULE_LICENSE("GPL");
1369