xref: /linux/include/uapi/drm/xe_drm.h (revision 3d08a425d2f667edf9ab7f9c3d999c218a96ba6f)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #ifndef _UAPI_XE_DRM_H_
7 #define _UAPI_XE_DRM_H_
8 
9 #include "drm.h"
10 
11 #if defined(__cplusplus)
12 extern "C" {
13 #endif
14 
15 /*
16  * Please note that modifications to all structs defined here are
17  * subject to backwards-compatibility constraints.
18  * Sections in this file are organized as follows:
19  *   1. IOCTL definition
20  *   2. Extension definition and helper structs
21  *   3. IOCTL's Query structs in the order of the Query's entries.
22  *   4. The rest of IOCTL structs in the order of IOCTL declaration.
23  */
24 
25 /**
26  * DOC: Xe Device Block Diagram
27  *
28  * The diagram below represents a high-level simplification of a discrete
29  * GPU supported by the Xe driver. It shows some device components which
30  * are necessary to understand this API, as well as how their relations
31  * to each other. This diagram does not represent real hardware::
32  *
33  *   ┌──────────────────────────────────────────────────────────────────┐
34  *   │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
35  *   │ │        ┌───────────────────────┐   ┌─────┐       │ │ ┌─────┐ │ │
36  *   │ │        │         VRAM0         ├───┤ ... │       │ │ │VRAM1│ │ │
37  *   │ │        └───────────┬───────────┘   └─GT1─┘       │ │ └──┬──┘ │ │
38  *   │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
39  *   │ │ │ ┌─────────────────────┐  ┌─────────────────┐ │ │ │ │     │ │ │
40  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
41  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │RCS0 │ │BCS0 │ │ │ │ │ │     │ │ │
42  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
43  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
44  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VCS0 │ │VCS1 │ │ │ │ │ │     │ │ │
45  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
46  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
47  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
48  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
49  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
50  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │CCS0 │ │CCS1 │ │ │ │ │ │     │ │ │
51  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
52  *   │ │ │ └─────────DSS─────────┘  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
53  *   │ │ │                          │ │CCS2 │ │CCS3 │ │ │ │ │ │     │ │ │
54  *   │ │ │ ┌─────┐ ┌─────┐ ┌─────┐  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
55  *   │ │ │ │ ... │ │ ... │ │ ... │  │                 │ │ │ │ │     │ │ │
56  *   │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘  └─────Engines─────┘ │ │ │ │     │ │ │
57  *   │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
58  *   │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
59  *   └─────────────────────────────Device0───────┬──────────────────────┘
60  *                                               │
61  *                        ───────────────────────┴────────── PCI bus
62  */
63 
64 /**
65  * DOC: Xe uAPI Overview
66  *
67  * This section aims to describe the Xe's IOCTL entries, its structs, and other
68  * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
69  * entries and usage.
70  *
71  * List of supported IOCTLs:
72  *  - &DRM_IOCTL_XE_DEVICE_QUERY
73  *  - &DRM_IOCTL_XE_GEM_CREATE
74  *  - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
75  *  - &DRM_IOCTL_XE_VM_CREATE
76  *  - &DRM_IOCTL_XE_VM_DESTROY
77  *  - &DRM_IOCTL_XE_VM_BIND
78  *  - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
79  *  - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
80  *  - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
81  *  - &DRM_IOCTL_XE_EXEC
82  *  - &DRM_IOCTL_XE_WAIT_USER_FENCE
83  *  - &DRM_IOCTL_XE_OBSERVATION
84  *  - &DRM_IOCTL_XE_MADVISE
85  *  - &DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS
86  */
87 
88 /*
89  * xe specific ioctls.
90  *
91  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
92  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
93  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
94  */
95 #define DRM_XE_DEVICE_QUERY		0x00
96 #define DRM_XE_GEM_CREATE		0x01
97 #define DRM_XE_GEM_MMAP_OFFSET		0x02
98 #define DRM_XE_VM_CREATE		0x03
99 #define DRM_XE_VM_DESTROY		0x04
100 #define DRM_XE_VM_BIND			0x05
101 #define DRM_XE_EXEC_QUEUE_CREATE	0x06
102 #define DRM_XE_EXEC_QUEUE_DESTROY	0x07
103 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY	0x08
104 #define DRM_XE_EXEC			0x09
105 #define DRM_XE_WAIT_USER_FENCE		0x0a
106 #define DRM_XE_OBSERVATION		0x0b
107 #define DRM_XE_MADVISE			0x0c
108 #define DRM_XE_VM_QUERY_MEM_RANGE_ATTRS	0x0d
109 
110 /* Must be kept compact -- no holes */
111 
112 #define DRM_IOCTL_XE_DEVICE_QUERY		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
113 #define DRM_IOCTL_XE_GEM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
114 #define DRM_IOCTL_XE_GEM_MMAP_OFFSET		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
115 #define DRM_IOCTL_XE_VM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
116 #define DRM_IOCTL_XE_VM_DESTROY			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
117 #define DRM_IOCTL_XE_VM_BIND			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
118 #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
119 #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
120 #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY	DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
121 #define DRM_IOCTL_XE_EXEC			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
122 #define DRM_IOCTL_XE_WAIT_USER_FENCE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
123 #define DRM_IOCTL_XE_OBSERVATION		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
124 #define DRM_IOCTL_XE_MADVISE			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_MADVISE, struct drm_xe_madvise)
125 #define DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_QUERY_MEM_RANGE_ATTRS, struct drm_xe_vm_query_mem_range_attr)
126 
127 /**
128  * DOC: Xe IOCTL Extensions
129  *
130  * Before detailing the IOCTLs and its structs, it is important to highlight
131  * that every IOCTL in Xe is extensible.
132  *
133  * Many interfaces need to grow over time. In most cases we can simply
134  * extend the struct and have userspace pass in more data. Another option,
135  * as demonstrated by Vulkan's approach to providing extensions for forward
136  * and backward compatibility, is to use a list of optional structs to
137  * provide those extra details.
138  *
139  * The key advantage to using an extension chain is that it allows us to
140  * redefine the interface more easily than an ever growing struct of
141  * increasing complexity, and for large parts of that interface to be
142  * entirely optional. The downside is more pointer chasing; chasing across
143  * the __user boundary with pointers encapsulated inside u64.
144  *
145  * Example chaining:
146  *
147  * .. code-block:: C
148  *
149  *	struct drm_xe_user_extension ext3 {
150  *		.next_extension = 0, // end
151  *		.name = ...,
152  *	};
153  *	struct drm_xe_user_extension ext2 {
154  *		.next_extension = (uintptr_t)&ext3,
155  *		.name = ...,
156  *	};
157  *	struct drm_xe_user_extension ext1 {
158  *		.next_extension = (uintptr_t)&ext2,
159  *		.name = ...,
160  *	};
161  *
162  * Typically the struct drm_xe_user_extension would be embedded in some uAPI
163  * struct, and in this case we would feed it the head of the chain(i.e ext1),
164  * which would then apply all of the above extensions.
165 */
166 
167 /**
168  * struct drm_xe_user_extension - Base class for defining a chain of extensions
169  */
170 struct drm_xe_user_extension {
171 	/**
172 	 * @next_extension:
173 	 *
174 	 * Pointer to the next struct drm_xe_user_extension, or zero if the end.
175 	 */
176 	__u64 next_extension;
177 
178 	/**
179 	 * @name: Name of the extension.
180 	 *
181 	 * Note that the name here is just some integer.
182 	 *
183 	 * Also note that the name space for this is not global for the whole
184 	 * driver, but rather its scope/meaning is limited to the specific piece
185 	 * of uAPI which has embedded the struct drm_xe_user_extension.
186 	 */
187 	__u32 name;
188 
189 	/**
190 	 * @pad: MBZ
191 	 *
192 	 * All undefined bits must be zero.
193 	 */
194 	__u32 pad;
195 };
196 
197 /**
198  * struct drm_xe_ext_set_property - Generic set property extension
199  *
200  * A generic struct that allows any of the Xe's IOCTL to be extended
201  * with a set_property operation.
202  */
203 struct drm_xe_ext_set_property {
204 	/** @base: base user extension */
205 	struct drm_xe_user_extension base;
206 
207 	/** @property: property to set */
208 	__u32 property;
209 
210 	/** @pad: MBZ */
211 	__u32 pad;
212 
213 	/** @value: property value */
214 	__u64 value;
215 
216 	/** @reserved: Reserved */
217 	__u64 reserved[2];
218 };
219 
220 /**
221  * struct drm_xe_engine_class_instance - instance of an engine class
222  *
223  * It is returned as part of the @drm_xe_engine, but it also is used as
224  * the input of engine selection for both @drm_xe_exec_queue_create and
225  * @drm_xe_query_engine_cycles
226  *
227  * The @engine_class can be:
228  *  - %DRM_XE_ENGINE_CLASS_RENDER
229  *  - %DRM_XE_ENGINE_CLASS_COPY
230  *  - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
231  *  - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
232  *  - %DRM_XE_ENGINE_CLASS_COMPUTE
233  *  - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
234  *    hardware engine class). Used for creating ordered queues of VM
235  *    bind operations.
236  */
237 struct drm_xe_engine_class_instance {
238 #define DRM_XE_ENGINE_CLASS_RENDER		0
239 #define DRM_XE_ENGINE_CLASS_COPY		1
240 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE	2
241 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE	3
242 #define DRM_XE_ENGINE_CLASS_COMPUTE		4
243 #define DRM_XE_ENGINE_CLASS_VM_BIND		5
244 	/** @engine_class: engine class id */
245 	__u16 engine_class;
246 	/** @engine_instance: engine instance id */
247 	__u16 engine_instance;
248 	/** @gt_id: Unique ID of this GT within the PCI Device */
249 	__u16 gt_id;
250 	/** @pad: MBZ */
251 	__u16 pad;
252 };
253 
254 /**
255  * struct drm_xe_engine - describe hardware engine
256  */
257 struct drm_xe_engine {
258 	/** @instance: The @drm_xe_engine_class_instance */
259 	struct drm_xe_engine_class_instance instance;
260 
261 	/** @reserved: Reserved */
262 	__u64 reserved[3];
263 };
264 
265 /**
266  * struct drm_xe_query_engines - describe engines
267  *
268  * If a query is made with a struct @drm_xe_device_query where .query
269  * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
270  * struct @drm_xe_query_engines in .data.
271  */
272 struct drm_xe_query_engines {
273 	/** @num_engines: number of engines returned in @engines */
274 	__u32 num_engines;
275 	/** @pad: MBZ */
276 	__u32 pad;
277 	/** @engines: The returned engines for this device */
278 	struct drm_xe_engine engines[];
279 };
280 
281 /**
282  * enum drm_xe_memory_class - Supported memory classes.
283  */
284 enum drm_xe_memory_class {
285 	/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
286 	DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
287 	/**
288 	 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
289 	 * represents the memory that is local to the device, which we
290 	 * call VRAM. Not valid on integrated platforms.
291 	 */
292 	DRM_XE_MEM_REGION_CLASS_VRAM
293 };
294 
295 /**
296  * struct drm_xe_mem_region - Describes some region as known to
297  * the driver.
298  */
299 struct drm_xe_mem_region {
300 	/**
301 	 * @mem_class: The memory class describing this region.
302 	 *
303 	 * See enum drm_xe_memory_class for supported values.
304 	 */
305 	__u16 mem_class;
306 	/**
307 	 * @instance: The unique ID for this region, which serves as the
308 	 * index in the placement bitmask used as argument for
309 	 * &DRM_IOCTL_XE_GEM_CREATE
310 	 */
311 	__u16 instance;
312 	/**
313 	 * @min_page_size: Min page-size in bytes for this region.
314 	 *
315 	 * When the kernel allocates memory for this region, the
316 	 * underlying pages will be at least @min_page_size in size.
317 	 * Buffer objects with an allowable placement in this region must be
318 	 * created with a size aligned to this value.
319 	 * GPU virtual address mappings of (parts of) buffer objects that
320 	 * may be placed in this region must also have their GPU virtual
321 	 * address and range aligned to this value.
322 	 * Affected IOCTLS will return %-EINVAL if alignment restrictions are
323 	 * not met.
324 	 */
325 	__u32 min_page_size;
326 	/**
327 	 * @total_size: The usable size in bytes for this region.
328 	 */
329 	__u64 total_size;
330 	/**
331 	 * @used: Estimate of the memory used in bytes for this region.
332 	 *
333 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
334 	 * accounting.  Without this the value here will always equal
335 	 * zero.
336 	 */
337 	__u64 used;
338 	/**
339 	 * @cpu_visible_size: How much of this region can be CPU
340 	 * accessed, in bytes.
341 	 *
342 	 * This will always be <= @total_size, and the remainder (if
343 	 * any) will not be CPU accessible. If the CPU accessible part
344 	 * is smaller than @total_size then this is referred to as a
345 	 * small BAR system.
346 	 *
347 	 * On systems without small BAR (full BAR), the probed_size will
348 	 * always equal the @total_size, since all of it will be CPU
349 	 * accessible.
350 	 *
351 	 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
352 	 * regions (for other types the value here will always equal
353 	 * zero).
354 	 */
355 	__u64 cpu_visible_size;
356 	/**
357 	 * @cpu_visible_used: Estimate of CPU visible memory used, in
358 	 * bytes.
359 	 *
360 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
361 	 * accounting. Without this the value here will always equal
362 	 * zero.  Note this is only currently tracked for
363 	 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
364 	 * here will always be zero).
365 	 */
366 	__u64 cpu_visible_used;
367 	/** @reserved: Reserved */
368 	__u64 reserved[6];
369 };
370 
371 /**
372  * struct drm_xe_query_mem_regions - describe memory regions
373  *
374  * If a query is made with a struct drm_xe_device_query where .query
375  * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
376  * struct drm_xe_query_mem_regions in .data.
377  */
378 struct drm_xe_query_mem_regions {
379 	/** @num_mem_regions: number of memory regions returned in @mem_regions */
380 	__u32 num_mem_regions;
381 	/** @pad: MBZ */
382 	__u32 pad;
383 	/** @mem_regions: The returned memory regions for this device */
384 	struct drm_xe_mem_region mem_regions[];
385 };
386 
387 /**
388  * struct drm_xe_query_config - describe the device configuration
389  *
390  * If a query is made with a struct drm_xe_device_query where .query
391  * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
392  * struct drm_xe_query_config in .data.
393  *
394  * The index in @info can be:
395  *  - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
396  *    and the device revision (next 8 bits)
397  *  - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
398  *    configuration, see list below
399  *
400  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
401  *      has usable VRAM
402  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_LOW_LATENCY - Flag is set if the device
403  *      has low latency hint support
404  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_CPU_ADDR_MIRROR - Flag is set if the
405  *      device has CPU address mirroring support
406  *  - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
407  *    required by this device, typically SZ_4K or SZ_64K
408  *  - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
409  *  - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
410  *    available exec queue priority
411  */
412 struct drm_xe_query_config {
413 	/** @num_params: number of parameters returned in info */
414 	__u32 num_params;
415 
416 	/** @pad: MBZ */
417 	__u32 pad;
418 
419 #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID	0
420 #define DRM_XE_QUERY_CONFIG_FLAGS			1
421 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM	(1 << 0)
422 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_LOW_LATENCY	(1 << 1)
423 	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_CPU_ADDR_MIRROR	(1 << 2)
424 #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT		2
425 #define DRM_XE_QUERY_CONFIG_VA_BITS			3
426 #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY	4
427 	/** @info: array of elements containing the config info */
428 	__u64 info[];
429 };
430 
431 /**
432  * struct drm_xe_gt - describe an individual GT.
433  *
434  * To be used with drm_xe_query_gt_list, which will return a list with all the
435  * existing GT individual descriptions.
436  * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
437  * implementing graphics and/or media operations.
438  *
439  * The index in @type can be:
440  *  - %DRM_XE_QUERY_GT_TYPE_MAIN
441  *  - %DRM_XE_QUERY_GT_TYPE_MEDIA
442  */
443 struct drm_xe_gt {
444 #define DRM_XE_QUERY_GT_TYPE_MAIN		0
445 #define DRM_XE_QUERY_GT_TYPE_MEDIA		1
446 	/** @type: GT type: Main or Media */
447 	__u16 type;
448 	/** @tile_id: Tile ID where this GT lives (Information only) */
449 	__u16 tile_id;
450 	/** @gt_id: Unique ID of this GT within the PCI Device */
451 	__u16 gt_id;
452 	/** @pad: MBZ */
453 	__u16 pad[3];
454 	/** @reference_clock: A clock frequency for timestamp */
455 	__u32 reference_clock;
456 	/**
457 	 * @near_mem_regions: Bit mask of instances from
458 	 * drm_xe_query_mem_regions that are nearest to the current engines
459 	 * of this GT.
460 	 * Each index in this mask refers directly to the struct
461 	 * drm_xe_query_mem_regions' instance, no assumptions should
462 	 * be made about order. The type of each region is described
463 	 * by struct drm_xe_query_mem_regions' mem_class.
464 	 */
465 	__u64 near_mem_regions;
466 	/**
467 	 * @far_mem_regions: Bit mask of instances from
468 	 * drm_xe_query_mem_regions that are far from the engines of this GT.
469 	 * In general, they have extra indirections when compared to the
470 	 * @near_mem_regions. For a discrete device this could mean system
471 	 * memory and memory living in a different tile.
472 	 * Each index in this mask refers directly to the struct
473 	 * drm_xe_query_mem_regions' instance, no assumptions should
474 	 * be made about order. The type of each region is described
475 	 * by struct drm_xe_query_mem_regions' mem_class.
476 	 */
477 	__u64 far_mem_regions;
478 	/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
479 	__u16 ip_ver_major;
480 	/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
481 	__u16 ip_ver_minor;
482 	/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
483 	__u16 ip_ver_rev;
484 	/** @pad2: MBZ */
485 	__u16 pad2;
486 	/** @reserved: Reserved */
487 	__u64 reserved[7];
488 };
489 
490 /**
491  * struct drm_xe_query_gt_list - A list with GT description items.
492  *
493  * If a query is made with a struct drm_xe_device_query where .query
494  * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
495  * drm_xe_query_gt_list in .data.
496  */
497 struct drm_xe_query_gt_list {
498 	/** @num_gt: number of GT items returned in gt_list */
499 	__u32 num_gt;
500 	/** @pad: MBZ */
501 	__u32 pad;
502 	/** @gt_list: The GT list returned for this device */
503 	struct drm_xe_gt gt_list[];
504 };
505 
506 /**
507  * struct drm_xe_query_topology_mask - describe the topology mask of a GT
508  *
509  * This is the hardware topology which reflects the internal physical
510  * structure of the GPU.
511  *
512  * If a query is made with a struct drm_xe_device_query where .query
513  * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
514  * struct drm_xe_query_topology_mask in .data.
515  *
516  * The @type can be:
517  *  - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
518  *    (DSS) available for geometry operations. For example a query response
519  *    containing the following in mask:
520  *    ``DSS_GEOMETRY    ff ff ff ff 00 00 00 00``
521  *    means 32 DSS are available for geometry.
522  *  - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
523  *    (DSS) available for compute operations. For example a query response
524  *    containing the following in mask:
525  *    ``DSS_COMPUTE    ff ff ff ff 00 00 00 00``
526  *    means 32 DSS are available for compute.
527  *  - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks.  This type
528  *    may be omitted if the driver is unable to query the mask from the
529  *    hardware.
530  *  - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
531  *    available per Dual Sub Slices (DSS). For example a query response
532  *    containing the following in mask:
533  *    ``EU_PER_DSS    ff ff 00 00 00 00 00 00``
534  *    means each DSS has 16 SIMD8 EUs. This type may be omitted if device
535  *    doesn't have SIMD8 EUs.
536  *  - %DRM_XE_TOPO_SIMD16_EU_PER_DSS - To query the mask of SIMD16 Execution
537  *    Units (EU) available per Dual Sub Slices (DSS). For example a query
538  *    response containing the following in mask:
539  *    ``SIMD16_EU_PER_DSS    ff ff 00 00 00 00 00 00``
540  *    means each DSS has 16 SIMD16 EUs. This type may be omitted if device
541  *    doesn't have SIMD16 EUs.
542  */
543 struct drm_xe_query_topology_mask {
544 	/** @gt_id: GT ID the mask is associated with */
545 	__u16 gt_id;
546 
547 #define DRM_XE_TOPO_DSS_GEOMETRY	1
548 #define DRM_XE_TOPO_DSS_COMPUTE		2
549 #define DRM_XE_TOPO_L3_BANK		3
550 #define DRM_XE_TOPO_EU_PER_DSS		4
551 #define DRM_XE_TOPO_SIMD16_EU_PER_DSS	5
552 	/** @type: type of mask */
553 	__u16 type;
554 
555 	/** @num_bytes: number of bytes in requested mask */
556 	__u32 num_bytes;
557 
558 	/** @mask: little-endian mask of @num_bytes */
559 	__u8 mask[];
560 };
561 
562 /**
563  * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
564  *
565  * If a query is made with a struct drm_xe_device_query where .query is equal to
566  * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
567  * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
568  * .data points to this allocated structure.
569  *
570  * The query returns the engine cycles, which along with GT's @reference_clock,
571  * can be used to calculate the engine timestamp. In addition the
572  * query returns a set of cpu timestamps that indicate when the command
573  * streamer cycle count was captured.
574  */
575 struct drm_xe_query_engine_cycles {
576 	/**
577 	 * @eci: This is input by the user and is the engine for which command
578 	 * streamer cycles is queried.
579 	 */
580 	struct drm_xe_engine_class_instance eci;
581 
582 	/**
583 	 * @clockid: This is input by the user and is the reference clock id for
584 	 * CPU timestamp. For definition, see clock_gettime(2) and
585 	 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
586 	 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
587 	 */
588 	__s32 clockid;
589 
590 	/** @width: Width of the engine cycle counter in bits. */
591 	__u32 width;
592 
593 	/**
594 	 * @engine_cycles: Engine cycles as read from its register
595 	 * at 0x358 offset.
596 	 */
597 	__u64 engine_cycles;
598 
599 	/**
600 	 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
601 	 * reading the engine_cycles register using the reference clockid set by the
602 	 * user.
603 	 */
604 	__u64 cpu_timestamp;
605 
606 	/**
607 	 * @cpu_delta: Time delta in ns captured around reading the lower dword
608 	 * of the engine_cycles register.
609 	 */
610 	__u64 cpu_delta;
611 };
612 
613 /**
614  * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
615  *
616  * Given a uc_type this will return the branch, major, minor and patch version
617  * of the micro-controller firmware.
618  */
619 struct drm_xe_query_uc_fw_version {
620 	/** @uc_type: The micro-controller type to query firmware version */
621 #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
622 #define XE_QUERY_UC_TYPE_HUC 1
623 	__u16 uc_type;
624 
625 	/** @pad: MBZ */
626 	__u16 pad;
627 
628 	/** @branch_ver: branch uc fw version */
629 	__u32 branch_ver;
630 	/** @major_ver: major uc fw version */
631 	__u32 major_ver;
632 	/** @minor_ver: minor uc fw version */
633 	__u32 minor_ver;
634 	/** @patch_ver: patch uc fw version */
635 	__u32 patch_ver;
636 
637 	/** @pad2: MBZ */
638 	__u32 pad2;
639 
640 	/** @reserved: Reserved */
641 	__u64 reserved;
642 };
643 
644 /**
645  * struct drm_xe_query_pxp_status - query if PXP is ready
646  *
647  * If PXP is enabled and no fatal error has occurred, the status will be set to
648  * one of the following values:
649  * 0: PXP init still in progress
650  * 1: PXP init complete
651  *
652  * If PXP is not enabled or something has gone wrong, the query will be failed
653  * with one of the following error codes:
654  * -ENODEV: PXP not supported or disabled;
655  * -EIO: fatal error occurred during init, so PXP will never be enabled;
656  * -EINVAL: incorrect value provided as part of the query;
657  * -EFAULT: error copying the memory between kernel and userspace.
658  *
659  * The status can only be 0 in the first few seconds after driver load. If
660  * everything works as expected, the status will transition to init complete in
661  * less than 1 second, while in case of errors the driver might take longer to
662  * start returning an error code, but it should still take less than 10 seconds.
663  *
664  * The supported session type bitmask is based on the values in
665  * enum drm_xe_pxp_session_type. TYPE_NONE is always supported and therefore
666  * is not reported in the bitmask.
667  *
668  */
669 struct drm_xe_query_pxp_status {
670 	/** @status: current PXP status */
671 	__u32 status;
672 
673 	/** @supported_session_types: bitmask of supported PXP session types */
674 	__u32 supported_session_types;
675 };
676 
677 /**
678  * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
679  * structure to query device information
680  *
681  * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
682  * and sets the value in the query member. This determines the type of
683  * the structure provided by the driver in data, among struct drm_xe_query_*.
684  *
685  * The @query can be:
686  *  - %DRM_XE_DEVICE_QUERY_ENGINES
687  *  - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
688  *  - %DRM_XE_DEVICE_QUERY_CONFIG
689  *  - %DRM_XE_DEVICE_QUERY_GT_LIST
690  *  - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
691  *    configuration of the device such as information on slices, memory,
692  *    caches, and so on. It is provided as a table of key / value
693  *    attributes.
694  *  - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
695  *  - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
696  *  - %DRM_XE_DEVICE_QUERY_PXP_STATUS
697  *
698  * If size is set to 0, the driver fills it with the required size for
699  * the requested type of data to query. If size is equal to the required
700  * size, the queried information is copied into data. If size is set to
701  * a value different from 0 and different from the required size, the
702  * IOCTL call returns -EINVAL.
703  *
704  * For example the following code snippet allows retrieving and printing
705  * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
706  *
707  * .. code-block:: C
708  *
709  *     struct drm_xe_query_engines *engines;
710  *     struct drm_xe_device_query query = {
711  *         .extensions = 0,
712  *         .query = DRM_XE_DEVICE_QUERY_ENGINES,
713  *         .size = 0,
714  *         .data = 0,
715  *     };
716  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
717  *     engines = malloc(query.size);
718  *     query.data = (uintptr_t)engines;
719  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
720  *     for (int i = 0; i < engines->num_engines; i++) {
721  *         printf("Engine %d: %s\n", i,
722  *             engines->engines[i].instance.engine_class ==
723  *                 DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
724  *             engines->engines[i].instance.engine_class ==
725  *                 DRM_XE_ENGINE_CLASS_COPY ? "COPY":
726  *             engines->engines[i].instance.engine_class ==
727  *                 DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
728  *             engines->engines[i].instance.engine_class ==
729  *                 DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
730  *             engines->engines[i].instance.engine_class ==
731  *                 DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
732  *             "UNKNOWN");
733  *     }
734  *     free(engines);
735  */
736 struct drm_xe_device_query {
737 	/** @extensions: Pointer to the first extension struct, if any */
738 	__u64 extensions;
739 
740 #define DRM_XE_DEVICE_QUERY_ENGINES		0
741 #define DRM_XE_DEVICE_QUERY_MEM_REGIONS		1
742 #define DRM_XE_DEVICE_QUERY_CONFIG		2
743 #define DRM_XE_DEVICE_QUERY_GT_LIST		3
744 #define DRM_XE_DEVICE_QUERY_HWCONFIG		4
745 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY		5
746 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES	6
747 #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION	7
748 #define DRM_XE_DEVICE_QUERY_OA_UNITS		8
749 #define DRM_XE_DEVICE_QUERY_PXP_STATUS		9
750 #define DRM_XE_DEVICE_QUERY_EU_STALL		10
751 	/** @query: The type of data to query */
752 	__u32 query;
753 
754 	/** @size: Size of the queried data */
755 	__u32 size;
756 
757 	/** @data: Queried data is placed here */
758 	__u64 data;
759 
760 	/** @reserved: Reserved */
761 	__u64 reserved[2];
762 };
763 
764 /**
765  * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
766  * gem creation
767  *
768  * The @flags can be:
769  *  - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING - Modify the GEM object
770  *    allocation strategy by deferring physical memory allocation
771  *    until the object is either bound to a virtual memory region via
772  *    VM_BIND or accessed by the CPU. As a result, no backing memory is
773  *    reserved at the time of GEM object creation.
774  *  - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
775  *  - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
776  *    possible placement, ensure that the corresponding VRAM allocation
777  *    will always use the CPU accessible part of VRAM. This is important
778  *    for small-bar systems (on full-bar systems this gets turned into a
779  *    noop).
780  *    Note1: System memory can be used as an extra placement if the kernel
781  *    should spill the allocation to system memory, if space can't be made
782  *    available in the CPU accessible part of VRAM (giving the same
783  *    behaviour as the i915 interface, see
784  *    I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
785  *    Note2: For clear-color CCS surfaces the kernel needs to read the
786  *    clear-color value stored in the buffer, and on discrete platforms we
787  *    need to use VRAM for display surfaces, therefore the kernel requires
788  *    setting this flag for such objects, otherwise an error is thrown on
789  *    small-bar systems.
790  *
791  * @cpu_caching supports the following values:
792  *  - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
793  *    caching. On iGPU this can't be used for scanout surfaces. Currently
794  *    not allowed for objects placed in VRAM.
795  *  - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
796  *    is uncached. Scanout surfaces should likely use this. All objects
797  *    that can be placed in VRAM must use this.
798  *
799  * This ioctl supports setting the following properties via the
800  * %DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY extension, which uses the
801  * generic @drm_xe_ext_set_property struct:
802  *
803  *  - %DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE - set the type of PXP session
804  *    this object will be used with. Valid values are listed in enum
805  *    drm_xe_pxp_session_type. %DRM_XE_PXP_TYPE_NONE is the default behavior, so
806  *    there is no need to explicitly set that. Objects used with session of type
807  *    %DRM_XE_PXP_TYPE_HWDRM will be marked as invalid if a PXP invalidation
808  *    event occurs after their creation. Attempting to flip an invalid object
809  *    will cause a black frame to be displayed instead. Submissions with invalid
810  *    objects mapped in the VM will be rejected.
811  */
812 struct drm_xe_gem_create {
813 #define DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY	0
814 #define   DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE	0
815 	/** @extensions: Pointer to the first extension struct, if any */
816 	__u64 extensions;
817 
818 	/**
819 	 * @size: Size of the object to be created, must match region
820 	 * (system or vram) minimum alignment (&min_page_size).
821 	 */
822 	__u64 size;
823 
824 	/**
825 	 * @placement: A mask of memory instances of where BO can be placed.
826 	 * Each index in this mask refers directly to the struct
827 	 * drm_xe_query_mem_regions' instance, no assumptions should
828 	 * be made about order. The type of each region is described
829 	 * by struct drm_xe_query_mem_regions' mem_class.
830 	 */
831 	__u32 placement;
832 
833 #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING		(1 << 0)
834 #define DRM_XE_GEM_CREATE_FLAG_SCANOUT			(1 << 1)
835 #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM	(1 << 2)
836 	/**
837 	 * @flags: Flags, currently a mask of memory instances of where BO can
838 	 * be placed
839 	 */
840 	__u32 flags;
841 
842 	/**
843 	 * @vm_id: Attached VM, if any
844 	 *
845 	 * If a VM is specified, this BO must:
846 	 *
847 	 *  1. Only ever be bound to that VM.
848 	 *  2. Cannot be exported as a PRIME fd.
849 	 */
850 	__u32 vm_id;
851 
852 	/**
853 	 * @handle: Returned handle for the object.
854 	 *
855 	 * Object handles are nonzero.
856 	 */
857 	__u32 handle;
858 
859 #define DRM_XE_GEM_CPU_CACHING_WB                      1
860 #define DRM_XE_GEM_CPU_CACHING_WC                      2
861 	/**
862 	 * @cpu_caching: The CPU caching mode to select for this object. If
863 	 * mmaping the object the mode selected here will also be used. The
864 	 * exception is when mapping system memory (including data evicted
865 	 * to system) on discrete GPUs. The caching mode selected will
866 	 * then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
867 	 * between GPU- and CPU is guaranteed. The caching mode of
868 	 * existing CPU-mappings will be updated transparently to
869 	 * user-space clients.
870 	 */
871 	__u16 cpu_caching;
872 	/** @pad: MBZ */
873 	__u16 pad[3];
874 
875 	/** @reserved: Reserved */
876 	__u64 reserved[2];
877 };
878 
879 /**
880  * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
881  *
882  * The @flags can be:
883  *  - %DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER - For user to query special offset
884  *    for use in mmap ioctl. Writing to the returned mmap address will generate a
885  *    PCI memory barrier with low overhead (avoiding IOCTL call as well as writing
886  *    to VRAM which would also add overhead), acting like an MI_MEM_FENCE
887  *    instruction.
888  *
889  * Note: The mmap size can be at most 4K, due to HW limitations. As a result
890  * this interface is only supported on CPU architectures that support 4K page
891  * size. The mmap_offset ioctl will detect this and gracefully return an
892  * error, where userspace is expected to have a different fallback method for
893  * triggering a barrier.
894  *
895  * Roughly the usage would be as follows:
896  *
897  * .. code-block:: C
898  *
899  *     struct drm_xe_gem_mmap_offset mmo = {
900  *         .handle = 0, // must be set to 0
901  *         .flags = DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER,
902  *     };
903  *
904  *     err = ioctl(fd, DRM_IOCTL_XE_GEM_MMAP_OFFSET, &mmo);
905  *     map = mmap(NULL, size, PROT_WRITE, MAP_SHARED, fd, mmo.offset);
906  *     map[i] = 0xdeadbeaf; // issue barrier
907  */
908 struct drm_xe_gem_mmap_offset {
909 	/** @extensions: Pointer to the first extension struct, if any */
910 	__u64 extensions;
911 
912 	/** @handle: Handle for the object being mapped. */
913 	__u32 handle;
914 
915 #define DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER     (1 << 0)
916 	/** @flags: Flags */
917 	__u32 flags;
918 
919 	/** @offset: The fake offset to use for subsequent mmap call */
920 	__u64 offset;
921 
922 	/** @reserved: Reserved */
923 	__u64 reserved[2];
924 };
925 
926 /**
927  * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
928  *
929  * The @flags can be:
930  *  - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE - Map the whole virtual address
931  *    space of the VM to scratch page. A vm_bind would overwrite the scratch
932  *    page mapping. This flag is mutually exclusive with the
933  *    %DRM_XE_VM_CREATE_FLAG_FAULT_MODE flag, with an exception of on x2 and
934  *    xe3 platform.
935  *  - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
936  *    exec submissions to its exec_queues that don't have an upper time
937  *    limit on the job execution time. But exec submissions to these
938  *    don't allow any of the sync types DRM_XE_SYNC_TYPE_SYNCOBJ,
939  *    DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ, used as out-syncobjs, that is,
940  *    together with sync flag DRM_XE_SYNC_FLAG_SIGNAL.
941  *    LR VMs can be created in recoverable page-fault mode using
942  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
943  *    If that flag is omitted, the UMD can not rely on the slightly
944  *    different per-VM overcommit semantics that are enabled by
945  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
946  *    still enable recoverable pagefaults if supported by the device.
947  *  - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
948  *    DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
949  *    demand when accessed, and also allows per-VM overcommit of memory.
950  *    The xe driver internally uses recoverable pagefaults to implement
951  *    this.
952  */
953 struct drm_xe_vm_create {
954 	/** @extensions: Pointer to the first extension struct, if any */
955 	__u64 extensions;
956 
957 #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE	(1 << 0)
958 #define DRM_XE_VM_CREATE_FLAG_LR_MODE	        (1 << 1)
959 #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE	(1 << 2)
960 	/** @flags: Flags */
961 	__u32 flags;
962 
963 	/** @vm_id: Returned VM ID */
964 	__u32 vm_id;
965 
966 	/** @reserved: Reserved */
967 	__u64 reserved[2];
968 };
969 
970 /**
971  * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
972  */
973 struct drm_xe_vm_destroy {
974 	/** @vm_id: VM ID */
975 	__u32 vm_id;
976 
977 	/** @pad: MBZ */
978 	__u32 pad;
979 
980 	/** @reserved: Reserved */
981 	__u64 reserved[2];
982 };
983 
984 /**
985  * struct drm_xe_vm_bind_op - run bind operations
986  *
987  * The @op can be:
988  *  - %DRM_XE_VM_BIND_OP_MAP
989  *  - %DRM_XE_VM_BIND_OP_UNMAP
990  *  - %DRM_XE_VM_BIND_OP_MAP_USERPTR
991  *  - %DRM_XE_VM_BIND_OP_UNMAP_ALL
992  *  - %DRM_XE_VM_BIND_OP_PREFETCH
993  *
994  * and the @flags can be:
995  *  - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
996  *    to ensure write protection
997  *  - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
998  *    MAP operation immediately rather than deferring the MAP to the page
999  *    fault handler. This is implied on a non-faulting VM as there is no
1000  *    fault handler to defer to.
1001  *  - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
1002  *    tables are setup with a special bit which indicates writes are
1003  *    dropped and all reads return zero. In the future, the NULL flags
1004  *    will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
1005  *    handle MBZ, and the BO offset MBZ. This flag is intended to
1006  *    implement VK sparse bindings.
1007  *  - %DRM_XE_VM_BIND_FLAG_CHECK_PXP - If the object is encrypted via PXP,
1008  *    reject the binding if the encryption key is no longer valid. This
1009  *    flag has no effect on BOs that are not marked as using PXP.
1010  *  - %DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR - When the CPU address mirror flag is
1011  *    set, no mappings are created rather the range is reserved for CPU address
1012  *    mirroring which will be populated on GPU page faults or prefetches. Only
1013  *    valid on VMs with DRM_XE_VM_CREATE_FLAG_FAULT_MODE set. The CPU address
1014  *    mirror flag are only valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
1015  *    handle MBZ, and the BO offset MBZ.
1016  *  - %DRM_XE_VM_BIND_FLAG_MADVISE_AUTORESET - Can be used in combination with
1017  *    %DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR to reset madvises when the underlying
1018  *    CPU address space range is unmapped (typically with munmap(2) or brk(2)).
1019  *    The madvise values set with &DRM_IOCTL_XE_MADVISE are reset to the values
1020  *    that were present immediately after the &DRM_IOCTL_XE_VM_BIND.
1021  *    The reset GPU virtual address range is the intersection of the range bound
1022  *    using &DRM_IOCTL_XE_VM_BIND and the virtual CPU address space range
1023  *    unmapped.
1024  *    This functionality is present to mimic the behaviour of CPU address space
1025  *    madvises set using madvise(2), which are typically reset on unmap.
1026  *    Note: free(3) may or may not call munmap(2) and/or brk(2), and may thus
1027  *    not invoke autoreset. Neither will stack variables going out of scope.
1028  *    Therefore it's recommended to always explicitly reset the madvises when
1029  *    freeing the memory backing a region used in a &DRM_IOCTL_XE_MADVISE call.
1030  *
1031  * The @prefetch_mem_region_instance for %DRM_XE_VM_BIND_OP_PREFETCH can also be:
1032  *  - %DRM_XE_CONSULT_MEM_ADVISE_PREF_LOC, which ensures prefetching occurs in
1033  *    the memory region advised by madvise.
1034  */
1035 struct drm_xe_vm_bind_op {
1036 	/** @extensions: Pointer to the first extension struct, if any */
1037 	__u64 extensions;
1038 
1039 	/**
1040 	 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
1041 	 */
1042 	__u32 obj;
1043 
1044 	/**
1045 	 * @pat_index: The platform defined @pat_index to use for this mapping.
1046 	 * The index basically maps to some predefined memory attributes,
1047 	 * including things like caching, coherency, compression etc.  The exact
1048 	 * meaning of the pat_index is platform specific and defined in the
1049 	 * Bspec and PRMs.  When the KMD sets up the binding the index here is
1050 	 * encoded into the ppGTT PTE.
1051 	 *
1052 	 * For coherency the @pat_index needs to be at least 1way coherent when
1053 	 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
1054 	 * will extract the coherency mode from the @pat_index and reject if
1055 	 * there is a mismatch (see note below for pre-MTL platforms).
1056 	 *
1057 	 * Note: On pre-MTL platforms there is only a caching mode and no
1058 	 * explicit coherency mode, but on such hardware there is always a
1059 	 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
1060 	 * CPU caches even with the caching mode set as uncached.  It's only the
1061 	 * display engine that is incoherent (on dgpu it must be in VRAM which
1062 	 * is always mapped as WC on the CPU). However to keep the uapi somewhat
1063 	 * consistent with newer platforms the KMD groups the different cache
1064 	 * levels into the following coherency buckets on all pre-MTL platforms:
1065 	 *
1066 	 *	ppGTT UC -> COH_NONE
1067 	 *	ppGTT WC -> COH_NONE
1068 	 *	ppGTT WT -> COH_NONE
1069 	 *	ppGTT WB -> COH_AT_LEAST_1WAY
1070 	 *
1071 	 * In practice UC/WC/WT should only ever used for scanout surfaces on
1072 	 * such platforms (or perhaps in general for dma-buf if shared with
1073 	 * another device) since it is only the display engine that is actually
1074 	 * incoherent.  Everything else should typically use WB given that we
1075 	 * have a shared-LLC.  On MTL+ this completely changes and the HW
1076 	 * defines the coherency mode as part of the @pat_index, where
1077 	 * incoherent GT access is possible.
1078 	 *
1079 	 * Note: For userptr and externally imported dma-buf the kernel expects
1080 	 * either 1WAY or 2WAY for the @pat_index.
1081 	 *
1082 	 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
1083 	 * on the @pat_index. For such mappings there is no actual memory being
1084 	 * mapped (the address in the PTE is invalid), so the various PAT memory
1085 	 * attributes likely do not apply.  Simply leaving as zero is one
1086 	 * option (still a valid pat_index). Same applies to
1087 	 * DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR bindings as for such mapping
1088 	 * there is no actual memory being mapped.
1089 	 */
1090 	__u16 pat_index;
1091 
1092 	/** @pad: MBZ */
1093 	__u16 pad;
1094 
1095 	union {
1096 		/**
1097 		 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
1098 		 * ignored for unbind
1099 		 */
1100 		__u64 obj_offset;
1101 
1102 		/** @userptr: user pointer to bind on */
1103 		__u64 userptr;
1104 
1105 		/**
1106 		 * @cpu_addr_mirror_offset: Offset from GPU @addr to create
1107 		 * CPU address mirror mappings. MBZ with current level of
1108 		 * support (e.g. 1 to 1 mapping between GPU and CPU mappings
1109 		 * only supported).
1110 		 */
1111 		__s64 cpu_addr_mirror_offset;
1112 	};
1113 
1114 	/**
1115 	 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
1116 	 */
1117 	__u64 range;
1118 
1119 	/** @addr: Address to operate on, MBZ for UNMAP_ALL */
1120 	__u64 addr;
1121 
1122 #define DRM_XE_VM_BIND_OP_MAP		0x0
1123 #define DRM_XE_VM_BIND_OP_UNMAP		0x1
1124 #define DRM_XE_VM_BIND_OP_MAP_USERPTR	0x2
1125 #define DRM_XE_VM_BIND_OP_UNMAP_ALL	0x3
1126 #define DRM_XE_VM_BIND_OP_PREFETCH	0x4
1127 	/** @op: Bind operation to perform */
1128 	__u32 op;
1129 
1130 #define DRM_XE_VM_BIND_FLAG_READONLY	(1 << 0)
1131 #define DRM_XE_VM_BIND_FLAG_IMMEDIATE	(1 << 1)
1132 #define DRM_XE_VM_BIND_FLAG_NULL	(1 << 2)
1133 #define DRM_XE_VM_BIND_FLAG_DUMPABLE	(1 << 3)
1134 #define DRM_XE_VM_BIND_FLAG_CHECK_PXP	(1 << 4)
1135 #define DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR	(1 << 5)
1136 #define DRM_XE_VM_BIND_FLAG_MADVISE_AUTORESET	(1 << 6)
1137 	/** @flags: Bind flags */
1138 	__u32 flags;
1139 
1140 #define DRM_XE_CONSULT_MEM_ADVISE_PREF_LOC	-1
1141 	/**
1142 	 * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
1143 	 * It is a region instance, not a mask.
1144 	 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
1145 	 */
1146 	__u32 prefetch_mem_region_instance;
1147 
1148 	/** @pad2: MBZ */
1149 	__u32 pad2;
1150 
1151 	/** @reserved: Reserved */
1152 	__u64 reserved[3];
1153 };
1154 
1155 /**
1156  * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
1157  *
1158  * Below is an example of a minimal use of @drm_xe_vm_bind to
1159  * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
1160  * illustrate `userptr`. It can be synchronized by using the example
1161  * provided for @drm_xe_sync.
1162  *
1163  * .. code-block:: C
1164  *
1165  *     data = aligned_alloc(ALIGNMENT, BO_SIZE);
1166  *     struct drm_xe_vm_bind bind = {
1167  *         .vm_id = vm,
1168  *         .num_binds = 1,
1169  *         .bind.obj = 0,
1170  *         .bind.obj_offset = to_user_pointer(data),
1171  *         .bind.range = BO_SIZE,
1172  *         .bind.addr = BIND_ADDRESS,
1173  *         .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1174  *         .bind.flags = 0,
1175  *         .num_syncs = 1,
1176  *         .syncs = &sync,
1177  *         .exec_queue_id = 0,
1178  *     };
1179  *     ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1180  *
1181  */
1182 struct drm_xe_vm_bind {
1183 	/** @extensions: Pointer to the first extension struct, if any */
1184 	__u64 extensions;
1185 
1186 	/** @vm_id: The ID of the VM to bind to */
1187 	__u32 vm_id;
1188 
1189 	/**
1190 	 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1191 	 * and exec queue must have same vm_id. If zero, the default VM bind engine
1192 	 * is used.
1193 	 */
1194 	__u32 exec_queue_id;
1195 
1196 	/** @pad: MBZ */
1197 	__u32 pad;
1198 
1199 	/** @num_binds: number of binds in this IOCTL */
1200 	__u32 num_binds;
1201 
1202 	union {
1203 		/** @bind: used if num_binds == 1 */
1204 		struct drm_xe_vm_bind_op bind;
1205 
1206 		/**
1207 		 * @vector_of_binds: userptr to array of struct
1208 		 * drm_xe_vm_bind_op if num_binds > 1
1209 		 */
1210 		__u64 vector_of_binds;
1211 	};
1212 
1213 	/** @pad2: MBZ */
1214 	__u32 pad2;
1215 
1216 	/** @num_syncs: amount of syncs to wait on */
1217 	__u32 num_syncs;
1218 
1219 	/** @syncs: pointer to struct drm_xe_sync array */
1220 	__u64 syncs;
1221 
1222 	/** @reserved: Reserved */
1223 	__u64 reserved[2];
1224 };
1225 
1226 /**
1227  * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1228  *
1229  * This ioctl supports setting the following properties via the
1230  * %DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY extension, which uses the
1231  * generic @drm_xe_ext_set_property struct:
1232  *
1233  *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY - set the queue priority.
1234  *    CAP_SYS_NICE is required to set a value above normal.
1235  *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE - set the queue timeslice
1236  *    duration in microseconds.
1237  *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE - set the type of PXP session
1238  *    this queue will be used with. Valid values are listed in enum
1239  *    drm_xe_pxp_session_type. %DRM_XE_PXP_TYPE_NONE is the default behavior, so
1240  *    there is no need to explicitly set that. When a queue of type
1241  *    %DRM_XE_PXP_TYPE_HWDRM is created, the PXP default HWDRM session
1242  *    (%XE_PXP_HWDRM_DEFAULT_SESSION) will be started, if isn't already running.
1243  *    The user is expected to query the PXP status via the query ioctl (see
1244  *    %DRM_XE_DEVICE_QUERY_PXP_STATUS) and to wait for PXP to be ready before
1245  *    attempting to create a queue with this property. When a queue is created
1246  *    before PXP is ready, the ioctl will return -EBUSY if init is still in
1247  *    progress or -EIO if init failed.
1248  *    Given that going into a power-saving state kills PXP HWDRM sessions,
1249  *    runtime PM will be blocked while queues of this type are alive.
1250  *    All PXP queues will be killed if a PXP invalidation event occurs.
1251  *
1252  * The example below shows how to use @drm_xe_exec_queue_create to create
1253  * a simple exec_queue (no parallel submission) of class
1254  * &DRM_XE_ENGINE_CLASS_RENDER.
1255  *
1256  * .. code-block:: C
1257  *
1258  *     struct drm_xe_engine_class_instance instance = {
1259  *         .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1260  *     };
1261  *     struct drm_xe_exec_queue_create exec_queue_create = {
1262  *          .extensions = 0,
1263  *          .vm_id = vm,
1264  *          .num_bb_per_exec = 1,
1265  *          .num_eng_per_bb = 1,
1266  *          .instances = to_user_pointer(&instance),
1267  *     };
1268  *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1269  *
1270  *     Allow users to provide a hint to kernel for cases demanding low latency
1271  *     profile. Please note it will have impact on power consumption. User can
1272  *     indicate low latency hint with flag while creating exec queue as
1273  *     mentioned below,
1274  *
1275  *     struct drm_xe_exec_queue_create exec_queue_create = {
1276  *          .flags = DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT,
1277  *          .extensions = 0,
1278  *          .vm_id = vm,
1279  *          .num_bb_per_exec = 1,
1280  *          .num_eng_per_bb = 1,
1281  *          .instances = to_user_pointer(&instance),
1282  *     };
1283  *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1284  *
1285  */
1286 struct drm_xe_exec_queue_create {
1287 #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY		0
1288 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY		0
1289 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE		1
1290 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE		2
1291 	/** @extensions: Pointer to the first extension struct, if any */
1292 	__u64 extensions;
1293 
1294 	/** @width: submission width (number BB per exec) for this exec queue */
1295 	__u16 width;
1296 
1297 	/** @num_placements: number of valid placements for this exec queue */
1298 	__u16 num_placements;
1299 
1300 	/** @vm_id: VM to use for this exec queue */
1301 	__u32 vm_id;
1302 
1303 #define DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT	(1 << 0)
1304 	/** @flags: flags to use for this exec queue */
1305 	__u32 flags;
1306 
1307 	/** @exec_queue_id: Returned exec queue ID */
1308 	__u32 exec_queue_id;
1309 
1310 	/**
1311 	 * @instances: user pointer to a 2-d array of struct
1312 	 * drm_xe_engine_class_instance
1313 	 *
1314 	 * length = width (i) * num_placements (j)
1315 	 * index = j + i * width
1316 	 */
1317 	__u64 instances;
1318 
1319 	/** @reserved: Reserved */
1320 	__u64 reserved[2];
1321 };
1322 
1323 /**
1324  * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1325  */
1326 struct drm_xe_exec_queue_destroy {
1327 	/** @exec_queue_id: Exec queue ID */
1328 	__u32 exec_queue_id;
1329 
1330 	/** @pad: MBZ */
1331 	__u32 pad;
1332 
1333 	/** @reserved: Reserved */
1334 	__u64 reserved[2];
1335 };
1336 
1337 /**
1338  * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1339  *
1340  * The @property can be:
1341  *  - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1342  */
1343 struct drm_xe_exec_queue_get_property {
1344 	/** @extensions: Pointer to the first extension struct, if any */
1345 	__u64 extensions;
1346 
1347 	/** @exec_queue_id: Exec queue ID */
1348 	__u32 exec_queue_id;
1349 
1350 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN	0
1351 	/** @property: property to get */
1352 	__u32 property;
1353 
1354 	/** @value: property value */
1355 	__u64 value;
1356 
1357 	/** @reserved: Reserved */
1358 	__u64 reserved[2];
1359 };
1360 
1361 /**
1362  * struct drm_xe_sync - sync object
1363  *
1364  * The @type can be:
1365  *  - %DRM_XE_SYNC_TYPE_SYNCOBJ
1366  *  - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1367  *  - %DRM_XE_SYNC_TYPE_USER_FENCE
1368  *
1369  * and the @flags can be:
1370  *  - %DRM_XE_SYNC_FLAG_SIGNAL
1371  *
1372  * A minimal use of @drm_xe_sync looks like this:
1373  *
1374  * .. code-block:: C
1375  *
1376  *     struct drm_xe_sync sync = {
1377  *         .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1378  *         .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1379  *     };
1380  *     struct drm_syncobj_create syncobj_create = { 0 };
1381  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1382  *     sync.handle = syncobj_create.handle;
1383  *         ...
1384  *         use of &sync in drm_xe_exec or drm_xe_vm_bind
1385  *         ...
1386  *     struct drm_syncobj_wait wait = {
1387  *         .handles = &sync.handle,
1388  *         .timeout_nsec = INT64_MAX,
1389  *         .count_handles = 1,
1390  *         .flags = 0,
1391  *         .first_signaled = 0,
1392  *         .pad = 0,
1393  *     };
1394  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1395  */
1396 struct drm_xe_sync {
1397 	/** @extensions: Pointer to the first extension struct, if any */
1398 	__u64 extensions;
1399 
1400 #define DRM_XE_SYNC_TYPE_SYNCOBJ		0x0
1401 #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ	0x1
1402 #define DRM_XE_SYNC_TYPE_USER_FENCE		0x2
1403 	/** @type: Type of the this sync object */
1404 	__u32 type;
1405 
1406 #define DRM_XE_SYNC_FLAG_SIGNAL	(1 << 0)
1407 	/** @flags: Sync Flags */
1408 	__u32 flags;
1409 
1410 	union {
1411 		/** @handle: Handle for the object */
1412 		__u32 handle;
1413 
1414 		/**
1415 		 * @addr: Address of user fence. When sync is passed in via exec
1416 		 * IOCTL this is a GPU address in the VM. When sync passed in via
1417 		 * VM bind IOCTL this is a user pointer. In either case, it is
1418 		 * the users responsibility that this address is present and
1419 		 * mapped when the user fence is signalled. Must be qword
1420 		 * aligned.
1421 		 */
1422 		__u64 addr;
1423 	};
1424 
1425 	/**
1426 	 * @timeline_value: Input for the timeline sync object. Needs to be
1427 	 * different than 0 when used with %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ.
1428 	 */
1429 	__u64 timeline_value;
1430 
1431 	/** @reserved: Reserved */
1432 	__u64 reserved[2];
1433 };
1434 
1435 /**
1436  * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1437  *
1438  * This is an example to use @drm_xe_exec for execution of the object
1439  * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1440  * (see example in @drm_xe_exec_queue_create). It can be synchronized
1441  * by using the example provided for @drm_xe_sync.
1442  *
1443  * .. code-block:: C
1444  *
1445  *     struct drm_xe_exec exec = {
1446  *         .exec_queue_id = exec_queue,
1447  *         .syncs = &sync,
1448  *         .num_syncs = 1,
1449  *         .address = BIND_ADDRESS,
1450  *         .num_batch_buffer = 1,
1451  *     };
1452  *     ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1453  *
1454  */
1455 struct drm_xe_exec {
1456 	/** @extensions: Pointer to the first extension struct, if any */
1457 	__u64 extensions;
1458 
1459 	/** @exec_queue_id: Exec queue ID for the batch buffer */
1460 	__u32 exec_queue_id;
1461 
1462 	/** @num_syncs: Amount of struct drm_xe_sync in array. */
1463 	__u32 num_syncs;
1464 
1465 	/** @syncs: Pointer to struct drm_xe_sync array. */
1466 	__u64 syncs;
1467 
1468 	/**
1469 	 * @address: address of batch buffer if num_batch_buffer == 1 or an
1470 	 * array of batch buffer addresses
1471 	 */
1472 	__u64 address;
1473 
1474 	/**
1475 	 * @num_batch_buffer: number of batch buffer in this exec, must match
1476 	 * the width of the engine
1477 	 */
1478 	__u16 num_batch_buffer;
1479 
1480 	/** @pad: MBZ */
1481 	__u16 pad[3];
1482 
1483 	/** @reserved: Reserved */
1484 	__u64 reserved[2];
1485 };
1486 
1487 /**
1488  * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1489  *
1490  * Wait on user fence, XE will wake-up on every HW engine interrupt in the
1491  * instances list and check if user fence is complete::
1492  *
1493  *	(*addr & MASK) OP (VALUE & MASK)
1494  *
1495  * Returns to user on user fence completion or timeout.
1496  *
1497  * The @op can be:
1498  *  - %DRM_XE_UFENCE_WAIT_OP_EQ
1499  *  - %DRM_XE_UFENCE_WAIT_OP_NEQ
1500  *  - %DRM_XE_UFENCE_WAIT_OP_GT
1501  *  - %DRM_XE_UFENCE_WAIT_OP_GTE
1502  *  - %DRM_XE_UFENCE_WAIT_OP_LT
1503  *  - %DRM_XE_UFENCE_WAIT_OP_LTE
1504  *
1505  * and the @flags can be:
1506  *  - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1507  *  - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1508  *
1509  * The @mask values can be for example:
1510  *  - 0xffu for u8
1511  *  - 0xffffu for u16
1512  *  - 0xffffffffu for u32
1513  *  - 0xffffffffffffffffu for u64
1514  */
1515 struct drm_xe_wait_user_fence {
1516 	/** @extensions: Pointer to the first extension struct, if any */
1517 	__u64 extensions;
1518 
1519 	/**
1520 	 * @addr: user pointer address to wait on, must qword aligned
1521 	 */
1522 	__u64 addr;
1523 
1524 #define DRM_XE_UFENCE_WAIT_OP_EQ	0x0
1525 #define DRM_XE_UFENCE_WAIT_OP_NEQ	0x1
1526 #define DRM_XE_UFENCE_WAIT_OP_GT	0x2
1527 #define DRM_XE_UFENCE_WAIT_OP_GTE	0x3
1528 #define DRM_XE_UFENCE_WAIT_OP_LT	0x4
1529 #define DRM_XE_UFENCE_WAIT_OP_LTE	0x5
1530 	/** @op: wait operation (type of comparison) */
1531 	__u16 op;
1532 
1533 #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME	(1 << 0)
1534 	/** @flags: wait flags */
1535 	__u16 flags;
1536 
1537 	/** @pad: MBZ */
1538 	__u32 pad;
1539 
1540 	/** @value: compare value */
1541 	__u64 value;
1542 
1543 	/** @mask: comparison mask */
1544 	__u64 mask;
1545 
1546 	/**
1547 	 * @timeout: how long to wait before bailing, value in nanoseconds.
1548 	 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1549 	 * it contains timeout expressed in nanoseconds to wait (fence will
1550 	 * expire at now() + timeout).
1551 	 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1552 	 * will end at timeout (uses system MONOTONIC_CLOCK).
1553 	 * Passing negative timeout leads to neverending wait.
1554 	 *
1555 	 * On relative timeout this value is updated with timeout left
1556 	 * (for restarting the call in case of signal delivery).
1557 	 * On absolute timeout this value stays intact (restarted call still
1558 	 * expire at the same point of time).
1559 	 */
1560 	__s64 timeout;
1561 
1562 	/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1563 	__u32 exec_queue_id;
1564 
1565 	/** @pad2: MBZ */
1566 	__u32 pad2;
1567 
1568 	/** @reserved: Reserved */
1569 	__u64 reserved[2];
1570 };
1571 
1572 /**
1573  * enum drm_xe_observation_type - Observation stream types
1574  */
1575 enum drm_xe_observation_type {
1576 	/** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
1577 	DRM_XE_OBSERVATION_TYPE_OA,
1578 	/** @DRM_XE_OBSERVATION_TYPE_EU_STALL: EU stall sampling observation stream type */
1579 	DRM_XE_OBSERVATION_TYPE_EU_STALL,
1580 };
1581 
1582 /**
1583  * enum drm_xe_observation_op - Observation stream ops
1584  */
1585 enum drm_xe_observation_op {
1586 	/** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
1587 	DRM_XE_OBSERVATION_OP_STREAM_OPEN,
1588 
1589 	/** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
1590 	DRM_XE_OBSERVATION_OP_ADD_CONFIG,
1591 
1592 	/** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
1593 	DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
1594 };
1595 
1596 /**
1597  * struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
1598  *
1599  * The observation layer enables multiplexing observation streams of
1600  * multiple types. The actual params for a particular stream operation are
1601  * supplied via the @param pointer (use __copy_from_user to get these
1602  * params).
1603  */
1604 struct drm_xe_observation_param {
1605 	/** @extensions: Pointer to the first extension struct, if any */
1606 	__u64 extensions;
1607 	/** @observation_type: observation stream type, of enum @drm_xe_observation_type */
1608 	__u64 observation_type;
1609 	/** @observation_op: observation stream op, of enum @drm_xe_observation_op */
1610 	__u64 observation_op;
1611 	/** @param: Pointer to actual stream params */
1612 	__u64 param;
1613 };
1614 
1615 /**
1616  * enum drm_xe_observation_ioctls - Observation stream fd ioctl's
1617  *
1618  * Information exchanged between userspace and kernel for observation fd
1619  * ioctl's is stream type specific
1620  */
1621 enum drm_xe_observation_ioctls {
1622 	/** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
1623 	DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
1624 
1625 	/** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
1626 	DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
1627 
1628 	/** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
1629 	DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
1630 
1631 	/** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
1632 	DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
1633 
1634 	/** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
1635 	DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
1636 };
1637 
1638 /**
1639  * enum drm_xe_oa_unit_type - OA unit types
1640  */
1641 enum drm_xe_oa_unit_type {
1642 	/**
1643 	 * @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
1644 	 * sub-types of OAG. For OAR/OAC, use OAG.
1645 	 */
1646 	DRM_XE_OA_UNIT_TYPE_OAG,
1647 
1648 	/** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
1649 	DRM_XE_OA_UNIT_TYPE_OAM,
1650 
1651 	/** @DRM_XE_OA_UNIT_TYPE_OAM_SAG: OAM_SAG OA unit */
1652 	DRM_XE_OA_UNIT_TYPE_OAM_SAG,
1653 };
1654 
1655 /**
1656  * struct drm_xe_oa_unit - describe OA unit
1657  */
1658 struct drm_xe_oa_unit {
1659 	/** @extensions: Pointer to the first extension struct, if any */
1660 	__u64 extensions;
1661 
1662 	/** @oa_unit_id: OA unit ID */
1663 	__u32 oa_unit_id;
1664 
1665 	/** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
1666 	__u32 oa_unit_type;
1667 
1668 	/** @capabilities: OA capabilities bit-mask */
1669 	__u64 capabilities;
1670 #define DRM_XE_OA_CAPS_BASE		(1 << 0)
1671 #define DRM_XE_OA_CAPS_SYNCS		(1 << 1)
1672 #define DRM_XE_OA_CAPS_OA_BUFFER_SIZE	(1 << 2)
1673 #define DRM_XE_OA_CAPS_WAIT_NUM_REPORTS	(1 << 3)
1674 #define DRM_XE_OA_CAPS_OAM		(1 << 4)
1675 
1676 	/** @oa_timestamp_freq: OA timestamp freq */
1677 	__u64 oa_timestamp_freq;
1678 
1679 	/** @reserved: MBZ */
1680 	__u64 reserved[4];
1681 
1682 	/** @num_engines: number of engines in @eci array */
1683 	__u64 num_engines;
1684 
1685 	/** @eci: engines attached to this OA unit */
1686 	struct drm_xe_engine_class_instance eci[];
1687 };
1688 
1689 /**
1690  * struct drm_xe_query_oa_units - describe OA units
1691  *
1692  * If a query is made with a struct drm_xe_device_query where .query
1693  * is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
1694  * drm_xe_query_oa_units in .data.
1695  *
1696  * OA unit properties for all OA units can be accessed using a code block
1697  * such as the one below:
1698  *
1699  * .. code-block:: C
1700  *
1701  *	struct drm_xe_query_oa_units *qoa;
1702  *	struct drm_xe_oa_unit *oau;
1703  *	u8 *poau;
1704  *
1705  *	// malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
1706  *	poau = (u8 *)&qoa->oa_units[0];
1707  *	for (int i = 0; i < qoa->num_oa_units; i++) {
1708  *		oau = (struct drm_xe_oa_unit *)poau;
1709  *		// Access 'struct drm_xe_oa_unit' fields here
1710  *		poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
1711  *	}
1712  */
1713 struct drm_xe_query_oa_units {
1714 	/** @extensions: Pointer to the first extension struct, if any */
1715 	__u64 extensions;
1716 	/** @num_oa_units: number of OA units returned in oau[] */
1717 	__u32 num_oa_units;
1718 	/** @pad: MBZ */
1719 	__u32 pad;
1720 	/**
1721 	 * @oa_units: struct @drm_xe_oa_unit array returned for this device.
1722 	 * Written below as a u64 array to avoid problems with nested flexible
1723 	 * arrays with some compilers
1724 	 */
1725 	__u64 oa_units[];
1726 };
1727 
1728 /**
1729  * enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
1730  * 52198/60942
1731  */
1732 enum drm_xe_oa_format_type {
1733 	/** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
1734 	DRM_XE_OA_FMT_TYPE_OAG,
1735 	/** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
1736 	DRM_XE_OA_FMT_TYPE_OAR,
1737 	/** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
1738 	DRM_XE_OA_FMT_TYPE_OAM,
1739 	/** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
1740 	DRM_XE_OA_FMT_TYPE_OAC,
1741 	/** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
1742 	DRM_XE_OA_FMT_TYPE_OAM_MPEC,
1743 	/** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
1744 	DRM_XE_OA_FMT_TYPE_PEC,
1745 };
1746 
1747 /**
1748  * enum drm_xe_oa_property_id - OA stream property id's
1749  *
1750  * Stream params are specified as a chain of @drm_xe_ext_set_property
1751  * struct's, with @property values from enum @drm_xe_oa_property_id and
1752  * @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
1753  * @param field in struct @drm_xe_observation_param points to the first
1754  * @drm_xe_ext_set_property struct.
1755  *
1756  * Exactly the same mechanism is also used for stream reconfiguration using the
1757  * @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
1758  * subset of properties below can be specified for stream reconfiguration.
1759  */
1760 enum drm_xe_oa_property_id {
1761 #define DRM_XE_OA_EXTENSION_SET_PROPERTY	0
1762 	/**
1763 	 * @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
1764 	 * the OA stream, see @oa_unit_id in 'struct
1765 	 * drm_xe_query_oa_units'. Defaults to 0 if not provided.
1766 	 */
1767 	DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
1768 
1769 	/**
1770 	 * @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
1771 	 * OA unit reports or stream samples in a global buffer attached to an
1772 	 * OA unit.
1773 	 */
1774 	DRM_XE_OA_PROPERTY_SAMPLE_OA,
1775 
1776 	/**
1777 	 * @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
1778 	 * reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
1779 	 */
1780 	DRM_XE_OA_PROPERTY_OA_METRIC_SET,
1781 
1782 	/** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
1783 	DRM_XE_OA_PROPERTY_OA_FORMAT,
1784 	/*
1785 	 * OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
1786 	 * in terms of the following quantities: a. enum @drm_xe_oa_format_type
1787 	 * b. Counter select c. Counter size and d. BC report. Also refer to the
1788 	 * oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
1789 	 */
1790 #define DRM_XE_OA_FORMAT_MASK_FMT_TYPE		(0xffu << 0)
1791 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL	(0xffu << 8)
1792 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE	(0xffu << 16)
1793 #define DRM_XE_OA_FORMAT_MASK_BC_REPORT		(0xffu << 24)
1794 
1795 	/**
1796 	 * @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
1797 	 * sampling with sampling frequency proportional to 2^(period_exponent + 1)
1798 	 */
1799 	DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
1800 
1801 	/**
1802 	 * @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
1803 	 * stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
1804 	 */
1805 	DRM_XE_OA_PROPERTY_OA_DISABLED,
1806 
1807 	/**
1808 	 * @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
1809 	 * @exec_queue_id. OA queries can be executed on this exec queue.
1810 	 */
1811 	DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
1812 
1813 	/**
1814 	 * @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
1815 	 * pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
1816 	 */
1817 	DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
1818 
1819 	/**
1820 	 * @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
1821 	 * to be disabled for the stream exec queue.
1822 	 */
1823 	DRM_XE_OA_PROPERTY_NO_PREEMPT,
1824 
1825 	/**
1826 	 * @DRM_XE_OA_PROPERTY_NUM_SYNCS: Number of syncs in the sync array
1827 	 * specified in @DRM_XE_OA_PROPERTY_SYNCS
1828 	 */
1829 	DRM_XE_OA_PROPERTY_NUM_SYNCS,
1830 
1831 	/**
1832 	 * @DRM_XE_OA_PROPERTY_SYNCS: Pointer to struct @drm_xe_sync array
1833 	 * with array size specified via @DRM_XE_OA_PROPERTY_NUM_SYNCS. OA
1834 	 * configuration will wait till input fences signal. Output fences
1835 	 * will signal after the new OA configuration takes effect. For
1836 	 * @DRM_XE_SYNC_TYPE_USER_FENCE, @addr is a user pointer, similar
1837 	 * to the VM bind case.
1838 	 */
1839 	DRM_XE_OA_PROPERTY_SYNCS,
1840 
1841 	/**
1842 	 * @DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE: Size of OA buffer to be
1843 	 * allocated by the driver in bytes. Supported sizes are powers of
1844 	 * 2 from 128 KiB to 128 MiB. When not specified, a 16 MiB OA
1845 	 * buffer is allocated by default.
1846 	 */
1847 	DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE,
1848 
1849 	/**
1850 	 * @DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS: Number of reports to wait
1851 	 * for before unblocking poll or read
1852 	 */
1853 	DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS,
1854 };
1855 
1856 /**
1857  * struct drm_xe_oa_config - OA metric configuration
1858  *
1859  * Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
1860  * particular config can be specified when opening an OA stream using
1861  * @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
1862  */
1863 struct drm_xe_oa_config {
1864 	/** @extensions: Pointer to the first extension struct, if any */
1865 	__u64 extensions;
1866 
1867 	/** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
1868 	char uuid[36];
1869 
1870 	/** @n_regs: Number of regs in @regs_ptr */
1871 	__u32 n_regs;
1872 
1873 	/**
1874 	 * @regs_ptr: Pointer to (register address, value) pairs for OA config
1875 	 * registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
1876 	 */
1877 	__u64 regs_ptr;
1878 };
1879 
1880 /**
1881  * struct drm_xe_oa_stream_status - OA stream status returned from
1882  * @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
1883  * call the ioctl to query stream status in response to EIO errno from
1884  * observation fd read().
1885  */
1886 struct drm_xe_oa_stream_status {
1887 	/** @extensions: Pointer to the first extension struct, if any */
1888 	__u64 extensions;
1889 
1890 	/** @oa_status: OA stream status (see Bspec 46717/61226) */
1891 	__u64 oa_status;
1892 #define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL		(1 << 3)
1893 #define DRM_XE_OASTATUS_COUNTER_OVERFLOW	(1 << 2)
1894 #define DRM_XE_OASTATUS_BUFFER_OVERFLOW		(1 << 1)
1895 #define DRM_XE_OASTATUS_REPORT_LOST		(1 << 0)
1896 
1897 	/** @reserved: reserved for future use */
1898 	__u64 reserved[3];
1899 };
1900 
1901 /**
1902  * struct drm_xe_oa_stream_info - OA stream info returned from
1903  * @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
1904  */
1905 struct drm_xe_oa_stream_info {
1906 	/** @extensions: Pointer to the first extension struct, if any */
1907 	__u64 extensions;
1908 
1909 	/** @oa_buf_size: OA buffer size */
1910 	__u64 oa_buf_size;
1911 
1912 	/** @reserved: reserved for future use */
1913 	__u64 reserved[3];
1914 };
1915 
1916 /**
1917  * enum drm_xe_pxp_session_type - Supported PXP session types.
1918  *
1919  * We currently only support HWDRM sessions, which are used for protected
1920  * content that ends up being displayed, but the HW supports multiple types, so
1921  * we might extend support in the future.
1922  */
1923 enum drm_xe_pxp_session_type {
1924 	/** @DRM_XE_PXP_TYPE_NONE: PXP not used */
1925 	DRM_XE_PXP_TYPE_NONE = 0,
1926 	/**
1927 	 * @DRM_XE_PXP_TYPE_HWDRM: HWDRM sessions are used for content that ends
1928 	 * up on the display.
1929 	 */
1930 	DRM_XE_PXP_TYPE_HWDRM = 1,
1931 };
1932 
1933 /* ID of the protected content session managed by Xe when PXP is active */
1934 #define DRM_XE_PXP_HWDRM_DEFAULT_SESSION 0xf
1935 
1936 /**
1937  * enum drm_xe_eu_stall_property_id - EU stall sampling input property ids.
1938  *
1939  * These properties are passed to the driver at open as a chain of
1940  * @drm_xe_ext_set_property structures with @property set to these
1941  * properties' enums and @value set to the corresponding values of these
1942  * properties. @drm_xe_user_extension base.name should be set to
1943  * @DRM_XE_EU_STALL_EXTENSION_SET_PROPERTY.
1944  *
1945  * With the file descriptor obtained from open, user space must enable
1946  * the EU stall stream fd with @DRM_XE_OBSERVATION_IOCTL_ENABLE before
1947  * calling read(). EIO errno from read() indicates HW dropped data
1948  * due to full buffer.
1949  */
1950 enum drm_xe_eu_stall_property_id {
1951 #define DRM_XE_EU_STALL_EXTENSION_SET_PROPERTY		0
1952 	/**
1953 	 * @DRM_XE_EU_STALL_PROP_GT_ID: @gt_id of the GT on which
1954 	 * EU stall data will be captured.
1955 	 */
1956 	DRM_XE_EU_STALL_PROP_GT_ID = 1,
1957 
1958 	/**
1959 	 * @DRM_XE_EU_STALL_PROP_SAMPLE_RATE: Sampling rate in
1960 	 * GPU cycles from @sampling_rates in struct @drm_xe_query_eu_stall
1961 	 */
1962 	DRM_XE_EU_STALL_PROP_SAMPLE_RATE,
1963 
1964 	/**
1965 	 * @DRM_XE_EU_STALL_PROP_WAIT_NUM_REPORTS: Minimum number of
1966 	 * EU stall data reports to be present in the kernel buffer
1967 	 * before unblocking a blocked poll or read.
1968 	 */
1969 	DRM_XE_EU_STALL_PROP_WAIT_NUM_REPORTS,
1970 };
1971 
1972 /**
1973  * struct drm_xe_query_eu_stall - Information about EU stall sampling.
1974  *
1975  * If a query is made with a struct @drm_xe_device_query where .query
1976  * is equal to @DRM_XE_DEVICE_QUERY_EU_STALL, then the reply uses
1977  * struct @drm_xe_query_eu_stall in .data.
1978  */
1979 struct drm_xe_query_eu_stall {
1980 	/** @extensions: Pointer to the first extension struct, if any */
1981 	__u64 extensions;
1982 
1983 	/** @capabilities: EU stall capabilities bit-mask */
1984 	__u64 capabilities;
1985 #define DRM_XE_EU_STALL_CAPS_BASE		(1 << 0)
1986 
1987 	/** @record_size: size of each EU stall data record */
1988 	__u64 record_size;
1989 
1990 	/** @per_xecore_buf_size: internal per XeCore buffer size */
1991 	__u64 per_xecore_buf_size;
1992 
1993 	/** @reserved: Reserved */
1994 	__u64 reserved[5];
1995 
1996 	/** @num_sampling_rates: Number of sampling rates in @sampling_rates array */
1997 	__u64 num_sampling_rates;
1998 
1999 	/**
2000 	 * @sampling_rates: Flexible array of sampling rates
2001 	 * sorted in the fastest to slowest order.
2002 	 * Sampling rates are specified in GPU clock cycles.
2003 	 */
2004 	__u64 sampling_rates[];
2005 };
2006 
2007 /**
2008  * struct drm_xe_madvise - Input of &DRM_IOCTL_XE_MADVISE
2009  *
2010  * This structure is used to set memory attributes for a virtual address range
2011  * in a VM. The type of attribute is specified by @type, and the corresponding
2012  * union member is used to provide additional parameters for @type.
2013  *
2014  * Supported attribute types:
2015  *  - DRM_XE_MEM_RANGE_ATTR_PREFERRED_LOC: Set preferred memory location.
2016  *  - DRM_XE_MEM_RANGE_ATTR_ATOMIC: Set atomic access policy.
2017  *  - DRM_XE_MEM_RANGE_ATTR_PAT: Set page attribute table index.
2018  *
2019  * Example:
2020  *
2021  * .. code-block:: C
2022  *
2023  *    struct drm_xe_madvise madvise = {
2024  *         .vm_id = vm_id,
2025  *         .start = 0x100000,
2026  *         .range = 0x2000,
2027  *         .type = DRM_XE_MEM_RANGE_ATTR_ATOMIC,
2028  *         .atomic_val = DRM_XE_ATOMIC_DEVICE,
2029  *    };
2030  *
2031  *    ioctl(fd, DRM_IOCTL_XE_MADVISE, &madvise);
2032  *
2033  */
2034 struct drm_xe_madvise {
2035 	/** @extensions: Pointer to the first extension struct, if any */
2036 	__u64 extensions;
2037 
2038 	/** @start: start of the virtual address range */
2039 	__u64 start;
2040 
2041 	/** @range: size of the virtual address range */
2042 	__u64 range;
2043 
2044 	/** @vm_id: vm_id of the virtual range */
2045 	__u32 vm_id;
2046 
2047 #define DRM_XE_MEM_RANGE_ATTR_PREFERRED_LOC	0
2048 #define DRM_XE_MEM_RANGE_ATTR_ATOMIC		1
2049 #define DRM_XE_MEM_RANGE_ATTR_PAT		2
2050 	/** @type: type of attribute */
2051 	__u32 type;
2052 
2053 	union {
2054 		/**
2055 		 * @preferred_mem_loc: preferred memory location
2056 		 *
2057 		 * Used when @type == DRM_XE_MEM_RANGE_ATTR_PREFERRED_LOC
2058 		 *
2059 		 * Supported values for @preferred_mem_loc.devmem_fd:
2060 		 *  - DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE: set vram of fault tile as preferred loc
2061 		 *  - DRM_XE_PREFERRED_LOC_DEFAULT_SYSTEM: set smem as preferred loc
2062 		 *
2063 		 * Supported values for @preferred_mem_loc.migration_policy:
2064 		 *  - DRM_XE_MIGRATE_ALL_PAGES
2065 		 *  - DRM_XE_MIGRATE_ONLY_SYSTEM_PAGES
2066 		 */
2067 		struct {
2068 #define DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE	0
2069 #define DRM_XE_PREFERRED_LOC_DEFAULT_SYSTEM	-1
2070 			/** @preferred_mem_loc.devmem_fd: fd for preferred loc */
2071 			__u32 devmem_fd;
2072 
2073 #define DRM_XE_MIGRATE_ALL_PAGES		0
2074 #define DRM_XE_MIGRATE_ONLY_SYSTEM_PAGES	1
2075 			/** @preferred_mem_loc.migration_policy: Page migration policy */
2076 			__u16 migration_policy;
2077 
2078 			/** @preferred_mem_loc.pad : MBZ */
2079 			__u16 pad;
2080 
2081 			/** @preferred_mem_loc.reserved : Reserved */
2082 			__u64 reserved;
2083 		} preferred_mem_loc;
2084 
2085 		/**
2086 		 * @atomic: Atomic access policy
2087 		 *
2088 		 * Used when @type == DRM_XE_MEM_RANGE_ATTR_ATOMIC.
2089 		 *
2090 		 * Supported values for @atomic.val:
2091 		 *  - DRM_XE_ATOMIC_UNDEFINED: Undefined or default behaviour.
2092 		 *    Support both GPU and CPU atomic operations for system allocator.
2093 		 *    Support GPU atomic operations for normal(bo) allocator.
2094 		 *  - DRM_XE_ATOMIC_DEVICE: Support GPU atomic operations.
2095 		 *  - DRM_XE_ATOMIC_GLOBAL: Support both GPU and CPU atomic operations.
2096 		 *  - DRM_XE_ATOMIC_CPU: Support CPU atomic only, no GPU atomics supported.
2097 		 */
2098 		struct {
2099 #define DRM_XE_ATOMIC_UNDEFINED	0
2100 #define DRM_XE_ATOMIC_DEVICE	1
2101 #define DRM_XE_ATOMIC_GLOBAL	2
2102 #define DRM_XE_ATOMIC_CPU	3
2103 			/** @atomic.val: value of atomic operation */
2104 			__u32 val;
2105 
2106 			/** @atomic.pad: MBZ */
2107 			__u32 pad;
2108 
2109 			/** @atomic.reserved: Reserved */
2110 			__u64 reserved;
2111 		} atomic;
2112 
2113 		/**
2114 		 * @pat_index: Page attribute table index
2115 		 *
2116 		 * Used when @type == DRM_XE_MEM_RANGE_ATTR_PAT.
2117 		 */
2118 		struct {
2119 			/** @pat_index.val: PAT index value */
2120 			__u32 val;
2121 
2122 			/** @pat_index.pad: MBZ */
2123 			__u32 pad;
2124 
2125 			/** @pat_index.reserved: Reserved */
2126 			__u64 reserved;
2127 		} pat_index;
2128 	};
2129 
2130 	/** @reserved: Reserved */
2131 	__u64 reserved[2];
2132 };
2133 
2134 /**
2135  * struct drm_xe_mem_range_attr - Output of &DRM_IOCTL_XE_VM_QUERY_MEM_RANGES_ATTRS
2136  *
2137  * This structure is provided by userspace and filled by KMD in response to the
2138  * DRM_IOCTL_XE_VM_QUERY_MEM_RANGES_ATTRS ioctl. It describes memory attributes of
2139  * a memory ranges within a user specified address range in a VM.
2140  *
2141  * The structure includes information such as atomic access policy,
2142  * page attribute table (PAT) index, and preferred memory location.
2143  * Userspace allocates an array of these structures and passes a pointer to the
2144  * ioctl to retrieve attributes for each memory ranges
2145  *
2146  * @extensions: Pointer to the first extension struct, if any
2147  * @start: Start address of the memory range
2148  * @end: End address of the virtual memory range
2149  *
2150  */
2151 struct drm_xe_mem_range_attr {
2152 	 /** @extensions: Pointer to the first extension struct, if any */
2153 	__u64 extensions;
2154 
2155 	/** @start: start of the memory range */
2156 	__u64 start;
2157 
2158 	/** @end: end of the memory range */
2159 	__u64 end;
2160 
2161 	/** @preferred_mem_loc: preferred memory location */
2162 	struct {
2163 		/** @preferred_mem_loc.devmem_fd: fd for preferred loc */
2164 		__u32 devmem_fd;
2165 
2166 		/** @preferred_mem_loc.migration_policy: Page migration policy */
2167 		__u32 migration_policy;
2168 	} preferred_mem_loc;
2169 
2170 	/** @atomic: Atomic access policy */
2171 	struct {
2172 		/** @atomic.val: atomic attribute */
2173 		__u32 val;
2174 
2175 		/** @atomic.reserved: Reserved */
2176 		__u32 reserved;
2177 	} atomic;
2178 
2179 	 /** @pat_index: Page attribute table index */
2180 	struct {
2181 		/** @pat_index.val: PAT index */
2182 		__u32 val;
2183 
2184 		/** @pat_index.reserved: Reserved */
2185 		__u32 reserved;
2186 	} pat_index;
2187 
2188 	/** @reserved: Reserved */
2189 	__u64 reserved[2];
2190 };
2191 
2192 /**
2193  * struct drm_xe_vm_query_mem_range_attr - Input of &DRM_IOCTL_XE_VM_QUERY_MEM_ATTRIBUTES
2194  *
2195  * This structure is used to query memory attributes of memory regions
2196  * within a user specified address range in a VM. It provides detailed
2197  * information about each memory range, including atomic access policy,
2198  * page attribute table (PAT) index, and preferred memory location.
2199  *
2200  * Userspace first calls the ioctl with @num_mem_ranges = 0,
2201  * @sizeof_mem_ranges_attr = 0 and @vector_of_vma_mem_attr = NULL to retrieve
2202  * the number of memory regions and size of each memory range attribute.
2203  * Then, it allocates a buffer of that size and calls the ioctl again to fill
2204  * the buffer with memory range attributes.
2205  *
2206  * If second call fails with -ENOSPC, it means memory ranges changed between
2207  * first call and now, retry IOCTL again with @num_mem_ranges = 0,
2208  * @sizeof_mem_ranges_attr = 0 and @vector_of_vma_mem_attr = NULL followed by
2209  * Second ioctl call.
2210  *
2211  * Example:
2212  *
2213  * .. code-block:: C
2214  *
2215  *    struct drm_xe_vm_query_mem_range_attr query = {
2216  *         .vm_id = vm_id,
2217  *         .start = 0x100000,
2218  *         .range = 0x2000,
2219  *     };
2220  *
2221  *    // First ioctl call to get num of mem regions and sizeof each attribute
2222  *    ioctl(fd, DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS, &query);
2223  *
2224  *    // Allocate buffer for the memory region attributes
2225  *    void *ptr = malloc(query.num_mem_ranges * query.sizeof_mem_range_attr);
2226  *    void *ptr_start = ptr;
2227  *
2228  *    query.vector_of_mem_attr = (uintptr_t)ptr;
2229  *
2230  *    // Second ioctl call to actually fill the memory attributes
2231  *    ioctl(fd, DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS, &query);
2232  *
2233  *    // Iterate over the returned memory region attributes
2234  *    for (unsigned int i = 0; i < query.num_mem_ranges; ++i) {
2235  *       struct drm_xe_mem_range_attr *attr = (struct drm_xe_mem_range_attr *)ptr;
2236  *
2237  *       // Do something with attr
2238  *
2239  *       // Move pointer by one entry
2240  *       ptr += query.sizeof_mem_range_attr;
2241  *     }
2242  *
2243  *    free(ptr_start);
2244  */
2245 struct drm_xe_vm_query_mem_range_attr {
2246 	/** @extensions: Pointer to the first extension struct, if any */
2247 	__u64 extensions;
2248 
2249 	/** @vm_id: vm_id of the virtual range */
2250 	__u32 vm_id;
2251 
2252 	/** @num_mem_ranges: number of mem_ranges in range */
2253 	__u32 num_mem_ranges;
2254 
2255 	/** @start: start of the virtual address range */
2256 	__u64 start;
2257 
2258 	/** @range: size of the virtual address range */
2259 	__u64 range;
2260 
2261 	/** @sizeof_mem_range_attr: size of struct drm_xe_mem_range_attr */
2262 	__u64 sizeof_mem_range_attr;
2263 
2264 	/** @vector_of_mem_attr: userptr to array of struct drm_xe_mem_range_attr */
2265 	__u64 vector_of_mem_attr;
2266 
2267 	/** @reserved: Reserved */
2268 	__u64 reserved[2];
2269 
2270 };
2271 
2272 #if defined(__cplusplus)
2273 }
2274 #endif
2275 
2276 #endif /* _UAPI_XE_DRM_H_ */
2277