1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 NxtWave Communications - NXT6000 demodulator driver
4
5 Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
6 Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
7
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17
18 #include <media/dvb_frontend.h>
19 #include "nxt6000_priv.h"
20 #include "nxt6000.h"
21
22
23
24 struct nxt6000_state {
25 struct i2c_adapter* i2c;
26 /* configuration settings */
27 const struct nxt6000_config* config;
28 struct dvb_frontend frontend;
29 };
30
31 static int debug;
32 #define dprintk(fmt, arg...) do { \
33 if (debug) \
34 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
35 __func__, ##arg); \
36 } while (0)
37
nxt6000_writereg(struct nxt6000_state * state,u8 reg,u8 data)38 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
39 {
40 u8 buf[] = { reg, data };
41 struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
42 int ret;
43
44 if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
45 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
46
47 return (ret != 1) ? -EIO : 0;
48 }
49
nxt6000_readreg(struct nxt6000_state * state,u8 reg)50 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
51 {
52 int ret;
53 u8 b0[] = { reg };
54 u8 b1[] = { 0 };
55 struct i2c_msg msgs[] = {
56 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
57 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
58 };
59
60 ret = i2c_transfer(state->i2c, msgs, 2);
61
62 if (ret != 2)
63 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
64
65 return b1[0];
66 }
67
nxt6000_reset(struct nxt6000_state * state)68 static void nxt6000_reset(struct nxt6000_state* state)
69 {
70 u8 val;
71
72 val = nxt6000_readreg(state, OFDM_COR_CTL);
73
74 nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
75 nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
76 }
77
nxt6000_set_bandwidth(struct nxt6000_state * state,u32 bandwidth)78 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
79 {
80 u16 nominal_rate;
81 int result;
82
83 switch (bandwidth) {
84 case 6000000:
85 nominal_rate = 0x55B7;
86 break;
87
88 case 7000000:
89 nominal_rate = 0x6400;
90 break;
91
92 case 8000000:
93 nominal_rate = 0x7249;
94 break;
95
96 default:
97 return -EINVAL;
98 }
99
100 if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
101 return result;
102
103 return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
104 }
105
nxt6000_set_guard_interval(struct nxt6000_state * state,enum fe_guard_interval guard_interval)106 static int nxt6000_set_guard_interval(struct nxt6000_state *state,
107 enum fe_guard_interval guard_interval)
108 {
109 switch (guard_interval) {
110
111 case GUARD_INTERVAL_1_32:
112 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
113
114 case GUARD_INTERVAL_1_16:
115 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
116
117 case GUARD_INTERVAL_AUTO:
118 case GUARD_INTERVAL_1_8:
119 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
120
121 case GUARD_INTERVAL_1_4:
122 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
123
124 default:
125 return -EINVAL;
126 }
127 }
128
nxt6000_set_inversion(struct nxt6000_state * state,enum fe_spectral_inversion inversion)129 static int nxt6000_set_inversion(struct nxt6000_state *state,
130 enum fe_spectral_inversion inversion)
131 {
132 switch (inversion) {
133
134 case INVERSION_OFF:
135 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
136
137 case INVERSION_ON:
138 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
139
140 default:
141 return -EINVAL;
142
143 }
144 }
145
146 static int
nxt6000_set_transmission_mode(struct nxt6000_state * state,enum fe_transmit_mode transmission_mode)147 nxt6000_set_transmission_mode(struct nxt6000_state *state,
148 enum fe_transmit_mode transmission_mode)
149 {
150 int result;
151
152 switch (transmission_mode) {
153
154 case TRANSMISSION_MODE_2K:
155 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
156 return result;
157
158 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
159
160 case TRANSMISSION_MODE_8K:
161 case TRANSMISSION_MODE_AUTO:
162 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
163 return result;
164
165 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
166
167 default:
168 return -EINVAL;
169
170 }
171 }
172
nxt6000_setup(struct dvb_frontend * fe)173 static void nxt6000_setup(struct dvb_frontend* fe)
174 {
175 struct nxt6000_state* state = fe->demodulator_priv;
176
177 nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
178 nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
179 nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits
180 nxt6000_writereg(state, VIT_BERTIME_1, 0x02); //
181 nxt6000_writereg(state, VIT_BERTIME_0, 0x00); //
182 nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
183 nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement
184 nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
185 nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
186 nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
187 nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
188 nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
189 nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
190 nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
191 nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */
192 nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
193 nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
194 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
195 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
196 nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
197 nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
198 nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
199
200 if (state->config->clock_inversion)
201 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
202 else
203 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
204
205 nxt6000_writereg(state, TS_FORMAT, 0);
206 }
207
nxt6000_dump_status(struct nxt6000_state * state)208 static void nxt6000_dump_status(struct nxt6000_state *state)
209 {
210 u8 val;
211
212 #if 0
213 pr_info("RS_COR_STAT: 0x%02X\n",
214 nxt6000_readreg(fe, RS_COR_STAT));
215 pr_info("VIT_SYNC_STATUS: 0x%02X\n",
216 nxt6000_readreg(fe, VIT_SYNC_STATUS));
217 pr_info("OFDM_COR_STAT: 0x%02X\n",
218 nxt6000_readreg(fe, OFDM_COR_STAT));
219 pr_info("OFDM_SYR_STAT: 0x%02X\n",
220 nxt6000_readreg(fe, OFDM_SYR_STAT));
221 pr_info("OFDM_TPS_RCVD_1: 0x%02X\n",
222 nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
223 pr_info("OFDM_TPS_RCVD_2: 0x%02X\n",
224 nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
225 pr_info("OFDM_TPS_RCVD_3: 0x%02X\n",
226 nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
227 pr_info("OFDM_TPS_RCVD_4: 0x%02X\n",
228 nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
229 pr_info("OFDM_TPS_RESERVED_1: 0x%02X\n",
230 nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
231 pr_info("OFDM_TPS_RESERVED_2: 0x%02X\n",
232 nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
233 #endif
234 pr_info("NXT6000 status:");
235
236 val = nxt6000_readreg(state, RS_COR_STAT);
237
238 pr_cont(" DATA DESCR LOCK: %d,", val & 0x01);
239 pr_cont(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
240
241 val = nxt6000_readreg(state, VIT_SYNC_STATUS);
242
243 pr_cont(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
244
245 switch ((val >> 4) & 0x07) {
246
247 case 0x00:
248 pr_cont(" VITERBI CODERATE: 1/2,");
249 break;
250
251 case 0x01:
252 pr_cont(" VITERBI CODERATE: 2/3,");
253 break;
254
255 case 0x02:
256 pr_cont(" VITERBI CODERATE: 3/4,");
257 break;
258
259 case 0x03:
260 pr_cont(" VITERBI CODERATE: 5/6,");
261 break;
262
263 case 0x04:
264 pr_cont(" VITERBI CODERATE: 7/8,");
265 break;
266
267 default:
268 pr_cont(" VITERBI CODERATE: Reserved,");
269
270 }
271
272 val = nxt6000_readreg(state, OFDM_COR_STAT);
273
274 pr_cont(" CHCTrack: %d,", (val >> 7) & 0x01);
275 pr_cont(" TPSLock: %d,", (val >> 6) & 0x01);
276 pr_cont(" SYRLock: %d,", (val >> 5) & 0x01);
277 pr_cont(" AGCLock: %d,", (val >> 4) & 0x01);
278
279 switch (val & 0x0F) {
280
281 case 0x00:
282 pr_cont(" CoreState: IDLE,");
283 break;
284
285 case 0x02:
286 pr_cont(" CoreState: WAIT_AGC,");
287 break;
288
289 case 0x03:
290 pr_cont(" CoreState: WAIT_SYR,");
291 break;
292
293 case 0x04:
294 pr_cont(" CoreState: WAIT_PPM,");
295 break;
296
297 case 0x01:
298 pr_cont(" CoreState: WAIT_TRL,");
299 break;
300
301 case 0x05:
302 pr_cont(" CoreState: WAIT_TPS,");
303 break;
304
305 case 0x06:
306 pr_cont(" CoreState: MONITOR_TPS,");
307 break;
308
309 default:
310 pr_cont(" CoreState: Reserved,");
311
312 }
313
314 val = nxt6000_readreg(state, OFDM_SYR_STAT);
315
316 pr_cont(" SYRLock: %d,", (val >> 4) & 0x01);
317 pr_cont(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
318
319 switch ((val >> 4) & 0x03) {
320
321 case 0x00:
322 pr_cont(" SYRGuard: 1/32,");
323 break;
324
325 case 0x01:
326 pr_cont(" SYRGuard: 1/16,");
327 break;
328
329 case 0x02:
330 pr_cont(" SYRGuard: 1/8,");
331 break;
332
333 case 0x03:
334 pr_cont(" SYRGuard: 1/4,");
335 break;
336 }
337
338 val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
339
340 switch ((val >> 4) & 0x07) {
341
342 case 0x00:
343 pr_cont(" TPSLP: 1/2,");
344 break;
345
346 case 0x01:
347 pr_cont(" TPSLP: 2/3,");
348 break;
349
350 case 0x02:
351 pr_cont(" TPSLP: 3/4,");
352 break;
353
354 case 0x03:
355 pr_cont(" TPSLP: 5/6,");
356 break;
357
358 case 0x04:
359 pr_cont(" TPSLP: 7/8,");
360 break;
361
362 default:
363 pr_cont(" TPSLP: Reserved,");
364
365 }
366
367 switch (val & 0x07) {
368
369 case 0x00:
370 pr_cont(" TPSHP: 1/2,");
371 break;
372
373 case 0x01:
374 pr_cont(" TPSHP: 2/3,");
375 break;
376
377 case 0x02:
378 pr_cont(" TPSHP: 3/4,");
379 break;
380
381 case 0x03:
382 pr_cont(" TPSHP: 5/6,");
383 break;
384
385 case 0x04:
386 pr_cont(" TPSHP: 7/8,");
387 break;
388
389 default:
390 pr_cont(" TPSHP: Reserved,");
391
392 }
393
394 val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
395
396 pr_cont(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
397
398 switch ((val >> 4) & 0x03) {
399
400 case 0x00:
401 pr_cont(" TPSGuard: 1/32,");
402 break;
403
404 case 0x01:
405 pr_cont(" TPSGuard: 1/16,");
406 break;
407
408 case 0x02:
409 pr_cont(" TPSGuard: 1/8,");
410 break;
411
412 case 0x03:
413 pr_cont(" TPSGuard: 1/4,");
414 break;
415
416 }
417
418 /* Strange magic required to gain access to RF_AGC_STATUS */
419 nxt6000_readreg(state, RF_AGC_VAL_1);
420 val = nxt6000_readreg(state, RF_AGC_STATUS);
421 val = nxt6000_readreg(state, RF_AGC_STATUS);
422
423 pr_cont(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
424 pr_cont("\n");
425 }
426
nxt6000_read_status(struct dvb_frontend * fe,enum fe_status * status)427 static int nxt6000_read_status(struct dvb_frontend *fe, enum fe_status *status)
428 {
429 u8 core_status;
430 struct nxt6000_state* state = fe->demodulator_priv;
431
432 *status = 0;
433
434 core_status = nxt6000_readreg(state, OFDM_COR_STAT);
435
436 if (core_status & AGCLOCKED)
437 *status |= FE_HAS_SIGNAL;
438
439 if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
440 *status |= FE_HAS_CARRIER;
441
442 if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
443 *status |= FE_HAS_VITERBI;
444
445 if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
446 *status |= FE_HAS_SYNC;
447
448 if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
449 *status |= FE_HAS_LOCK;
450
451 if (debug)
452 nxt6000_dump_status(state);
453
454 return 0;
455 }
456
nxt6000_init(struct dvb_frontend * fe)457 static int nxt6000_init(struct dvb_frontend* fe)
458 {
459 struct nxt6000_state* state = fe->demodulator_priv;
460
461 nxt6000_reset(state);
462 nxt6000_setup(fe);
463
464 return 0;
465 }
466
nxt6000_set_frontend(struct dvb_frontend * fe)467 static int nxt6000_set_frontend(struct dvb_frontend *fe)
468 {
469 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
470 struct nxt6000_state* state = fe->demodulator_priv;
471 int result;
472
473 if (fe->ops.tuner_ops.set_params) {
474 fe->ops.tuner_ops.set_params(fe);
475 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
476 }
477
478 result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
479 if (result < 0)
480 return result;
481
482 result = nxt6000_set_guard_interval(state, p->guard_interval);
483 if (result < 0)
484 return result;
485
486 result = nxt6000_set_transmission_mode(state, p->transmission_mode);
487 if (result < 0)
488 return result;
489
490 result = nxt6000_set_inversion(state, p->inversion);
491 if (result < 0)
492 return result;
493
494 msleep(500);
495 return 0;
496 }
497
nxt6000_release(struct dvb_frontend * fe)498 static void nxt6000_release(struct dvb_frontend* fe)
499 {
500 struct nxt6000_state* state = fe->demodulator_priv;
501 kfree(state);
502 }
503
nxt6000_read_snr(struct dvb_frontend * fe,u16 * snr)504 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
505 {
506 struct nxt6000_state* state = fe->demodulator_priv;
507
508 *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
509
510 return 0;
511 }
512
nxt6000_read_ber(struct dvb_frontend * fe,u32 * ber)513 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
514 {
515 struct nxt6000_state* state = fe->demodulator_priv;
516
517 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
518
519 *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
520 nxt6000_readreg( state, VIT_BER_0 );
521
522 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
523
524 return 0;
525 }
526
nxt6000_read_signal_strength(struct dvb_frontend * fe,u16 * signal_strength)527 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
528 {
529 struct nxt6000_state* state = fe->demodulator_priv;
530
531 *signal_strength = (short) (511 -
532 (nxt6000_readreg(state, AGC_GAIN_1) +
533 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
534
535 return 0;
536 }
537
nxt6000_fe_get_tune_settings(struct dvb_frontend * fe,struct dvb_frontend_tune_settings * tune)538 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
539 {
540 tune->min_delay_ms = 500;
541 return 0;
542 }
543
nxt6000_i2c_gate_ctrl(struct dvb_frontend * fe,int enable)544 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
545 {
546 struct nxt6000_state* state = fe->demodulator_priv;
547
548 if (enable) {
549 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
550 } else {
551 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
552 }
553 }
554
555 static const struct dvb_frontend_ops nxt6000_ops;
556
nxt6000_attach(const struct nxt6000_config * config,struct i2c_adapter * i2c)557 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
558 struct i2c_adapter* i2c)
559 {
560 struct nxt6000_state* state = NULL;
561
562 /* allocate memory for the internal state */
563 state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
564 if (state == NULL) goto error;
565
566 /* setup the state */
567 state->config = config;
568 state->i2c = i2c;
569
570 /* check if the demod is there */
571 if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
572
573 /* create dvb_frontend */
574 memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
575 state->frontend.demodulator_priv = state;
576 return &state->frontend;
577
578 error:
579 kfree(state);
580 return NULL;
581 }
582
583 static const struct dvb_frontend_ops nxt6000_ops = {
584 .delsys = { SYS_DVBT },
585 .info = {
586 .name = "NxtWave NXT6000 DVB-T",
587 .frequency_min_hz = 0,
588 .frequency_max_hz = 863250 * kHz,
589 .frequency_stepsize_hz = 62500,
590 /*.frequency_tolerance = *//* FIXME: 12% of SR */
591 .symbol_rate_min = 0, /* FIXME */
592 .symbol_rate_max = 9360000, /* FIXME */
593 .symbol_rate_tolerance = 4000,
594 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
595 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
596 FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
597 FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
598 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
599 FE_CAN_HIERARCHY_AUTO,
600 },
601
602 .release = nxt6000_release,
603
604 .init = nxt6000_init,
605 .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
606
607 .get_tune_settings = nxt6000_fe_get_tune_settings,
608
609 .set_frontend = nxt6000_set_frontend,
610
611 .read_status = nxt6000_read_status,
612 .read_ber = nxt6000_read_ber,
613 .read_signal_strength = nxt6000_read_signal_strength,
614 .read_snr = nxt6000_read_snr,
615 };
616
617 module_param(debug, int, 0644);
618 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
619
620 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
621 MODULE_AUTHOR("Florian Schirmer");
622 MODULE_LICENSE("GPL");
623
624 EXPORT_SYMBOL_GPL(nxt6000_attach);
625