1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP target.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <crypto/hash.h>
22 #include <trace/events/sock.h>
23
24 #include "nvmet.h"
25
26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
27 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */
28 #define NVMET_TCP_BACKLOG 128
29
param_store_val(const char * str,int * val,int min,int max)30 static int param_store_val(const char *str, int *val, int min, int max)
31 {
32 int ret, new_val;
33
34 ret = kstrtoint(str, 10, &new_val);
35 if (ret)
36 return -EINVAL;
37
38 if (new_val < min || new_val > max)
39 return -EINVAL;
40
41 *val = new_val;
42 return 0;
43 }
44
set_params(const char * str,const struct kernel_param * kp)45 static int set_params(const char *str, const struct kernel_param *kp)
46 {
47 return param_store_val(str, kp->arg, 0, INT_MAX);
48 }
49
50 static const struct kernel_param_ops set_param_ops = {
51 .set = set_params,
52 .get = param_get_int,
53 };
54
55 /* Define the socket priority to use for connections were it is desirable
56 * that the NIC consider performing optimized packet processing or filtering.
57 * A non-zero value being sufficient to indicate general consideration of any
58 * possible optimization. Making it a module param allows for alternative
59 * values that may be unique for some NIC implementations.
60 */
61 static int so_priority;
62 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
63 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
64
65 /* Define a time period (in usecs) that io_work() shall sample an activated
66 * queue before determining it to be idle. This optional module behavior
67 * can enable NIC solutions that support socket optimized packet processing
68 * using advanced interrupt moderation techniques.
69 */
70 static int idle_poll_period_usecs;
71 device_param_cb(idle_poll_period_usecs, &set_param_ops,
72 &idle_poll_period_usecs, 0644);
73 MODULE_PARM_DESC(idle_poll_period_usecs,
74 "nvmet tcp io_work poll till idle time period in usecs: Default 0");
75
76 #ifdef CONFIG_NVME_TARGET_TCP_TLS
77 /*
78 * TLS handshake timeout
79 */
80 static int tls_handshake_timeout = 10;
81 module_param(tls_handshake_timeout, int, 0644);
82 MODULE_PARM_DESC(tls_handshake_timeout,
83 "nvme TLS handshake timeout in seconds (default 10)");
84 #endif
85
86 #define NVMET_TCP_RECV_BUDGET 8
87 #define NVMET_TCP_SEND_BUDGET 8
88 #define NVMET_TCP_IO_WORK_BUDGET 64
89
90 enum nvmet_tcp_send_state {
91 NVMET_TCP_SEND_DATA_PDU,
92 NVMET_TCP_SEND_DATA,
93 NVMET_TCP_SEND_R2T,
94 NVMET_TCP_SEND_DDGST,
95 NVMET_TCP_SEND_RESPONSE
96 };
97
98 enum nvmet_tcp_recv_state {
99 NVMET_TCP_RECV_PDU,
100 NVMET_TCP_RECV_DATA,
101 NVMET_TCP_RECV_DDGST,
102 NVMET_TCP_RECV_ERR,
103 };
104
105 enum {
106 NVMET_TCP_F_INIT_FAILED = (1 << 0),
107 };
108
109 struct nvmet_tcp_cmd {
110 struct nvmet_tcp_queue *queue;
111 struct nvmet_req req;
112
113 struct nvme_tcp_cmd_pdu *cmd_pdu;
114 struct nvme_tcp_rsp_pdu *rsp_pdu;
115 struct nvme_tcp_data_pdu *data_pdu;
116 struct nvme_tcp_r2t_pdu *r2t_pdu;
117
118 u32 rbytes_done;
119 u32 wbytes_done;
120
121 u32 pdu_len;
122 u32 pdu_recv;
123 int sg_idx;
124 char recv_cbuf[CMSG_LEN(sizeof(char))];
125 struct msghdr recv_msg;
126 struct bio_vec *iov;
127 u32 flags;
128
129 struct list_head entry;
130 struct llist_node lentry;
131
132 /* send state */
133 u32 offset;
134 struct scatterlist *cur_sg;
135 enum nvmet_tcp_send_state state;
136
137 __le32 exp_ddgst;
138 __le32 recv_ddgst;
139 };
140
141 enum nvmet_tcp_queue_state {
142 NVMET_TCP_Q_CONNECTING,
143 NVMET_TCP_Q_TLS_HANDSHAKE,
144 NVMET_TCP_Q_LIVE,
145 NVMET_TCP_Q_DISCONNECTING,
146 NVMET_TCP_Q_FAILED,
147 };
148
149 struct nvmet_tcp_queue {
150 struct socket *sock;
151 struct nvmet_tcp_port *port;
152 struct work_struct io_work;
153 struct nvmet_cq nvme_cq;
154 struct nvmet_sq nvme_sq;
155 struct kref kref;
156
157 /* send state */
158 struct nvmet_tcp_cmd *cmds;
159 unsigned int nr_cmds;
160 struct list_head free_list;
161 struct llist_head resp_list;
162 struct list_head resp_send_list;
163 int send_list_len;
164 struct nvmet_tcp_cmd *snd_cmd;
165
166 /* recv state */
167 int offset;
168 int left;
169 enum nvmet_tcp_recv_state rcv_state;
170 struct nvmet_tcp_cmd *cmd;
171 union nvme_tcp_pdu pdu;
172
173 /* digest state */
174 bool hdr_digest;
175 bool data_digest;
176 struct ahash_request *snd_hash;
177 struct ahash_request *rcv_hash;
178
179 /* TLS state */
180 key_serial_t tls_pskid;
181 struct delayed_work tls_handshake_tmo_work;
182
183 unsigned long poll_end;
184
185 spinlock_t state_lock;
186 enum nvmet_tcp_queue_state state;
187
188 struct sockaddr_storage sockaddr;
189 struct sockaddr_storage sockaddr_peer;
190 struct work_struct release_work;
191
192 int idx;
193 struct list_head queue_list;
194
195 struct nvmet_tcp_cmd connect;
196
197 struct page_frag_cache pf_cache;
198
199 void (*data_ready)(struct sock *);
200 void (*state_change)(struct sock *);
201 void (*write_space)(struct sock *);
202 };
203
204 struct nvmet_tcp_port {
205 struct socket *sock;
206 struct work_struct accept_work;
207 struct nvmet_port *nport;
208 struct sockaddr_storage addr;
209 void (*data_ready)(struct sock *);
210 };
211
212 static DEFINE_IDA(nvmet_tcp_queue_ida);
213 static LIST_HEAD(nvmet_tcp_queue_list);
214 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
215
216 static struct workqueue_struct *nvmet_tcp_wq;
217 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
218 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
219 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
220
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)221 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
222 struct nvmet_tcp_cmd *cmd)
223 {
224 if (unlikely(!queue->nr_cmds)) {
225 /* We didn't allocate cmds yet, send 0xffff */
226 return USHRT_MAX;
227 }
228
229 return cmd - queue->cmds;
230 }
231
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)232 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
233 {
234 return nvme_is_write(cmd->req.cmd) &&
235 cmd->rbytes_done < cmd->req.transfer_len;
236 }
237
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)238 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
239 {
240 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
241 }
242
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)243 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
244 {
245 return !nvme_is_write(cmd->req.cmd) &&
246 cmd->req.transfer_len > 0 &&
247 !cmd->req.cqe->status;
248 }
249
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)250 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
251 {
252 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
253 !cmd->rbytes_done;
254 }
255
256 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)257 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
258 {
259 struct nvmet_tcp_cmd *cmd;
260
261 cmd = list_first_entry_or_null(&queue->free_list,
262 struct nvmet_tcp_cmd, entry);
263 if (!cmd)
264 return NULL;
265 list_del_init(&cmd->entry);
266
267 cmd->rbytes_done = cmd->wbytes_done = 0;
268 cmd->pdu_len = 0;
269 cmd->pdu_recv = 0;
270 cmd->iov = NULL;
271 cmd->flags = 0;
272 return cmd;
273 }
274
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)275 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
276 {
277 if (unlikely(cmd == &cmd->queue->connect))
278 return;
279
280 list_add_tail(&cmd->entry, &cmd->queue->free_list);
281 }
282
queue_cpu(struct nvmet_tcp_queue * queue)283 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
284 {
285 return queue->sock->sk->sk_incoming_cpu;
286 }
287
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)288 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
289 {
290 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
291 }
292
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)293 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
294 {
295 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
296 }
297
nvmet_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)298 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
299 void *pdu, size_t len)
300 {
301 struct scatterlist sg;
302
303 sg_init_one(&sg, pdu, len);
304 ahash_request_set_crypt(hash, &sg, pdu + len, len);
305 crypto_ahash_digest(hash);
306 }
307
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)308 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
309 void *pdu, size_t len)
310 {
311 struct nvme_tcp_hdr *hdr = pdu;
312 __le32 recv_digest;
313 __le32 exp_digest;
314
315 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
316 pr_err("queue %d: header digest enabled but no header digest\n",
317 queue->idx);
318 return -EPROTO;
319 }
320
321 recv_digest = *(__le32 *)(pdu + hdr->hlen);
322 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
323 exp_digest = *(__le32 *)(pdu + hdr->hlen);
324 if (recv_digest != exp_digest) {
325 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
326 queue->idx, le32_to_cpu(recv_digest),
327 le32_to_cpu(exp_digest));
328 return -EPROTO;
329 }
330
331 return 0;
332 }
333
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)334 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
335 {
336 struct nvme_tcp_hdr *hdr = pdu;
337 u8 digest_len = nvmet_tcp_hdgst_len(queue);
338 u32 len;
339
340 len = le32_to_cpu(hdr->plen) - hdr->hlen -
341 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
342
343 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
344 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
345 return -EPROTO;
346 }
347
348 return 0;
349 }
350
351 /* If cmd buffers are NULL, no operation is performed */
nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd * cmd)352 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
353 {
354 kfree(cmd->iov);
355 sgl_free(cmd->req.sg);
356 cmd->iov = NULL;
357 cmd->req.sg = NULL;
358 }
359
nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd * cmd)360 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
361 {
362 struct bio_vec *iov = cmd->iov;
363 struct scatterlist *sg;
364 u32 length, offset, sg_offset;
365 int nr_pages;
366
367 length = cmd->pdu_len;
368 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
369 offset = cmd->rbytes_done;
370 cmd->sg_idx = offset / PAGE_SIZE;
371 sg_offset = offset % PAGE_SIZE;
372 sg = &cmd->req.sg[cmd->sg_idx];
373
374 while (length) {
375 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
376
377 bvec_set_page(iov, sg_page(sg), iov_len,
378 sg->offset + sg_offset);
379
380 length -= iov_len;
381 sg = sg_next(sg);
382 iov++;
383 sg_offset = 0;
384 }
385
386 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
387 nr_pages, cmd->pdu_len);
388 }
389
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)390 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
391 {
392 queue->rcv_state = NVMET_TCP_RECV_ERR;
393 if (queue->nvme_sq.ctrl)
394 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
395 else
396 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
397 }
398
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)399 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
400 {
401 queue->rcv_state = NVMET_TCP_RECV_ERR;
402 if (status == -EPIPE || status == -ECONNRESET)
403 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
404 else
405 nvmet_tcp_fatal_error(queue);
406 }
407
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)408 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
409 {
410 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
411 u32 len = le32_to_cpu(sgl->length);
412
413 if (!len)
414 return 0;
415
416 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
417 NVME_SGL_FMT_OFFSET)) {
418 if (!nvme_is_write(cmd->req.cmd))
419 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
420
421 if (len > cmd->req.port->inline_data_size)
422 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
423 cmd->pdu_len = len;
424 }
425 cmd->req.transfer_len += len;
426
427 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
428 if (!cmd->req.sg)
429 return NVME_SC_INTERNAL;
430 cmd->cur_sg = cmd->req.sg;
431
432 if (nvmet_tcp_has_data_in(cmd)) {
433 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
434 sizeof(*cmd->iov), GFP_KERNEL);
435 if (!cmd->iov)
436 goto err;
437 }
438
439 return 0;
440 err:
441 nvmet_tcp_free_cmd_buffers(cmd);
442 return NVME_SC_INTERNAL;
443 }
444
nvmet_tcp_calc_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)445 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
446 struct nvmet_tcp_cmd *cmd)
447 {
448 ahash_request_set_crypt(hash, cmd->req.sg,
449 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
450 crypto_ahash_digest(hash);
451 }
452
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)453 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
454 {
455 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
456 struct nvmet_tcp_queue *queue = cmd->queue;
457 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
458 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
459
460 cmd->offset = 0;
461 cmd->state = NVMET_TCP_SEND_DATA_PDU;
462
463 pdu->hdr.type = nvme_tcp_c2h_data;
464 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
465 NVME_TCP_F_DATA_SUCCESS : 0);
466 pdu->hdr.hlen = sizeof(*pdu);
467 pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
468 pdu->hdr.plen =
469 cpu_to_le32(pdu->hdr.hlen + hdgst +
470 cmd->req.transfer_len + ddgst);
471 pdu->command_id = cmd->req.cqe->command_id;
472 pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
473 pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
474
475 if (queue->data_digest) {
476 pdu->hdr.flags |= NVME_TCP_F_DDGST;
477 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
478 }
479
480 if (cmd->queue->hdr_digest) {
481 pdu->hdr.flags |= NVME_TCP_F_HDGST;
482 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
483 }
484 }
485
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)486 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
487 {
488 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
489 struct nvmet_tcp_queue *queue = cmd->queue;
490 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
491
492 cmd->offset = 0;
493 cmd->state = NVMET_TCP_SEND_R2T;
494
495 pdu->hdr.type = nvme_tcp_r2t;
496 pdu->hdr.flags = 0;
497 pdu->hdr.hlen = sizeof(*pdu);
498 pdu->hdr.pdo = 0;
499 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
500
501 pdu->command_id = cmd->req.cmd->common.command_id;
502 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
503 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
504 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
505 if (cmd->queue->hdr_digest) {
506 pdu->hdr.flags |= NVME_TCP_F_HDGST;
507 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
508 }
509 }
510
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)511 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
512 {
513 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
514 struct nvmet_tcp_queue *queue = cmd->queue;
515 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
516
517 cmd->offset = 0;
518 cmd->state = NVMET_TCP_SEND_RESPONSE;
519
520 pdu->hdr.type = nvme_tcp_rsp;
521 pdu->hdr.flags = 0;
522 pdu->hdr.hlen = sizeof(*pdu);
523 pdu->hdr.pdo = 0;
524 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
525 if (cmd->queue->hdr_digest) {
526 pdu->hdr.flags |= NVME_TCP_F_HDGST;
527 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
528 }
529 }
530
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)531 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
532 {
533 struct llist_node *node;
534 struct nvmet_tcp_cmd *cmd;
535
536 for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
537 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
538 list_add(&cmd->entry, &queue->resp_send_list);
539 queue->send_list_len++;
540 }
541 }
542
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)543 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
544 {
545 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
546 struct nvmet_tcp_cmd, entry);
547 if (!queue->snd_cmd) {
548 nvmet_tcp_process_resp_list(queue);
549 queue->snd_cmd =
550 list_first_entry_or_null(&queue->resp_send_list,
551 struct nvmet_tcp_cmd, entry);
552 if (unlikely(!queue->snd_cmd))
553 return NULL;
554 }
555
556 list_del_init(&queue->snd_cmd->entry);
557 queue->send_list_len--;
558
559 if (nvmet_tcp_need_data_out(queue->snd_cmd))
560 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
561 else if (nvmet_tcp_need_data_in(queue->snd_cmd))
562 nvmet_setup_r2t_pdu(queue->snd_cmd);
563 else
564 nvmet_setup_response_pdu(queue->snd_cmd);
565
566 return queue->snd_cmd;
567 }
568
nvmet_tcp_queue_response(struct nvmet_req * req)569 static void nvmet_tcp_queue_response(struct nvmet_req *req)
570 {
571 struct nvmet_tcp_cmd *cmd =
572 container_of(req, struct nvmet_tcp_cmd, req);
573 struct nvmet_tcp_queue *queue = cmd->queue;
574 struct nvme_sgl_desc *sgl;
575 u32 len;
576
577 if (unlikely(cmd == queue->cmd)) {
578 sgl = &cmd->req.cmd->common.dptr.sgl;
579 len = le32_to_cpu(sgl->length);
580
581 /*
582 * Wait for inline data before processing the response.
583 * Avoid using helpers, this might happen before
584 * nvmet_req_init is completed.
585 */
586 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
587 len && len <= cmd->req.port->inline_data_size &&
588 nvme_is_write(cmd->req.cmd))
589 return;
590 }
591
592 llist_add(&cmd->lentry, &queue->resp_list);
593 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
594 }
595
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)596 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
597 {
598 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
599 nvmet_tcp_queue_response(&cmd->req);
600 else
601 cmd->req.execute(&cmd->req);
602 }
603
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)604 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
605 {
606 struct msghdr msg = {
607 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
608 };
609 struct bio_vec bvec;
610 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
611 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
612 int ret;
613
614 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
615 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
616 ret = sock_sendmsg(cmd->queue->sock, &msg);
617 if (ret <= 0)
618 return ret;
619
620 cmd->offset += ret;
621 left -= ret;
622
623 if (left)
624 return -EAGAIN;
625
626 cmd->state = NVMET_TCP_SEND_DATA;
627 cmd->offset = 0;
628 return 1;
629 }
630
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)631 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
632 {
633 struct nvmet_tcp_queue *queue = cmd->queue;
634 int ret;
635
636 while (cmd->cur_sg) {
637 struct msghdr msg = {
638 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
639 };
640 struct page *page = sg_page(cmd->cur_sg);
641 struct bio_vec bvec;
642 u32 left = cmd->cur_sg->length - cmd->offset;
643
644 if ((!last_in_batch && cmd->queue->send_list_len) ||
645 cmd->wbytes_done + left < cmd->req.transfer_len ||
646 queue->data_digest || !queue->nvme_sq.sqhd_disabled)
647 msg.msg_flags |= MSG_MORE;
648
649 bvec_set_page(&bvec, page, left, cmd->offset);
650 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
651 ret = sock_sendmsg(cmd->queue->sock, &msg);
652 if (ret <= 0)
653 return ret;
654
655 cmd->offset += ret;
656 cmd->wbytes_done += ret;
657
658 /* Done with sg?*/
659 if (cmd->offset == cmd->cur_sg->length) {
660 cmd->cur_sg = sg_next(cmd->cur_sg);
661 cmd->offset = 0;
662 }
663 }
664
665 if (queue->data_digest) {
666 cmd->state = NVMET_TCP_SEND_DDGST;
667 cmd->offset = 0;
668 } else {
669 if (queue->nvme_sq.sqhd_disabled) {
670 cmd->queue->snd_cmd = NULL;
671 nvmet_tcp_put_cmd(cmd);
672 } else {
673 nvmet_setup_response_pdu(cmd);
674 }
675 }
676
677 if (queue->nvme_sq.sqhd_disabled)
678 nvmet_tcp_free_cmd_buffers(cmd);
679
680 return 1;
681
682 }
683
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)684 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
685 bool last_in_batch)
686 {
687 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
688 struct bio_vec bvec;
689 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
690 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
691 int ret;
692
693 if (!last_in_batch && cmd->queue->send_list_len)
694 msg.msg_flags |= MSG_MORE;
695 else
696 msg.msg_flags |= MSG_EOR;
697
698 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
699 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
700 ret = sock_sendmsg(cmd->queue->sock, &msg);
701 if (ret <= 0)
702 return ret;
703 cmd->offset += ret;
704 left -= ret;
705
706 if (left)
707 return -EAGAIN;
708
709 nvmet_tcp_free_cmd_buffers(cmd);
710 cmd->queue->snd_cmd = NULL;
711 nvmet_tcp_put_cmd(cmd);
712 return 1;
713 }
714
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)715 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
716 {
717 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
718 struct bio_vec bvec;
719 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
720 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
721 int ret;
722
723 if (!last_in_batch && cmd->queue->send_list_len)
724 msg.msg_flags |= MSG_MORE;
725 else
726 msg.msg_flags |= MSG_EOR;
727
728 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
729 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
730 ret = sock_sendmsg(cmd->queue->sock, &msg);
731 if (ret <= 0)
732 return ret;
733 cmd->offset += ret;
734 left -= ret;
735
736 if (left)
737 return -EAGAIN;
738
739 cmd->queue->snd_cmd = NULL;
740 return 1;
741 }
742
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)743 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
744 {
745 struct nvmet_tcp_queue *queue = cmd->queue;
746 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
747 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
748 struct kvec iov = {
749 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
750 .iov_len = left
751 };
752 int ret;
753
754 if (!last_in_batch && cmd->queue->send_list_len)
755 msg.msg_flags |= MSG_MORE;
756 else
757 msg.msg_flags |= MSG_EOR;
758
759 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
760 if (unlikely(ret <= 0))
761 return ret;
762
763 cmd->offset += ret;
764 left -= ret;
765
766 if (left)
767 return -EAGAIN;
768
769 if (queue->nvme_sq.sqhd_disabled) {
770 cmd->queue->snd_cmd = NULL;
771 nvmet_tcp_put_cmd(cmd);
772 } else {
773 nvmet_setup_response_pdu(cmd);
774 }
775 return 1;
776 }
777
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)778 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
779 bool last_in_batch)
780 {
781 struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
782 int ret = 0;
783
784 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
785 cmd = nvmet_tcp_fetch_cmd(queue);
786 if (unlikely(!cmd))
787 return 0;
788 }
789
790 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
791 ret = nvmet_try_send_data_pdu(cmd);
792 if (ret <= 0)
793 goto done_send;
794 }
795
796 if (cmd->state == NVMET_TCP_SEND_DATA) {
797 ret = nvmet_try_send_data(cmd, last_in_batch);
798 if (ret <= 0)
799 goto done_send;
800 }
801
802 if (cmd->state == NVMET_TCP_SEND_DDGST) {
803 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
804 if (ret <= 0)
805 goto done_send;
806 }
807
808 if (cmd->state == NVMET_TCP_SEND_R2T) {
809 ret = nvmet_try_send_r2t(cmd, last_in_batch);
810 if (ret <= 0)
811 goto done_send;
812 }
813
814 if (cmd->state == NVMET_TCP_SEND_RESPONSE)
815 ret = nvmet_try_send_response(cmd, last_in_batch);
816
817 done_send:
818 if (ret < 0) {
819 if (ret == -EAGAIN)
820 return 0;
821 return ret;
822 }
823
824 return 1;
825 }
826
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)827 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
828 int budget, int *sends)
829 {
830 int i, ret = 0;
831
832 for (i = 0; i < budget; i++) {
833 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
834 if (unlikely(ret < 0)) {
835 nvmet_tcp_socket_error(queue, ret);
836 goto done;
837 } else if (ret == 0) {
838 break;
839 }
840 (*sends)++;
841 }
842 done:
843 return ret;
844 }
845
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)846 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
847 {
848 queue->offset = 0;
849 queue->left = sizeof(struct nvme_tcp_hdr);
850 queue->cmd = NULL;
851 queue->rcv_state = NVMET_TCP_RECV_PDU;
852 }
853
nvmet_tcp_free_crypto(struct nvmet_tcp_queue * queue)854 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
855 {
856 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
857
858 ahash_request_free(queue->rcv_hash);
859 ahash_request_free(queue->snd_hash);
860 crypto_free_ahash(tfm);
861 }
862
nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue * queue)863 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
864 {
865 struct crypto_ahash *tfm;
866
867 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
868 if (IS_ERR(tfm))
869 return PTR_ERR(tfm);
870
871 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
872 if (!queue->snd_hash)
873 goto free_tfm;
874 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
875
876 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
877 if (!queue->rcv_hash)
878 goto free_snd_hash;
879 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
880
881 return 0;
882 free_snd_hash:
883 ahash_request_free(queue->snd_hash);
884 free_tfm:
885 crypto_free_ahash(tfm);
886 return -ENOMEM;
887 }
888
889
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)890 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
891 {
892 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
893 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
894 struct msghdr msg = {};
895 struct kvec iov;
896 int ret;
897
898 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
899 pr_err("bad nvme-tcp pdu length (%d)\n",
900 le32_to_cpu(icreq->hdr.plen));
901 nvmet_tcp_fatal_error(queue);
902 return -EPROTO;
903 }
904
905 if (icreq->pfv != NVME_TCP_PFV_1_0) {
906 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
907 return -EPROTO;
908 }
909
910 if (icreq->hpda != 0) {
911 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
912 icreq->hpda);
913 return -EPROTO;
914 }
915
916 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
917 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
918 if (queue->hdr_digest || queue->data_digest) {
919 ret = nvmet_tcp_alloc_crypto(queue);
920 if (ret)
921 return ret;
922 }
923
924 memset(icresp, 0, sizeof(*icresp));
925 icresp->hdr.type = nvme_tcp_icresp;
926 icresp->hdr.hlen = sizeof(*icresp);
927 icresp->hdr.pdo = 0;
928 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
929 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
930 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
931 icresp->cpda = 0;
932 if (queue->hdr_digest)
933 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
934 if (queue->data_digest)
935 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
936
937 iov.iov_base = icresp;
938 iov.iov_len = sizeof(*icresp);
939 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
940 if (ret < 0) {
941 queue->state = NVMET_TCP_Q_FAILED;
942 return ret; /* queue removal will cleanup */
943 }
944
945 queue->state = NVMET_TCP_Q_LIVE;
946 nvmet_prepare_receive_pdu(queue);
947 return 0;
948 }
949
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)950 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
951 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
952 {
953 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
954 int ret;
955
956 /*
957 * This command has not been processed yet, hence we are trying to
958 * figure out if there is still pending data left to receive. If
959 * we don't, we can simply prepare for the next pdu and bail out,
960 * otherwise we will need to prepare a buffer and receive the
961 * stale data before continuing forward.
962 */
963 if (!nvme_is_write(cmd->req.cmd) || !data_len ||
964 data_len > cmd->req.port->inline_data_size) {
965 nvmet_prepare_receive_pdu(queue);
966 return;
967 }
968
969 ret = nvmet_tcp_map_data(cmd);
970 if (unlikely(ret)) {
971 pr_err("queue %d: failed to map data\n", queue->idx);
972 nvmet_tcp_fatal_error(queue);
973 return;
974 }
975
976 queue->rcv_state = NVMET_TCP_RECV_DATA;
977 nvmet_tcp_build_pdu_iovec(cmd);
978 cmd->flags |= NVMET_TCP_F_INIT_FAILED;
979 }
980
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)981 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
982 {
983 struct nvme_tcp_data_pdu *data = &queue->pdu.data;
984 struct nvmet_tcp_cmd *cmd;
985 unsigned int exp_data_len;
986
987 if (likely(queue->nr_cmds)) {
988 if (unlikely(data->ttag >= queue->nr_cmds)) {
989 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
990 queue->idx, data->ttag, queue->nr_cmds);
991 goto err_proto;
992 }
993 cmd = &queue->cmds[data->ttag];
994 } else {
995 cmd = &queue->connect;
996 }
997
998 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
999 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
1000 data->ttag, le32_to_cpu(data->data_offset),
1001 cmd->rbytes_done);
1002 goto err_proto;
1003 }
1004
1005 exp_data_len = le32_to_cpu(data->hdr.plen) -
1006 nvmet_tcp_hdgst_len(queue) -
1007 nvmet_tcp_ddgst_len(queue) -
1008 sizeof(*data);
1009
1010 cmd->pdu_len = le32_to_cpu(data->data_length);
1011 if (unlikely(cmd->pdu_len != exp_data_len ||
1012 cmd->pdu_len == 0 ||
1013 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
1014 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
1015 goto err_proto;
1016 }
1017 cmd->pdu_recv = 0;
1018 nvmet_tcp_build_pdu_iovec(cmd);
1019 queue->cmd = cmd;
1020 queue->rcv_state = NVMET_TCP_RECV_DATA;
1021
1022 return 0;
1023
1024 err_proto:
1025 /* FIXME: use proper transport errors */
1026 nvmet_tcp_fatal_error(queue);
1027 return -EPROTO;
1028 }
1029
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)1030 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1031 {
1032 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1033 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1034 struct nvmet_req *req;
1035 int ret;
1036
1037 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1038 if (hdr->type != nvme_tcp_icreq) {
1039 pr_err("unexpected pdu type (%d) before icreq\n",
1040 hdr->type);
1041 nvmet_tcp_fatal_error(queue);
1042 return -EPROTO;
1043 }
1044 return nvmet_tcp_handle_icreq(queue);
1045 }
1046
1047 if (unlikely(hdr->type == nvme_tcp_icreq)) {
1048 pr_err("queue %d: received icreq pdu in state %d\n",
1049 queue->idx, queue->state);
1050 nvmet_tcp_fatal_error(queue);
1051 return -EPROTO;
1052 }
1053
1054 if (hdr->type == nvme_tcp_h2c_data) {
1055 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1056 if (unlikely(ret))
1057 return ret;
1058 return 0;
1059 }
1060
1061 queue->cmd = nvmet_tcp_get_cmd(queue);
1062 if (unlikely(!queue->cmd)) {
1063 /* This should never happen */
1064 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1065 queue->idx, queue->nr_cmds, queue->send_list_len,
1066 nvme_cmd->common.opcode);
1067 nvmet_tcp_fatal_error(queue);
1068 return -ENOMEM;
1069 }
1070
1071 req = &queue->cmd->req;
1072 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1073
1074 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1075 &queue->nvme_sq, &nvmet_tcp_ops))) {
1076 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1077 req->cmd, req->cmd->common.command_id,
1078 req->cmd->common.opcode,
1079 le32_to_cpu(req->cmd->common.dptr.sgl.length));
1080
1081 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1082 return 0;
1083 }
1084
1085 ret = nvmet_tcp_map_data(queue->cmd);
1086 if (unlikely(ret)) {
1087 pr_err("queue %d: failed to map data\n", queue->idx);
1088 if (nvmet_tcp_has_inline_data(queue->cmd))
1089 nvmet_tcp_fatal_error(queue);
1090 else
1091 nvmet_req_complete(req, ret);
1092 ret = -EAGAIN;
1093 goto out;
1094 }
1095
1096 if (nvmet_tcp_need_data_in(queue->cmd)) {
1097 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1098 queue->rcv_state = NVMET_TCP_RECV_DATA;
1099 nvmet_tcp_build_pdu_iovec(queue->cmd);
1100 return 0;
1101 }
1102 /* send back R2T */
1103 nvmet_tcp_queue_response(&queue->cmd->req);
1104 goto out;
1105 }
1106
1107 queue->cmd->req.execute(&queue->cmd->req);
1108 out:
1109 nvmet_prepare_receive_pdu(queue);
1110 return ret;
1111 }
1112
1113 static const u8 nvme_tcp_pdu_sizes[] = {
1114 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
1115 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
1116 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
1117 };
1118
nvmet_tcp_pdu_size(u8 type)1119 static inline u8 nvmet_tcp_pdu_size(u8 type)
1120 {
1121 size_t idx = type;
1122
1123 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1124 nvme_tcp_pdu_sizes[idx]) ?
1125 nvme_tcp_pdu_sizes[idx] : 0;
1126 }
1127
nvmet_tcp_pdu_valid(u8 type)1128 static inline bool nvmet_tcp_pdu_valid(u8 type)
1129 {
1130 switch (type) {
1131 case nvme_tcp_icreq:
1132 case nvme_tcp_cmd:
1133 case nvme_tcp_h2c_data:
1134 /* fallthru */
1135 return true;
1136 }
1137
1138 return false;
1139 }
1140
nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue * queue,struct msghdr * msg,char * cbuf)1141 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1142 struct msghdr *msg, char *cbuf)
1143 {
1144 struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1145 u8 ctype, level, description;
1146 int ret = 0;
1147
1148 ctype = tls_get_record_type(queue->sock->sk, cmsg);
1149 switch (ctype) {
1150 case 0:
1151 break;
1152 case TLS_RECORD_TYPE_DATA:
1153 break;
1154 case TLS_RECORD_TYPE_ALERT:
1155 tls_alert_recv(queue->sock->sk, msg, &level, &description);
1156 if (level == TLS_ALERT_LEVEL_FATAL) {
1157 pr_err("queue %d: TLS Alert desc %u\n",
1158 queue->idx, description);
1159 ret = -ENOTCONN;
1160 } else {
1161 pr_warn("queue %d: TLS Alert desc %u\n",
1162 queue->idx, description);
1163 ret = -EAGAIN;
1164 }
1165 break;
1166 default:
1167 /* discard this record type */
1168 pr_err("queue %d: TLS record %d unhandled\n",
1169 queue->idx, ctype);
1170 ret = -EAGAIN;
1171 break;
1172 }
1173 return ret;
1174 }
1175
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1176 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1177 {
1178 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1179 int len, ret;
1180 struct kvec iov;
1181 char cbuf[CMSG_LEN(sizeof(char))] = {};
1182 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1183
1184 recv:
1185 iov.iov_base = (void *)&queue->pdu + queue->offset;
1186 iov.iov_len = queue->left;
1187 if (queue->tls_pskid) {
1188 msg.msg_control = cbuf;
1189 msg.msg_controllen = sizeof(cbuf);
1190 }
1191 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1192 iov.iov_len, msg.msg_flags);
1193 if (unlikely(len < 0))
1194 return len;
1195 if (queue->tls_pskid) {
1196 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1197 if (ret < 0)
1198 return ret;
1199 }
1200
1201 queue->offset += len;
1202 queue->left -= len;
1203 if (queue->left)
1204 return -EAGAIN;
1205
1206 if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1207 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1208
1209 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1210 pr_err("unexpected pdu type %d\n", hdr->type);
1211 nvmet_tcp_fatal_error(queue);
1212 return -EIO;
1213 }
1214
1215 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1216 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1217 return -EIO;
1218 }
1219
1220 queue->left = hdr->hlen - queue->offset + hdgst;
1221 goto recv;
1222 }
1223
1224 if (queue->hdr_digest &&
1225 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1226 nvmet_tcp_fatal_error(queue); /* fatal */
1227 return -EPROTO;
1228 }
1229
1230 if (queue->data_digest &&
1231 nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1232 nvmet_tcp_fatal_error(queue); /* fatal */
1233 return -EPROTO;
1234 }
1235
1236 return nvmet_tcp_done_recv_pdu(queue);
1237 }
1238
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1239 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1240 {
1241 struct nvmet_tcp_queue *queue = cmd->queue;
1242
1243 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1244 queue->offset = 0;
1245 queue->left = NVME_TCP_DIGEST_LENGTH;
1246 queue->rcv_state = NVMET_TCP_RECV_DDGST;
1247 }
1248
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1249 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1250 {
1251 struct nvmet_tcp_cmd *cmd = queue->cmd;
1252 int len, ret;
1253
1254 while (msg_data_left(&cmd->recv_msg)) {
1255 len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1256 cmd->recv_msg.msg_flags);
1257 if (len <= 0)
1258 return len;
1259 if (queue->tls_pskid) {
1260 ret = nvmet_tcp_tls_record_ok(cmd->queue,
1261 &cmd->recv_msg, cmd->recv_cbuf);
1262 if (ret < 0)
1263 return ret;
1264 }
1265
1266 cmd->pdu_recv += len;
1267 cmd->rbytes_done += len;
1268 }
1269
1270 if (queue->data_digest) {
1271 nvmet_tcp_prep_recv_ddgst(cmd);
1272 return 0;
1273 }
1274
1275 if (cmd->rbytes_done == cmd->req.transfer_len)
1276 nvmet_tcp_execute_request(cmd);
1277
1278 nvmet_prepare_receive_pdu(queue);
1279 return 0;
1280 }
1281
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1282 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1283 {
1284 struct nvmet_tcp_cmd *cmd = queue->cmd;
1285 int ret, len;
1286 char cbuf[CMSG_LEN(sizeof(char))] = {};
1287 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1288 struct kvec iov = {
1289 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1290 .iov_len = queue->left
1291 };
1292
1293 if (queue->tls_pskid) {
1294 msg.msg_control = cbuf;
1295 msg.msg_controllen = sizeof(cbuf);
1296 }
1297 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1298 iov.iov_len, msg.msg_flags);
1299 if (unlikely(len < 0))
1300 return len;
1301 if (queue->tls_pskid) {
1302 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1303 if (ret < 0)
1304 return ret;
1305 }
1306
1307 queue->offset += len;
1308 queue->left -= len;
1309 if (queue->left)
1310 return -EAGAIN;
1311
1312 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1313 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1314 queue->idx, cmd->req.cmd->common.command_id,
1315 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1316 le32_to_cpu(cmd->exp_ddgst));
1317 nvmet_req_uninit(&cmd->req);
1318 nvmet_tcp_free_cmd_buffers(cmd);
1319 nvmet_tcp_fatal_error(queue);
1320 ret = -EPROTO;
1321 goto out;
1322 }
1323
1324 if (cmd->rbytes_done == cmd->req.transfer_len)
1325 nvmet_tcp_execute_request(cmd);
1326
1327 ret = 0;
1328 out:
1329 nvmet_prepare_receive_pdu(queue);
1330 return ret;
1331 }
1332
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1333 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1334 {
1335 int result = 0;
1336
1337 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1338 return 0;
1339
1340 if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1341 result = nvmet_tcp_try_recv_pdu(queue);
1342 if (result != 0)
1343 goto done_recv;
1344 }
1345
1346 if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1347 result = nvmet_tcp_try_recv_data(queue);
1348 if (result != 0)
1349 goto done_recv;
1350 }
1351
1352 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1353 result = nvmet_tcp_try_recv_ddgst(queue);
1354 if (result != 0)
1355 goto done_recv;
1356 }
1357
1358 done_recv:
1359 if (result < 0) {
1360 if (result == -EAGAIN)
1361 return 0;
1362 return result;
1363 }
1364 return 1;
1365 }
1366
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1367 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1368 int budget, int *recvs)
1369 {
1370 int i, ret = 0;
1371
1372 for (i = 0; i < budget; i++) {
1373 ret = nvmet_tcp_try_recv_one(queue);
1374 if (unlikely(ret < 0)) {
1375 nvmet_tcp_socket_error(queue, ret);
1376 goto done;
1377 } else if (ret == 0) {
1378 break;
1379 }
1380 (*recvs)++;
1381 }
1382 done:
1383 return ret;
1384 }
1385
nvmet_tcp_release_queue(struct kref * kref)1386 static void nvmet_tcp_release_queue(struct kref *kref)
1387 {
1388 struct nvmet_tcp_queue *queue =
1389 container_of(kref, struct nvmet_tcp_queue, kref);
1390
1391 WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1392 queue_work(nvmet_wq, &queue->release_work);
1393 }
1394
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1395 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1396 {
1397 spin_lock_bh(&queue->state_lock);
1398 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1399 /* Socket closed during handshake */
1400 tls_handshake_cancel(queue->sock->sk);
1401 }
1402 if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1403 queue->state = NVMET_TCP_Q_DISCONNECTING;
1404 kref_put(&queue->kref, nvmet_tcp_release_queue);
1405 }
1406 spin_unlock_bh(&queue->state_lock);
1407 }
1408
nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1409 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1410 {
1411 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1412 }
1413
nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1414 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1415 int ops)
1416 {
1417 if (!idle_poll_period_usecs)
1418 return false;
1419
1420 if (ops)
1421 nvmet_tcp_arm_queue_deadline(queue);
1422
1423 return !time_after(jiffies, queue->poll_end);
1424 }
1425
nvmet_tcp_io_work(struct work_struct * w)1426 static void nvmet_tcp_io_work(struct work_struct *w)
1427 {
1428 struct nvmet_tcp_queue *queue =
1429 container_of(w, struct nvmet_tcp_queue, io_work);
1430 bool pending;
1431 int ret, ops = 0;
1432
1433 do {
1434 pending = false;
1435
1436 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1437 if (ret > 0)
1438 pending = true;
1439 else if (ret < 0)
1440 return;
1441
1442 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1443 if (ret > 0)
1444 pending = true;
1445 else if (ret < 0)
1446 return;
1447
1448 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1449
1450 /*
1451 * Requeue the worker if idle deadline period is in progress or any
1452 * ops activity was recorded during the do-while loop above.
1453 */
1454 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1455 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1456 }
1457
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1458 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1459 struct nvmet_tcp_cmd *c)
1460 {
1461 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1462
1463 c->queue = queue;
1464 c->req.port = queue->port->nport;
1465
1466 c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1467 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1468 if (!c->cmd_pdu)
1469 return -ENOMEM;
1470 c->req.cmd = &c->cmd_pdu->cmd;
1471
1472 c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1473 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1474 if (!c->rsp_pdu)
1475 goto out_free_cmd;
1476 c->req.cqe = &c->rsp_pdu->cqe;
1477
1478 c->data_pdu = page_frag_alloc(&queue->pf_cache,
1479 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1480 if (!c->data_pdu)
1481 goto out_free_rsp;
1482
1483 c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1484 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1485 if (!c->r2t_pdu)
1486 goto out_free_data;
1487
1488 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1489 c->recv_msg.msg_control = c->recv_cbuf;
1490 c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1491 }
1492 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1493
1494 list_add_tail(&c->entry, &queue->free_list);
1495
1496 return 0;
1497 out_free_data:
1498 page_frag_free(c->data_pdu);
1499 out_free_rsp:
1500 page_frag_free(c->rsp_pdu);
1501 out_free_cmd:
1502 page_frag_free(c->cmd_pdu);
1503 return -ENOMEM;
1504 }
1505
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1506 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1507 {
1508 page_frag_free(c->r2t_pdu);
1509 page_frag_free(c->data_pdu);
1510 page_frag_free(c->rsp_pdu);
1511 page_frag_free(c->cmd_pdu);
1512 }
1513
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1514 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1515 {
1516 struct nvmet_tcp_cmd *cmds;
1517 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1518
1519 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1520 if (!cmds)
1521 goto out;
1522
1523 for (i = 0; i < nr_cmds; i++) {
1524 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1525 if (ret)
1526 goto out_free;
1527 }
1528
1529 queue->cmds = cmds;
1530
1531 return 0;
1532 out_free:
1533 while (--i >= 0)
1534 nvmet_tcp_free_cmd(cmds + i);
1535 kfree(cmds);
1536 out:
1537 return ret;
1538 }
1539
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1540 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1541 {
1542 struct nvmet_tcp_cmd *cmds = queue->cmds;
1543 int i;
1544
1545 for (i = 0; i < queue->nr_cmds; i++)
1546 nvmet_tcp_free_cmd(cmds + i);
1547
1548 nvmet_tcp_free_cmd(&queue->connect);
1549 kfree(cmds);
1550 }
1551
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1552 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1553 {
1554 struct socket *sock = queue->sock;
1555
1556 write_lock_bh(&sock->sk->sk_callback_lock);
1557 sock->sk->sk_data_ready = queue->data_ready;
1558 sock->sk->sk_state_change = queue->state_change;
1559 sock->sk->sk_write_space = queue->write_space;
1560 sock->sk->sk_user_data = NULL;
1561 write_unlock_bh(&sock->sk->sk_callback_lock);
1562 }
1563
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1564 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1565 {
1566 struct nvmet_tcp_cmd *cmd = queue->cmds;
1567 int i;
1568
1569 for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1570 if (nvmet_tcp_need_data_in(cmd))
1571 nvmet_req_uninit(&cmd->req);
1572 }
1573
1574 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1575 /* failed in connect */
1576 nvmet_req_uninit(&queue->connect.req);
1577 }
1578 }
1579
nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue * queue)1580 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1581 {
1582 struct nvmet_tcp_cmd *cmd = queue->cmds;
1583 int i;
1584
1585 for (i = 0; i < queue->nr_cmds; i++, cmd++)
1586 nvmet_tcp_free_cmd_buffers(cmd);
1587 nvmet_tcp_free_cmd_buffers(&queue->connect);
1588 }
1589
nvmet_tcp_release_queue_work(struct work_struct * w)1590 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1591 {
1592 struct nvmet_tcp_queue *queue =
1593 container_of(w, struct nvmet_tcp_queue, release_work);
1594
1595 mutex_lock(&nvmet_tcp_queue_mutex);
1596 list_del_init(&queue->queue_list);
1597 mutex_unlock(&nvmet_tcp_queue_mutex);
1598
1599 nvmet_tcp_restore_socket_callbacks(queue);
1600 cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1601 cancel_work_sync(&queue->io_work);
1602 /* stop accepting incoming data */
1603 queue->rcv_state = NVMET_TCP_RECV_ERR;
1604
1605 nvmet_tcp_uninit_data_in_cmds(queue);
1606 nvmet_sq_destroy(&queue->nvme_sq);
1607 cancel_work_sync(&queue->io_work);
1608 nvmet_tcp_free_cmd_data_in_buffers(queue);
1609 /* ->sock will be released by fput() */
1610 fput(queue->sock->file);
1611 nvmet_tcp_free_cmds(queue);
1612 if (queue->hdr_digest || queue->data_digest)
1613 nvmet_tcp_free_crypto(queue);
1614 ida_free(&nvmet_tcp_queue_ida, queue->idx);
1615 page_frag_cache_drain(&queue->pf_cache);
1616 kfree(queue);
1617 }
1618
nvmet_tcp_data_ready(struct sock * sk)1619 static void nvmet_tcp_data_ready(struct sock *sk)
1620 {
1621 struct nvmet_tcp_queue *queue;
1622
1623 trace_sk_data_ready(sk);
1624
1625 read_lock_bh(&sk->sk_callback_lock);
1626 queue = sk->sk_user_data;
1627 if (likely(queue)) {
1628 if (queue->data_ready)
1629 queue->data_ready(sk);
1630 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1631 queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1632 &queue->io_work);
1633 }
1634 read_unlock_bh(&sk->sk_callback_lock);
1635 }
1636
nvmet_tcp_write_space(struct sock * sk)1637 static void nvmet_tcp_write_space(struct sock *sk)
1638 {
1639 struct nvmet_tcp_queue *queue;
1640
1641 read_lock_bh(&sk->sk_callback_lock);
1642 queue = sk->sk_user_data;
1643 if (unlikely(!queue))
1644 goto out;
1645
1646 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1647 queue->write_space(sk);
1648 goto out;
1649 }
1650
1651 if (sk_stream_is_writeable(sk)) {
1652 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1653 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1654 }
1655 out:
1656 read_unlock_bh(&sk->sk_callback_lock);
1657 }
1658
nvmet_tcp_state_change(struct sock * sk)1659 static void nvmet_tcp_state_change(struct sock *sk)
1660 {
1661 struct nvmet_tcp_queue *queue;
1662
1663 read_lock_bh(&sk->sk_callback_lock);
1664 queue = sk->sk_user_data;
1665 if (!queue)
1666 goto done;
1667
1668 switch (sk->sk_state) {
1669 case TCP_FIN_WAIT2:
1670 case TCP_LAST_ACK:
1671 break;
1672 case TCP_FIN_WAIT1:
1673 case TCP_CLOSE_WAIT:
1674 case TCP_CLOSE:
1675 /* FALLTHRU */
1676 nvmet_tcp_schedule_release_queue(queue);
1677 break;
1678 default:
1679 pr_warn("queue %d unhandled state %d\n",
1680 queue->idx, sk->sk_state);
1681 }
1682 done:
1683 read_unlock_bh(&sk->sk_callback_lock);
1684 }
1685
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1686 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1687 {
1688 struct socket *sock = queue->sock;
1689 struct inet_sock *inet = inet_sk(sock->sk);
1690 int ret;
1691
1692 ret = kernel_getsockname(sock,
1693 (struct sockaddr *)&queue->sockaddr);
1694 if (ret < 0)
1695 return ret;
1696
1697 ret = kernel_getpeername(sock,
1698 (struct sockaddr *)&queue->sockaddr_peer);
1699 if (ret < 0)
1700 return ret;
1701
1702 /*
1703 * Cleanup whatever is sitting in the TCP transmit queue on socket
1704 * close. This is done to prevent stale data from being sent should
1705 * the network connection be restored before TCP times out.
1706 */
1707 sock_no_linger(sock->sk);
1708
1709 if (so_priority > 0)
1710 sock_set_priority(sock->sk, so_priority);
1711
1712 /* Set socket type of service */
1713 if (inet->rcv_tos > 0)
1714 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1715
1716 ret = 0;
1717 write_lock_bh(&sock->sk->sk_callback_lock);
1718 if (sock->sk->sk_state != TCP_ESTABLISHED) {
1719 /*
1720 * If the socket is already closing, don't even start
1721 * consuming it
1722 */
1723 ret = -ENOTCONN;
1724 } else {
1725 sock->sk->sk_user_data = queue;
1726 queue->data_ready = sock->sk->sk_data_ready;
1727 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1728 queue->state_change = sock->sk->sk_state_change;
1729 sock->sk->sk_state_change = nvmet_tcp_state_change;
1730 queue->write_space = sock->sk->sk_write_space;
1731 sock->sk->sk_write_space = nvmet_tcp_write_space;
1732 if (idle_poll_period_usecs)
1733 nvmet_tcp_arm_queue_deadline(queue);
1734 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1735 }
1736 write_unlock_bh(&sock->sk->sk_callback_lock);
1737
1738 return ret;
1739 }
1740
1741 #ifdef CONFIG_NVME_TARGET_TCP_TLS
nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue * queue)1742 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1743 {
1744 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1745 int len, ret;
1746 struct kvec iov = {
1747 .iov_base = (u8 *)&queue->pdu + queue->offset,
1748 .iov_len = sizeof(struct nvme_tcp_hdr),
1749 };
1750 char cbuf[CMSG_LEN(sizeof(char))] = {};
1751 struct msghdr msg = {
1752 .msg_control = cbuf,
1753 .msg_controllen = sizeof(cbuf),
1754 .msg_flags = MSG_PEEK,
1755 };
1756
1757 if (nvmet_port_secure_channel_required(queue->port->nport))
1758 return 0;
1759
1760 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1761 iov.iov_len, msg.msg_flags);
1762 if (unlikely(len < 0)) {
1763 pr_debug("queue %d: peek error %d\n",
1764 queue->idx, len);
1765 return len;
1766 }
1767
1768 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1769 if (ret < 0)
1770 return ret;
1771
1772 if (len < sizeof(struct nvme_tcp_hdr)) {
1773 pr_debug("queue %d: short read, %d bytes missing\n",
1774 queue->idx, (int)iov.iov_len - len);
1775 return -EAGAIN;
1776 }
1777 pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1778 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1779 (int)sizeof(struct nvme_tcp_icreq_pdu));
1780 if (hdr->type == nvme_tcp_icreq &&
1781 hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1782 hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1783 pr_debug("queue %d: icreq detected\n",
1784 queue->idx);
1785 return len;
1786 }
1787 return 0;
1788 }
1789
nvmet_tcp_tls_handshake_done(void * data,int status,key_serial_t peerid)1790 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1791 key_serial_t peerid)
1792 {
1793 struct nvmet_tcp_queue *queue = data;
1794
1795 pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1796 queue->idx, peerid, status);
1797 spin_lock_bh(&queue->state_lock);
1798 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1799 spin_unlock_bh(&queue->state_lock);
1800 return;
1801 }
1802 if (!status) {
1803 queue->tls_pskid = peerid;
1804 queue->state = NVMET_TCP_Q_CONNECTING;
1805 } else
1806 queue->state = NVMET_TCP_Q_FAILED;
1807 spin_unlock_bh(&queue->state_lock);
1808
1809 cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1810 if (status)
1811 nvmet_tcp_schedule_release_queue(queue);
1812 else
1813 nvmet_tcp_set_queue_sock(queue);
1814 kref_put(&queue->kref, nvmet_tcp_release_queue);
1815 }
1816
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1817 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1818 {
1819 struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1820 struct nvmet_tcp_queue, tls_handshake_tmo_work);
1821
1822 pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1823 /*
1824 * If tls_handshake_cancel() fails we've lost the race with
1825 * nvmet_tcp_tls_handshake_done() */
1826 if (!tls_handshake_cancel(queue->sock->sk))
1827 return;
1828 spin_lock_bh(&queue->state_lock);
1829 if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1830 spin_unlock_bh(&queue->state_lock);
1831 return;
1832 }
1833 queue->state = NVMET_TCP_Q_FAILED;
1834 spin_unlock_bh(&queue->state_lock);
1835 nvmet_tcp_schedule_release_queue(queue);
1836 kref_put(&queue->kref, nvmet_tcp_release_queue);
1837 }
1838
nvmet_tcp_tls_handshake(struct nvmet_tcp_queue * queue)1839 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1840 {
1841 int ret = -EOPNOTSUPP;
1842 struct tls_handshake_args args;
1843
1844 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1845 pr_warn("cannot start TLS in state %d\n", queue->state);
1846 return -EINVAL;
1847 }
1848
1849 kref_get(&queue->kref);
1850 pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1851 memset(&args, 0, sizeof(args));
1852 args.ta_sock = queue->sock;
1853 args.ta_done = nvmet_tcp_tls_handshake_done;
1854 args.ta_data = queue;
1855 args.ta_keyring = key_serial(queue->port->nport->keyring);
1856 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1857
1858 ret = tls_server_hello_psk(&args, GFP_KERNEL);
1859 if (ret) {
1860 kref_put(&queue->kref, nvmet_tcp_release_queue);
1861 pr_err("failed to start TLS, err=%d\n", ret);
1862 } else {
1863 queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1864 tls_handshake_timeout * HZ);
1865 }
1866 return ret;
1867 }
1868 #else
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1869 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1870 #endif
1871
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1872 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1873 struct socket *newsock)
1874 {
1875 struct nvmet_tcp_queue *queue;
1876 struct file *sock_file = NULL;
1877 int ret;
1878
1879 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1880 if (!queue) {
1881 ret = -ENOMEM;
1882 goto out_release;
1883 }
1884
1885 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1886 INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1887 kref_init(&queue->kref);
1888 queue->sock = newsock;
1889 queue->port = port;
1890 queue->nr_cmds = 0;
1891 spin_lock_init(&queue->state_lock);
1892 if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1893 NVMF_TCP_SECTYPE_TLS13)
1894 queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1895 else
1896 queue->state = NVMET_TCP_Q_CONNECTING;
1897 INIT_LIST_HEAD(&queue->free_list);
1898 init_llist_head(&queue->resp_list);
1899 INIT_LIST_HEAD(&queue->resp_send_list);
1900
1901 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1902 if (IS_ERR(sock_file)) {
1903 ret = PTR_ERR(sock_file);
1904 goto out_free_queue;
1905 }
1906
1907 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1908 if (queue->idx < 0) {
1909 ret = queue->idx;
1910 goto out_sock;
1911 }
1912
1913 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1914 if (ret)
1915 goto out_ida_remove;
1916
1917 ret = nvmet_sq_init(&queue->nvme_sq);
1918 if (ret)
1919 goto out_free_connect;
1920
1921 nvmet_prepare_receive_pdu(queue);
1922
1923 mutex_lock(&nvmet_tcp_queue_mutex);
1924 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1925 mutex_unlock(&nvmet_tcp_queue_mutex);
1926
1927 INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1928 nvmet_tcp_tls_handshake_timeout);
1929 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1930 if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1931 struct sock *sk = queue->sock->sk;
1932
1933 /* Restore the default callbacks before starting upcall */
1934 read_lock_bh(&sk->sk_callback_lock);
1935 sk->sk_user_data = NULL;
1936 sk->sk_data_ready = port->data_ready;
1937 read_unlock_bh(&sk->sk_callback_lock);
1938 if (!nvmet_tcp_try_peek_pdu(queue)) {
1939 if (!nvmet_tcp_tls_handshake(queue))
1940 return;
1941 /* TLS handshake failed, terminate the connection */
1942 goto out_destroy_sq;
1943 }
1944 /* Not a TLS connection, continue with normal processing */
1945 queue->state = NVMET_TCP_Q_CONNECTING;
1946 }
1947 #endif
1948
1949 ret = nvmet_tcp_set_queue_sock(queue);
1950 if (ret)
1951 goto out_destroy_sq;
1952
1953 return;
1954 out_destroy_sq:
1955 mutex_lock(&nvmet_tcp_queue_mutex);
1956 list_del_init(&queue->queue_list);
1957 mutex_unlock(&nvmet_tcp_queue_mutex);
1958 nvmet_sq_destroy(&queue->nvme_sq);
1959 out_free_connect:
1960 nvmet_tcp_free_cmd(&queue->connect);
1961 out_ida_remove:
1962 ida_free(&nvmet_tcp_queue_ida, queue->idx);
1963 out_sock:
1964 fput(queue->sock->file);
1965 out_free_queue:
1966 kfree(queue);
1967 out_release:
1968 pr_err("failed to allocate queue, error %d\n", ret);
1969 if (!sock_file)
1970 sock_release(newsock);
1971 }
1972
nvmet_tcp_accept_work(struct work_struct * w)1973 static void nvmet_tcp_accept_work(struct work_struct *w)
1974 {
1975 struct nvmet_tcp_port *port =
1976 container_of(w, struct nvmet_tcp_port, accept_work);
1977 struct socket *newsock;
1978 int ret;
1979
1980 while (true) {
1981 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1982 if (ret < 0) {
1983 if (ret != -EAGAIN)
1984 pr_warn("failed to accept err=%d\n", ret);
1985 return;
1986 }
1987 nvmet_tcp_alloc_queue(port, newsock);
1988 }
1989 }
1990
nvmet_tcp_listen_data_ready(struct sock * sk)1991 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1992 {
1993 struct nvmet_tcp_port *port;
1994
1995 trace_sk_data_ready(sk);
1996
1997 read_lock_bh(&sk->sk_callback_lock);
1998 port = sk->sk_user_data;
1999 if (!port)
2000 goto out;
2001
2002 if (sk->sk_state == TCP_LISTEN)
2003 queue_work(nvmet_wq, &port->accept_work);
2004 out:
2005 read_unlock_bh(&sk->sk_callback_lock);
2006 }
2007
nvmet_tcp_add_port(struct nvmet_port * nport)2008 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2009 {
2010 struct nvmet_tcp_port *port;
2011 __kernel_sa_family_t af;
2012 int ret;
2013
2014 port = kzalloc(sizeof(*port), GFP_KERNEL);
2015 if (!port)
2016 return -ENOMEM;
2017
2018 switch (nport->disc_addr.adrfam) {
2019 case NVMF_ADDR_FAMILY_IP4:
2020 af = AF_INET;
2021 break;
2022 case NVMF_ADDR_FAMILY_IP6:
2023 af = AF_INET6;
2024 break;
2025 default:
2026 pr_err("address family %d not supported\n",
2027 nport->disc_addr.adrfam);
2028 ret = -EINVAL;
2029 goto err_port;
2030 }
2031
2032 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2033 nport->disc_addr.trsvcid, &port->addr);
2034 if (ret) {
2035 pr_err("malformed ip/port passed: %s:%s\n",
2036 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2037 goto err_port;
2038 }
2039
2040 port->nport = nport;
2041 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2042 if (port->nport->inline_data_size < 0)
2043 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2044
2045 ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2046 IPPROTO_TCP, &port->sock);
2047 if (ret) {
2048 pr_err("failed to create a socket\n");
2049 goto err_port;
2050 }
2051
2052 port->sock->sk->sk_user_data = port;
2053 port->data_ready = port->sock->sk->sk_data_ready;
2054 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2055 sock_set_reuseaddr(port->sock->sk);
2056 tcp_sock_set_nodelay(port->sock->sk);
2057 if (so_priority > 0)
2058 sock_set_priority(port->sock->sk, so_priority);
2059
2060 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2061 sizeof(port->addr));
2062 if (ret) {
2063 pr_err("failed to bind port socket %d\n", ret);
2064 goto err_sock;
2065 }
2066
2067 ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2068 if (ret) {
2069 pr_err("failed to listen %d on port sock\n", ret);
2070 goto err_sock;
2071 }
2072
2073 nport->priv = port;
2074 pr_info("enabling port %d (%pISpc)\n",
2075 le16_to_cpu(nport->disc_addr.portid), &port->addr);
2076
2077 return 0;
2078
2079 err_sock:
2080 sock_release(port->sock);
2081 err_port:
2082 kfree(port);
2083 return ret;
2084 }
2085
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)2086 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2087 {
2088 struct nvmet_tcp_queue *queue;
2089
2090 mutex_lock(&nvmet_tcp_queue_mutex);
2091 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2092 if (queue->port == port)
2093 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2094 mutex_unlock(&nvmet_tcp_queue_mutex);
2095 }
2096
nvmet_tcp_remove_port(struct nvmet_port * nport)2097 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2098 {
2099 struct nvmet_tcp_port *port = nport->priv;
2100
2101 write_lock_bh(&port->sock->sk->sk_callback_lock);
2102 port->sock->sk->sk_data_ready = port->data_ready;
2103 port->sock->sk->sk_user_data = NULL;
2104 write_unlock_bh(&port->sock->sk->sk_callback_lock);
2105 cancel_work_sync(&port->accept_work);
2106 /*
2107 * Destroy the remaining queues, which are not belong to any
2108 * controller yet.
2109 */
2110 nvmet_tcp_destroy_port_queues(port);
2111
2112 sock_release(port->sock);
2113 kfree(port);
2114 }
2115
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)2116 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2117 {
2118 struct nvmet_tcp_queue *queue;
2119
2120 mutex_lock(&nvmet_tcp_queue_mutex);
2121 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2122 if (queue->nvme_sq.ctrl == ctrl)
2123 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2124 mutex_unlock(&nvmet_tcp_queue_mutex);
2125 }
2126
nvmet_tcp_install_queue(struct nvmet_sq * sq)2127 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2128 {
2129 struct nvmet_tcp_queue *queue =
2130 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2131
2132 if (sq->qid == 0) {
2133 struct nvmet_tcp_queue *q;
2134 int pending = 0;
2135
2136 /* Check for pending controller teardown */
2137 mutex_lock(&nvmet_tcp_queue_mutex);
2138 list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2139 if (q->nvme_sq.ctrl == sq->ctrl &&
2140 q->state == NVMET_TCP_Q_DISCONNECTING)
2141 pending++;
2142 }
2143 mutex_unlock(&nvmet_tcp_queue_mutex);
2144 if (pending > NVMET_TCP_BACKLOG)
2145 return NVME_SC_CONNECT_CTRL_BUSY;
2146 }
2147
2148 queue->nr_cmds = sq->size * 2;
2149 if (nvmet_tcp_alloc_cmds(queue)) {
2150 queue->nr_cmds = 0;
2151 return NVME_SC_INTERNAL;
2152 }
2153 return 0;
2154 }
2155
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)2156 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2157 struct nvmet_port *nport, char *traddr)
2158 {
2159 struct nvmet_tcp_port *port = nport->priv;
2160
2161 if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
2162 struct nvmet_tcp_cmd *cmd =
2163 container_of(req, struct nvmet_tcp_cmd, req);
2164 struct nvmet_tcp_queue *queue = cmd->queue;
2165
2166 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2167 } else {
2168 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2169 }
2170 }
2171
nvmet_tcp_host_port_addr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)2172 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl,
2173 char *traddr, size_t traddr_len)
2174 {
2175 struct nvmet_sq *sq = ctrl->sqs[0];
2176 struct nvmet_tcp_queue *queue =
2177 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2178
2179 if (queue->sockaddr_peer.ss_family == AF_UNSPEC)
2180 return -EINVAL;
2181 return snprintf(traddr, traddr_len, "%pISc",
2182 (struct sockaddr *)&queue->sockaddr_peer);
2183 }
2184
2185 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2186 .owner = THIS_MODULE,
2187 .type = NVMF_TRTYPE_TCP,
2188 .msdbd = 1,
2189 .add_port = nvmet_tcp_add_port,
2190 .remove_port = nvmet_tcp_remove_port,
2191 .queue_response = nvmet_tcp_queue_response,
2192 .delete_ctrl = nvmet_tcp_delete_ctrl,
2193 .install_queue = nvmet_tcp_install_queue,
2194 .disc_traddr = nvmet_tcp_disc_port_addr,
2195 .host_traddr = nvmet_tcp_host_port_addr,
2196 };
2197
nvmet_tcp_init(void)2198 static int __init nvmet_tcp_init(void)
2199 {
2200 int ret;
2201
2202 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2203 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2204 if (!nvmet_tcp_wq)
2205 return -ENOMEM;
2206
2207 ret = nvmet_register_transport(&nvmet_tcp_ops);
2208 if (ret)
2209 goto err;
2210
2211 return 0;
2212 err:
2213 destroy_workqueue(nvmet_tcp_wq);
2214 return ret;
2215 }
2216
nvmet_tcp_exit(void)2217 static void __exit nvmet_tcp_exit(void)
2218 {
2219 struct nvmet_tcp_queue *queue;
2220
2221 nvmet_unregister_transport(&nvmet_tcp_ops);
2222
2223 flush_workqueue(nvmet_wq);
2224 mutex_lock(&nvmet_tcp_queue_mutex);
2225 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2226 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2227 mutex_unlock(&nvmet_tcp_queue_mutex);
2228 flush_workqueue(nvmet_wq);
2229
2230 destroy_workqueue(nvmet_tcp_wq);
2231 ida_destroy(&nvmet_tcp_queue_ida);
2232 }
2233
2234 module_init(nvmet_tcp_init);
2235 module_exit(nvmet_tcp_exit);
2236
2237 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2238 MODULE_LICENSE("GPL v2");
2239 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2240