xref: /linux/drivers/nvme/target/tcp.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <linux/nvme-keyring.h>
13 #include <net/sock.h>
14 #include <net/tcp.h>
15 #include <net/tls.h>
16 #include <net/tls_prot.h>
17 #include <net/handshake.h>
18 #include <linux/inet.h>
19 #include <linux/llist.h>
20 #include <crypto/hash.h>
21 #include <trace/events/sock.h>
22 
23 #include "nvmet.h"
24 
25 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
26 #define NVMET_TCP_MAXH2CDATA		0x400000 /* 16M arbitrary limit */
27 #define NVMET_TCP_BACKLOG 128
28 
param_store_val(const char * str,int * val,int min,int max)29 static int param_store_val(const char *str, int *val, int min, int max)
30 {
31 	int ret, new_val;
32 
33 	ret = kstrtoint(str, 10, &new_val);
34 	if (ret)
35 		return -EINVAL;
36 
37 	if (new_val < min || new_val > max)
38 		return -EINVAL;
39 
40 	*val = new_val;
41 	return 0;
42 }
43 
set_params(const char * str,const struct kernel_param * kp)44 static int set_params(const char *str, const struct kernel_param *kp)
45 {
46 	return param_store_val(str, kp->arg, 0, INT_MAX);
47 }
48 
49 static const struct kernel_param_ops set_param_ops = {
50 	.set	= set_params,
51 	.get	= param_get_int,
52 };
53 
54 /* Define the socket priority to use for connections were it is desirable
55  * that the NIC consider performing optimized packet processing or filtering.
56  * A non-zero value being sufficient to indicate general consideration of any
57  * possible optimization.  Making it a module param allows for alternative
58  * values that may be unique for some NIC implementations.
59  */
60 static int so_priority;
61 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
62 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
63 
64 /* Define a time period (in usecs) that io_work() shall sample an activated
65  * queue before determining it to be idle.  This optional module behavior
66  * can enable NIC solutions that support socket optimized packet processing
67  * using advanced interrupt moderation techniques.
68  */
69 static int idle_poll_period_usecs;
70 device_param_cb(idle_poll_period_usecs, &set_param_ops,
71 		&idle_poll_period_usecs, 0644);
72 MODULE_PARM_DESC(idle_poll_period_usecs,
73 		"nvmet tcp io_work poll till idle time period in usecs: Default 0");
74 
75 #ifdef CONFIG_NVME_TARGET_TCP_TLS
76 /*
77  * TLS handshake timeout
78  */
79 static int tls_handshake_timeout = 10;
80 module_param(tls_handshake_timeout, int, 0644);
81 MODULE_PARM_DESC(tls_handshake_timeout,
82 		 "nvme TLS handshake timeout in seconds (default 10)");
83 #endif
84 
85 #define NVMET_TCP_RECV_BUDGET		8
86 #define NVMET_TCP_SEND_BUDGET		8
87 #define NVMET_TCP_IO_WORK_BUDGET	64
88 
89 enum nvmet_tcp_send_state {
90 	NVMET_TCP_SEND_DATA_PDU,
91 	NVMET_TCP_SEND_DATA,
92 	NVMET_TCP_SEND_R2T,
93 	NVMET_TCP_SEND_DDGST,
94 	NVMET_TCP_SEND_RESPONSE
95 };
96 
97 enum nvmet_tcp_recv_state {
98 	NVMET_TCP_RECV_PDU,
99 	NVMET_TCP_RECV_DATA,
100 	NVMET_TCP_RECV_DDGST,
101 	NVMET_TCP_RECV_ERR,
102 };
103 
104 enum {
105 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
106 };
107 
108 struct nvmet_tcp_cmd {
109 	struct nvmet_tcp_queue		*queue;
110 	struct nvmet_req		req;
111 
112 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
113 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
114 	struct nvme_tcp_data_pdu	*data_pdu;
115 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
116 
117 	u32				rbytes_done;
118 	u32				wbytes_done;
119 
120 	u32				pdu_len;
121 	u32				pdu_recv;
122 	int				sg_idx;
123 	char				recv_cbuf[CMSG_LEN(sizeof(char))];
124 	struct msghdr			recv_msg;
125 	struct bio_vec			*iov;
126 	u32				flags;
127 
128 	struct list_head		entry;
129 	struct llist_node		lentry;
130 
131 	/* send state */
132 	u32				offset;
133 	struct scatterlist		*cur_sg;
134 	enum nvmet_tcp_send_state	state;
135 
136 	__le32				exp_ddgst;
137 	__le32				recv_ddgst;
138 };
139 
140 enum nvmet_tcp_queue_state {
141 	NVMET_TCP_Q_CONNECTING,
142 	NVMET_TCP_Q_TLS_HANDSHAKE,
143 	NVMET_TCP_Q_LIVE,
144 	NVMET_TCP_Q_DISCONNECTING,
145 	NVMET_TCP_Q_FAILED,
146 };
147 
148 struct nvmet_tcp_queue {
149 	struct socket		*sock;
150 	struct nvmet_tcp_port	*port;
151 	struct work_struct	io_work;
152 	struct nvmet_cq		nvme_cq;
153 	struct nvmet_sq		nvme_sq;
154 	struct kref		kref;
155 
156 	/* send state */
157 	struct nvmet_tcp_cmd	*cmds;
158 	unsigned int		nr_cmds;
159 	struct list_head	free_list;
160 	struct llist_head	resp_list;
161 	struct list_head	resp_send_list;
162 	int			send_list_len;
163 	struct nvmet_tcp_cmd	*snd_cmd;
164 
165 	/* recv state */
166 	int			offset;
167 	int			left;
168 	enum nvmet_tcp_recv_state rcv_state;
169 	struct nvmet_tcp_cmd	*cmd;
170 	union nvme_tcp_pdu	pdu;
171 
172 	/* digest state */
173 	bool			hdr_digest;
174 	bool			data_digest;
175 	struct ahash_request	*snd_hash;
176 	struct ahash_request	*rcv_hash;
177 
178 	/* TLS state */
179 	key_serial_t		tls_pskid;
180 	struct delayed_work	tls_handshake_tmo_work;
181 
182 	unsigned long           poll_end;
183 
184 	spinlock_t		state_lock;
185 	enum nvmet_tcp_queue_state state;
186 
187 	struct sockaddr_storage	sockaddr;
188 	struct sockaddr_storage	sockaddr_peer;
189 	struct work_struct	release_work;
190 
191 	int			idx;
192 	struct list_head	queue_list;
193 
194 	struct nvmet_tcp_cmd	connect;
195 
196 	struct page_frag_cache	pf_cache;
197 
198 	void (*data_ready)(struct sock *);
199 	void (*state_change)(struct sock *);
200 	void (*write_space)(struct sock *);
201 };
202 
203 struct nvmet_tcp_port {
204 	struct socket		*sock;
205 	struct work_struct	accept_work;
206 	struct nvmet_port	*nport;
207 	struct sockaddr_storage addr;
208 	void (*data_ready)(struct sock *);
209 };
210 
211 static DEFINE_IDA(nvmet_tcp_queue_ida);
212 static LIST_HEAD(nvmet_tcp_queue_list);
213 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
214 
215 static struct workqueue_struct *nvmet_tcp_wq;
216 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
217 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
218 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
219 
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)220 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
221 		struct nvmet_tcp_cmd *cmd)
222 {
223 	if (unlikely(!queue->nr_cmds)) {
224 		/* We didn't allocate cmds yet, send 0xffff */
225 		return USHRT_MAX;
226 	}
227 
228 	return cmd - queue->cmds;
229 }
230 
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)231 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
232 {
233 	return nvme_is_write(cmd->req.cmd) &&
234 		cmd->rbytes_done < cmd->req.transfer_len;
235 }
236 
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)237 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
238 {
239 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
240 }
241 
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)242 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
243 {
244 	return !nvme_is_write(cmd->req.cmd) &&
245 		cmd->req.transfer_len > 0 &&
246 		!cmd->req.cqe->status;
247 }
248 
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)249 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
250 {
251 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
252 		!cmd->rbytes_done;
253 }
254 
255 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)256 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
257 {
258 	struct nvmet_tcp_cmd *cmd;
259 
260 	cmd = list_first_entry_or_null(&queue->free_list,
261 				struct nvmet_tcp_cmd, entry);
262 	if (!cmd)
263 		return NULL;
264 	list_del_init(&cmd->entry);
265 
266 	cmd->rbytes_done = cmd->wbytes_done = 0;
267 	cmd->pdu_len = 0;
268 	cmd->pdu_recv = 0;
269 	cmd->iov = NULL;
270 	cmd->flags = 0;
271 	return cmd;
272 }
273 
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)274 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
275 {
276 	if (unlikely(cmd == &cmd->queue->connect))
277 		return;
278 
279 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
280 }
281 
queue_cpu(struct nvmet_tcp_queue * queue)282 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
283 {
284 	return queue->sock->sk->sk_incoming_cpu;
285 }
286 
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)287 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
288 {
289 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
290 }
291 
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)292 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
293 {
294 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
295 }
296 
nvmet_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)297 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
298 		void *pdu, size_t len)
299 {
300 	struct scatterlist sg;
301 
302 	sg_init_one(&sg, pdu, len);
303 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
304 	crypto_ahash_digest(hash);
305 }
306 
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)307 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
308 	void *pdu, size_t len)
309 {
310 	struct nvme_tcp_hdr *hdr = pdu;
311 	__le32 recv_digest;
312 	__le32 exp_digest;
313 
314 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
315 		pr_err("queue %d: header digest enabled but no header digest\n",
316 			queue->idx);
317 		return -EPROTO;
318 	}
319 
320 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
321 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
322 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
323 	if (recv_digest != exp_digest) {
324 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
325 			queue->idx, le32_to_cpu(recv_digest),
326 			le32_to_cpu(exp_digest));
327 		return -EPROTO;
328 	}
329 
330 	return 0;
331 }
332 
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)333 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
334 {
335 	struct nvme_tcp_hdr *hdr = pdu;
336 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
337 	u32 len;
338 
339 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
340 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
341 
342 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
343 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
344 		return -EPROTO;
345 	}
346 
347 	return 0;
348 }
349 
350 /* If cmd buffers are NULL, no operation is performed */
nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd * cmd)351 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
352 {
353 	kfree(cmd->iov);
354 	sgl_free(cmd->req.sg);
355 	cmd->iov = NULL;
356 	cmd->req.sg = NULL;
357 }
358 
nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd * cmd)359 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
360 {
361 	struct bio_vec *iov = cmd->iov;
362 	struct scatterlist *sg;
363 	u32 length, offset, sg_offset;
364 	int nr_pages;
365 
366 	length = cmd->pdu_len;
367 	nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
368 	offset = cmd->rbytes_done;
369 	cmd->sg_idx = offset / PAGE_SIZE;
370 	sg_offset = offset % PAGE_SIZE;
371 	sg = &cmd->req.sg[cmd->sg_idx];
372 
373 	while (length) {
374 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
375 
376 		bvec_set_page(iov, sg_page(sg), iov_len,
377 				sg->offset + sg_offset);
378 
379 		length -= iov_len;
380 		sg = sg_next(sg);
381 		iov++;
382 		sg_offset = 0;
383 	}
384 
385 	iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
386 		      nr_pages, cmd->pdu_len);
387 }
388 
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)389 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
390 {
391 	queue->rcv_state = NVMET_TCP_RECV_ERR;
392 	if (queue->nvme_sq.ctrl)
393 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
394 	else
395 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
396 }
397 
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)398 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
399 {
400 	queue->rcv_state = NVMET_TCP_RECV_ERR;
401 	if (status == -EPIPE || status == -ECONNRESET)
402 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
403 	else
404 		nvmet_tcp_fatal_error(queue);
405 }
406 
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)407 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
408 {
409 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
410 	u32 len = le32_to_cpu(sgl->length);
411 
412 	if (!len)
413 		return 0;
414 
415 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
416 			  NVME_SGL_FMT_OFFSET)) {
417 		if (!nvme_is_write(cmd->req.cmd))
418 			return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
419 
420 		if (len > cmd->req.port->inline_data_size)
421 			return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
422 		cmd->pdu_len = len;
423 	}
424 	cmd->req.transfer_len += len;
425 
426 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
427 	if (!cmd->req.sg)
428 		return NVME_SC_INTERNAL;
429 	cmd->cur_sg = cmd->req.sg;
430 
431 	if (nvmet_tcp_has_data_in(cmd)) {
432 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
433 				sizeof(*cmd->iov), GFP_KERNEL);
434 		if (!cmd->iov)
435 			goto err;
436 	}
437 
438 	return 0;
439 err:
440 	nvmet_tcp_free_cmd_buffers(cmd);
441 	return NVME_SC_INTERNAL;
442 }
443 
nvmet_tcp_calc_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)444 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
445 		struct nvmet_tcp_cmd *cmd)
446 {
447 	ahash_request_set_crypt(hash, cmd->req.sg,
448 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
449 	crypto_ahash_digest(hash);
450 }
451 
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)452 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
453 {
454 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
455 	struct nvmet_tcp_queue *queue = cmd->queue;
456 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
457 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
458 
459 	cmd->offset = 0;
460 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
461 
462 	pdu->hdr.type = nvme_tcp_c2h_data;
463 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
464 						NVME_TCP_F_DATA_SUCCESS : 0);
465 	pdu->hdr.hlen = sizeof(*pdu);
466 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
467 	pdu->hdr.plen =
468 		cpu_to_le32(pdu->hdr.hlen + hdgst +
469 				cmd->req.transfer_len + ddgst);
470 	pdu->command_id = cmd->req.cqe->command_id;
471 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
472 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
473 
474 	if (queue->data_digest) {
475 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
476 		nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
477 	}
478 
479 	if (cmd->queue->hdr_digest) {
480 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
481 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
482 	}
483 }
484 
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)485 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
486 {
487 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
488 	struct nvmet_tcp_queue *queue = cmd->queue;
489 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
490 
491 	cmd->offset = 0;
492 	cmd->state = NVMET_TCP_SEND_R2T;
493 
494 	pdu->hdr.type = nvme_tcp_r2t;
495 	pdu->hdr.flags = 0;
496 	pdu->hdr.hlen = sizeof(*pdu);
497 	pdu->hdr.pdo = 0;
498 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
499 
500 	pdu->command_id = cmd->req.cmd->common.command_id;
501 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
502 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
503 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
504 	if (cmd->queue->hdr_digest) {
505 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
506 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
507 	}
508 }
509 
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)510 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
511 {
512 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
513 	struct nvmet_tcp_queue *queue = cmd->queue;
514 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
515 
516 	cmd->offset = 0;
517 	cmd->state = NVMET_TCP_SEND_RESPONSE;
518 
519 	pdu->hdr.type = nvme_tcp_rsp;
520 	pdu->hdr.flags = 0;
521 	pdu->hdr.hlen = sizeof(*pdu);
522 	pdu->hdr.pdo = 0;
523 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
524 	if (cmd->queue->hdr_digest) {
525 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
526 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
527 	}
528 }
529 
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)530 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
531 {
532 	struct llist_node *node;
533 	struct nvmet_tcp_cmd *cmd;
534 
535 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
536 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
537 		list_add(&cmd->entry, &queue->resp_send_list);
538 		queue->send_list_len++;
539 	}
540 }
541 
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)542 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
543 {
544 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
545 				struct nvmet_tcp_cmd, entry);
546 	if (!queue->snd_cmd) {
547 		nvmet_tcp_process_resp_list(queue);
548 		queue->snd_cmd =
549 			list_first_entry_or_null(&queue->resp_send_list,
550 					struct nvmet_tcp_cmd, entry);
551 		if (unlikely(!queue->snd_cmd))
552 			return NULL;
553 	}
554 
555 	list_del_init(&queue->snd_cmd->entry);
556 	queue->send_list_len--;
557 
558 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
559 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
560 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
561 		nvmet_setup_r2t_pdu(queue->snd_cmd);
562 	else
563 		nvmet_setup_response_pdu(queue->snd_cmd);
564 
565 	return queue->snd_cmd;
566 }
567 
nvmet_tcp_queue_response(struct nvmet_req * req)568 static void nvmet_tcp_queue_response(struct nvmet_req *req)
569 {
570 	struct nvmet_tcp_cmd *cmd =
571 		container_of(req, struct nvmet_tcp_cmd, req);
572 	struct nvmet_tcp_queue	*queue = cmd->queue;
573 	enum nvmet_tcp_recv_state queue_state;
574 	struct nvmet_tcp_cmd *queue_cmd;
575 	struct nvme_sgl_desc *sgl;
576 	u32 len;
577 
578 	/* Pairs with store_release in nvmet_prepare_receive_pdu() */
579 	queue_state = smp_load_acquire(&queue->rcv_state);
580 	queue_cmd = READ_ONCE(queue->cmd);
581 
582 	if (unlikely(cmd == queue_cmd)) {
583 		sgl = &cmd->req.cmd->common.dptr.sgl;
584 		len = le32_to_cpu(sgl->length);
585 
586 		/*
587 		 * Wait for inline data before processing the response.
588 		 * Avoid using helpers, this might happen before
589 		 * nvmet_req_init is completed.
590 		 */
591 		if (queue_state == NVMET_TCP_RECV_PDU &&
592 		    len && len <= cmd->req.port->inline_data_size &&
593 		    nvme_is_write(cmd->req.cmd))
594 			return;
595 	}
596 
597 	llist_add(&cmd->lentry, &queue->resp_list);
598 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
599 }
600 
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)601 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
602 {
603 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
604 		nvmet_tcp_queue_response(&cmd->req);
605 	else
606 		cmd->req.execute(&cmd->req);
607 }
608 
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)609 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
610 {
611 	struct msghdr msg = {
612 		.msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
613 	};
614 	struct bio_vec bvec;
615 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
616 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
617 	int ret;
618 
619 	bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
620 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
621 	ret = sock_sendmsg(cmd->queue->sock, &msg);
622 	if (ret <= 0)
623 		return ret;
624 
625 	cmd->offset += ret;
626 	left -= ret;
627 
628 	if (left)
629 		return -EAGAIN;
630 
631 	cmd->state = NVMET_TCP_SEND_DATA;
632 	cmd->offset  = 0;
633 	return 1;
634 }
635 
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)636 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
637 {
638 	struct nvmet_tcp_queue *queue = cmd->queue;
639 	int ret;
640 
641 	while (cmd->cur_sg) {
642 		struct msghdr msg = {
643 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
644 		};
645 		struct page *page = sg_page(cmd->cur_sg);
646 		struct bio_vec bvec;
647 		u32 left = cmd->cur_sg->length - cmd->offset;
648 
649 		if ((!last_in_batch && cmd->queue->send_list_len) ||
650 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
651 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
652 			msg.msg_flags |= MSG_MORE;
653 
654 		bvec_set_page(&bvec, page, left, cmd->offset);
655 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
656 		ret = sock_sendmsg(cmd->queue->sock, &msg);
657 		if (ret <= 0)
658 			return ret;
659 
660 		cmd->offset += ret;
661 		cmd->wbytes_done += ret;
662 
663 		/* Done with sg?*/
664 		if (cmd->offset == cmd->cur_sg->length) {
665 			cmd->cur_sg = sg_next(cmd->cur_sg);
666 			cmd->offset = 0;
667 		}
668 	}
669 
670 	if (queue->data_digest) {
671 		cmd->state = NVMET_TCP_SEND_DDGST;
672 		cmd->offset = 0;
673 	} else {
674 		if (queue->nvme_sq.sqhd_disabled) {
675 			cmd->queue->snd_cmd = NULL;
676 			nvmet_tcp_put_cmd(cmd);
677 		} else {
678 			nvmet_setup_response_pdu(cmd);
679 		}
680 	}
681 
682 	if (queue->nvme_sq.sqhd_disabled)
683 		nvmet_tcp_free_cmd_buffers(cmd);
684 
685 	return 1;
686 
687 }
688 
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)689 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
690 		bool last_in_batch)
691 {
692 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
693 	struct bio_vec bvec;
694 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
695 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
696 	int ret;
697 
698 	if (!last_in_batch && cmd->queue->send_list_len)
699 		msg.msg_flags |= MSG_MORE;
700 	else
701 		msg.msg_flags |= MSG_EOR;
702 
703 	bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
704 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
705 	ret = sock_sendmsg(cmd->queue->sock, &msg);
706 	if (ret <= 0)
707 		return ret;
708 	cmd->offset += ret;
709 	left -= ret;
710 
711 	if (left)
712 		return -EAGAIN;
713 
714 	nvmet_tcp_free_cmd_buffers(cmd);
715 	cmd->queue->snd_cmd = NULL;
716 	nvmet_tcp_put_cmd(cmd);
717 	return 1;
718 }
719 
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)720 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
721 {
722 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
723 	struct bio_vec bvec;
724 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
725 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
726 	int ret;
727 
728 	if (!last_in_batch && cmd->queue->send_list_len)
729 		msg.msg_flags |= MSG_MORE;
730 	else
731 		msg.msg_flags |= MSG_EOR;
732 
733 	bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
734 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
735 	ret = sock_sendmsg(cmd->queue->sock, &msg);
736 	if (ret <= 0)
737 		return ret;
738 	cmd->offset += ret;
739 	left -= ret;
740 
741 	if (left)
742 		return -EAGAIN;
743 
744 	cmd->queue->snd_cmd = NULL;
745 	return 1;
746 }
747 
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)748 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
749 {
750 	struct nvmet_tcp_queue *queue = cmd->queue;
751 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
752 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
753 	struct kvec iov = {
754 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
755 		.iov_len = left
756 	};
757 	int ret;
758 
759 	if (!last_in_batch && cmd->queue->send_list_len)
760 		msg.msg_flags |= MSG_MORE;
761 	else
762 		msg.msg_flags |= MSG_EOR;
763 
764 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
765 	if (unlikely(ret <= 0))
766 		return ret;
767 
768 	cmd->offset += ret;
769 	left -= ret;
770 
771 	if (left)
772 		return -EAGAIN;
773 
774 	if (queue->nvme_sq.sqhd_disabled) {
775 		cmd->queue->snd_cmd = NULL;
776 		nvmet_tcp_put_cmd(cmd);
777 	} else {
778 		nvmet_setup_response_pdu(cmd);
779 	}
780 	return 1;
781 }
782 
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)783 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
784 		bool last_in_batch)
785 {
786 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
787 	int ret = 0;
788 
789 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
790 		cmd = nvmet_tcp_fetch_cmd(queue);
791 		if (unlikely(!cmd))
792 			return 0;
793 	}
794 
795 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
796 		ret = nvmet_try_send_data_pdu(cmd);
797 		if (ret <= 0)
798 			goto done_send;
799 	}
800 
801 	if (cmd->state == NVMET_TCP_SEND_DATA) {
802 		ret = nvmet_try_send_data(cmd, last_in_batch);
803 		if (ret <= 0)
804 			goto done_send;
805 	}
806 
807 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
808 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
809 		if (ret <= 0)
810 			goto done_send;
811 	}
812 
813 	if (cmd->state == NVMET_TCP_SEND_R2T) {
814 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
815 		if (ret <= 0)
816 			goto done_send;
817 	}
818 
819 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
820 		ret = nvmet_try_send_response(cmd, last_in_batch);
821 
822 done_send:
823 	if (ret < 0) {
824 		if (ret == -EAGAIN)
825 			return 0;
826 		return ret;
827 	}
828 
829 	return 1;
830 }
831 
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)832 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
833 		int budget, int *sends)
834 {
835 	int i, ret = 0;
836 
837 	for (i = 0; i < budget; i++) {
838 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
839 		if (unlikely(ret < 0)) {
840 			nvmet_tcp_socket_error(queue, ret);
841 			goto done;
842 		} else if (ret == 0) {
843 			break;
844 		}
845 		(*sends)++;
846 	}
847 done:
848 	return ret;
849 }
850 
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)851 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
852 {
853 	queue->offset = 0;
854 	queue->left = sizeof(struct nvme_tcp_hdr);
855 	WRITE_ONCE(queue->cmd, NULL);
856 	/* Ensure rcv_state is visible only after queue->cmd is set */
857 	smp_store_release(&queue->rcv_state, NVMET_TCP_RECV_PDU);
858 }
859 
nvmet_tcp_free_crypto(struct nvmet_tcp_queue * queue)860 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
861 {
862 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
863 
864 	ahash_request_free(queue->rcv_hash);
865 	ahash_request_free(queue->snd_hash);
866 	crypto_free_ahash(tfm);
867 }
868 
nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue * queue)869 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
870 {
871 	struct crypto_ahash *tfm;
872 
873 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
874 	if (IS_ERR(tfm))
875 		return PTR_ERR(tfm);
876 
877 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
878 	if (!queue->snd_hash)
879 		goto free_tfm;
880 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
881 
882 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
883 	if (!queue->rcv_hash)
884 		goto free_snd_hash;
885 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
886 
887 	return 0;
888 free_snd_hash:
889 	ahash_request_free(queue->snd_hash);
890 free_tfm:
891 	crypto_free_ahash(tfm);
892 	return -ENOMEM;
893 }
894 
895 
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)896 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
897 {
898 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
899 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
900 	struct msghdr msg = {};
901 	struct kvec iov;
902 	int ret;
903 
904 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
905 		pr_err("bad nvme-tcp pdu length (%d)\n",
906 			le32_to_cpu(icreq->hdr.plen));
907 		nvmet_tcp_fatal_error(queue);
908 		return -EPROTO;
909 	}
910 
911 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
912 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
913 		return -EPROTO;
914 	}
915 
916 	if (icreq->hpda != 0) {
917 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
918 			icreq->hpda);
919 		return -EPROTO;
920 	}
921 
922 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
923 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
924 	if (queue->hdr_digest || queue->data_digest) {
925 		ret = nvmet_tcp_alloc_crypto(queue);
926 		if (ret)
927 			return ret;
928 	}
929 
930 	memset(icresp, 0, sizeof(*icresp));
931 	icresp->hdr.type = nvme_tcp_icresp;
932 	icresp->hdr.hlen = sizeof(*icresp);
933 	icresp->hdr.pdo = 0;
934 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
935 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
936 	icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
937 	icresp->cpda = 0;
938 	if (queue->hdr_digest)
939 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
940 	if (queue->data_digest)
941 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
942 
943 	iov.iov_base = icresp;
944 	iov.iov_len = sizeof(*icresp);
945 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
946 	if (ret < 0) {
947 		queue->state = NVMET_TCP_Q_FAILED;
948 		return ret; /* queue removal will cleanup */
949 	}
950 
951 	queue->state = NVMET_TCP_Q_LIVE;
952 	nvmet_prepare_receive_pdu(queue);
953 	return 0;
954 }
955 
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)956 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
957 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
958 {
959 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
960 	int ret;
961 
962 	/*
963 	 * This command has not been processed yet, hence we are trying to
964 	 * figure out if there is still pending data left to receive. If
965 	 * we don't, we can simply prepare for the next pdu and bail out,
966 	 * otherwise we will need to prepare a buffer and receive the
967 	 * stale data before continuing forward.
968 	 */
969 	if (!nvme_is_write(cmd->req.cmd) || !data_len ||
970 	    data_len > cmd->req.port->inline_data_size) {
971 		nvmet_prepare_receive_pdu(queue);
972 		return;
973 	}
974 
975 	ret = nvmet_tcp_map_data(cmd);
976 	if (unlikely(ret)) {
977 		pr_err("queue %d: failed to map data\n", queue->idx);
978 		nvmet_tcp_fatal_error(queue);
979 		return;
980 	}
981 
982 	queue->rcv_state = NVMET_TCP_RECV_DATA;
983 	nvmet_tcp_build_pdu_iovec(cmd);
984 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
985 }
986 
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)987 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
988 {
989 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
990 	struct nvmet_tcp_cmd *cmd;
991 	unsigned int exp_data_len;
992 
993 	if (likely(queue->nr_cmds)) {
994 		if (unlikely(data->ttag >= queue->nr_cmds)) {
995 			pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
996 				queue->idx, data->ttag, queue->nr_cmds);
997 			goto err_proto;
998 		}
999 		cmd = &queue->cmds[data->ttag];
1000 	} else {
1001 		cmd = &queue->connect;
1002 	}
1003 
1004 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
1005 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
1006 			data->ttag, le32_to_cpu(data->data_offset),
1007 			cmd->rbytes_done);
1008 		goto err_proto;
1009 	}
1010 
1011 	exp_data_len = le32_to_cpu(data->hdr.plen) -
1012 			nvmet_tcp_hdgst_len(queue) -
1013 			nvmet_tcp_ddgst_len(queue) -
1014 			sizeof(*data);
1015 
1016 	cmd->pdu_len = le32_to_cpu(data->data_length);
1017 	if (unlikely(cmd->pdu_len != exp_data_len ||
1018 		     cmd->pdu_len == 0 ||
1019 		     cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
1020 		pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
1021 		goto err_proto;
1022 	}
1023 	cmd->pdu_recv = 0;
1024 	nvmet_tcp_build_pdu_iovec(cmd);
1025 	queue->cmd = cmd;
1026 	queue->rcv_state = NVMET_TCP_RECV_DATA;
1027 
1028 	return 0;
1029 
1030 err_proto:
1031 	/* FIXME: use proper transport errors */
1032 	nvmet_tcp_fatal_error(queue);
1033 	return -EPROTO;
1034 }
1035 
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)1036 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1037 {
1038 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1039 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1040 	struct nvmet_req *req;
1041 	int ret;
1042 
1043 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1044 		if (hdr->type != nvme_tcp_icreq) {
1045 			pr_err("unexpected pdu type (%d) before icreq\n",
1046 				hdr->type);
1047 			nvmet_tcp_fatal_error(queue);
1048 			return -EPROTO;
1049 		}
1050 		return nvmet_tcp_handle_icreq(queue);
1051 	}
1052 
1053 	if (unlikely(hdr->type == nvme_tcp_icreq)) {
1054 		pr_err("queue %d: received icreq pdu in state %d\n",
1055 			queue->idx, queue->state);
1056 		nvmet_tcp_fatal_error(queue);
1057 		return -EPROTO;
1058 	}
1059 
1060 	if (hdr->type == nvme_tcp_h2c_data) {
1061 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1062 		if (unlikely(ret))
1063 			return ret;
1064 		return 0;
1065 	}
1066 
1067 	queue->cmd = nvmet_tcp_get_cmd(queue);
1068 	if (unlikely(!queue->cmd)) {
1069 		/* This should never happen */
1070 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1071 			queue->idx, queue->nr_cmds, queue->send_list_len,
1072 			nvme_cmd->common.opcode);
1073 		nvmet_tcp_fatal_error(queue);
1074 		return -ENOMEM;
1075 	}
1076 
1077 	req = &queue->cmd->req;
1078 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1079 
1080 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1081 			&queue->nvme_sq, &nvmet_tcp_ops))) {
1082 		pr_err("failed cmd %p id %d opcode %d, data_len: %d, status: %04x\n",
1083 			req->cmd, req->cmd->common.command_id,
1084 			req->cmd->common.opcode,
1085 			le32_to_cpu(req->cmd->common.dptr.sgl.length),
1086 			le16_to_cpu(req->cqe->status));
1087 
1088 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1089 		return 0;
1090 	}
1091 
1092 	ret = nvmet_tcp_map_data(queue->cmd);
1093 	if (unlikely(ret)) {
1094 		pr_err("queue %d: failed to map data\n", queue->idx);
1095 		if (nvmet_tcp_has_inline_data(queue->cmd))
1096 			nvmet_tcp_fatal_error(queue);
1097 		else
1098 			nvmet_req_complete(req, ret);
1099 		ret = -EAGAIN;
1100 		goto out;
1101 	}
1102 
1103 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1104 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1105 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1106 			nvmet_tcp_build_pdu_iovec(queue->cmd);
1107 			return 0;
1108 		}
1109 		/* send back R2T */
1110 		nvmet_tcp_queue_response(&queue->cmd->req);
1111 		goto out;
1112 	}
1113 
1114 	queue->cmd->req.execute(&queue->cmd->req);
1115 out:
1116 	nvmet_prepare_receive_pdu(queue);
1117 	return ret;
1118 }
1119 
1120 static const u8 nvme_tcp_pdu_sizes[] = {
1121 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1122 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1123 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1124 };
1125 
nvmet_tcp_pdu_size(u8 type)1126 static inline u8 nvmet_tcp_pdu_size(u8 type)
1127 {
1128 	size_t idx = type;
1129 
1130 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1131 		nvme_tcp_pdu_sizes[idx]) ?
1132 			nvme_tcp_pdu_sizes[idx] : 0;
1133 }
1134 
nvmet_tcp_pdu_valid(u8 type)1135 static inline bool nvmet_tcp_pdu_valid(u8 type)
1136 {
1137 	switch (type) {
1138 	case nvme_tcp_icreq:
1139 	case nvme_tcp_cmd:
1140 	case nvme_tcp_h2c_data:
1141 		/* fallthru */
1142 		return true;
1143 	}
1144 
1145 	return false;
1146 }
1147 
nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue * queue,struct msghdr * msg,char * cbuf)1148 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1149 		struct msghdr *msg, char *cbuf)
1150 {
1151 	struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1152 	u8 ctype, level, description;
1153 	int ret = 0;
1154 
1155 	ctype = tls_get_record_type(queue->sock->sk, cmsg);
1156 	switch (ctype) {
1157 	case 0:
1158 		break;
1159 	case TLS_RECORD_TYPE_DATA:
1160 		break;
1161 	case TLS_RECORD_TYPE_ALERT:
1162 		tls_alert_recv(queue->sock->sk, msg, &level, &description);
1163 		if (level == TLS_ALERT_LEVEL_FATAL) {
1164 			pr_err("queue %d: TLS Alert desc %u\n",
1165 			       queue->idx, description);
1166 			ret = -ENOTCONN;
1167 		} else {
1168 			pr_warn("queue %d: TLS Alert desc %u\n",
1169 			       queue->idx, description);
1170 			ret = -EAGAIN;
1171 		}
1172 		break;
1173 	default:
1174 		/* discard this record type */
1175 		pr_err("queue %d: TLS record %d unhandled\n",
1176 		       queue->idx, ctype);
1177 		ret = -EAGAIN;
1178 		break;
1179 	}
1180 	return ret;
1181 }
1182 
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1183 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1184 {
1185 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1186 	int len, ret;
1187 	struct kvec iov;
1188 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1189 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1190 
1191 recv:
1192 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1193 	iov.iov_len = queue->left;
1194 	if (queue->tls_pskid) {
1195 		msg.msg_control = cbuf;
1196 		msg.msg_controllen = sizeof(cbuf);
1197 	}
1198 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1199 			iov.iov_len, msg.msg_flags);
1200 	if (unlikely(len < 0))
1201 		return len;
1202 	if (queue->tls_pskid) {
1203 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1204 		if (ret < 0)
1205 			return ret;
1206 	}
1207 
1208 	queue->offset += len;
1209 	queue->left -= len;
1210 	if (queue->left)
1211 		return -EAGAIN;
1212 
1213 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1214 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1215 
1216 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1217 			pr_err("unexpected pdu type %d\n", hdr->type);
1218 			nvmet_tcp_fatal_error(queue);
1219 			return -EIO;
1220 		}
1221 
1222 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1223 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1224 			return -EIO;
1225 		}
1226 
1227 		queue->left = hdr->hlen - queue->offset + hdgst;
1228 		goto recv;
1229 	}
1230 
1231 	if (queue->hdr_digest &&
1232 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1233 		nvmet_tcp_fatal_error(queue); /* fatal */
1234 		return -EPROTO;
1235 	}
1236 
1237 	if (queue->data_digest &&
1238 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1239 		nvmet_tcp_fatal_error(queue); /* fatal */
1240 		return -EPROTO;
1241 	}
1242 
1243 	return nvmet_tcp_done_recv_pdu(queue);
1244 }
1245 
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1246 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1247 {
1248 	struct nvmet_tcp_queue *queue = cmd->queue;
1249 
1250 	nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1251 	queue->offset = 0;
1252 	queue->left = NVME_TCP_DIGEST_LENGTH;
1253 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1254 }
1255 
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1256 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1257 {
1258 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1259 	int len, ret;
1260 
1261 	while (msg_data_left(&cmd->recv_msg)) {
1262 		len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1263 			cmd->recv_msg.msg_flags);
1264 		if (len <= 0)
1265 			return len;
1266 		if (queue->tls_pskid) {
1267 			ret = nvmet_tcp_tls_record_ok(cmd->queue,
1268 					&cmd->recv_msg, cmd->recv_cbuf);
1269 			if (ret < 0)
1270 				return ret;
1271 		}
1272 
1273 		cmd->pdu_recv += len;
1274 		cmd->rbytes_done += len;
1275 	}
1276 
1277 	if (queue->data_digest) {
1278 		nvmet_tcp_prep_recv_ddgst(cmd);
1279 		return 0;
1280 	}
1281 
1282 	if (cmd->rbytes_done == cmd->req.transfer_len)
1283 		nvmet_tcp_execute_request(cmd);
1284 
1285 	nvmet_prepare_receive_pdu(queue);
1286 	return 0;
1287 }
1288 
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1289 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1290 {
1291 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1292 	int ret, len;
1293 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1294 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1295 	struct kvec iov = {
1296 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1297 		.iov_len = queue->left
1298 	};
1299 
1300 	if (queue->tls_pskid) {
1301 		msg.msg_control = cbuf;
1302 		msg.msg_controllen = sizeof(cbuf);
1303 	}
1304 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1305 			iov.iov_len, msg.msg_flags);
1306 	if (unlikely(len < 0))
1307 		return len;
1308 	if (queue->tls_pskid) {
1309 		ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1310 		if (ret < 0)
1311 			return ret;
1312 	}
1313 
1314 	queue->offset += len;
1315 	queue->left -= len;
1316 	if (queue->left)
1317 		return -EAGAIN;
1318 
1319 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1320 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1321 			queue->idx, cmd->req.cmd->common.command_id,
1322 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1323 			le32_to_cpu(cmd->exp_ddgst));
1324 		nvmet_req_uninit(&cmd->req);
1325 		nvmet_tcp_free_cmd_buffers(cmd);
1326 		nvmet_tcp_fatal_error(queue);
1327 		ret = -EPROTO;
1328 		goto out;
1329 	}
1330 
1331 	if (cmd->rbytes_done == cmd->req.transfer_len)
1332 		nvmet_tcp_execute_request(cmd);
1333 
1334 	ret = 0;
1335 out:
1336 	nvmet_prepare_receive_pdu(queue);
1337 	return ret;
1338 }
1339 
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1340 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1341 {
1342 	int result = 0;
1343 
1344 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1345 		return 0;
1346 
1347 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1348 		result = nvmet_tcp_try_recv_pdu(queue);
1349 		if (result != 0)
1350 			goto done_recv;
1351 	}
1352 
1353 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1354 		result = nvmet_tcp_try_recv_data(queue);
1355 		if (result != 0)
1356 			goto done_recv;
1357 	}
1358 
1359 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1360 		result = nvmet_tcp_try_recv_ddgst(queue);
1361 		if (result != 0)
1362 			goto done_recv;
1363 	}
1364 
1365 done_recv:
1366 	if (result < 0) {
1367 		if (result == -EAGAIN)
1368 			return 0;
1369 		return result;
1370 	}
1371 	return 1;
1372 }
1373 
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1374 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1375 		int budget, int *recvs)
1376 {
1377 	int i, ret = 0;
1378 
1379 	for (i = 0; i < budget; i++) {
1380 		ret = nvmet_tcp_try_recv_one(queue);
1381 		if (unlikely(ret < 0)) {
1382 			nvmet_tcp_socket_error(queue, ret);
1383 			goto done;
1384 		} else if (ret == 0) {
1385 			break;
1386 		}
1387 		(*recvs)++;
1388 	}
1389 done:
1390 	return ret;
1391 }
1392 
nvmet_tcp_release_queue(struct kref * kref)1393 static void nvmet_tcp_release_queue(struct kref *kref)
1394 {
1395 	struct nvmet_tcp_queue *queue =
1396 		container_of(kref, struct nvmet_tcp_queue, kref);
1397 
1398 	WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1399 	queue_work(nvmet_wq, &queue->release_work);
1400 }
1401 
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1402 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1403 {
1404 	spin_lock_bh(&queue->state_lock);
1405 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1406 		/* Socket closed during handshake */
1407 		tls_handshake_cancel(queue->sock->sk);
1408 	}
1409 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1410 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1411 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1412 	}
1413 	spin_unlock_bh(&queue->state_lock);
1414 }
1415 
nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1416 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1417 {
1418 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1419 }
1420 
nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1421 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1422 		int ops)
1423 {
1424 	if (!idle_poll_period_usecs)
1425 		return false;
1426 
1427 	if (ops)
1428 		nvmet_tcp_arm_queue_deadline(queue);
1429 
1430 	return !time_after(jiffies, queue->poll_end);
1431 }
1432 
nvmet_tcp_io_work(struct work_struct * w)1433 static void nvmet_tcp_io_work(struct work_struct *w)
1434 {
1435 	struct nvmet_tcp_queue *queue =
1436 		container_of(w, struct nvmet_tcp_queue, io_work);
1437 	bool pending;
1438 	int ret, ops = 0;
1439 
1440 	do {
1441 		pending = false;
1442 
1443 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1444 		if (ret > 0)
1445 			pending = true;
1446 		else if (ret < 0)
1447 			return;
1448 
1449 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1450 		if (ret > 0)
1451 			pending = true;
1452 		else if (ret < 0)
1453 			return;
1454 
1455 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1456 
1457 	/*
1458 	 * Requeue the worker if idle deadline period is in progress or any
1459 	 * ops activity was recorded during the do-while loop above.
1460 	 */
1461 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1462 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1463 }
1464 
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1465 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1466 		struct nvmet_tcp_cmd *c)
1467 {
1468 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1469 
1470 	c->queue = queue;
1471 	c->req.port = queue->port->nport;
1472 
1473 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1474 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1475 	if (!c->cmd_pdu)
1476 		return -ENOMEM;
1477 	c->req.cmd = &c->cmd_pdu->cmd;
1478 
1479 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1480 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1481 	if (!c->rsp_pdu)
1482 		goto out_free_cmd;
1483 	c->req.cqe = &c->rsp_pdu->cqe;
1484 
1485 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1486 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1487 	if (!c->data_pdu)
1488 		goto out_free_rsp;
1489 
1490 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1491 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1492 	if (!c->r2t_pdu)
1493 		goto out_free_data;
1494 
1495 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1496 		c->recv_msg.msg_control = c->recv_cbuf;
1497 		c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1498 	}
1499 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1500 
1501 	list_add_tail(&c->entry, &queue->free_list);
1502 
1503 	return 0;
1504 out_free_data:
1505 	page_frag_free(c->data_pdu);
1506 out_free_rsp:
1507 	page_frag_free(c->rsp_pdu);
1508 out_free_cmd:
1509 	page_frag_free(c->cmd_pdu);
1510 	return -ENOMEM;
1511 }
1512 
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1513 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1514 {
1515 	page_frag_free(c->r2t_pdu);
1516 	page_frag_free(c->data_pdu);
1517 	page_frag_free(c->rsp_pdu);
1518 	page_frag_free(c->cmd_pdu);
1519 }
1520 
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1521 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1522 {
1523 	struct nvmet_tcp_cmd *cmds;
1524 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1525 
1526 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1527 	if (!cmds)
1528 		goto out;
1529 
1530 	for (i = 0; i < nr_cmds; i++) {
1531 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1532 		if (ret)
1533 			goto out_free;
1534 	}
1535 
1536 	queue->cmds = cmds;
1537 
1538 	return 0;
1539 out_free:
1540 	while (--i >= 0)
1541 		nvmet_tcp_free_cmd(cmds + i);
1542 	kfree(cmds);
1543 out:
1544 	return ret;
1545 }
1546 
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1547 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1548 {
1549 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1550 	int i;
1551 
1552 	for (i = 0; i < queue->nr_cmds; i++)
1553 		nvmet_tcp_free_cmd(cmds + i);
1554 
1555 	nvmet_tcp_free_cmd(&queue->connect);
1556 	kfree(cmds);
1557 }
1558 
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1559 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1560 {
1561 	struct socket *sock = queue->sock;
1562 
1563 	write_lock_bh(&sock->sk->sk_callback_lock);
1564 	sock->sk->sk_data_ready =  queue->data_ready;
1565 	sock->sk->sk_state_change = queue->state_change;
1566 	sock->sk->sk_write_space = queue->write_space;
1567 	sock->sk->sk_user_data = NULL;
1568 	write_unlock_bh(&sock->sk->sk_callback_lock);
1569 }
1570 
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1571 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1572 {
1573 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1574 	int i;
1575 
1576 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1577 		if (nvmet_tcp_need_data_in(cmd))
1578 			nvmet_req_uninit(&cmd->req);
1579 	}
1580 
1581 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1582 		/* failed in connect */
1583 		nvmet_req_uninit(&queue->connect.req);
1584 	}
1585 }
1586 
nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue * queue)1587 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1588 {
1589 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1590 	int i;
1591 
1592 	for (i = 0; i < queue->nr_cmds; i++, cmd++)
1593 		nvmet_tcp_free_cmd_buffers(cmd);
1594 	nvmet_tcp_free_cmd_buffers(&queue->connect);
1595 }
1596 
nvmet_tcp_release_queue_work(struct work_struct * w)1597 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1598 {
1599 	struct nvmet_tcp_queue *queue =
1600 		container_of(w, struct nvmet_tcp_queue, release_work);
1601 
1602 	mutex_lock(&nvmet_tcp_queue_mutex);
1603 	list_del_init(&queue->queue_list);
1604 	mutex_unlock(&nvmet_tcp_queue_mutex);
1605 
1606 	nvmet_tcp_restore_socket_callbacks(queue);
1607 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1608 	cancel_work_sync(&queue->io_work);
1609 	/* stop accepting incoming data */
1610 	queue->rcv_state = NVMET_TCP_RECV_ERR;
1611 
1612 	nvmet_sq_put_tls_key(&queue->nvme_sq);
1613 	nvmet_tcp_uninit_data_in_cmds(queue);
1614 	nvmet_sq_destroy(&queue->nvme_sq);
1615 	cancel_work_sync(&queue->io_work);
1616 	nvmet_tcp_free_cmd_data_in_buffers(queue);
1617 	/* ->sock will be released by fput() */
1618 	fput(queue->sock->file);
1619 	nvmet_tcp_free_cmds(queue);
1620 	if (queue->hdr_digest || queue->data_digest)
1621 		nvmet_tcp_free_crypto(queue);
1622 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1623 	page_frag_cache_drain(&queue->pf_cache);
1624 	kfree(queue);
1625 }
1626 
nvmet_tcp_data_ready(struct sock * sk)1627 static void nvmet_tcp_data_ready(struct sock *sk)
1628 {
1629 	struct nvmet_tcp_queue *queue;
1630 
1631 	trace_sk_data_ready(sk);
1632 
1633 	read_lock_bh(&sk->sk_callback_lock);
1634 	queue = sk->sk_user_data;
1635 	if (likely(queue)) {
1636 		if (queue->data_ready)
1637 			queue->data_ready(sk);
1638 		if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1639 			queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1640 				      &queue->io_work);
1641 	}
1642 	read_unlock_bh(&sk->sk_callback_lock);
1643 }
1644 
nvmet_tcp_write_space(struct sock * sk)1645 static void nvmet_tcp_write_space(struct sock *sk)
1646 {
1647 	struct nvmet_tcp_queue *queue;
1648 
1649 	read_lock_bh(&sk->sk_callback_lock);
1650 	queue = sk->sk_user_data;
1651 	if (unlikely(!queue))
1652 		goto out;
1653 
1654 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1655 		queue->write_space(sk);
1656 		goto out;
1657 	}
1658 
1659 	if (sk_stream_is_writeable(sk)) {
1660 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1661 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1662 	}
1663 out:
1664 	read_unlock_bh(&sk->sk_callback_lock);
1665 }
1666 
nvmet_tcp_state_change(struct sock * sk)1667 static void nvmet_tcp_state_change(struct sock *sk)
1668 {
1669 	struct nvmet_tcp_queue *queue;
1670 
1671 	read_lock_bh(&sk->sk_callback_lock);
1672 	queue = sk->sk_user_data;
1673 	if (!queue)
1674 		goto done;
1675 
1676 	switch (sk->sk_state) {
1677 	case TCP_FIN_WAIT2:
1678 	case TCP_LAST_ACK:
1679 		break;
1680 	case TCP_FIN_WAIT1:
1681 	case TCP_CLOSE_WAIT:
1682 	case TCP_CLOSE:
1683 		/* FALLTHRU */
1684 		nvmet_tcp_schedule_release_queue(queue);
1685 		break;
1686 	default:
1687 		pr_warn("queue %d unhandled state %d\n",
1688 			queue->idx, sk->sk_state);
1689 	}
1690 done:
1691 	read_unlock_bh(&sk->sk_callback_lock);
1692 }
1693 
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1694 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1695 {
1696 	struct socket *sock = queue->sock;
1697 	struct inet_sock *inet = inet_sk(sock->sk);
1698 	int ret;
1699 
1700 	ret = kernel_getsockname(sock,
1701 		(struct sockaddr *)&queue->sockaddr);
1702 	if (ret < 0)
1703 		return ret;
1704 
1705 	ret = kernel_getpeername(sock,
1706 		(struct sockaddr *)&queue->sockaddr_peer);
1707 	if (ret < 0)
1708 		return ret;
1709 
1710 	/*
1711 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1712 	 * close. This is done to prevent stale data from being sent should
1713 	 * the network connection be restored before TCP times out.
1714 	 */
1715 	sock_no_linger(sock->sk);
1716 
1717 	if (so_priority > 0)
1718 		sock_set_priority(sock->sk, so_priority);
1719 
1720 	/* Set socket type of service */
1721 	if (inet->rcv_tos > 0)
1722 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1723 
1724 	ret = 0;
1725 	write_lock_bh(&sock->sk->sk_callback_lock);
1726 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1727 		/*
1728 		 * If the socket is already closing, don't even start
1729 		 * consuming it
1730 		 */
1731 		ret = -ENOTCONN;
1732 	} else {
1733 		sock->sk->sk_user_data = queue;
1734 		queue->data_ready = sock->sk->sk_data_ready;
1735 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1736 		queue->state_change = sock->sk->sk_state_change;
1737 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1738 		queue->write_space = sock->sk->sk_write_space;
1739 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1740 		if (idle_poll_period_usecs)
1741 			nvmet_tcp_arm_queue_deadline(queue);
1742 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1743 	}
1744 	write_unlock_bh(&sock->sk->sk_callback_lock);
1745 
1746 	return ret;
1747 }
1748 
1749 #ifdef CONFIG_NVME_TARGET_TCP_TLS
nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue * queue)1750 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1751 {
1752 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1753 	int len, ret;
1754 	struct kvec iov = {
1755 		.iov_base = (u8 *)&queue->pdu + queue->offset,
1756 		.iov_len = sizeof(struct nvme_tcp_hdr),
1757 	};
1758 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1759 	struct msghdr msg = {
1760 		.msg_control = cbuf,
1761 		.msg_controllen = sizeof(cbuf),
1762 		.msg_flags = MSG_PEEK,
1763 	};
1764 
1765 	if (nvmet_port_secure_channel_required(queue->port->nport))
1766 		return 0;
1767 
1768 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1769 			iov.iov_len, msg.msg_flags);
1770 	if (unlikely(len < 0)) {
1771 		pr_debug("queue %d: peek error %d\n",
1772 			 queue->idx, len);
1773 		return len;
1774 	}
1775 
1776 	ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1777 	if (ret < 0)
1778 		return ret;
1779 
1780 	if (len < sizeof(struct nvme_tcp_hdr)) {
1781 		pr_debug("queue %d: short read, %d bytes missing\n",
1782 			 queue->idx, (int)iov.iov_len - len);
1783 		return -EAGAIN;
1784 	}
1785 	pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1786 		 queue->idx, hdr->type, hdr->hlen, hdr->plen,
1787 		 (int)sizeof(struct nvme_tcp_icreq_pdu));
1788 	if (hdr->type == nvme_tcp_icreq &&
1789 	    hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1790 	    hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1791 		pr_debug("queue %d: icreq detected\n",
1792 			 queue->idx);
1793 		return len;
1794 	}
1795 	return 0;
1796 }
1797 
nvmet_tcp_tls_key_lookup(struct nvmet_tcp_queue * queue,key_serial_t peerid)1798 static int nvmet_tcp_tls_key_lookup(struct nvmet_tcp_queue *queue,
1799 				    key_serial_t peerid)
1800 {
1801 	struct key *tls_key = nvme_tls_key_lookup(peerid);
1802 	int status = 0;
1803 
1804 	if (IS_ERR(tls_key)) {
1805 		pr_warn("%s: queue %d failed to lookup key %x\n",
1806 			__func__, queue->idx, peerid);
1807 		spin_lock_bh(&queue->state_lock);
1808 		queue->state = NVMET_TCP_Q_FAILED;
1809 		spin_unlock_bh(&queue->state_lock);
1810 		status = PTR_ERR(tls_key);
1811 	} else {
1812 		pr_debug("%s: queue %d using TLS PSK %x\n",
1813 			 __func__, queue->idx, peerid);
1814 		queue->nvme_sq.tls_key = tls_key;
1815 	}
1816 	return status;
1817 }
1818 
nvmet_tcp_tls_handshake_done(void * data,int status,key_serial_t peerid)1819 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1820 					 key_serial_t peerid)
1821 {
1822 	struct nvmet_tcp_queue *queue = data;
1823 
1824 	pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1825 		 queue->idx, peerid, status);
1826 	spin_lock_bh(&queue->state_lock);
1827 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1828 		spin_unlock_bh(&queue->state_lock);
1829 		return;
1830 	}
1831 	if (!status) {
1832 		queue->tls_pskid = peerid;
1833 		queue->state = NVMET_TCP_Q_CONNECTING;
1834 	} else
1835 		queue->state = NVMET_TCP_Q_FAILED;
1836 	spin_unlock_bh(&queue->state_lock);
1837 
1838 	cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1839 
1840 	if (!status)
1841 		status = nvmet_tcp_tls_key_lookup(queue, peerid);
1842 
1843 	if (status)
1844 		nvmet_tcp_schedule_release_queue(queue);
1845 	else
1846 		nvmet_tcp_set_queue_sock(queue);
1847 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1848 }
1849 
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1850 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1851 {
1852 	struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1853 			struct nvmet_tcp_queue, tls_handshake_tmo_work);
1854 
1855 	pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1856 	/*
1857 	 * If tls_handshake_cancel() fails we've lost the race with
1858 	 * nvmet_tcp_tls_handshake_done() */
1859 	if (!tls_handshake_cancel(queue->sock->sk))
1860 		return;
1861 	spin_lock_bh(&queue->state_lock);
1862 	if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1863 		spin_unlock_bh(&queue->state_lock);
1864 		return;
1865 	}
1866 	queue->state = NVMET_TCP_Q_FAILED;
1867 	spin_unlock_bh(&queue->state_lock);
1868 	nvmet_tcp_schedule_release_queue(queue);
1869 	kref_put(&queue->kref, nvmet_tcp_release_queue);
1870 }
1871 
nvmet_tcp_tls_handshake(struct nvmet_tcp_queue * queue)1872 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1873 {
1874 	int ret = -EOPNOTSUPP;
1875 	struct tls_handshake_args args;
1876 
1877 	if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1878 		pr_warn("cannot start TLS in state %d\n", queue->state);
1879 		return -EINVAL;
1880 	}
1881 
1882 	kref_get(&queue->kref);
1883 	pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1884 	memset(&args, 0, sizeof(args));
1885 	args.ta_sock = queue->sock;
1886 	args.ta_done = nvmet_tcp_tls_handshake_done;
1887 	args.ta_data = queue;
1888 	args.ta_keyring = key_serial(queue->port->nport->keyring);
1889 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1890 
1891 	ret = tls_server_hello_psk(&args, GFP_KERNEL);
1892 	if (ret) {
1893 		kref_put(&queue->kref, nvmet_tcp_release_queue);
1894 		pr_err("failed to start TLS, err=%d\n", ret);
1895 	} else {
1896 		queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1897 				   tls_handshake_timeout * HZ);
1898 	}
1899 	return ret;
1900 }
1901 #else
nvmet_tcp_tls_handshake_timeout(struct work_struct * w)1902 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1903 #endif
1904 
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1905 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1906 		struct socket *newsock)
1907 {
1908 	struct nvmet_tcp_queue *queue;
1909 	struct file *sock_file = NULL;
1910 	int ret;
1911 
1912 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1913 	if (!queue) {
1914 		ret = -ENOMEM;
1915 		goto out_release;
1916 	}
1917 
1918 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1919 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1920 	kref_init(&queue->kref);
1921 	queue->sock = newsock;
1922 	queue->port = port;
1923 	queue->nr_cmds = 0;
1924 	spin_lock_init(&queue->state_lock);
1925 	if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1926 	    NVMF_TCP_SECTYPE_TLS13)
1927 		queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1928 	else
1929 		queue->state = NVMET_TCP_Q_CONNECTING;
1930 	INIT_LIST_HEAD(&queue->free_list);
1931 	init_llist_head(&queue->resp_list);
1932 	INIT_LIST_HEAD(&queue->resp_send_list);
1933 
1934 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1935 	if (IS_ERR(sock_file)) {
1936 		ret = PTR_ERR(sock_file);
1937 		goto out_free_queue;
1938 	}
1939 
1940 	queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1941 	if (queue->idx < 0) {
1942 		ret = queue->idx;
1943 		goto out_sock;
1944 	}
1945 
1946 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1947 	if (ret)
1948 		goto out_ida_remove;
1949 
1950 	ret = nvmet_sq_init(&queue->nvme_sq);
1951 	if (ret)
1952 		goto out_free_connect;
1953 
1954 	nvmet_prepare_receive_pdu(queue);
1955 
1956 	mutex_lock(&nvmet_tcp_queue_mutex);
1957 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1958 	mutex_unlock(&nvmet_tcp_queue_mutex);
1959 
1960 	INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1961 			  nvmet_tcp_tls_handshake_timeout);
1962 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1963 	if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1964 		struct sock *sk = queue->sock->sk;
1965 
1966 		/* Restore the default callbacks before starting upcall */
1967 		read_lock_bh(&sk->sk_callback_lock);
1968 		sk->sk_user_data = NULL;
1969 		sk->sk_data_ready = port->data_ready;
1970 		read_unlock_bh(&sk->sk_callback_lock);
1971 		if (!nvmet_tcp_try_peek_pdu(queue)) {
1972 			if (!nvmet_tcp_tls_handshake(queue))
1973 				return;
1974 			/* TLS handshake failed, terminate the connection */
1975 			goto out_destroy_sq;
1976 		}
1977 		/* Not a TLS connection, continue with normal processing */
1978 		queue->state = NVMET_TCP_Q_CONNECTING;
1979 	}
1980 #endif
1981 
1982 	ret = nvmet_tcp_set_queue_sock(queue);
1983 	if (ret)
1984 		goto out_destroy_sq;
1985 
1986 	return;
1987 out_destroy_sq:
1988 	mutex_lock(&nvmet_tcp_queue_mutex);
1989 	list_del_init(&queue->queue_list);
1990 	mutex_unlock(&nvmet_tcp_queue_mutex);
1991 	nvmet_sq_destroy(&queue->nvme_sq);
1992 out_free_connect:
1993 	nvmet_tcp_free_cmd(&queue->connect);
1994 out_ida_remove:
1995 	ida_free(&nvmet_tcp_queue_ida, queue->idx);
1996 out_sock:
1997 	fput(queue->sock->file);
1998 out_free_queue:
1999 	kfree(queue);
2000 out_release:
2001 	pr_err("failed to allocate queue, error %d\n", ret);
2002 	if (!sock_file)
2003 		sock_release(newsock);
2004 }
2005 
nvmet_tcp_accept_work(struct work_struct * w)2006 static void nvmet_tcp_accept_work(struct work_struct *w)
2007 {
2008 	struct nvmet_tcp_port *port =
2009 		container_of(w, struct nvmet_tcp_port, accept_work);
2010 	struct socket *newsock;
2011 	int ret;
2012 
2013 	while (true) {
2014 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
2015 		if (ret < 0) {
2016 			if (ret != -EAGAIN)
2017 				pr_warn("failed to accept err=%d\n", ret);
2018 			return;
2019 		}
2020 		nvmet_tcp_alloc_queue(port, newsock);
2021 	}
2022 }
2023 
nvmet_tcp_listen_data_ready(struct sock * sk)2024 static void nvmet_tcp_listen_data_ready(struct sock *sk)
2025 {
2026 	struct nvmet_tcp_port *port;
2027 
2028 	trace_sk_data_ready(sk);
2029 
2030 	read_lock_bh(&sk->sk_callback_lock);
2031 	port = sk->sk_user_data;
2032 	if (!port)
2033 		goto out;
2034 
2035 	if (sk->sk_state == TCP_LISTEN)
2036 		queue_work(nvmet_wq, &port->accept_work);
2037 out:
2038 	read_unlock_bh(&sk->sk_callback_lock);
2039 }
2040 
nvmet_tcp_add_port(struct nvmet_port * nport)2041 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2042 {
2043 	struct nvmet_tcp_port *port;
2044 	__kernel_sa_family_t af;
2045 	int ret;
2046 
2047 	port = kzalloc(sizeof(*port), GFP_KERNEL);
2048 	if (!port)
2049 		return -ENOMEM;
2050 
2051 	switch (nport->disc_addr.adrfam) {
2052 	case NVMF_ADDR_FAMILY_IP4:
2053 		af = AF_INET;
2054 		break;
2055 	case NVMF_ADDR_FAMILY_IP6:
2056 		af = AF_INET6;
2057 		break;
2058 	default:
2059 		pr_err("address family %d not supported\n",
2060 				nport->disc_addr.adrfam);
2061 		ret = -EINVAL;
2062 		goto err_port;
2063 	}
2064 
2065 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2066 			nport->disc_addr.trsvcid, &port->addr);
2067 	if (ret) {
2068 		pr_err("malformed ip/port passed: %s:%s\n",
2069 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2070 		goto err_port;
2071 	}
2072 
2073 	port->nport = nport;
2074 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2075 	if (port->nport->inline_data_size < 0)
2076 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2077 
2078 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2079 				IPPROTO_TCP, &port->sock);
2080 	if (ret) {
2081 		pr_err("failed to create a socket\n");
2082 		goto err_port;
2083 	}
2084 
2085 	port->sock->sk->sk_user_data = port;
2086 	port->data_ready = port->sock->sk->sk_data_ready;
2087 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2088 	sock_set_reuseaddr(port->sock->sk);
2089 	tcp_sock_set_nodelay(port->sock->sk);
2090 	if (so_priority > 0)
2091 		sock_set_priority(port->sock->sk, so_priority);
2092 
2093 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2094 			sizeof(port->addr));
2095 	if (ret) {
2096 		pr_err("failed to bind port socket %d\n", ret);
2097 		goto err_sock;
2098 	}
2099 
2100 	ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2101 	if (ret) {
2102 		pr_err("failed to listen %d on port sock\n", ret);
2103 		goto err_sock;
2104 	}
2105 
2106 	nport->priv = port;
2107 	pr_info("enabling port %d (%pISpc)\n",
2108 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
2109 
2110 	return 0;
2111 
2112 err_sock:
2113 	sock_release(port->sock);
2114 err_port:
2115 	kfree(port);
2116 	return ret;
2117 }
2118 
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)2119 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2120 {
2121 	struct nvmet_tcp_queue *queue;
2122 
2123 	mutex_lock(&nvmet_tcp_queue_mutex);
2124 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2125 		if (queue->port == port)
2126 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2127 	mutex_unlock(&nvmet_tcp_queue_mutex);
2128 }
2129 
nvmet_tcp_remove_port(struct nvmet_port * nport)2130 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2131 {
2132 	struct nvmet_tcp_port *port = nport->priv;
2133 
2134 	write_lock_bh(&port->sock->sk->sk_callback_lock);
2135 	port->sock->sk->sk_data_ready = port->data_ready;
2136 	port->sock->sk->sk_user_data = NULL;
2137 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
2138 	cancel_work_sync(&port->accept_work);
2139 	/*
2140 	 * Destroy the remaining queues, which are not belong to any
2141 	 * controller yet.
2142 	 */
2143 	nvmet_tcp_destroy_port_queues(port);
2144 
2145 	sock_release(port->sock);
2146 	kfree(port);
2147 }
2148 
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)2149 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2150 {
2151 	struct nvmet_tcp_queue *queue;
2152 
2153 	mutex_lock(&nvmet_tcp_queue_mutex);
2154 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2155 		if (queue->nvme_sq.ctrl == ctrl)
2156 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2157 	mutex_unlock(&nvmet_tcp_queue_mutex);
2158 }
2159 
nvmet_tcp_install_queue(struct nvmet_sq * sq)2160 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2161 {
2162 	struct nvmet_tcp_queue *queue =
2163 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2164 
2165 	if (sq->qid == 0) {
2166 		struct nvmet_tcp_queue *q;
2167 		int pending = 0;
2168 
2169 		/* Check for pending controller teardown */
2170 		mutex_lock(&nvmet_tcp_queue_mutex);
2171 		list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2172 			if (q->nvme_sq.ctrl == sq->ctrl &&
2173 			    q->state == NVMET_TCP_Q_DISCONNECTING)
2174 				pending++;
2175 		}
2176 		mutex_unlock(&nvmet_tcp_queue_mutex);
2177 		if (pending > NVMET_TCP_BACKLOG)
2178 			return NVME_SC_CONNECT_CTRL_BUSY;
2179 	}
2180 
2181 	queue->nr_cmds = sq->size * 2;
2182 	if (nvmet_tcp_alloc_cmds(queue)) {
2183 		queue->nr_cmds = 0;
2184 		return NVME_SC_INTERNAL;
2185 	}
2186 	return 0;
2187 }
2188 
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)2189 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2190 		struct nvmet_port *nport, char *traddr)
2191 {
2192 	struct nvmet_tcp_port *port = nport->priv;
2193 
2194 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
2195 		struct nvmet_tcp_cmd *cmd =
2196 			container_of(req, struct nvmet_tcp_cmd, req);
2197 		struct nvmet_tcp_queue *queue = cmd->queue;
2198 
2199 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2200 	} else {
2201 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2202 	}
2203 }
2204 
nvmet_tcp_host_port_addr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)2205 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl,
2206 			char *traddr, size_t traddr_len)
2207 {
2208 	struct nvmet_sq *sq = ctrl->sqs[0];
2209 	struct nvmet_tcp_queue *queue =
2210 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2211 
2212 	if (queue->sockaddr_peer.ss_family == AF_UNSPEC)
2213 		return -EINVAL;
2214 	return snprintf(traddr, traddr_len, "%pISc",
2215 			(struct sockaddr *)&queue->sockaddr_peer);
2216 }
2217 
2218 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2219 	.owner			= THIS_MODULE,
2220 	.type			= NVMF_TRTYPE_TCP,
2221 	.msdbd			= 1,
2222 	.add_port		= nvmet_tcp_add_port,
2223 	.remove_port		= nvmet_tcp_remove_port,
2224 	.queue_response		= nvmet_tcp_queue_response,
2225 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
2226 	.install_queue		= nvmet_tcp_install_queue,
2227 	.disc_traddr		= nvmet_tcp_disc_port_addr,
2228 	.host_traddr		= nvmet_tcp_host_port_addr,
2229 };
2230 
nvmet_tcp_init(void)2231 static int __init nvmet_tcp_init(void)
2232 {
2233 	int ret;
2234 
2235 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2236 				WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2237 	if (!nvmet_tcp_wq)
2238 		return -ENOMEM;
2239 
2240 	ret = nvmet_register_transport(&nvmet_tcp_ops);
2241 	if (ret)
2242 		goto err;
2243 
2244 	return 0;
2245 err:
2246 	destroy_workqueue(nvmet_tcp_wq);
2247 	return ret;
2248 }
2249 
nvmet_tcp_exit(void)2250 static void __exit nvmet_tcp_exit(void)
2251 {
2252 	struct nvmet_tcp_queue *queue;
2253 
2254 	nvmet_unregister_transport(&nvmet_tcp_ops);
2255 
2256 	flush_workqueue(nvmet_wq);
2257 	mutex_lock(&nvmet_tcp_queue_mutex);
2258 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2259 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2260 	mutex_unlock(&nvmet_tcp_queue_mutex);
2261 	flush_workqueue(nvmet_wq);
2262 
2263 	destroy_workqueue(nvmet_tcp_wq);
2264 	ida_destroy(&nvmet_tcp_queue_ida);
2265 }
2266 
2267 module_init(nvmet_tcp_init);
2268 module_exit(nvmet_tcp_exit);
2269 
2270 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2271 MODULE_LICENSE("GPL v2");
2272 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
2273