1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #include <generated/utsrelease.h>
14
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17
18 #include "nvmet.h"
19 #include "debugfs.h"
20
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29
30 /*
31 * This read/write semaphore is used to synchronize access to configuration
32 * information on a target system that will result in discovery log page
33 * information change for at least one host.
34 * The full list of resources to protected by this semaphore is:
35 *
36 * - subsystems list
37 * - per-subsystem allowed hosts list
38 * - allow_any_host subsystem attribute
39 * - nvmet_genctr
40 * - the nvmet_transports array
41 *
42 * When updating any of those lists/structures write lock should be obtained,
43 * while when reading (popolating discovery log page or checking host-subsystem
44 * link) read lock is obtained to allow concurrent reads.
45 */
46 DECLARE_RWSEM(nvmet_config_sem);
47
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51
errno_to_nvme_status(struct nvmet_req * req,int errno)52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54 switch (errno) {
55 case 0:
56 return NVME_SC_SUCCESS;
57 case -ENOSPC:
58 req->error_loc = offsetof(struct nvme_rw_command, length);
59 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 case -EREMOTEIO:
61 req->error_loc = offsetof(struct nvme_rw_command, slba);
62 return NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 case -EOPNOTSUPP:
64 req->error_loc = offsetof(struct nvme_common_command, opcode);
65 switch (req->cmd->common.opcode) {
66 case nvme_cmd_dsm:
67 case nvme_cmd_write_zeroes:
68 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
69 default:
70 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
71 }
72 break;
73 case -ENODATA:
74 req->error_loc = offsetof(struct nvme_rw_command, nsid);
75 return NVME_SC_ACCESS_DENIED;
76 case -EIO:
77 fallthrough;
78 default:
79 req->error_loc = offsetof(struct nvme_common_command, opcode);
80 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
81 }
82 }
83
nvmet_report_invalid_opcode(struct nvmet_req * req)84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
85 {
86 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
87 req->sq->qid);
88
89 req->error_loc = offsetof(struct nvme_common_command, opcode);
90 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
91 }
92
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94 const char *subsysnqn);
95
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
97 size_t len)
98 {
99 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100 req->error_loc = offsetof(struct nvme_common_command, dptr);
101 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
102 }
103 return 0;
104 }
105
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
107 {
108 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109 req->error_loc = offsetof(struct nvme_common_command, dptr);
110 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
111 }
112 return 0;
113 }
114
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
116 {
117 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118 req->error_loc = offsetof(struct nvme_common_command, dptr);
119 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
120 }
121 return 0;
122 }
123
nvmet_max_nsid(struct nvmet_subsys * subsys)124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
125 {
126 struct nvmet_ns *cur;
127 unsigned long idx;
128 u32 nsid = 0;
129
130 nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur)
131 nsid = cur->nsid;
132
133 return nsid;
134 }
135
nvmet_async_event_result(struct nvmet_async_event * aen)136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
137 {
138 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
139 }
140
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
142 {
143 struct nvmet_req *req;
144
145 mutex_lock(&ctrl->lock);
146 while (ctrl->nr_async_event_cmds) {
147 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148 mutex_unlock(&ctrl->lock);
149 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150 mutex_lock(&ctrl->lock);
151 }
152 mutex_unlock(&ctrl->lock);
153 }
154
nvmet_async_events_process(struct nvmet_ctrl * ctrl)155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
156 {
157 struct nvmet_async_event *aen;
158 struct nvmet_req *req;
159
160 mutex_lock(&ctrl->lock);
161 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162 aen = list_first_entry(&ctrl->async_events,
163 struct nvmet_async_event, entry);
164 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165 nvmet_set_result(req, nvmet_async_event_result(aen));
166
167 list_del(&aen->entry);
168 kfree(aen);
169
170 mutex_unlock(&ctrl->lock);
171 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172 nvmet_req_complete(req, 0);
173 mutex_lock(&ctrl->lock);
174 }
175 mutex_unlock(&ctrl->lock);
176 }
177
nvmet_async_events_free(struct nvmet_ctrl * ctrl)178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
179 {
180 struct nvmet_async_event *aen, *tmp;
181
182 mutex_lock(&ctrl->lock);
183 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184 list_del(&aen->entry);
185 kfree(aen);
186 }
187 mutex_unlock(&ctrl->lock);
188 }
189
nvmet_async_event_work(struct work_struct * work)190 static void nvmet_async_event_work(struct work_struct *work)
191 {
192 struct nvmet_ctrl *ctrl =
193 container_of(work, struct nvmet_ctrl, async_event_work);
194
195 nvmet_async_events_process(ctrl);
196 }
197
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199 u8 event_info, u8 log_page)
200 {
201 struct nvmet_async_event *aen;
202
203 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
204 if (!aen)
205 return;
206
207 aen->event_type = event_type;
208 aen->event_info = event_info;
209 aen->log_page = log_page;
210
211 mutex_lock(&ctrl->lock);
212 list_add_tail(&aen->entry, &ctrl->async_events);
213 mutex_unlock(&ctrl->lock);
214
215 queue_work(nvmet_wq, &ctrl->async_event_work);
216 }
217
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
219 {
220 u32 i;
221
222 mutex_lock(&ctrl->lock);
223 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
224 goto out_unlock;
225
226 for (i = 0; i < ctrl->nr_changed_ns; i++) {
227 if (ctrl->changed_ns_list[i] == nsid)
228 goto out_unlock;
229 }
230
231 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233 ctrl->nr_changed_ns = U32_MAX;
234 goto out_unlock;
235 }
236
237 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
238 out_unlock:
239 mutex_unlock(&ctrl->lock);
240 }
241
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
243 {
244 struct nvmet_ctrl *ctrl;
245
246 lockdep_assert_held(&subsys->lock);
247
248 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
251 continue;
252 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253 NVME_AER_NOTICE_NS_CHANGED,
254 NVME_LOG_CHANGED_NS);
255 }
256 }
257
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259 struct nvmet_port *port)
260 {
261 struct nvmet_ctrl *ctrl;
262
263 mutex_lock(&subsys->lock);
264 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265 if (port && ctrl->port != port)
266 continue;
267 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
268 continue;
269 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
271 }
272 mutex_unlock(&subsys->lock);
273 }
274
nvmet_port_send_ana_event(struct nvmet_port * port)275 void nvmet_port_send_ana_event(struct nvmet_port *port)
276 {
277 struct nvmet_subsys_link *p;
278
279 down_read(&nvmet_config_sem);
280 list_for_each_entry(p, &port->subsystems, entry)
281 nvmet_send_ana_event(p->subsys, port);
282 up_read(&nvmet_config_sem);
283 }
284
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
286 {
287 int ret = 0;
288
289 down_write(&nvmet_config_sem);
290 if (nvmet_transports[ops->type])
291 ret = -EINVAL;
292 else
293 nvmet_transports[ops->type] = ops;
294 up_write(&nvmet_config_sem);
295
296 return ret;
297 }
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
299
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
301 {
302 down_write(&nvmet_config_sem);
303 nvmet_transports[ops->type] = NULL;
304 up_write(&nvmet_config_sem);
305 }
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
307
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
309 {
310 struct nvmet_ctrl *ctrl;
311
312 mutex_lock(&subsys->lock);
313 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314 if (ctrl->port == port)
315 ctrl->ops->delete_ctrl(ctrl);
316 }
317 mutex_unlock(&subsys->lock);
318 }
319
nvmet_enable_port(struct nvmet_port * port)320 int nvmet_enable_port(struct nvmet_port *port)
321 {
322 const struct nvmet_fabrics_ops *ops;
323 int ret;
324
325 lockdep_assert_held(&nvmet_config_sem);
326
327 ops = nvmet_transports[port->disc_addr.trtype];
328 if (!ops) {
329 up_write(&nvmet_config_sem);
330 request_module("nvmet-transport-%d", port->disc_addr.trtype);
331 down_write(&nvmet_config_sem);
332 ops = nvmet_transports[port->disc_addr.trtype];
333 if (!ops) {
334 pr_err("transport type %d not supported\n",
335 port->disc_addr.trtype);
336 return -EINVAL;
337 }
338 }
339
340 if (!try_module_get(ops->owner))
341 return -EINVAL;
342
343 /*
344 * If the user requested PI support and the transport isn't pi capable,
345 * don't enable the port.
346 */
347 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
348 pr_err("T10-PI is not supported by transport type %d\n",
349 port->disc_addr.trtype);
350 ret = -EINVAL;
351 goto out_put;
352 }
353
354 ret = ops->add_port(port);
355 if (ret)
356 goto out_put;
357
358 /* If the transport didn't set inline_data_size, then disable it. */
359 if (port->inline_data_size < 0)
360 port->inline_data_size = 0;
361
362 /*
363 * If the transport didn't set the max_queue_size properly, then clamp
364 * it to the target limits. Also set default values in case the
365 * transport didn't set it at all.
366 */
367 if (port->max_queue_size < 0)
368 port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
369 else
370 port->max_queue_size = clamp_t(int, port->max_queue_size,
371 NVMET_MIN_QUEUE_SIZE,
372 NVMET_MAX_QUEUE_SIZE);
373
374 port->enabled = true;
375 port->tr_ops = ops;
376 return 0;
377
378 out_put:
379 module_put(ops->owner);
380 return ret;
381 }
382
nvmet_disable_port(struct nvmet_port * port)383 void nvmet_disable_port(struct nvmet_port *port)
384 {
385 const struct nvmet_fabrics_ops *ops;
386
387 lockdep_assert_held(&nvmet_config_sem);
388
389 port->enabled = false;
390 port->tr_ops = NULL;
391
392 ops = nvmet_transports[port->disc_addr.trtype];
393 ops->remove_port(port);
394 module_put(ops->owner);
395 }
396
nvmet_keep_alive_timer(struct work_struct * work)397 static void nvmet_keep_alive_timer(struct work_struct *work)
398 {
399 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
400 struct nvmet_ctrl, ka_work);
401 bool reset_tbkas = ctrl->reset_tbkas;
402
403 ctrl->reset_tbkas = false;
404 if (reset_tbkas) {
405 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
406 ctrl->cntlid);
407 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
408 return;
409 }
410
411 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
412 ctrl->cntlid, ctrl->kato);
413
414 nvmet_ctrl_fatal_error(ctrl);
415 }
416
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
418 {
419 if (unlikely(ctrl->kato == 0))
420 return;
421
422 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
423 ctrl->cntlid, ctrl->kato);
424
425 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
426 }
427
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
429 {
430 if (unlikely(ctrl->kato == 0))
431 return;
432
433 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
434
435 cancel_delayed_work_sync(&ctrl->ka_work);
436 }
437
nvmet_req_find_ns(struct nvmet_req * req)438 u16 nvmet_req_find_ns(struct nvmet_req *req)
439 {
440 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
441 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
442
443 req->ns = xa_load(&subsys->namespaces, nsid);
444 if (unlikely(!req->ns || !req->ns->enabled)) {
445 req->error_loc = offsetof(struct nvme_common_command, nsid);
446 if (!req->ns) /* ns doesn't exist! */
447 return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
448
449 /* ns exists but it's disabled */
450 req->ns = NULL;
451 return NVME_SC_INTERNAL_PATH_ERROR;
452 }
453
454 percpu_ref_get(&req->ns->ref);
455 return NVME_SC_SUCCESS;
456 }
457
nvmet_destroy_namespace(struct percpu_ref * ref)458 static void nvmet_destroy_namespace(struct percpu_ref *ref)
459 {
460 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
461
462 complete(&ns->disable_done);
463 }
464
nvmet_put_namespace(struct nvmet_ns * ns)465 void nvmet_put_namespace(struct nvmet_ns *ns)
466 {
467 percpu_ref_put(&ns->ref);
468 }
469
nvmet_ns_dev_disable(struct nvmet_ns * ns)470 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
471 {
472 nvmet_bdev_ns_disable(ns);
473 nvmet_file_ns_disable(ns);
474 }
475
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)476 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
477 {
478 int ret;
479 struct pci_dev *p2p_dev;
480
481 if (!ns->use_p2pmem)
482 return 0;
483
484 if (!ns->bdev) {
485 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
486 return -EINVAL;
487 }
488
489 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
490 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
491 ns->device_path);
492 return -EINVAL;
493 }
494
495 if (ns->p2p_dev) {
496 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
497 if (ret < 0)
498 return -EINVAL;
499 } else {
500 /*
501 * Right now we just check that there is p2pmem available so
502 * we can report an error to the user right away if there
503 * is not. We'll find the actual device to use once we
504 * setup the controller when the port's device is available.
505 */
506
507 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
508 if (!p2p_dev) {
509 pr_err("no peer-to-peer memory is available for %s\n",
510 ns->device_path);
511 return -EINVAL;
512 }
513
514 pci_dev_put(p2p_dev);
515 }
516
517 return 0;
518 }
519
520 /*
521 * Note: ctrl->subsys->lock should be held when calling this function
522 */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)523 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
524 struct nvmet_ns *ns)
525 {
526 struct device *clients[2];
527 struct pci_dev *p2p_dev;
528 int ret;
529
530 if (!ctrl->p2p_client || !ns->use_p2pmem)
531 return;
532
533 if (ns->p2p_dev) {
534 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
535 if (ret < 0)
536 return;
537
538 p2p_dev = pci_dev_get(ns->p2p_dev);
539 } else {
540 clients[0] = ctrl->p2p_client;
541 clients[1] = nvmet_ns_dev(ns);
542
543 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
544 if (!p2p_dev) {
545 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
546 dev_name(ctrl->p2p_client), ns->device_path);
547 return;
548 }
549 }
550
551 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
552 if (ret < 0)
553 pci_dev_put(p2p_dev);
554
555 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
556 ns->nsid);
557 }
558
nvmet_ns_revalidate(struct nvmet_ns * ns)559 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
560 {
561 loff_t oldsize = ns->size;
562
563 if (ns->bdev)
564 nvmet_bdev_ns_revalidate(ns);
565 else
566 nvmet_file_ns_revalidate(ns);
567
568 return oldsize != ns->size;
569 }
570
nvmet_ns_enable(struct nvmet_ns * ns)571 int nvmet_ns_enable(struct nvmet_ns *ns)
572 {
573 struct nvmet_subsys *subsys = ns->subsys;
574 struct nvmet_ctrl *ctrl;
575 int ret;
576
577 mutex_lock(&subsys->lock);
578 ret = 0;
579
580 if (nvmet_is_passthru_subsys(subsys)) {
581 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
582 goto out_unlock;
583 }
584
585 if (ns->enabled)
586 goto out_unlock;
587
588 ret = -EMFILE;
589
590 ret = nvmet_bdev_ns_enable(ns);
591 if (ret == -ENOTBLK)
592 ret = nvmet_file_ns_enable(ns);
593 if (ret)
594 goto out_unlock;
595
596 ret = nvmet_p2pmem_ns_enable(ns);
597 if (ret)
598 goto out_dev_disable;
599
600 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
601 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
602
603 if (ns->pr.enable) {
604 ret = nvmet_pr_init_ns(ns);
605 if (ret)
606 goto out_dev_put;
607 }
608
609 nvmet_ns_changed(subsys, ns->nsid);
610 ns->enabled = true;
611 xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
612 ret = 0;
613 out_unlock:
614 mutex_unlock(&subsys->lock);
615 return ret;
616 out_dev_put:
617 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
618 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
619 out_dev_disable:
620 nvmet_ns_dev_disable(ns);
621 goto out_unlock;
622 }
623
nvmet_ns_disable(struct nvmet_ns * ns)624 void nvmet_ns_disable(struct nvmet_ns *ns)
625 {
626 struct nvmet_subsys *subsys = ns->subsys;
627 struct nvmet_ctrl *ctrl;
628
629 mutex_lock(&subsys->lock);
630 if (!ns->enabled)
631 goto out_unlock;
632
633 ns->enabled = false;
634 xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
635
636 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
637 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
638
639 mutex_unlock(&subsys->lock);
640
641 if (ns->pr.enable)
642 nvmet_pr_exit_ns(ns);
643
644 mutex_lock(&subsys->lock);
645 nvmet_ns_changed(subsys, ns->nsid);
646 nvmet_ns_dev_disable(ns);
647 out_unlock:
648 mutex_unlock(&subsys->lock);
649 }
650
nvmet_ns_free(struct nvmet_ns * ns)651 void nvmet_ns_free(struct nvmet_ns *ns)
652 {
653 struct nvmet_subsys *subsys = ns->subsys;
654
655 nvmet_ns_disable(ns);
656
657 mutex_lock(&subsys->lock);
658
659 xa_erase(&subsys->namespaces, ns->nsid);
660 if (ns->nsid == subsys->max_nsid)
661 subsys->max_nsid = nvmet_max_nsid(subsys);
662
663 mutex_unlock(&subsys->lock);
664
665 /*
666 * Now that we removed the namespaces from the lookup list, we
667 * can kill the per_cpu ref and wait for any remaining references
668 * to be dropped, as well as a RCU grace period for anyone only
669 * using the namepace under rcu_read_lock(). Note that we can't
670 * use call_rcu here as we need to ensure the namespaces have
671 * been fully destroyed before unloading the module.
672 */
673 percpu_ref_kill(&ns->ref);
674 synchronize_rcu();
675 wait_for_completion(&ns->disable_done);
676 percpu_ref_exit(&ns->ref);
677
678 mutex_lock(&subsys->lock);
679 subsys->nr_namespaces--;
680 mutex_unlock(&subsys->lock);
681
682 down_write(&nvmet_ana_sem);
683 nvmet_ana_group_enabled[ns->anagrpid]--;
684 up_write(&nvmet_ana_sem);
685
686 kfree(ns->device_path);
687 kfree(ns);
688 }
689
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)690 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
691 {
692 struct nvmet_ns *ns;
693
694 mutex_lock(&subsys->lock);
695
696 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
697 goto out_unlock;
698
699 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
700 if (!ns)
701 goto out_unlock;
702
703 init_completion(&ns->disable_done);
704
705 ns->nsid = nsid;
706 ns->subsys = subsys;
707
708 if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL))
709 goto out_free;
710
711 if (ns->nsid > subsys->max_nsid)
712 subsys->max_nsid = nsid;
713
714 if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL))
715 goto out_exit;
716
717 subsys->nr_namespaces++;
718
719 mutex_unlock(&subsys->lock);
720
721 down_write(&nvmet_ana_sem);
722 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
723 nvmet_ana_group_enabled[ns->anagrpid]++;
724 up_write(&nvmet_ana_sem);
725
726 uuid_gen(&ns->uuid);
727 ns->buffered_io = false;
728 ns->csi = NVME_CSI_NVM;
729
730 return ns;
731 out_exit:
732 subsys->max_nsid = nvmet_max_nsid(subsys);
733 percpu_ref_exit(&ns->ref);
734 out_free:
735 kfree(ns);
736 out_unlock:
737 mutex_unlock(&subsys->lock);
738 return NULL;
739 }
740
nvmet_update_sq_head(struct nvmet_req * req)741 static void nvmet_update_sq_head(struct nvmet_req *req)
742 {
743 if (req->sq->size) {
744 u32 old_sqhd, new_sqhd;
745
746 old_sqhd = READ_ONCE(req->sq->sqhd);
747 do {
748 new_sqhd = (old_sqhd + 1) % req->sq->size;
749 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
750 }
751 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
752 }
753
nvmet_set_error(struct nvmet_req * req,u16 status)754 static void nvmet_set_error(struct nvmet_req *req, u16 status)
755 {
756 struct nvmet_ctrl *ctrl = req->sq->ctrl;
757 struct nvme_error_slot *new_error_slot;
758 unsigned long flags;
759
760 req->cqe->status = cpu_to_le16(status << 1);
761
762 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
763 return;
764
765 spin_lock_irqsave(&ctrl->error_lock, flags);
766 ctrl->err_counter++;
767 new_error_slot =
768 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
769
770 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
771 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
772 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
773 new_error_slot->status_field = cpu_to_le16(status << 1);
774 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
775 new_error_slot->lba = cpu_to_le64(req->error_slba);
776 new_error_slot->nsid = req->cmd->common.nsid;
777 spin_unlock_irqrestore(&ctrl->error_lock, flags);
778
779 /* set the more bit for this request */
780 req->cqe->status |= cpu_to_le16(1 << 14);
781 }
782
__nvmet_req_complete(struct nvmet_req * req,u16 status)783 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
784 {
785 struct nvmet_ns *ns = req->ns;
786 struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
787
788 if (!req->sq->sqhd_disabled)
789 nvmet_update_sq_head(req);
790 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
791 req->cqe->command_id = req->cmd->common.command_id;
792
793 if (unlikely(status))
794 nvmet_set_error(req, status);
795
796 trace_nvmet_req_complete(req);
797
798 req->ops->queue_response(req);
799
800 if (pc_ref)
801 nvmet_pr_put_ns_pc_ref(pc_ref);
802 if (ns)
803 nvmet_put_namespace(ns);
804 }
805
nvmet_req_complete(struct nvmet_req * req,u16 status)806 void nvmet_req_complete(struct nvmet_req *req, u16 status)
807 {
808 struct nvmet_sq *sq = req->sq;
809
810 __nvmet_req_complete(req, status);
811 percpu_ref_put(&sq->ref);
812 }
813 EXPORT_SYMBOL_GPL(nvmet_req_complete);
814
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)815 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
816 u16 qid, u16 size)
817 {
818 cq->qid = qid;
819 cq->size = size;
820 }
821
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)822 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
823 u16 qid, u16 size)
824 {
825 sq->sqhd = 0;
826 sq->qid = qid;
827 sq->size = size;
828
829 ctrl->sqs[qid] = sq;
830 }
831
nvmet_confirm_sq(struct percpu_ref * ref)832 static void nvmet_confirm_sq(struct percpu_ref *ref)
833 {
834 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
835
836 complete(&sq->confirm_done);
837 }
838
nvmet_sq_destroy(struct nvmet_sq * sq)839 void nvmet_sq_destroy(struct nvmet_sq *sq)
840 {
841 struct nvmet_ctrl *ctrl = sq->ctrl;
842
843 /*
844 * If this is the admin queue, complete all AERs so that our
845 * queue doesn't have outstanding requests on it.
846 */
847 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
848 nvmet_async_events_failall(ctrl);
849 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
850 wait_for_completion(&sq->confirm_done);
851 wait_for_completion(&sq->free_done);
852 percpu_ref_exit(&sq->ref);
853 nvmet_auth_sq_free(sq);
854
855 /*
856 * we must reference the ctrl again after waiting for inflight IO
857 * to complete. Because admin connect may have sneaked in after we
858 * store sq->ctrl locally, but before we killed the percpu_ref. the
859 * admin connect allocates and assigns sq->ctrl, which now needs a
860 * final ref put, as this ctrl is going away.
861 */
862 ctrl = sq->ctrl;
863
864 if (ctrl) {
865 /*
866 * The teardown flow may take some time, and the host may not
867 * send us keep-alive during this period, hence reset the
868 * traffic based keep-alive timer so we don't trigger a
869 * controller teardown as a result of a keep-alive expiration.
870 */
871 ctrl->reset_tbkas = true;
872 sq->ctrl->sqs[sq->qid] = NULL;
873 nvmet_ctrl_put(ctrl);
874 sq->ctrl = NULL; /* allows reusing the queue later */
875 }
876 }
877 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
878
nvmet_sq_free(struct percpu_ref * ref)879 static void nvmet_sq_free(struct percpu_ref *ref)
880 {
881 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
882
883 complete(&sq->free_done);
884 }
885
nvmet_sq_init(struct nvmet_sq * sq)886 int nvmet_sq_init(struct nvmet_sq *sq)
887 {
888 int ret;
889
890 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
891 if (ret) {
892 pr_err("percpu_ref init failed!\n");
893 return ret;
894 }
895 init_completion(&sq->free_done);
896 init_completion(&sq->confirm_done);
897 nvmet_auth_sq_init(sq);
898
899 return 0;
900 }
901 EXPORT_SYMBOL_GPL(nvmet_sq_init);
902
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)903 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
904 struct nvmet_ns *ns)
905 {
906 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
907
908 if (unlikely(state == NVME_ANA_INACCESSIBLE))
909 return NVME_SC_ANA_INACCESSIBLE;
910 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
911 return NVME_SC_ANA_PERSISTENT_LOSS;
912 if (unlikely(state == NVME_ANA_CHANGE))
913 return NVME_SC_ANA_TRANSITION;
914 return 0;
915 }
916
nvmet_io_cmd_check_access(struct nvmet_req * req)917 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
918 {
919 if (unlikely(req->ns->readonly)) {
920 switch (req->cmd->common.opcode) {
921 case nvme_cmd_read:
922 case nvme_cmd_flush:
923 break;
924 default:
925 return NVME_SC_NS_WRITE_PROTECTED;
926 }
927 }
928
929 return 0;
930 }
931
nvmet_parse_io_cmd(struct nvmet_req * req)932 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
933 {
934 struct nvme_command *cmd = req->cmd;
935 u16 ret;
936
937 if (nvme_is_fabrics(cmd))
938 return nvmet_parse_fabrics_io_cmd(req);
939
940 if (unlikely(!nvmet_check_auth_status(req)))
941 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
942
943 ret = nvmet_check_ctrl_status(req);
944 if (unlikely(ret))
945 return ret;
946
947 if (nvmet_is_passthru_req(req))
948 return nvmet_parse_passthru_io_cmd(req);
949
950 ret = nvmet_req_find_ns(req);
951 if (unlikely(ret))
952 return ret;
953
954 ret = nvmet_check_ana_state(req->port, req->ns);
955 if (unlikely(ret)) {
956 req->error_loc = offsetof(struct nvme_common_command, nsid);
957 return ret;
958 }
959 ret = nvmet_io_cmd_check_access(req);
960 if (unlikely(ret)) {
961 req->error_loc = offsetof(struct nvme_common_command, nsid);
962 return ret;
963 }
964
965 if (req->ns->pr.enable) {
966 ret = nvmet_parse_pr_cmd(req);
967 if (!ret)
968 return ret;
969 }
970
971 switch (req->ns->csi) {
972 case NVME_CSI_NVM:
973 if (req->ns->file)
974 ret = nvmet_file_parse_io_cmd(req);
975 else
976 ret = nvmet_bdev_parse_io_cmd(req);
977 break;
978 case NVME_CSI_ZNS:
979 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
980 ret = nvmet_bdev_zns_parse_io_cmd(req);
981 else
982 ret = NVME_SC_INVALID_IO_CMD_SET;
983 break;
984 default:
985 ret = NVME_SC_INVALID_IO_CMD_SET;
986 }
987 if (ret)
988 return ret;
989
990 if (req->ns->pr.enable) {
991 ret = nvmet_pr_check_cmd_access(req);
992 if (ret)
993 return ret;
994
995 ret = nvmet_pr_get_ns_pc_ref(req);
996 }
997 return ret;
998 }
999
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)1000 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
1001 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
1002 {
1003 u8 flags = req->cmd->common.flags;
1004 u16 status;
1005
1006 req->cq = cq;
1007 req->sq = sq;
1008 req->ops = ops;
1009 req->sg = NULL;
1010 req->metadata_sg = NULL;
1011 req->sg_cnt = 0;
1012 req->metadata_sg_cnt = 0;
1013 req->transfer_len = 0;
1014 req->metadata_len = 0;
1015 req->cqe->result.u64 = 0;
1016 req->cqe->status = 0;
1017 req->cqe->sq_head = 0;
1018 req->ns = NULL;
1019 req->error_loc = NVMET_NO_ERROR_LOC;
1020 req->error_slba = 0;
1021 req->pc_ref = NULL;
1022
1023 /* no support for fused commands yet */
1024 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1025 req->error_loc = offsetof(struct nvme_common_command, flags);
1026 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1027 goto fail;
1028 }
1029
1030 /*
1031 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1032 * contains an address of a single contiguous physical buffer that is
1033 * byte aligned.
1034 */
1035 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1036 req->error_loc = offsetof(struct nvme_common_command, flags);
1037 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1038 goto fail;
1039 }
1040
1041 if (unlikely(!req->sq->ctrl))
1042 /* will return an error for any non-connect command: */
1043 status = nvmet_parse_connect_cmd(req);
1044 else if (likely(req->sq->qid != 0))
1045 status = nvmet_parse_io_cmd(req);
1046 else
1047 status = nvmet_parse_admin_cmd(req);
1048
1049 if (status)
1050 goto fail;
1051
1052 trace_nvmet_req_init(req, req->cmd);
1053
1054 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1055 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1056 goto fail;
1057 }
1058
1059 if (sq->ctrl)
1060 sq->ctrl->reset_tbkas = true;
1061
1062 return true;
1063
1064 fail:
1065 __nvmet_req_complete(req, status);
1066 return false;
1067 }
1068 EXPORT_SYMBOL_GPL(nvmet_req_init);
1069
nvmet_req_uninit(struct nvmet_req * req)1070 void nvmet_req_uninit(struct nvmet_req *req)
1071 {
1072 percpu_ref_put(&req->sq->ref);
1073 if (req->pc_ref)
1074 nvmet_pr_put_ns_pc_ref(req->pc_ref);
1075 if (req->ns)
1076 nvmet_put_namespace(req->ns);
1077 }
1078 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1079
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)1080 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1081 {
1082 if (unlikely(len != req->transfer_len)) {
1083 req->error_loc = offsetof(struct nvme_common_command, dptr);
1084 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1085 return false;
1086 }
1087
1088 return true;
1089 }
1090 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1091
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1092 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1093 {
1094 if (unlikely(data_len > req->transfer_len)) {
1095 req->error_loc = offsetof(struct nvme_common_command, dptr);
1096 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1097 return false;
1098 }
1099
1100 return true;
1101 }
1102
nvmet_data_transfer_len(struct nvmet_req * req)1103 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1104 {
1105 return req->transfer_len - req->metadata_len;
1106 }
1107
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1108 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1109 struct nvmet_req *req)
1110 {
1111 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1112 nvmet_data_transfer_len(req));
1113 if (!req->sg)
1114 goto out_err;
1115
1116 if (req->metadata_len) {
1117 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1118 &req->metadata_sg_cnt, req->metadata_len);
1119 if (!req->metadata_sg)
1120 goto out_free_sg;
1121 }
1122
1123 req->p2p_dev = p2p_dev;
1124
1125 return 0;
1126 out_free_sg:
1127 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1128 out_err:
1129 return -ENOMEM;
1130 }
1131
nvmet_req_find_p2p_dev(struct nvmet_req * req)1132 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1133 {
1134 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1135 !req->sq->ctrl || !req->sq->qid || !req->ns)
1136 return NULL;
1137 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1138 }
1139
nvmet_req_alloc_sgls(struct nvmet_req * req)1140 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1141 {
1142 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1143
1144 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1145 return 0;
1146
1147 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1148 &req->sg_cnt);
1149 if (unlikely(!req->sg))
1150 goto out;
1151
1152 if (req->metadata_len) {
1153 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1154 &req->metadata_sg_cnt);
1155 if (unlikely(!req->metadata_sg))
1156 goto out_free;
1157 }
1158
1159 return 0;
1160 out_free:
1161 sgl_free(req->sg);
1162 out:
1163 return -ENOMEM;
1164 }
1165 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1166
nvmet_req_free_sgls(struct nvmet_req * req)1167 void nvmet_req_free_sgls(struct nvmet_req *req)
1168 {
1169 if (req->p2p_dev) {
1170 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1171 if (req->metadata_sg)
1172 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1173 req->p2p_dev = NULL;
1174 } else {
1175 sgl_free(req->sg);
1176 if (req->metadata_sg)
1177 sgl_free(req->metadata_sg);
1178 }
1179
1180 req->sg = NULL;
1181 req->metadata_sg = NULL;
1182 req->sg_cnt = 0;
1183 req->metadata_sg_cnt = 0;
1184 }
1185 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1186
nvmet_cc_en(u32 cc)1187 static inline bool nvmet_cc_en(u32 cc)
1188 {
1189 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1190 }
1191
nvmet_cc_css(u32 cc)1192 static inline u8 nvmet_cc_css(u32 cc)
1193 {
1194 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1195 }
1196
nvmet_cc_mps(u32 cc)1197 static inline u8 nvmet_cc_mps(u32 cc)
1198 {
1199 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1200 }
1201
nvmet_cc_ams(u32 cc)1202 static inline u8 nvmet_cc_ams(u32 cc)
1203 {
1204 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1205 }
1206
nvmet_cc_shn(u32 cc)1207 static inline u8 nvmet_cc_shn(u32 cc)
1208 {
1209 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1210 }
1211
nvmet_cc_iosqes(u32 cc)1212 static inline u8 nvmet_cc_iosqes(u32 cc)
1213 {
1214 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1215 }
1216
nvmet_cc_iocqes(u32 cc)1217 static inline u8 nvmet_cc_iocqes(u32 cc)
1218 {
1219 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1220 }
1221
nvmet_css_supported(u8 cc_css)1222 static inline bool nvmet_css_supported(u8 cc_css)
1223 {
1224 switch (cc_css << NVME_CC_CSS_SHIFT) {
1225 case NVME_CC_CSS_NVM:
1226 case NVME_CC_CSS_CSI:
1227 return true;
1228 default:
1229 return false;
1230 }
1231 }
1232
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1233 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1234 {
1235 lockdep_assert_held(&ctrl->lock);
1236
1237 /*
1238 * Only I/O controllers should verify iosqes,iocqes.
1239 * Strictly speaking, the spec says a discovery controller
1240 * should verify iosqes,iocqes are zeroed, however that
1241 * would break backwards compatibility, so don't enforce it.
1242 */
1243 if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1244 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1245 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1246 ctrl->csts = NVME_CSTS_CFS;
1247 return;
1248 }
1249
1250 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1251 nvmet_cc_ams(ctrl->cc) != 0 ||
1252 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1253 ctrl->csts = NVME_CSTS_CFS;
1254 return;
1255 }
1256
1257 ctrl->csts = NVME_CSTS_RDY;
1258
1259 /*
1260 * Controllers that are not yet enabled should not really enforce the
1261 * keep alive timeout, but we still want to track a timeout and cleanup
1262 * in case a host died before it enabled the controller. Hence, simply
1263 * reset the keep alive timer when the controller is enabled.
1264 */
1265 if (ctrl->kato)
1266 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1267 }
1268
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1269 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1270 {
1271 lockdep_assert_held(&ctrl->lock);
1272
1273 /* XXX: tear down queues? */
1274 ctrl->csts &= ~NVME_CSTS_RDY;
1275 ctrl->cc = 0;
1276 }
1277
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1278 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1279 {
1280 u32 old;
1281
1282 mutex_lock(&ctrl->lock);
1283 old = ctrl->cc;
1284 ctrl->cc = new;
1285
1286 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1287 nvmet_start_ctrl(ctrl);
1288 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1289 nvmet_clear_ctrl(ctrl);
1290 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1291 nvmet_clear_ctrl(ctrl);
1292 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1293 }
1294 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1295 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1296 mutex_unlock(&ctrl->lock);
1297 }
1298
nvmet_init_cap(struct nvmet_ctrl * ctrl)1299 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1300 {
1301 /* command sets supported: NVMe command set: */
1302 ctrl->cap = (1ULL << 37);
1303 /* Controller supports one or more I/O Command Sets */
1304 ctrl->cap |= (1ULL << 43);
1305 /* CC.EN timeout in 500msec units: */
1306 ctrl->cap |= (15ULL << 24);
1307 /* maximum queue entries supported: */
1308 if (ctrl->ops->get_max_queue_size)
1309 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1310 ctrl->port->max_queue_size) - 1;
1311 else
1312 ctrl->cap |= ctrl->port->max_queue_size - 1;
1313
1314 if (nvmet_is_passthru_subsys(ctrl->subsys))
1315 nvmet_passthrough_override_cap(ctrl);
1316 }
1317
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1318 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1319 const char *hostnqn, u16 cntlid,
1320 struct nvmet_req *req)
1321 {
1322 struct nvmet_ctrl *ctrl = NULL;
1323 struct nvmet_subsys *subsys;
1324
1325 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1326 if (!subsys) {
1327 pr_warn("connect request for invalid subsystem %s!\n",
1328 subsysnqn);
1329 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1330 goto out;
1331 }
1332
1333 mutex_lock(&subsys->lock);
1334 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1335 if (ctrl->cntlid == cntlid) {
1336 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1337 pr_warn("hostnqn mismatch.\n");
1338 continue;
1339 }
1340 if (!kref_get_unless_zero(&ctrl->ref))
1341 continue;
1342
1343 /* ctrl found */
1344 goto found;
1345 }
1346 }
1347
1348 ctrl = NULL; /* ctrl not found */
1349 pr_warn("could not find controller %d for subsys %s / host %s\n",
1350 cntlid, subsysnqn, hostnqn);
1351 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1352
1353 found:
1354 mutex_unlock(&subsys->lock);
1355 nvmet_subsys_put(subsys);
1356 out:
1357 return ctrl;
1358 }
1359
nvmet_check_ctrl_status(struct nvmet_req * req)1360 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1361 {
1362 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1363 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1364 req->cmd->common.opcode, req->sq->qid);
1365 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1366 }
1367
1368 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1369 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1370 req->cmd->common.opcode, req->sq->qid);
1371 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1372 }
1373
1374 if (unlikely(!nvmet_check_auth_status(req))) {
1375 pr_warn("qid %d not authenticated\n", req->sq->qid);
1376 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1377 }
1378 return 0;
1379 }
1380
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1381 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1382 {
1383 struct nvmet_host_link *p;
1384
1385 lockdep_assert_held(&nvmet_config_sem);
1386
1387 if (subsys->allow_any_host)
1388 return true;
1389
1390 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1391 return true;
1392
1393 list_for_each_entry(p, &subsys->hosts, entry) {
1394 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1395 return true;
1396 }
1397
1398 return false;
1399 }
1400
1401 /*
1402 * Note: ctrl->subsys->lock should be held when calling this function
1403 */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1404 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1405 struct nvmet_req *req)
1406 {
1407 struct nvmet_ns *ns;
1408 unsigned long idx;
1409
1410 if (!req->p2p_client)
1411 return;
1412
1413 ctrl->p2p_client = get_device(req->p2p_client);
1414
1415 nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns)
1416 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1417 }
1418
1419 /*
1420 * Note: ctrl->subsys->lock should be held when calling this function
1421 */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1422 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1423 {
1424 struct radix_tree_iter iter;
1425 void __rcu **slot;
1426
1427 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1428 pci_dev_put(radix_tree_deref_slot(slot));
1429
1430 put_device(ctrl->p2p_client);
1431 }
1432
nvmet_fatal_error_handler(struct work_struct * work)1433 static void nvmet_fatal_error_handler(struct work_struct *work)
1434 {
1435 struct nvmet_ctrl *ctrl =
1436 container_of(work, struct nvmet_ctrl, fatal_err_work);
1437
1438 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1439 ctrl->ops->delete_ctrl(ctrl);
1440 }
1441
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp,uuid_t * hostid)1442 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1443 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp,
1444 uuid_t *hostid)
1445 {
1446 struct nvmet_subsys *subsys;
1447 struct nvmet_ctrl *ctrl;
1448 int ret;
1449 u16 status;
1450
1451 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1452 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1453 if (!subsys) {
1454 pr_warn("connect request for invalid subsystem %s!\n",
1455 subsysnqn);
1456 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1457 req->error_loc = offsetof(struct nvme_common_command, dptr);
1458 goto out;
1459 }
1460
1461 down_read(&nvmet_config_sem);
1462 if (!nvmet_host_allowed(subsys, hostnqn)) {
1463 pr_info("connect by host %s for subsystem %s not allowed\n",
1464 hostnqn, subsysnqn);
1465 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1466 up_read(&nvmet_config_sem);
1467 status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1468 req->error_loc = offsetof(struct nvme_common_command, dptr);
1469 goto out_put_subsystem;
1470 }
1471 up_read(&nvmet_config_sem);
1472
1473 status = NVME_SC_INTERNAL;
1474 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1475 if (!ctrl)
1476 goto out_put_subsystem;
1477 mutex_init(&ctrl->lock);
1478
1479 ctrl->port = req->port;
1480 ctrl->ops = req->ops;
1481
1482 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1483 /* By default, set loop targets to clear IDS by default */
1484 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1485 subsys->clear_ids = 1;
1486 #endif
1487
1488 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1489 INIT_LIST_HEAD(&ctrl->async_events);
1490 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1491 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1492 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1493
1494 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1495 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1496
1497 kref_init(&ctrl->ref);
1498 ctrl->subsys = subsys;
1499 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1500 nvmet_init_cap(ctrl);
1501 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1502
1503 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1504 sizeof(__le32), GFP_KERNEL);
1505 if (!ctrl->changed_ns_list)
1506 goto out_free_ctrl;
1507
1508 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1509 sizeof(struct nvmet_sq *),
1510 GFP_KERNEL);
1511 if (!ctrl->sqs)
1512 goto out_free_changed_ns_list;
1513
1514 ret = ida_alloc_range(&cntlid_ida,
1515 subsys->cntlid_min, subsys->cntlid_max,
1516 GFP_KERNEL);
1517 if (ret < 0) {
1518 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1519 goto out_free_sqs;
1520 }
1521 ctrl->cntlid = ret;
1522
1523 uuid_copy(&ctrl->hostid, hostid);
1524
1525 /*
1526 * Discovery controllers may use some arbitrary high value
1527 * in order to cleanup stale discovery sessions
1528 */
1529 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1530 kato = NVMET_DISC_KATO_MS;
1531
1532 /* keep-alive timeout in seconds */
1533 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1534
1535 ctrl->err_counter = 0;
1536 spin_lock_init(&ctrl->error_lock);
1537
1538 nvmet_start_keep_alive_timer(ctrl);
1539
1540 mutex_lock(&subsys->lock);
1541 ret = nvmet_ctrl_init_pr(ctrl);
1542 if (ret)
1543 goto init_pr_fail;
1544 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1545 nvmet_setup_p2p_ns_map(ctrl, req);
1546 nvmet_debugfs_ctrl_setup(ctrl);
1547 mutex_unlock(&subsys->lock);
1548
1549 *ctrlp = ctrl;
1550 return 0;
1551
1552 init_pr_fail:
1553 mutex_unlock(&subsys->lock);
1554 nvmet_stop_keep_alive_timer(ctrl);
1555 ida_free(&cntlid_ida, ctrl->cntlid);
1556 out_free_sqs:
1557 kfree(ctrl->sqs);
1558 out_free_changed_ns_list:
1559 kfree(ctrl->changed_ns_list);
1560 out_free_ctrl:
1561 kfree(ctrl);
1562 out_put_subsystem:
1563 nvmet_subsys_put(subsys);
1564 out:
1565 return status;
1566 }
1567
nvmet_ctrl_free(struct kref * ref)1568 static void nvmet_ctrl_free(struct kref *ref)
1569 {
1570 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1571 struct nvmet_subsys *subsys = ctrl->subsys;
1572
1573 mutex_lock(&subsys->lock);
1574 nvmet_ctrl_destroy_pr(ctrl);
1575 nvmet_release_p2p_ns_map(ctrl);
1576 list_del(&ctrl->subsys_entry);
1577 mutex_unlock(&subsys->lock);
1578
1579 nvmet_stop_keep_alive_timer(ctrl);
1580
1581 flush_work(&ctrl->async_event_work);
1582 cancel_work_sync(&ctrl->fatal_err_work);
1583
1584 nvmet_destroy_auth(ctrl);
1585
1586 nvmet_debugfs_ctrl_free(ctrl);
1587
1588 ida_free(&cntlid_ida, ctrl->cntlid);
1589
1590 nvmet_async_events_free(ctrl);
1591 kfree(ctrl->sqs);
1592 kfree(ctrl->changed_ns_list);
1593 kfree(ctrl);
1594
1595 nvmet_subsys_put(subsys);
1596 }
1597
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1598 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1599 {
1600 kref_put(&ctrl->ref, nvmet_ctrl_free);
1601 }
1602
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1603 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1604 {
1605 mutex_lock(&ctrl->lock);
1606 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1607 ctrl->csts |= NVME_CSTS_CFS;
1608 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1609 }
1610 mutex_unlock(&ctrl->lock);
1611 }
1612 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1613
nvmet_ctrl_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)1614 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1615 char *traddr, size_t traddr_len)
1616 {
1617 if (!ctrl->ops->host_traddr)
1618 return -EOPNOTSUPP;
1619 return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1620 }
1621
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1622 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1623 const char *subsysnqn)
1624 {
1625 struct nvmet_subsys_link *p;
1626
1627 if (!port)
1628 return NULL;
1629
1630 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1631 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1632 return NULL;
1633 return nvmet_disc_subsys;
1634 }
1635
1636 down_read(&nvmet_config_sem);
1637 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1638 NVMF_NQN_SIZE)) {
1639 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1640 up_read(&nvmet_config_sem);
1641 return nvmet_disc_subsys;
1642 }
1643 }
1644 list_for_each_entry(p, &port->subsystems, entry) {
1645 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1646 NVMF_NQN_SIZE)) {
1647 if (!kref_get_unless_zero(&p->subsys->ref))
1648 break;
1649 up_read(&nvmet_config_sem);
1650 return p->subsys;
1651 }
1652 }
1653 up_read(&nvmet_config_sem);
1654 return NULL;
1655 }
1656
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1657 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1658 enum nvme_subsys_type type)
1659 {
1660 struct nvmet_subsys *subsys;
1661 char serial[NVMET_SN_MAX_SIZE / 2];
1662 int ret;
1663
1664 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1665 if (!subsys)
1666 return ERR_PTR(-ENOMEM);
1667
1668 subsys->ver = NVMET_DEFAULT_VS;
1669 /* generate a random serial number as our controllers are ephemeral: */
1670 get_random_bytes(&serial, sizeof(serial));
1671 bin2hex(subsys->serial, &serial, sizeof(serial));
1672
1673 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1674 if (!subsys->model_number) {
1675 ret = -ENOMEM;
1676 goto free_subsys;
1677 }
1678
1679 subsys->ieee_oui = 0;
1680
1681 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1682 if (!subsys->firmware_rev) {
1683 ret = -ENOMEM;
1684 goto free_mn;
1685 }
1686
1687 switch (type) {
1688 case NVME_NQN_NVME:
1689 subsys->max_qid = NVMET_NR_QUEUES;
1690 break;
1691 case NVME_NQN_DISC:
1692 case NVME_NQN_CURR:
1693 subsys->max_qid = 0;
1694 break;
1695 default:
1696 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1697 ret = -EINVAL;
1698 goto free_fr;
1699 }
1700 subsys->type = type;
1701 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1702 GFP_KERNEL);
1703 if (!subsys->subsysnqn) {
1704 ret = -ENOMEM;
1705 goto free_fr;
1706 }
1707 subsys->cntlid_min = NVME_CNTLID_MIN;
1708 subsys->cntlid_max = NVME_CNTLID_MAX;
1709 kref_init(&subsys->ref);
1710
1711 mutex_init(&subsys->lock);
1712 xa_init(&subsys->namespaces);
1713 INIT_LIST_HEAD(&subsys->ctrls);
1714 INIT_LIST_HEAD(&subsys->hosts);
1715
1716 ret = nvmet_debugfs_subsys_setup(subsys);
1717 if (ret)
1718 goto free_subsysnqn;
1719
1720 return subsys;
1721
1722 free_subsysnqn:
1723 kfree(subsys->subsysnqn);
1724 free_fr:
1725 kfree(subsys->firmware_rev);
1726 free_mn:
1727 kfree(subsys->model_number);
1728 free_subsys:
1729 kfree(subsys);
1730 return ERR_PTR(ret);
1731 }
1732
nvmet_subsys_free(struct kref * ref)1733 static void nvmet_subsys_free(struct kref *ref)
1734 {
1735 struct nvmet_subsys *subsys =
1736 container_of(ref, struct nvmet_subsys, ref);
1737
1738 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1739
1740 nvmet_debugfs_subsys_free(subsys);
1741
1742 xa_destroy(&subsys->namespaces);
1743 nvmet_passthru_subsys_free(subsys);
1744
1745 kfree(subsys->subsysnqn);
1746 kfree(subsys->model_number);
1747 kfree(subsys->firmware_rev);
1748 kfree(subsys);
1749 }
1750
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1751 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1752 {
1753 struct nvmet_ctrl *ctrl;
1754
1755 mutex_lock(&subsys->lock);
1756 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1757 ctrl->ops->delete_ctrl(ctrl);
1758 mutex_unlock(&subsys->lock);
1759 }
1760
nvmet_subsys_put(struct nvmet_subsys * subsys)1761 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1762 {
1763 kref_put(&subsys->ref, nvmet_subsys_free);
1764 }
1765
nvmet_init(void)1766 static int __init nvmet_init(void)
1767 {
1768 int error = -ENOMEM;
1769
1770 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1771
1772 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1773 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1774 SLAB_HWCACHE_ALIGN, NULL);
1775 if (!nvmet_bvec_cache)
1776 return -ENOMEM;
1777
1778 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1779 if (!zbd_wq)
1780 goto out_destroy_bvec_cache;
1781
1782 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1783 WQ_MEM_RECLAIM, 0);
1784 if (!buffered_io_wq)
1785 goto out_free_zbd_work_queue;
1786
1787 nvmet_wq = alloc_workqueue("nvmet-wq",
1788 WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1789 if (!nvmet_wq)
1790 goto out_free_buffered_work_queue;
1791
1792 error = nvmet_init_discovery();
1793 if (error)
1794 goto out_free_nvmet_work_queue;
1795
1796 error = nvmet_init_debugfs();
1797 if (error)
1798 goto out_exit_discovery;
1799
1800 error = nvmet_init_configfs();
1801 if (error)
1802 goto out_exit_debugfs;
1803
1804 return 0;
1805
1806 out_exit_debugfs:
1807 nvmet_exit_debugfs();
1808 out_exit_discovery:
1809 nvmet_exit_discovery();
1810 out_free_nvmet_work_queue:
1811 destroy_workqueue(nvmet_wq);
1812 out_free_buffered_work_queue:
1813 destroy_workqueue(buffered_io_wq);
1814 out_free_zbd_work_queue:
1815 destroy_workqueue(zbd_wq);
1816 out_destroy_bvec_cache:
1817 kmem_cache_destroy(nvmet_bvec_cache);
1818 return error;
1819 }
1820
nvmet_exit(void)1821 static void __exit nvmet_exit(void)
1822 {
1823 nvmet_exit_configfs();
1824 nvmet_exit_debugfs();
1825 nvmet_exit_discovery();
1826 ida_destroy(&cntlid_ida);
1827 destroy_workqueue(nvmet_wq);
1828 destroy_workqueue(buffered_io_wq);
1829 destroy_workqueue(zbd_wq);
1830 kmem_cache_destroy(nvmet_bvec_cache);
1831
1832 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1833 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1834 }
1835
1836 module_init(nvmet_init);
1837 module_exit(nvmet_exit);
1838
1839 MODULE_DESCRIPTION("NVMe target core framework");
1840 MODULE_LICENSE("GPL v2");
1841