xref: /linux/drivers/nvme/target/fc.c (revision 4482ebb2970efa58173075c101426b2f3af40b41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 
58 	struct work_struct		put_work;
59 };
60 
61 
62 /* desired maximum for a single sequence - if sg list allows it */
63 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
64 
65 enum nvmet_fcp_datadir {
66 	NVMET_FCP_NODATA,
67 	NVMET_FCP_WRITE,
68 	NVMET_FCP_READ,
69 	NVMET_FCP_ABORTED,
70 };
71 
72 struct nvmet_fc_fcp_iod {
73 	struct nvmefc_tgt_fcp_req	*fcpreq;
74 
75 	struct nvme_fc_cmd_iu		cmdiubuf;
76 	struct nvme_fc_ersp_iu		rspiubuf;
77 	dma_addr_t			rspdma;
78 	struct scatterlist		*next_sg;
79 	struct scatterlist		*data_sg;
80 	int				data_sg_cnt;
81 	u32				offset;
82 	enum nvmet_fcp_datadir		io_dir;
83 	bool				active;
84 	bool				abort;
85 	bool				aborted;
86 	bool				writedataactive;
87 	spinlock_t			flock;
88 
89 	struct nvmet_req		req;
90 	struct work_struct		defer_work;
91 
92 	struct nvmet_fc_tgtport		*tgtport;
93 	struct nvmet_fc_tgt_queue	*queue;
94 
95 	struct list_head		fcp_list;	/* tgtport->fcp_list */
96 };
97 
98 struct nvmet_fc_tgtport {
99 	struct nvmet_fc_target_port	fc_target_port;
100 
101 	struct list_head		tgt_list; /* nvmet_fc_target_list */
102 	struct device			*dev;	/* dev for dma mapping */
103 	struct nvmet_fc_target_template	*ops;
104 
105 	struct nvmet_fc_ls_iod		*iod;
106 	spinlock_t			lock;
107 	struct list_head		ls_rcv_list;
108 	struct list_head		ls_req_list;
109 	struct list_head		ls_busylist;
110 	struct list_head		assoc_list;
111 	struct list_head		host_list;
112 	struct ida			assoc_cnt;
113 	struct nvmet_fc_port_entry	*pe;
114 	struct kref			ref;
115 	u32				max_sg_cnt;
116 };
117 
118 struct nvmet_fc_port_entry {
119 	struct nvmet_fc_tgtport		*tgtport;
120 	struct nvmet_port		*port;
121 	u64				node_name;
122 	u64				port_name;
123 	struct list_head		pe_list;
124 };
125 
126 struct nvmet_fc_defer_fcp_req {
127 	struct list_head		req_list;
128 	struct nvmefc_tgt_fcp_req	*fcp_req;
129 };
130 
131 struct nvmet_fc_tgt_queue {
132 	bool				ninetypercent;
133 	u16				qid;
134 	u16				sqsize;
135 	u16				ersp_ratio;
136 	__le16				sqhd;
137 	atomic_t			connected;
138 	atomic_t			sqtail;
139 	atomic_t			zrspcnt;
140 	atomic_t			rsn;
141 	spinlock_t			qlock;
142 	struct nvmet_cq			nvme_cq;
143 	struct nvmet_sq			nvme_sq;
144 	struct nvmet_fc_tgt_assoc	*assoc;
145 	struct list_head		fod_list;
146 	struct list_head		pending_cmd_list;
147 	struct list_head		avail_defer_list;
148 	struct workqueue_struct		*work_q;
149 	struct kref			ref;
150 	/* array of fcp_iods */
151 	struct nvmet_fc_fcp_iod		fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153 
154 struct nvmet_fc_hostport {
155 	struct nvmet_fc_tgtport		*tgtport;
156 	void				*hosthandle;
157 	struct list_head		host_list;
158 	struct kref			ref;
159 	u8				invalid;
160 };
161 
162 struct nvmet_fc_tgt_assoc {
163 	u64				association_id;
164 	u32				a_id;
165 	atomic_t			terminating;
166 	struct nvmet_fc_tgtport		*tgtport;
167 	struct nvmet_fc_hostport	*hostport;
168 	struct nvmet_fc_ls_iod		*rcv_disconn;
169 	struct list_head		a_list;
170 	struct nvmet_fc_tgt_queue 	*queues[NVMET_NR_QUEUES + 1];
171 	struct kref			ref;
172 	struct work_struct		del_work;
173 };
174 
175 /*
176  * Association and Connection IDs:
177  *
178  * Association ID will have random number in upper 6 bytes and zero
179  *   in lower 2 bytes
180  *
181  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182  *
183  * note: Association ID = Connection ID for queue 0
184  */
185 #define BYTES_FOR_QID			sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188 
189 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 	return (assoc->association_id | qid);
193 }
194 
195 static inline u64
nvmet_fc_getassociationid(u64 connectionid)196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200 
201 static inline u16
nvmet_fc_getqueueid(u64 connectionid)202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206 
207 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 	return container_of(targetport, struct nvmet_fc_tgtport,
211 				 fc_target_port);
212 }
213 
214 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219 
220 
221 /* *************************** Globals **************************** */
222 
223 
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225 
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229 
230 
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_lsop_work(struct work_struct * work)238 static void nvmet_fc_put_lsop_work(struct work_struct *work)
239 {
240 	struct nvmet_fc_ls_req_op *lsop =
241 		container_of(work, struct nvmet_fc_ls_req_op, put_work);
242 
243 	nvmet_fc_tgtport_put(lsop->tgtport);
244 	kfree(lsop);
245 }
246 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
247 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
248 					struct nvmet_fc_fcp_iod *fod);
249 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
250 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
251 				struct nvmet_fc_ls_iod *iod);
252 
253 
254 /* *********************** FC-NVME DMA Handling **************************** */
255 
256 /*
257  * The fcloop device passes in a NULL device pointer. Real LLD's will
258  * pass in a valid device pointer. If NULL is passed to the dma mapping
259  * routines, depending on the platform, it may or may not succeed, and
260  * may crash.
261  *
262  * As such:
263  * Wrapper all the dma routines and check the dev pointer.
264  *
265  * If simple mappings (return just a dma address, we'll noop them,
266  * returning a dma address of 0.
267  *
268  * On more complex mappings (dma_map_sg), a pseudo routine fills
269  * in the scatter list, setting all dma addresses to 0.
270  */
271 
272 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)273 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
274 		enum dma_data_direction dir)
275 {
276 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
277 }
278 
279 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)280 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
281 {
282 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
283 }
284 
285 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)286 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
287 	enum dma_data_direction dir)
288 {
289 	if (dev)
290 		dma_unmap_single(dev, addr, size, dir);
291 }
292 
293 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)294 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
295 		enum dma_data_direction dir)
296 {
297 	if (dev)
298 		dma_sync_single_for_cpu(dev, addr, size, dir);
299 }
300 
301 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)302 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
303 		enum dma_data_direction dir)
304 {
305 	if (dev)
306 		dma_sync_single_for_device(dev, addr, size, dir);
307 }
308 
309 /* pseudo dma_map_sg call */
310 static int
fc_map_sg(struct scatterlist * sg,int nents)311 fc_map_sg(struct scatterlist *sg, int nents)
312 {
313 	struct scatterlist *s;
314 	int i;
315 
316 	WARN_ON(nents == 0 || sg[0].length == 0);
317 
318 	for_each_sg(sg, s, nents, i) {
319 		s->dma_address = 0L;
320 #ifdef CONFIG_NEED_SG_DMA_LENGTH
321 		s->dma_length = s->length;
322 #endif
323 	}
324 	return nents;
325 }
326 
327 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)328 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
329 		enum dma_data_direction dir)
330 {
331 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
332 }
333 
334 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)335 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
336 		enum dma_data_direction dir)
337 {
338 	if (dev)
339 		dma_unmap_sg(dev, sg, nents, dir);
340 }
341 
342 
343 /* ********************** FC-NVME LS XMT Handling ************************* */
344 
345 
346 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)347 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
348 {
349 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
350 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&tgtport->lock, flags);
354 
355 	if (!lsop->req_queued) {
356 		spin_unlock_irqrestore(&tgtport->lock, flags);
357 		goto out_putwork;
358 	}
359 
360 	list_del(&lsop->lsreq_list);
361 
362 	lsop->req_queued = false;
363 
364 	spin_unlock_irqrestore(&tgtport->lock, flags);
365 
366 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
367 				  (lsreq->rqstlen + lsreq->rsplen),
368 				  DMA_BIDIRECTIONAL);
369 
370 out_putwork:
371 	queue_work(nvmet_wq, &lsop->put_work);
372 }
373 
374 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))375 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
376 		struct nvmet_fc_ls_req_op *lsop,
377 		void (*done)(struct nvmefc_ls_req *req, int status))
378 {
379 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
380 	unsigned long flags;
381 	int ret = 0;
382 
383 	if (!tgtport->ops->ls_req)
384 		return -EOPNOTSUPP;
385 
386 	if (!nvmet_fc_tgtport_get(tgtport))
387 		return -ESHUTDOWN;
388 
389 	lsreq->done = done;
390 	lsop->req_queued = false;
391 	INIT_LIST_HEAD(&lsop->lsreq_list);
392 	INIT_WORK(&lsop->put_work, nvmet_fc_put_lsop_work);
393 
394 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
395 				  lsreq->rqstlen + lsreq->rsplen,
396 				  DMA_BIDIRECTIONAL);
397 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
398 		ret = -EFAULT;
399 		goto out_puttgtport;
400 	}
401 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
402 
403 	spin_lock_irqsave(&tgtport->lock, flags);
404 
405 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
406 
407 	lsop->req_queued = true;
408 
409 	spin_unlock_irqrestore(&tgtport->lock, flags);
410 
411 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
412 				   lsreq);
413 	if (ret)
414 		goto out_unlink;
415 
416 	return 0;
417 
418 out_unlink:
419 	lsop->ls_error = ret;
420 	spin_lock_irqsave(&tgtport->lock, flags);
421 	lsop->req_queued = false;
422 	list_del(&lsop->lsreq_list);
423 	spin_unlock_irqrestore(&tgtport->lock, flags);
424 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
425 				  (lsreq->rqstlen + lsreq->rsplen),
426 				  DMA_BIDIRECTIONAL);
427 out_puttgtport:
428 	nvmet_fc_tgtport_put(tgtport);
429 
430 	return ret;
431 }
432 
433 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))434 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
435 		struct nvmet_fc_ls_req_op *lsop,
436 		void (*done)(struct nvmefc_ls_req *req, int status))
437 {
438 	/* don't wait for completion */
439 
440 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
441 }
442 
443 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)444 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
445 {
446 	struct nvmet_fc_ls_req_op *lsop =
447 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
448 
449 	__nvmet_fc_finish_ls_req(lsop);
450 
451 	/* fc-nvme target doesn't care about success or failure of cmd */
452 }
453 
454 /*
455  * This routine sends a FC-NVME LS to disconnect (aka terminate)
456  * the FC-NVME Association.  Terminating the association also
457  * terminates the FC-NVME connections (per queue, both admin and io
458  * queues) that are part of the association. E.g. things are torn
459  * down, and the related FC-NVME Association ID and Connection IDs
460  * become invalid.
461  *
462  * The behavior of the fc-nvme target is such that its
463  * understanding of the association and connections will implicitly
464  * be torn down. The action is implicit as it may be due to a loss of
465  * connectivity with the fc-nvme host, so the target may never get a
466  * response even if it tried.  As such, the action of this routine
467  * is to asynchronously send the LS, ignore any results of the LS, and
468  * continue on with terminating the association. If the fc-nvme host
469  * is present and receives the LS, it too can tear down.
470  */
471 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 	struct nvmet_fc_ls_req_op *lsop;
478 	struct nvmefc_ls_req *lsreq;
479 	int ret;
480 
481 	/*
482 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 	 * message is normal. Otherwise, send unless the hostport has
484 	 * already been invalidated by the lldd.
485 	 */
486 	if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 		return;
488 
489 	lsop = kzalloc((sizeof(*lsop) +
490 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 	if (!lsop) {
493 		pr_info("{%d:%d}: send Disconnect Association failed: ENOMEM\n",
494 			tgtport->fc_target_port.port_num, assoc->a_id);
495 		return;
496 	}
497 
498 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
499 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
500 	lsreq = &lsop->ls_req;
501 	if (tgtport->ops->lsrqst_priv_sz)
502 		lsreq->private = (void *)&discon_acc[1];
503 	else
504 		lsreq->private = NULL;
505 
506 	lsop->tgtport = tgtport;
507 	lsop->hosthandle = assoc->hostport->hosthandle;
508 
509 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
510 				assoc->association_id);
511 
512 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
513 				nvmet_fc_disconnect_assoc_done);
514 	if (ret) {
515 		pr_info("{%d:%d}: XMT Disconnect Association failed: %d\n",
516 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
517 		kfree(lsop);
518 	}
519 }
520 
521 
522 /* *********************** FC-NVME Port Management ************************ */
523 
524 
525 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)526 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
527 {
528 	struct nvmet_fc_ls_iod *iod;
529 	int i;
530 
531 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
532 			GFP_KERNEL);
533 	if (!iod)
534 		return -ENOMEM;
535 
536 	tgtport->iod = iod;
537 
538 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
539 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
540 		iod->tgtport = tgtport;
541 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
542 
543 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
544 				       sizeof(union nvmefc_ls_responses),
545 				       GFP_KERNEL);
546 		if (!iod->rqstbuf)
547 			goto out_fail;
548 
549 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
550 
551 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
552 						sizeof(*iod->rspbuf),
553 						DMA_TO_DEVICE);
554 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
555 			goto out_fail;
556 	}
557 
558 	return 0;
559 
560 out_fail:
561 	kfree(iod->rqstbuf);
562 	list_del(&iod->ls_rcv_list);
563 	for (iod--, i--; i >= 0; iod--, i--) {
564 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
565 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
566 		kfree(iod->rqstbuf);
567 		list_del(&iod->ls_rcv_list);
568 	}
569 
570 	kfree(iod);
571 
572 	return -EFAULT;
573 }
574 
575 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)576 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
577 {
578 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
579 	int i;
580 
581 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
582 		fc_dma_unmap_single(tgtport->dev,
583 				iod->rspdma, sizeof(*iod->rspbuf),
584 				DMA_TO_DEVICE);
585 		kfree(iod->rqstbuf);
586 		list_del(&iod->ls_rcv_list);
587 	}
588 	kfree(tgtport->iod);
589 }
590 
591 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)592 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
593 {
594 	struct nvmet_fc_ls_iod *iod;
595 	unsigned long flags;
596 
597 	spin_lock_irqsave(&tgtport->lock, flags);
598 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
599 					struct nvmet_fc_ls_iod, ls_rcv_list);
600 	if (iod)
601 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
602 	spin_unlock_irqrestore(&tgtport->lock, flags);
603 	return iod;
604 }
605 
606 
607 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)608 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
609 			struct nvmet_fc_ls_iod *iod)
610 {
611 	unsigned long flags;
612 
613 	spin_lock_irqsave(&tgtport->lock, flags);
614 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
615 	spin_unlock_irqrestore(&tgtport->lock, flags);
616 }
617 
618 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)619 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
620 				struct nvmet_fc_tgt_queue *queue)
621 {
622 	struct nvmet_fc_fcp_iod *fod = queue->fod;
623 	int i;
624 
625 	for (i = 0; i < queue->sqsize; fod++, i++) {
626 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
627 		fod->tgtport = tgtport;
628 		fod->queue = queue;
629 		fod->active = false;
630 		fod->abort = false;
631 		fod->aborted = false;
632 		fod->fcpreq = NULL;
633 		list_add_tail(&fod->fcp_list, &queue->fod_list);
634 		spin_lock_init(&fod->flock);
635 
636 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
637 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
638 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
639 			list_del(&fod->fcp_list);
640 			for (fod--, i--; i >= 0; fod--, i--) {
641 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
642 						sizeof(fod->rspiubuf),
643 						DMA_TO_DEVICE);
644 				fod->rspdma = 0L;
645 				list_del(&fod->fcp_list);
646 			}
647 
648 			return;
649 		}
650 	}
651 }
652 
653 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)654 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
655 				struct nvmet_fc_tgt_queue *queue)
656 {
657 	struct nvmet_fc_fcp_iod *fod = queue->fod;
658 	int i;
659 
660 	for (i = 0; i < queue->sqsize; fod++, i++) {
661 		if (fod->rspdma)
662 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
663 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
664 	}
665 }
666 
667 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)668 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
669 {
670 	struct nvmet_fc_fcp_iod *fod;
671 
672 	lockdep_assert_held(&queue->qlock);
673 
674 	fod = list_first_entry_or_null(&queue->fod_list,
675 					struct nvmet_fc_fcp_iod, fcp_list);
676 	if (fod) {
677 		list_del(&fod->fcp_list);
678 		fod->active = true;
679 		/*
680 		 * no queue reference is taken, as it was taken by the
681 		 * queue lookup just prior to the allocation. The iod
682 		 * will "inherit" that reference.
683 		 */
684 	}
685 	return fod;
686 }
687 
688 
689 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)690 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
691 		       struct nvmet_fc_tgt_queue *queue,
692 		       struct nvmefc_tgt_fcp_req *fcpreq)
693 {
694 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
695 
696 	/*
697 	 * put all admin cmds on hw queue id 0. All io commands go to
698 	 * the respective hw queue based on a modulo basis
699 	 */
700 	fcpreq->hwqid = queue->qid ?
701 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
702 
703 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
704 }
705 
706 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)707 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
708 {
709 	struct nvmet_fc_fcp_iod *fod =
710 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
711 
712 	/* Submit deferred IO for processing */
713 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
714 
715 }
716 
717 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)718 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
719 			struct nvmet_fc_fcp_iod *fod)
720 {
721 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
722 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
723 	struct nvmet_fc_defer_fcp_req *deferfcp;
724 	unsigned long flags;
725 
726 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
727 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
728 
729 	fcpreq->nvmet_fc_private = NULL;
730 
731 	fod->active = false;
732 	fod->abort = false;
733 	fod->aborted = false;
734 	fod->writedataactive = false;
735 	fod->fcpreq = NULL;
736 
737 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
738 
739 	/* release the queue lookup reference on the completed IO */
740 	nvmet_fc_tgt_q_put(queue);
741 
742 	spin_lock_irqsave(&queue->qlock, flags);
743 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
744 				struct nvmet_fc_defer_fcp_req, req_list);
745 	if (!deferfcp) {
746 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
747 		spin_unlock_irqrestore(&queue->qlock, flags);
748 		return;
749 	}
750 
751 	/* Re-use the fod for the next pending cmd that was deferred */
752 	list_del(&deferfcp->req_list);
753 
754 	fcpreq = deferfcp->fcp_req;
755 
756 	/* deferfcp can be reused for another IO at a later date */
757 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
758 
759 	spin_unlock_irqrestore(&queue->qlock, flags);
760 
761 	/* Save NVME CMD IO in fod */
762 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
763 
764 	/* Setup new fcpreq to be processed */
765 	fcpreq->rspaddr = NULL;
766 	fcpreq->rsplen  = 0;
767 	fcpreq->nvmet_fc_private = fod;
768 	fod->fcpreq = fcpreq;
769 	fod->active = true;
770 
771 	/* inform LLDD IO is now being processed */
772 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
773 
774 	/*
775 	 * Leave the queue lookup get reference taken when
776 	 * fod was originally allocated.
777 	 */
778 
779 	queue_work(queue->work_q, &fod->defer_work);
780 }
781 
782 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)783 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
784 			u16 qid, u16 sqsize)
785 {
786 	struct nvmet_fc_tgt_queue *queue;
787 	int ret;
788 
789 	if (qid > NVMET_NR_QUEUES)
790 		return NULL;
791 
792 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
793 	if (!queue)
794 		return NULL;
795 
796 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
797 				assoc->tgtport->fc_target_port.port_num,
798 				assoc->a_id, qid);
799 	if (!queue->work_q)
800 		goto out_free_queue;
801 
802 	queue->qid = qid;
803 	queue->sqsize = sqsize;
804 	queue->assoc = assoc;
805 	INIT_LIST_HEAD(&queue->fod_list);
806 	INIT_LIST_HEAD(&queue->avail_defer_list);
807 	INIT_LIST_HEAD(&queue->pending_cmd_list);
808 	atomic_set(&queue->connected, 0);
809 	atomic_set(&queue->sqtail, 0);
810 	atomic_set(&queue->rsn, 1);
811 	atomic_set(&queue->zrspcnt, 0);
812 	spin_lock_init(&queue->qlock);
813 	kref_init(&queue->ref);
814 
815 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
816 
817 	nvmet_cq_init(&queue->nvme_cq);
818 	ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
819 	if (ret)
820 		goto out_fail_iodlist;
821 
822 	WARN_ON(assoc->queues[qid]);
823 	assoc->queues[qid] = queue;
824 
825 	return queue;
826 
827 out_fail_iodlist:
828 	nvmet_cq_put(&queue->nvme_cq);
829 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
830 	destroy_workqueue(queue->work_q);
831 out_free_queue:
832 	kfree(queue);
833 	return NULL;
834 }
835 
836 
837 static void
nvmet_fc_tgt_queue_free(struct kref * ref)838 nvmet_fc_tgt_queue_free(struct kref *ref)
839 {
840 	struct nvmet_fc_tgt_queue *queue =
841 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
842 
843 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
844 
845 	destroy_workqueue(queue->work_q);
846 
847 	kfree(queue);
848 }
849 
850 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)851 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
852 {
853 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
854 }
855 
856 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)857 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
858 {
859 	return kref_get_unless_zero(&queue->ref);
860 }
861 
862 
863 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)864 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
865 {
866 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
867 	struct nvmet_fc_fcp_iod *fod = queue->fod;
868 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
869 	unsigned long flags;
870 	int i;
871 	bool disconnect;
872 
873 	disconnect = atomic_xchg(&queue->connected, 0);
874 
875 	/* if not connected, nothing to do */
876 	if (!disconnect)
877 		return;
878 
879 	spin_lock_irqsave(&queue->qlock, flags);
880 	/* abort outstanding io's */
881 	for (i = 0; i < queue->sqsize; fod++, i++) {
882 		if (fod->active) {
883 			spin_lock(&fod->flock);
884 			fod->abort = true;
885 			/*
886 			 * only call lldd abort routine if waiting for
887 			 * writedata. other outstanding ops should finish
888 			 * on their own.
889 			 */
890 			if (fod->writedataactive) {
891 				fod->aborted = true;
892 				spin_unlock(&fod->flock);
893 				tgtport->ops->fcp_abort(
894 					&tgtport->fc_target_port, fod->fcpreq);
895 			} else
896 				spin_unlock(&fod->flock);
897 		}
898 	}
899 
900 	/* Cleanup defer'ed IOs in queue */
901 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
902 				req_list) {
903 		list_del(&deferfcp->req_list);
904 		kfree(deferfcp);
905 	}
906 
907 	for (;;) {
908 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
909 				struct nvmet_fc_defer_fcp_req, req_list);
910 		if (!deferfcp)
911 			break;
912 
913 		list_del(&deferfcp->req_list);
914 		spin_unlock_irqrestore(&queue->qlock, flags);
915 
916 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
917 				deferfcp->fcp_req);
918 
919 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
920 				deferfcp->fcp_req);
921 
922 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
923 				deferfcp->fcp_req);
924 
925 		/* release the queue lookup reference */
926 		nvmet_fc_tgt_q_put(queue);
927 
928 		kfree(deferfcp);
929 
930 		spin_lock_irqsave(&queue->qlock, flags);
931 	}
932 	spin_unlock_irqrestore(&queue->qlock, flags);
933 
934 	flush_workqueue(queue->work_q);
935 
936 	nvmet_sq_destroy(&queue->nvme_sq);
937 	nvmet_cq_put(&queue->nvme_cq);
938 
939 	nvmet_fc_tgt_q_put(queue);
940 }
941 
942 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)943 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
944 				u64 connection_id)
945 {
946 	struct nvmet_fc_tgt_assoc *assoc;
947 	struct nvmet_fc_tgt_queue *queue;
948 	u64 association_id = nvmet_fc_getassociationid(connection_id);
949 	u16 qid = nvmet_fc_getqueueid(connection_id);
950 
951 	if (qid > NVMET_NR_QUEUES)
952 		return NULL;
953 
954 	rcu_read_lock();
955 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
956 		if (association_id == assoc->association_id) {
957 			queue = assoc->queues[qid];
958 			if (queue &&
959 			    (!atomic_read(&queue->connected) ||
960 			     !nvmet_fc_tgt_q_get(queue)))
961 				queue = NULL;
962 			rcu_read_unlock();
963 			return queue;
964 		}
965 	}
966 	rcu_read_unlock();
967 	return NULL;
968 }
969 
970 static void
nvmet_fc_hostport_free(struct kref * ref)971 nvmet_fc_hostport_free(struct kref *ref)
972 {
973 	struct nvmet_fc_hostport *hostport =
974 		container_of(ref, struct nvmet_fc_hostport, ref);
975 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
976 	unsigned long flags;
977 
978 	spin_lock_irqsave(&tgtport->lock, flags);
979 	list_del(&hostport->host_list);
980 	spin_unlock_irqrestore(&tgtport->lock, flags);
981 	if (tgtport->ops->host_release && hostport->invalid)
982 		tgtport->ops->host_release(hostport->hosthandle);
983 	kfree(hostport);
984 	nvmet_fc_tgtport_put(tgtport);
985 }
986 
987 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)988 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
989 {
990 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
991 }
992 
993 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)994 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
995 {
996 	return kref_get_unless_zero(&hostport->ref);
997 }
998 
999 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1000 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1001 {
1002 	struct nvmet_fc_hostport *host;
1003 
1004 	lockdep_assert_held(&tgtport->lock);
1005 
1006 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1007 		if (host->hosthandle == hosthandle && !host->invalid) {
1008 			if (nvmet_fc_hostport_get(host))
1009 				return host;
1010 		}
1011 	}
1012 
1013 	return NULL;
1014 }
1015 
1016 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1017 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1018 {
1019 	struct nvmet_fc_hostport *newhost, *match = NULL;
1020 	unsigned long flags;
1021 
1022 	/*
1023 	 * Caller holds a reference on tgtport.
1024 	 */
1025 
1026 	/* if LLDD not implemented, leave as NULL */
1027 	if (!hosthandle)
1028 		return NULL;
1029 
1030 	spin_lock_irqsave(&tgtport->lock, flags);
1031 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1032 	spin_unlock_irqrestore(&tgtport->lock, flags);
1033 
1034 	if (match)
1035 		return match;
1036 
1037 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1038 	if (!newhost)
1039 		return ERR_PTR(-ENOMEM);
1040 
1041 	spin_lock_irqsave(&tgtport->lock, flags);
1042 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1043 	if (match) {
1044 		/* new allocation not needed */
1045 		kfree(newhost);
1046 		newhost = match;
1047 	} else {
1048 		nvmet_fc_tgtport_get(tgtport);
1049 		newhost->tgtport = tgtport;
1050 		newhost->hosthandle = hosthandle;
1051 		INIT_LIST_HEAD(&newhost->host_list);
1052 		kref_init(&newhost->ref);
1053 
1054 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1055 	}
1056 	spin_unlock_irqrestore(&tgtport->lock, flags);
1057 
1058 	return newhost;
1059 }
1060 
1061 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1062 nvmet_fc_delete_assoc_work(struct work_struct *work)
1063 {
1064 	struct nvmet_fc_tgt_assoc *assoc =
1065 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1066 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1067 
1068 	nvmet_fc_delete_target_assoc(assoc);
1069 	nvmet_fc_tgt_a_put(assoc);
1070 	nvmet_fc_tgtport_put(tgtport);
1071 }
1072 
1073 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1074 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1075 {
1076 	int terminating;
1077 
1078 	terminating = atomic_xchg(&assoc->terminating, 1);
1079 
1080 	/* if already terminating, do nothing */
1081 	if (terminating)
1082 		return;
1083 
1084 	nvmet_fc_tgtport_get(assoc->tgtport);
1085 	if (!queue_work(nvmet_wq, &assoc->del_work))
1086 		nvmet_fc_tgtport_put(assoc->tgtport);
1087 }
1088 
1089 static bool
nvmet_fc_assoc_exists(struct nvmet_fc_tgtport * tgtport,u64 association_id)1090 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1091 {
1092 	struct nvmet_fc_tgt_assoc *a;
1093 	bool found = false;
1094 
1095 	rcu_read_lock();
1096 	list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1097 		if (association_id == a->association_id) {
1098 			found = true;
1099 			break;
1100 		}
1101 	}
1102 	rcu_read_unlock();
1103 
1104 	return found;
1105 }
1106 
1107 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1108 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1109 {
1110 	struct nvmet_fc_tgt_assoc *assoc;
1111 	unsigned long flags;
1112 	bool done;
1113 	u64 ran;
1114 	int idx;
1115 
1116 	if (!tgtport->pe)
1117 		return NULL;
1118 
1119 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1120 	if (!assoc)
1121 		return NULL;
1122 
1123 	idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1124 	if (idx < 0)
1125 		goto out_free_assoc;
1126 
1127 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1128 	if (IS_ERR(assoc->hostport))
1129 		goto out_ida;
1130 
1131 	assoc->tgtport = tgtport;
1132 	nvmet_fc_tgtport_get(tgtport);
1133 	assoc->a_id = idx;
1134 	INIT_LIST_HEAD(&assoc->a_list);
1135 	kref_init(&assoc->ref);
1136 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1137 	atomic_set(&assoc->terminating, 0);
1138 
1139 	done = false;
1140 	do {
1141 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1142 		ran = ran << BYTES_FOR_QID_SHIFT;
1143 
1144 		spin_lock_irqsave(&tgtport->lock, flags);
1145 		if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1146 			assoc->association_id = ran;
1147 			list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1148 			done = true;
1149 		}
1150 		spin_unlock_irqrestore(&tgtport->lock, flags);
1151 	} while (!done);
1152 
1153 	return assoc;
1154 
1155 out_ida:
1156 	ida_free(&tgtport->assoc_cnt, idx);
1157 out_free_assoc:
1158 	kfree(assoc);
1159 	return NULL;
1160 }
1161 
1162 static void
nvmet_fc_target_assoc_free(struct kref * ref)1163 nvmet_fc_target_assoc_free(struct kref *ref)
1164 {
1165 	struct nvmet_fc_tgt_assoc *assoc =
1166 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1167 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1168 	struct nvmet_fc_ls_iod	*oldls;
1169 	unsigned long flags;
1170 	int i;
1171 
1172 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1173 		if (assoc->queues[i])
1174 			nvmet_fc_delete_target_queue(assoc->queues[i]);
1175 	}
1176 
1177 	/* Send Disconnect now that all i/o has completed */
1178 	nvmet_fc_xmt_disconnect_assoc(assoc);
1179 
1180 	nvmet_fc_hostport_put(assoc->hostport);
1181 	spin_lock_irqsave(&tgtport->lock, flags);
1182 	oldls = assoc->rcv_disconn;
1183 	spin_unlock_irqrestore(&tgtport->lock, flags);
1184 	/* if pending Rcv Disconnect Association LS, send rsp now */
1185 	if (oldls)
1186 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1187 	ida_free(&tgtport->assoc_cnt, assoc->a_id);
1188 	pr_info("{%d:%d}: Association freed\n",
1189 		tgtport->fc_target_port.port_num, assoc->a_id);
1190 	kfree(assoc);
1191 }
1192 
1193 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1194 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1195 {
1196 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1197 }
1198 
1199 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1200 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1201 {
1202 	return kref_get_unless_zero(&assoc->ref);
1203 }
1204 
1205 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1206 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1207 {
1208 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1209 	unsigned long flags;
1210 	int i;
1211 
1212 	spin_lock_irqsave(&tgtport->lock, flags);
1213 	list_del_rcu(&assoc->a_list);
1214 	spin_unlock_irqrestore(&tgtport->lock, flags);
1215 
1216 	synchronize_rcu();
1217 
1218 	/* ensure all in-flight I/Os have been processed */
1219 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1220 		if (assoc->queues[i])
1221 			flush_workqueue(assoc->queues[i]->work_q);
1222 	}
1223 
1224 	pr_info("{%d:%d}: Association deleted\n",
1225 		tgtport->fc_target_port.port_num, assoc->a_id);
1226 
1227 	nvmet_fc_tgtport_put(tgtport);
1228 }
1229 
1230 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1231 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1232 				u64 association_id)
1233 {
1234 	struct nvmet_fc_tgt_assoc *assoc;
1235 	struct nvmet_fc_tgt_assoc *ret = NULL;
1236 
1237 	rcu_read_lock();
1238 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1239 		if (association_id == assoc->association_id) {
1240 			ret = assoc;
1241 			if (!nvmet_fc_tgt_a_get(assoc))
1242 				ret = NULL;
1243 			break;
1244 		}
1245 	}
1246 	rcu_read_unlock();
1247 
1248 	return ret;
1249 }
1250 
1251 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1252 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1253 			struct nvmet_fc_port_entry *pe,
1254 			struct nvmet_port *port)
1255 {
1256 	lockdep_assert_held(&nvmet_fc_tgtlock);
1257 
1258 	nvmet_fc_tgtport_get(tgtport);
1259 	pe->tgtport = tgtport;
1260 	tgtport->pe = pe;
1261 
1262 	pe->port = port;
1263 	port->priv = pe;
1264 
1265 	pe->node_name = tgtport->fc_target_port.node_name;
1266 	pe->port_name = tgtport->fc_target_port.port_name;
1267 	INIT_LIST_HEAD(&pe->pe_list);
1268 
1269 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1270 }
1271 
1272 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1273 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1274 {
1275 	unsigned long flags;
1276 
1277 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1278 	if (pe->tgtport) {
1279 		nvmet_fc_tgtport_put(pe->tgtport);
1280 		pe->tgtport->pe = NULL;
1281 	}
1282 	list_del(&pe->pe_list);
1283 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1284 }
1285 
1286 /*
1287  * called when a targetport deregisters. Breaks the relationship
1288  * with the nvmet port, but leaves the port_entry in place so that
1289  * re-registration can resume operation.
1290  */
1291 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1292 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1293 {
1294 	struct nvmet_fc_port_entry *pe;
1295 	unsigned long flags;
1296 
1297 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1298 	pe = tgtport->pe;
1299 	if (pe) {
1300 		nvmet_fc_tgtport_put(pe->tgtport);
1301 		pe->tgtport = NULL;
1302 	}
1303 	tgtport->pe = NULL;
1304 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1305 }
1306 
1307 /*
1308  * called when a new targetport is registered. Looks in the
1309  * existing nvmet port_entries to see if the nvmet layer is
1310  * configured for the targetport's wwn's. (the targetport existed,
1311  * nvmet configured, the lldd unregistered the tgtport, and is now
1312  * reregistering the same targetport).  If so, set the nvmet port
1313  * port entry on the targetport.
1314  */
1315 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1316 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1317 {
1318 	struct nvmet_fc_port_entry *pe;
1319 	unsigned long flags;
1320 
1321 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1322 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1323 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1324 		    tgtport->fc_target_port.port_name == pe->port_name) {
1325 			if (!nvmet_fc_tgtport_get(tgtport))
1326 				continue;
1327 
1328 			WARN_ON(pe->tgtport);
1329 			tgtport->pe = pe;
1330 			pe->tgtport = tgtport;
1331 			break;
1332 		}
1333 	}
1334 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1335 }
1336 
1337 /**
1338  * nvmet_fc_register_targetport - transport entry point called by an
1339  *                              LLDD to register the existence of a local
1340  *                              NVME subsystem FC port.
1341  * @pinfo:     pointer to information about the port to be registered
1342  * @template:  LLDD entrypoints and operational parameters for the port
1343  * @dev:       physical hardware device node port corresponds to. Will be
1344  *             used for DMA mappings
1345  * @portptr:   pointer to a local port pointer. Upon success, the routine
1346  *             will allocate a nvme_fc_local_port structure and place its
1347  *             address in the local port pointer. Upon failure, local port
1348  *             pointer will be set to NULL.
1349  *
1350  * Returns:
1351  * a completion status. Must be 0 upon success; a negative errno
1352  * (ex: -ENXIO) upon failure.
1353  */
1354 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1355 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1356 			struct nvmet_fc_target_template *template,
1357 			struct device *dev,
1358 			struct nvmet_fc_target_port **portptr)
1359 {
1360 	struct nvmet_fc_tgtport *newrec;
1361 	unsigned long flags;
1362 	int ret, idx;
1363 
1364 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1365 	    !template->fcp_abort ||
1366 	    !template->fcp_req_release || !template->targetport_delete ||
1367 	    !template->max_hw_queues || !template->max_sgl_segments ||
1368 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1369 		ret = -EINVAL;
1370 		goto out_regtgt_failed;
1371 	}
1372 
1373 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1374 			 GFP_KERNEL);
1375 	if (!newrec) {
1376 		ret = -ENOMEM;
1377 		goto out_regtgt_failed;
1378 	}
1379 
1380 	idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1381 	if (idx < 0) {
1382 		ret = -ENOSPC;
1383 		goto out_fail_kfree;
1384 	}
1385 
1386 	if (!get_device(dev) && dev) {
1387 		ret = -ENODEV;
1388 		goto out_ida_put;
1389 	}
1390 
1391 	newrec->fc_target_port.node_name = pinfo->node_name;
1392 	newrec->fc_target_port.port_name = pinfo->port_name;
1393 	if (template->target_priv_sz)
1394 		newrec->fc_target_port.private = &newrec[1];
1395 	else
1396 		newrec->fc_target_port.private = NULL;
1397 	newrec->fc_target_port.port_id = pinfo->port_id;
1398 	newrec->fc_target_port.port_num = idx;
1399 	INIT_LIST_HEAD(&newrec->tgt_list);
1400 	newrec->dev = dev;
1401 	newrec->ops = template;
1402 	spin_lock_init(&newrec->lock);
1403 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1404 	INIT_LIST_HEAD(&newrec->ls_req_list);
1405 	INIT_LIST_HEAD(&newrec->ls_busylist);
1406 	INIT_LIST_HEAD(&newrec->assoc_list);
1407 	INIT_LIST_HEAD(&newrec->host_list);
1408 	kref_init(&newrec->ref);
1409 	ida_init(&newrec->assoc_cnt);
1410 	newrec->max_sg_cnt = template->max_sgl_segments;
1411 
1412 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1413 	if (ret) {
1414 		ret = -ENOMEM;
1415 		goto out_free_newrec;
1416 	}
1417 
1418 	nvmet_fc_portentry_rebind_tgt(newrec);
1419 
1420 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1421 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1422 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1423 
1424 	*portptr = &newrec->fc_target_port;
1425 	return 0;
1426 
1427 out_free_newrec:
1428 	put_device(dev);
1429 out_ida_put:
1430 	ida_free(&nvmet_fc_tgtport_cnt, idx);
1431 out_fail_kfree:
1432 	kfree(newrec);
1433 out_regtgt_failed:
1434 	*portptr = NULL;
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1438 
1439 
1440 static void
nvmet_fc_free_tgtport(struct kref * ref)1441 nvmet_fc_free_tgtport(struct kref *ref)
1442 {
1443 	struct nvmet_fc_tgtport *tgtport =
1444 		container_of(ref, struct nvmet_fc_tgtport, ref);
1445 	struct device *dev = tgtport->dev;
1446 
1447 	nvmet_fc_free_ls_iodlist(tgtport);
1448 
1449 	/* let the LLDD know we've finished tearing it down */
1450 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1451 
1452 	ida_free(&nvmet_fc_tgtport_cnt,
1453 			tgtport->fc_target_port.port_num);
1454 
1455 	ida_destroy(&tgtport->assoc_cnt);
1456 
1457 	kfree(tgtport);
1458 
1459 	put_device(dev);
1460 }
1461 
1462 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1463 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1464 {
1465 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1466 }
1467 
1468 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1469 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1470 {
1471 	return kref_get_unless_zero(&tgtport->ref);
1472 }
1473 
1474 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1475 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1476 {
1477 	struct nvmet_fc_tgt_assoc *assoc;
1478 
1479 	rcu_read_lock();
1480 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1481 		if (!nvmet_fc_tgt_a_get(assoc))
1482 			continue;
1483 		nvmet_fc_schedule_delete_assoc(assoc);
1484 		nvmet_fc_tgt_a_put(assoc);
1485 	}
1486 	rcu_read_unlock();
1487 }
1488 
1489 /**
1490  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1491  *                       to remove references to a hosthandle for LS's.
1492  *
1493  * The nvmet-fc layer ensures that any references to the hosthandle
1494  * on the targetport are forgotten (set to NULL).  The LLDD will
1495  * typically call this when a login with a remote host port has been
1496  * lost, thus LS's for the remote host port are no longer possible.
1497  *
1498  * If an LS request is outstanding to the targetport/hosthandle (or
1499  * issued concurrently with the call to invalidate the host), the
1500  * LLDD is responsible for terminating/aborting the LS and completing
1501  * the LS request. It is recommended that these terminations/aborts
1502  * occur after calling to invalidate the host handle to avoid additional
1503  * retries by the nvmet-fc transport. The nvmet-fc transport may
1504  * continue to reference host handle while it cleans up outstanding
1505  * NVME associations. The nvmet-fc transport will call the
1506  * ops->host_release() callback to notify the LLDD that all references
1507  * are complete and the related host handle can be recovered.
1508  * Note: if there are no references, the callback may be called before
1509  * the invalidate host call returns.
1510  *
1511  * @target_port: pointer to the (registered) target port that a prior
1512  *              LS was received on and which supplied the transport the
1513  *              hosthandle.
1514  * @hosthandle: the handle (pointer) that represents the host port
1515  *              that no longer has connectivity and that LS's should
1516  *              no longer be directed to.
1517  */
1518 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1519 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1520 			void *hosthandle)
1521 {
1522 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1523 	struct nvmet_fc_tgt_assoc *assoc, *next;
1524 	unsigned long flags;
1525 	bool noassoc = true;
1526 
1527 	spin_lock_irqsave(&tgtport->lock, flags);
1528 	list_for_each_entry_safe(assoc, next,
1529 				&tgtport->assoc_list, a_list) {
1530 		if (assoc->hostport->hosthandle != hosthandle)
1531 			continue;
1532 		if (!nvmet_fc_tgt_a_get(assoc))
1533 			continue;
1534 		assoc->hostport->invalid = 1;
1535 		noassoc = false;
1536 		nvmet_fc_schedule_delete_assoc(assoc);
1537 		nvmet_fc_tgt_a_put(assoc);
1538 	}
1539 	spin_unlock_irqrestore(&tgtport->lock, flags);
1540 
1541 	/* if there's nothing to wait for - call the callback */
1542 	if (noassoc && tgtport->ops->host_release)
1543 		tgtport->ops->host_release(hosthandle);
1544 }
1545 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1546 
1547 /*
1548  * nvmet layer has called to terminate an association
1549  */
1550 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1551 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1552 {
1553 	struct nvmet_fc_tgtport *tgtport, *next;
1554 	struct nvmet_fc_tgt_assoc *assoc;
1555 	struct nvmet_fc_tgt_queue *queue;
1556 	unsigned long flags;
1557 	bool found_ctrl = false;
1558 
1559 	/* this is a bit ugly, but don't want to make locks layered */
1560 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1561 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1562 			tgt_list) {
1563 		if (!nvmet_fc_tgtport_get(tgtport))
1564 			continue;
1565 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1566 
1567 		rcu_read_lock();
1568 		list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1569 			queue = assoc->queues[0];
1570 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1571 				if (nvmet_fc_tgt_a_get(assoc))
1572 					found_ctrl = true;
1573 				break;
1574 			}
1575 		}
1576 		rcu_read_unlock();
1577 
1578 		nvmet_fc_tgtport_put(tgtport);
1579 
1580 		if (found_ctrl) {
1581 			nvmet_fc_schedule_delete_assoc(assoc);
1582 			nvmet_fc_tgt_a_put(assoc);
1583 			return;
1584 		}
1585 
1586 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1587 	}
1588 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1589 }
1590 
1591 static void
nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport * tgtport)1592 nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport *tgtport)
1593 {
1594 	struct nvmet_fc_ls_req_op *lsop;
1595 	struct nvmefc_ls_req *lsreq;
1596 	struct nvmet_fc_ls_iod *iod;
1597 	int i;
1598 
1599 	iod = tgtport->iod;
1600 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++)
1601 		cancel_work(&iod->work);
1602 
1603 	/*
1604 	 * After this point the connection is lost and thus any pending
1605 	 * request can't be processed by the normal completion path. This
1606 	 * is likely a request from nvmet_fc_send_ls_req_async.
1607 	 */
1608 	while ((lsop = list_first_entry_or_null(&tgtport->ls_req_list,
1609 				struct nvmet_fc_ls_req_op, lsreq_list))) {
1610 		list_del(&lsop->lsreq_list);
1611 
1612 		if (!lsop->req_queued)
1613 			continue;
1614 
1615 		lsreq = &lsop->ls_req;
1616 		fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
1617 				    (lsreq->rqstlen + lsreq->rsplen),
1618 				    DMA_BIDIRECTIONAL);
1619 		nvmet_fc_tgtport_put(tgtport);
1620 		kfree(lsop);
1621 	}
1622 }
1623 
1624 /**
1625  * nvmet_fc_unregister_targetport - transport entry point called by an
1626  *                              LLDD to deregister/remove a previously
1627  *                              registered a local NVME subsystem FC port.
1628  * @target_port: pointer to the (registered) target port that is to be
1629  *               deregistered.
1630  *
1631  * Returns:
1632  * a completion status. Must be 0 upon success; a negative errno
1633  * (ex: -ENXIO) upon failure.
1634  */
1635 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1636 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1637 {
1638 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1639 	unsigned long flags;
1640 
1641 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1642 	list_del(&tgtport->tgt_list);
1643 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1644 
1645 	nvmet_fc_portentry_unbind_tgt(tgtport);
1646 
1647 	/* terminate any outstanding associations */
1648 	__nvmet_fc_free_assocs(tgtport);
1649 
1650 	flush_workqueue(nvmet_wq);
1651 
1652 	nvmet_fc_free_pending_reqs(tgtport);
1653 	nvmet_fc_tgtport_put(tgtport);
1654 
1655 	return 0;
1656 }
1657 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1658 
1659 
1660 /* ********************** FC-NVME LS RCV Handling ************************* */
1661 
1662 
1663 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1664 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1665 			struct nvmet_fc_ls_iod *iod)
1666 {
1667 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1668 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1669 	struct nvmet_fc_tgt_queue *queue;
1670 	int ret = 0;
1671 
1672 	memset(acc, 0, sizeof(*acc));
1673 
1674 	/*
1675 	 * FC-NVME spec changes. There are initiators sending different
1676 	 * lengths as padding sizes for Create Association Cmd descriptor
1677 	 * was incorrect.
1678 	 * Accept anything of "minimum" length. Assume format per 1.15
1679 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1680 	 * trailing pad length is.
1681 	 */
1682 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1683 		ret = VERR_CR_ASSOC_LEN;
1684 	else if (be32_to_cpu(rqst->desc_list_len) <
1685 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1686 		ret = VERR_CR_ASSOC_RQST_LEN;
1687 	else if (rqst->assoc_cmd.desc_tag !=
1688 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1689 		ret = VERR_CR_ASSOC_CMD;
1690 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1691 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1692 		ret = VERR_CR_ASSOC_CMD_LEN;
1693 	else if (!rqst->assoc_cmd.ersp_ratio ||
1694 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1695 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1696 		ret = VERR_ERSP_RATIO;
1697 
1698 	else {
1699 		/* new association w/ admin queue */
1700 		iod->assoc = nvmet_fc_alloc_target_assoc(
1701 						tgtport, iod->hosthandle);
1702 		if (!iod->assoc)
1703 			ret = VERR_ASSOC_ALLOC_FAIL;
1704 		else {
1705 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1706 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1707 			if (!queue) {
1708 				ret = VERR_QUEUE_ALLOC_FAIL;
1709 				nvmet_fc_tgt_a_put(iod->assoc);
1710 			}
1711 		}
1712 	}
1713 
1714 	if (ret) {
1715 		pr_err("{%d}: Create Association LS failed: %s\n",
1716 		       tgtport->fc_target_port.port_num,
1717 		       validation_errors[ret]);
1718 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1719 				sizeof(*acc), rqst->w0.ls_cmd,
1720 				FCNVME_RJT_RC_LOGIC,
1721 				FCNVME_RJT_EXP_NONE, 0);
1722 		return;
1723 	}
1724 
1725 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1726 	atomic_set(&queue->connected, 1);
1727 	queue->sqhd = 0;	/* best place to init value */
1728 
1729 	pr_info("{%d:%d}: Association created\n",
1730 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1731 
1732 	/* format a response */
1733 
1734 	iod->lsrsp->rsplen = sizeof(*acc);
1735 
1736 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1737 			fcnvme_lsdesc_len(
1738 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1739 			FCNVME_LS_CREATE_ASSOCIATION);
1740 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1741 	acc->associd.desc_len =
1742 			fcnvme_lsdesc_len(
1743 				sizeof(struct fcnvme_lsdesc_assoc_id));
1744 	acc->associd.association_id =
1745 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1746 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1747 	acc->connectid.desc_len =
1748 			fcnvme_lsdesc_len(
1749 				sizeof(struct fcnvme_lsdesc_conn_id));
1750 	acc->connectid.connection_id = acc->associd.association_id;
1751 }
1752 
1753 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1754 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1755 			struct nvmet_fc_ls_iod *iod)
1756 {
1757 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1758 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1759 	struct nvmet_fc_tgt_queue *queue;
1760 	int ret = 0;
1761 
1762 	memset(acc, 0, sizeof(*acc));
1763 
1764 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1765 		ret = VERR_CR_CONN_LEN;
1766 	else if (rqst->desc_list_len !=
1767 			fcnvme_lsdesc_len(
1768 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1769 		ret = VERR_CR_CONN_RQST_LEN;
1770 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1771 		ret = VERR_ASSOC_ID;
1772 	else if (rqst->associd.desc_len !=
1773 			fcnvme_lsdesc_len(
1774 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1775 		ret = VERR_ASSOC_ID_LEN;
1776 	else if (rqst->connect_cmd.desc_tag !=
1777 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1778 		ret = VERR_CR_CONN_CMD;
1779 	else if (rqst->connect_cmd.desc_len !=
1780 			fcnvme_lsdesc_len(
1781 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1782 		ret = VERR_CR_CONN_CMD_LEN;
1783 	else if (!rqst->connect_cmd.ersp_ratio ||
1784 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1785 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1786 		ret = VERR_ERSP_RATIO;
1787 
1788 	else {
1789 		/* new io queue */
1790 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1791 				be64_to_cpu(rqst->associd.association_id));
1792 		if (!iod->assoc)
1793 			ret = VERR_NO_ASSOC;
1794 		else {
1795 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1796 					be16_to_cpu(rqst->connect_cmd.qid),
1797 					be16_to_cpu(rqst->connect_cmd.sqsize));
1798 			if (!queue)
1799 				ret = VERR_QUEUE_ALLOC_FAIL;
1800 
1801 			/* release get taken in nvmet_fc_find_target_assoc */
1802 			nvmet_fc_tgt_a_put(iod->assoc);
1803 		}
1804 	}
1805 
1806 	if (ret) {
1807 		pr_err("{%d}: Create Connection LS failed: %s\n",
1808 		       tgtport->fc_target_port.port_num,
1809 		       validation_errors[ret]);
1810 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1811 				sizeof(*acc), rqst->w0.ls_cmd,
1812 				(ret == VERR_NO_ASSOC) ?
1813 					FCNVME_RJT_RC_INV_ASSOC :
1814 					FCNVME_RJT_RC_LOGIC,
1815 				FCNVME_RJT_EXP_NONE, 0);
1816 		return;
1817 	}
1818 
1819 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1820 	atomic_set(&queue->connected, 1);
1821 	queue->sqhd = 0;	/* best place to init value */
1822 
1823 	/* format a response */
1824 
1825 	iod->lsrsp->rsplen = sizeof(*acc);
1826 
1827 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1828 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1829 			FCNVME_LS_CREATE_CONNECTION);
1830 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1831 	acc->connectid.desc_len =
1832 			fcnvme_lsdesc_len(
1833 				sizeof(struct fcnvme_lsdesc_conn_id));
1834 	acc->connectid.connection_id =
1835 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1836 				be16_to_cpu(rqst->connect_cmd.qid)));
1837 }
1838 
1839 /*
1840  * Returns true if the LS response is to be transmit
1841  * Returns false if the LS response is to be delayed
1842  */
1843 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1844 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1845 			struct nvmet_fc_ls_iod *iod)
1846 {
1847 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1848 						&iod->rqstbuf->rq_dis_assoc;
1849 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1850 						&iod->rspbuf->rsp_dis_assoc;
1851 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1852 	struct nvmet_fc_ls_iod *oldls = NULL;
1853 	unsigned long flags;
1854 	int ret = 0;
1855 
1856 	memset(acc, 0, sizeof(*acc));
1857 
1858 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1859 	if (!ret) {
1860 		/* match an active association - takes an assoc ref if !NULL */
1861 		assoc = nvmet_fc_find_target_assoc(tgtport,
1862 				be64_to_cpu(rqst->associd.association_id));
1863 		iod->assoc = assoc;
1864 		if (!assoc)
1865 			ret = VERR_NO_ASSOC;
1866 	}
1867 
1868 	if (ret || !assoc) {
1869 		pr_err("{%d}: Disconnect LS failed: %s\n",
1870 		       tgtport->fc_target_port.port_num,
1871 		       validation_errors[ret]);
1872 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1873 				sizeof(*acc), rqst->w0.ls_cmd,
1874 				(ret == VERR_NO_ASSOC) ?
1875 					FCNVME_RJT_RC_INV_ASSOC :
1876 					FCNVME_RJT_RC_LOGIC,
1877 				FCNVME_RJT_EXP_NONE, 0);
1878 		return true;
1879 	}
1880 
1881 	/* format a response */
1882 
1883 	iod->lsrsp->rsplen = sizeof(*acc);
1884 
1885 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1886 			fcnvme_lsdesc_len(
1887 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1888 			FCNVME_LS_DISCONNECT_ASSOC);
1889 
1890 	/*
1891 	 * The rules for LS response says the response cannot
1892 	 * go back until ABTS's have been sent for all outstanding
1893 	 * I/O and a Disconnect Association LS has been sent.
1894 	 * So... save off the Disconnect LS to send the response
1895 	 * later. If there was a prior LS already saved, replace
1896 	 * it with the newer one and send a can't perform reject
1897 	 * on the older one.
1898 	 */
1899 	spin_lock_irqsave(&tgtport->lock, flags);
1900 	oldls = assoc->rcv_disconn;
1901 	assoc->rcv_disconn = iod;
1902 	spin_unlock_irqrestore(&tgtport->lock, flags);
1903 
1904 	if (oldls) {
1905 		pr_info("{%d:%d}: Multiple Disconnect Association LS's "
1906 			"received\n",
1907 			tgtport->fc_target_port.port_num, assoc->a_id);
1908 		/* overwrite good response with bogus failure */
1909 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1910 						sizeof(*iod->rspbuf),
1911 						/* ok to use rqst, LS is same */
1912 						rqst->w0.ls_cmd,
1913 						FCNVME_RJT_RC_UNAB,
1914 						FCNVME_RJT_EXP_NONE, 0);
1915 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1916 	}
1917 
1918 	nvmet_fc_schedule_delete_assoc(assoc);
1919 	nvmet_fc_tgt_a_put(assoc);
1920 
1921 	return false;
1922 }
1923 
1924 
1925 /* *********************** NVME Ctrl Routines **************************** */
1926 
1927 
1928 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1929 
1930 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1931 
1932 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1933 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1934 {
1935 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1936 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1937 
1938 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1939 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1940 	nvmet_fc_free_ls_iod(tgtport, iod);
1941 	nvmet_fc_tgtport_put(tgtport);
1942 }
1943 
1944 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1945 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1946 				struct nvmet_fc_ls_iod *iod)
1947 {
1948 	int ret;
1949 
1950 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1951 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1952 
1953 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1954 	if (ret)
1955 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1956 }
1957 
1958 /*
1959  * Actual processing routine for received FC-NVME LS Requests from the LLD
1960  */
1961 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1962 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1963 			struct nvmet_fc_ls_iod *iod)
1964 {
1965 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1966 	bool sendrsp = true;
1967 
1968 	iod->lsrsp->nvme_fc_private = iod;
1969 	iod->lsrsp->rspbuf = iod->rspbuf;
1970 	iod->lsrsp->rspdma = iod->rspdma;
1971 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1972 	/* Be preventative. handlers will later set to valid length */
1973 	iod->lsrsp->rsplen = 0;
1974 
1975 	iod->assoc = NULL;
1976 
1977 	/*
1978 	 * handlers:
1979 	 *   parse request input, execute the request, and format the
1980 	 *   LS response
1981 	 */
1982 	switch (w0->ls_cmd) {
1983 	case FCNVME_LS_CREATE_ASSOCIATION:
1984 		/* Creates Association and initial Admin Queue/Connection */
1985 		nvmet_fc_ls_create_association(tgtport, iod);
1986 		break;
1987 	case FCNVME_LS_CREATE_CONNECTION:
1988 		/* Creates an IO Queue/Connection */
1989 		nvmet_fc_ls_create_connection(tgtport, iod);
1990 		break;
1991 	case FCNVME_LS_DISCONNECT_ASSOC:
1992 		/* Terminate a Queue/Connection or the Association */
1993 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1994 		break;
1995 	default:
1996 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1997 				sizeof(*iod->rspbuf), w0->ls_cmd,
1998 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1999 	}
2000 
2001 	if (sendrsp)
2002 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
2003 }
2004 
2005 /*
2006  * Actual processing routine for received FC-NVME LS Requests from the LLD
2007  */
2008 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)2009 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2010 {
2011 	struct nvmet_fc_ls_iod *iod =
2012 		container_of(work, struct nvmet_fc_ls_iod, work);
2013 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2014 
2015 	nvmet_fc_handle_ls_rqst(tgtport, iod);
2016 }
2017 
2018 
2019 /**
2020  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2021  *                       upon the reception of a NVME LS request.
2022  *
2023  * The nvmet-fc layer will copy payload to an internal structure for
2024  * processing.  As such, upon completion of the routine, the LLDD may
2025  * immediately free/reuse the LS request buffer passed in the call.
2026  *
2027  * If this routine returns error, the LLDD should abort the exchange.
2028  *
2029  * @target_port: pointer to the (registered) target port the LS was
2030  *              received on.
2031  * @hosthandle: pointer to the host specific data, gets stored in iod.
2032  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2033  *              the exchange corresponding to the LS.
2034  * @lsreqbuf:   pointer to the buffer containing the LS Request
2035  * @lsreqbuf_len: length, in bytes, of the received LS request
2036  */
2037 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2038 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2039 			void *hosthandle,
2040 			struct nvmefc_ls_rsp *lsrsp,
2041 			void *lsreqbuf, u32 lsreqbuf_len)
2042 {
2043 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2044 	struct nvmet_fc_ls_iod *iod;
2045 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2046 
2047 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2048 		pr_info("{%d}: RCV %s LS failed: payload too large (%d)\n",
2049 			tgtport->fc_target_port.port_num,
2050 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2051 				nvmefc_ls_names[w0->ls_cmd] : "",
2052 			lsreqbuf_len);
2053 		return -E2BIG;
2054 	}
2055 
2056 	if (!nvmet_fc_tgtport_get(tgtport)) {
2057 		pr_info("{%d}: RCV %s LS failed: target deleting\n",
2058 			tgtport->fc_target_port.port_num,
2059 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2060 				nvmefc_ls_names[w0->ls_cmd] : "");
2061 		return -ESHUTDOWN;
2062 	}
2063 
2064 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2065 	if (!iod) {
2066 		pr_info("{%d}: RCV %s LS failed: context allocation failed\n",
2067 			tgtport->fc_target_port.port_num,
2068 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2069 				nvmefc_ls_names[w0->ls_cmd] : "");
2070 		nvmet_fc_tgtport_put(tgtport);
2071 		return -ENOENT;
2072 	}
2073 
2074 	iod->lsrsp = lsrsp;
2075 	iod->fcpreq = NULL;
2076 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2077 	iod->rqstdatalen = lsreqbuf_len;
2078 	iod->hosthandle = hosthandle;
2079 
2080 	queue_work(nvmet_wq, &iod->work);
2081 
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2085 
2086 
2087 /*
2088  * **********************
2089  * Start of FCP handling
2090  * **********************
2091  */
2092 
2093 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2094 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2095 {
2096 	struct scatterlist *sg;
2097 	unsigned int nent;
2098 
2099 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2100 	if (!sg)
2101 		goto out;
2102 
2103 	fod->data_sg = sg;
2104 	fod->data_sg_cnt = nent;
2105 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2106 				((fod->io_dir == NVMET_FCP_WRITE) ?
2107 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2108 				/* note: write from initiator perspective */
2109 	fod->next_sg = fod->data_sg;
2110 
2111 	return 0;
2112 
2113 out:
2114 	return NVME_SC_INTERNAL;
2115 }
2116 
2117 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2118 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2119 {
2120 	if (!fod->data_sg || !fod->data_sg_cnt)
2121 		return;
2122 
2123 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2124 				((fod->io_dir == NVMET_FCP_WRITE) ?
2125 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2126 	sgl_free(fod->data_sg);
2127 	fod->data_sg = NULL;
2128 	fod->data_sg_cnt = 0;
2129 }
2130 
2131 
2132 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2133 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2134 {
2135 	u32 sqtail, used;
2136 
2137 	/* egad, this is ugly. And sqtail is just a best guess */
2138 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2139 
2140 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2141 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2142 }
2143 
2144 /*
2145  * Prep RSP payload.
2146  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2147  */
2148 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2149 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2150 				struct nvmet_fc_fcp_iod *fod)
2151 {
2152 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2153 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2154 	struct nvme_completion *cqe = &ersp->cqe;
2155 	u32 *cqewd = (u32 *)cqe;
2156 	bool send_ersp = false;
2157 	u32 rsn, rspcnt, xfr_length;
2158 
2159 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2160 		xfr_length = fod->req.transfer_len;
2161 	else
2162 		xfr_length = fod->offset;
2163 
2164 	/*
2165 	 * check to see if we can send a 0's rsp.
2166 	 *   Note: to send a 0's response, the NVME-FC host transport will
2167 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2168 	 *   seen in an ersp), and command_id. Thus it will create a
2169 	 *   zero-filled CQE with those known fields filled in. Transport
2170 	 *   must send an ersp for any condition where the cqe won't match
2171 	 *   this.
2172 	 *
2173 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2174 	 *  every N responses, where N=ersp_ratio
2175 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2176 	 *    practice)
2177 	 *  normal cmds: any time status is non-zero, or status is zero
2178 	 *     but words 0 or 1 are non-zero.
2179 	 *  the SQ is 90% or more full
2180 	 *  the cmd is a fused command
2181 	 *  transferred data length not equal to cmd iu length
2182 	 */
2183 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2184 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2185 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2186 	    xfr_length != fod->req.transfer_len ||
2187 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2188 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2189 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2190 		send_ersp = true;
2191 
2192 	/* re-set the fields */
2193 	fod->fcpreq->rspaddr = ersp;
2194 	fod->fcpreq->rspdma = fod->rspdma;
2195 
2196 	if (!send_ersp) {
2197 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2198 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2199 	} else {
2200 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2201 		rsn = atomic_inc_return(&fod->queue->rsn);
2202 		ersp->rsn = cpu_to_be32(rsn);
2203 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2204 		fod->fcpreq->rsplen = sizeof(*ersp);
2205 	}
2206 
2207 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2208 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2209 }
2210 
2211 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2212 
2213 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2214 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2215 				struct nvmet_fc_fcp_iod *fod)
2216 {
2217 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2218 
2219 	/* data no longer needed */
2220 	nvmet_fc_free_tgt_pgs(fod);
2221 
2222 	/*
2223 	 * if an ABTS was received or we issued the fcp_abort early
2224 	 * don't call abort routine again.
2225 	 */
2226 	/* no need to take lock - lock was taken earlier to get here */
2227 	if (!fod->aborted)
2228 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2229 
2230 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2231 }
2232 
2233 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2234 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2235 				struct nvmet_fc_fcp_iod *fod)
2236 {
2237 	int ret;
2238 
2239 	fod->fcpreq->op = NVMET_FCOP_RSP;
2240 	fod->fcpreq->timeout = 0;
2241 
2242 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2243 
2244 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2245 	if (ret)
2246 		nvmet_fc_abort_op(tgtport, fod);
2247 }
2248 
2249 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2250 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2251 				struct nvmet_fc_fcp_iod *fod, u8 op)
2252 {
2253 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2254 	struct scatterlist *sg = fod->next_sg;
2255 	unsigned long flags;
2256 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2257 	u32 tlen = 0;
2258 	int ret;
2259 
2260 	fcpreq->op = op;
2261 	fcpreq->offset = fod->offset;
2262 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2263 
2264 	/*
2265 	 * for next sequence:
2266 	 *  break at a sg element boundary
2267 	 *  attempt to keep sequence length capped at
2268 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2269 	 *    be longer if a single sg element is larger
2270 	 *    than that amount. This is done to avoid creating
2271 	 *    a new sg list to use for the tgtport api.
2272 	 */
2273 	fcpreq->sg = sg;
2274 	fcpreq->sg_cnt = 0;
2275 	while (tlen < remaininglen &&
2276 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2277 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2278 		fcpreq->sg_cnt++;
2279 		tlen += sg_dma_len(sg);
2280 		sg = sg_next(sg);
2281 	}
2282 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2283 		fcpreq->sg_cnt++;
2284 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2285 		sg = sg_next(sg);
2286 	}
2287 	if (tlen < remaininglen)
2288 		fod->next_sg = sg;
2289 	else
2290 		fod->next_sg = NULL;
2291 
2292 	fcpreq->transfer_length = tlen;
2293 	fcpreq->transferred_length = 0;
2294 	fcpreq->fcp_error = 0;
2295 	fcpreq->rsplen = 0;
2296 
2297 	/*
2298 	 * If the last READDATA request: check if LLDD supports
2299 	 * combined xfr with response.
2300 	 */
2301 	if ((op == NVMET_FCOP_READDATA) &&
2302 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2303 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2304 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2305 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2306 	}
2307 
2308 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2309 	if (ret) {
2310 		/*
2311 		 * should be ok to set w/o lock as it's in the thread of
2312 		 * execution (not an async timer routine) and doesn't
2313 		 * contend with any clearing action
2314 		 */
2315 		fod->abort = true;
2316 
2317 		if (op == NVMET_FCOP_WRITEDATA) {
2318 			spin_lock_irqsave(&fod->flock, flags);
2319 			fod->writedataactive = false;
2320 			spin_unlock_irqrestore(&fod->flock, flags);
2321 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2322 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2323 			fcpreq->fcp_error = ret;
2324 			fcpreq->transferred_length = 0;
2325 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2326 		}
2327 	}
2328 }
2329 
2330 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2331 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2332 {
2333 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2334 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2335 
2336 	/* if in the middle of an io and we need to tear down */
2337 	if (abort) {
2338 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2339 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2340 			return true;
2341 		}
2342 
2343 		nvmet_fc_abort_op(tgtport, fod);
2344 		return true;
2345 	}
2346 
2347 	return false;
2348 }
2349 
2350 /*
2351  * actual done handler for FCP operations when completed by the lldd
2352  */
2353 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2354 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2355 {
2356 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2357 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2358 	unsigned long flags;
2359 	bool abort;
2360 
2361 	spin_lock_irqsave(&fod->flock, flags);
2362 	abort = fod->abort;
2363 	fod->writedataactive = false;
2364 	spin_unlock_irqrestore(&fod->flock, flags);
2365 
2366 	switch (fcpreq->op) {
2367 
2368 	case NVMET_FCOP_WRITEDATA:
2369 		if (__nvmet_fc_fod_op_abort(fod, abort))
2370 			return;
2371 		if (fcpreq->fcp_error ||
2372 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2373 			spin_lock_irqsave(&fod->flock, flags);
2374 			fod->abort = true;
2375 			spin_unlock_irqrestore(&fod->flock, flags);
2376 
2377 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2378 			return;
2379 		}
2380 
2381 		fod->offset += fcpreq->transferred_length;
2382 		if (fod->offset != fod->req.transfer_len) {
2383 			spin_lock_irqsave(&fod->flock, flags);
2384 			fod->writedataactive = true;
2385 			spin_unlock_irqrestore(&fod->flock, flags);
2386 
2387 			/* transfer the next chunk */
2388 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2389 						NVMET_FCOP_WRITEDATA);
2390 			return;
2391 		}
2392 
2393 		/* data transfer complete, resume with nvmet layer */
2394 		fod->req.execute(&fod->req);
2395 		break;
2396 
2397 	case NVMET_FCOP_READDATA:
2398 	case NVMET_FCOP_READDATA_RSP:
2399 		if (__nvmet_fc_fod_op_abort(fod, abort))
2400 			return;
2401 		if (fcpreq->fcp_error ||
2402 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2403 			nvmet_fc_abort_op(tgtport, fod);
2404 			return;
2405 		}
2406 
2407 		/* success */
2408 
2409 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2410 			/* data no longer needed */
2411 			nvmet_fc_free_tgt_pgs(fod);
2412 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2413 			return;
2414 		}
2415 
2416 		fod->offset += fcpreq->transferred_length;
2417 		if (fod->offset != fod->req.transfer_len) {
2418 			/* transfer the next chunk */
2419 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2420 						NVMET_FCOP_READDATA);
2421 			return;
2422 		}
2423 
2424 		/* data transfer complete, send response */
2425 
2426 		/* data no longer needed */
2427 		nvmet_fc_free_tgt_pgs(fod);
2428 
2429 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2430 
2431 		break;
2432 
2433 	case NVMET_FCOP_RSP:
2434 		if (__nvmet_fc_fod_op_abort(fod, abort))
2435 			return;
2436 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2437 		break;
2438 
2439 	default:
2440 		break;
2441 	}
2442 }
2443 
2444 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2445 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2446 {
2447 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2448 
2449 	nvmet_fc_fod_op_done(fod);
2450 }
2451 
2452 /*
2453  * actual completion handler after execution by the nvmet layer
2454  */
2455 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2456 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2457 			struct nvmet_fc_fcp_iod *fod, int status)
2458 {
2459 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2460 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2461 	unsigned long flags;
2462 	bool abort;
2463 
2464 	spin_lock_irqsave(&fod->flock, flags);
2465 	abort = fod->abort;
2466 	spin_unlock_irqrestore(&fod->flock, flags);
2467 
2468 	/* if we have a CQE, snoop the last sq_head value */
2469 	if (!status)
2470 		fod->queue->sqhd = cqe->sq_head;
2471 
2472 	if (abort) {
2473 		nvmet_fc_abort_op(tgtport, fod);
2474 		return;
2475 	}
2476 
2477 	/* if an error handling the cmd post initial parsing */
2478 	if (status) {
2479 		/* fudge up a failed CQE status for our transport error */
2480 		memset(cqe, 0, sizeof(*cqe));
2481 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2482 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2483 		cqe->command_id = sqe->command_id;
2484 		cqe->status = cpu_to_le16(status);
2485 	} else {
2486 
2487 		/*
2488 		 * try to push the data even if the SQE status is non-zero.
2489 		 * There may be a status where data still was intended to
2490 		 * be moved
2491 		 */
2492 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2493 			/* push the data over before sending rsp */
2494 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2495 						NVMET_FCOP_READDATA);
2496 			return;
2497 		}
2498 
2499 		/* writes & no data - fall thru */
2500 	}
2501 
2502 	/* data no longer needed */
2503 	nvmet_fc_free_tgt_pgs(fod);
2504 
2505 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2506 }
2507 
2508 
2509 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2510 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2511 {
2512 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2513 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2514 
2515 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2516 }
2517 
2518 
2519 /*
2520  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2521  */
2522 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2523 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2524 			struct nvmet_fc_fcp_iod *fod)
2525 {
2526 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2527 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2528 	int ret;
2529 
2530 	/*
2531 	 * Fused commands are currently not supported in the linux
2532 	 * implementation.
2533 	 *
2534 	 * As such, the implementation of the FC transport does not
2535 	 * look at the fused commands and order delivery to the upper
2536 	 * layer until we have both based on csn.
2537 	 */
2538 
2539 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2540 
2541 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2542 		fod->io_dir = NVMET_FCP_WRITE;
2543 		if (!nvme_is_write(&cmdiu->sqe))
2544 			goto transport_error;
2545 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2546 		fod->io_dir = NVMET_FCP_READ;
2547 		if (nvme_is_write(&cmdiu->sqe))
2548 			goto transport_error;
2549 	} else {
2550 		fod->io_dir = NVMET_FCP_NODATA;
2551 		if (xfrlen)
2552 			goto transport_error;
2553 	}
2554 
2555 	fod->req.cmd = &fod->cmdiubuf.sqe;
2556 	fod->req.cqe = &fod->rspiubuf.cqe;
2557 	if (!tgtport->pe)
2558 		goto transport_error;
2559 	fod->req.port = tgtport->pe->port;
2560 
2561 	/* clear any response payload */
2562 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2563 
2564 	fod->data_sg = NULL;
2565 	fod->data_sg_cnt = 0;
2566 
2567 	ret = nvmet_req_init(&fod->req, &fod->queue->nvme_sq,
2568 			&nvmet_fc_tgt_fcp_ops);
2569 	if (!ret) {
2570 		/* bad SQE content or invalid ctrl state */
2571 		/* nvmet layer has already called op done to send rsp. */
2572 		return;
2573 	}
2574 
2575 	fod->req.transfer_len = xfrlen;
2576 
2577 	/* keep a running counter of tail position */
2578 	atomic_inc(&fod->queue->sqtail);
2579 
2580 	if (fod->req.transfer_len) {
2581 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2582 		if (ret) {
2583 			nvmet_req_complete(&fod->req, ret);
2584 			return;
2585 		}
2586 	}
2587 	fod->req.sg = fod->data_sg;
2588 	fod->req.sg_cnt = fod->data_sg_cnt;
2589 	fod->offset = 0;
2590 
2591 	if (fod->io_dir == NVMET_FCP_WRITE) {
2592 		/* pull the data over before invoking nvmet layer */
2593 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2594 		return;
2595 	}
2596 
2597 	/*
2598 	 * Reads or no data:
2599 	 *
2600 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2601 	 * push the data
2602 	 */
2603 	fod->req.execute(&fod->req);
2604 	return;
2605 
2606 transport_error:
2607 	nvmet_fc_abort_op(tgtport, fod);
2608 }
2609 
2610 /**
2611  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2612  *                       upon the reception of a NVME FCP CMD IU.
2613  *
2614  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2615  * layer for processing.
2616  *
2617  * The nvmet_fc layer allocates a local job structure (struct
2618  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2619  * CMD IU buffer to the job structure. As such, on a successful
2620  * completion (returns 0), the LLDD may immediately free/reuse
2621  * the CMD IU buffer passed in the call.
2622  *
2623  * However, in some circumstances, due to the packetized nature of FC
2624  * and the api of the FC LLDD which may issue a hw command to send the
2625  * response, but the LLDD may not get the hw completion for that command
2626  * and upcall the nvmet_fc layer before a new command may be
2627  * asynchronously received - it's possible for a command to be received
2628  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2629  * the appearance of more commands received than fits in the sq.
2630  * To alleviate this scenario, a temporary queue is maintained in the
2631  * transport for pending LLDD requests waiting for a queue job structure.
2632  * In these "overrun" cases, a temporary queue element is allocated
2633  * the LLDD request and CMD iu buffer information remembered, and the
2634  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2635  * structure is freed, it is immediately reallocated for anything on the
2636  * pending request list. The LLDDs defer_rcv() callback is called,
2637  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2638  * is then started normally with the transport.
2639  *
2640  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2641  * the completion as successful but must not reuse the CMD IU buffer
2642  * until the LLDD's defer_rcv() callback has been called for the
2643  * corresponding struct nvmefc_tgt_fcp_req pointer.
2644  *
2645  * If there is any other condition in which an error occurs, the
2646  * transport will return a non-zero status indicating the error.
2647  * In all cases other than -EOVERFLOW, the transport has not accepted the
2648  * request and the LLDD should abort the exchange.
2649  *
2650  * @target_port: pointer to the (registered) target port the FCP CMD IU
2651  *              was received on.
2652  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2653  *              the exchange corresponding to the FCP Exchange.
2654  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2655  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2656  */
2657 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2658 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2659 			struct nvmefc_tgt_fcp_req *fcpreq,
2660 			void *cmdiubuf, u32 cmdiubuf_len)
2661 {
2662 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2663 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2664 	struct nvmet_fc_tgt_queue *queue;
2665 	struct nvmet_fc_fcp_iod *fod;
2666 	struct nvmet_fc_defer_fcp_req *deferfcp;
2667 	unsigned long flags;
2668 
2669 	/* validate iu, so the connection id can be used to find the queue */
2670 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2671 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2672 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2673 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2674 		return -EIO;
2675 
2676 	queue = nvmet_fc_find_target_queue(tgtport,
2677 				be64_to_cpu(cmdiu->connection_id));
2678 	if (!queue)
2679 		return -ENOTCONN;
2680 
2681 	/*
2682 	 * note: reference taken by find_target_queue
2683 	 * After successful fod allocation, the fod will inherit the
2684 	 * ownership of that reference and will remove the reference
2685 	 * when the fod is freed.
2686 	 */
2687 
2688 	spin_lock_irqsave(&queue->qlock, flags);
2689 
2690 	fod = nvmet_fc_alloc_fcp_iod(queue);
2691 	if (fod) {
2692 		spin_unlock_irqrestore(&queue->qlock, flags);
2693 
2694 		fcpreq->nvmet_fc_private = fod;
2695 		fod->fcpreq = fcpreq;
2696 
2697 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2698 
2699 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2700 
2701 		return 0;
2702 	}
2703 
2704 	if (!tgtport->ops->defer_rcv) {
2705 		spin_unlock_irqrestore(&queue->qlock, flags);
2706 		/* release the queue lookup reference */
2707 		nvmet_fc_tgt_q_put(queue);
2708 		return -ENOENT;
2709 	}
2710 
2711 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2712 			struct nvmet_fc_defer_fcp_req, req_list);
2713 	if (deferfcp) {
2714 		/* Just re-use one that was previously allocated */
2715 		list_del(&deferfcp->req_list);
2716 	} else {
2717 		spin_unlock_irqrestore(&queue->qlock, flags);
2718 
2719 		/* Now we need to dynamically allocate one */
2720 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2721 		if (!deferfcp) {
2722 			/* release the queue lookup reference */
2723 			nvmet_fc_tgt_q_put(queue);
2724 			return -ENOMEM;
2725 		}
2726 		spin_lock_irqsave(&queue->qlock, flags);
2727 	}
2728 
2729 	/* For now, use rspaddr / rsplen to save payload information */
2730 	fcpreq->rspaddr = cmdiubuf;
2731 	fcpreq->rsplen  = cmdiubuf_len;
2732 	deferfcp->fcp_req = fcpreq;
2733 
2734 	/* defer processing till a fod becomes available */
2735 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2736 
2737 	/* NOTE: the queue lookup reference is still valid */
2738 
2739 	spin_unlock_irqrestore(&queue->qlock, flags);
2740 
2741 	return -EOVERFLOW;
2742 }
2743 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2744 
2745 /**
2746  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2747  *                       upon the reception of an ABTS for a FCP command
2748  *
2749  * Notify the transport that an ABTS has been received for a FCP command
2750  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2751  * LLDD believes the command is still being worked on
2752  * (template_ops->fcp_req_release() has not been called).
2753  *
2754  * The transport will wait for any outstanding work (an op to the LLDD,
2755  * which the lldd should complete with error due to the ABTS; or the
2756  * completion from the nvmet layer of the nvme command), then will
2757  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2758  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2759  * to the ABTS either after return from this function (assuming any
2760  * outstanding op work has been terminated) or upon the callback being
2761  * called.
2762  *
2763  * @target_port: pointer to the (registered) target port the FCP CMD IU
2764  *              was received on.
2765  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2766  *              to the exchange that received the ABTS.
2767  */
2768 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2769 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2770 			struct nvmefc_tgt_fcp_req *fcpreq)
2771 {
2772 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2773 	struct nvmet_fc_tgt_queue *queue;
2774 	unsigned long flags;
2775 
2776 	if (!fod || fod->fcpreq != fcpreq)
2777 		/* job appears to have already completed, ignore abort */
2778 		return;
2779 
2780 	queue = fod->queue;
2781 
2782 	spin_lock_irqsave(&queue->qlock, flags);
2783 	if (fod->active) {
2784 		/*
2785 		 * mark as abort. The abort handler, invoked upon completion
2786 		 * of any work, will detect the aborted status and do the
2787 		 * callback.
2788 		 */
2789 		spin_lock(&fod->flock);
2790 		fod->abort = true;
2791 		fod->aborted = true;
2792 		spin_unlock(&fod->flock);
2793 	}
2794 	spin_unlock_irqrestore(&queue->qlock, flags);
2795 }
2796 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2797 
2798 
2799 struct nvmet_fc_traddr {
2800 	u64	nn;
2801 	u64	pn;
2802 };
2803 
2804 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2805 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2806 {
2807 	u64 token64;
2808 
2809 	if (match_u64(sstr, &token64))
2810 		return -EINVAL;
2811 	*val = token64;
2812 
2813 	return 0;
2814 }
2815 
2816 /*
2817  * This routine validates and extracts the WWN's from the TRADDR string.
2818  * As kernel parsers need the 0x to determine number base, universally
2819  * build string to parse with 0x prefix before parsing name strings.
2820  */
2821 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2822 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2823 {
2824 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2825 	substring_t wwn = { name, &name[sizeof(name)-1] };
2826 	int nnoffset, pnoffset;
2827 
2828 	/* validate if string is one of the 2 allowed formats */
2829 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2830 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2831 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2832 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2833 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2834 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2835 						NVME_FC_TRADDR_OXNNLEN;
2836 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2837 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2838 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2839 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2840 		nnoffset = NVME_FC_TRADDR_NNLEN;
2841 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2842 	} else
2843 		goto out_einval;
2844 
2845 	name[0] = '0';
2846 	name[1] = 'x';
2847 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2848 
2849 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2850 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2851 		goto out_einval;
2852 
2853 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2854 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2855 		goto out_einval;
2856 
2857 	return 0;
2858 
2859 out_einval:
2860 	pr_warn("%s: bad traddr string\n", __func__);
2861 	return -EINVAL;
2862 }
2863 
2864 static int
nvmet_fc_add_port(struct nvmet_port * port)2865 nvmet_fc_add_port(struct nvmet_port *port)
2866 {
2867 	struct nvmet_fc_tgtport *tgtport;
2868 	struct nvmet_fc_port_entry *pe;
2869 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2870 	unsigned long flags;
2871 	int ret;
2872 
2873 	/* validate the address info */
2874 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2875 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2876 		return -EINVAL;
2877 
2878 	/* map the traddr address info to a target port */
2879 
2880 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2881 			sizeof(port->disc_addr.traddr));
2882 	if (ret)
2883 		return ret;
2884 
2885 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2886 	if (!pe)
2887 		return -ENOMEM;
2888 
2889 	ret = -ENXIO;
2890 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2891 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2892 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2893 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2894 			if (!nvmet_fc_tgtport_get(tgtport))
2895 				continue;
2896 
2897 			/* a FC port can only be 1 nvmet port id */
2898 			if (!tgtport->pe) {
2899 				nvmet_fc_portentry_bind(tgtport, pe, port);
2900 				ret = 0;
2901 			} else
2902 				ret = -EALREADY;
2903 
2904 			nvmet_fc_tgtport_put(tgtport);
2905 			break;
2906 		}
2907 	}
2908 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2909 
2910 	if (ret)
2911 		kfree(pe);
2912 
2913 	return ret;
2914 }
2915 
2916 static void
nvmet_fc_remove_port(struct nvmet_port * port)2917 nvmet_fc_remove_port(struct nvmet_port *port)
2918 {
2919 	struct nvmet_fc_port_entry *pe = port->priv;
2920 	struct nvmet_fc_tgtport *tgtport = NULL;
2921 	unsigned long flags;
2922 
2923 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2924 	if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2925 		tgtport = pe->tgtport;
2926 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2927 
2928 	nvmet_fc_portentry_unbind(pe);
2929 
2930 	if (tgtport) {
2931 		/* terminate any outstanding associations */
2932 		__nvmet_fc_free_assocs(tgtport);
2933 		nvmet_fc_tgtport_put(tgtport);
2934 	}
2935 
2936 	kfree(pe);
2937 }
2938 
2939 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2940 nvmet_fc_discovery_chg(struct nvmet_port *port)
2941 {
2942 	struct nvmet_fc_port_entry *pe = port->priv;
2943 	struct nvmet_fc_tgtport *tgtport = NULL;
2944 	unsigned long flags;
2945 
2946 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2947 	if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2948 		tgtport = pe->tgtport;
2949 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2950 
2951 	if (!tgtport)
2952 		return;
2953 
2954 	if (tgtport && tgtport->ops->discovery_event)
2955 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2956 
2957 	nvmet_fc_tgtport_put(tgtport);
2958 }
2959 
2960 static ssize_t
nvmet_fc_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_size)2961 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2962 		char *traddr, size_t traddr_size)
2963 {
2964 	struct nvmet_sq *sq = ctrl->sqs[0];
2965 	struct nvmet_fc_tgt_queue *queue =
2966 		container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2967 	struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2968 	struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2969 	u64 wwnn, wwpn;
2970 	ssize_t ret = 0;
2971 
2972 	if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2973 		return -ENODEV;
2974 	if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2975 		ret = -ENODEV;
2976 		goto out_put;
2977 	}
2978 
2979 	if (tgtport->ops->host_traddr) {
2980 		ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2981 		if (ret)
2982 			goto out_put_host;
2983 		ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2984 	}
2985 out_put_host:
2986 	nvmet_fc_hostport_put(hostport);
2987 out_put:
2988 	nvmet_fc_tgtport_put(tgtport);
2989 	return ret;
2990 }
2991 
2992 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2993 	.owner			= THIS_MODULE,
2994 	.type			= NVMF_TRTYPE_FC,
2995 	.msdbd			= 1,
2996 	.add_port		= nvmet_fc_add_port,
2997 	.remove_port		= nvmet_fc_remove_port,
2998 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2999 	.delete_ctrl		= nvmet_fc_delete_ctrl,
3000 	.discovery_chg		= nvmet_fc_discovery_chg,
3001 	.host_traddr		= nvmet_fc_host_traddr,
3002 };
3003 
nvmet_fc_init_module(void)3004 static int __init nvmet_fc_init_module(void)
3005 {
3006 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
3007 }
3008 
nvmet_fc_exit_module(void)3009 static void __exit nvmet_fc_exit_module(void)
3010 {
3011 	/* ensure any shutdown operation, e.g. delete ctrls have finished */
3012 	flush_workqueue(nvmet_wq);
3013 
3014 	/* sanity check - all lports should be removed */
3015 	if (!list_empty(&nvmet_fc_target_list))
3016 		pr_warn("%s: targetport list not empty\n", __func__);
3017 
3018 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
3019 
3020 	ida_destroy(&nvmet_fc_tgtport_cnt);
3021 }
3022 
3023 module_init(nvmet_fc_init_module);
3024 module_exit(nvmet_fc_exit_module);
3025 
3026 MODULE_DESCRIPTION("NVMe target FC transport driver");
3027 MODULE_LICENSE("GPL v2");
3028