1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT 256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57
58 struct work_struct put_work;
59 };
60
61
62 /* desired maximum for a single sequence - if sg list allows it */
63 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
64
65 enum nvmet_fcp_datadir {
66 NVMET_FCP_NODATA,
67 NVMET_FCP_WRITE,
68 NVMET_FCP_READ,
69 NVMET_FCP_ABORTED,
70 };
71
72 struct nvmet_fc_fcp_iod {
73 struct nvmefc_tgt_fcp_req *fcpreq;
74
75 struct nvme_fc_cmd_iu cmdiubuf;
76 struct nvme_fc_ersp_iu rspiubuf;
77 dma_addr_t rspdma;
78 struct scatterlist *next_sg;
79 struct scatterlist *data_sg;
80 int data_sg_cnt;
81 u32 offset;
82 enum nvmet_fcp_datadir io_dir;
83 bool active;
84 bool abort;
85 bool aborted;
86 bool writedataactive;
87 spinlock_t flock;
88
89 struct nvmet_req req;
90 struct work_struct defer_work;
91
92 struct nvmet_fc_tgtport *tgtport;
93 struct nvmet_fc_tgt_queue *queue;
94
95 struct list_head fcp_list; /* tgtport->fcp_list */
96 };
97
98 struct nvmet_fc_tgtport {
99 struct nvmet_fc_target_port fc_target_port;
100
101 struct list_head tgt_list; /* nvmet_fc_target_list */
102 struct device *dev; /* dev for dma mapping */
103 struct nvmet_fc_target_template *ops;
104
105 struct nvmet_fc_ls_iod *iod;
106 spinlock_t lock;
107 struct list_head ls_rcv_list;
108 struct list_head ls_req_list;
109 struct list_head ls_busylist;
110 struct list_head assoc_list;
111 struct list_head host_list;
112 struct ida assoc_cnt;
113 struct nvmet_fc_port_entry *pe;
114 struct kref ref;
115 u32 max_sg_cnt;
116 };
117
118 struct nvmet_fc_port_entry {
119 struct nvmet_fc_tgtport *tgtport;
120 struct nvmet_port *port;
121 u64 node_name;
122 u64 port_name;
123 struct list_head pe_list;
124 };
125
126 struct nvmet_fc_defer_fcp_req {
127 struct list_head req_list;
128 struct nvmefc_tgt_fcp_req *fcp_req;
129 };
130
131 struct nvmet_fc_tgt_queue {
132 bool ninetypercent;
133 u16 qid;
134 u16 sqsize;
135 u16 ersp_ratio;
136 __le16 sqhd;
137 atomic_t connected;
138 atomic_t sqtail;
139 atomic_t zrspcnt;
140 atomic_t rsn;
141 spinlock_t qlock;
142 struct nvmet_cq nvme_cq;
143 struct nvmet_sq nvme_sq;
144 struct nvmet_fc_tgt_assoc *assoc;
145 struct list_head fod_list;
146 struct list_head pending_cmd_list;
147 struct list_head avail_defer_list;
148 struct workqueue_struct *work_q;
149 struct kref ref;
150 /* array of fcp_iods */
151 struct nvmet_fc_fcp_iod fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153
154 struct nvmet_fc_hostport {
155 struct nvmet_fc_tgtport *tgtport;
156 void *hosthandle;
157 struct list_head host_list;
158 struct kref ref;
159 u8 invalid;
160 };
161
162 struct nvmet_fc_tgt_assoc {
163 u64 association_id;
164 u32 a_id;
165 atomic_t terminating;
166 struct nvmet_fc_tgtport *tgtport;
167 struct nvmet_fc_hostport *hostport;
168 struct nvmet_fc_ls_iod *rcv_disconn;
169 struct list_head a_list;
170 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
171 struct kref ref;
172 struct work_struct del_work;
173 };
174
175 /*
176 * Association and Connection IDs:
177 *
178 * Association ID will have random number in upper 6 bytes and zero
179 * in lower 2 bytes
180 *
181 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182 *
183 * note: Association ID = Connection ID for queue 0
184 */
185 #define BYTES_FOR_QID sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188
189 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 return (assoc->association_id | qid);
193 }
194
195 static inline u64
nvmet_fc_getassociationid(u64 connectionid)196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200
201 static inline u16
nvmet_fc_getqueueid(u64 connectionid)202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206
207 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 return container_of(targetport, struct nvmet_fc_tgtport,
211 fc_target_port);
212 }
213
214 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219
220
221 /* *************************** Globals **************************** */
222
223
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229
230
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_lsop_work(struct work_struct * work)238 static void nvmet_fc_put_lsop_work(struct work_struct *work)
239 {
240 struct nvmet_fc_ls_req_op *lsop =
241 container_of(work, struct nvmet_fc_ls_req_op, put_work);
242
243 nvmet_fc_tgtport_put(lsop->tgtport);
244 kfree(lsop);
245 }
246 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
247 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
248 struct nvmet_fc_fcp_iod *fod);
249 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
250 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
251 struct nvmet_fc_ls_iod *iod);
252
253
254 /* *********************** FC-NVME DMA Handling **************************** */
255
256 /*
257 * The fcloop device passes in a NULL device pointer. Real LLD's will
258 * pass in a valid device pointer. If NULL is passed to the dma mapping
259 * routines, depending on the platform, it may or may not succeed, and
260 * may crash.
261 *
262 * As such:
263 * Wrapper all the dma routines and check the dev pointer.
264 *
265 * If simple mappings (return just a dma address, we'll noop them,
266 * returning a dma address of 0.
267 *
268 * On more complex mappings (dma_map_sg), a pseudo routine fills
269 * in the scatter list, setting all dma addresses to 0.
270 */
271
272 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)273 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
274 enum dma_data_direction dir)
275 {
276 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
277 }
278
279 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)280 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
281 {
282 return dev ? dma_mapping_error(dev, dma_addr) : 0;
283 }
284
285 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)286 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
287 enum dma_data_direction dir)
288 {
289 if (dev)
290 dma_unmap_single(dev, addr, size, dir);
291 }
292
293 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)294 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
295 enum dma_data_direction dir)
296 {
297 if (dev)
298 dma_sync_single_for_cpu(dev, addr, size, dir);
299 }
300
301 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)302 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
303 enum dma_data_direction dir)
304 {
305 if (dev)
306 dma_sync_single_for_device(dev, addr, size, dir);
307 }
308
309 /* pseudo dma_map_sg call */
310 static int
fc_map_sg(struct scatterlist * sg,int nents)311 fc_map_sg(struct scatterlist *sg, int nents)
312 {
313 struct scatterlist *s;
314 int i;
315
316 WARN_ON(nents == 0 || sg[0].length == 0);
317
318 for_each_sg(sg, s, nents, i) {
319 s->dma_address = 0L;
320 #ifdef CONFIG_NEED_SG_DMA_LENGTH
321 s->dma_length = s->length;
322 #endif
323 }
324 return nents;
325 }
326
327 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)328 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
329 enum dma_data_direction dir)
330 {
331 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
332 }
333
334 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)335 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
336 enum dma_data_direction dir)
337 {
338 if (dev)
339 dma_unmap_sg(dev, sg, nents, dir);
340 }
341
342
343 /* ********************** FC-NVME LS XMT Handling ************************* */
344
345
346 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)347 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
348 {
349 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
350 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
351 unsigned long flags;
352
353 spin_lock_irqsave(&tgtport->lock, flags);
354
355 if (!lsop->req_queued) {
356 spin_unlock_irqrestore(&tgtport->lock, flags);
357 goto out_putwork;
358 }
359
360 list_del(&lsop->lsreq_list);
361
362 lsop->req_queued = false;
363
364 spin_unlock_irqrestore(&tgtport->lock, flags);
365
366 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
367 (lsreq->rqstlen + lsreq->rsplen),
368 DMA_BIDIRECTIONAL);
369
370 out_putwork:
371 queue_work(nvmet_wq, &lsop->put_work);
372 }
373
374 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))375 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
376 struct nvmet_fc_ls_req_op *lsop,
377 void (*done)(struct nvmefc_ls_req *req, int status))
378 {
379 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
380 unsigned long flags;
381 int ret = 0;
382
383 if (!tgtport->ops->ls_req)
384 return -EOPNOTSUPP;
385
386 if (!nvmet_fc_tgtport_get(tgtport))
387 return -ESHUTDOWN;
388
389 lsreq->done = done;
390 lsop->req_queued = false;
391 INIT_LIST_HEAD(&lsop->lsreq_list);
392 INIT_WORK(&lsop->put_work, nvmet_fc_put_lsop_work);
393
394 lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
395 lsreq->rqstlen + lsreq->rsplen,
396 DMA_BIDIRECTIONAL);
397 if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
398 ret = -EFAULT;
399 goto out_puttgtport;
400 }
401 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
402
403 spin_lock_irqsave(&tgtport->lock, flags);
404
405 list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
406
407 lsop->req_queued = true;
408
409 spin_unlock_irqrestore(&tgtport->lock, flags);
410
411 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
412 lsreq);
413 if (ret)
414 goto out_unlink;
415
416 return 0;
417
418 out_unlink:
419 lsop->ls_error = ret;
420 spin_lock_irqsave(&tgtport->lock, flags);
421 lsop->req_queued = false;
422 list_del(&lsop->lsreq_list);
423 spin_unlock_irqrestore(&tgtport->lock, flags);
424 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
425 (lsreq->rqstlen + lsreq->rsplen),
426 DMA_BIDIRECTIONAL);
427 out_puttgtport:
428 nvmet_fc_tgtport_put(tgtport);
429
430 return ret;
431 }
432
433 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))434 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
435 struct nvmet_fc_ls_req_op *lsop,
436 void (*done)(struct nvmefc_ls_req *req, int status))
437 {
438 /* don't wait for completion */
439
440 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
441 }
442
443 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)444 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
445 {
446 struct nvmet_fc_ls_req_op *lsop =
447 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
448
449 __nvmet_fc_finish_ls_req(lsop);
450
451 /* fc-nvme target doesn't care about success or failure of cmd */
452 }
453
454 /*
455 * This routine sends a FC-NVME LS to disconnect (aka terminate)
456 * the FC-NVME Association. Terminating the association also
457 * terminates the FC-NVME connections (per queue, both admin and io
458 * queues) that are part of the association. E.g. things are torn
459 * down, and the related FC-NVME Association ID and Connection IDs
460 * become invalid.
461 *
462 * The behavior of the fc-nvme target is such that its
463 * understanding of the association and connections will implicitly
464 * be torn down. The action is implicit as it may be due to a loss of
465 * connectivity with the fc-nvme host, so the target may never get a
466 * response even if it tried. As such, the action of this routine
467 * is to asynchronously send the LS, ignore any results of the LS, and
468 * continue on with terminating the association. If the fc-nvme host
469 * is present and receives the LS, it too can tear down.
470 */
471 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 struct nvmet_fc_ls_req_op *lsop;
478 struct nvmefc_ls_req *lsreq;
479 int ret;
480
481 /*
482 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 * message is normal. Otherwise, send unless the hostport has
484 * already been invalidated by the lldd.
485 */
486 if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 return;
488
489 lsop = kzalloc((sizeof(*lsop) +
490 sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 if (!lsop) {
493 pr_info("{%d:%d}: send Disconnect Association failed: ENOMEM\n",
494 tgtport->fc_target_port.port_num, assoc->a_id);
495 return;
496 }
497
498 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
499 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
500 lsreq = &lsop->ls_req;
501 if (tgtport->ops->lsrqst_priv_sz)
502 lsreq->private = (void *)&discon_acc[1];
503 else
504 lsreq->private = NULL;
505
506 lsop->tgtport = tgtport;
507 lsop->hosthandle = assoc->hostport->hosthandle;
508
509 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
510 assoc->association_id);
511
512 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
513 nvmet_fc_disconnect_assoc_done);
514 if (ret) {
515 pr_info("{%d:%d}: XMT Disconnect Association failed: %d\n",
516 tgtport->fc_target_port.port_num, assoc->a_id, ret);
517 kfree(lsop);
518 }
519 }
520
521
522 /* *********************** FC-NVME Port Management ************************ */
523
524
525 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)526 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
527 {
528 struct nvmet_fc_ls_iod *iod;
529 int i;
530
531 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
532 GFP_KERNEL);
533 if (!iod)
534 return -ENOMEM;
535
536 tgtport->iod = iod;
537
538 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
539 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
540 iod->tgtport = tgtport;
541 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
542
543 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
544 sizeof(union nvmefc_ls_responses),
545 GFP_KERNEL);
546 if (!iod->rqstbuf)
547 goto out_fail;
548
549 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
550
551 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
552 sizeof(*iod->rspbuf),
553 DMA_TO_DEVICE);
554 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
555 goto out_fail;
556 }
557
558 return 0;
559
560 out_fail:
561 kfree(iod->rqstbuf);
562 list_del(&iod->ls_rcv_list);
563 for (iod--, i--; i >= 0; iod--, i--) {
564 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
565 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
566 kfree(iod->rqstbuf);
567 list_del(&iod->ls_rcv_list);
568 }
569
570 kfree(iod);
571
572 return -EFAULT;
573 }
574
575 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)576 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
577 {
578 struct nvmet_fc_ls_iod *iod = tgtport->iod;
579 int i;
580
581 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
582 fc_dma_unmap_single(tgtport->dev,
583 iod->rspdma, sizeof(*iod->rspbuf),
584 DMA_TO_DEVICE);
585 kfree(iod->rqstbuf);
586 list_del(&iod->ls_rcv_list);
587 }
588 kfree(tgtport->iod);
589 }
590
591 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)592 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
593 {
594 struct nvmet_fc_ls_iod *iod;
595 unsigned long flags;
596
597 spin_lock_irqsave(&tgtport->lock, flags);
598 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
599 struct nvmet_fc_ls_iod, ls_rcv_list);
600 if (iod)
601 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
602 spin_unlock_irqrestore(&tgtport->lock, flags);
603 return iod;
604 }
605
606
607 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)608 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
609 struct nvmet_fc_ls_iod *iod)
610 {
611 unsigned long flags;
612
613 spin_lock_irqsave(&tgtport->lock, flags);
614 list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
615 spin_unlock_irqrestore(&tgtport->lock, flags);
616 }
617
618 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)619 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
620 struct nvmet_fc_tgt_queue *queue)
621 {
622 struct nvmet_fc_fcp_iod *fod = queue->fod;
623 int i;
624
625 for (i = 0; i < queue->sqsize; fod++, i++) {
626 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
627 fod->tgtport = tgtport;
628 fod->queue = queue;
629 fod->active = false;
630 fod->abort = false;
631 fod->aborted = false;
632 fod->fcpreq = NULL;
633 list_add_tail(&fod->fcp_list, &queue->fod_list);
634 spin_lock_init(&fod->flock);
635
636 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
637 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
638 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
639 list_del(&fod->fcp_list);
640 for (fod--, i--; i >= 0; fod--, i--) {
641 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
642 sizeof(fod->rspiubuf),
643 DMA_TO_DEVICE);
644 fod->rspdma = 0L;
645 list_del(&fod->fcp_list);
646 }
647
648 return;
649 }
650 }
651 }
652
653 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)654 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
655 struct nvmet_fc_tgt_queue *queue)
656 {
657 struct nvmet_fc_fcp_iod *fod = queue->fod;
658 int i;
659
660 for (i = 0; i < queue->sqsize; fod++, i++) {
661 if (fod->rspdma)
662 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
663 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
664 }
665 }
666
667 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)668 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
669 {
670 struct nvmet_fc_fcp_iod *fod;
671
672 lockdep_assert_held(&queue->qlock);
673
674 fod = list_first_entry_or_null(&queue->fod_list,
675 struct nvmet_fc_fcp_iod, fcp_list);
676 if (fod) {
677 list_del(&fod->fcp_list);
678 fod->active = true;
679 /*
680 * no queue reference is taken, as it was taken by the
681 * queue lookup just prior to the allocation. The iod
682 * will "inherit" that reference.
683 */
684 }
685 return fod;
686 }
687
688
689 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)690 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
691 struct nvmet_fc_tgt_queue *queue,
692 struct nvmefc_tgt_fcp_req *fcpreq)
693 {
694 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
695
696 /*
697 * put all admin cmds on hw queue id 0. All io commands go to
698 * the respective hw queue based on a modulo basis
699 */
700 fcpreq->hwqid = queue->qid ?
701 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
702
703 nvmet_fc_handle_fcp_rqst(tgtport, fod);
704 }
705
706 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)707 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
708 {
709 struct nvmet_fc_fcp_iod *fod =
710 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
711
712 /* Submit deferred IO for processing */
713 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
714
715 }
716
717 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)718 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
719 struct nvmet_fc_fcp_iod *fod)
720 {
721 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
722 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
723 struct nvmet_fc_defer_fcp_req *deferfcp;
724 unsigned long flags;
725
726 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
727 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
728
729 fcpreq->nvmet_fc_private = NULL;
730
731 fod->active = false;
732 fod->abort = false;
733 fod->aborted = false;
734 fod->writedataactive = false;
735 fod->fcpreq = NULL;
736
737 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
738
739 /* release the queue lookup reference on the completed IO */
740 nvmet_fc_tgt_q_put(queue);
741
742 spin_lock_irqsave(&queue->qlock, flags);
743 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
744 struct nvmet_fc_defer_fcp_req, req_list);
745 if (!deferfcp) {
746 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
747 spin_unlock_irqrestore(&queue->qlock, flags);
748 return;
749 }
750
751 /* Re-use the fod for the next pending cmd that was deferred */
752 list_del(&deferfcp->req_list);
753
754 fcpreq = deferfcp->fcp_req;
755
756 /* deferfcp can be reused for another IO at a later date */
757 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
758
759 spin_unlock_irqrestore(&queue->qlock, flags);
760
761 /* Save NVME CMD IO in fod */
762 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
763
764 /* Setup new fcpreq to be processed */
765 fcpreq->rspaddr = NULL;
766 fcpreq->rsplen = 0;
767 fcpreq->nvmet_fc_private = fod;
768 fod->fcpreq = fcpreq;
769 fod->active = true;
770
771 /* inform LLDD IO is now being processed */
772 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
773
774 /*
775 * Leave the queue lookup get reference taken when
776 * fod was originally allocated.
777 */
778
779 queue_work(queue->work_q, &fod->defer_work);
780 }
781
782 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)783 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
784 u16 qid, u16 sqsize)
785 {
786 struct nvmet_fc_tgt_queue *queue;
787 int ret;
788
789 if (qid > NVMET_NR_QUEUES)
790 return NULL;
791
792 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
793 if (!queue)
794 return NULL;
795
796 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
797 assoc->tgtport->fc_target_port.port_num,
798 assoc->a_id, qid);
799 if (!queue->work_q)
800 goto out_free_queue;
801
802 queue->qid = qid;
803 queue->sqsize = sqsize;
804 queue->assoc = assoc;
805 INIT_LIST_HEAD(&queue->fod_list);
806 INIT_LIST_HEAD(&queue->avail_defer_list);
807 INIT_LIST_HEAD(&queue->pending_cmd_list);
808 atomic_set(&queue->connected, 0);
809 atomic_set(&queue->sqtail, 0);
810 atomic_set(&queue->rsn, 1);
811 atomic_set(&queue->zrspcnt, 0);
812 spin_lock_init(&queue->qlock);
813 kref_init(&queue->ref);
814
815 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
816
817 nvmet_cq_init(&queue->nvme_cq);
818 ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
819 if (ret)
820 goto out_fail_iodlist;
821
822 WARN_ON(assoc->queues[qid]);
823 assoc->queues[qid] = queue;
824
825 return queue;
826
827 out_fail_iodlist:
828 nvmet_cq_put(&queue->nvme_cq);
829 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
830 destroy_workqueue(queue->work_q);
831 out_free_queue:
832 kfree(queue);
833 return NULL;
834 }
835
836
837 static void
nvmet_fc_tgt_queue_free(struct kref * ref)838 nvmet_fc_tgt_queue_free(struct kref *ref)
839 {
840 struct nvmet_fc_tgt_queue *queue =
841 container_of(ref, struct nvmet_fc_tgt_queue, ref);
842
843 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
844
845 destroy_workqueue(queue->work_q);
846
847 kfree(queue);
848 }
849
850 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)851 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
852 {
853 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
854 }
855
856 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)857 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
858 {
859 return kref_get_unless_zero(&queue->ref);
860 }
861
862
863 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)864 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
865 {
866 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
867 struct nvmet_fc_fcp_iod *fod = queue->fod;
868 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
869 unsigned long flags;
870 int i;
871 bool disconnect;
872
873 disconnect = atomic_xchg(&queue->connected, 0);
874
875 /* if not connected, nothing to do */
876 if (!disconnect)
877 return;
878
879 spin_lock_irqsave(&queue->qlock, flags);
880 /* abort outstanding io's */
881 for (i = 0; i < queue->sqsize; fod++, i++) {
882 if (fod->active) {
883 spin_lock(&fod->flock);
884 fod->abort = true;
885 /*
886 * only call lldd abort routine if waiting for
887 * writedata. other outstanding ops should finish
888 * on their own.
889 */
890 if (fod->writedataactive) {
891 fod->aborted = true;
892 spin_unlock(&fod->flock);
893 tgtport->ops->fcp_abort(
894 &tgtport->fc_target_port, fod->fcpreq);
895 } else
896 spin_unlock(&fod->flock);
897 }
898 }
899
900 /* Cleanup defer'ed IOs in queue */
901 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
902 req_list) {
903 list_del(&deferfcp->req_list);
904 kfree(deferfcp);
905 }
906
907 for (;;) {
908 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
909 struct nvmet_fc_defer_fcp_req, req_list);
910 if (!deferfcp)
911 break;
912
913 list_del(&deferfcp->req_list);
914 spin_unlock_irqrestore(&queue->qlock, flags);
915
916 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
917 deferfcp->fcp_req);
918
919 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
920 deferfcp->fcp_req);
921
922 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
923 deferfcp->fcp_req);
924
925 /* release the queue lookup reference */
926 nvmet_fc_tgt_q_put(queue);
927
928 kfree(deferfcp);
929
930 spin_lock_irqsave(&queue->qlock, flags);
931 }
932 spin_unlock_irqrestore(&queue->qlock, flags);
933
934 flush_workqueue(queue->work_q);
935
936 nvmet_sq_destroy(&queue->nvme_sq);
937 nvmet_cq_put(&queue->nvme_cq);
938
939 nvmet_fc_tgt_q_put(queue);
940 }
941
942 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)943 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
944 u64 connection_id)
945 {
946 struct nvmet_fc_tgt_assoc *assoc;
947 struct nvmet_fc_tgt_queue *queue;
948 u64 association_id = nvmet_fc_getassociationid(connection_id);
949 u16 qid = nvmet_fc_getqueueid(connection_id);
950
951 if (qid > NVMET_NR_QUEUES)
952 return NULL;
953
954 rcu_read_lock();
955 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
956 if (association_id == assoc->association_id) {
957 queue = assoc->queues[qid];
958 if (queue &&
959 (!atomic_read(&queue->connected) ||
960 !nvmet_fc_tgt_q_get(queue)))
961 queue = NULL;
962 rcu_read_unlock();
963 return queue;
964 }
965 }
966 rcu_read_unlock();
967 return NULL;
968 }
969
970 static void
nvmet_fc_hostport_free(struct kref * ref)971 nvmet_fc_hostport_free(struct kref *ref)
972 {
973 struct nvmet_fc_hostport *hostport =
974 container_of(ref, struct nvmet_fc_hostport, ref);
975 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
976 unsigned long flags;
977
978 spin_lock_irqsave(&tgtport->lock, flags);
979 list_del(&hostport->host_list);
980 spin_unlock_irqrestore(&tgtport->lock, flags);
981 if (tgtport->ops->host_release && hostport->invalid)
982 tgtport->ops->host_release(hostport->hosthandle);
983 kfree(hostport);
984 nvmet_fc_tgtport_put(tgtport);
985 }
986
987 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)988 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
989 {
990 kref_put(&hostport->ref, nvmet_fc_hostport_free);
991 }
992
993 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)994 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
995 {
996 return kref_get_unless_zero(&hostport->ref);
997 }
998
999 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1000 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1001 {
1002 struct nvmet_fc_hostport *host;
1003
1004 lockdep_assert_held(&tgtport->lock);
1005
1006 list_for_each_entry(host, &tgtport->host_list, host_list) {
1007 if (host->hosthandle == hosthandle && !host->invalid) {
1008 if (nvmet_fc_hostport_get(host))
1009 return host;
1010 }
1011 }
1012
1013 return NULL;
1014 }
1015
1016 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1017 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1018 {
1019 struct nvmet_fc_hostport *newhost, *match = NULL;
1020 unsigned long flags;
1021
1022 /*
1023 * Caller holds a reference on tgtport.
1024 */
1025
1026 /* if LLDD not implemented, leave as NULL */
1027 if (!hosthandle)
1028 return NULL;
1029
1030 spin_lock_irqsave(&tgtport->lock, flags);
1031 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1032 spin_unlock_irqrestore(&tgtport->lock, flags);
1033
1034 if (match)
1035 return match;
1036
1037 newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1038 if (!newhost)
1039 return ERR_PTR(-ENOMEM);
1040
1041 spin_lock_irqsave(&tgtport->lock, flags);
1042 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1043 if (match) {
1044 /* new allocation not needed */
1045 kfree(newhost);
1046 newhost = match;
1047 } else {
1048 nvmet_fc_tgtport_get(tgtport);
1049 newhost->tgtport = tgtport;
1050 newhost->hosthandle = hosthandle;
1051 INIT_LIST_HEAD(&newhost->host_list);
1052 kref_init(&newhost->ref);
1053
1054 list_add_tail(&newhost->host_list, &tgtport->host_list);
1055 }
1056 spin_unlock_irqrestore(&tgtport->lock, flags);
1057
1058 return newhost;
1059 }
1060
1061 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1062 nvmet_fc_delete_assoc_work(struct work_struct *work)
1063 {
1064 struct nvmet_fc_tgt_assoc *assoc =
1065 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1066 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1067
1068 nvmet_fc_delete_target_assoc(assoc);
1069 nvmet_fc_tgt_a_put(assoc);
1070 nvmet_fc_tgtport_put(tgtport);
1071 }
1072
1073 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1074 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1075 {
1076 int terminating;
1077
1078 terminating = atomic_xchg(&assoc->terminating, 1);
1079
1080 /* if already terminating, do nothing */
1081 if (terminating)
1082 return;
1083
1084 nvmet_fc_tgtport_get(assoc->tgtport);
1085 if (!queue_work(nvmet_wq, &assoc->del_work))
1086 nvmet_fc_tgtport_put(assoc->tgtport);
1087 }
1088
1089 static bool
nvmet_fc_assoc_exists(struct nvmet_fc_tgtport * tgtport,u64 association_id)1090 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1091 {
1092 struct nvmet_fc_tgt_assoc *a;
1093 bool found = false;
1094
1095 rcu_read_lock();
1096 list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1097 if (association_id == a->association_id) {
1098 found = true;
1099 break;
1100 }
1101 }
1102 rcu_read_unlock();
1103
1104 return found;
1105 }
1106
1107 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1108 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1109 {
1110 struct nvmet_fc_tgt_assoc *assoc;
1111 unsigned long flags;
1112 bool done;
1113 u64 ran;
1114 int idx;
1115
1116 if (!tgtport->pe)
1117 return NULL;
1118
1119 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1120 if (!assoc)
1121 return NULL;
1122
1123 idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1124 if (idx < 0)
1125 goto out_free_assoc;
1126
1127 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1128 if (IS_ERR(assoc->hostport))
1129 goto out_ida;
1130
1131 assoc->tgtport = tgtport;
1132 nvmet_fc_tgtport_get(tgtport);
1133 assoc->a_id = idx;
1134 INIT_LIST_HEAD(&assoc->a_list);
1135 kref_init(&assoc->ref);
1136 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1137 atomic_set(&assoc->terminating, 0);
1138
1139 done = false;
1140 do {
1141 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1142 ran = ran << BYTES_FOR_QID_SHIFT;
1143
1144 spin_lock_irqsave(&tgtport->lock, flags);
1145 if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1146 assoc->association_id = ran;
1147 list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1148 done = true;
1149 }
1150 spin_unlock_irqrestore(&tgtport->lock, flags);
1151 } while (!done);
1152
1153 return assoc;
1154
1155 out_ida:
1156 ida_free(&tgtport->assoc_cnt, idx);
1157 out_free_assoc:
1158 kfree(assoc);
1159 return NULL;
1160 }
1161
1162 static void
nvmet_fc_target_assoc_free(struct kref * ref)1163 nvmet_fc_target_assoc_free(struct kref *ref)
1164 {
1165 struct nvmet_fc_tgt_assoc *assoc =
1166 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1167 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1168 struct nvmet_fc_ls_iod *oldls;
1169 unsigned long flags;
1170 int i;
1171
1172 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1173 if (assoc->queues[i])
1174 nvmet_fc_delete_target_queue(assoc->queues[i]);
1175 }
1176
1177 /* Send Disconnect now that all i/o has completed */
1178 nvmet_fc_xmt_disconnect_assoc(assoc);
1179
1180 nvmet_fc_hostport_put(assoc->hostport);
1181 spin_lock_irqsave(&tgtport->lock, flags);
1182 oldls = assoc->rcv_disconn;
1183 spin_unlock_irqrestore(&tgtport->lock, flags);
1184 /* if pending Rcv Disconnect Association LS, send rsp now */
1185 if (oldls)
1186 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1187 ida_free(&tgtport->assoc_cnt, assoc->a_id);
1188 pr_info("{%d:%d}: Association freed\n",
1189 tgtport->fc_target_port.port_num, assoc->a_id);
1190 kfree(assoc);
1191 }
1192
1193 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1194 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1195 {
1196 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1197 }
1198
1199 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1200 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1201 {
1202 return kref_get_unless_zero(&assoc->ref);
1203 }
1204
1205 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1206 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1207 {
1208 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1209 unsigned long flags;
1210 int i;
1211
1212 spin_lock_irqsave(&tgtport->lock, flags);
1213 list_del_rcu(&assoc->a_list);
1214 spin_unlock_irqrestore(&tgtport->lock, flags);
1215
1216 synchronize_rcu();
1217
1218 /* ensure all in-flight I/Os have been processed */
1219 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1220 if (assoc->queues[i])
1221 flush_workqueue(assoc->queues[i]->work_q);
1222 }
1223
1224 pr_info("{%d:%d}: Association deleted\n",
1225 tgtport->fc_target_port.port_num, assoc->a_id);
1226
1227 nvmet_fc_tgtport_put(tgtport);
1228 }
1229
1230 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1231 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1232 u64 association_id)
1233 {
1234 struct nvmet_fc_tgt_assoc *assoc;
1235 struct nvmet_fc_tgt_assoc *ret = NULL;
1236
1237 rcu_read_lock();
1238 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1239 if (association_id == assoc->association_id) {
1240 ret = assoc;
1241 if (!nvmet_fc_tgt_a_get(assoc))
1242 ret = NULL;
1243 break;
1244 }
1245 }
1246 rcu_read_unlock();
1247
1248 return ret;
1249 }
1250
1251 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1252 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1253 struct nvmet_fc_port_entry *pe,
1254 struct nvmet_port *port)
1255 {
1256 lockdep_assert_held(&nvmet_fc_tgtlock);
1257
1258 nvmet_fc_tgtport_get(tgtport);
1259 pe->tgtport = tgtport;
1260 tgtport->pe = pe;
1261
1262 pe->port = port;
1263 port->priv = pe;
1264
1265 pe->node_name = tgtport->fc_target_port.node_name;
1266 pe->port_name = tgtport->fc_target_port.port_name;
1267 INIT_LIST_HEAD(&pe->pe_list);
1268
1269 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1270 }
1271
1272 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1273 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1274 {
1275 unsigned long flags;
1276
1277 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1278 if (pe->tgtport) {
1279 nvmet_fc_tgtport_put(pe->tgtport);
1280 pe->tgtport->pe = NULL;
1281 }
1282 list_del(&pe->pe_list);
1283 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1284 }
1285
1286 /*
1287 * called when a targetport deregisters. Breaks the relationship
1288 * with the nvmet port, but leaves the port_entry in place so that
1289 * re-registration can resume operation.
1290 */
1291 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1292 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1293 {
1294 struct nvmet_fc_port_entry *pe;
1295 unsigned long flags;
1296
1297 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1298 pe = tgtport->pe;
1299 if (pe) {
1300 nvmet_fc_tgtport_put(pe->tgtport);
1301 pe->tgtport = NULL;
1302 }
1303 tgtport->pe = NULL;
1304 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1305 }
1306
1307 /*
1308 * called when a new targetport is registered. Looks in the
1309 * existing nvmet port_entries to see if the nvmet layer is
1310 * configured for the targetport's wwn's. (the targetport existed,
1311 * nvmet configured, the lldd unregistered the tgtport, and is now
1312 * reregistering the same targetport). If so, set the nvmet port
1313 * port entry on the targetport.
1314 */
1315 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1316 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1317 {
1318 struct nvmet_fc_port_entry *pe;
1319 unsigned long flags;
1320
1321 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1322 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1323 if (tgtport->fc_target_port.node_name == pe->node_name &&
1324 tgtport->fc_target_port.port_name == pe->port_name) {
1325 if (!nvmet_fc_tgtport_get(tgtport))
1326 continue;
1327
1328 WARN_ON(pe->tgtport);
1329 tgtport->pe = pe;
1330 pe->tgtport = tgtport;
1331 break;
1332 }
1333 }
1334 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1335 }
1336
1337 /**
1338 * nvmet_fc_register_targetport - transport entry point called by an
1339 * LLDD to register the existence of a local
1340 * NVME subsystem FC port.
1341 * @pinfo: pointer to information about the port to be registered
1342 * @template: LLDD entrypoints and operational parameters for the port
1343 * @dev: physical hardware device node port corresponds to. Will be
1344 * used for DMA mappings
1345 * @portptr: pointer to a local port pointer. Upon success, the routine
1346 * will allocate a nvme_fc_local_port structure and place its
1347 * address in the local port pointer. Upon failure, local port
1348 * pointer will be set to NULL.
1349 *
1350 * Returns:
1351 * a completion status. Must be 0 upon success; a negative errno
1352 * (ex: -ENXIO) upon failure.
1353 */
1354 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1355 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1356 struct nvmet_fc_target_template *template,
1357 struct device *dev,
1358 struct nvmet_fc_target_port **portptr)
1359 {
1360 struct nvmet_fc_tgtport *newrec;
1361 unsigned long flags;
1362 int ret, idx;
1363
1364 if (!template->xmt_ls_rsp || !template->fcp_op ||
1365 !template->fcp_abort ||
1366 !template->fcp_req_release || !template->targetport_delete ||
1367 !template->max_hw_queues || !template->max_sgl_segments ||
1368 !template->max_dif_sgl_segments || !template->dma_boundary) {
1369 ret = -EINVAL;
1370 goto out_regtgt_failed;
1371 }
1372
1373 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1374 GFP_KERNEL);
1375 if (!newrec) {
1376 ret = -ENOMEM;
1377 goto out_regtgt_failed;
1378 }
1379
1380 idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1381 if (idx < 0) {
1382 ret = -ENOSPC;
1383 goto out_fail_kfree;
1384 }
1385
1386 if (!get_device(dev) && dev) {
1387 ret = -ENODEV;
1388 goto out_ida_put;
1389 }
1390
1391 newrec->fc_target_port.node_name = pinfo->node_name;
1392 newrec->fc_target_port.port_name = pinfo->port_name;
1393 if (template->target_priv_sz)
1394 newrec->fc_target_port.private = &newrec[1];
1395 else
1396 newrec->fc_target_port.private = NULL;
1397 newrec->fc_target_port.port_id = pinfo->port_id;
1398 newrec->fc_target_port.port_num = idx;
1399 INIT_LIST_HEAD(&newrec->tgt_list);
1400 newrec->dev = dev;
1401 newrec->ops = template;
1402 spin_lock_init(&newrec->lock);
1403 INIT_LIST_HEAD(&newrec->ls_rcv_list);
1404 INIT_LIST_HEAD(&newrec->ls_req_list);
1405 INIT_LIST_HEAD(&newrec->ls_busylist);
1406 INIT_LIST_HEAD(&newrec->assoc_list);
1407 INIT_LIST_HEAD(&newrec->host_list);
1408 kref_init(&newrec->ref);
1409 ida_init(&newrec->assoc_cnt);
1410 newrec->max_sg_cnt = template->max_sgl_segments;
1411
1412 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1413 if (ret) {
1414 ret = -ENOMEM;
1415 goto out_free_newrec;
1416 }
1417
1418 nvmet_fc_portentry_rebind_tgt(newrec);
1419
1420 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1421 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1422 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1423
1424 *portptr = &newrec->fc_target_port;
1425 return 0;
1426
1427 out_free_newrec:
1428 put_device(dev);
1429 out_ida_put:
1430 ida_free(&nvmet_fc_tgtport_cnt, idx);
1431 out_fail_kfree:
1432 kfree(newrec);
1433 out_regtgt_failed:
1434 *portptr = NULL;
1435 return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1438
1439
1440 static void
nvmet_fc_free_tgtport(struct kref * ref)1441 nvmet_fc_free_tgtport(struct kref *ref)
1442 {
1443 struct nvmet_fc_tgtport *tgtport =
1444 container_of(ref, struct nvmet_fc_tgtport, ref);
1445 struct device *dev = tgtport->dev;
1446
1447 nvmet_fc_free_ls_iodlist(tgtport);
1448
1449 /* let the LLDD know we've finished tearing it down */
1450 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1451
1452 ida_free(&nvmet_fc_tgtport_cnt,
1453 tgtport->fc_target_port.port_num);
1454
1455 ida_destroy(&tgtport->assoc_cnt);
1456
1457 kfree(tgtport);
1458
1459 put_device(dev);
1460 }
1461
1462 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1463 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1464 {
1465 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1466 }
1467
1468 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1469 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1470 {
1471 return kref_get_unless_zero(&tgtport->ref);
1472 }
1473
1474 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1475 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1476 {
1477 struct nvmet_fc_tgt_assoc *assoc;
1478
1479 rcu_read_lock();
1480 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1481 if (!nvmet_fc_tgt_a_get(assoc))
1482 continue;
1483 nvmet_fc_schedule_delete_assoc(assoc);
1484 nvmet_fc_tgt_a_put(assoc);
1485 }
1486 rcu_read_unlock();
1487 }
1488
1489 /**
1490 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1491 * to remove references to a hosthandle for LS's.
1492 *
1493 * The nvmet-fc layer ensures that any references to the hosthandle
1494 * on the targetport are forgotten (set to NULL). The LLDD will
1495 * typically call this when a login with a remote host port has been
1496 * lost, thus LS's for the remote host port are no longer possible.
1497 *
1498 * If an LS request is outstanding to the targetport/hosthandle (or
1499 * issued concurrently with the call to invalidate the host), the
1500 * LLDD is responsible for terminating/aborting the LS and completing
1501 * the LS request. It is recommended that these terminations/aborts
1502 * occur after calling to invalidate the host handle to avoid additional
1503 * retries by the nvmet-fc transport. The nvmet-fc transport may
1504 * continue to reference host handle while it cleans up outstanding
1505 * NVME associations. The nvmet-fc transport will call the
1506 * ops->host_release() callback to notify the LLDD that all references
1507 * are complete and the related host handle can be recovered.
1508 * Note: if there are no references, the callback may be called before
1509 * the invalidate host call returns.
1510 *
1511 * @target_port: pointer to the (registered) target port that a prior
1512 * LS was received on and which supplied the transport the
1513 * hosthandle.
1514 * @hosthandle: the handle (pointer) that represents the host port
1515 * that no longer has connectivity and that LS's should
1516 * no longer be directed to.
1517 */
1518 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1519 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1520 void *hosthandle)
1521 {
1522 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1523 struct nvmet_fc_tgt_assoc *assoc, *next;
1524 unsigned long flags;
1525 bool noassoc = true;
1526
1527 spin_lock_irqsave(&tgtport->lock, flags);
1528 list_for_each_entry_safe(assoc, next,
1529 &tgtport->assoc_list, a_list) {
1530 if (assoc->hostport->hosthandle != hosthandle)
1531 continue;
1532 if (!nvmet_fc_tgt_a_get(assoc))
1533 continue;
1534 assoc->hostport->invalid = 1;
1535 noassoc = false;
1536 nvmet_fc_schedule_delete_assoc(assoc);
1537 nvmet_fc_tgt_a_put(assoc);
1538 }
1539 spin_unlock_irqrestore(&tgtport->lock, flags);
1540
1541 /* if there's nothing to wait for - call the callback */
1542 if (noassoc && tgtport->ops->host_release)
1543 tgtport->ops->host_release(hosthandle);
1544 }
1545 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1546
1547 /*
1548 * nvmet layer has called to terminate an association
1549 */
1550 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1551 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1552 {
1553 struct nvmet_fc_tgtport *tgtport, *next;
1554 struct nvmet_fc_tgt_assoc *assoc;
1555 struct nvmet_fc_tgt_queue *queue;
1556 unsigned long flags;
1557 bool found_ctrl = false;
1558
1559 /* this is a bit ugly, but don't want to make locks layered */
1560 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1561 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1562 tgt_list) {
1563 if (!nvmet_fc_tgtport_get(tgtport))
1564 continue;
1565 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1566
1567 rcu_read_lock();
1568 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1569 queue = assoc->queues[0];
1570 if (queue && queue->nvme_sq.ctrl == ctrl) {
1571 if (nvmet_fc_tgt_a_get(assoc))
1572 found_ctrl = true;
1573 break;
1574 }
1575 }
1576 rcu_read_unlock();
1577
1578 nvmet_fc_tgtport_put(tgtport);
1579
1580 if (found_ctrl) {
1581 nvmet_fc_schedule_delete_assoc(assoc);
1582 nvmet_fc_tgt_a_put(assoc);
1583 return;
1584 }
1585
1586 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1587 }
1588 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1589 }
1590
1591 static void
nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport * tgtport)1592 nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport *tgtport)
1593 {
1594 struct nvmet_fc_ls_req_op *lsop;
1595 struct nvmefc_ls_req *lsreq;
1596 struct nvmet_fc_ls_iod *iod;
1597 int i;
1598
1599 iod = tgtport->iod;
1600 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++)
1601 cancel_work(&iod->work);
1602
1603 /*
1604 * After this point the connection is lost and thus any pending
1605 * request can't be processed by the normal completion path. This
1606 * is likely a request from nvmet_fc_send_ls_req_async.
1607 */
1608 while ((lsop = list_first_entry_or_null(&tgtport->ls_req_list,
1609 struct nvmet_fc_ls_req_op, lsreq_list))) {
1610 list_del(&lsop->lsreq_list);
1611
1612 if (!lsop->req_queued)
1613 continue;
1614
1615 lsreq = &lsop->ls_req;
1616 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
1617 (lsreq->rqstlen + lsreq->rsplen),
1618 DMA_BIDIRECTIONAL);
1619 nvmet_fc_tgtport_put(tgtport);
1620 kfree(lsop);
1621 }
1622 }
1623
1624 /**
1625 * nvmet_fc_unregister_targetport - transport entry point called by an
1626 * LLDD to deregister/remove a previously
1627 * registered a local NVME subsystem FC port.
1628 * @target_port: pointer to the (registered) target port that is to be
1629 * deregistered.
1630 *
1631 * Returns:
1632 * a completion status. Must be 0 upon success; a negative errno
1633 * (ex: -ENXIO) upon failure.
1634 */
1635 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1636 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1637 {
1638 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1639 unsigned long flags;
1640
1641 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1642 list_del(&tgtport->tgt_list);
1643 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1644
1645 nvmet_fc_portentry_unbind_tgt(tgtport);
1646
1647 /* terminate any outstanding associations */
1648 __nvmet_fc_free_assocs(tgtport);
1649
1650 flush_workqueue(nvmet_wq);
1651
1652 nvmet_fc_free_pending_reqs(tgtport);
1653 nvmet_fc_tgtport_put(tgtport);
1654
1655 return 0;
1656 }
1657 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1658
1659
1660 /* ********************** FC-NVME LS RCV Handling ************************* */
1661
1662
1663 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1664 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1665 struct nvmet_fc_ls_iod *iod)
1666 {
1667 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1668 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1669 struct nvmet_fc_tgt_queue *queue;
1670 int ret = 0;
1671
1672 memset(acc, 0, sizeof(*acc));
1673
1674 /*
1675 * FC-NVME spec changes. There are initiators sending different
1676 * lengths as padding sizes for Create Association Cmd descriptor
1677 * was incorrect.
1678 * Accept anything of "minimum" length. Assume format per 1.15
1679 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1680 * trailing pad length is.
1681 */
1682 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1683 ret = VERR_CR_ASSOC_LEN;
1684 else if (be32_to_cpu(rqst->desc_list_len) <
1685 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1686 ret = VERR_CR_ASSOC_RQST_LEN;
1687 else if (rqst->assoc_cmd.desc_tag !=
1688 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1689 ret = VERR_CR_ASSOC_CMD;
1690 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1691 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1692 ret = VERR_CR_ASSOC_CMD_LEN;
1693 else if (!rqst->assoc_cmd.ersp_ratio ||
1694 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1695 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1696 ret = VERR_ERSP_RATIO;
1697
1698 else {
1699 /* new association w/ admin queue */
1700 iod->assoc = nvmet_fc_alloc_target_assoc(
1701 tgtport, iod->hosthandle);
1702 if (!iod->assoc)
1703 ret = VERR_ASSOC_ALLOC_FAIL;
1704 else {
1705 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1706 be16_to_cpu(rqst->assoc_cmd.sqsize));
1707 if (!queue) {
1708 ret = VERR_QUEUE_ALLOC_FAIL;
1709 nvmet_fc_tgt_a_put(iod->assoc);
1710 }
1711 }
1712 }
1713
1714 if (ret) {
1715 pr_err("{%d}: Create Association LS failed: %s\n",
1716 tgtport->fc_target_port.port_num,
1717 validation_errors[ret]);
1718 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1719 sizeof(*acc), rqst->w0.ls_cmd,
1720 FCNVME_RJT_RC_LOGIC,
1721 FCNVME_RJT_EXP_NONE, 0);
1722 return;
1723 }
1724
1725 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1726 atomic_set(&queue->connected, 1);
1727 queue->sqhd = 0; /* best place to init value */
1728
1729 pr_info("{%d:%d}: Association created\n",
1730 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1731
1732 /* format a response */
1733
1734 iod->lsrsp->rsplen = sizeof(*acc);
1735
1736 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1737 fcnvme_lsdesc_len(
1738 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1739 FCNVME_LS_CREATE_ASSOCIATION);
1740 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1741 acc->associd.desc_len =
1742 fcnvme_lsdesc_len(
1743 sizeof(struct fcnvme_lsdesc_assoc_id));
1744 acc->associd.association_id =
1745 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1746 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1747 acc->connectid.desc_len =
1748 fcnvme_lsdesc_len(
1749 sizeof(struct fcnvme_lsdesc_conn_id));
1750 acc->connectid.connection_id = acc->associd.association_id;
1751 }
1752
1753 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1754 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1755 struct nvmet_fc_ls_iod *iod)
1756 {
1757 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1758 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1759 struct nvmet_fc_tgt_queue *queue;
1760 int ret = 0;
1761
1762 memset(acc, 0, sizeof(*acc));
1763
1764 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1765 ret = VERR_CR_CONN_LEN;
1766 else if (rqst->desc_list_len !=
1767 fcnvme_lsdesc_len(
1768 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1769 ret = VERR_CR_CONN_RQST_LEN;
1770 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1771 ret = VERR_ASSOC_ID;
1772 else if (rqst->associd.desc_len !=
1773 fcnvme_lsdesc_len(
1774 sizeof(struct fcnvme_lsdesc_assoc_id)))
1775 ret = VERR_ASSOC_ID_LEN;
1776 else if (rqst->connect_cmd.desc_tag !=
1777 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1778 ret = VERR_CR_CONN_CMD;
1779 else if (rqst->connect_cmd.desc_len !=
1780 fcnvme_lsdesc_len(
1781 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1782 ret = VERR_CR_CONN_CMD_LEN;
1783 else if (!rqst->connect_cmd.ersp_ratio ||
1784 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1785 be16_to_cpu(rqst->connect_cmd.sqsize)))
1786 ret = VERR_ERSP_RATIO;
1787
1788 else {
1789 /* new io queue */
1790 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1791 be64_to_cpu(rqst->associd.association_id));
1792 if (!iod->assoc)
1793 ret = VERR_NO_ASSOC;
1794 else {
1795 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1796 be16_to_cpu(rqst->connect_cmd.qid),
1797 be16_to_cpu(rqst->connect_cmd.sqsize));
1798 if (!queue)
1799 ret = VERR_QUEUE_ALLOC_FAIL;
1800
1801 /* release get taken in nvmet_fc_find_target_assoc */
1802 nvmet_fc_tgt_a_put(iod->assoc);
1803 }
1804 }
1805
1806 if (ret) {
1807 pr_err("{%d}: Create Connection LS failed: %s\n",
1808 tgtport->fc_target_port.port_num,
1809 validation_errors[ret]);
1810 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1811 sizeof(*acc), rqst->w0.ls_cmd,
1812 (ret == VERR_NO_ASSOC) ?
1813 FCNVME_RJT_RC_INV_ASSOC :
1814 FCNVME_RJT_RC_LOGIC,
1815 FCNVME_RJT_EXP_NONE, 0);
1816 return;
1817 }
1818
1819 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1820 atomic_set(&queue->connected, 1);
1821 queue->sqhd = 0; /* best place to init value */
1822
1823 /* format a response */
1824
1825 iod->lsrsp->rsplen = sizeof(*acc);
1826
1827 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1828 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1829 FCNVME_LS_CREATE_CONNECTION);
1830 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1831 acc->connectid.desc_len =
1832 fcnvme_lsdesc_len(
1833 sizeof(struct fcnvme_lsdesc_conn_id));
1834 acc->connectid.connection_id =
1835 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1836 be16_to_cpu(rqst->connect_cmd.qid)));
1837 }
1838
1839 /*
1840 * Returns true if the LS response is to be transmit
1841 * Returns false if the LS response is to be delayed
1842 */
1843 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1844 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1845 struct nvmet_fc_ls_iod *iod)
1846 {
1847 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1848 &iod->rqstbuf->rq_dis_assoc;
1849 struct fcnvme_ls_disconnect_assoc_acc *acc =
1850 &iod->rspbuf->rsp_dis_assoc;
1851 struct nvmet_fc_tgt_assoc *assoc = NULL;
1852 struct nvmet_fc_ls_iod *oldls = NULL;
1853 unsigned long flags;
1854 int ret = 0;
1855
1856 memset(acc, 0, sizeof(*acc));
1857
1858 ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1859 if (!ret) {
1860 /* match an active association - takes an assoc ref if !NULL */
1861 assoc = nvmet_fc_find_target_assoc(tgtport,
1862 be64_to_cpu(rqst->associd.association_id));
1863 iod->assoc = assoc;
1864 if (!assoc)
1865 ret = VERR_NO_ASSOC;
1866 }
1867
1868 if (ret || !assoc) {
1869 pr_err("{%d}: Disconnect LS failed: %s\n",
1870 tgtport->fc_target_port.port_num,
1871 validation_errors[ret]);
1872 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1873 sizeof(*acc), rqst->w0.ls_cmd,
1874 (ret == VERR_NO_ASSOC) ?
1875 FCNVME_RJT_RC_INV_ASSOC :
1876 FCNVME_RJT_RC_LOGIC,
1877 FCNVME_RJT_EXP_NONE, 0);
1878 return true;
1879 }
1880
1881 /* format a response */
1882
1883 iod->lsrsp->rsplen = sizeof(*acc);
1884
1885 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1886 fcnvme_lsdesc_len(
1887 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1888 FCNVME_LS_DISCONNECT_ASSOC);
1889
1890 /*
1891 * The rules for LS response says the response cannot
1892 * go back until ABTS's have been sent for all outstanding
1893 * I/O and a Disconnect Association LS has been sent.
1894 * So... save off the Disconnect LS to send the response
1895 * later. If there was a prior LS already saved, replace
1896 * it with the newer one and send a can't perform reject
1897 * on the older one.
1898 */
1899 spin_lock_irqsave(&tgtport->lock, flags);
1900 oldls = assoc->rcv_disconn;
1901 assoc->rcv_disconn = iod;
1902 spin_unlock_irqrestore(&tgtport->lock, flags);
1903
1904 if (oldls) {
1905 pr_info("{%d:%d}: Multiple Disconnect Association LS's "
1906 "received\n",
1907 tgtport->fc_target_port.port_num, assoc->a_id);
1908 /* overwrite good response with bogus failure */
1909 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1910 sizeof(*iod->rspbuf),
1911 /* ok to use rqst, LS is same */
1912 rqst->w0.ls_cmd,
1913 FCNVME_RJT_RC_UNAB,
1914 FCNVME_RJT_EXP_NONE, 0);
1915 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1916 }
1917
1918 nvmet_fc_schedule_delete_assoc(assoc);
1919 nvmet_fc_tgt_a_put(assoc);
1920
1921 return false;
1922 }
1923
1924
1925 /* *********************** NVME Ctrl Routines **************************** */
1926
1927
1928 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1929
1930 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1931
1932 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1933 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1934 {
1935 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1936 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1937
1938 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1939 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1940 nvmet_fc_free_ls_iod(tgtport, iod);
1941 nvmet_fc_tgtport_put(tgtport);
1942 }
1943
1944 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1945 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1946 struct nvmet_fc_ls_iod *iod)
1947 {
1948 int ret;
1949
1950 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1951 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1952
1953 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1954 if (ret)
1955 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1956 }
1957
1958 /*
1959 * Actual processing routine for received FC-NVME LS Requests from the LLD
1960 */
1961 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1962 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1963 struct nvmet_fc_ls_iod *iod)
1964 {
1965 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1966 bool sendrsp = true;
1967
1968 iod->lsrsp->nvme_fc_private = iod;
1969 iod->lsrsp->rspbuf = iod->rspbuf;
1970 iod->lsrsp->rspdma = iod->rspdma;
1971 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1972 /* Be preventative. handlers will later set to valid length */
1973 iod->lsrsp->rsplen = 0;
1974
1975 iod->assoc = NULL;
1976
1977 /*
1978 * handlers:
1979 * parse request input, execute the request, and format the
1980 * LS response
1981 */
1982 switch (w0->ls_cmd) {
1983 case FCNVME_LS_CREATE_ASSOCIATION:
1984 /* Creates Association and initial Admin Queue/Connection */
1985 nvmet_fc_ls_create_association(tgtport, iod);
1986 break;
1987 case FCNVME_LS_CREATE_CONNECTION:
1988 /* Creates an IO Queue/Connection */
1989 nvmet_fc_ls_create_connection(tgtport, iod);
1990 break;
1991 case FCNVME_LS_DISCONNECT_ASSOC:
1992 /* Terminate a Queue/Connection or the Association */
1993 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1994 break;
1995 default:
1996 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1997 sizeof(*iod->rspbuf), w0->ls_cmd,
1998 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1999 }
2000
2001 if (sendrsp)
2002 nvmet_fc_xmt_ls_rsp(tgtport, iod);
2003 }
2004
2005 /*
2006 * Actual processing routine for received FC-NVME LS Requests from the LLD
2007 */
2008 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)2009 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2010 {
2011 struct nvmet_fc_ls_iod *iod =
2012 container_of(work, struct nvmet_fc_ls_iod, work);
2013 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2014
2015 nvmet_fc_handle_ls_rqst(tgtport, iod);
2016 }
2017
2018
2019 /**
2020 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2021 * upon the reception of a NVME LS request.
2022 *
2023 * The nvmet-fc layer will copy payload to an internal structure for
2024 * processing. As such, upon completion of the routine, the LLDD may
2025 * immediately free/reuse the LS request buffer passed in the call.
2026 *
2027 * If this routine returns error, the LLDD should abort the exchange.
2028 *
2029 * @target_port: pointer to the (registered) target port the LS was
2030 * received on.
2031 * @hosthandle: pointer to the host specific data, gets stored in iod.
2032 * @lsrsp: pointer to a lsrsp structure to be used to reference
2033 * the exchange corresponding to the LS.
2034 * @lsreqbuf: pointer to the buffer containing the LS Request
2035 * @lsreqbuf_len: length, in bytes, of the received LS request
2036 */
2037 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2038 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2039 void *hosthandle,
2040 struct nvmefc_ls_rsp *lsrsp,
2041 void *lsreqbuf, u32 lsreqbuf_len)
2042 {
2043 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2044 struct nvmet_fc_ls_iod *iod;
2045 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2046
2047 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2048 pr_info("{%d}: RCV %s LS failed: payload too large (%d)\n",
2049 tgtport->fc_target_port.port_num,
2050 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2051 nvmefc_ls_names[w0->ls_cmd] : "",
2052 lsreqbuf_len);
2053 return -E2BIG;
2054 }
2055
2056 if (!nvmet_fc_tgtport_get(tgtport)) {
2057 pr_info("{%d}: RCV %s LS failed: target deleting\n",
2058 tgtport->fc_target_port.port_num,
2059 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2060 nvmefc_ls_names[w0->ls_cmd] : "");
2061 return -ESHUTDOWN;
2062 }
2063
2064 iod = nvmet_fc_alloc_ls_iod(tgtport);
2065 if (!iod) {
2066 pr_info("{%d}: RCV %s LS failed: context allocation failed\n",
2067 tgtport->fc_target_port.port_num,
2068 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2069 nvmefc_ls_names[w0->ls_cmd] : "");
2070 nvmet_fc_tgtport_put(tgtport);
2071 return -ENOENT;
2072 }
2073
2074 iod->lsrsp = lsrsp;
2075 iod->fcpreq = NULL;
2076 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2077 iod->rqstdatalen = lsreqbuf_len;
2078 iod->hosthandle = hosthandle;
2079
2080 queue_work(nvmet_wq, &iod->work);
2081
2082 return 0;
2083 }
2084 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2085
2086
2087 /*
2088 * **********************
2089 * Start of FCP handling
2090 * **********************
2091 */
2092
2093 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2094 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2095 {
2096 struct scatterlist *sg;
2097 unsigned int nent;
2098
2099 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2100 if (!sg)
2101 goto out;
2102
2103 fod->data_sg = sg;
2104 fod->data_sg_cnt = nent;
2105 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2106 ((fod->io_dir == NVMET_FCP_WRITE) ?
2107 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2108 /* note: write from initiator perspective */
2109 fod->next_sg = fod->data_sg;
2110
2111 return 0;
2112
2113 out:
2114 return NVME_SC_INTERNAL;
2115 }
2116
2117 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2118 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2119 {
2120 if (!fod->data_sg || !fod->data_sg_cnt)
2121 return;
2122
2123 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2124 ((fod->io_dir == NVMET_FCP_WRITE) ?
2125 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2126 sgl_free(fod->data_sg);
2127 fod->data_sg = NULL;
2128 fod->data_sg_cnt = 0;
2129 }
2130
2131
2132 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2133 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2134 {
2135 u32 sqtail, used;
2136
2137 /* egad, this is ugly. And sqtail is just a best guess */
2138 sqtail = atomic_read(&q->sqtail) % q->sqsize;
2139
2140 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2141 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2142 }
2143
2144 /*
2145 * Prep RSP payload.
2146 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2147 */
2148 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2149 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2150 struct nvmet_fc_fcp_iod *fod)
2151 {
2152 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2153 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2154 struct nvme_completion *cqe = &ersp->cqe;
2155 u32 *cqewd = (u32 *)cqe;
2156 bool send_ersp = false;
2157 u32 rsn, rspcnt, xfr_length;
2158
2159 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2160 xfr_length = fod->req.transfer_len;
2161 else
2162 xfr_length = fod->offset;
2163
2164 /*
2165 * check to see if we can send a 0's rsp.
2166 * Note: to send a 0's response, the NVME-FC host transport will
2167 * recreate the CQE. The host transport knows: sq id, SQHD (last
2168 * seen in an ersp), and command_id. Thus it will create a
2169 * zero-filled CQE with those known fields filled in. Transport
2170 * must send an ersp for any condition where the cqe won't match
2171 * this.
2172 *
2173 * Here are the FC-NVME mandated cases where we must send an ersp:
2174 * every N responses, where N=ersp_ratio
2175 * force fabric commands to send ersp's (not in FC-NVME but good
2176 * practice)
2177 * normal cmds: any time status is non-zero, or status is zero
2178 * but words 0 or 1 are non-zero.
2179 * the SQ is 90% or more full
2180 * the cmd is a fused command
2181 * transferred data length not equal to cmd iu length
2182 */
2183 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2184 if (!(rspcnt % fod->queue->ersp_ratio) ||
2185 nvme_is_fabrics((struct nvme_command *) sqe) ||
2186 xfr_length != fod->req.transfer_len ||
2187 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2188 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2189 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2190 send_ersp = true;
2191
2192 /* re-set the fields */
2193 fod->fcpreq->rspaddr = ersp;
2194 fod->fcpreq->rspdma = fod->rspdma;
2195
2196 if (!send_ersp) {
2197 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2198 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2199 } else {
2200 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2201 rsn = atomic_inc_return(&fod->queue->rsn);
2202 ersp->rsn = cpu_to_be32(rsn);
2203 ersp->xfrd_len = cpu_to_be32(xfr_length);
2204 fod->fcpreq->rsplen = sizeof(*ersp);
2205 }
2206
2207 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2208 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2209 }
2210
2211 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2212
2213 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2214 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2215 struct nvmet_fc_fcp_iod *fod)
2216 {
2217 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2218
2219 /* data no longer needed */
2220 nvmet_fc_free_tgt_pgs(fod);
2221
2222 /*
2223 * if an ABTS was received or we issued the fcp_abort early
2224 * don't call abort routine again.
2225 */
2226 /* no need to take lock - lock was taken earlier to get here */
2227 if (!fod->aborted)
2228 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2229
2230 nvmet_fc_free_fcp_iod(fod->queue, fod);
2231 }
2232
2233 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2234 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2235 struct nvmet_fc_fcp_iod *fod)
2236 {
2237 int ret;
2238
2239 fod->fcpreq->op = NVMET_FCOP_RSP;
2240 fod->fcpreq->timeout = 0;
2241
2242 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2243
2244 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2245 if (ret)
2246 nvmet_fc_abort_op(tgtport, fod);
2247 }
2248
2249 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2250 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2251 struct nvmet_fc_fcp_iod *fod, u8 op)
2252 {
2253 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2254 struct scatterlist *sg = fod->next_sg;
2255 unsigned long flags;
2256 u32 remaininglen = fod->req.transfer_len - fod->offset;
2257 u32 tlen = 0;
2258 int ret;
2259
2260 fcpreq->op = op;
2261 fcpreq->offset = fod->offset;
2262 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2263
2264 /*
2265 * for next sequence:
2266 * break at a sg element boundary
2267 * attempt to keep sequence length capped at
2268 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2269 * be longer if a single sg element is larger
2270 * than that amount. This is done to avoid creating
2271 * a new sg list to use for the tgtport api.
2272 */
2273 fcpreq->sg = sg;
2274 fcpreq->sg_cnt = 0;
2275 while (tlen < remaininglen &&
2276 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2277 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2278 fcpreq->sg_cnt++;
2279 tlen += sg_dma_len(sg);
2280 sg = sg_next(sg);
2281 }
2282 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2283 fcpreq->sg_cnt++;
2284 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2285 sg = sg_next(sg);
2286 }
2287 if (tlen < remaininglen)
2288 fod->next_sg = sg;
2289 else
2290 fod->next_sg = NULL;
2291
2292 fcpreq->transfer_length = tlen;
2293 fcpreq->transferred_length = 0;
2294 fcpreq->fcp_error = 0;
2295 fcpreq->rsplen = 0;
2296
2297 /*
2298 * If the last READDATA request: check if LLDD supports
2299 * combined xfr with response.
2300 */
2301 if ((op == NVMET_FCOP_READDATA) &&
2302 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2303 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2304 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2305 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2306 }
2307
2308 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2309 if (ret) {
2310 /*
2311 * should be ok to set w/o lock as it's in the thread of
2312 * execution (not an async timer routine) and doesn't
2313 * contend with any clearing action
2314 */
2315 fod->abort = true;
2316
2317 if (op == NVMET_FCOP_WRITEDATA) {
2318 spin_lock_irqsave(&fod->flock, flags);
2319 fod->writedataactive = false;
2320 spin_unlock_irqrestore(&fod->flock, flags);
2321 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2322 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2323 fcpreq->fcp_error = ret;
2324 fcpreq->transferred_length = 0;
2325 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2326 }
2327 }
2328 }
2329
2330 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2331 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2332 {
2333 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2334 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2335
2336 /* if in the middle of an io and we need to tear down */
2337 if (abort) {
2338 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2339 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2340 return true;
2341 }
2342
2343 nvmet_fc_abort_op(tgtport, fod);
2344 return true;
2345 }
2346
2347 return false;
2348 }
2349
2350 /*
2351 * actual done handler for FCP operations when completed by the lldd
2352 */
2353 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2354 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2355 {
2356 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2357 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2358 unsigned long flags;
2359 bool abort;
2360
2361 spin_lock_irqsave(&fod->flock, flags);
2362 abort = fod->abort;
2363 fod->writedataactive = false;
2364 spin_unlock_irqrestore(&fod->flock, flags);
2365
2366 switch (fcpreq->op) {
2367
2368 case NVMET_FCOP_WRITEDATA:
2369 if (__nvmet_fc_fod_op_abort(fod, abort))
2370 return;
2371 if (fcpreq->fcp_error ||
2372 fcpreq->transferred_length != fcpreq->transfer_length) {
2373 spin_lock_irqsave(&fod->flock, flags);
2374 fod->abort = true;
2375 spin_unlock_irqrestore(&fod->flock, flags);
2376
2377 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2378 return;
2379 }
2380
2381 fod->offset += fcpreq->transferred_length;
2382 if (fod->offset != fod->req.transfer_len) {
2383 spin_lock_irqsave(&fod->flock, flags);
2384 fod->writedataactive = true;
2385 spin_unlock_irqrestore(&fod->flock, flags);
2386
2387 /* transfer the next chunk */
2388 nvmet_fc_transfer_fcp_data(tgtport, fod,
2389 NVMET_FCOP_WRITEDATA);
2390 return;
2391 }
2392
2393 /* data transfer complete, resume with nvmet layer */
2394 fod->req.execute(&fod->req);
2395 break;
2396
2397 case NVMET_FCOP_READDATA:
2398 case NVMET_FCOP_READDATA_RSP:
2399 if (__nvmet_fc_fod_op_abort(fod, abort))
2400 return;
2401 if (fcpreq->fcp_error ||
2402 fcpreq->transferred_length != fcpreq->transfer_length) {
2403 nvmet_fc_abort_op(tgtport, fod);
2404 return;
2405 }
2406
2407 /* success */
2408
2409 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2410 /* data no longer needed */
2411 nvmet_fc_free_tgt_pgs(fod);
2412 nvmet_fc_free_fcp_iod(fod->queue, fod);
2413 return;
2414 }
2415
2416 fod->offset += fcpreq->transferred_length;
2417 if (fod->offset != fod->req.transfer_len) {
2418 /* transfer the next chunk */
2419 nvmet_fc_transfer_fcp_data(tgtport, fod,
2420 NVMET_FCOP_READDATA);
2421 return;
2422 }
2423
2424 /* data transfer complete, send response */
2425
2426 /* data no longer needed */
2427 nvmet_fc_free_tgt_pgs(fod);
2428
2429 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2430
2431 break;
2432
2433 case NVMET_FCOP_RSP:
2434 if (__nvmet_fc_fod_op_abort(fod, abort))
2435 return;
2436 nvmet_fc_free_fcp_iod(fod->queue, fod);
2437 break;
2438
2439 default:
2440 break;
2441 }
2442 }
2443
2444 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2445 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2446 {
2447 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2448
2449 nvmet_fc_fod_op_done(fod);
2450 }
2451
2452 /*
2453 * actual completion handler after execution by the nvmet layer
2454 */
2455 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2456 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2457 struct nvmet_fc_fcp_iod *fod, int status)
2458 {
2459 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2460 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2461 unsigned long flags;
2462 bool abort;
2463
2464 spin_lock_irqsave(&fod->flock, flags);
2465 abort = fod->abort;
2466 spin_unlock_irqrestore(&fod->flock, flags);
2467
2468 /* if we have a CQE, snoop the last sq_head value */
2469 if (!status)
2470 fod->queue->sqhd = cqe->sq_head;
2471
2472 if (abort) {
2473 nvmet_fc_abort_op(tgtport, fod);
2474 return;
2475 }
2476
2477 /* if an error handling the cmd post initial parsing */
2478 if (status) {
2479 /* fudge up a failed CQE status for our transport error */
2480 memset(cqe, 0, sizeof(*cqe));
2481 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2482 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2483 cqe->command_id = sqe->command_id;
2484 cqe->status = cpu_to_le16(status);
2485 } else {
2486
2487 /*
2488 * try to push the data even if the SQE status is non-zero.
2489 * There may be a status where data still was intended to
2490 * be moved
2491 */
2492 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2493 /* push the data over before sending rsp */
2494 nvmet_fc_transfer_fcp_data(tgtport, fod,
2495 NVMET_FCOP_READDATA);
2496 return;
2497 }
2498
2499 /* writes & no data - fall thru */
2500 }
2501
2502 /* data no longer needed */
2503 nvmet_fc_free_tgt_pgs(fod);
2504
2505 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2506 }
2507
2508
2509 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2510 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2511 {
2512 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2513 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2514
2515 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2516 }
2517
2518
2519 /*
2520 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2521 */
2522 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2523 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2524 struct nvmet_fc_fcp_iod *fod)
2525 {
2526 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2527 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2528 int ret;
2529
2530 /*
2531 * Fused commands are currently not supported in the linux
2532 * implementation.
2533 *
2534 * As such, the implementation of the FC transport does not
2535 * look at the fused commands and order delivery to the upper
2536 * layer until we have both based on csn.
2537 */
2538
2539 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2540
2541 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2542 fod->io_dir = NVMET_FCP_WRITE;
2543 if (!nvme_is_write(&cmdiu->sqe))
2544 goto transport_error;
2545 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2546 fod->io_dir = NVMET_FCP_READ;
2547 if (nvme_is_write(&cmdiu->sqe))
2548 goto transport_error;
2549 } else {
2550 fod->io_dir = NVMET_FCP_NODATA;
2551 if (xfrlen)
2552 goto transport_error;
2553 }
2554
2555 fod->req.cmd = &fod->cmdiubuf.sqe;
2556 fod->req.cqe = &fod->rspiubuf.cqe;
2557 if (!tgtport->pe)
2558 goto transport_error;
2559 fod->req.port = tgtport->pe->port;
2560
2561 /* clear any response payload */
2562 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2563
2564 fod->data_sg = NULL;
2565 fod->data_sg_cnt = 0;
2566
2567 ret = nvmet_req_init(&fod->req, &fod->queue->nvme_sq,
2568 &nvmet_fc_tgt_fcp_ops);
2569 if (!ret) {
2570 /* bad SQE content or invalid ctrl state */
2571 /* nvmet layer has already called op done to send rsp. */
2572 return;
2573 }
2574
2575 fod->req.transfer_len = xfrlen;
2576
2577 /* keep a running counter of tail position */
2578 atomic_inc(&fod->queue->sqtail);
2579
2580 if (fod->req.transfer_len) {
2581 ret = nvmet_fc_alloc_tgt_pgs(fod);
2582 if (ret) {
2583 nvmet_req_complete(&fod->req, ret);
2584 return;
2585 }
2586 }
2587 fod->req.sg = fod->data_sg;
2588 fod->req.sg_cnt = fod->data_sg_cnt;
2589 fod->offset = 0;
2590
2591 if (fod->io_dir == NVMET_FCP_WRITE) {
2592 /* pull the data over before invoking nvmet layer */
2593 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2594 return;
2595 }
2596
2597 /*
2598 * Reads or no data:
2599 *
2600 * can invoke the nvmet_layer now. If read data, cmd completion will
2601 * push the data
2602 */
2603 fod->req.execute(&fod->req);
2604 return;
2605
2606 transport_error:
2607 nvmet_fc_abort_op(tgtport, fod);
2608 }
2609
2610 /**
2611 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2612 * upon the reception of a NVME FCP CMD IU.
2613 *
2614 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2615 * layer for processing.
2616 *
2617 * The nvmet_fc layer allocates a local job structure (struct
2618 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2619 * CMD IU buffer to the job structure. As such, on a successful
2620 * completion (returns 0), the LLDD may immediately free/reuse
2621 * the CMD IU buffer passed in the call.
2622 *
2623 * However, in some circumstances, due to the packetized nature of FC
2624 * and the api of the FC LLDD which may issue a hw command to send the
2625 * response, but the LLDD may not get the hw completion for that command
2626 * and upcall the nvmet_fc layer before a new command may be
2627 * asynchronously received - it's possible for a command to be received
2628 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2629 * the appearance of more commands received than fits in the sq.
2630 * To alleviate this scenario, a temporary queue is maintained in the
2631 * transport for pending LLDD requests waiting for a queue job structure.
2632 * In these "overrun" cases, a temporary queue element is allocated
2633 * the LLDD request and CMD iu buffer information remembered, and the
2634 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2635 * structure is freed, it is immediately reallocated for anything on the
2636 * pending request list. The LLDDs defer_rcv() callback is called,
2637 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2638 * is then started normally with the transport.
2639 *
2640 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2641 * the completion as successful but must not reuse the CMD IU buffer
2642 * until the LLDD's defer_rcv() callback has been called for the
2643 * corresponding struct nvmefc_tgt_fcp_req pointer.
2644 *
2645 * If there is any other condition in which an error occurs, the
2646 * transport will return a non-zero status indicating the error.
2647 * In all cases other than -EOVERFLOW, the transport has not accepted the
2648 * request and the LLDD should abort the exchange.
2649 *
2650 * @target_port: pointer to the (registered) target port the FCP CMD IU
2651 * was received on.
2652 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2653 * the exchange corresponding to the FCP Exchange.
2654 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2655 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2656 */
2657 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2658 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2659 struct nvmefc_tgt_fcp_req *fcpreq,
2660 void *cmdiubuf, u32 cmdiubuf_len)
2661 {
2662 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2663 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2664 struct nvmet_fc_tgt_queue *queue;
2665 struct nvmet_fc_fcp_iod *fod;
2666 struct nvmet_fc_defer_fcp_req *deferfcp;
2667 unsigned long flags;
2668
2669 /* validate iu, so the connection id can be used to find the queue */
2670 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2671 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2672 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2673 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2674 return -EIO;
2675
2676 queue = nvmet_fc_find_target_queue(tgtport,
2677 be64_to_cpu(cmdiu->connection_id));
2678 if (!queue)
2679 return -ENOTCONN;
2680
2681 /*
2682 * note: reference taken by find_target_queue
2683 * After successful fod allocation, the fod will inherit the
2684 * ownership of that reference and will remove the reference
2685 * when the fod is freed.
2686 */
2687
2688 spin_lock_irqsave(&queue->qlock, flags);
2689
2690 fod = nvmet_fc_alloc_fcp_iod(queue);
2691 if (fod) {
2692 spin_unlock_irqrestore(&queue->qlock, flags);
2693
2694 fcpreq->nvmet_fc_private = fod;
2695 fod->fcpreq = fcpreq;
2696
2697 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2698
2699 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2700
2701 return 0;
2702 }
2703
2704 if (!tgtport->ops->defer_rcv) {
2705 spin_unlock_irqrestore(&queue->qlock, flags);
2706 /* release the queue lookup reference */
2707 nvmet_fc_tgt_q_put(queue);
2708 return -ENOENT;
2709 }
2710
2711 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2712 struct nvmet_fc_defer_fcp_req, req_list);
2713 if (deferfcp) {
2714 /* Just re-use one that was previously allocated */
2715 list_del(&deferfcp->req_list);
2716 } else {
2717 spin_unlock_irqrestore(&queue->qlock, flags);
2718
2719 /* Now we need to dynamically allocate one */
2720 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2721 if (!deferfcp) {
2722 /* release the queue lookup reference */
2723 nvmet_fc_tgt_q_put(queue);
2724 return -ENOMEM;
2725 }
2726 spin_lock_irqsave(&queue->qlock, flags);
2727 }
2728
2729 /* For now, use rspaddr / rsplen to save payload information */
2730 fcpreq->rspaddr = cmdiubuf;
2731 fcpreq->rsplen = cmdiubuf_len;
2732 deferfcp->fcp_req = fcpreq;
2733
2734 /* defer processing till a fod becomes available */
2735 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2736
2737 /* NOTE: the queue lookup reference is still valid */
2738
2739 spin_unlock_irqrestore(&queue->qlock, flags);
2740
2741 return -EOVERFLOW;
2742 }
2743 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2744
2745 /**
2746 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2747 * upon the reception of an ABTS for a FCP command
2748 *
2749 * Notify the transport that an ABTS has been received for a FCP command
2750 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2751 * LLDD believes the command is still being worked on
2752 * (template_ops->fcp_req_release() has not been called).
2753 *
2754 * The transport will wait for any outstanding work (an op to the LLDD,
2755 * which the lldd should complete with error due to the ABTS; or the
2756 * completion from the nvmet layer of the nvme command), then will
2757 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2758 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2759 * to the ABTS either after return from this function (assuming any
2760 * outstanding op work has been terminated) or upon the callback being
2761 * called.
2762 *
2763 * @target_port: pointer to the (registered) target port the FCP CMD IU
2764 * was received on.
2765 * @fcpreq: pointer to the fcpreq request structure that corresponds
2766 * to the exchange that received the ABTS.
2767 */
2768 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2769 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2770 struct nvmefc_tgt_fcp_req *fcpreq)
2771 {
2772 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2773 struct nvmet_fc_tgt_queue *queue;
2774 unsigned long flags;
2775
2776 if (!fod || fod->fcpreq != fcpreq)
2777 /* job appears to have already completed, ignore abort */
2778 return;
2779
2780 queue = fod->queue;
2781
2782 spin_lock_irqsave(&queue->qlock, flags);
2783 if (fod->active) {
2784 /*
2785 * mark as abort. The abort handler, invoked upon completion
2786 * of any work, will detect the aborted status and do the
2787 * callback.
2788 */
2789 spin_lock(&fod->flock);
2790 fod->abort = true;
2791 fod->aborted = true;
2792 spin_unlock(&fod->flock);
2793 }
2794 spin_unlock_irqrestore(&queue->qlock, flags);
2795 }
2796 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2797
2798
2799 struct nvmet_fc_traddr {
2800 u64 nn;
2801 u64 pn;
2802 };
2803
2804 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2805 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2806 {
2807 u64 token64;
2808
2809 if (match_u64(sstr, &token64))
2810 return -EINVAL;
2811 *val = token64;
2812
2813 return 0;
2814 }
2815
2816 /*
2817 * This routine validates and extracts the WWN's from the TRADDR string.
2818 * As kernel parsers need the 0x to determine number base, universally
2819 * build string to parse with 0x prefix before parsing name strings.
2820 */
2821 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2822 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2823 {
2824 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2825 substring_t wwn = { name, &name[sizeof(name)-1] };
2826 int nnoffset, pnoffset;
2827
2828 /* validate if string is one of the 2 allowed formats */
2829 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2830 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2831 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2832 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2833 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2834 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2835 NVME_FC_TRADDR_OXNNLEN;
2836 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2837 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2838 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2839 "pn-", NVME_FC_TRADDR_NNLEN))) {
2840 nnoffset = NVME_FC_TRADDR_NNLEN;
2841 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2842 } else
2843 goto out_einval;
2844
2845 name[0] = '0';
2846 name[1] = 'x';
2847 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2848
2849 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2850 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2851 goto out_einval;
2852
2853 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2854 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2855 goto out_einval;
2856
2857 return 0;
2858
2859 out_einval:
2860 pr_warn("%s: bad traddr string\n", __func__);
2861 return -EINVAL;
2862 }
2863
2864 static int
nvmet_fc_add_port(struct nvmet_port * port)2865 nvmet_fc_add_port(struct nvmet_port *port)
2866 {
2867 struct nvmet_fc_tgtport *tgtport;
2868 struct nvmet_fc_port_entry *pe;
2869 struct nvmet_fc_traddr traddr = { 0L, 0L };
2870 unsigned long flags;
2871 int ret;
2872
2873 /* validate the address info */
2874 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2875 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2876 return -EINVAL;
2877
2878 /* map the traddr address info to a target port */
2879
2880 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2881 sizeof(port->disc_addr.traddr));
2882 if (ret)
2883 return ret;
2884
2885 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2886 if (!pe)
2887 return -ENOMEM;
2888
2889 ret = -ENXIO;
2890 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2891 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2892 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2893 (tgtport->fc_target_port.port_name == traddr.pn)) {
2894 if (!nvmet_fc_tgtport_get(tgtport))
2895 continue;
2896
2897 /* a FC port can only be 1 nvmet port id */
2898 if (!tgtport->pe) {
2899 nvmet_fc_portentry_bind(tgtport, pe, port);
2900 ret = 0;
2901 } else
2902 ret = -EALREADY;
2903
2904 nvmet_fc_tgtport_put(tgtport);
2905 break;
2906 }
2907 }
2908 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2909
2910 if (ret)
2911 kfree(pe);
2912
2913 return ret;
2914 }
2915
2916 static void
nvmet_fc_remove_port(struct nvmet_port * port)2917 nvmet_fc_remove_port(struct nvmet_port *port)
2918 {
2919 struct nvmet_fc_port_entry *pe = port->priv;
2920 struct nvmet_fc_tgtport *tgtport = NULL;
2921 unsigned long flags;
2922
2923 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2924 if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2925 tgtport = pe->tgtport;
2926 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2927
2928 nvmet_fc_portentry_unbind(pe);
2929
2930 if (tgtport) {
2931 /* terminate any outstanding associations */
2932 __nvmet_fc_free_assocs(tgtport);
2933 nvmet_fc_tgtport_put(tgtport);
2934 }
2935
2936 kfree(pe);
2937 }
2938
2939 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2940 nvmet_fc_discovery_chg(struct nvmet_port *port)
2941 {
2942 struct nvmet_fc_port_entry *pe = port->priv;
2943 struct nvmet_fc_tgtport *tgtport = NULL;
2944 unsigned long flags;
2945
2946 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2947 if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2948 tgtport = pe->tgtport;
2949 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2950
2951 if (!tgtport)
2952 return;
2953
2954 if (tgtport && tgtport->ops->discovery_event)
2955 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2956
2957 nvmet_fc_tgtport_put(tgtport);
2958 }
2959
2960 static ssize_t
nvmet_fc_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_size)2961 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2962 char *traddr, size_t traddr_size)
2963 {
2964 struct nvmet_sq *sq = ctrl->sqs[0];
2965 struct nvmet_fc_tgt_queue *queue =
2966 container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2967 struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2968 struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2969 u64 wwnn, wwpn;
2970 ssize_t ret = 0;
2971
2972 if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2973 return -ENODEV;
2974 if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2975 ret = -ENODEV;
2976 goto out_put;
2977 }
2978
2979 if (tgtport->ops->host_traddr) {
2980 ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2981 if (ret)
2982 goto out_put_host;
2983 ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2984 }
2985 out_put_host:
2986 nvmet_fc_hostport_put(hostport);
2987 out_put:
2988 nvmet_fc_tgtport_put(tgtport);
2989 return ret;
2990 }
2991
2992 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2993 .owner = THIS_MODULE,
2994 .type = NVMF_TRTYPE_FC,
2995 .msdbd = 1,
2996 .add_port = nvmet_fc_add_port,
2997 .remove_port = nvmet_fc_remove_port,
2998 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2999 .delete_ctrl = nvmet_fc_delete_ctrl,
3000 .discovery_chg = nvmet_fc_discovery_chg,
3001 .host_traddr = nvmet_fc_host_traddr,
3002 };
3003
nvmet_fc_init_module(void)3004 static int __init nvmet_fc_init_module(void)
3005 {
3006 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
3007 }
3008
nvmet_fc_exit_module(void)3009 static void __exit nvmet_fc_exit_module(void)
3010 {
3011 /* ensure any shutdown operation, e.g. delete ctrls have finished */
3012 flush_workqueue(nvmet_wq);
3013
3014 /* sanity check - all lports should be removed */
3015 if (!list_empty(&nvmet_fc_target_list))
3016 pr_warn("%s: targetport list not empty\n", __func__);
3017
3018 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
3019
3020 ida_destroy(&nvmet_fc_tgtport_cnt);
3021 }
3022
3023 module_init(nvmet_fc_init_module);
3024 module_exit(nvmet_fc_exit_module);
3025
3026 MODULE_DESCRIPTION("NVMe target FC transport driver");
3027 MODULE_LICENSE("GPL v2");
3028