xref: /linux/drivers/nvme/target/fc.c (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 
115 	struct work_struct		put_work;
116 };
117 
118 struct nvmet_fc_port_entry {
119 	struct nvmet_fc_tgtport		*tgtport;
120 	struct nvmet_port		*port;
121 	u64				node_name;
122 	u64				port_name;
123 	struct list_head		pe_list;
124 };
125 
126 struct nvmet_fc_defer_fcp_req {
127 	struct list_head		req_list;
128 	struct nvmefc_tgt_fcp_req	*fcp_req;
129 };
130 
131 struct nvmet_fc_tgt_queue {
132 	bool				ninetypercent;
133 	u16				qid;
134 	u16				sqsize;
135 	u16				ersp_ratio;
136 	__le16				sqhd;
137 	atomic_t			connected;
138 	atomic_t			sqtail;
139 	atomic_t			zrspcnt;
140 	atomic_t			rsn;
141 	spinlock_t			qlock;
142 	struct nvmet_cq			nvme_cq;
143 	struct nvmet_sq			nvme_sq;
144 	struct nvmet_fc_tgt_assoc	*assoc;
145 	struct list_head		fod_list;
146 	struct list_head		pending_cmd_list;
147 	struct list_head		avail_defer_list;
148 	struct workqueue_struct		*work_q;
149 	struct kref			ref;
150 	/* array of fcp_iods */
151 	struct nvmet_fc_fcp_iod		fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153 
154 struct nvmet_fc_hostport {
155 	struct nvmet_fc_tgtport		*tgtport;
156 	void				*hosthandle;
157 	struct list_head		host_list;
158 	struct kref			ref;
159 	u8				invalid;
160 };
161 
162 struct nvmet_fc_tgt_assoc {
163 	u64				association_id;
164 	u32				a_id;
165 	atomic_t			terminating;
166 	struct nvmet_fc_tgtport		*tgtport;
167 	struct nvmet_fc_hostport	*hostport;
168 	struct nvmet_fc_ls_iod		*rcv_disconn;
169 	struct list_head		a_list;
170 	struct nvmet_fc_tgt_queue 	*queues[NVMET_NR_QUEUES + 1];
171 	struct kref			ref;
172 	struct work_struct		del_work;
173 };
174 
175 /*
176  * Association and Connection IDs:
177  *
178  * Association ID will have random number in upper 6 bytes and zero
179  *   in lower 2 bytes
180  *
181  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182  *
183  * note: Association ID = Connection ID for queue 0
184  */
185 #define BYTES_FOR_QID			sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188 
189 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 	return (assoc->association_id | qid);
193 }
194 
195 static inline u64
nvmet_fc_getassociationid(u64 connectionid)196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200 
201 static inline u16
nvmet_fc_getqueueid(u64 connectionid)202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206 
207 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 	return container_of(targetport, struct nvmet_fc_tgtport,
211 				 fc_target_port);
212 }
213 
214 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219 
220 
221 /* *************************** Globals **************************** */
222 
223 
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225 
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229 
230 
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_tgtport_work(struct work_struct * work)238 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
239 {
240 	struct nvmet_fc_tgtport *tgtport =
241 		container_of(work, struct nvmet_fc_tgtport, put_work);
242 
243 	nvmet_fc_tgtport_put(tgtport);
244 }
245 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
246 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
247 					struct nvmet_fc_fcp_iod *fod);
248 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
250 				struct nvmet_fc_ls_iod *iod);
251 
252 
253 /* *********************** FC-NVME DMA Handling **************************** */
254 
255 /*
256  * The fcloop device passes in a NULL device pointer. Real LLD's will
257  * pass in a valid device pointer. If NULL is passed to the dma mapping
258  * routines, depending on the platform, it may or may not succeed, and
259  * may crash.
260  *
261  * As such:
262  * Wrapper all the dma routines and check the dev pointer.
263  *
264  * If simple mappings (return just a dma address, we'll noop them,
265  * returning a dma address of 0.
266  *
267  * On more complex mappings (dma_map_sg), a pseudo routine fills
268  * in the scatter list, setting all dma addresses to 0.
269  */
270 
271 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)272 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
273 		enum dma_data_direction dir)
274 {
275 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
276 }
277 
278 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)279 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
280 {
281 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
282 }
283 
284 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)285 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
286 	enum dma_data_direction dir)
287 {
288 	if (dev)
289 		dma_unmap_single(dev, addr, size, dir);
290 }
291 
292 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)293 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
294 		enum dma_data_direction dir)
295 {
296 	if (dev)
297 		dma_sync_single_for_cpu(dev, addr, size, dir);
298 }
299 
300 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)301 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
302 		enum dma_data_direction dir)
303 {
304 	if (dev)
305 		dma_sync_single_for_device(dev, addr, size, dir);
306 }
307 
308 /* pseudo dma_map_sg call */
309 static int
fc_map_sg(struct scatterlist * sg,int nents)310 fc_map_sg(struct scatterlist *sg, int nents)
311 {
312 	struct scatterlist *s;
313 	int i;
314 
315 	WARN_ON(nents == 0 || sg[0].length == 0);
316 
317 	for_each_sg(sg, s, nents, i) {
318 		s->dma_address = 0L;
319 #ifdef CONFIG_NEED_SG_DMA_LENGTH
320 		s->dma_length = s->length;
321 #endif
322 	}
323 	return nents;
324 }
325 
326 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)327 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328 		enum dma_data_direction dir)
329 {
330 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
331 }
332 
333 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)334 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
335 		enum dma_data_direction dir)
336 {
337 	if (dev)
338 		dma_unmap_sg(dev, sg, nents, dir);
339 }
340 
341 
342 /* ********************** FC-NVME LS XMT Handling ************************* */
343 
344 
345 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)346 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
347 {
348 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
349 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&tgtport->lock, flags);
353 
354 	if (!lsop->req_queued) {
355 		spin_unlock_irqrestore(&tgtport->lock, flags);
356 		goto out_putwork;
357 	}
358 
359 	list_del(&lsop->lsreq_list);
360 
361 	lsop->req_queued = false;
362 
363 	spin_unlock_irqrestore(&tgtport->lock, flags);
364 
365 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
366 				  (lsreq->rqstlen + lsreq->rsplen),
367 				  DMA_BIDIRECTIONAL);
368 
369 out_putwork:
370 	queue_work(nvmet_wq, &tgtport->put_work);
371 }
372 
373 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))374 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
375 		struct nvmet_fc_ls_req_op *lsop,
376 		void (*done)(struct nvmefc_ls_req *req, int status))
377 {
378 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
379 	unsigned long flags;
380 	int ret = 0;
381 
382 	if (!tgtport->ops->ls_req)
383 		return -EOPNOTSUPP;
384 
385 	if (!nvmet_fc_tgtport_get(tgtport))
386 		return -ESHUTDOWN;
387 
388 	lsreq->done = done;
389 	lsop->req_queued = false;
390 	INIT_LIST_HEAD(&lsop->lsreq_list);
391 
392 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
393 				  lsreq->rqstlen + lsreq->rsplen,
394 				  DMA_BIDIRECTIONAL);
395 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
396 		ret = -EFAULT;
397 		goto out_puttgtport;
398 	}
399 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
400 
401 	spin_lock_irqsave(&tgtport->lock, flags);
402 
403 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
404 
405 	lsop->req_queued = true;
406 
407 	spin_unlock_irqrestore(&tgtport->lock, flags);
408 
409 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
410 				   lsreq);
411 	if (ret)
412 		goto out_unlink;
413 
414 	return 0;
415 
416 out_unlink:
417 	lsop->ls_error = ret;
418 	spin_lock_irqsave(&tgtport->lock, flags);
419 	lsop->req_queued = false;
420 	list_del(&lsop->lsreq_list);
421 	spin_unlock_irqrestore(&tgtport->lock, flags);
422 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
423 				  (lsreq->rqstlen + lsreq->rsplen),
424 				  DMA_BIDIRECTIONAL);
425 out_puttgtport:
426 	nvmet_fc_tgtport_put(tgtport);
427 
428 	return ret;
429 }
430 
431 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))432 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
433 		struct nvmet_fc_ls_req_op *lsop,
434 		void (*done)(struct nvmefc_ls_req *req, int status))
435 {
436 	/* don't wait for completion */
437 
438 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
439 }
440 
441 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)442 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
443 {
444 	struct nvmet_fc_ls_req_op *lsop =
445 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
446 
447 	__nvmet_fc_finish_ls_req(lsop);
448 
449 	/* fc-nvme target doesn't care about success or failure of cmd */
450 
451 	kfree(lsop);
452 }
453 
454 /*
455  * This routine sends a FC-NVME LS to disconnect (aka terminate)
456  * the FC-NVME Association.  Terminating the association also
457  * terminates the FC-NVME connections (per queue, both admin and io
458  * queues) that are part of the association. E.g. things are torn
459  * down, and the related FC-NVME Association ID and Connection IDs
460  * become invalid.
461  *
462  * The behavior of the fc-nvme target is such that it's
463  * understanding of the association and connections will implicitly
464  * be torn down. The action is implicit as it may be due to a loss of
465  * connectivity with the fc-nvme host, so the target may never get a
466  * response even if it tried.  As such, the action of this routine
467  * is to asynchronously send the LS, ignore any results of the LS, and
468  * continue on with terminating the association. If the fc-nvme host
469  * is present and receives the LS, it too can tear down.
470  */
471 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 	struct nvmet_fc_ls_req_op *lsop;
478 	struct nvmefc_ls_req *lsreq;
479 	int ret;
480 
481 	/*
482 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 	 * message is normal. Otherwise, send unless the hostport has
484 	 * already been invalidated by the lldd.
485 	 */
486 	if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 		return;
488 
489 	lsop = kzalloc((sizeof(*lsop) +
490 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 	if (!lsop) {
493 		dev_info(tgtport->dev,
494 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
495 			tgtport->fc_target_port.port_num, assoc->a_id);
496 		return;
497 	}
498 
499 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
500 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
501 	lsreq = &lsop->ls_req;
502 	if (tgtport->ops->lsrqst_priv_sz)
503 		lsreq->private = (void *)&discon_acc[1];
504 	else
505 		lsreq->private = NULL;
506 
507 	lsop->tgtport = tgtport;
508 	lsop->hosthandle = assoc->hostport->hosthandle;
509 
510 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
511 				assoc->association_id);
512 
513 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
514 				nvmet_fc_disconnect_assoc_done);
515 	if (ret) {
516 		dev_info(tgtport->dev,
517 			"{%d:%d} XMT Disconnect Association failed: %d\n",
518 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
519 		kfree(lsop);
520 	}
521 }
522 
523 
524 /* *********************** FC-NVME Port Management ************************ */
525 
526 
527 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)528 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
529 {
530 	struct nvmet_fc_ls_iod *iod;
531 	int i;
532 
533 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
534 			GFP_KERNEL);
535 	if (!iod)
536 		return -ENOMEM;
537 
538 	tgtport->iod = iod;
539 
540 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
541 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
542 		iod->tgtport = tgtport;
543 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
544 
545 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
546 				       sizeof(union nvmefc_ls_responses),
547 				       GFP_KERNEL);
548 		if (!iod->rqstbuf)
549 			goto out_fail;
550 
551 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
552 
553 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
554 						sizeof(*iod->rspbuf),
555 						DMA_TO_DEVICE);
556 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
557 			goto out_fail;
558 	}
559 
560 	return 0;
561 
562 out_fail:
563 	kfree(iod->rqstbuf);
564 	list_del(&iod->ls_rcv_list);
565 	for (iod--, i--; i >= 0; iod--, i--) {
566 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
567 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
568 		kfree(iod->rqstbuf);
569 		list_del(&iod->ls_rcv_list);
570 	}
571 
572 	kfree(iod);
573 
574 	return -EFAULT;
575 }
576 
577 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)578 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
579 {
580 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
581 	int i;
582 
583 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
584 		fc_dma_unmap_single(tgtport->dev,
585 				iod->rspdma, sizeof(*iod->rspbuf),
586 				DMA_TO_DEVICE);
587 		kfree(iod->rqstbuf);
588 		list_del(&iod->ls_rcv_list);
589 	}
590 	kfree(tgtport->iod);
591 }
592 
593 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)594 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
595 {
596 	struct nvmet_fc_ls_iod *iod;
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&tgtport->lock, flags);
600 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
601 					struct nvmet_fc_ls_iod, ls_rcv_list);
602 	if (iod)
603 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
604 	spin_unlock_irqrestore(&tgtport->lock, flags);
605 	return iod;
606 }
607 
608 
609 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)610 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
611 			struct nvmet_fc_ls_iod *iod)
612 {
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&tgtport->lock, flags);
616 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
617 	spin_unlock_irqrestore(&tgtport->lock, flags);
618 }
619 
620 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)621 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
622 				struct nvmet_fc_tgt_queue *queue)
623 {
624 	struct nvmet_fc_fcp_iod *fod = queue->fod;
625 	int i;
626 
627 	for (i = 0; i < queue->sqsize; fod++, i++) {
628 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
629 		fod->tgtport = tgtport;
630 		fod->queue = queue;
631 		fod->active = false;
632 		fod->abort = false;
633 		fod->aborted = false;
634 		fod->fcpreq = NULL;
635 		list_add_tail(&fod->fcp_list, &queue->fod_list);
636 		spin_lock_init(&fod->flock);
637 
638 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
639 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
640 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
641 			list_del(&fod->fcp_list);
642 			for (fod--, i--; i >= 0; fod--, i--) {
643 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
644 						sizeof(fod->rspiubuf),
645 						DMA_TO_DEVICE);
646 				fod->rspdma = 0L;
647 				list_del(&fod->fcp_list);
648 			}
649 
650 			return;
651 		}
652 	}
653 }
654 
655 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)656 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
657 				struct nvmet_fc_tgt_queue *queue)
658 {
659 	struct nvmet_fc_fcp_iod *fod = queue->fod;
660 	int i;
661 
662 	for (i = 0; i < queue->sqsize; fod++, i++) {
663 		if (fod->rspdma)
664 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
665 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
666 	}
667 }
668 
669 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)670 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
671 {
672 	struct nvmet_fc_fcp_iod *fod;
673 
674 	lockdep_assert_held(&queue->qlock);
675 
676 	fod = list_first_entry_or_null(&queue->fod_list,
677 					struct nvmet_fc_fcp_iod, fcp_list);
678 	if (fod) {
679 		list_del(&fod->fcp_list);
680 		fod->active = true;
681 		/*
682 		 * no queue reference is taken, as it was taken by the
683 		 * queue lookup just prior to the allocation. The iod
684 		 * will "inherit" that reference.
685 		 */
686 	}
687 	return fod;
688 }
689 
690 
691 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)692 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
693 		       struct nvmet_fc_tgt_queue *queue,
694 		       struct nvmefc_tgt_fcp_req *fcpreq)
695 {
696 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
697 
698 	/*
699 	 * put all admin cmds on hw queue id 0. All io commands go to
700 	 * the respective hw queue based on a modulo basis
701 	 */
702 	fcpreq->hwqid = queue->qid ?
703 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
704 
705 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
706 }
707 
708 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)709 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
710 {
711 	struct nvmet_fc_fcp_iod *fod =
712 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
713 
714 	/* Submit deferred IO for processing */
715 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
716 
717 }
718 
719 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)720 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
721 			struct nvmet_fc_fcp_iod *fod)
722 {
723 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
724 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
725 	struct nvmet_fc_defer_fcp_req *deferfcp;
726 	unsigned long flags;
727 
728 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
729 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
730 
731 	fcpreq->nvmet_fc_private = NULL;
732 
733 	fod->active = false;
734 	fod->abort = false;
735 	fod->aborted = false;
736 	fod->writedataactive = false;
737 	fod->fcpreq = NULL;
738 
739 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
740 
741 	/* release the queue lookup reference on the completed IO */
742 	nvmet_fc_tgt_q_put(queue);
743 
744 	spin_lock_irqsave(&queue->qlock, flags);
745 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746 				struct nvmet_fc_defer_fcp_req, req_list);
747 	if (!deferfcp) {
748 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
749 		spin_unlock_irqrestore(&queue->qlock, flags);
750 		return;
751 	}
752 
753 	/* Re-use the fod for the next pending cmd that was deferred */
754 	list_del(&deferfcp->req_list);
755 
756 	fcpreq = deferfcp->fcp_req;
757 
758 	/* deferfcp can be reused for another IO at a later date */
759 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
760 
761 	spin_unlock_irqrestore(&queue->qlock, flags);
762 
763 	/* Save NVME CMD IO in fod */
764 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
765 
766 	/* Setup new fcpreq to be processed */
767 	fcpreq->rspaddr = NULL;
768 	fcpreq->rsplen  = 0;
769 	fcpreq->nvmet_fc_private = fod;
770 	fod->fcpreq = fcpreq;
771 	fod->active = true;
772 
773 	/* inform LLDD IO is now being processed */
774 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
775 
776 	/*
777 	 * Leave the queue lookup get reference taken when
778 	 * fod was originally allocated.
779 	 */
780 
781 	queue_work(queue->work_q, &fod->defer_work);
782 }
783 
784 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)785 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
786 			u16 qid, u16 sqsize)
787 {
788 	struct nvmet_fc_tgt_queue *queue;
789 	int ret;
790 
791 	if (qid > NVMET_NR_QUEUES)
792 		return NULL;
793 
794 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
795 	if (!queue)
796 		return NULL;
797 
798 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
799 				assoc->tgtport->fc_target_port.port_num,
800 				assoc->a_id, qid);
801 	if (!queue->work_q)
802 		goto out_free_queue;
803 
804 	queue->qid = qid;
805 	queue->sqsize = sqsize;
806 	queue->assoc = assoc;
807 	INIT_LIST_HEAD(&queue->fod_list);
808 	INIT_LIST_HEAD(&queue->avail_defer_list);
809 	INIT_LIST_HEAD(&queue->pending_cmd_list);
810 	atomic_set(&queue->connected, 0);
811 	atomic_set(&queue->sqtail, 0);
812 	atomic_set(&queue->rsn, 1);
813 	atomic_set(&queue->zrspcnt, 0);
814 	spin_lock_init(&queue->qlock);
815 	kref_init(&queue->ref);
816 
817 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
818 
819 	ret = nvmet_sq_init(&queue->nvme_sq);
820 	if (ret)
821 		goto out_fail_iodlist;
822 
823 	WARN_ON(assoc->queues[qid]);
824 	assoc->queues[qid] = queue;
825 
826 	return queue;
827 
828 out_fail_iodlist:
829 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
830 	destroy_workqueue(queue->work_q);
831 out_free_queue:
832 	kfree(queue);
833 	return NULL;
834 }
835 
836 
837 static void
nvmet_fc_tgt_queue_free(struct kref * ref)838 nvmet_fc_tgt_queue_free(struct kref *ref)
839 {
840 	struct nvmet_fc_tgt_queue *queue =
841 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
842 
843 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
844 
845 	destroy_workqueue(queue->work_q);
846 
847 	kfree(queue);
848 }
849 
850 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)851 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
852 {
853 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
854 }
855 
856 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)857 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
858 {
859 	return kref_get_unless_zero(&queue->ref);
860 }
861 
862 
863 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)864 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
865 {
866 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
867 	struct nvmet_fc_fcp_iod *fod = queue->fod;
868 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
869 	unsigned long flags;
870 	int i;
871 	bool disconnect;
872 
873 	disconnect = atomic_xchg(&queue->connected, 0);
874 
875 	/* if not connected, nothing to do */
876 	if (!disconnect)
877 		return;
878 
879 	spin_lock_irqsave(&queue->qlock, flags);
880 	/* abort outstanding io's */
881 	for (i = 0; i < queue->sqsize; fod++, i++) {
882 		if (fod->active) {
883 			spin_lock(&fod->flock);
884 			fod->abort = true;
885 			/*
886 			 * only call lldd abort routine if waiting for
887 			 * writedata. other outstanding ops should finish
888 			 * on their own.
889 			 */
890 			if (fod->writedataactive) {
891 				fod->aborted = true;
892 				spin_unlock(&fod->flock);
893 				tgtport->ops->fcp_abort(
894 					&tgtport->fc_target_port, fod->fcpreq);
895 			} else
896 				spin_unlock(&fod->flock);
897 		}
898 	}
899 
900 	/* Cleanup defer'ed IOs in queue */
901 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
902 				req_list) {
903 		list_del(&deferfcp->req_list);
904 		kfree(deferfcp);
905 	}
906 
907 	for (;;) {
908 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
909 				struct nvmet_fc_defer_fcp_req, req_list);
910 		if (!deferfcp)
911 			break;
912 
913 		list_del(&deferfcp->req_list);
914 		spin_unlock_irqrestore(&queue->qlock, flags);
915 
916 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
917 				deferfcp->fcp_req);
918 
919 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
920 				deferfcp->fcp_req);
921 
922 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
923 				deferfcp->fcp_req);
924 
925 		/* release the queue lookup reference */
926 		nvmet_fc_tgt_q_put(queue);
927 
928 		kfree(deferfcp);
929 
930 		spin_lock_irqsave(&queue->qlock, flags);
931 	}
932 	spin_unlock_irqrestore(&queue->qlock, flags);
933 
934 	flush_workqueue(queue->work_q);
935 
936 	nvmet_sq_destroy(&queue->nvme_sq);
937 
938 	nvmet_fc_tgt_q_put(queue);
939 }
940 
941 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)942 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
943 				u64 connection_id)
944 {
945 	struct nvmet_fc_tgt_assoc *assoc;
946 	struct nvmet_fc_tgt_queue *queue;
947 	u64 association_id = nvmet_fc_getassociationid(connection_id);
948 	u16 qid = nvmet_fc_getqueueid(connection_id);
949 
950 	if (qid > NVMET_NR_QUEUES)
951 		return NULL;
952 
953 	rcu_read_lock();
954 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
955 		if (association_id == assoc->association_id) {
956 			queue = assoc->queues[qid];
957 			if (queue &&
958 			    (!atomic_read(&queue->connected) ||
959 			     !nvmet_fc_tgt_q_get(queue)))
960 				queue = NULL;
961 			rcu_read_unlock();
962 			return queue;
963 		}
964 	}
965 	rcu_read_unlock();
966 	return NULL;
967 }
968 
969 static void
nvmet_fc_hostport_free(struct kref * ref)970 nvmet_fc_hostport_free(struct kref *ref)
971 {
972 	struct nvmet_fc_hostport *hostport =
973 		container_of(ref, struct nvmet_fc_hostport, ref);
974 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
975 	unsigned long flags;
976 
977 	spin_lock_irqsave(&tgtport->lock, flags);
978 	list_del(&hostport->host_list);
979 	spin_unlock_irqrestore(&tgtport->lock, flags);
980 	if (tgtport->ops->host_release && hostport->invalid)
981 		tgtport->ops->host_release(hostport->hosthandle);
982 	kfree(hostport);
983 	nvmet_fc_tgtport_put(tgtport);
984 }
985 
986 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)987 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
988 {
989 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
990 }
991 
992 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)993 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
994 {
995 	return kref_get_unless_zero(&hostport->ref);
996 }
997 
998 static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport * hostport)999 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1000 {
1001 	/* if LLDD not implemented, leave as NULL */
1002 	if (!hostport || !hostport->hosthandle)
1003 		return;
1004 
1005 	nvmet_fc_hostport_put(hostport);
1006 }
1007 
1008 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1009 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1010 {
1011 	struct nvmet_fc_hostport *host;
1012 
1013 	lockdep_assert_held(&tgtport->lock);
1014 
1015 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1016 		if (host->hosthandle == hosthandle && !host->invalid) {
1017 			if (nvmet_fc_hostport_get(host))
1018 				return host;
1019 		}
1020 	}
1021 
1022 	return NULL;
1023 }
1024 
1025 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1026 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1027 {
1028 	struct nvmet_fc_hostport *newhost, *match = NULL;
1029 	unsigned long flags;
1030 
1031 	/* if LLDD not implemented, leave as NULL */
1032 	if (!hosthandle)
1033 		return NULL;
1034 
1035 	/*
1036 	 * take reference for what will be the newly allocated hostport if
1037 	 * we end up using a new allocation
1038 	 */
1039 	if (!nvmet_fc_tgtport_get(tgtport))
1040 		return ERR_PTR(-EINVAL);
1041 
1042 	spin_lock_irqsave(&tgtport->lock, flags);
1043 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1044 	spin_unlock_irqrestore(&tgtport->lock, flags);
1045 
1046 	if (match) {
1047 		/* no new allocation - release reference */
1048 		nvmet_fc_tgtport_put(tgtport);
1049 		return match;
1050 	}
1051 
1052 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1053 	if (!newhost) {
1054 		/* no new allocation - release reference */
1055 		nvmet_fc_tgtport_put(tgtport);
1056 		return ERR_PTR(-ENOMEM);
1057 	}
1058 
1059 	spin_lock_irqsave(&tgtport->lock, flags);
1060 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1061 	if (match) {
1062 		/* new allocation not needed */
1063 		kfree(newhost);
1064 		newhost = match;
1065 	} else {
1066 		newhost->tgtport = tgtport;
1067 		newhost->hosthandle = hosthandle;
1068 		INIT_LIST_HEAD(&newhost->host_list);
1069 		kref_init(&newhost->ref);
1070 
1071 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1072 	}
1073 	spin_unlock_irqrestore(&tgtport->lock, flags);
1074 
1075 	return newhost;
1076 }
1077 
1078 static void
nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1079 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1080 {
1081 	nvmet_fc_delete_target_assoc(assoc);
1082 	nvmet_fc_tgt_a_put(assoc);
1083 }
1084 
1085 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1086 nvmet_fc_delete_assoc_work(struct work_struct *work)
1087 {
1088 	struct nvmet_fc_tgt_assoc *assoc =
1089 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1090 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1091 
1092 	nvmet_fc_delete_assoc(assoc);
1093 	nvmet_fc_tgtport_put(tgtport);
1094 }
1095 
1096 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1097 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1098 {
1099 	nvmet_fc_tgtport_get(assoc->tgtport);
1100 	queue_work(nvmet_wq, &assoc->del_work);
1101 }
1102 
1103 static bool
nvmet_fc_assoc_exists(struct nvmet_fc_tgtport * tgtport,u64 association_id)1104 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1105 {
1106 	struct nvmet_fc_tgt_assoc *a;
1107 	bool found = false;
1108 
1109 	rcu_read_lock();
1110 	list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1111 		if (association_id == a->association_id) {
1112 			found = true;
1113 			break;
1114 		}
1115 	}
1116 	rcu_read_unlock();
1117 
1118 	return found;
1119 }
1120 
1121 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1122 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1123 {
1124 	struct nvmet_fc_tgt_assoc *assoc;
1125 	unsigned long flags;
1126 	bool done;
1127 	u64 ran;
1128 	int idx;
1129 
1130 	if (!tgtport->pe)
1131 		return NULL;
1132 
1133 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1134 	if (!assoc)
1135 		return NULL;
1136 
1137 	idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1138 	if (idx < 0)
1139 		goto out_free_assoc;
1140 
1141 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1142 	if (IS_ERR(assoc->hostport))
1143 		goto out_ida;
1144 
1145 	assoc->tgtport = tgtport;
1146 	assoc->a_id = idx;
1147 	INIT_LIST_HEAD(&assoc->a_list);
1148 	kref_init(&assoc->ref);
1149 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1150 	atomic_set(&assoc->terminating, 0);
1151 
1152 	done = false;
1153 	do {
1154 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1155 		ran = ran << BYTES_FOR_QID_SHIFT;
1156 
1157 		spin_lock_irqsave(&tgtport->lock, flags);
1158 		if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1159 			assoc->association_id = ran;
1160 			list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1161 			done = true;
1162 		}
1163 		spin_unlock_irqrestore(&tgtport->lock, flags);
1164 	} while (!done);
1165 
1166 	return assoc;
1167 
1168 out_ida:
1169 	ida_free(&tgtport->assoc_cnt, idx);
1170 out_free_assoc:
1171 	kfree(assoc);
1172 	return NULL;
1173 }
1174 
1175 static void
nvmet_fc_target_assoc_free(struct kref * ref)1176 nvmet_fc_target_assoc_free(struct kref *ref)
1177 {
1178 	struct nvmet_fc_tgt_assoc *assoc =
1179 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1180 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1181 	struct nvmet_fc_ls_iod	*oldls;
1182 	unsigned long flags;
1183 	int i;
1184 
1185 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1186 		if (assoc->queues[i])
1187 			nvmet_fc_delete_target_queue(assoc->queues[i]);
1188 	}
1189 
1190 	/* Send Disconnect now that all i/o has completed */
1191 	nvmet_fc_xmt_disconnect_assoc(assoc);
1192 
1193 	nvmet_fc_free_hostport(assoc->hostport);
1194 	spin_lock_irqsave(&tgtport->lock, flags);
1195 	oldls = assoc->rcv_disconn;
1196 	spin_unlock_irqrestore(&tgtport->lock, flags);
1197 	/* if pending Rcv Disconnect Association LS, send rsp now */
1198 	if (oldls)
1199 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1200 	ida_free(&tgtport->assoc_cnt, assoc->a_id);
1201 	dev_info(tgtport->dev,
1202 		"{%d:%d} Association freed\n",
1203 		tgtport->fc_target_port.port_num, assoc->a_id);
1204 	kfree(assoc);
1205 }
1206 
1207 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1208 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1209 {
1210 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1211 }
1212 
1213 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1214 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1215 {
1216 	return kref_get_unless_zero(&assoc->ref);
1217 }
1218 
1219 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1220 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1221 {
1222 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1223 	unsigned long flags;
1224 	int i, terminating;
1225 
1226 	terminating = atomic_xchg(&assoc->terminating, 1);
1227 
1228 	/* if already terminating, do nothing */
1229 	if (terminating)
1230 		return;
1231 
1232 	spin_lock_irqsave(&tgtport->lock, flags);
1233 	list_del_rcu(&assoc->a_list);
1234 	spin_unlock_irqrestore(&tgtport->lock, flags);
1235 
1236 	synchronize_rcu();
1237 
1238 	/* ensure all in-flight I/Os have been processed */
1239 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1240 		if (assoc->queues[i])
1241 			flush_workqueue(assoc->queues[i]->work_q);
1242 	}
1243 
1244 	dev_info(tgtport->dev,
1245 		"{%d:%d} Association deleted\n",
1246 		tgtport->fc_target_port.port_num, assoc->a_id);
1247 }
1248 
1249 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1250 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1251 				u64 association_id)
1252 {
1253 	struct nvmet_fc_tgt_assoc *assoc;
1254 	struct nvmet_fc_tgt_assoc *ret = NULL;
1255 
1256 	rcu_read_lock();
1257 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1258 		if (association_id == assoc->association_id) {
1259 			ret = assoc;
1260 			if (!nvmet_fc_tgt_a_get(assoc))
1261 				ret = NULL;
1262 			break;
1263 		}
1264 	}
1265 	rcu_read_unlock();
1266 
1267 	return ret;
1268 }
1269 
1270 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1271 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1272 			struct nvmet_fc_port_entry *pe,
1273 			struct nvmet_port *port)
1274 {
1275 	lockdep_assert_held(&nvmet_fc_tgtlock);
1276 
1277 	pe->tgtport = tgtport;
1278 	tgtport->pe = pe;
1279 
1280 	pe->port = port;
1281 	port->priv = pe;
1282 
1283 	pe->node_name = tgtport->fc_target_port.node_name;
1284 	pe->port_name = tgtport->fc_target_port.port_name;
1285 	INIT_LIST_HEAD(&pe->pe_list);
1286 
1287 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1288 }
1289 
1290 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1291 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1292 {
1293 	unsigned long flags;
1294 
1295 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1296 	if (pe->tgtport)
1297 		pe->tgtport->pe = NULL;
1298 	list_del(&pe->pe_list);
1299 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1300 }
1301 
1302 /*
1303  * called when a targetport deregisters. Breaks the relationship
1304  * with the nvmet port, but leaves the port_entry in place so that
1305  * re-registration can resume operation.
1306  */
1307 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1308 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1309 {
1310 	struct nvmet_fc_port_entry *pe;
1311 	unsigned long flags;
1312 
1313 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1314 	pe = tgtport->pe;
1315 	if (pe)
1316 		pe->tgtport = NULL;
1317 	tgtport->pe = NULL;
1318 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1319 }
1320 
1321 /*
1322  * called when a new targetport is registered. Looks in the
1323  * existing nvmet port_entries to see if the nvmet layer is
1324  * configured for the targetport's wwn's. (the targetport existed,
1325  * nvmet configured, the lldd unregistered the tgtport, and is now
1326  * reregistering the same targetport).  If so, set the nvmet port
1327  * port entry on the targetport.
1328  */
1329 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1330 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1331 {
1332 	struct nvmet_fc_port_entry *pe;
1333 	unsigned long flags;
1334 
1335 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1336 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1337 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1338 		    tgtport->fc_target_port.port_name == pe->port_name) {
1339 			WARN_ON(pe->tgtport);
1340 			tgtport->pe = pe;
1341 			pe->tgtport = tgtport;
1342 			break;
1343 		}
1344 	}
1345 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1346 }
1347 
1348 /**
1349  * nvmet_fc_register_targetport - transport entry point called by an
1350  *                              LLDD to register the existence of a local
1351  *                              NVME subystem FC port.
1352  * @pinfo:     pointer to information about the port to be registered
1353  * @template:  LLDD entrypoints and operational parameters for the port
1354  * @dev:       physical hardware device node port corresponds to. Will be
1355  *             used for DMA mappings
1356  * @portptr:   pointer to a local port pointer. Upon success, the routine
1357  *             will allocate a nvme_fc_local_port structure and place its
1358  *             address in the local port pointer. Upon failure, local port
1359  *             pointer will be set to NULL.
1360  *
1361  * Returns:
1362  * a completion status. Must be 0 upon success; a negative errno
1363  * (ex: -ENXIO) upon failure.
1364  */
1365 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1366 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1367 			struct nvmet_fc_target_template *template,
1368 			struct device *dev,
1369 			struct nvmet_fc_target_port **portptr)
1370 {
1371 	struct nvmet_fc_tgtport *newrec;
1372 	unsigned long flags;
1373 	int ret, idx;
1374 
1375 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1376 	    !template->fcp_abort ||
1377 	    !template->fcp_req_release || !template->targetport_delete ||
1378 	    !template->max_hw_queues || !template->max_sgl_segments ||
1379 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1380 		ret = -EINVAL;
1381 		goto out_regtgt_failed;
1382 	}
1383 
1384 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1385 			 GFP_KERNEL);
1386 	if (!newrec) {
1387 		ret = -ENOMEM;
1388 		goto out_regtgt_failed;
1389 	}
1390 
1391 	idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1392 	if (idx < 0) {
1393 		ret = -ENOSPC;
1394 		goto out_fail_kfree;
1395 	}
1396 
1397 	if (!get_device(dev) && dev) {
1398 		ret = -ENODEV;
1399 		goto out_ida_put;
1400 	}
1401 
1402 	newrec->fc_target_port.node_name = pinfo->node_name;
1403 	newrec->fc_target_port.port_name = pinfo->port_name;
1404 	if (template->target_priv_sz)
1405 		newrec->fc_target_port.private = &newrec[1];
1406 	else
1407 		newrec->fc_target_port.private = NULL;
1408 	newrec->fc_target_port.port_id = pinfo->port_id;
1409 	newrec->fc_target_port.port_num = idx;
1410 	INIT_LIST_HEAD(&newrec->tgt_list);
1411 	newrec->dev = dev;
1412 	newrec->ops = template;
1413 	spin_lock_init(&newrec->lock);
1414 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1415 	INIT_LIST_HEAD(&newrec->ls_req_list);
1416 	INIT_LIST_HEAD(&newrec->ls_busylist);
1417 	INIT_LIST_HEAD(&newrec->assoc_list);
1418 	INIT_LIST_HEAD(&newrec->host_list);
1419 	kref_init(&newrec->ref);
1420 	ida_init(&newrec->assoc_cnt);
1421 	newrec->max_sg_cnt = template->max_sgl_segments;
1422 	INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1423 
1424 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1425 	if (ret) {
1426 		ret = -ENOMEM;
1427 		goto out_free_newrec;
1428 	}
1429 
1430 	nvmet_fc_portentry_rebind_tgt(newrec);
1431 
1432 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1433 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1434 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1435 
1436 	*portptr = &newrec->fc_target_port;
1437 	return 0;
1438 
1439 out_free_newrec:
1440 	put_device(dev);
1441 out_ida_put:
1442 	ida_free(&nvmet_fc_tgtport_cnt, idx);
1443 out_fail_kfree:
1444 	kfree(newrec);
1445 out_regtgt_failed:
1446 	*portptr = NULL;
1447 	return ret;
1448 }
1449 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1450 
1451 
1452 static void
nvmet_fc_free_tgtport(struct kref * ref)1453 nvmet_fc_free_tgtport(struct kref *ref)
1454 {
1455 	struct nvmet_fc_tgtport *tgtport =
1456 		container_of(ref, struct nvmet_fc_tgtport, ref);
1457 	struct device *dev = tgtport->dev;
1458 	unsigned long flags;
1459 
1460 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1461 	list_del(&tgtport->tgt_list);
1462 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1463 
1464 	nvmet_fc_free_ls_iodlist(tgtport);
1465 
1466 	/* let the LLDD know we've finished tearing it down */
1467 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1468 
1469 	ida_free(&nvmet_fc_tgtport_cnt,
1470 			tgtport->fc_target_port.port_num);
1471 
1472 	ida_destroy(&tgtport->assoc_cnt);
1473 
1474 	kfree(tgtport);
1475 
1476 	put_device(dev);
1477 }
1478 
1479 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1480 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1481 {
1482 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1483 }
1484 
1485 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1486 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1487 {
1488 	return kref_get_unless_zero(&tgtport->ref);
1489 }
1490 
1491 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1492 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1493 {
1494 	struct nvmet_fc_tgt_assoc *assoc;
1495 
1496 	rcu_read_lock();
1497 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1498 		if (!nvmet_fc_tgt_a_get(assoc))
1499 			continue;
1500 		nvmet_fc_schedule_delete_assoc(assoc);
1501 		nvmet_fc_tgt_a_put(assoc);
1502 	}
1503 	rcu_read_unlock();
1504 }
1505 
1506 /**
1507  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1508  *                       to remove references to a hosthandle for LS's.
1509  *
1510  * The nvmet-fc layer ensures that any references to the hosthandle
1511  * on the targetport are forgotten (set to NULL).  The LLDD will
1512  * typically call this when a login with a remote host port has been
1513  * lost, thus LS's for the remote host port are no longer possible.
1514  *
1515  * If an LS request is outstanding to the targetport/hosthandle (or
1516  * issued concurrently with the call to invalidate the host), the
1517  * LLDD is responsible for terminating/aborting the LS and completing
1518  * the LS request. It is recommended that these terminations/aborts
1519  * occur after calling to invalidate the host handle to avoid additional
1520  * retries by the nvmet-fc transport. The nvmet-fc transport may
1521  * continue to reference host handle while it cleans up outstanding
1522  * NVME associations. The nvmet-fc transport will call the
1523  * ops->host_release() callback to notify the LLDD that all references
1524  * are complete and the related host handle can be recovered.
1525  * Note: if there are no references, the callback may be called before
1526  * the invalidate host call returns.
1527  *
1528  * @target_port: pointer to the (registered) target port that a prior
1529  *              LS was received on and which supplied the transport the
1530  *              hosthandle.
1531  * @hosthandle: the handle (pointer) that represents the host port
1532  *              that no longer has connectivity and that LS's should
1533  *              no longer be directed to.
1534  */
1535 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1536 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1537 			void *hosthandle)
1538 {
1539 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1540 	struct nvmet_fc_tgt_assoc *assoc, *next;
1541 	unsigned long flags;
1542 	bool noassoc = true;
1543 
1544 	spin_lock_irqsave(&tgtport->lock, flags);
1545 	list_for_each_entry_safe(assoc, next,
1546 				&tgtport->assoc_list, a_list) {
1547 		if (assoc->hostport->hosthandle != hosthandle)
1548 			continue;
1549 		if (!nvmet_fc_tgt_a_get(assoc))
1550 			continue;
1551 		assoc->hostport->invalid = 1;
1552 		noassoc = false;
1553 		nvmet_fc_schedule_delete_assoc(assoc);
1554 		nvmet_fc_tgt_a_put(assoc);
1555 	}
1556 	spin_unlock_irqrestore(&tgtport->lock, flags);
1557 
1558 	/* if there's nothing to wait for - call the callback */
1559 	if (noassoc && tgtport->ops->host_release)
1560 		tgtport->ops->host_release(hosthandle);
1561 }
1562 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1563 
1564 /*
1565  * nvmet layer has called to terminate an association
1566  */
1567 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1568 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1569 {
1570 	struct nvmet_fc_tgtport *tgtport, *next;
1571 	struct nvmet_fc_tgt_assoc *assoc;
1572 	struct nvmet_fc_tgt_queue *queue;
1573 	unsigned long flags;
1574 	bool found_ctrl = false;
1575 
1576 	/* this is a bit ugly, but don't want to make locks layered */
1577 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1578 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1579 			tgt_list) {
1580 		if (!nvmet_fc_tgtport_get(tgtport))
1581 			continue;
1582 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1583 
1584 		rcu_read_lock();
1585 		list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1586 			queue = assoc->queues[0];
1587 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1588 				if (nvmet_fc_tgt_a_get(assoc))
1589 					found_ctrl = true;
1590 				break;
1591 			}
1592 		}
1593 		rcu_read_unlock();
1594 
1595 		nvmet_fc_tgtport_put(tgtport);
1596 
1597 		if (found_ctrl) {
1598 			nvmet_fc_schedule_delete_assoc(assoc);
1599 			nvmet_fc_tgt_a_put(assoc);
1600 			return;
1601 		}
1602 
1603 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1604 	}
1605 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1606 }
1607 
1608 /**
1609  * nvmet_fc_unregister_targetport - transport entry point called by an
1610  *                              LLDD to deregister/remove a previously
1611  *                              registered a local NVME subsystem FC port.
1612  * @target_port: pointer to the (registered) target port that is to be
1613  *               deregistered.
1614  *
1615  * Returns:
1616  * a completion status. Must be 0 upon success; a negative errno
1617  * (ex: -ENXIO) upon failure.
1618  */
1619 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1620 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1621 {
1622 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1623 
1624 	nvmet_fc_portentry_unbind_tgt(tgtport);
1625 
1626 	/* terminate any outstanding associations */
1627 	__nvmet_fc_free_assocs(tgtport);
1628 
1629 	flush_workqueue(nvmet_wq);
1630 
1631 	/*
1632 	 * should terminate LS's as well. However, LS's will be generated
1633 	 * at the tail end of association termination, so they likely don't
1634 	 * exist yet. And even if they did, it's worthwhile to just let
1635 	 * them finish and targetport ref counting will clean things up.
1636 	 */
1637 
1638 	nvmet_fc_tgtport_put(tgtport);
1639 
1640 	return 0;
1641 }
1642 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1643 
1644 
1645 /* ********************** FC-NVME LS RCV Handling ************************* */
1646 
1647 
1648 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1649 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1650 			struct nvmet_fc_ls_iod *iod)
1651 {
1652 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1653 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1654 	struct nvmet_fc_tgt_queue *queue;
1655 	int ret = 0;
1656 
1657 	memset(acc, 0, sizeof(*acc));
1658 
1659 	/*
1660 	 * FC-NVME spec changes. There are initiators sending different
1661 	 * lengths as padding sizes for Create Association Cmd descriptor
1662 	 * was incorrect.
1663 	 * Accept anything of "minimum" length. Assume format per 1.15
1664 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1665 	 * trailing pad length is.
1666 	 */
1667 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1668 		ret = VERR_CR_ASSOC_LEN;
1669 	else if (be32_to_cpu(rqst->desc_list_len) <
1670 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1671 		ret = VERR_CR_ASSOC_RQST_LEN;
1672 	else if (rqst->assoc_cmd.desc_tag !=
1673 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1674 		ret = VERR_CR_ASSOC_CMD;
1675 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1676 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1677 		ret = VERR_CR_ASSOC_CMD_LEN;
1678 	else if (!rqst->assoc_cmd.ersp_ratio ||
1679 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1680 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1681 		ret = VERR_ERSP_RATIO;
1682 
1683 	else {
1684 		/* new association w/ admin queue */
1685 		iod->assoc = nvmet_fc_alloc_target_assoc(
1686 						tgtport, iod->hosthandle);
1687 		if (!iod->assoc)
1688 			ret = VERR_ASSOC_ALLOC_FAIL;
1689 		else {
1690 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1691 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1692 			if (!queue) {
1693 				ret = VERR_QUEUE_ALLOC_FAIL;
1694 				nvmet_fc_tgt_a_put(iod->assoc);
1695 			}
1696 		}
1697 	}
1698 
1699 	if (ret) {
1700 		dev_err(tgtport->dev,
1701 			"Create Association LS failed: %s\n",
1702 			validation_errors[ret]);
1703 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1704 				sizeof(*acc), rqst->w0.ls_cmd,
1705 				FCNVME_RJT_RC_LOGIC,
1706 				FCNVME_RJT_EXP_NONE, 0);
1707 		return;
1708 	}
1709 
1710 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1711 	atomic_set(&queue->connected, 1);
1712 	queue->sqhd = 0;	/* best place to init value */
1713 
1714 	dev_info(tgtport->dev,
1715 		"{%d:%d} Association created\n",
1716 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1717 
1718 	/* format a response */
1719 
1720 	iod->lsrsp->rsplen = sizeof(*acc);
1721 
1722 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1723 			fcnvme_lsdesc_len(
1724 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1725 			FCNVME_LS_CREATE_ASSOCIATION);
1726 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1727 	acc->associd.desc_len =
1728 			fcnvme_lsdesc_len(
1729 				sizeof(struct fcnvme_lsdesc_assoc_id));
1730 	acc->associd.association_id =
1731 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1732 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1733 	acc->connectid.desc_len =
1734 			fcnvme_lsdesc_len(
1735 				sizeof(struct fcnvme_lsdesc_conn_id));
1736 	acc->connectid.connection_id = acc->associd.association_id;
1737 }
1738 
1739 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1740 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1741 			struct nvmet_fc_ls_iod *iod)
1742 {
1743 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1744 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1745 	struct nvmet_fc_tgt_queue *queue;
1746 	int ret = 0;
1747 
1748 	memset(acc, 0, sizeof(*acc));
1749 
1750 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1751 		ret = VERR_CR_CONN_LEN;
1752 	else if (rqst->desc_list_len !=
1753 			fcnvme_lsdesc_len(
1754 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1755 		ret = VERR_CR_CONN_RQST_LEN;
1756 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1757 		ret = VERR_ASSOC_ID;
1758 	else if (rqst->associd.desc_len !=
1759 			fcnvme_lsdesc_len(
1760 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1761 		ret = VERR_ASSOC_ID_LEN;
1762 	else if (rqst->connect_cmd.desc_tag !=
1763 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1764 		ret = VERR_CR_CONN_CMD;
1765 	else if (rqst->connect_cmd.desc_len !=
1766 			fcnvme_lsdesc_len(
1767 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1768 		ret = VERR_CR_CONN_CMD_LEN;
1769 	else if (!rqst->connect_cmd.ersp_ratio ||
1770 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1771 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1772 		ret = VERR_ERSP_RATIO;
1773 
1774 	else {
1775 		/* new io queue */
1776 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1777 				be64_to_cpu(rqst->associd.association_id));
1778 		if (!iod->assoc)
1779 			ret = VERR_NO_ASSOC;
1780 		else {
1781 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1782 					be16_to_cpu(rqst->connect_cmd.qid),
1783 					be16_to_cpu(rqst->connect_cmd.sqsize));
1784 			if (!queue)
1785 				ret = VERR_QUEUE_ALLOC_FAIL;
1786 
1787 			/* release get taken in nvmet_fc_find_target_assoc */
1788 			nvmet_fc_tgt_a_put(iod->assoc);
1789 		}
1790 	}
1791 
1792 	if (ret) {
1793 		dev_err(tgtport->dev,
1794 			"Create Connection LS failed: %s\n",
1795 			validation_errors[ret]);
1796 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1797 				sizeof(*acc), rqst->w0.ls_cmd,
1798 				(ret == VERR_NO_ASSOC) ?
1799 					FCNVME_RJT_RC_INV_ASSOC :
1800 					FCNVME_RJT_RC_LOGIC,
1801 				FCNVME_RJT_EXP_NONE, 0);
1802 		return;
1803 	}
1804 
1805 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1806 	atomic_set(&queue->connected, 1);
1807 	queue->sqhd = 0;	/* best place to init value */
1808 
1809 	/* format a response */
1810 
1811 	iod->lsrsp->rsplen = sizeof(*acc);
1812 
1813 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1814 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1815 			FCNVME_LS_CREATE_CONNECTION);
1816 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1817 	acc->connectid.desc_len =
1818 			fcnvme_lsdesc_len(
1819 				sizeof(struct fcnvme_lsdesc_conn_id));
1820 	acc->connectid.connection_id =
1821 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1822 				be16_to_cpu(rqst->connect_cmd.qid)));
1823 }
1824 
1825 /*
1826  * Returns true if the LS response is to be transmit
1827  * Returns false if the LS response is to be delayed
1828  */
1829 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1830 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1831 			struct nvmet_fc_ls_iod *iod)
1832 {
1833 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1834 						&iod->rqstbuf->rq_dis_assoc;
1835 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1836 						&iod->rspbuf->rsp_dis_assoc;
1837 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1838 	struct nvmet_fc_ls_iod *oldls = NULL;
1839 	unsigned long flags;
1840 	int ret = 0;
1841 
1842 	memset(acc, 0, sizeof(*acc));
1843 
1844 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1845 	if (!ret) {
1846 		/* match an active association - takes an assoc ref if !NULL */
1847 		assoc = nvmet_fc_find_target_assoc(tgtport,
1848 				be64_to_cpu(rqst->associd.association_id));
1849 		iod->assoc = assoc;
1850 		if (!assoc)
1851 			ret = VERR_NO_ASSOC;
1852 	}
1853 
1854 	if (ret || !assoc) {
1855 		dev_err(tgtport->dev,
1856 			"Disconnect LS failed: %s\n",
1857 			validation_errors[ret]);
1858 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1859 				sizeof(*acc), rqst->w0.ls_cmd,
1860 				(ret == VERR_NO_ASSOC) ?
1861 					FCNVME_RJT_RC_INV_ASSOC :
1862 					FCNVME_RJT_RC_LOGIC,
1863 				FCNVME_RJT_EXP_NONE, 0);
1864 		return true;
1865 	}
1866 
1867 	/* format a response */
1868 
1869 	iod->lsrsp->rsplen = sizeof(*acc);
1870 
1871 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1872 			fcnvme_lsdesc_len(
1873 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1874 			FCNVME_LS_DISCONNECT_ASSOC);
1875 
1876 	/*
1877 	 * The rules for LS response says the response cannot
1878 	 * go back until ABTS's have been sent for all outstanding
1879 	 * I/O and a Disconnect Association LS has been sent.
1880 	 * So... save off the Disconnect LS to send the response
1881 	 * later. If there was a prior LS already saved, replace
1882 	 * it with the newer one and send a can't perform reject
1883 	 * on the older one.
1884 	 */
1885 	spin_lock_irqsave(&tgtport->lock, flags);
1886 	oldls = assoc->rcv_disconn;
1887 	assoc->rcv_disconn = iod;
1888 	spin_unlock_irqrestore(&tgtport->lock, flags);
1889 
1890 	if (oldls) {
1891 		dev_info(tgtport->dev,
1892 			"{%d:%d} Multiple Disconnect Association LS's "
1893 			"received\n",
1894 			tgtport->fc_target_port.port_num, assoc->a_id);
1895 		/* overwrite good response with bogus failure */
1896 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1897 						sizeof(*iod->rspbuf),
1898 						/* ok to use rqst, LS is same */
1899 						rqst->w0.ls_cmd,
1900 						FCNVME_RJT_RC_UNAB,
1901 						FCNVME_RJT_EXP_NONE, 0);
1902 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1903 	}
1904 
1905 	nvmet_fc_schedule_delete_assoc(assoc);
1906 	nvmet_fc_tgt_a_put(assoc);
1907 
1908 	return false;
1909 }
1910 
1911 
1912 /* *********************** NVME Ctrl Routines **************************** */
1913 
1914 
1915 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1916 
1917 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1918 
1919 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1920 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1921 {
1922 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1923 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1924 
1925 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1926 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1927 	nvmet_fc_free_ls_iod(tgtport, iod);
1928 	nvmet_fc_tgtport_put(tgtport);
1929 }
1930 
1931 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1932 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1933 				struct nvmet_fc_ls_iod *iod)
1934 {
1935 	int ret;
1936 
1937 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1938 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1939 
1940 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1941 	if (ret)
1942 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1943 }
1944 
1945 /*
1946  * Actual processing routine for received FC-NVME LS Requests from the LLD
1947  */
1948 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1949 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1950 			struct nvmet_fc_ls_iod *iod)
1951 {
1952 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1953 	bool sendrsp = true;
1954 
1955 	iod->lsrsp->nvme_fc_private = iod;
1956 	iod->lsrsp->rspbuf = iod->rspbuf;
1957 	iod->lsrsp->rspdma = iod->rspdma;
1958 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1959 	/* Be preventative. handlers will later set to valid length */
1960 	iod->lsrsp->rsplen = 0;
1961 
1962 	iod->assoc = NULL;
1963 
1964 	/*
1965 	 * handlers:
1966 	 *   parse request input, execute the request, and format the
1967 	 *   LS response
1968 	 */
1969 	switch (w0->ls_cmd) {
1970 	case FCNVME_LS_CREATE_ASSOCIATION:
1971 		/* Creates Association and initial Admin Queue/Connection */
1972 		nvmet_fc_ls_create_association(tgtport, iod);
1973 		break;
1974 	case FCNVME_LS_CREATE_CONNECTION:
1975 		/* Creates an IO Queue/Connection */
1976 		nvmet_fc_ls_create_connection(tgtport, iod);
1977 		break;
1978 	case FCNVME_LS_DISCONNECT_ASSOC:
1979 		/* Terminate a Queue/Connection or the Association */
1980 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1981 		break;
1982 	default:
1983 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1984 				sizeof(*iod->rspbuf), w0->ls_cmd,
1985 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1986 	}
1987 
1988 	if (sendrsp)
1989 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
1990 }
1991 
1992 /*
1993  * Actual processing routine for received FC-NVME LS Requests from the LLD
1994  */
1995 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)1996 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1997 {
1998 	struct nvmet_fc_ls_iod *iod =
1999 		container_of(work, struct nvmet_fc_ls_iod, work);
2000 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2001 
2002 	nvmet_fc_handle_ls_rqst(tgtport, iod);
2003 }
2004 
2005 
2006 /**
2007  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2008  *                       upon the reception of a NVME LS request.
2009  *
2010  * The nvmet-fc layer will copy payload to an internal structure for
2011  * processing.  As such, upon completion of the routine, the LLDD may
2012  * immediately free/reuse the LS request buffer passed in the call.
2013  *
2014  * If this routine returns error, the LLDD should abort the exchange.
2015  *
2016  * @target_port: pointer to the (registered) target port the LS was
2017  *              received on.
2018  * @hosthandle: pointer to the host specific data, gets stored in iod.
2019  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2020  *              the exchange corresponding to the LS.
2021  * @lsreqbuf:   pointer to the buffer containing the LS Request
2022  * @lsreqbuf_len: length, in bytes, of the received LS request
2023  */
2024 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2025 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2026 			void *hosthandle,
2027 			struct nvmefc_ls_rsp *lsrsp,
2028 			void *lsreqbuf, u32 lsreqbuf_len)
2029 {
2030 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2031 	struct nvmet_fc_ls_iod *iod;
2032 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2033 
2034 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2035 		dev_info(tgtport->dev,
2036 			"RCV %s LS failed: payload too large (%d)\n",
2037 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2038 				nvmefc_ls_names[w0->ls_cmd] : "",
2039 			lsreqbuf_len);
2040 		return -E2BIG;
2041 	}
2042 
2043 	if (!nvmet_fc_tgtport_get(tgtport)) {
2044 		dev_info(tgtport->dev,
2045 			"RCV %s LS failed: target deleting\n",
2046 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2047 				nvmefc_ls_names[w0->ls_cmd] : "");
2048 		return -ESHUTDOWN;
2049 	}
2050 
2051 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2052 	if (!iod) {
2053 		dev_info(tgtport->dev,
2054 			"RCV %s LS failed: context allocation failed\n",
2055 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2056 				nvmefc_ls_names[w0->ls_cmd] : "");
2057 		nvmet_fc_tgtport_put(tgtport);
2058 		return -ENOENT;
2059 	}
2060 
2061 	iod->lsrsp = lsrsp;
2062 	iod->fcpreq = NULL;
2063 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2064 	iod->rqstdatalen = lsreqbuf_len;
2065 	iod->hosthandle = hosthandle;
2066 
2067 	queue_work(nvmet_wq, &iod->work);
2068 
2069 	return 0;
2070 }
2071 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2072 
2073 
2074 /*
2075  * **********************
2076  * Start of FCP handling
2077  * **********************
2078  */
2079 
2080 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2081 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2082 {
2083 	struct scatterlist *sg;
2084 	unsigned int nent;
2085 
2086 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2087 	if (!sg)
2088 		goto out;
2089 
2090 	fod->data_sg = sg;
2091 	fod->data_sg_cnt = nent;
2092 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2093 				((fod->io_dir == NVMET_FCP_WRITE) ?
2094 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2095 				/* note: write from initiator perspective */
2096 	fod->next_sg = fod->data_sg;
2097 
2098 	return 0;
2099 
2100 out:
2101 	return NVME_SC_INTERNAL;
2102 }
2103 
2104 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2105 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2106 {
2107 	if (!fod->data_sg || !fod->data_sg_cnt)
2108 		return;
2109 
2110 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2111 				((fod->io_dir == NVMET_FCP_WRITE) ?
2112 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2113 	sgl_free(fod->data_sg);
2114 	fod->data_sg = NULL;
2115 	fod->data_sg_cnt = 0;
2116 }
2117 
2118 
2119 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2120 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2121 {
2122 	u32 sqtail, used;
2123 
2124 	/* egad, this is ugly. And sqtail is just a best guess */
2125 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2126 
2127 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2128 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2129 }
2130 
2131 /*
2132  * Prep RSP payload.
2133  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2134  */
2135 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2136 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2137 				struct nvmet_fc_fcp_iod *fod)
2138 {
2139 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2140 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2141 	struct nvme_completion *cqe = &ersp->cqe;
2142 	u32 *cqewd = (u32 *)cqe;
2143 	bool send_ersp = false;
2144 	u32 rsn, rspcnt, xfr_length;
2145 
2146 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2147 		xfr_length = fod->req.transfer_len;
2148 	else
2149 		xfr_length = fod->offset;
2150 
2151 	/*
2152 	 * check to see if we can send a 0's rsp.
2153 	 *   Note: to send a 0's response, the NVME-FC host transport will
2154 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2155 	 *   seen in an ersp), and command_id. Thus it will create a
2156 	 *   zero-filled CQE with those known fields filled in. Transport
2157 	 *   must send an ersp for any condition where the cqe won't match
2158 	 *   this.
2159 	 *
2160 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2161 	 *  every N responses, where N=ersp_ratio
2162 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2163 	 *    practice)
2164 	 *  normal cmds: any time status is non-zero, or status is zero
2165 	 *     but words 0 or 1 are non-zero.
2166 	 *  the SQ is 90% or more full
2167 	 *  the cmd is a fused command
2168 	 *  transferred data length not equal to cmd iu length
2169 	 */
2170 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2171 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2172 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2173 	    xfr_length != fod->req.transfer_len ||
2174 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2175 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2176 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2177 		send_ersp = true;
2178 
2179 	/* re-set the fields */
2180 	fod->fcpreq->rspaddr = ersp;
2181 	fod->fcpreq->rspdma = fod->rspdma;
2182 
2183 	if (!send_ersp) {
2184 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2185 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2186 	} else {
2187 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2188 		rsn = atomic_inc_return(&fod->queue->rsn);
2189 		ersp->rsn = cpu_to_be32(rsn);
2190 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2191 		fod->fcpreq->rsplen = sizeof(*ersp);
2192 	}
2193 
2194 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2195 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2196 }
2197 
2198 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2199 
2200 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2201 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2202 				struct nvmet_fc_fcp_iod *fod)
2203 {
2204 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2205 
2206 	/* data no longer needed */
2207 	nvmet_fc_free_tgt_pgs(fod);
2208 
2209 	/*
2210 	 * if an ABTS was received or we issued the fcp_abort early
2211 	 * don't call abort routine again.
2212 	 */
2213 	/* no need to take lock - lock was taken earlier to get here */
2214 	if (!fod->aborted)
2215 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2216 
2217 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2218 }
2219 
2220 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2221 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2222 				struct nvmet_fc_fcp_iod *fod)
2223 {
2224 	int ret;
2225 
2226 	fod->fcpreq->op = NVMET_FCOP_RSP;
2227 	fod->fcpreq->timeout = 0;
2228 
2229 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2230 
2231 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2232 	if (ret)
2233 		nvmet_fc_abort_op(tgtport, fod);
2234 }
2235 
2236 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2237 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2238 				struct nvmet_fc_fcp_iod *fod, u8 op)
2239 {
2240 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2241 	struct scatterlist *sg = fod->next_sg;
2242 	unsigned long flags;
2243 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2244 	u32 tlen = 0;
2245 	int ret;
2246 
2247 	fcpreq->op = op;
2248 	fcpreq->offset = fod->offset;
2249 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2250 
2251 	/*
2252 	 * for next sequence:
2253 	 *  break at a sg element boundary
2254 	 *  attempt to keep sequence length capped at
2255 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2256 	 *    be longer if a single sg element is larger
2257 	 *    than that amount. This is done to avoid creating
2258 	 *    a new sg list to use for the tgtport api.
2259 	 */
2260 	fcpreq->sg = sg;
2261 	fcpreq->sg_cnt = 0;
2262 	while (tlen < remaininglen &&
2263 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2264 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2265 		fcpreq->sg_cnt++;
2266 		tlen += sg_dma_len(sg);
2267 		sg = sg_next(sg);
2268 	}
2269 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2270 		fcpreq->sg_cnt++;
2271 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2272 		sg = sg_next(sg);
2273 	}
2274 	if (tlen < remaininglen)
2275 		fod->next_sg = sg;
2276 	else
2277 		fod->next_sg = NULL;
2278 
2279 	fcpreq->transfer_length = tlen;
2280 	fcpreq->transferred_length = 0;
2281 	fcpreq->fcp_error = 0;
2282 	fcpreq->rsplen = 0;
2283 
2284 	/*
2285 	 * If the last READDATA request: check if LLDD supports
2286 	 * combined xfr with response.
2287 	 */
2288 	if ((op == NVMET_FCOP_READDATA) &&
2289 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2290 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2291 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2292 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2293 	}
2294 
2295 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2296 	if (ret) {
2297 		/*
2298 		 * should be ok to set w/o lock as its in the thread of
2299 		 * execution (not an async timer routine) and doesn't
2300 		 * contend with any clearing action
2301 		 */
2302 		fod->abort = true;
2303 
2304 		if (op == NVMET_FCOP_WRITEDATA) {
2305 			spin_lock_irqsave(&fod->flock, flags);
2306 			fod->writedataactive = false;
2307 			spin_unlock_irqrestore(&fod->flock, flags);
2308 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2309 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2310 			fcpreq->fcp_error = ret;
2311 			fcpreq->transferred_length = 0;
2312 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2313 		}
2314 	}
2315 }
2316 
2317 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2318 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2319 {
2320 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2321 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2322 
2323 	/* if in the middle of an io and we need to tear down */
2324 	if (abort) {
2325 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2326 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2327 			return true;
2328 		}
2329 
2330 		nvmet_fc_abort_op(tgtport, fod);
2331 		return true;
2332 	}
2333 
2334 	return false;
2335 }
2336 
2337 /*
2338  * actual done handler for FCP operations when completed by the lldd
2339  */
2340 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2341 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2342 {
2343 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2344 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2345 	unsigned long flags;
2346 	bool abort;
2347 
2348 	spin_lock_irqsave(&fod->flock, flags);
2349 	abort = fod->abort;
2350 	fod->writedataactive = false;
2351 	spin_unlock_irqrestore(&fod->flock, flags);
2352 
2353 	switch (fcpreq->op) {
2354 
2355 	case NVMET_FCOP_WRITEDATA:
2356 		if (__nvmet_fc_fod_op_abort(fod, abort))
2357 			return;
2358 		if (fcpreq->fcp_error ||
2359 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2360 			spin_lock_irqsave(&fod->flock, flags);
2361 			fod->abort = true;
2362 			spin_unlock_irqrestore(&fod->flock, flags);
2363 
2364 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2365 			return;
2366 		}
2367 
2368 		fod->offset += fcpreq->transferred_length;
2369 		if (fod->offset != fod->req.transfer_len) {
2370 			spin_lock_irqsave(&fod->flock, flags);
2371 			fod->writedataactive = true;
2372 			spin_unlock_irqrestore(&fod->flock, flags);
2373 
2374 			/* transfer the next chunk */
2375 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2376 						NVMET_FCOP_WRITEDATA);
2377 			return;
2378 		}
2379 
2380 		/* data transfer complete, resume with nvmet layer */
2381 		fod->req.execute(&fod->req);
2382 		break;
2383 
2384 	case NVMET_FCOP_READDATA:
2385 	case NVMET_FCOP_READDATA_RSP:
2386 		if (__nvmet_fc_fod_op_abort(fod, abort))
2387 			return;
2388 		if (fcpreq->fcp_error ||
2389 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2390 			nvmet_fc_abort_op(tgtport, fod);
2391 			return;
2392 		}
2393 
2394 		/* success */
2395 
2396 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2397 			/* data no longer needed */
2398 			nvmet_fc_free_tgt_pgs(fod);
2399 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2400 			return;
2401 		}
2402 
2403 		fod->offset += fcpreq->transferred_length;
2404 		if (fod->offset != fod->req.transfer_len) {
2405 			/* transfer the next chunk */
2406 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2407 						NVMET_FCOP_READDATA);
2408 			return;
2409 		}
2410 
2411 		/* data transfer complete, send response */
2412 
2413 		/* data no longer needed */
2414 		nvmet_fc_free_tgt_pgs(fod);
2415 
2416 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2417 
2418 		break;
2419 
2420 	case NVMET_FCOP_RSP:
2421 		if (__nvmet_fc_fod_op_abort(fod, abort))
2422 			return;
2423 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2424 		break;
2425 
2426 	default:
2427 		break;
2428 	}
2429 }
2430 
2431 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2432 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2433 {
2434 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2435 
2436 	nvmet_fc_fod_op_done(fod);
2437 }
2438 
2439 /*
2440  * actual completion handler after execution by the nvmet layer
2441  */
2442 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2443 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2444 			struct nvmet_fc_fcp_iod *fod, int status)
2445 {
2446 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2447 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2448 	unsigned long flags;
2449 	bool abort;
2450 
2451 	spin_lock_irqsave(&fod->flock, flags);
2452 	abort = fod->abort;
2453 	spin_unlock_irqrestore(&fod->flock, flags);
2454 
2455 	/* if we have a CQE, snoop the last sq_head value */
2456 	if (!status)
2457 		fod->queue->sqhd = cqe->sq_head;
2458 
2459 	if (abort) {
2460 		nvmet_fc_abort_op(tgtport, fod);
2461 		return;
2462 	}
2463 
2464 	/* if an error handling the cmd post initial parsing */
2465 	if (status) {
2466 		/* fudge up a failed CQE status for our transport error */
2467 		memset(cqe, 0, sizeof(*cqe));
2468 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2469 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2470 		cqe->command_id = sqe->command_id;
2471 		cqe->status = cpu_to_le16(status);
2472 	} else {
2473 
2474 		/*
2475 		 * try to push the data even if the SQE status is non-zero.
2476 		 * There may be a status where data still was intended to
2477 		 * be moved
2478 		 */
2479 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2480 			/* push the data over before sending rsp */
2481 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2482 						NVMET_FCOP_READDATA);
2483 			return;
2484 		}
2485 
2486 		/* writes & no data - fall thru */
2487 	}
2488 
2489 	/* data no longer needed */
2490 	nvmet_fc_free_tgt_pgs(fod);
2491 
2492 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2493 }
2494 
2495 
2496 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2497 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2498 {
2499 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2500 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2501 
2502 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2503 }
2504 
2505 
2506 /*
2507  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2508  */
2509 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2510 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2511 			struct nvmet_fc_fcp_iod *fod)
2512 {
2513 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2514 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2515 	int ret;
2516 
2517 	/*
2518 	 * Fused commands are currently not supported in the linux
2519 	 * implementation.
2520 	 *
2521 	 * As such, the implementation of the FC transport does not
2522 	 * look at the fused commands and order delivery to the upper
2523 	 * layer until we have both based on csn.
2524 	 */
2525 
2526 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2527 
2528 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2529 		fod->io_dir = NVMET_FCP_WRITE;
2530 		if (!nvme_is_write(&cmdiu->sqe))
2531 			goto transport_error;
2532 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2533 		fod->io_dir = NVMET_FCP_READ;
2534 		if (nvme_is_write(&cmdiu->sqe))
2535 			goto transport_error;
2536 	} else {
2537 		fod->io_dir = NVMET_FCP_NODATA;
2538 		if (xfrlen)
2539 			goto transport_error;
2540 	}
2541 
2542 	fod->req.cmd = &fod->cmdiubuf.sqe;
2543 	fod->req.cqe = &fod->rspiubuf.cqe;
2544 	if (!tgtport->pe)
2545 		goto transport_error;
2546 	fod->req.port = tgtport->pe->port;
2547 
2548 	/* clear any response payload */
2549 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2550 
2551 	fod->data_sg = NULL;
2552 	fod->data_sg_cnt = 0;
2553 
2554 	ret = nvmet_req_init(&fod->req,
2555 				&fod->queue->nvme_cq,
2556 				&fod->queue->nvme_sq,
2557 				&nvmet_fc_tgt_fcp_ops);
2558 	if (!ret) {
2559 		/* bad SQE content or invalid ctrl state */
2560 		/* nvmet layer has already called op done to send rsp. */
2561 		return;
2562 	}
2563 
2564 	fod->req.transfer_len = xfrlen;
2565 
2566 	/* keep a running counter of tail position */
2567 	atomic_inc(&fod->queue->sqtail);
2568 
2569 	if (fod->req.transfer_len) {
2570 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2571 		if (ret) {
2572 			nvmet_req_complete(&fod->req, ret);
2573 			return;
2574 		}
2575 	}
2576 	fod->req.sg = fod->data_sg;
2577 	fod->req.sg_cnt = fod->data_sg_cnt;
2578 	fod->offset = 0;
2579 
2580 	if (fod->io_dir == NVMET_FCP_WRITE) {
2581 		/* pull the data over before invoking nvmet layer */
2582 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2583 		return;
2584 	}
2585 
2586 	/*
2587 	 * Reads or no data:
2588 	 *
2589 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2590 	 * push the data
2591 	 */
2592 	fod->req.execute(&fod->req);
2593 	return;
2594 
2595 transport_error:
2596 	nvmet_fc_abort_op(tgtport, fod);
2597 }
2598 
2599 /**
2600  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2601  *                       upon the reception of a NVME FCP CMD IU.
2602  *
2603  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2604  * layer for processing.
2605  *
2606  * The nvmet_fc layer allocates a local job structure (struct
2607  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2608  * CMD IU buffer to the job structure. As such, on a successful
2609  * completion (returns 0), the LLDD may immediately free/reuse
2610  * the CMD IU buffer passed in the call.
2611  *
2612  * However, in some circumstances, due to the packetized nature of FC
2613  * and the api of the FC LLDD which may issue a hw command to send the
2614  * response, but the LLDD may not get the hw completion for that command
2615  * and upcall the nvmet_fc layer before a new command may be
2616  * asynchronously received - its possible for a command to be received
2617  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2618  * the appearance of more commands received than fits in the sq.
2619  * To alleviate this scenario, a temporary queue is maintained in the
2620  * transport for pending LLDD requests waiting for a queue job structure.
2621  * In these "overrun" cases, a temporary queue element is allocated
2622  * the LLDD request and CMD iu buffer information remembered, and the
2623  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2624  * structure is freed, it is immediately reallocated for anything on the
2625  * pending request list. The LLDDs defer_rcv() callback is called,
2626  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2627  * is then started normally with the transport.
2628  *
2629  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2630  * the completion as successful but must not reuse the CMD IU buffer
2631  * until the LLDD's defer_rcv() callback has been called for the
2632  * corresponding struct nvmefc_tgt_fcp_req pointer.
2633  *
2634  * If there is any other condition in which an error occurs, the
2635  * transport will return a non-zero status indicating the error.
2636  * In all cases other than -EOVERFLOW, the transport has not accepted the
2637  * request and the LLDD should abort the exchange.
2638  *
2639  * @target_port: pointer to the (registered) target port the FCP CMD IU
2640  *              was received on.
2641  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2642  *              the exchange corresponding to the FCP Exchange.
2643  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2644  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2645  */
2646 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2647 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2648 			struct nvmefc_tgt_fcp_req *fcpreq,
2649 			void *cmdiubuf, u32 cmdiubuf_len)
2650 {
2651 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2652 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2653 	struct nvmet_fc_tgt_queue *queue;
2654 	struct nvmet_fc_fcp_iod *fod;
2655 	struct nvmet_fc_defer_fcp_req *deferfcp;
2656 	unsigned long flags;
2657 
2658 	/* validate iu, so the connection id can be used to find the queue */
2659 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2660 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2661 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2662 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2663 		return -EIO;
2664 
2665 	queue = nvmet_fc_find_target_queue(tgtport,
2666 				be64_to_cpu(cmdiu->connection_id));
2667 	if (!queue)
2668 		return -ENOTCONN;
2669 
2670 	/*
2671 	 * note: reference taken by find_target_queue
2672 	 * After successful fod allocation, the fod will inherit the
2673 	 * ownership of that reference and will remove the reference
2674 	 * when the fod is freed.
2675 	 */
2676 
2677 	spin_lock_irqsave(&queue->qlock, flags);
2678 
2679 	fod = nvmet_fc_alloc_fcp_iod(queue);
2680 	if (fod) {
2681 		spin_unlock_irqrestore(&queue->qlock, flags);
2682 
2683 		fcpreq->nvmet_fc_private = fod;
2684 		fod->fcpreq = fcpreq;
2685 
2686 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2687 
2688 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2689 
2690 		return 0;
2691 	}
2692 
2693 	if (!tgtport->ops->defer_rcv) {
2694 		spin_unlock_irqrestore(&queue->qlock, flags);
2695 		/* release the queue lookup reference */
2696 		nvmet_fc_tgt_q_put(queue);
2697 		return -ENOENT;
2698 	}
2699 
2700 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2701 			struct nvmet_fc_defer_fcp_req, req_list);
2702 	if (deferfcp) {
2703 		/* Just re-use one that was previously allocated */
2704 		list_del(&deferfcp->req_list);
2705 	} else {
2706 		spin_unlock_irqrestore(&queue->qlock, flags);
2707 
2708 		/* Now we need to dynamically allocate one */
2709 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2710 		if (!deferfcp) {
2711 			/* release the queue lookup reference */
2712 			nvmet_fc_tgt_q_put(queue);
2713 			return -ENOMEM;
2714 		}
2715 		spin_lock_irqsave(&queue->qlock, flags);
2716 	}
2717 
2718 	/* For now, use rspaddr / rsplen to save payload information */
2719 	fcpreq->rspaddr = cmdiubuf;
2720 	fcpreq->rsplen  = cmdiubuf_len;
2721 	deferfcp->fcp_req = fcpreq;
2722 
2723 	/* defer processing till a fod becomes available */
2724 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2725 
2726 	/* NOTE: the queue lookup reference is still valid */
2727 
2728 	spin_unlock_irqrestore(&queue->qlock, flags);
2729 
2730 	return -EOVERFLOW;
2731 }
2732 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2733 
2734 /**
2735  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2736  *                       upon the reception of an ABTS for a FCP command
2737  *
2738  * Notify the transport that an ABTS has been received for a FCP command
2739  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2740  * LLDD believes the command is still being worked on
2741  * (template_ops->fcp_req_release() has not been called).
2742  *
2743  * The transport will wait for any outstanding work (an op to the LLDD,
2744  * which the lldd should complete with error due to the ABTS; or the
2745  * completion from the nvmet layer of the nvme command), then will
2746  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2747  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2748  * to the ABTS either after return from this function (assuming any
2749  * outstanding op work has been terminated) or upon the callback being
2750  * called.
2751  *
2752  * @target_port: pointer to the (registered) target port the FCP CMD IU
2753  *              was received on.
2754  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2755  *              to the exchange that received the ABTS.
2756  */
2757 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2758 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2759 			struct nvmefc_tgt_fcp_req *fcpreq)
2760 {
2761 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2762 	struct nvmet_fc_tgt_queue *queue;
2763 	unsigned long flags;
2764 
2765 	if (!fod || fod->fcpreq != fcpreq)
2766 		/* job appears to have already completed, ignore abort */
2767 		return;
2768 
2769 	queue = fod->queue;
2770 
2771 	spin_lock_irqsave(&queue->qlock, flags);
2772 	if (fod->active) {
2773 		/*
2774 		 * mark as abort. The abort handler, invoked upon completion
2775 		 * of any work, will detect the aborted status and do the
2776 		 * callback.
2777 		 */
2778 		spin_lock(&fod->flock);
2779 		fod->abort = true;
2780 		fod->aborted = true;
2781 		spin_unlock(&fod->flock);
2782 	}
2783 	spin_unlock_irqrestore(&queue->qlock, flags);
2784 }
2785 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2786 
2787 
2788 struct nvmet_fc_traddr {
2789 	u64	nn;
2790 	u64	pn;
2791 };
2792 
2793 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2794 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2795 {
2796 	u64 token64;
2797 
2798 	if (match_u64(sstr, &token64))
2799 		return -EINVAL;
2800 	*val = token64;
2801 
2802 	return 0;
2803 }
2804 
2805 /*
2806  * This routine validates and extracts the WWN's from the TRADDR string.
2807  * As kernel parsers need the 0x to determine number base, universally
2808  * build string to parse with 0x prefix before parsing name strings.
2809  */
2810 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2811 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2812 {
2813 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2814 	substring_t wwn = { name, &name[sizeof(name)-1] };
2815 	int nnoffset, pnoffset;
2816 
2817 	/* validate if string is one of the 2 allowed formats */
2818 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2819 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2820 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2821 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2822 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2823 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2824 						NVME_FC_TRADDR_OXNNLEN;
2825 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2826 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2827 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2828 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2829 		nnoffset = NVME_FC_TRADDR_NNLEN;
2830 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2831 	} else
2832 		goto out_einval;
2833 
2834 	name[0] = '0';
2835 	name[1] = 'x';
2836 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2837 
2838 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2839 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2840 		goto out_einval;
2841 
2842 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2843 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2844 		goto out_einval;
2845 
2846 	return 0;
2847 
2848 out_einval:
2849 	pr_warn("%s: bad traddr string\n", __func__);
2850 	return -EINVAL;
2851 }
2852 
2853 static int
nvmet_fc_add_port(struct nvmet_port * port)2854 nvmet_fc_add_port(struct nvmet_port *port)
2855 {
2856 	struct nvmet_fc_tgtport *tgtport;
2857 	struct nvmet_fc_port_entry *pe;
2858 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2859 	unsigned long flags;
2860 	int ret;
2861 
2862 	/* validate the address info */
2863 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2864 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2865 		return -EINVAL;
2866 
2867 	/* map the traddr address info to a target port */
2868 
2869 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2870 			sizeof(port->disc_addr.traddr));
2871 	if (ret)
2872 		return ret;
2873 
2874 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2875 	if (!pe)
2876 		return -ENOMEM;
2877 
2878 	ret = -ENXIO;
2879 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2880 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2881 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2882 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2883 			/* a FC port can only be 1 nvmet port id */
2884 			if (!tgtport->pe) {
2885 				nvmet_fc_portentry_bind(tgtport, pe, port);
2886 				ret = 0;
2887 			} else
2888 				ret = -EALREADY;
2889 			break;
2890 		}
2891 	}
2892 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2893 
2894 	if (ret)
2895 		kfree(pe);
2896 
2897 	return ret;
2898 }
2899 
2900 static void
nvmet_fc_remove_port(struct nvmet_port * port)2901 nvmet_fc_remove_port(struct nvmet_port *port)
2902 {
2903 	struct nvmet_fc_port_entry *pe = port->priv;
2904 
2905 	nvmet_fc_portentry_unbind(pe);
2906 
2907 	/* terminate any outstanding associations */
2908 	__nvmet_fc_free_assocs(pe->tgtport);
2909 
2910 	kfree(pe);
2911 }
2912 
2913 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2914 nvmet_fc_discovery_chg(struct nvmet_port *port)
2915 {
2916 	struct nvmet_fc_port_entry *pe = port->priv;
2917 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2918 
2919 	if (tgtport && tgtport->ops->discovery_event)
2920 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2921 }
2922 
2923 static ssize_t
nvmet_fc_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_size)2924 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2925 		char *traddr, size_t traddr_size)
2926 {
2927 	struct nvmet_sq *sq = ctrl->sqs[0];
2928 	struct nvmet_fc_tgt_queue *queue =
2929 		container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2930 	struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2931 	struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2932 	u64 wwnn, wwpn;
2933 	ssize_t ret = 0;
2934 
2935 	if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2936 		return -ENODEV;
2937 	if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2938 		ret = -ENODEV;
2939 		goto out_put;
2940 	}
2941 
2942 	if (tgtport->ops->host_traddr) {
2943 		ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2944 		if (ret)
2945 			goto out_put_host;
2946 		ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2947 	}
2948 out_put_host:
2949 	nvmet_fc_hostport_put(hostport);
2950 out_put:
2951 	nvmet_fc_tgtport_put(tgtport);
2952 	return ret;
2953 }
2954 
2955 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2956 	.owner			= THIS_MODULE,
2957 	.type			= NVMF_TRTYPE_FC,
2958 	.msdbd			= 1,
2959 	.add_port		= nvmet_fc_add_port,
2960 	.remove_port		= nvmet_fc_remove_port,
2961 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2962 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2963 	.discovery_chg		= nvmet_fc_discovery_chg,
2964 	.host_traddr		= nvmet_fc_host_traddr,
2965 };
2966 
nvmet_fc_init_module(void)2967 static int __init nvmet_fc_init_module(void)
2968 {
2969 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2970 }
2971 
nvmet_fc_exit_module(void)2972 static void __exit nvmet_fc_exit_module(void)
2973 {
2974 	/* ensure any shutdown operation, e.g. delete ctrls have finished */
2975 	flush_workqueue(nvmet_wq);
2976 
2977 	/* sanity check - all lports should be removed */
2978 	if (!list_empty(&nvmet_fc_target_list))
2979 		pr_warn("%s: targetport list not empty\n", __func__);
2980 
2981 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2982 
2983 	ida_destroy(&nvmet_fc_tgtport_cnt);
2984 }
2985 
2986 module_init(nvmet_fc_init_module);
2987 module_exit(nvmet_fc_exit_module);
2988 
2989 MODULE_DESCRIPTION("NVMe target FC transport driver");
2990 MODULE_LICENSE("GPL v2");
2991