1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT 256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *next_sg;
77 struct scatterlist *data_sg;
78 int data_sg_cnt;
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
83 bool aborted;
84 bool writedataactive;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct defer_work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97 struct nvmet_fc_target_port fc_target_port;
98
99 struct list_head tgt_list; /* nvmet_fc_target_list */
100 struct device *dev; /* dev for dma mapping */
101 struct nvmet_fc_target_template *ops;
102
103 struct nvmet_fc_ls_iod *iod;
104 spinlock_t lock;
105 struct list_head ls_rcv_list;
106 struct list_head ls_req_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct list_head host_list;
110 struct ida assoc_cnt;
111 struct nvmet_fc_port_entry *pe;
112 struct kref ref;
113 u32 max_sg_cnt;
114
115 struct work_struct put_work;
116 };
117
118 struct nvmet_fc_port_entry {
119 struct nvmet_fc_tgtport *tgtport;
120 struct nvmet_port *port;
121 u64 node_name;
122 u64 port_name;
123 struct list_head pe_list;
124 };
125
126 struct nvmet_fc_defer_fcp_req {
127 struct list_head req_list;
128 struct nvmefc_tgt_fcp_req *fcp_req;
129 };
130
131 struct nvmet_fc_tgt_queue {
132 bool ninetypercent;
133 u16 qid;
134 u16 sqsize;
135 u16 ersp_ratio;
136 __le16 sqhd;
137 atomic_t connected;
138 atomic_t sqtail;
139 atomic_t zrspcnt;
140 atomic_t rsn;
141 spinlock_t qlock;
142 struct nvmet_cq nvme_cq;
143 struct nvmet_sq nvme_sq;
144 struct nvmet_fc_tgt_assoc *assoc;
145 struct list_head fod_list;
146 struct list_head pending_cmd_list;
147 struct list_head avail_defer_list;
148 struct workqueue_struct *work_q;
149 struct kref ref;
150 /* array of fcp_iods */
151 struct nvmet_fc_fcp_iod fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153
154 struct nvmet_fc_hostport {
155 struct nvmet_fc_tgtport *tgtport;
156 void *hosthandle;
157 struct list_head host_list;
158 struct kref ref;
159 u8 invalid;
160 };
161
162 struct nvmet_fc_tgt_assoc {
163 u64 association_id;
164 u32 a_id;
165 atomic_t terminating;
166 struct nvmet_fc_tgtport *tgtport;
167 struct nvmet_fc_hostport *hostport;
168 struct nvmet_fc_ls_iod *rcv_disconn;
169 struct list_head a_list;
170 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
171 struct kref ref;
172 struct work_struct del_work;
173 };
174
175 /*
176 * Association and Connection IDs:
177 *
178 * Association ID will have random number in upper 6 bytes and zero
179 * in lower 2 bytes
180 *
181 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182 *
183 * note: Association ID = Connection ID for queue 0
184 */
185 #define BYTES_FOR_QID sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188
189 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 return (assoc->association_id | qid);
193 }
194
195 static inline u64
nvmet_fc_getassociationid(u64 connectionid)196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200
201 static inline u16
nvmet_fc_getqueueid(u64 connectionid)202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206
207 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 return container_of(targetport, struct nvmet_fc_tgtport,
211 fc_target_port);
212 }
213
214 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219
220
221 /* *************************** Globals **************************** */
222
223
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229
230
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_tgtport_work(struct work_struct * work)238 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
239 {
240 struct nvmet_fc_tgtport *tgtport =
241 container_of(work, struct nvmet_fc_tgtport, put_work);
242
243 nvmet_fc_tgtport_put(tgtport);
244 }
245 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
246 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
247 struct nvmet_fc_fcp_iod *fod);
248 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
250 struct nvmet_fc_ls_iod *iod);
251
252
253 /* *********************** FC-NVME DMA Handling **************************** */
254
255 /*
256 * The fcloop device passes in a NULL device pointer. Real LLD's will
257 * pass in a valid device pointer. If NULL is passed to the dma mapping
258 * routines, depending on the platform, it may or may not succeed, and
259 * may crash.
260 *
261 * As such:
262 * Wrapper all the dma routines and check the dev pointer.
263 *
264 * If simple mappings (return just a dma address, we'll noop them,
265 * returning a dma address of 0.
266 *
267 * On more complex mappings (dma_map_sg), a pseudo routine fills
268 * in the scatter list, setting all dma addresses to 0.
269 */
270
271 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)272 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
273 enum dma_data_direction dir)
274 {
275 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
276 }
277
278 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)279 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
280 {
281 return dev ? dma_mapping_error(dev, dma_addr) : 0;
282 }
283
284 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)285 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
286 enum dma_data_direction dir)
287 {
288 if (dev)
289 dma_unmap_single(dev, addr, size, dir);
290 }
291
292 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)293 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
294 enum dma_data_direction dir)
295 {
296 if (dev)
297 dma_sync_single_for_cpu(dev, addr, size, dir);
298 }
299
300 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)301 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
302 enum dma_data_direction dir)
303 {
304 if (dev)
305 dma_sync_single_for_device(dev, addr, size, dir);
306 }
307
308 /* pseudo dma_map_sg call */
309 static int
fc_map_sg(struct scatterlist * sg,int nents)310 fc_map_sg(struct scatterlist *sg, int nents)
311 {
312 struct scatterlist *s;
313 int i;
314
315 WARN_ON(nents == 0 || sg[0].length == 0);
316
317 for_each_sg(sg, s, nents, i) {
318 s->dma_address = 0L;
319 #ifdef CONFIG_NEED_SG_DMA_LENGTH
320 s->dma_length = s->length;
321 #endif
322 }
323 return nents;
324 }
325
326 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)327 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328 enum dma_data_direction dir)
329 {
330 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
331 }
332
333 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)334 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
335 enum dma_data_direction dir)
336 {
337 if (dev)
338 dma_unmap_sg(dev, sg, nents, dir);
339 }
340
341
342 /* ********************** FC-NVME LS XMT Handling ************************* */
343
344
345 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)346 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
347 {
348 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
349 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
350 unsigned long flags;
351
352 spin_lock_irqsave(&tgtport->lock, flags);
353
354 if (!lsop->req_queued) {
355 spin_unlock_irqrestore(&tgtport->lock, flags);
356 goto out_putwork;
357 }
358
359 list_del(&lsop->lsreq_list);
360
361 lsop->req_queued = false;
362
363 spin_unlock_irqrestore(&tgtport->lock, flags);
364
365 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
366 (lsreq->rqstlen + lsreq->rsplen),
367 DMA_BIDIRECTIONAL);
368
369 out_putwork:
370 queue_work(nvmet_wq, &tgtport->put_work);
371 }
372
373 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))374 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
375 struct nvmet_fc_ls_req_op *lsop,
376 void (*done)(struct nvmefc_ls_req *req, int status))
377 {
378 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
379 unsigned long flags;
380 int ret = 0;
381
382 if (!tgtport->ops->ls_req)
383 return -EOPNOTSUPP;
384
385 if (!nvmet_fc_tgtport_get(tgtport))
386 return -ESHUTDOWN;
387
388 lsreq->done = done;
389 lsop->req_queued = false;
390 INIT_LIST_HEAD(&lsop->lsreq_list);
391
392 lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
393 lsreq->rqstlen + lsreq->rsplen,
394 DMA_BIDIRECTIONAL);
395 if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
396 ret = -EFAULT;
397 goto out_puttgtport;
398 }
399 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
400
401 spin_lock_irqsave(&tgtport->lock, flags);
402
403 list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
404
405 lsop->req_queued = true;
406
407 spin_unlock_irqrestore(&tgtport->lock, flags);
408
409 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
410 lsreq);
411 if (ret)
412 goto out_unlink;
413
414 return 0;
415
416 out_unlink:
417 lsop->ls_error = ret;
418 spin_lock_irqsave(&tgtport->lock, flags);
419 lsop->req_queued = false;
420 list_del(&lsop->lsreq_list);
421 spin_unlock_irqrestore(&tgtport->lock, flags);
422 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
423 (lsreq->rqstlen + lsreq->rsplen),
424 DMA_BIDIRECTIONAL);
425 out_puttgtport:
426 nvmet_fc_tgtport_put(tgtport);
427
428 return ret;
429 }
430
431 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))432 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
433 struct nvmet_fc_ls_req_op *lsop,
434 void (*done)(struct nvmefc_ls_req *req, int status))
435 {
436 /* don't wait for completion */
437
438 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
439 }
440
441 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)442 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
443 {
444 struct nvmet_fc_ls_req_op *lsop =
445 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
446
447 __nvmet_fc_finish_ls_req(lsop);
448
449 /* fc-nvme target doesn't care about success or failure of cmd */
450
451 kfree(lsop);
452 }
453
454 /*
455 * This routine sends a FC-NVME LS to disconnect (aka terminate)
456 * the FC-NVME Association. Terminating the association also
457 * terminates the FC-NVME connections (per queue, both admin and io
458 * queues) that are part of the association. E.g. things are torn
459 * down, and the related FC-NVME Association ID and Connection IDs
460 * become invalid.
461 *
462 * The behavior of the fc-nvme target is such that it's
463 * understanding of the association and connections will implicitly
464 * be torn down. The action is implicit as it may be due to a loss of
465 * connectivity with the fc-nvme host, so the target may never get a
466 * response even if it tried. As such, the action of this routine
467 * is to asynchronously send the LS, ignore any results of the LS, and
468 * continue on with terminating the association. If the fc-nvme host
469 * is present and receives the LS, it too can tear down.
470 */
471 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 struct nvmet_fc_ls_req_op *lsop;
478 struct nvmefc_ls_req *lsreq;
479 int ret;
480
481 /*
482 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 * message is normal. Otherwise, send unless the hostport has
484 * already been invalidated by the lldd.
485 */
486 if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 return;
488
489 lsop = kzalloc((sizeof(*lsop) +
490 sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 if (!lsop) {
493 dev_info(tgtport->dev,
494 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
495 tgtport->fc_target_port.port_num, assoc->a_id);
496 return;
497 }
498
499 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
500 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
501 lsreq = &lsop->ls_req;
502 if (tgtport->ops->lsrqst_priv_sz)
503 lsreq->private = (void *)&discon_acc[1];
504 else
505 lsreq->private = NULL;
506
507 lsop->tgtport = tgtport;
508 lsop->hosthandle = assoc->hostport->hosthandle;
509
510 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
511 assoc->association_id);
512
513 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
514 nvmet_fc_disconnect_assoc_done);
515 if (ret) {
516 dev_info(tgtport->dev,
517 "{%d:%d} XMT Disconnect Association failed: %d\n",
518 tgtport->fc_target_port.port_num, assoc->a_id, ret);
519 kfree(lsop);
520 }
521 }
522
523
524 /* *********************** FC-NVME Port Management ************************ */
525
526
527 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)528 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
529 {
530 struct nvmet_fc_ls_iod *iod;
531 int i;
532
533 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
534 GFP_KERNEL);
535 if (!iod)
536 return -ENOMEM;
537
538 tgtport->iod = iod;
539
540 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
541 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
542 iod->tgtport = tgtport;
543 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
544
545 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
546 sizeof(union nvmefc_ls_responses),
547 GFP_KERNEL);
548 if (!iod->rqstbuf)
549 goto out_fail;
550
551 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
552
553 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
554 sizeof(*iod->rspbuf),
555 DMA_TO_DEVICE);
556 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
557 goto out_fail;
558 }
559
560 return 0;
561
562 out_fail:
563 kfree(iod->rqstbuf);
564 list_del(&iod->ls_rcv_list);
565 for (iod--, i--; i >= 0; iod--, i--) {
566 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
567 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
568 kfree(iod->rqstbuf);
569 list_del(&iod->ls_rcv_list);
570 }
571
572 kfree(iod);
573
574 return -EFAULT;
575 }
576
577 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)578 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
579 {
580 struct nvmet_fc_ls_iod *iod = tgtport->iod;
581 int i;
582
583 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
584 fc_dma_unmap_single(tgtport->dev,
585 iod->rspdma, sizeof(*iod->rspbuf),
586 DMA_TO_DEVICE);
587 kfree(iod->rqstbuf);
588 list_del(&iod->ls_rcv_list);
589 }
590 kfree(tgtport->iod);
591 }
592
593 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)594 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
595 {
596 struct nvmet_fc_ls_iod *iod;
597 unsigned long flags;
598
599 spin_lock_irqsave(&tgtport->lock, flags);
600 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
601 struct nvmet_fc_ls_iod, ls_rcv_list);
602 if (iod)
603 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
604 spin_unlock_irqrestore(&tgtport->lock, flags);
605 return iod;
606 }
607
608
609 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)610 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
611 struct nvmet_fc_ls_iod *iod)
612 {
613 unsigned long flags;
614
615 spin_lock_irqsave(&tgtport->lock, flags);
616 list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
617 spin_unlock_irqrestore(&tgtport->lock, flags);
618 }
619
620 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)621 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
622 struct nvmet_fc_tgt_queue *queue)
623 {
624 struct nvmet_fc_fcp_iod *fod = queue->fod;
625 int i;
626
627 for (i = 0; i < queue->sqsize; fod++, i++) {
628 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
629 fod->tgtport = tgtport;
630 fod->queue = queue;
631 fod->active = false;
632 fod->abort = false;
633 fod->aborted = false;
634 fod->fcpreq = NULL;
635 list_add_tail(&fod->fcp_list, &queue->fod_list);
636 spin_lock_init(&fod->flock);
637
638 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
639 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
640 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
641 list_del(&fod->fcp_list);
642 for (fod--, i--; i >= 0; fod--, i--) {
643 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
644 sizeof(fod->rspiubuf),
645 DMA_TO_DEVICE);
646 fod->rspdma = 0L;
647 list_del(&fod->fcp_list);
648 }
649
650 return;
651 }
652 }
653 }
654
655 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)656 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
657 struct nvmet_fc_tgt_queue *queue)
658 {
659 struct nvmet_fc_fcp_iod *fod = queue->fod;
660 int i;
661
662 for (i = 0; i < queue->sqsize; fod++, i++) {
663 if (fod->rspdma)
664 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
665 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
666 }
667 }
668
669 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)670 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
671 {
672 struct nvmet_fc_fcp_iod *fod;
673
674 lockdep_assert_held(&queue->qlock);
675
676 fod = list_first_entry_or_null(&queue->fod_list,
677 struct nvmet_fc_fcp_iod, fcp_list);
678 if (fod) {
679 list_del(&fod->fcp_list);
680 fod->active = true;
681 /*
682 * no queue reference is taken, as it was taken by the
683 * queue lookup just prior to the allocation. The iod
684 * will "inherit" that reference.
685 */
686 }
687 return fod;
688 }
689
690
691 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)692 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
693 struct nvmet_fc_tgt_queue *queue,
694 struct nvmefc_tgt_fcp_req *fcpreq)
695 {
696 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
697
698 /*
699 * put all admin cmds on hw queue id 0. All io commands go to
700 * the respective hw queue based on a modulo basis
701 */
702 fcpreq->hwqid = queue->qid ?
703 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
704
705 nvmet_fc_handle_fcp_rqst(tgtport, fod);
706 }
707
708 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)709 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
710 {
711 struct nvmet_fc_fcp_iod *fod =
712 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
713
714 /* Submit deferred IO for processing */
715 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
716
717 }
718
719 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)720 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
721 struct nvmet_fc_fcp_iod *fod)
722 {
723 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
724 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
725 struct nvmet_fc_defer_fcp_req *deferfcp;
726 unsigned long flags;
727
728 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
729 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
730
731 fcpreq->nvmet_fc_private = NULL;
732
733 fod->active = false;
734 fod->abort = false;
735 fod->aborted = false;
736 fod->writedataactive = false;
737 fod->fcpreq = NULL;
738
739 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
740
741 /* release the queue lookup reference on the completed IO */
742 nvmet_fc_tgt_q_put(queue);
743
744 spin_lock_irqsave(&queue->qlock, flags);
745 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746 struct nvmet_fc_defer_fcp_req, req_list);
747 if (!deferfcp) {
748 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
749 spin_unlock_irqrestore(&queue->qlock, flags);
750 return;
751 }
752
753 /* Re-use the fod for the next pending cmd that was deferred */
754 list_del(&deferfcp->req_list);
755
756 fcpreq = deferfcp->fcp_req;
757
758 /* deferfcp can be reused for another IO at a later date */
759 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
760
761 spin_unlock_irqrestore(&queue->qlock, flags);
762
763 /* Save NVME CMD IO in fod */
764 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
765
766 /* Setup new fcpreq to be processed */
767 fcpreq->rspaddr = NULL;
768 fcpreq->rsplen = 0;
769 fcpreq->nvmet_fc_private = fod;
770 fod->fcpreq = fcpreq;
771 fod->active = true;
772
773 /* inform LLDD IO is now being processed */
774 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
775
776 /*
777 * Leave the queue lookup get reference taken when
778 * fod was originally allocated.
779 */
780
781 queue_work(queue->work_q, &fod->defer_work);
782 }
783
784 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)785 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
786 u16 qid, u16 sqsize)
787 {
788 struct nvmet_fc_tgt_queue *queue;
789 int ret;
790
791 if (qid > NVMET_NR_QUEUES)
792 return NULL;
793
794 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
795 if (!queue)
796 return NULL;
797
798 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
799 assoc->tgtport->fc_target_port.port_num,
800 assoc->a_id, qid);
801 if (!queue->work_q)
802 goto out_free_queue;
803
804 queue->qid = qid;
805 queue->sqsize = sqsize;
806 queue->assoc = assoc;
807 INIT_LIST_HEAD(&queue->fod_list);
808 INIT_LIST_HEAD(&queue->avail_defer_list);
809 INIT_LIST_HEAD(&queue->pending_cmd_list);
810 atomic_set(&queue->connected, 0);
811 atomic_set(&queue->sqtail, 0);
812 atomic_set(&queue->rsn, 1);
813 atomic_set(&queue->zrspcnt, 0);
814 spin_lock_init(&queue->qlock);
815 kref_init(&queue->ref);
816
817 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
818
819 ret = nvmet_sq_init(&queue->nvme_sq);
820 if (ret)
821 goto out_fail_iodlist;
822
823 WARN_ON(assoc->queues[qid]);
824 assoc->queues[qid] = queue;
825
826 return queue;
827
828 out_fail_iodlist:
829 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
830 destroy_workqueue(queue->work_q);
831 out_free_queue:
832 kfree(queue);
833 return NULL;
834 }
835
836
837 static void
nvmet_fc_tgt_queue_free(struct kref * ref)838 nvmet_fc_tgt_queue_free(struct kref *ref)
839 {
840 struct nvmet_fc_tgt_queue *queue =
841 container_of(ref, struct nvmet_fc_tgt_queue, ref);
842
843 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
844
845 destroy_workqueue(queue->work_q);
846
847 kfree(queue);
848 }
849
850 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)851 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
852 {
853 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
854 }
855
856 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)857 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
858 {
859 return kref_get_unless_zero(&queue->ref);
860 }
861
862
863 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)864 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
865 {
866 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
867 struct nvmet_fc_fcp_iod *fod = queue->fod;
868 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
869 unsigned long flags;
870 int i;
871 bool disconnect;
872
873 disconnect = atomic_xchg(&queue->connected, 0);
874
875 /* if not connected, nothing to do */
876 if (!disconnect)
877 return;
878
879 spin_lock_irqsave(&queue->qlock, flags);
880 /* abort outstanding io's */
881 for (i = 0; i < queue->sqsize; fod++, i++) {
882 if (fod->active) {
883 spin_lock(&fod->flock);
884 fod->abort = true;
885 /*
886 * only call lldd abort routine if waiting for
887 * writedata. other outstanding ops should finish
888 * on their own.
889 */
890 if (fod->writedataactive) {
891 fod->aborted = true;
892 spin_unlock(&fod->flock);
893 tgtport->ops->fcp_abort(
894 &tgtport->fc_target_port, fod->fcpreq);
895 } else
896 spin_unlock(&fod->flock);
897 }
898 }
899
900 /* Cleanup defer'ed IOs in queue */
901 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
902 req_list) {
903 list_del(&deferfcp->req_list);
904 kfree(deferfcp);
905 }
906
907 for (;;) {
908 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
909 struct nvmet_fc_defer_fcp_req, req_list);
910 if (!deferfcp)
911 break;
912
913 list_del(&deferfcp->req_list);
914 spin_unlock_irqrestore(&queue->qlock, flags);
915
916 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
917 deferfcp->fcp_req);
918
919 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
920 deferfcp->fcp_req);
921
922 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
923 deferfcp->fcp_req);
924
925 /* release the queue lookup reference */
926 nvmet_fc_tgt_q_put(queue);
927
928 kfree(deferfcp);
929
930 spin_lock_irqsave(&queue->qlock, flags);
931 }
932 spin_unlock_irqrestore(&queue->qlock, flags);
933
934 flush_workqueue(queue->work_q);
935
936 nvmet_sq_destroy(&queue->nvme_sq);
937
938 nvmet_fc_tgt_q_put(queue);
939 }
940
941 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)942 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
943 u64 connection_id)
944 {
945 struct nvmet_fc_tgt_assoc *assoc;
946 struct nvmet_fc_tgt_queue *queue;
947 u64 association_id = nvmet_fc_getassociationid(connection_id);
948 u16 qid = nvmet_fc_getqueueid(connection_id);
949
950 if (qid > NVMET_NR_QUEUES)
951 return NULL;
952
953 rcu_read_lock();
954 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
955 if (association_id == assoc->association_id) {
956 queue = assoc->queues[qid];
957 if (queue &&
958 (!atomic_read(&queue->connected) ||
959 !nvmet_fc_tgt_q_get(queue)))
960 queue = NULL;
961 rcu_read_unlock();
962 return queue;
963 }
964 }
965 rcu_read_unlock();
966 return NULL;
967 }
968
969 static void
nvmet_fc_hostport_free(struct kref * ref)970 nvmet_fc_hostport_free(struct kref *ref)
971 {
972 struct nvmet_fc_hostport *hostport =
973 container_of(ref, struct nvmet_fc_hostport, ref);
974 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
975 unsigned long flags;
976
977 spin_lock_irqsave(&tgtport->lock, flags);
978 list_del(&hostport->host_list);
979 spin_unlock_irqrestore(&tgtport->lock, flags);
980 if (tgtport->ops->host_release && hostport->invalid)
981 tgtport->ops->host_release(hostport->hosthandle);
982 kfree(hostport);
983 nvmet_fc_tgtport_put(tgtport);
984 }
985
986 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)987 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
988 {
989 kref_put(&hostport->ref, nvmet_fc_hostport_free);
990 }
991
992 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)993 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
994 {
995 return kref_get_unless_zero(&hostport->ref);
996 }
997
998 static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport * hostport)999 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1000 {
1001 /* if LLDD not implemented, leave as NULL */
1002 if (!hostport || !hostport->hosthandle)
1003 return;
1004
1005 nvmet_fc_hostport_put(hostport);
1006 }
1007
1008 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1009 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1010 {
1011 struct nvmet_fc_hostport *host;
1012
1013 lockdep_assert_held(&tgtport->lock);
1014
1015 list_for_each_entry(host, &tgtport->host_list, host_list) {
1016 if (host->hosthandle == hosthandle && !host->invalid) {
1017 if (nvmet_fc_hostport_get(host))
1018 return host;
1019 }
1020 }
1021
1022 return NULL;
1023 }
1024
1025 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1026 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1027 {
1028 struct nvmet_fc_hostport *newhost, *match = NULL;
1029 unsigned long flags;
1030
1031 /* if LLDD not implemented, leave as NULL */
1032 if (!hosthandle)
1033 return NULL;
1034
1035 /*
1036 * take reference for what will be the newly allocated hostport if
1037 * we end up using a new allocation
1038 */
1039 if (!nvmet_fc_tgtport_get(tgtport))
1040 return ERR_PTR(-EINVAL);
1041
1042 spin_lock_irqsave(&tgtport->lock, flags);
1043 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1044 spin_unlock_irqrestore(&tgtport->lock, flags);
1045
1046 if (match) {
1047 /* no new allocation - release reference */
1048 nvmet_fc_tgtport_put(tgtport);
1049 return match;
1050 }
1051
1052 newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1053 if (!newhost) {
1054 /* no new allocation - release reference */
1055 nvmet_fc_tgtport_put(tgtport);
1056 return ERR_PTR(-ENOMEM);
1057 }
1058
1059 spin_lock_irqsave(&tgtport->lock, flags);
1060 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1061 if (match) {
1062 /* new allocation not needed */
1063 kfree(newhost);
1064 newhost = match;
1065 } else {
1066 newhost->tgtport = tgtport;
1067 newhost->hosthandle = hosthandle;
1068 INIT_LIST_HEAD(&newhost->host_list);
1069 kref_init(&newhost->ref);
1070
1071 list_add_tail(&newhost->host_list, &tgtport->host_list);
1072 }
1073 spin_unlock_irqrestore(&tgtport->lock, flags);
1074
1075 return newhost;
1076 }
1077
1078 static void
nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1079 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1080 {
1081 nvmet_fc_delete_target_assoc(assoc);
1082 nvmet_fc_tgt_a_put(assoc);
1083 }
1084
1085 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1086 nvmet_fc_delete_assoc_work(struct work_struct *work)
1087 {
1088 struct nvmet_fc_tgt_assoc *assoc =
1089 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1090 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1091
1092 nvmet_fc_delete_assoc(assoc);
1093 nvmet_fc_tgtport_put(tgtport);
1094 }
1095
1096 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1097 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1098 {
1099 nvmet_fc_tgtport_get(assoc->tgtport);
1100 queue_work(nvmet_wq, &assoc->del_work);
1101 }
1102
1103 static bool
nvmet_fc_assoc_exists(struct nvmet_fc_tgtport * tgtport,u64 association_id)1104 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1105 {
1106 struct nvmet_fc_tgt_assoc *a;
1107 bool found = false;
1108
1109 rcu_read_lock();
1110 list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1111 if (association_id == a->association_id) {
1112 found = true;
1113 break;
1114 }
1115 }
1116 rcu_read_unlock();
1117
1118 return found;
1119 }
1120
1121 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1122 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1123 {
1124 struct nvmet_fc_tgt_assoc *assoc;
1125 unsigned long flags;
1126 bool done;
1127 u64 ran;
1128 int idx;
1129
1130 if (!tgtport->pe)
1131 return NULL;
1132
1133 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1134 if (!assoc)
1135 return NULL;
1136
1137 idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1138 if (idx < 0)
1139 goto out_free_assoc;
1140
1141 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1142 if (IS_ERR(assoc->hostport))
1143 goto out_ida;
1144
1145 assoc->tgtport = tgtport;
1146 assoc->a_id = idx;
1147 INIT_LIST_HEAD(&assoc->a_list);
1148 kref_init(&assoc->ref);
1149 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1150 atomic_set(&assoc->terminating, 0);
1151
1152 done = false;
1153 do {
1154 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1155 ran = ran << BYTES_FOR_QID_SHIFT;
1156
1157 spin_lock_irqsave(&tgtport->lock, flags);
1158 if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1159 assoc->association_id = ran;
1160 list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1161 done = true;
1162 }
1163 spin_unlock_irqrestore(&tgtport->lock, flags);
1164 } while (!done);
1165
1166 return assoc;
1167
1168 out_ida:
1169 ida_free(&tgtport->assoc_cnt, idx);
1170 out_free_assoc:
1171 kfree(assoc);
1172 return NULL;
1173 }
1174
1175 static void
nvmet_fc_target_assoc_free(struct kref * ref)1176 nvmet_fc_target_assoc_free(struct kref *ref)
1177 {
1178 struct nvmet_fc_tgt_assoc *assoc =
1179 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1180 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1181 struct nvmet_fc_ls_iod *oldls;
1182 unsigned long flags;
1183 int i;
1184
1185 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1186 if (assoc->queues[i])
1187 nvmet_fc_delete_target_queue(assoc->queues[i]);
1188 }
1189
1190 /* Send Disconnect now that all i/o has completed */
1191 nvmet_fc_xmt_disconnect_assoc(assoc);
1192
1193 nvmet_fc_free_hostport(assoc->hostport);
1194 spin_lock_irqsave(&tgtport->lock, flags);
1195 oldls = assoc->rcv_disconn;
1196 spin_unlock_irqrestore(&tgtport->lock, flags);
1197 /* if pending Rcv Disconnect Association LS, send rsp now */
1198 if (oldls)
1199 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1200 ida_free(&tgtport->assoc_cnt, assoc->a_id);
1201 dev_info(tgtport->dev,
1202 "{%d:%d} Association freed\n",
1203 tgtport->fc_target_port.port_num, assoc->a_id);
1204 kfree(assoc);
1205 }
1206
1207 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1208 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1209 {
1210 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1211 }
1212
1213 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1214 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1215 {
1216 return kref_get_unless_zero(&assoc->ref);
1217 }
1218
1219 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1220 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1221 {
1222 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1223 unsigned long flags;
1224 int i, terminating;
1225
1226 terminating = atomic_xchg(&assoc->terminating, 1);
1227
1228 /* if already terminating, do nothing */
1229 if (terminating)
1230 return;
1231
1232 spin_lock_irqsave(&tgtport->lock, flags);
1233 list_del_rcu(&assoc->a_list);
1234 spin_unlock_irqrestore(&tgtport->lock, flags);
1235
1236 synchronize_rcu();
1237
1238 /* ensure all in-flight I/Os have been processed */
1239 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1240 if (assoc->queues[i])
1241 flush_workqueue(assoc->queues[i]->work_q);
1242 }
1243
1244 dev_info(tgtport->dev,
1245 "{%d:%d} Association deleted\n",
1246 tgtport->fc_target_port.port_num, assoc->a_id);
1247 }
1248
1249 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1250 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1251 u64 association_id)
1252 {
1253 struct nvmet_fc_tgt_assoc *assoc;
1254 struct nvmet_fc_tgt_assoc *ret = NULL;
1255
1256 rcu_read_lock();
1257 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1258 if (association_id == assoc->association_id) {
1259 ret = assoc;
1260 if (!nvmet_fc_tgt_a_get(assoc))
1261 ret = NULL;
1262 break;
1263 }
1264 }
1265 rcu_read_unlock();
1266
1267 return ret;
1268 }
1269
1270 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1271 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1272 struct nvmet_fc_port_entry *pe,
1273 struct nvmet_port *port)
1274 {
1275 lockdep_assert_held(&nvmet_fc_tgtlock);
1276
1277 pe->tgtport = tgtport;
1278 tgtport->pe = pe;
1279
1280 pe->port = port;
1281 port->priv = pe;
1282
1283 pe->node_name = tgtport->fc_target_port.node_name;
1284 pe->port_name = tgtport->fc_target_port.port_name;
1285 INIT_LIST_HEAD(&pe->pe_list);
1286
1287 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1288 }
1289
1290 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1291 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1292 {
1293 unsigned long flags;
1294
1295 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1296 if (pe->tgtport)
1297 pe->tgtport->pe = NULL;
1298 list_del(&pe->pe_list);
1299 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1300 }
1301
1302 /*
1303 * called when a targetport deregisters. Breaks the relationship
1304 * with the nvmet port, but leaves the port_entry in place so that
1305 * re-registration can resume operation.
1306 */
1307 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1308 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1309 {
1310 struct nvmet_fc_port_entry *pe;
1311 unsigned long flags;
1312
1313 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1314 pe = tgtport->pe;
1315 if (pe)
1316 pe->tgtport = NULL;
1317 tgtport->pe = NULL;
1318 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1319 }
1320
1321 /*
1322 * called when a new targetport is registered. Looks in the
1323 * existing nvmet port_entries to see if the nvmet layer is
1324 * configured for the targetport's wwn's. (the targetport existed,
1325 * nvmet configured, the lldd unregistered the tgtport, and is now
1326 * reregistering the same targetport). If so, set the nvmet port
1327 * port entry on the targetport.
1328 */
1329 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1330 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1331 {
1332 struct nvmet_fc_port_entry *pe;
1333 unsigned long flags;
1334
1335 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1336 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1337 if (tgtport->fc_target_port.node_name == pe->node_name &&
1338 tgtport->fc_target_port.port_name == pe->port_name) {
1339 WARN_ON(pe->tgtport);
1340 tgtport->pe = pe;
1341 pe->tgtport = tgtport;
1342 break;
1343 }
1344 }
1345 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1346 }
1347
1348 /**
1349 * nvmet_fc_register_targetport - transport entry point called by an
1350 * LLDD to register the existence of a local
1351 * NVME subystem FC port.
1352 * @pinfo: pointer to information about the port to be registered
1353 * @template: LLDD entrypoints and operational parameters for the port
1354 * @dev: physical hardware device node port corresponds to. Will be
1355 * used for DMA mappings
1356 * @portptr: pointer to a local port pointer. Upon success, the routine
1357 * will allocate a nvme_fc_local_port structure and place its
1358 * address in the local port pointer. Upon failure, local port
1359 * pointer will be set to NULL.
1360 *
1361 * Returns:
1362 * a completion status. Must be 0 upon success; a negative errno
1363 * (ex: -ENXIO) upon failure.
1364 */
1365 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1366 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1367 struct nvmet_fc_target_template *template,
1368 struct device *dev,
1369 struct nvmet_fc_target_port **portptr)
1370 {
1371 struct nvmet_fc_tgtport *newrec;
1372 unsigned long flags;
1373 int ret, idx;
1374
1375 if (!template->xmt_ls_rsp || !template->fcp_op ||
1376 !template->fcp_abort ||
1377 !template->fcp_req_release || !template->targetport_delete ||
1378 !template->max_hw_queues || !template->max_sgl_segments ||
1379 !template->max_dif_sgl_segments || !template->dma_boundary) {
1380 ret = -EINVAL;
1381 goto out_regtgt_failed;
1382 }
1383
1384 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1385 GFP_KERNEL);
1386 if (!newrec) {
1387 ret = -ENOMEM;
1388 goto out_regtgt_failed;
1389 }
1390
1391 idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1392 if (idx < 0) {
1393 ret = -ENOSPC;
1394 goto out_fail_kfree;
1395 }
1396
1397 if (!get_device(dev) && dev) {
1398 ret = -ENODEV;
1399 goto out_ida_put;
1400 }
1401
1402 newrec->fc_target_port.node_name = pinfo->node_name;
1403 newrec->fc_target_port.port_name = pinfo->port_name;
1404 if (template->target_priv_sz)
1405 newrec->fc_target_port.private = &newrec[1];
1406 else
1407 newrec->fc_target_port.private = NULL;
1408 newrec->fc_target_port.port_id = pinfo->port_id;
1409 newrec->fc_target_port.port_num = idx;
1410 INIT_LIST_HEAD(&newrec->tgt_list);
1411 newrec->dev = dev;
1412 newrec->ops = template;
1413 spin_lock_init(&newrec->lock);
1414 INIT_LIST_HEAD(&newrec->ls_rcv_list);
1415 INIT_LIST_HEAD(&newrec->ls_req_list);
1416 INIT_LIST_HEAD(&newrec->ls_busylist);
1417 INIT_LIST_HEAD(&newrec->assoc_list);
1418 INIT_LIST_HEAD(&newrec->host_list);
1419 kref_init(&newrec->ref);
1420 ida_init(&newrec->assoc_cnt);
1421 newrec->max_sg_cnt = template->max_sgl_segments;
1422 INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1423
1424 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1425 if (ret) {
1426 ret = -ENOMEM;
1427 goto out_free_newrec;
1428 }
1429
1430 nvmet_fc_portentry_rebind_tgt(newrec);
1431
1432 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1433 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1434 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1435
1436 *portptr = &newrec->fc_target_port;
1437 return 0;
1438
1439 out_free_newrec:
1440 put_device(dev);
1441 out_ida_put:
1442 ida_free(&nvmet_fc_tgtport_cnt, idx);
1443 out_fail_kfree:
1444 kfree(newrec);
1445 out_regtgt_failed:
1446 *portptr = NULL;
1447 return ret;
1448 }
1449 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1450
1451
1452 static void
nvmet_fc_free_tgtport(struct kref * ref)1453 nvmet_fc_free_tgtport(struct kref *ref)
1454 {
1455 struct nvmet_fc_tgtport *tgtport =
1456 container_of(ref, struct nvmet_fc_tgtport, ref);
1457 struct device *dev = tgtport->dev;
1458 unsigned long flags;
1459
1460 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1461 list_del(&tgtport->tgt_list);
1462 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1463
1464 nvmet_fc_free_ls_iodlist(tgtport);
1465
1466 /* let the LLDD know we've finished tearing it down */
1467 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1468
1469 ida_free(&nvmet_fc_tgtport_cnt,
1470 tgtport->fc_target_port.port_num);
1471
1472 ida_destroy(&tgtport->assoc_cnt);
1473
1474 kfree(tgtport);
1475
1476 put_device(dev);
1477 }
1478
1479 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1480 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1481 {
1482 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1483 }
1484
1485 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1486 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1487 {
1488 return kref_get_unless_zero(&tgtport->ref);
1489 }
1490
1491 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1492 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1493 {
1494 struct nvmet_fc_tgt_assoc *assoc;
1495
1496 rcu_read_lock();
1497 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1498 if (!nvmet_fc_tgt_a_get(assoc))
1499 continue;
1500 nvmet_fc_schedule_delete_assoc(assoc);
1501 nvmet_fc_tgt_a_put(assoc);
1502 }
1503 rcu_read_unlock();
1504 }
1505
1506 /**
1507 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1508 * to remove references to a hosthandle for LS's.
1509 *
1510 * The nvmet-fc layer ensures that any references to the hosthandle
1511 * on the targetport are forgotten (set to NULL). The LLDD will
1512 * typically call this when a login with a remote host port has been
1513 * lost, thus LS's for the remote host port are no longer possible.
1514 *
1515 * If an LS request is outstanding to the targetport/hosthandle (or
1516 * issued concurrently with the call to invalidate the host), the
1517 * LLDD is responsible for terminating/aborting the LS and completing
1518 * the LS request. It is recommended that these terminations/aborts
1519 * occur after calling to invalidate the host handle to avoid additional
1520 * retries by the nvmet-fc transport. The nvmet-fc transport may
1521 * continue to reference host handle while it cleans up outstanding
1522 * NVME associations. The nvmet-fc transport will call the
1523 * ops->host_release() callback to notify the LLDD that all references
1524 * are complete and the related host handle can be recovered.
1525 * Note: if there are no references, the callback may be called before
1526 * the invalidate host call returns.
1527 *
1528 * @target_port: pointer to the (registered) target port that a prior
1529 * LS was received on and which supplied the transport the
1530 * hosthandle.
1531 * @hosthandle: the handle (pointer) that represents the host port
1532 * that no longer has connectivity and that LS's should
1533 * no longer be directed to.
1534 */
1535 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1536 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1537 void *hosthandle)
1538 {
1539 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1540 struct nvmet_fc_tgt_assoc *assoc, *next;
1541 unsigned long flags;
1542 bool noassoc = true;
1543
1544 spin_lock_irqsave(&tgtport->lock, flags);
1545 list_for_each_entry_safe(assoc, next,
1546 &tgtport->assoc_list, a_list) {
1547 if (assoc->hostport->hosthandle != hosthandle)
1548 continue;
1549 if (!nvmet_fc_tgt_a_get(assoc))
1550 continue;
1551 assoc->hostport->invalid = 1;
1552 noassoc = false;
1553 nvmet_fc_schedule_delete_assoc(assoc);
1554 nvmet_fc_tgt_a_put(assoc);
1555 }
1556 spin_unlock_irqrestore(&tgtport->lock, flags);
1557
1558 /* if there's nothing to wait for - call the callback */
1559 if (noassoc && tgtport->ops->host_release)
1560 tgtport->ops->host_release(hosthandle);
1561 }
1562 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1563
1564 /*
1565 * nvmet layer has called to terminate an association
1566 */
1567 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1568 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1569 {
1570 struct nvmet_fc_tgtport *tgtport, *next;
1571 struct nvmet_fc_tgt_assoc *assoc;
1572 struct nvmet_fc_tgt_queue *queue;
1573 unsigned long flags;
1574 bool found_ctrl = false;
1575
1576 /* this is a bit ugly, but don't want to make locks layered */
1577 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1578 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1579 tgt_list) {
1580 if (!nvmet_fc_tgtport_get(tgtport))
1581 continue;
1582 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1583
1584 rcu_read_lock();
1585 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1586 queue = assoc->queues[0];
1587 if (queue && queue->nvme_sq.ctrl == ctrl) {
1588 if (nvmet_fc_tgt_a_get(assoc))
1589 found_ctrl = true;
1590 break;
1591 }
1592 }
1593 rcu_read_unlock();
1594
1595 nvmet_fc_tgtport_put(tgtport);
1596
1597 if (found_ctrl) {
1598 nvmet_fc_schedule_delete_assoc(assoc);
1599 nvmet_fc_tgt_a_put(assoc);
1600 return;
1601 }
1602
1603 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1604 }
1605 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1606 }
1607
1608 /**
1609 * nvmet_fc_unregister_targetport - transport entry point called by an
1610 * LLDD to deregister/remove a previously
1611 * registered a local NVME subsystem FC port.
1612 * @target_port: pointer to the (registered) target port that is to be
1613 * deregistered.
1614 *
1615 * Returns:
1616 * a completion status. Must be 0 upon success; a negative errno
1617 * (ex: -ENXIO) upon failure.
1618 */
1619 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1620 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1621 {
1622 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1623
1624 nvmet_fc_portentry_unbind_tgt(tgtport);
1625
1626 /* terminate any outstanding associations */
1627 __nvmet_fc_free_assocs(tgtport);
1628
1629 flush_workqueue(nvmet_wq);
1630
1631 /*
1632 * should terminate LS's as well. However, LS's will be generated
1633 * at the tail end of association termination, so they likely don't
1634 * exist yet. And even if they did, it's worthwhile to just let
1635 * them finish and targetport ref counting will clean things up.
1636 */
1637
1638 nvmet_fc_tgtport_put(tgtport);
1639
1640 return 0;
1641 }
1642 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1643
1644
1645 /* ********************** FC-NVME LS RCV Handling ************************* */
1646
1647
1648 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1649 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1650 struct nvmet_fc_ls_iod *iod)
1651 {
1652 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1653 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1654 struct nvmet_fc_tgt_queue *queue;
1655 int ret = 0;
1656
1657 memset(acc, 0, sizeof(*acc));
1658
1659 /*
1660 * FC-NVME spec changes. There are initiators sending different
1661 * lengths as padding sizes for Create Association Cmd descriptor
1662 * was incorrect.
1663 * Accept anything of "minimum" length. Assume format per 1.15
1664 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1665 * trailing pad length is.
1666 */
1667 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1668 ret = VERR_CR_ASSOC_LEN;
1669 else if (be32_to_cpu(rqst->desc_list_len) <
1670 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1671 ret = VERR_CR_ASSOC_RQST_LEN;
1672 else if (rqst->assoc_cmd.desc_tag !=
1673 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1674 ret = VERR_CR_ASSOC_CMD;
1675 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1676 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1677 ret = VERR_CR_ASSOC_CMD_LEN;
1678 else if (!rqst->assoc_cmd.ersp_ratio ||
1679 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1680 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1681 ret = VERR_ERSP_RATIO;
1682
1683 else {
1684 /* new association w/ admin queue */
1685 iod->assoc = nvmet_fc_alloc_target_assoc(
1686 tgtport, iod->hosthandle);
1687 if (!iod->assoc)
1688 ret = VERR_ASSOC_ALLOC_FAIL;
1689 else {
1690 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1691 be16_to_cpu(rqst->assoc_cmd.sqsize));
1692 if (!queue) {
1693 ret = VERR_QUEUE_ALLOC_FAIL;
1694 nvmet_fc_tgt_a_put(iod->assoc);
1695 }
1696 }
1697 }
1698
1699 if (ret) {
1700 dev_err(tgtport->dev,
1701 "Create Association LS failed: %s\n",
1702 validation_errors[ret]);
1703 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1704 sizeof(*acc), rqst->w0.ls_cmd,
1705 FCNVME_RJT_RC_LOGIC,
1706 FCNVME_RJT_EXP_NONE, 0);
1707 return;
1708 }
1709
1710 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1711 atomic_set(&queue->connected, 1);
1712 queue->sqhd = 0; /* best place to init value */
1713
1714 dev_info(tgtport->dev,
1715 "{%d:%d} Association created\n",
1716 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1717
1718 /* format a response */
1719
1720 iod->lsrsp->rsplen = sizeof(*acc);
1721
1722 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1723 fcnvme_lsdesc_len(
1724 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1725 FCNVME_LS_CREATE_ASSOCIATION);
1726 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1727 acc->associd.desc_len =
1728 fcnvme_lsdesc_len(
1729 sizeof(struct fcnvme_lsdesc_assoc_id));
1730 acc->associd.association_id =
1731 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1732 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1733 acc->connectid.desc_len =
1734 fcnvme_lsdesc_len(
1735 sizeof(struct fcnvme_lsdesc_conn_id));
1736 acc->connectid.connection_id = acc->associd.association_id;
1737 }
1738
1739 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1740 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1741 struct nvmet_fc_ls_iod *iod)
1742 {
1743 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1744 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1745 struct nvmet_fc_tgt_queue *queue;
1746 int ret = 0;
1747
1748 memset(acc, 0, sizeof(*acc));
1749
1750 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1751 ret = VERR_CR_CONN_LEN;
1752 else if (rqst->desc_list_len !=
1753 fcnvme_lsdesc_len(
1754 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1755 ret = VERR_CR_CONN_RQST_LEN;
1756 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1757 ret = VERR_ASSOC_ID;
1758 else if (rqst->associd.desc_len !=
1759 fcnvme_lsdesc_len(
1760 sizeof(struct fcnvme_lsdesc_assoc_id)))
1761 ret = VERR_ASSOC_ID_LEN;
1762 else if (rqst->connect_cmd.desc_tag !=
1763 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1764 ret = VERR_CR_CONN_CMD;
1765 else if (rqst->connect_cmd.desc_len !=
1766 fcnvme_lsdesc_len(
1767 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1768 ret = VERR_CR_CONN_CMD_LEN;
1769 else if (!rqst->connect_cmd.ersp_ratio ||
1770 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1771 be16_to_cpu(rqst->connect_cmd.sqsize)))
1772 ret = VERR_ERSP_RATIO;
1773
1774 else {
1775 /* new io queue */
1776 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1777 be64_to_cpu(rqst->associd.association_id));
1778 if (!iod->assoc)
1779 ret = VERR_NO_ASSOC;
1780 else {
1781 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1782 be16_to_cpu(rqst->connect_cmd.qid),
1783 be16_to_cpu(rqst->connect_cmd.sqsize));
1784 if (!queue)
1785 ret = VERR_QUEUE_ALLOC_FAIL;
1786
1787 /* release get taken in nvmet_fc_find_target_assoc */
1788 nvmet_fc_tgt_a_put(iod->assoc);
1789 }
1790 }
1791
1792 if (ret) {
1793 dev_err(tgtport->dev,
1794 "Create Connection LS failed: %s\n",
1795 validation_errors[ret]);
1796 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1797 sizeof(*acc), rqst->w0.ls_cmd,
1798 (ret == VERR_NO_ASSOC) ?
1799 FCNVME_RJT_RC_INV_ASSOC :
1800 FCNVME_RJT_RC_LOGIC,
1801 FCNVME_RJT_EXP_NONE, 0);
1802 return;
1803 }
1804
1805 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1806 atomic_set(&queue->connected, 1);
1807 queue->sqhd = 0; /* best place to init value */
1808
1809 /* format a response */
1810
1811 iod->lsrsp->rsplen = sizeof(*acc);
1812
1813 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1814 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1815 FCNVME_LS_CREATE_CONNECTION);
1816 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1817 acc->connectid.desc_len =
1818 fcnvme_lsdesc_len(
1819 sizeof(struct fcnvme_lsdesc_conn_id));
1820 acc->connectid.connection_id =
1821 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1822 be16_to_cpu(rqst->connect_cmd.qid)));
1823 }
1824
1825 /*
1826 * Returns true if the LS response is to be transmit
1827 * Returns false if the LS response is to be delayed
1828 */
1829 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1830 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1831 struct nvmet_fc_ls_iod *iod)
1832 {
1833 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1834 &iod->rqstbuf->rq_dis_assoc;
1835 struct fcnvme_ls_disconnect_assoc_acc *acc =
1836 &iod->rspbuf->rsp_dis_assoc;
1837 struct nvmet_fc_tgt_assoc *assoc = NULL;
1838 struct nvmet_fc_ls_iod *oldls = NULL;
1839 unsigned long flags;
1840 int ret = 0;
1841
1842 memset(acc, 0, sizeof(*acc));
1843
1844 ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1845 if (!ret) {
1846 /* match an active association - takes an assoc ref if !NULL */
1847 assoc = nvmet_fc_find_target_assoc(tgtport,
1848 be64_to_cpu(rqst->associd.association_id));
1849 iod->assoc = assoc;
1850 if (!assoc)
1851 ret = VERR_NO_ASSOC;
1852 }
1853
1854 if (ret || !assoc) {
1855 dev_err(tgtport->dev,
1856 "Disconnect LS failed: %s\n",
1857 validation_errors[ret]);
1858 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1859 sizeof(*acc), rqst->w0.ls_cmd,
1860 (ret == VERR_NO_ASSOC) ?
1861 FCNVME_RJT_RC_INV_ASSOC :
1862 FCNVME_RJT_RC_LOGIC,
1863 FCNVME_RJT_EXP_NONE, 0);
1864 return true;
1865 }
1866
1867 /* format a response */
1868
1869 iod->lsrsp->rsplen = sizeof(*acc);
1870
1871 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1872 fcnvme_lsdesc_len(
1873 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1874 FCNVME_LS_DISCONNECT_ASSOC);
1875
1876 /*
1877 * The rules for LS response says the response cannot
1878 * go back until ABTS's have been sent for all outstanding
1879 * I/O and a Disconnect Association LS has been sent.
1880 * So... save off the Disconnect LS to send the response
1881 * later. If there was a prior LS already saved, replace
1882 * it with the newer one and send a can't perform reject
1883 * on the older one.
1884 */
1885 spin_lock_irqsave(&tgtport->lock, flags);
1886 oldls = assoc->rcv_disconn;
1887 assoc->rcv_disconn = iod;
1888 spin_unlock_irqrestore(&tgtport->lock, flags);
1889
1890 if (oldls) {
1891 dev_info(tgtport->dev,
1892 "{%d:%d} Multiple Disconnect Association LS's "
1893 "received\n",
1894 tgtport->fc_target_port.port_num, assoc->a_id);
1895 /* overwrite good response with bogus failure */
1896 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1897 sizeof(*iod->rspbuf),
1898 /* ok to use rqst, LS is same */
1899 rqst->w0.ls_cmd,
1900 FCNVME_RJT_RC_UNAB,
1901 FCNVME_RJT_EXP_NONE, 0);
1902 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1903 }
1904
1905 nvmet_fc_schedule_delete_assoc(assoc);
1906 nvmet_fc_tgt_a_put(assoc);
1907
1908 return false;
1909 }
1910
1911
1912 /* *********************** NVME Ctrl Routines **************************** */
1913
1914
1915 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1916
1917 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1918
1919 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1920 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1921 {
1922 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1923 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1924
1925 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1926 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1927 nvmet_fc_free_ls_iod(tgtport, iod);
1928 nvmet_fc_tgtport_put(tgtport);
1929 }
1930
1931 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1932 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1933 struct nvmet_fc_ls_iod *iod)
1934 {
1935 int ret;
1936
1937 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1938 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1939
1940 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1941 if (ret)
1942 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1943 }
1944
1945 /*
1946 * Actual processing routine for received FC-NVME LS Requests from the LLD
1947 */
1948 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1949 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1950 struct nvmet_fc_ls_iod *iod)
1951 {
1952 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1953 bool sendrsp = true;
1954
1955 iod->lsrsp->nvme_fc_private = iod;
1956 iod->lsrsp->rspbuf = iod->rspbuf;
1957 iod->lsrsp->rspdma = iod->rspdma;
1958 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1959 /* Be preventative. handlers will later set to valid length */
1960 iod->lsrsp->rsplen = 0;
1961
1962 iod->assoc = NULL;
1963
1964 /*
1965 * handlers:
1966 * parse request input, execute the request, and format the
1967 * LS response
1968 */
1969 switch (w0->ls_cmd) {
1970 case FCNVME_LS_CREATE_ASSOCIATION:
1971 /* Creates Association and initial Admin Queue/Connection */
1972 nvmet_fc_ls_create_association(tgtport, iod);
1973 break;
1974 case FCNVME_LS_CREATE_CONNECTION:
1975 /* Creates an IO Queue/Connection */
1976 nvmet_fc_ls_create_connection(tgtport, iod);
1977 break;
1978 case FCNVME_LS_DISCONNECT_ASSOC:
1979 /* Terminate a Queue/Connection or the Association */
1980 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1981 break;
1982 default:
1983 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1984 sizeof(*iod->rspbuf), w0->ls_cmd,
1985 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1986 }
1987
1988 if (sendrsp)
1989 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1990 }
1991
1992 /*
1993 * Actual processing routine for received FC-NVME LS Requests from the LLD
1994 */
1995 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)1996 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1997 {
1998 struct nvmet_fc_ls_iod *iod =
1999 container_of(work, struct nvmet_fc_ls_iod, work);
2000 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2001
2002 nvmet_fc_handle_ls_rqst(tgtport, iod);
2003 }
2004
2005
2006 /**
2007 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2008 * upon the reception of a NVME LS request.
2009 *
2010 * The nvmet-fc layer will copy payload to an internal structure for
2011 * processing. As such, upon completion of the routine, the LLDD may
2012 * immediately free/reuse the LS request buffer passed in the call.
2013 *
2014 * If this routine returns error, the LLDD should abort the exchange.
2015 *
2016 * @target_port: pointer to the (registered) target port the LS was
2017 * received on.
2018 * @hosthandle: pointer to the host specific data, gets stored in iod.
2019 * @lsrsp: pointer to a lsrsp structure to be used to reference
2020 * the exchange corresponding to the LS.
2021 * @lsreqbuf: pointer to the buffer containing the LS Request
2022 * @lsreqbuf_len: length, in bytes, of the received LS request
2023 */
2024 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2025 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2026 void *hosthandle,
2027 struct nvmefc_ls_rsp *lsrsp,
2028 void *lsreqbuf, u32 lsreqbuf_len)
2029 {
2030 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2031 struct nvmet_fc_ls_iod *iod;
2032 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2033
2034 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2035 dev_info(tgtport->dev,
2036 "RCV %s LS failed: payload too large (%d)\n",
2037 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2038 nvmefc_ls_names[w0->ls_cmd] : "",
2039 lsreqbuf_len);
2040 return -E2BIG;
2041 }
2042
2043 if (!nvmet_fc_tgtport_get(tgtport)) {
2044 dev_info(tgtport->dev,
2045 "RCV %s LS failed: target deleting\n",
2046 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2047 nvmefc_ls_names[w0->ls_cmd] : "");
2048 return -ESHUTDOWN;
2049 }
2050
2051 iod = nvmet_fc_alloc_ls_iod(tgtport);
2052 if (!iod) {
2053 dev_info(tgtport->dev,
2054 "RCV %s LS failed: context allocation failed\n",
2055 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2056 nvmefc_ls_names[w0->ls_cmd] : "");
2057 nvmet_fc_tgtport_put(tgtport);
2058 return -ENOENT;
2059 }
2060
2061 iod->lsrsp = lsrsp;
2062 iod->fcpreq = NULL;
2063 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2064 iod->rqstdatalen = lsreqbuf_len;
2065 iod->hosthandle = hosthandle;
2066
2067 queue_work(nvmet_wq, &iod->work);
2068
2069 return 0;
2070 }
2071 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2072
2073
2074 /*
2075 * **********************
2076 * Start of FCP handling
2077 * **********************
2078 */
2079
2080 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2081 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2082 {
2083 struct scatterlist *sg;
2084 unsigned int nent;
2085
2086 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2087 if (!sg)
2088 goto out;
2089
2090 fod->data_sg = sg;
2091 fod->data_sg_cnt = nent;
2092 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2093 ((fod->io_dir == NVMET_FCP_WRITE) ?
2094 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2095 /* note: write from initiator perspective */
2096 fod->next_sg = fod->data_sg;
2097
2098 return 0;
2099
2100 out:
2101 return NVME_SC_INTERNAL;
2102 }
2103
2104 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2105 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2106 {
2107 if (!fod->data_sg || !fod->data_sg_cnt)
2108 return;
2109
2110 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2111 ((fod->io_dir == NVMET_FCP_WRITE) ?
2112 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2113 sgl_free(fod->data_sg);
2114 fod->data_sg = NULL;
2115 fod->data_sg_cnt = 0;
2116 }
2117
2118
2119 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2120 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2121 {
2122 u32 sqtail, used;
2123
2124 /* egad, this is ugly. And sqtail is just a best guess */
2125 sqtail = atomic_read(&q->sqtail) % q->sqsize;
2126
2127 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2128 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2129 }
2130
2131 /*
2132 * Prep RSP payload.
2133 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2134 */
2135 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2136 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2137 struct nvmet_fc_fcp_iod *fod)
2138 {
2139 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2140 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2141 struct nvme_completion *cqe = &ersp->cqe;
2142 u32 *cqewd = (u32 *)cqe;
2143 bool send_ersp = false;
2144 u32 rsn, rspcnt, xfr_length;
2145
2146 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2147 xfr_length = fod->req.transfer_len;
2148 else
2149 xfr_length = fod->offset;
2150
2151 /*
2152 * check to see if we can send a 0's rsp.
2153 * Note: to send a 0's response, the NVME-FC host transport will
2154 * recreate the CQE. The host transport knows: sq id, SQHD (last
2155 * seen in an ersp), and command_id. Thus it will create a
2156 * zero-filled CQE with those known fields filled in. Transport
2157 * must send an ersp for any condition where the cqe won't match
2158 * this.
2159 *
2160 * Here are the FC-NVME mandated cases where we must send an ersp:
2161 * every N responses, where N=ersp_ratio
2162 * force fabric commands to send ersp's (not in FC-NVME but good
2163 * practice)
2164 * normal cmds: any time status is non-zero, or status is zero
2165 * but words 0 or 1 are non-zero.
2166 * the SQ is 90% or more full
2167 * the cmd is a fused command
2168 * transferred data length not equal to cmd iu length
2169 */
2170 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2171 if (!(rspcnt % fod->queue->ersp_ratio) ||
2172 nvme_is_fabrics((struct nvme_command *) sqe) ||
2173 xfr_length != fod->req.transfer_len ||
2174 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2175 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2176 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2177 send_ersp = true;
2178
2179 /* re-set the fields */
2180 fod->fcpreq->rspaddr = ersp;
2181 fod->fcpreq->rspdma = fod->rspdma;
2182
2183 if (!send_ersp) {
2184 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2185 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2186 } else {
2187 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2188 rsn = atomic_inc_return(&fod->queue->rsn);
2189 ersp->rsn = cpu_to_be32(rsn);
2190 ersp->xfrd_len = cpu_to_be32(xfr_length);
2191 fod->fcpreq->rsplen = sizeof(*ersp);
2192 }
2193
2194 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2195 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2196 }
2197
2198 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2199
2200 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2201 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2202 struct nvmet_fc_fcp_iod *fod)
2203 {
2204 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2205
2206 /* data no longer needed */
2207 nvmet_fc_free_tgt_pgs(fod);
2208
2209 /*
2210 * if an ABTS was received or we issued the fcp_abort early
2211 * don't call abort routine again.
2212 */
2213 /* no need to take lock - lock was taken earlier to get here */
2214 if (!fod->aborted)
2215 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2216
2217 nvmet_fc_free_fcp_iod(fod->queue, fod);
2218 }
2219
2220 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2221 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2222 struct nvmet_fc_fcp_iod *fod)
2223 {
2224 int ret;
2225
2226 fod->fcpreq->op = NVMET_FCOP_RSP;
2227 fod->fcpreq->timeout = 0;
2228
2229 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2230
2231 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2232 if (ret)
2233 nvmet_fc_abort_op(tgtport, fod);
2234 }
2235
2236 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2237 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2238 struct nvmet_fc_fcp_iod *fod, u8 op)
2239 {
2240 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2241 struct scatterlist *sg = fod->next_sg;
2242 unsigned long flags;
2243 u32 remaininglen = fod->req.transfer_len - fod->offset;
2244 u32 tlen = 0;
2245 int ret;
2246
2247 fcpreq->op = op;
2248 fcpreq->offset = fod->offset;
2249 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2250
2251 /*
2252 * for next sequence:
2253 * break at a sg element boundary
2254 * attempt to keep sequence length capped at
2255 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2256 * be longer if a single sg element is larger
2257 * than that amount. This is done to avoid creating
2258 * a new sg list to use for the tgtport api.
2259 */
2260 fcpreq->sg = sg;
2261 fcpreq->sg_cnt = 0;
2262 while (tlen < remaininglen &&
2263 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2264 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2265 fcpreq->sg_cnt++;
2266 tlen += sg_dma_len(sg);
2267 sg = sg_next(sg);
2268 }
2269 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2270 fcpreq->sg_cnt++;
2271 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2272 sg = sg_next(sg);
2273 }
2274 if (tlen < remaininglen)
2275 fod->next_sg = sg;
2276 else
2277 fod->next_sg = NULL;
2278
2279 fcpreq->transfer_length = tlen;
2280 fcpreq->transferred_length = 0;
2281 fcpreq->fcp_error = 0;
2282 fcpreq->rsplen = 0;
2283
2284 /*
2285 * If the last READDATA request: check if LLDD supports
2286 * combined xfr with response.
2287 */
2288 if ((op == NVMET_FCOP_READDATA) &&
2289 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2290 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2291 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2292 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2293 }
2294
2295 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2296 if (ret) {
2297 /*
2298 * should be ok to set w/o lock as its in the thread of
2299 * execution (not an async timer routine) and doesn't
2300 * contend with any clearing action
2301 */
2302 fod->abort = true;
2303
2304 if (op == NVMET_FCOP_WRITEDATA) {
2305 spin_lock_irqsave(&fod->flock, flags);
2306 fod->writedataactive = false;
2307 spin_unlock_irqrestore(&fod->flock, flags);
2308 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2309 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2310 fcpreq->fcp_error = ret;
2311 fcpreq->transferred_length = 0;
2312 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2313 }
2314 }
2315 }
2316
2317 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2318 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2319 {
2320 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2321 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2322
2323 /* if in the middle of an io and we need to tear down */
2324 if (abort) {
2325 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2326 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2327 return true;
2328 }
2329
2330 nvmet_fc_abort_op(tgtport, fod);
2331 return true;
2332 }
2333
2334 return false;
2335 }
2336
2337 /*
2338 * actual done handler for FCP operations when completed by the lldd
2339 */
2340 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2341 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2342 {
2343 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2344 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2345 unsigned long flags;
2346 bool abort;
2347
2348 spin_lock_irqsave(&fod->flock, flags);
2349 abort = fod->abort;
2350 fod->writedataactive = false;
2351 spin_unlock_irqrestore(&fod->flock, flags);
2352
2353 switch (fcpreq->op) {
2354
2355 case NVMET_FCOP_WRITEDATA:
2356 if (__nvmet_fc_fod_op_abort(fod, abort))
2357 return;
2358 if (fcpreq->fcp_error ||
2359 fcpreq->transferred_length != fcpreq->transfer_length) {
2360 spin_lock_irqsave(&fod->flock, flags);
2361 fod->abort = true;
2362 spin_unlock_irqrestore(&fod->flock, flags);
2363
2364 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2365 return;
2366 }
2367
2368 fod->offset += fcpreq->transferred_length;
2369 if (fod->offset != fod->req.transfer_len) {
2370 spin_lock_irqsave(&fod->flock, flags);
2371 fod->writedataactive = true;
2372 spin_unlock_irqrestore(&fod->flock, flags);
2373
2374 /* transfer the next chunk */
2375 nvmet_fc_transfer_fcp_data(tgtport, fod,
2376 NVMET_FCOP_WRITEDATA);
2377 return;
2378 }
2379
2380 /* data transfer complete, resume with nvmet layer */
2381 fod->req.execute(&fod->req);
2382 break;
2383
2384 case NVMET_FCOP_READDATA:
2385 case NVMET_FCOP_READDATA_RSP:
2386 if (__nvmet_fc_fod_op_abort(fod, abort))
2387 return;
2388 if (fcpreq->fcp_error ||
2389 fcpreq->transferred_length != fcpreq->transfer_length) {
2390 nvmet_fc_abort_op(tgtport, fod);
2391 return;
2392 }
2393
2394 /* success */
2395
2396 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2397 /* data no longer needed */
2398 nvmet_fc_free_tgt_pgs(fod);
2399 nvmet_fc_free_fcp_iod(fod->queue, fod);
2400 return;
2401 }
2402
2403 fod->offset += fcpreq->transferred_length;
2404 if (fod->offset != fod->req.transfer_len) {
2405 /* transfer the next chunk */
2406 nvmet_fc_transfer_fcp_data(tgtport, fod,
2407 NVMET_FCOP_READDATA);
2408 return;
2409 }
2410
2411 /* data transfer complete, send response */
2412
2413 /* data no longer needed */
2414 nvmet_fc_free_tgt_pgs(fod);
2415
2416 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2417
2418 break;
2419
2420 case NVMET_FCOP_RSP:
2421 if (__nvmet_fc_fod_op_abort(fod, abort))
2422 return;
2423 nvmet_fc_free_fcp_iod(fod->queue, fod);
2424 break;
2425
2426 default:
2427 break;
2428 }
2429 }
2430
2431 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2432 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2433 {
2434 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2435
2436 nvmet_fc_fod_op_done(fod);
2437 }
2438
2439 /*
2440 * actual completion handler after execution by the nvmet layer
2441 */
2442 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2443 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2444 struct nvmet_fc_fcp_iod *fod, int status)
2445 {
2446 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2447 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2448 unsigned long flags;
2449 bool abort;
2450
2451 spin_lock_irqsave(&fod->flock, flags);
2452 abort = fod->abort;
2453 spin_unlock_irqrestore(&fod->flock, flags);
2454
2455 /* if we have a CQE, snoop the last sq_head value */
2456 if (!status)
2457 fod->queue->sqhd = cqe->sq_head;
2458
2459 if (abort) {
2460 nvmet_fc_abort_op(tgtport, fod);
2461 return;
2462 }
2463
2464 /* if an error handling the cmd post initial parsing */
2465 if (status) {
2466 /* fudge up a failed CQE status for our transport error */
2467 memset(cqe, 0, sizeof(*cqe));
2468 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2469 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2470 cqe->command_id = sqe->command_id;
2471 cqe->status = cpu_to_le16(status);
2472 } else {
2473
2474 /*
2475 * try to push the data even if the SQE status is non-zero.
2476 * There may be a status where data still was intended to
2477 * be moved
2478 */
2479 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2480 /* push the data over before sending rsp */
2481 nvmet_fc_transfer_fcp_data(tgtport, fod,
2482 NVMET_FCOP_READDATA);
2483 return;
2484 }
2485
2486 /* writes & no data - fall thru */
2487 }
2488
2489 /* data no longer needed */
2490 nvmet_fc_free_tgt_pgs(fod);
2491
2492 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2493 }
2494
2495
2496 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2497 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2498 {
2499 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2500 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2501
2502 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2503 }
2504
2505
2506 /*
2507 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2508 */
2509 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2510 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2511 struct nvmet_fc_fcp_iod *fod)
2512 {
2513 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2514 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2515 int ret;
2516
2517 /*
2518 * Fused commands are currently not supported in the linux
2519 * implementation.
2520 *
2521 * As such, the implementation of the FC transport does not
2522 * look at the fused commands and order delivery to the upper
2523 * layer until we have both based on csn.
2524 */
2525
2526 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2527
2528 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2529 fod->io_dir = NVMET_FCP_WRITE;
2530 if (!nvme_is_write(&cmdiu->sqe))
2531 goto transport_error;
2532 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2533 fod->io_dir = NVMET_FCP_READ;
2534 if (nvme_is_write(&cmdiu->sqe))
2535 goto transport_error;
2536 } else {
2537 fod->io_dir = NVMET_FCP_NODATA;
2538 if (xfrlen)
2539 goto transport_error;
2540 }
2541
2542 fod->req.cmd = &fod->cmdiubuf.sqe;
2543 fod->req.cqe = &fod->rspiubuf.cqe;
2544 if (!tgtport->pe)
2545 goto transport_error;
2546 fod->req.port = tgtport->pe->port;
2547
2548 /* clear any response payload */
2549 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2550
2551 fod->data_sg = NULL;
2552 fod->data_sg_cnt = 0;
2553
2554 ret = nvmet_req_init(&fod->req,
2555 &fod->queue->nvme_cq,
2556 &fod->queue->nvme_sq,
2557 &nvmet_fc_tgt_fcp_ops);
2558 if (!ret) {
2559 /* bad SQE content or invalid ctrl state */
2560 /* nvmet layer has already called op done to send rsp. */
2561 return;
2562 }
2563
2564 fod->req.transfer_len = xfrlen;
2565
2566 /* keep a running counter of tail position */
2567 atomic_inc(&fod->queue->sqtail);
2568
2569 if (fod->req.transfer_len) {
2570 ret = nvmet_fc_alloc_tgt_pgs(fod);
2571 if (ret) {
2572 nvmet_req_complete(&fod->req, ret);
2573 return;
2574 }
2575 }
2576 fod->req.sg = fod->data_sg;
2577 fod->req.sg_cnt = fod->data_sg_cnt;
2578 fod->offset = 0;
2579
2580 if (fod->io_dir == NVMET_FCP_WRITE) {
2581 /* pull the data over before invoking nvmet layer */
2582 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2583 return;
2584 }
2585
2586 /*
2587 * Reads or no data:
2588 *
2589 * can invoke the nvmet_layer now. If read data, cmd completion will
2590 * push the data
2591 */
2592 fod->req.execute(&fod->req);
2593 return;
2594
2595 transport_error:
2596 nvmet_fc_abort_op(tgtport, fod);
2597 }
2598
2599 /**
2600 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2601 * upon the reception of a NVME FCP CMD IU.
2602 *
2603 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2604 * layer for processing.
2605 *
2606 * The nvmet_fc layer allocates a local job structure (struct
2607 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2608 * CMD IU buffer to the job structure. As such, on a successful
2609 * completion (returns 0), the LLDD may immediately free/reuse
2610 * the CMD IU buffer passed in the call.
2611 *
2612 * However, in some circumstances, due to the packetized nature of FC
2613 * and the api of the FC LLDD which may issue a hw command to send the
2614 * response, but the LLDD may not get the hw completion for that command
2615 * and upcall the nvmet_fc layer before a new command may be
2616 * asynchronously received - its possible for a command to be received
2617 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2618 * the appearance of more commands received than fits in the sq.
2619 * To alleviate this scenario, a temporary queue is maintained in the
2620 * transport for pending LLDD requests waiting for a queue job structure.
2621 * In these "overrun" cases, a temporary queue element is allocated
2622 * the LLDD request and CMD iu buffer information remembered, and the
2623 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2624 * structure is freed, it is immediately reallocated for anything on the
2625 * pending request list. The LLDDs defer_rcv() callback is called,
2626 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2627 * is then started normally with the transport.
2628 *
2629 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2630 * the completion as successful but must not reuse the CMD IU buffer
2631 * until the LLDD's defer_rcv() callback has been called for the
2632 * corresponding struct nvmefc_tgt_fcp_req pointer.
2633 *
2634 * If there is any other condition in which an error occurs, the
2635 * transport will return a non-zero status indicating the error.
2636 * In all cases other than -EOVERFLOW, the transport has not accepted the
2637 * request and the LLDD should abort the exchange.
2638 *
2639 * @target_port: pointer to the (registered) target port the FCP CMD IU
2640 * was received on.
2641 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2642 * the exchange corresponding to the FCP Exchange.
2643 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2644 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2645 */
2646 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2647 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2648 struct nvmefc_tgt_fcp_req *fcpreq,
2649 void *cmdiubuf, u32 cmdiubuf_len)
2650 {
2651 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2652 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2653 struct nvmet_fc_tgt_queue *queue;
2654 struct nvmet_fc_fcp_iod *fod;
2655 struct nvmet_fc_defer_fcp_req *deferfcp;
2656 unsigned long flags;
2657
2658 /* validate iu, so the connection id can be used to find the queue */
2659 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2660 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2661 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2662 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2663 return -EIO;
2664
2665 queue = nvmet_fc_find_target_queue(tgtport,
2666 be64_to_cpu(cmdiu->connection_id));
2667 if (!queue)
2668 return -ENOTCONN;
2669
2670 /*
2671 * note: reference taken by find_target_queue
2672 * After successful fod allocation, the fod will inherit the
2673 * ownership of that reference and will remove the reference
2674 * when the fod is freed.
2675 */
2676
2677 spin_lock_irqsave(&queue->qlock, flags);
2678
2679 fod = nvmet_fc_alloc_fcp_iod(queue);
2680 if (fod) {
2681 spin_unlock_irqrestore(&queue->qlock, flags);
2682
2683 fcpreq->nvmet_fc_private = fod;
2684 fod->fcpreq = fcpreq;
2685
2686 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2687
2688 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2689
2690 return 0;
2691 }
2692
2693 if (!tgtport->ops->defer_rcv) {
2694 spin_unlock_irqrestore(&queue->qlock, flags);
2695 /* release the queue lookup reference */
2696 nvmet_fc_tgt_q_put(queue);
2697 return -ENOENT;
2698 }
2699
2700 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2701 struct nvmet_fc_defer_fcp_req, req_list);
2702 if (deferfcp) {
2703 /* Just re-use one that was previously allocated */
2704 list_del(&deferfcp->req_list);
2705 } else {
2706 spin_unlock_irqrestore(&queue->qlock, flags);
2707
2708 /* Now we need to dynamically allocate one */
2709 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2710 if (!deferfcp) {
2711 /* release the queue lookup reference */
2712 nvmet_fc_tgt_q_put(queue);
2713 return -ENOMEM;
2714 }
2715 spin_lock_irqsave(&queue->qlock, flags);
2716 }
2717
2718 /* For now, use rspaddr / rsplen to save payload information */
2719 fcpreq->rspaddr = cmdiubuf;
2720 fcpreq->rsplen = cmdiubuf_len;
2721 deferfcp->fcp_req = fcpreq;
2722
2723 /* defer processing till a fod becomes available */
2724 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2725
2726 /* NOTE: the queue lookup reference is still valid */
2727
2728 spin_unlock_irqrestore(&queue->qlock, flags);
2729
2730 return -EOVERFLOW;
2731 }
2732 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2733
2734 /**
2735 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2736 * upon the reception of an ABTS for a FCP command
2737 *
2738 * Notify the transport that an ABTS has been received for a FCP command
2739 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2740 * LLDD believes the command is still being worked on
2741 * (template_ops->fcp_req_release() has not been called).
2742 *
2743 * The transport will wait for any outstanding work (an op to the LLDD,
2744 * which the lldd should complete with error due to the ABTS; or the
2745 * completion from the nvmet layer of the nvme command), then will
2746 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2747 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2748 * to the ABTS either after return from this function (assuming any
2749 * outstanding op work has been terminated) or upon the callback being
2750 * called.
2751 *
2752 * @target_port: pointer to the (registered) target port the FCP CMD IU
2753 * was received on.
2754 * @fcpreq: pointer to the fcpreq request structure that corresponds
2755 * to the exchange that received the ABTS.
2756 */
2757 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2758 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2759 struct nvmefc_tgt_fcp_req *fcpreq)
2760 {
2761 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2762 struct nvmet_fc_tgt_queue *queue;
2763 unsigned long flags;
2764
2765 if (!fod || fod->fcpreq != fcpreq)
2766 /* job appears to have already completed, ignore abort */
2767 return;
2768
2769 queue = fod->queue;
2770
2771 spin_lock_irqsave(&queue->qlock, flags);
2772 if (fod->active) {
2773 /*
2774 * mark as abort. The abort handler, invoked upon completion
2775 * of any work, will detect the aborted status and do the
2776 * callback.
2777 */
2778 spin_lock(&fod->flock);
2779 fod->abort = true;
2780 fod->aborted = true;
2781 spin_unlock(&fod->flock);
2782 }
2783 spin_unlock_irqrestore(&queue->qlock, flags);
2784 }
2785 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2786
2787
2788 struct nvmet_fc_traddr {
2789 u64 nn;
2790 u64 pn;
2791 };
2792
2793 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2794 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2795 {
2796 u64 token64;
2797
2798 if (match_u64(sstr, &token64))
2799 return -EINVAL;
2800 *val = token64;
2801
2802 return 0;
2803 }
2804
2805 /*
2806 * This routine validates and extracts the WWN's from the TRADDR string.
2807 * As kernel parsers need the 0x to determine number base, universally
2808 * build string to parse with 0x prefix before parsing name strings.
2809 */
2810 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2811 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2812 {
2813 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2814 substring_t wwn = { name, &name[sizeof(name)-1] };
2815 int nnoffset, pnoffset;
2816
2817 /* validate if string is one of the 2 allowed formats */
2818 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2819 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2820 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2821 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2822 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2823 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2824 NVME_FC_TRADDR_OXNNLEN;
2825 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2826 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2827 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2828 "pn-", NVME_FC_TRADDR_NNLEN))) {
2829 nnoffset = NVME_FC_TRADDR_NNLEN;
2830 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2831 } else
2832 goto out_einval;
2833
2834 name[0] = '0';
2835 name[1] = 'x';
2836 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2837
2838 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2839 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2840 goto out_einval;
2841
2842 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2843 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2844 goto out_einval;
2845
2846 return 0;
2847
2848 out_einval:
2849 pr_warn("%s: bad traddr string\n", __func__);
2850 return -EINVAL;
2851 }
2852
2853 static int
nvmet_fc_add_port(struct nvmet_port * port)2854 nvmet_fc_add_port(struct nvmet_port *port)
2855 {
2856 struct nvmet_fc_tgtport *tgtport;
2857 struct nvmet_fc_port_entry *pe;
2858 struct nvmet_fc_traddr traddr = { 0L, 0L };
2859 unsigned long flags;
2860 int ret;
2861
2862 /* validate the address info */
2863 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2864 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2865 return -EINVAL;
2866
2867 /* map the traddr address info to a target port */
2868
2869 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2870 sizeof(port->disc_addr.traddr));
2871 if (ret)
2872 return ret;
2873
2874 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2875 if (!pe)
2876 return -ENOMEM;
2877
2878 ret = -ENXIO;
2879 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2880 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2881 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2882 (tgtport->fc_target_port.port_name == traddr.pn)) {
2883 /* a FC port can only be 1 nvmet port id */
2884 if (!tgtport->pe) {
2885 nvmet_fc_portentry_bind(tgtport, pe, port);
2886 ret = 0;
2887 } else
2888 ret = -EALREADY;
2889 break;
2890 }
2891 }
2892 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2893
2894 if (ret)
2895 kfree(pe);
2896
2897 return ret;
2898 }
2899
2900 static void
nvmet_fc_remove_port(struct nvmet_port * port)2901 nvmet_fc_remove_port(struct nvmet_port *port)
2902 {
2903 struct nvmet_fc_port_entry *pe = port->priv;
2904
2905 nvmet_fc_portentry_unbind(pe);
2906
2907 /* terminate any outstanding associations */
2908 __nvmet_fc_free_assocs(pe->tgtport);
2909
2910 kfree(pe);
2911 }
2912
2913 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2914 nvmet_fc_discovery_chg(struct nvmet_port *port)
2915 {
2916 struct nvmet_fc_port_entry *pe = port->priv;
2917 struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2918
2919 if (tgtport && tgtport->ops->discovery_event)
2920 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2921 }
2922
2923 static ssize_t
nvmet_fc_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_size)2924 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2925 char *traddr, size_t traddr_size)
2926 {
2927 struct nvmet_sq *sq = ctrl->sqs[0];
2928 struct nvmet_fc_tgt_queue *queue =
2929 container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2930 struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2931 struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2932 u64 wwnn, wwpn;
2933 ssize_t ret = 0;
2934
2935 if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2936 return -ENODEV;
2937 if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2938 ret = -ENODEV;
2939 goto out_put;
2940 }
2941
2942 if (tgtport->ops->host_traddr) {
2943 ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2944 if (ret)
2945 goto out_put_host;
2946 ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2947 }
2948 out_put_host:
2949 nvmet_fc_hostport_put(hostport);
2950 out_put:
2951 nvmet_fc_tgtport_put(tgtport);
2952 return ret;
2953 }
2954
2955 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2956 .owner = THIS_MODULE,
2957 .type = NVMF_TRTYPE_FC,
2958 .msdbd = 1,
2959 .add_port = nvmet_fc_add_port,
2960 .remove_port = nvmet_fc_remove_port,
2961 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2962 .delete_ctrl = nvmet_fc_delete_ctrl,
2963 .discovery_chg = nvmet_fc_discovery_chg,
2964 .host_traddr = nvmet_fc_host_traddr,
2965 };
2966
nvmet_fc_init_module(void)2967 static int __init nvmet_fc_init_module(void)
2968 {
2969 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2970 }
2971
nvmet_fc_exit_module(void)2972 static void __exit nvmet_fc_exit_module(void)
2973 {
2974 /* ensure any shutdown operation, e.g. delete ctrls have finished */
2975 flush_workqueue(nvmet_wq);
2976
2977 /* sanity check - all lports should be removed */
2978 if (!list_empty(&nvmet_fc_target_list))
2979 pr_warn("%s: targetport list not empty\n", __func__);
2980
2981 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2982
2983 ida_destroy(&nvmet_fc_tgtport_cnt);
2984 }
2985
2986 module_init(nvmet_fc_init_module);
2987 module_exit(nvmet_fc_exit_module);
2988
2989 MODULE_DESCRIPTION("NVMe target FC transport driver");
2990 MODULE_LICENSE("GPL v2");
2991