1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 #include "internals.h"
23
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25
26 #define FLAG_COMPAT BIT(0)
27 struct nvmem_cell_entry {
28 const char *name;
29 int offset;
30 size_t raw_len;
31 int bytes;
32 int bit_offset;
33 int nbits;
34 nvmem_cell_post_process_t read_post_process;
35 void *priv;
36 struct device_node *np;
37 struct nvmem_device *nvmem;
38 struct list_head node;
39 };
40
41 struct nvmem_cell {
42 struct nvmem_cell_entry *entry;
43 const char *id;
44 int index;
45 };
46
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49
50 static DEFINE_MUTEX(nvmem_lookup_mutex);
51 static LIST_HEAD(nvmem_lookup_list);
52
53 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
54
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)55 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
56 void *val, size_t bytes)
57 {
58 if (nvmem->reg_read)
59 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
60
61 return -EINVAL;
62 }
63
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)64 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
65 void *val, size_t bytes)
66 {
67 int ret;
68
69 if (nvmem->reg_write) {
70 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
71 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
72 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
73 return ret;
74 }
75
76 return -EINVAL;
77 }
78
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)79 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
80 unsigned int offset, void *val,
81 size_t bytes, int write)
82 {
83
84 unsigned int end = offset + bytes;
85 unsigned int kend, ksize;
86 const struct nvmem_keepout *keepout = nvmem->keepout;
87 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
88 int rc;
89
90 /*
91 * Skip all keepouts before the range being accessed.
92 * Keepouts are sorted.
93 */
94 while ((keepout < keepoutend) && (keepout->end <= offset))
95 keepout++;
96
97 while ((offset < end) && (keepout < keepoutend)) {
98 /* Access the valid portion before the keepout. */
99 if (offset < keepout->start) {
100 kend = min(end, keepout->start);
101 ksize = kend - offset;
102 if (write)
103 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
104 else
105 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
106
107 if (rc)
108 return rc;
109
110 offset += ksize;
111 val += ksize;
112 }
113
114 /*
115 * Now we're aligned to the start of this keepout zone. Go
116 * through it.
117 */
118 kend = min(end, keepout->end);
119 ksize = kend - offset;
120 if (!write)
121 memset(val, keepout->value, ksize);
122
123 val += ksize;
124 offset += ksize;
125 keepout++;
126 }
127
128 /*
129 * If we ran out of keepouts but there's still stuff to do, send it
130 * down directly
131 */
132 if (offset < end) {
133 ksize = end - offset;
134 if (write)
135 return __nvmem_reg_write(nvmem, offset, val, ksize);
136 else
137 return __nvmem_reg_read(nvmem, offset, val, ksize);
138 }
139
140 return 0;
141 }
142
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)143 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
144 void *val, size_t bytes)
145 {
146 if (!nvmem->nkeepout)
147 return __nvmem_reg_read(nvmem, offset, val, bytes);
148
149 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
150 }
151
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)152 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
153 void *val, size_t bytes)
154 {
155 if (!nvmem->nkeepout)
156 return __nvmem_reg_write(nvmem, offset, val, bytes);
157
158 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
159 }
160
161 #ifdef CONFIG_NVMEM_SYSFS
162 static const char * const nvmem_type_str[] = {
163 [NVMEM_TYPE_UNKNOWN] = "Unknown",
164 [NVMEM_TYPE_EEPROM] = "EEPROM",
165 [NVMEM_TYPE_OTP] = "OTP",
166 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
167 [NVMEM_TYPE_FRAM] = "FRAM",
168 };
169
170 #ifdef CONFIG_DEBUG_LOCK_ALLOC
171 static struct lock_class_key eeprom_lock_key;
172 #endif
173
type_show(struct device * dev,struct device_attribute * attr,char * buf)174 static ssize_t type_show(struct device *dev,
175 struct device_attribute *attr, char *buf)
176 {
177 struct nvmem_device *nvmem = to_nvmem_device(dev);
178
179 return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
180 }
181
182 static DEVICE_ATTR_RO(type);
183
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)184 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
185 char *buf)
186 {
187 struct nvmem_device *nvmem = to_nvmem_device(dev);
188
189 return sysfs_emit(buf, "%d\n", nvmem->read_only);
190 }
191
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)192 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
193 const char *buf, size_t count)
194 {
195 struct nvmem_device *nvmem = to_nvmem_device(dev);
196 int ret = kstrtobool(buf, &nvmem->read_only);
197
198 if (ret < 0)
199 return ret;
200
201 return count;
202 }
203
204 static DEVICE_ATTR_RW(force_ro);
205
206 static struct attribute *nvmem_attrs[] = {
207 &dev_attr_force_ro.attr,
208 &dev_attr_type.attr,
209 NULL,
210 };
211
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)212 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
213 const struct bin_attribute *attr, char *buf,
214 loff_t pos, size_t count)
215 {
216 struct device *dev;
217 struct nvmem_device *nvmem;
218 int rc;
219
220 if (attr->private)
221 dev = attr->private;
222 else
223 dev = kobj_to_dev(kobj);
224 nvmem = to_nvmem_device(dev);
225
226 if (!IS_ALIGNED(pos, nvmem->stride))
227 return -EINVAL;
228
229 if (count < nvmem->word_size)
230 return -EINVAL;
231
232 count = round_down(count, nvmem->word_size);
233
234 if (!nvmem->reg_read)
235 return -EPERM;
236
237 rc = nvmem_reg_read(nvmem, pos, buf, count);
238
239 if (rc)
240 return rc;
241
242 return count;
243 }
244
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246 const struct bin_attribute *attr, char *buf,
247 loff_t pos, size_t count)
248 {
249 struct device *dev;
250 struct nvmem_device *nvmem;
251 int rc;
252
253 if (attr->private)
254 dev = attr->private;
255 else
256 dev = kobj_to_dev(kobj);
257 nvmem = to_nvmem_device(dev);
258
259 if (!IS_ALIGNED(pos, nvmem->stride))
260 return -EINVAL;
261
262 if (count < nvmem->word_size)
263 return -EINVAL;
264
265 count = round_down(count, nvmem->word_size);
266
267 if (!nvmem->reg_write || nvmem->read_only)
268 return -EPERM;
269
270 rc = nvmem_reg_write(nvmem, pos, buf, count);
271
272 if (rc)
273 return rc;
274
275 return count;
276 }
277
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)278 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
279 {
280 umode_t mode = 0400;
281
282 if (!nvmem->root_only)
283 mode |= 0044;
284
285 if (!nvmem->read_only)
286 mode |= 0200;
287
288 if (!nvmem->reg_write)
289 mode &= ~0200;
290
291 if (!nvmem->reg_read)
292 mode &= ~0444;
293
294 return mode;
295 }
296
nvmem_bin_attr_is_visible(struct kobject * kobj,const struct bin_attribute * attr,int i)297 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
298 const struct bin_attribute *attr,
299 int i)
300 {
301 struct device *dev = kobj_to_dev(kobj);
302 struct nvmem_device *nvmem = to_nvmem_device(dev);
303
304 return nvmem_bin_attr_get_umode(nvmem);
305 }
306
nvmem_bin_attr_size(struct kobject * kobj,const struct bin_attribute * attr,int i)307 static size_t nvmem_bin_attr_size(struct kobject *kobj,
308 const struct bin_attribute *attr,
309 int i)
310 {
311 struct device *dev = kobj_to_dev(kobj);
312 struct nvmem_device *nvmem = to_nvmem_device(dev);
313
314 return nvmem->size;
315 }
316
nvmem_attr_is_visible(struct kobject * kobj,struct attribute * attr,int i)317 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
318 struct attribute *attr, int i)
319 {
320 struct device *dev = kobj_to_dev(kobj);
321 struct nvmem_device *nvmem = to_nvmem_device(dev);
322
323 /*
324 * If the device has no .reg_write operation, do not allow
325 * configuration as read-write.
326 * If the device is set as read-only by configuration, it
327 * can be forced into read-write mode using the 'force_ro'
328 * attribute.
329 */
330 if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
331 return 0; /* Attribute not visible */
332
333 return attr->mode;
334 }
335
336 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
337 const char *id, int index);
338
nvmem_cell_attr_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)339 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
340 const struct bin_attribute *attr, char *buf,
341 loff_t pos, size_t count)
342 {
343 struct nvmem_cell_entry *entry;
344 struct nvmem_cell *cell = NULL;
345 size_t cell_sz, read_len;
346 void *content;
347
348 entry = attr->private;
349 cell = nvmem_create_cell(entry, entry->name, 0);
350 if (IS_ERR(cell))
351 return PTR_ERR(cell);
352
353 if (!cell)
354 return -EINVAL;
355
356 content = nvmem_cell_read(cell, &cell_sz);
357 if (IS_ERR(content)) {
358 read_len = PTR_ERR(content);
359 goto destroy_cell;
360 }
361
362 read_len = min_t(unsigned int, cell_sz - pos, count);
363 memcpy(buf, content + pos, read_len);
364 kfree(content);
365
366 destroy_cell:
367 kfree_const(cell->id);
368 kfree(cell);
369
370 return read_len;
371 }
372
373 /* default read/write permissions */
374 static const struct bin_attribute bin_attr_rw_nvmem = {
375 .attr = {
376 .name = "nvmem",
377 .mode = 0644,
378 },
379 .read_new = bin_attr_nvmem_read,
380 .write_new = bin_attr_nvmem_write,
381 };
382
383 static const struct bin_attribute *const nvmem_bin_attributes[] = {
384 &bin_attr_rw_nvmem,
385 NULL,
386 };
387
388 static const struct attribute_group nvmem_bin_group = {
389 .bin_attrs_new = nvmem_bin_attributes,
390 .attrs = nvmem_attrs,
391 .is_bin_visible = nvmem_bin_attr_is_visible,
392 .bin_size = nvmem_bin_attr_size,
393 .is_visible = nvmem_attr_is_visible,
394 };
395
396 static const struct attribute_group *nvmem_dev_groups[] = {
397 &nvmem_bin_group,
398 NULL,
399 };
400
401 static const struct bin_attribute bin_attr_nvmem_eeprom_compat = {
402 .attr = {
403 .name = "eeprom",
404 },
405 .read_new = bin_attr_nvmem_read,
406 .write_new = bin_attr_nvmem_write,
407 };
408
409 /*
410 * nvmem_setup_compat() - Create an additional binary entry in
411 * drivers sys directory, to be backwards compatible with the older
412 * drivers/misc/eeprom drivers.
413 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)414 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
415 const struct nvmem_config *config)
416 {
417 int rval;
418
419 if (!config->compat)
420 return 0;
421
422 if (!config->base_dev)
423 return -EINVAL;
424
425 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
426 if (config->type == NVMEM_TYPE_FRAM)
427 nvmem->eeprom.attr.name = "fram";
428 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
429 nvmem->eeprom.size = nvmem->size;
430 #ifdef CONFIG_DEBUG_LOCK_ALLOC
431 nvmem->eeprom.attr.key = &eeprom_lock_key;
432 #endif
433 nvmem->eeprom.private = &nvmem->dev;
434 nvmem->base_dev = config->base_dev;
435
436 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
437 if (rval) {
438 dev_err(&nvmem->dev,
439 "Failed to create eeprom binary file %d\n", rval);
440 return rval;
441 }
442
443 nvmem->flags |= FLAG_COMPAT;
444
445 return 0;
446 }
447
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)448 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
449 const struct nvmem_config *config)
450 {
451 if (config->compat)
452 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
453 }
454
nvmem_populate_sysfs_cells(struct nvmem_device * nvmem)455 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
456 {
457 struct attribute_group group = {
458 .name = "cells",
459 };
460 struct nvmem_cell_entry *entry;
461 const struct bin_attribute **pattrs;
462 struct bin_attribute *attrs;
463 unsigned int ncells = 0, i = 0;
464 int ret = 0;
465
466 mutex_lock(&nvmem_mutex);
467
468 if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
469 goto unlock_mutex;
470
471 /* Allocate an array of attributes with a sentinel */
472 ncells = list_count_nodes(&nvmem->cells);
473 pattrs = devm_kcalloc(&nvmem->dev, ncells + 1,
474 sizeof(struct bin_attribute *), GFP_KERNEL);
475 if (!pattrs) {
476 ret = -ENOMEM;
477 goto unlock_mutex;
478 }
479
480 attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
481 if (!attrs) {
482 ret = -ENOMEM;
483 goto unlock_mutex;
484 }
485
486 /* Initialize each attribute to take the name and size of the cell */
487 list_for_each_entry(entry, &nvmem->cells, node) {
488 sysfs_bin_attr_init(&attrs[i]);
489 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
490 "%s@%x,%x", entry->name,
491 entry->offset,
492 entry->bit_offset);
493 attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
494 attrs[i].size = entry->bytes;
495 attrs[i].read_new = &nvmem_cell_attr_read;
496 attrs[i].private = entry;
497 if (!attrs[i].attr.name) {
498 ret = -ENOMEM;
499 goto unlock_mutex;
500 }
501
502 pattrs[i] = &attrs[i];
503 i++;
504 }
505
506 group.bin_attrs_new = pattrs;
507
508 ret = device_add_group(&nvmem->dev, &group);
509 if (ret)
510 goto unlock_mutex;
511
512 nvmem->sysfs_cells_populated = true;
513
514 unlock_mutex:
515 mutex_unlock(&nvmem_mutex);
516
517 return ret;
518 }
519
520 #else /* CONFIG_NVMEM_SYSFS */
521
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)522 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
523 const struct nvmem_config *config)
524 {
525 return -ENOSYS;
526 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)527 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
528 const struct nvmem_config *config)
529 {
530 }
531
532 #endif /* CONFIG_NVMEM_SYSFS */
533
nvmem_release(struct device * dev)534 static void nvmem_release(struct device *dev)
535 {
536 struct nvmem_device *nvmem = to_nvmem_device(dev);
537
538 ida_free(&nvmem_ida, nvmem->id);
539 gpiod_put(nvmem->wp_gpio);
540 kfree(nvmem);
541 }
542
543 static const struct device_type nvmem_provider_type = {
544 .release = nvmem_release,
545 };
546
547 static struct bus_type nvmem_bus_type = {
548 .name = "nvmem",
549 };
550
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)551 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
552 {
553 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
554 mutex_lock(&nvmem_mutex);
555 list_del(&cell->node);
556 mutex_unlock(&nvmem_mutex);
557 of_node_put(cell->np);
558 kfree_const(cell->name);
559 kfree(cell);
560 }
561
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)562 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
563 {
564 struct nvmem_cell_entry *cell, *p;
565
566 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
567 nvmem_cell_entry_drop(cell);
568 }
569
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)570 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
571 {
572 mutex_lock(&nvmem_mutex);
573 list_add_tail(&cell->node, &cell->nvmem->cells);
574 mutex_unlock(&nvmem_mutex);
575 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
576 }
577
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)578 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
579 const struct nvmem_cell_info *info,
580 struct nvmem_cell_entry *cell)
581 {
582 cell->nvmem = nvmem;
583 cell->offset = info->offset;
584 cell->raw_len = info->raw_len ?: info->bytes;
585 cell->bytes = info->bytes;
586 cell->name = info->name;
587 cell->read_post_process = info->read_post_process;
588 cell->priv = info->priv;
589
590 cell->bit_offset = info->bit_offset;
591 cell->nbits = info->nbits;
592 cell->np = info->np;
593
594 if (cell->nbits) {
595 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
596 BITS_PER_BYTE);
597 cell->raw_len = ALIGN(cell->bytes, nvmem->word_size);
598 }
599
600 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
601 dev_err(&nvmem->dev,
602 "cell %s unaligned to nvmem stride %d\n",
603 cell->name ?: "<unknown>", nvmem->stride);
604 return -EINVAL;
605 }
606
607 if (!IS_ALIGNED(cell->raw_len, nvmem->word_size)) {
608 dev_err(&nvmem->dev,
609 "cell %s raw len %zd unaligned to nvmem word size %d\n",
610 cell->name ?: "<unknown>", cell->raw_len,
611 nvmem->word_size);
612
613 if (info->raw_len)
614 return -EINVAL;
615
616 cell->raw_len = ALIGN(cell->raw_len, nvmem->word_size);
617 }
618
619 return 0;
620 }
621
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)622 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
623 const struct nvmem_cell_info *info,
624 struct nvmem_cell_entry *cell)
625 {
626 int err;
627
628 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
629 if (err)
630 return err;
631
632 cell->name = kstrdup_const(info->name, GFP_KERNEL);
633 if (!cell->name)
634 return -ENOMEM;
635
636 return 0;
637 }
638
639 /**
640 * nvmem_add_one_cell() - Add one cell information to an nvmem device
641 *
642 * @nvmem: nvmem device to add cells to.
643 * @info: nvmem cell info to add to the device
644 *
645 * Return: 0 or negative error code on failure.
646 */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)647 int nvmem_add_one_cell(struct nvmem_device *nvmem,
648 const struct nvmem_cell_info *info)
649 {
650 struct nvmem_cell_entry *cell;
651 int rval;
652
653 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
654 if (!cell)
655 return -ENOMEM;
656
657 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
658 if (rval) {
659 kfree(cell);
660 return rval;
661 }
662
663 nvmem_cell_entry_add(cell);
664
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
668
669 /**
670 * nvmem_add_cells() - Add cell information to an nvmem device
671 *
672 * @nvmem: nvmem device to add cells to.
673 * @info: nvmem cell info to add to the device
674 * @ncells: number of cells in info
675 *
676 * Return: 0 or negative error code on failure.
677 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)678 static int nvmem_add_cells(struct nvmem_device *nvmem,
679 const struct nvmem_cell_info *info,
680 int ncells)
681 {
682 int i, rval;
683
684 for (i = 0; i < ncells; i++) {
685 rval = nvmem_add_one_cell(nvmem, &info[i]);
686 if (rval)
687 return rval;
688 }
689
690 return 0;
691 }
692
693 /**
694 * nvmem_register_notifier() - Register a notifier block for nvmem events.
695 *
696 * @nb: notifier block to be called on nvmem events.
697 *
698 * Return: 0 on success, negative error number on failure.
699 */
nvmem_register_notifier(struct notifier_block * nb)700 int nvmem_register_notifier(struct notifier_block *nb)
701 {
702 return blocking_notifier_chain_register(&nvmem_notifier, nb);
703 }
704 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
705
706 /**
707 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
708 *
709 * @nb: notifier block to be unregistered.
710 *
711 * Return: 0 on success, negative error number on failure.
712 */
nvmem_unregister_notifier(struct notifier_block * nb)713 int nvmem_unregister_notifier(struct notifier_block *nb)
714 {
715 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
716 }
717 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
718
719 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)720 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
721 {
722 struct nvmem_cell_entry *iter, *cell = NULL;
723
724 mutex_lock(&nvmem_mutex);
725 list_for_each_entry(iter, &nvmem->cells, node) {
726 if (strcmp(cell_id, iter->name) == 0) {
727 cell = iter;
728 break;
729 }
730 }
731 mutex_unlock(&nvmem_mutex);
732
733 return cell;
734 }
735
nvmem_validate_keepouts(struct nvmem_device * nvmem)736 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
737 {
738 unsigned int cur = 0;
739 const struct nvmem_keepout *keepout = nvmem->keepout;
740 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
741
742 while (keepout < keepoutend) {
743 /* Ensure keepouts are sorted and don't overlap. */
744 if (keepout->start < cur) {
745 dev_err(&nvmem->dev,
746 "Keepout regions aren't sorted or overlap.\n");
747
748 return -ERANGE;
749 }
750
751 if (keepout->end < keepout->start) {
752 dev_err(&nvmem->dev,
753 "Invalid keepout region.\n");
754
755 return -EINVAL;
756 }
757
758 /*
759 * Validate keepouts (and holes between) don't violate
760 * word_size constraints.
761 */
762 if ((keepout->end - keepout->start < nvmem->word_size) ||
763 ((keepout->start != cur) &&
764 (keepout->start - cur < nvmem->word_size))) {
765
766 dev_err(&nvmem->dev,
767 "Keepout regions violate word_size constraints.\n");
768
769 return -ERANGE;
770 }
771
772 /* Validate keepouts don't violate stride (alignment). */
773 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
774 !IS_ALIGNED(keepout->end, nvmem->stride)) {
775
776 dev_err(&nvmem->dev,
777 "Keepout regions violate stride.\n");
778
779 return -EINVAL;
780 }
781
782 cur = keepout->end;
783 keepout++;
784 }
785
786 return 0;
787 }
788
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)789 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
790 {
791 struct device *dev = &nvmem->dev;
792 struct device_node *child;
793 const __be32 *addr;
794 int len, ret;
795
796 for_each_child_of_node(np, child) {
797 struct nvmem_cell_info info = {0};
798
799 addr = of_get_property(child, "reg", &len);
800 if (!addr)
801 continue;
802 if (len < 2 * sizeof(u32)) {
803 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
804 of_node_put(child);
805 return -EINVAL;
806 }
807
808 info.offset = be32_to_cpup(addr++);
809 info.bytes = be32_to_cpup(addr);
810 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
811
812 addr = of_get_property(child, "bits", &len);
813 if (addr && len == (2 * sizeof(u32))) {
814 info.bit_offset = be32_to_cpup(addr++);
815 info.nbits = be32_to_cpup(addr);
816 if (info.bit_offset >= BITS_PER_BYTE * info.bytes ||
817 info.nbits < 1 ||
818 info.bit_offset + info.nbits > BITS_PER_BYTE * info.bytes) {
819 dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
820 of_node_put(child);
821 return -EINVAL;
822 }
823 }
824
825 info.np = of_node_get(child);
826
827 if (nvmem->fixup_dt_cell_info)
828 nvmem->fixup_dt_cell_info(nvmem, &info);
829
830 ret = nvmem_add_one_cell(nvmem, &info);
831 kfree(info.name);
832 if (ret) {
833 of_node_put(child);
834 return ret;
835 }
836 }
837
838 return 0;
839 }
840
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)841 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
842 {
843 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
844 }
845
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)846 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
847 {
848 struct device_node *layout_np;
849 int err = 0;
850
851 layout_np = of_nvmem_layout_get_container(nvmem);
852 if (!layout_np)
853 return 0;
854
855 if (of_device_is_compatible(layout_np, "fixed-layout"))
856 err = nvmem_add_cells_from_dt(nvmem, layout_np);
857
858 of_node_put(layout_np);
859
860 return err;
861 }
862
nvmem_layout_register(struct nvmem_layout * layout)863 int nvmem_layout_register(struct nvmem_layout *layout)
864 {
865 int ret;
866
867 if (!layout->add_cells)
868 return -EINVAL;
869
870 /* Populate the cells */
871 ret = layout->add_cells(layout);
872 if (ret)
873 return ret;
874
875 #ifdef CONFIG_NVMEM_SYSFS
876 ret = nvmem_populate_sysfs_cells(layout->nvmem);
877 if (ret) {
878 nvmem_device_remove_all_cells(layout->nvmem);
879 return ret;
880 }
881 #endif
882
883 return 0;
884 }
885 EXPORT_SYMBOL_GPL(nvmem_layout_register);
886
nvmem_layout_unregister(struct nvmem_layout * layout)887 void nvmem_layout_unregister(struct nvmem_layout *layout)
888 {
889 /* Keep the API even with an empty stub in case we need it later */
890 }
891 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
892
893 /**
894 * nvmem_register() - Register a nvmem device for given nvmem_config.
895 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
896 *
897 * @config: nvmem device configuration with which nvmem device is created.
898 *
899 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
900 * on success.
901 */
902
nvmem_register(const struct nvmem_config * config)903 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
904 {
905 struct nvmem_device *nvmem;
906 int rval;
907
908 if (!config->dev)
909 return ERR_PTR(-EINVAL);
910
911 if (!config->reg_read && !config->reg_write)
912 return ERR_PTR(-EINVAL);
913
914 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
915 if (!nvmem)
916 return ERR_PTR(-ENOMEM);
917
918 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
919 if (rval < 0) {
920 kfree(nvmem);
921 return ERR_PTR(rval);
922 }
923
924 nvmem->id = rval;
925
926 nvmem->dev.type = &nvmem_provider_type;
927 nvmem->dev.bus = &nvmem_bus_type;
928 nvmem->dev.parent = config->dev;
929
930 device_initialize(&nvmem->dev);
931
932 if (!config->ignore_wp)
933 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
934 GPIOD_OUT_HIGH);
935 if (IS_ERR(nvmem->wp_gpio)) {
936 rval = PTR_ERR(nvmem->wp_gpio);
937 nvmem->wp_gpio = NULL;
938 goto err_put_device;
939 }
940
941 kref_init(&nvmem->refcnt);
942 INIT_LIST_HEAD(&nvmem->cells);
943 nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
944
945 nvmem->owner = config->owner;
946 if (!nvmem->owner && config->dev->driver)
947 nvmem->owner = config->dev->driver->owner;
948 nvmem->stride = config->stride ?: 1;
949 nvmem->word_size = config->word_size ?: 1;
950 nvmem->size = config->size;
951 nvmem->root_only = config->root_only;
952 nvmem->priv = config->priv;
953 nvmem->type = config->type;
954 nvmem->reg_read = config->reg_read;
955 nvmem->reg_write = config->reg_write;
956 nvmem->keepout = config->keepout;
957 nvmem->nkeepout = config->nkeepout;
958 if (config->of_node)
959 nvmem->dev.of_node = config->of_node;
960 else
961 nvmem->dev.of_node = config->dev->of_node;
962
963 switch (config->id) {
964 case NVMEM_DEVID_NONE:
965 rval = dev_set_name(&nvmem->dev, "%s", config->name);
966 break;
967 case NVMEM_DEVID_AUTO:
968 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
969 break;
970 default:
971 rval = dev_set_name(&nvmem->dev, "%s%d",
972 config->name ? : "nvmem",
973 config->name ? config->id : nvmem->id);
974 break;
975 }
976
977 if (rval)
978 goto err_put_device;
979
980 nvmem->read_only = device_property_present(config->dev, "read-only") ||
981 config->read_only || !nvmem->reg_write;
982
983 #ifdef CONFIG_NVMEM_SYSFS
984 nvmem->dev.groups = nvmem_dev_groups;
985 #endif
986
987 if (nvmem->nkeepout) {
988 rval = nvmem_validate_keepouts(nvmem);
989 if (rval)
990 goto err_put_device;
991 }
992
993 if (config->compat) {
994 rval = nvmem_sysfs_setup_compat(nvmem, config);
995 if (rval)
996 goto err_put_device;
997 }
998
999 if (config->cells) {
1000 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1001 if (rval)
1002 goto err_remove_cells;
1003 }
1004
1005 if (config->add_legacy_fixed_of_cells) {
1006 rval = nvmem_add_cells_from_legacy_of(nvmem);
1007 if (rval)
1008 goto err_remove_cells;
1009 }
1010
1011 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1012 if (rval)
1013 goto err_remove_cells;
1014
1015 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1016
1017 rval = device_add(&nvmem->dev);
1018 if (rval)
1019 goto err_remove_cells;
1020
1021 rval = nvmem_populate_layout(nvmem);
1022 if (rval)
1023 goto err_remove_dev;
1024
1025 #ifdef CONFIG_NVMEM_SYSFS
1026 rval = nvmem_populate_sysfs_cells(nvmem);
1027 if (rval)
1028 goto err_destroy_layout;
1029 #endif
1030
1031 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1032
1033 return nvmem;
1034
1035 #ifdef CONFIG_NVMEM_SYSFS
1036 err_destroy_layout:
1037 nvmem_destroy_layout(nvmem);
1038 #endif
1039 err_remove_dev:
1040 device_del(&nvmem->dev);
1041 err_remove_cells:
1042 nvmem_device_remove_all_cells(nvmem);
1043 if (config->compat)
1044 nvmem_sysfs_remove_compat(nvmem, config);
1045 err_put_device:
1046 put_device(&nvmem->dev);
1047
1048 return ERR_PTR(rval);
1049 }
1050 EXPORT_SYMBOL_GPL(nvmem_register);
1051
nvmem_device_release(struct kref * kref)1052 static void nvmem_device_release(struct kref *kref)
1053 {
1054 struct nvmem_device *nvmem;
1055
1056 nvmem = container_of(kref, struct nvmem_device, refcnt);
1057
1058 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1059
1060 if (nvmem->flags & FLAG_COMPAT)
1061 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1062
1063 nvmem_device_remove_all_cells(nvmem);
1064 nvmem_destroy_layout(nvmem);
1065 device_unregister(&nvmem->dev);
1066 }
1067
1068 /**
1069 * nvmem_unregister() - Unregister previously registered nvmem device
1070 *
1071 * @nvmem: Pointer to previously registered nvmem device.
1072 */
nvmem_unregister(struct nvmem_device * nvmem)1073 void nvmem_unregister(struct nvmem_device *nvmem)
1074 {
1075 if (nvmem)
1076 kref_put(&nvmem->refcnt, nvmem_device_release);
1077 }
1078 EXPORT_SYMBOL_GPL(nvmem_unregister);
1079
devm_nvmem_unregister(void * nvmem)1080 static void devm_nvmem_unregister(void *nvmem)
1081 {
1082 nvmem_unregister(nvmem);
1083 }
1084
1085 /**
1086 * devm_nvmem_register() - Register a managed nvmem device for given
1087 * nvmem_config.
1088 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1089 *
1090 * @dev: Device that uses the nvmem device.
1091 * @config: nvmem device configuration with which nvmem device is created.
1092 *
1093 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1094 * on success.
1095 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1096 struct nvmem_device *devm_nvmem_register(struct device *dev,
1097 const struct nvmem_config *config)
1098 {
1099 struct nvmem_device *nvmem;
1100 int ret;
1101
1102 nvmem = nvmem_register(config);
1103 if (IS_ERR(nvmem))
1104 return nvmem;
1105
1106 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1107 if (ret)
1108 return ERR_PTR(ret);
1109
1110 return nvmem;
1111 }
1112 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1113
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1114 static struct nvmem_device *__nvmem_device_get(void *data,
1115 int (*match)(struct device *dev, const void *data))
1116 {
1117 struct nvmem_device *nvmem = NULL;
1118 struct device *dev;
1119
1120 mutex_lock(&nvmem_mutex);
1121 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1122 if (dev)
1123 nvmem = to_nvmem_device(dev);
1124 mutex_unlock(&nvmem_mutex);
1125 if (!nvmem)
1126 return ERR_PTR(-EPROBE_DEFER);
1127
1128 if (!try_module_get(nvmem->owner)) {
1129 dev_err(&nvmem->dev,
1130 "could not increase module refcount for cell %s\n",
1131 nvmem_dev_name(nvmem));
1132
1133 put_device(&nvmem->dev);
1134 return ERR_PTR(-EINVAL);
1135 }
1136
1137 kref_get(&nvmem->refcnt);
1138
1139 return nvmem;
1140 }
1141
__nvmem_device_put(struct nvmem_device * nvmem)1142 static void __nvmem_device_put(struct nvmem_device *nvmem)
1143 {
1144 put_device(&nvmem->dev);
1145 module_put(nvmem->owner);
1146 kref_put(&nvmem->refcnt, nvmem_device_release);
1147 }
1148
1149 #if IS_ENABLED(CONFIG_OF)
1150 /**
1151 * of_nvmem_device_get() - Get nvmem device from a given id
1152 *
1153 * @np: Device tree node that uses the nvmem device.
1154 * @id: nvmem name from nvmem-names property.
1155 *
1156 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1157 * on success.
1158 */
of_nvmem_device_get(struct device_node * np,const char * id)1159 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1160 {
1161
1162 struct device_node *nvmem_np;
1163 struct nvmem_device *nvmem;
1164 int index = 0;
1165
1166 if (id)
1167 index = of_property_match_string(np, "nvmem-names", id);
1168
1169 nvmem_np = of_parse_phandle(np, "nvmem", index);
1170 if (!nvmem_np)
1171 return ERR_PTR(-ENOENT);
1172
1173 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1174 of_node_put(nvmem_np);
1175 return nvmem;
1176 }
1177 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1178 #endif
1179
1180 /**
1181 * nvmem_device_get() - Get nvmem device from a given id
1182 *
1183 * @dev: Device that uses the nvmem device.
1184 * @dev_name: name of the requested nvmem device.
1185 *
1186 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1187 * on success.
1188 */
nvmem_device_get(struct device * dev,const char * dev_name)1189 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1190 {
1191 if (dev->of_node) { /* try dt first */
1192 struct nvmem_device *nvmem;
1193
1194 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1195
1196 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1197 return nvmem;
1198
1199 }
1200
1201 return __nvmem_device_get((void *)dev_name, device_match_name);
1202 }
1203 EXPORT_SYMBOL_GPL(nvmem_device_get);
1204
1205 /**
1206 * nvmem_device_find() - Find nvmem device with matching function
1207 *
1208 * @data: Data to pass to match function
1209 * @match: Callback function to check device
1210 *
1211 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1212 * on success.
1213 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1214 struct nvmem_device *nvmem_device_find(void *data,
1215 int (*match)(struct device *dev, const void *data))
1216 {
1217 return __nvmem_device_get(data, match);
1218 }
1219 EXPORT_SYMBOL_GPL(nvmem_device_find);
1220
devm_nvmem_device_match(struct device * dev,void * res,void * data)1221 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1222 {
1223 struct nvmem_device **nvmem = res;
1224
1225 if (WARN_ON(!nvmem || !*nvmem))
1226 return 0;
1227
1228 return *nvmem == data;
1229 }
1230
devm_nvmem_device_release(struct device * dev,void * res)1231 static void devm_nvmem_device_release(struct device *dev, void *res)
1232 {
1233 nvmem_device_put(*(struct nvmem_device **)res);
1234 }
1235
1236 /**
1237 * devm_nvmem_device_put() - put already got nvmem device
1238 *
1239 * @dev: Device that uses the nvmem device.
1240 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1241 * that needs to be released.
1242 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1243 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1244 {
1245 int ret;
1246
1247 ret = devres_release(dev, devm_nvmem_device_release,
1248 devm_nvmem_device_match, nvmem);
1249
1250 WARN_ON(ret);
1251 }
1252 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1253
1254 /**
1255 * nvmem_device_put() - put already got nvmem device
1256 *
1257 * @nvmem: pointer to nvmem device that needs to be released.
1258 */
nvmem_device_put(struct nvmem_device * nvmem)1259 void nvmem_device_put(struct nvmem_device *nvmem)
1260 {
1261 __nvmem_device_put(nvmem);
1262 }
1263 EXPORT_SYMBOL_GPL(nvmem_device_put);
1264
1265 /**
1266 * devm_nvmem_device_get() - Get nvmem device of device form a given id
1267 *
1268 * @dev: Device that requests the nvmem device.
1269 * @id: name id for the requested nvmem device.
1270 *
1271 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1272 * on success. The nvmem_device will be freed by the automatically once the
1273 * device is freed.
1274 */
devm_nvmem_device_get(struct device * dev,const char * id)1275 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1276 {
1277 struct nvmem_device **ptr, *nvmem;
1278
1279 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1280 if (!ptr)
1281 return ERR_PTR(-ENOMEM);
1282
1283 nvmem = nvmem_device_get(dev, id);
1284 if (!IS_ERR(nvmem)) {
1285 *ptr = nvmem;
1286 devres_add(dev, ptr);
1287 } else {
1288 devres_free(ptr);
1289 }
1290
1291 return nvmem;
1292 }
1293 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1294
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1295 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1296 const char *id, int index)
1297 {
1298 struct nvmem_cell *cell;
1299 const char *name = NULL;
1300
1301 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1302 if (!cell)
1303 return ERR_PTR(-ENOMEM);
1304
1305 if (id) {
1306 name = kstrdup_const(id, GFP_KERNEL);
1307 if (!name) {
1308 kfree(cell);
1309 return ERR_PTR(-ENOMEM);
1310 }
1311 }
1312
1313 cell->id = name;
1314 cell->entry = entry;
1315 cell->index = index;
1316
1317 return cell;
1318 }
1319
1320 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1321 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1322 {
1323 struct nvmem_cell_entry *cell_entry;
1324 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1325 struct nvmem_cell_lookup *lookup;
1326 struct nvmem_device *nvmem;
1327 const char *dev_id;
1328
1329 if (!dev)
1330 return ERR_PTR(-EINVAL);
1331
1332 dev_id = dev_name(dev);
1333
1334 mutex_lock(&nvmem_lookup_mutex);
1335
1336 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1337 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1338 (strcmp(lookup->con_id, con_id) == 0)) {
1339 /* This is the right entry. */
1340 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1341 device_match_name);
1342 if (IS_ERR(nvmem)) {
1343 /* Provider may not be registered yet. */
1344 cell = ERR_CAST(nvmem);
1345 break;
1346 }
1347
1348 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1349 lookup->cell_name);
1350 if (!cell_entry) {
1351 __nvmem_device_put(nvmem);
1352 cell = ERR_PTR(-ENOENT);
1353 } else {
1354 cell = nvmem_create_cell(cell_entry, con_id, 0);
1355 if (IS_ERR(cell))
1356 __nvmem_device_put(nvmem);
1357 }
1358 break;
1359 }
1360 }
1361
1362 mutex_unlock(&nvmem_lookup_mutex);
1363 return cell;
1364 }
1365
nvmem_layout_module_put(struct nvmem_device * nvmem)1366 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1367 {
1368 if (nvmem->layout && nvmem->layout->dev.driver)
1369 module_put(nvmem->layout->dev.driver->owner);
1370 }
1371
1372 #if IS_ENABLED(CONFIG_OF)
1373 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1374 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1375 {
1376 struct nvmem_cell_entry *iter, *cell = NULL;
1377
1378 mutex_lock(&nvmem_mutex);
1379 list_for_each_entry(iter, &nvmem->cells, node) {
1380 if (np == iter->np) {
1381 cell = iter;
1382 break;
1383 }
1384 }
1385 mutex_unlock(&nvmem_mutex);
1386
1387 return cell;
1388 }
1389
nvmem_layout_module_get_optional(struct nvmem_device * nvmem)1390 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1391 {
1392 if (!nvmem->layout)
1393 return 0;
1394
1395 if (!nvmem->layout->dev.driver ||
1396 !try_module_get(nvmem->layout->dev.driver->owner))
1397 return -EPROBE_DEFER;
1398
1399 return 0;
1400 }
1401
1402 /**
1403 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1404 *
1405 * @np: Device tree node that uses the nvmem cell.
1406 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1407 * for the cell at index 0 (the lone cell with no accompanying
1408 * nvmem-cell-names property).
1409 *
1410 * Return: Will be an ERR_PTR() on error or a valid pointer
1411 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1412 * nvmem_cell_put().
1413 */
of_nvmem_cell_get(struct device_node * np,const char * id)1414 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1415 {
1416 struct device_node *cell_np, *nvmem_np;
1417 struct nvmem_device *nvmem;
1418 struct nvmem_cell_entry *cell_entry;
1419 struct nvmem_cell *cell;
1420 struct of_phandle_args cell_spec;
1421 int index = 0;
1422 int cell_index = 0;
1423 int ret;
1424
1425 /* if cell name exists, find index to the name */
1426 if (id)
1427 index = of_property_match_string(np, "nvmem-cell-names", id);
1428
1429 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1430 "#nvmem-cell-cells",
1431 index, &cell_spec);
1432 if (ret)
1433 return ERR_PTR(-ENOENT);
1434
1435 if (cell_spec.args_count > 1)
1436 return ERR_PTR(-EINVAL);
1437
1438 cell_np = cell_spec.np;
1439 if (cell_spec.args_count)
1440 cell_index = cell_spec.args[0];
1441
1442 nvmem_np = of_get_parent(cell_np);
1443 if (!nvmem_np) {
1444 of_node_put(cell_np);
1445 return ERR_PTR(-EINVAL);
1446 }
1447
1448 /* nvmem layouts produce cells within the nvmem-layout container */
1449 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1450 nvmem_np = of_get_next_parent(nvmem_np);
1451 if (!nvmem_np) {
1452 of_node_put(cell_np);
1453 return ERR_PTR(-EINVAL);
1454 }
1455 }
1456
1457 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1458 of_node_put(nvmem_np);
1459 if (IS_ERR(nvmem)) {
1460 of_node_put(cell_np);
1461 return ERR_CAST(nvmem);
1462 }
1463
1464 ret = nvmem_layout_module_get_optional(nvmem);
1465 if (ret) {
1466 of_node_put(cell_np);
1467 __nvmem_device_put(nvmem);
1468 return ERR_PTR(ret);
1469 }
1470
1471 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1472 of_node_put(cell_np);
1473 if (!cell_entry) {
1474 __nvmem_device_put(nvmem);
1475 nvmem_layout_module_put(nvmem);
1476 if (nvmem->layout)
1477 return ERR_PTR(-EPROBE_DEFER);
1478 else
1479 return ERR_PTR(-ENOENT);
1480 }
1481
1482 cell = nvmem_create_cell(cell_entry, id, cell_index);
1483 if (IS_ERR(cell)) {
1484 __nvmem_device_put(nvmem);
1485 nvmem_layout_module_put(nvmem);
1486 }
1487
1488 return cell;
1489 }
1490 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1491 #endif
1492
1493 /**
1494 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1495 *
1496 * @dev: Device that requests the nvmem cell.
1497 * @id: nvmem cell name to get (this corresponds with the name from the
1498 * nvmem-cell-names property for DT systems and with the con_id from
1499 * the lookup entry for non-DT systems).
1500 *
1501 * Return: Will be an ERR_PTR() on error or a valid pointer
1502 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1503 * nvmem_cell_put().
1504 */
nvmem_cell_get(struct device * dev,const char * id)1505 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1506 {
1507 struct nvmem_cell *cell;
1508
1509 if (dev->of_node) { /* try dt first */
1510 cell = of_nvmem_cell_get(dev->of_node, id);
1511 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1512 return cell;
1513 }
1514
1515 /* NULL cell id only allowed for device tree; invalid otherwise */
1516 if (!id)
1517 return ERR_PTR(-EINVAL);
1518
1519 return nvmem_cell_get_from_lookup(dev, id);
1520 }
1521 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1522
devm_nvmem_cell_release(struct device * dev,void * res)1523 static void devm_nvmem_cell_release(struct device *dev, void *res)
1524 {
1525 nvmem_cell_put(*(struct nvmem_cell **)res);
1526 }
1527
1528 /**
1529 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1530 *
1531 * @dev: Device that requests the nvmem cell.
1532 * @id: nvmem cell name id to get.
1533 *
1534 * Return: Will be an ERR_PTR() on error or a valid pointer
1535 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1536 * automatically once the device is freed.
1537 */
devm_nvmem_cell_get(struct device * dev,const char * id)1538 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1539 {
1540 struct nvmem_cell **ptr, *cell;
1541
1542 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1543 if (!ptr)
1544 return ERR_PTR(-ENOMEM);
1545
1546 cell = nvmem_cell_get(dev, id);
1547 if (!IS_ERR(cell)) {
1548 *ptr = cell;
1549 devres_add(dev, ptr);
1550 } else {
1551 devres_free(ptr);
1552 }
1553
1554 return cell;
1555 }
1556 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1557
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1558 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1559 {
1560 struct nvmem_cell **c = res;
1561
1562 if (WARN_ON(!c || !*c))
1563 return 0;
1564
1565 return *c == data;
1566 }
1567
1568 /**
1569 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1570 * from devm_nvmem_cell_get.
1571 *
1572 * @dev: Device that requests the nvmem cell.
1573 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1574 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1575 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1576 {
1577 int ret;
1578
1579 ret = devres_release(dev, devm_nvmem_cell_release,
1580 devm_nvmem_cell_match, cell);
1581
1582 WARN_ON(ret);
1583 }
1584 EXPORT_SYMBOL(devm_nvmem_cell_put);
1585
1586 /**
1587 * nvmem_cell_put() - Release previously allocated nvmem cell.
1588 *
1589 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1590 */
nvmem_cell_put(struct nvmem_cell * cell)1591 void nvmem_cell_put(struct nvmem_cell *cell)
1592 {
1593 struct nvmem_device *nvmem = cell->entry->nvmem;
1594
1595 if (cell->id)
1596 kfree_const(cell->id);
1597
1598 kfree(cell);
1599 __nvmem_device_put(nvmem);
1600 nvmem_layout_module_put(nvmem);
1601 }
1602 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1603
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1604 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1605 {
1606 u8 *p, *b;
1607 int i, extra, bytes_offset;
1608 int bit_offset = cell->bit_offset;
1609
1610 p = b = buf;
1611
1612 bytes_offset = bit_offset / BITS_PER_BYTE;
1613 b += bytes_offset;
1614 bit_offset %= BITS_PER_BYTE;
1615
1616 if (bit_offset % BITS_PER_BYTE) {
1617 /* First shift */
1618 *p = *b++ >> bit_offset;
1619
1620 /* setup rest of the bytes if any */
1621 for (i = 1; i < cell->bytes; i++) {
1622 /* Get bits from next byte and shift them towards msb */
1623 *p++ |= *b << (BITS_PER_BYTE - bit_offset);
1624
1625 *p = *b++ >> bit_offset;
1626 }
1627 } else if (p != b) {
1628 memmove(p, b, cell->bytes - bytes_offset);
1629 p += cell->bytes - 1;
1630 } else {
1631 /* point to the msb */
1632 p += cell->bytes - 1;
1633 }
1634
1635 /* result fits in less bytes */
1636 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1637 while (--extra >= 0)
1638 *p-- = 0;
1639
1640 /* clear msb bits if any leftover in the last byte */
1641 if (cell->nbits % BITS_PER_BYTE)
1642 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1643 }
1644
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1645 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1646 struct nvmem_cell_entry *cell,
1647 void *buf, size_t *len, const char *id, int index)
1648 {
1649 int rc;
1650
1651 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1652
1653 if (rc)
1654 return rc;
1655
1656 /* shift bits in-place */
1657 if (cell->bit_offset || cell->nbits)
1658 nvmem_shift_read_buffer_in_place(cell, buf);
1659
1660 if (cell->read_post_process) {
1661 rc = cell->read_post_process(cell->priv, id, index,
1662 cell->offset, buf, cell->raw_len);
1663 if (rc)
1664 return rc;
1665 }
1666
1667 if (len)
1668 *len = cell->bytes;
1669
1670 return 0;
1671 }
1672
1673 /**
1674 * nvmem_cell_read() - Read a given nvmem cell
1675 *
1676 * @cell: nvmem cell to be read.
1677 * @len: pointer to length of cell which will be populated on successful read;
1678 * can be NULL.
1679 *
1680 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1681 * buffer should be freed by the consumer with a kfree().
1682 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1683 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1684 {
1685 struct nvmem_cell_entry *entry = cell->entry;
1686 struct nvmem_device *nvmem = entry->nvmem;
1687 u8 *buf;
1688 int rc;
1689
1690 if (!nvmem)
1691 return ERR_PTR(-EINVAL);
1692
1693 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1694 if (!buf)
1695 return ERR_PTR(-ENOMEM);
1696
1697 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1698 if (rc) {
1699 kfree(buf);
1700 return ERR_PTR(rc);
1701 }
1702
1703 return buf;
1704 }
1705 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1706
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1707 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1708 u8 *_buf, int len)
1709 {
1710 struct nvmem_device *nvmem = cell->nvmem;
1711 int i, rc, nbits, bit_offset = cell->bit_offset;
1712 u8 v, *p, *buf, *b, pbyte, pbits;
1713
1714 nbits = cell->nbits;
1715 buf = kzalloc(cell->bytes, GFP_KERNEL);
1716 if (!buf)
1717 return ERR_PTR(-ENOMEM);
1718
1719 memcpy(buf, _buf, len);
1720 p = b = buf;
1721
1722 if (bit_offset) {
1723 pbyte = *b;
1724 *b <<= bit_offset;
1725
1726 /* setup the first byte with lsb bits from nvmem */
1727 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1728 if (rc)
1729 goto err;
1730 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1731
1732 /* setup rest of the byte if any */
1733 for (i = 1; i < cell->bytes; i++) {
1734 /* Get last byte bits and shift them towards lsb */
1735 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1736 pbyte = *b;
1737 p = b;
1738 *b <<= bit_offset;
1739 *b++ |= pbits;
1740 }
1741 }
1742
1743 /* if it's not end on byte boundary */
1744 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1745 /* setup the last byte with msb bits from nvmem */
1746 rc = nvmem_reg_read(nvmem,
1747 cell->offset + cell->bytes - 1, &v, 1);
1748 if (rc)
1749 goto err;
1750 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1751
1752 }
1753
1754 return buf;
1755 err:
1756 kfree(buf);
1757 return ERR_PTR(rc);
1758 }
1759
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1760 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1761 {
1762 struct nvmem_device *nvmem = cell->nvmem;
1763 int rc;
1764
1765 if (!nvmem || nvmem->read_only ||
1766 (cell->bit_offset == 0 && len != cell->bytes))
1767 return -EINVAL;
1768
1769 /*
1770 * Any cells which have a read_post_process hook are read-only because
1771 * we cannot reverse the operation and it might affect other cells,
1772 * too.
1773 */
1774 if (cell->read_post_process)
1775 return -EINVAL;
1776
1777 if (cell->bit_offset || cell->nbits) {
1778 if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1779 return -EINVAL;
1780 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1781 if (IS_ERR(buf))
1782 return PTR_ERR(buf);
1783 }
1784
1785 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1786
1787 /* free the tmp buffer */
1788 if (cell->bit_offset || cell->nbits)
1789 kfree(buf);
1790
1791 if (rc)
1792 return rc;
1793
1794 return len;
1795 }
1796
1797 /**
1798 * nvmem_cell_write() - Write to a given nvmem cell
1799 *
1800 * @cell: nvmem cell to be written.
1801 * @buf: Buffer to be written.
1802 * @len: length of buffer to be written to nvmem cell.
1803 *
1804 * Return: length of bytes written or negative on failure.
1805 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1806 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1807 {
1808 return __nvmem_cell_entry_write(cell->entry, buf, len);
1809 }
1810
1811 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1812
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1813 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1814 void *val, size_t count)
1815 {
1816 struct nvmem_cell *cell;
1817 void *buf;
1818 size_t len;
1819
1820 cell = nvmem_cell_get(dev, cell_id);
1821 if (IS_ERR(cell))
1822 return PTR_ERR(cell);
1823
1824 buf = nvmem_cell_read(cell, &len);
1825 if (IS_ERR(buf)) {
1826 nvmem_cell_put(cell);
1827 return PTR_ERR(buf);
1828 }
1829 if (len != count) {
1830 kfree(buf);
1831 nvmem_cell_put(cell);
1832 return -EINVAL;
1833 }
1834 memcpy(val, buf, count);
1835 kfree(buf);
1836 nvmem_cell_put(cell);
1837
1838 return 0;
1839 }
1840
1841 /**
1842 * nvmem_cell_read_u8() - Read a cell value as a u8
1843 *
1844 * @dev: Device that requests the nvmem cell.
1845 * @cell_id: Name of nvmem cell to read.
1846 * @val: pointer to output value.
1847 *
1848 * Return: 0 on success or negative errno.
1849 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1850 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1851 {
1852 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1853 }
1854 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1855
1856 /**
1857 * nvmem_cell_read_u16() - Read a cell value as a u16
1858 *
1859 * @dev: Device that requests the nvmem cell.
1860 * @cell_id: Name of nvmem cell to read.
1861 * @val: pointer to output value.
1862 *
1863 * Return: 0 on success or negative errno.
1864 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1865 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1866 {
1867 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1868 }
1869 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1870
1871 /**
1872 * nvmem_cell_read_u32() - Read a cell value as a u32
1873 *
1874 * @dev: Device that requests the nvmem cell.
1875 * @cell_id: Name of nvmem cell to read.
1876 * @val: pointer to output value.
1877 *
1878 * Return: 0 on success or negative errno.
1879 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1880 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1881 {
1882 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1883 }
1884 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1885
1886 /**
1887 * nvmem_cell_read_u64() - Read a cell value as a u64
1888 *
1889 * @dev: Device that requests the nvmem cell.
1890 * @cell_id: Name of nvmem cell to read.
1891 * @val: pointer to output value.
1892 *
1893 * Return: 0 on success or negative errno.
1894 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1895 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1896 {
1897 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1898 }
1899 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1900
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1901 static const void *nvmem_cell_read_variable_common(struct device *dev,
1902 const char *cell_id,
1903 size_t max_len, size_t *len)
1904 {
1905 struct nvmem_cell *cell;
1906 int nbits;
1907 void *buf;
1908
1909 cell = nvmem_cell_get(dev, cell_id);
1910 if (IS_ERR(cell))
1911 return cell;
1912
1913 nbits = cell->entry->nbits;
1914 buf = nvmem_cell_read(cell, len);
1915 nvmem_cell_put(cell);
1916 if (IS_ERR(buf))
1917 return buf;
1918
1919 /*
1920 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1921 * the length of the real data. Throw away the extra junk.
1922 */
1923 if (nbits)
1924 *len = DIV_ROUND_UP(nbits, 8);
1925
1926 if (*len > max_len) {
1927 kfree(buf);
1928 return ERR_PTR(-ERANGE);
1929 }
1930
1931 return buf;
1932 }
1933
1934 /**
1935 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1936 *
1937 * @dev: Device that requests the nvmem cell.
1938 * @cell_id: Name of nvmem cell to read.
1939 * @val: pointer to output value.
1940 *
1941 * Return: 0 on success or negative errno.
1942 */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1943 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1944 u32 *val)
1945 {
1946 size_t len;
1947 const u8 *buf;
1948 int i;
1949
1950 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1951 if (IS_ERR(buf))
1952 return PTR_ERR(buf);
1953
1954 /* Copy w/ implicit endian conversion */
1955 *val = 0;
1956 for (i = 0; i < len; i++)
1957 *val |= buf[i] << (8 * i);
1958
1959 kfree(buf);
1960
1961 return 0;
1962 }
1963 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1964
1965 /**
1966 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1967 *
1968 * @dev: Device that requests the nvmem cell.
1969 * @cell_id: Name of nvmem cell to read.
1970 * @val: pointer to output value.
1971 *
1972 * Return: 0 on success or negative errno.
1973 */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1974 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1975 u64 *val)
1976 {
1977 size_t len;
1978 const u8 *buf;
1979 int i;
1980
1981 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1982 if (IS_ERR(buf))
1983 return PTR_ERR(buf);
1984
1985 /* Copy w/ implicit endian conversion */
1986 *val = 0;
1987 for (i = 0; i < len; i++)
1988 *val |= (uint64_t)buf[i] << (8 * i);
1989
1990 kfree(buf);
1991
1992 return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1995
1996 /**
1997 * nvmem_device_cell_read() - Read a given nvmem device and cell
1998 *
1999 * @nvmem: nvmem device to read from.
2000 * @info: nvmem cell info to be read.
2001 * @buf: buffer pointer which will be populated on successful read.
2002 *
2003 * Return: length of successful bytes read on success and negative
2004 * error code on error.
2005 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2006 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2007 struct nvmem_cell_info *info, void *buf)
2008 {
2009 struct nvmem_cell_entry cell;
2010 int rc;
2011 ssize_t len;
2012
2013 if (!nvmem)
2014 return -EINVAL;
2015
2016 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2017 if (rc)
2018 return rc;
2019
2020 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2021 if (rc)
2022 return rc;
2023
2024 return len;
2025 }
2026 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2027
2028 /**
2029 * nvmem_device_cell_write() - Write cell to a given nvmem device
2030 *
2031 * @nvmem: nvmem device to be written to.
2032 * @info: nvmem cell info to be written.
2033 * @buf: buffer to be written to cell.
2034 *
2035 * Return: length of bytes written or negative error code on failure.
2036 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2037 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2038 struct nvmem_cell_info *info, void *buf)
2039 {
2040 struct nvmem_cell_entry cell;
2041 int rc;
2042
2043 if (!nvmem)
2044 return -EINVAL;
2045
2046 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2047 if (rc)
2048 return rc;
2049
2050 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2051 }
2052 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2053
2054 /**
2055 * nvmem_device_read() - Read from a given nvmem device
2056 *
2057 * @nvmem: nvmem device to read from.
2058 * @offset: offset in nvmem device.
2059 * @bytes: number of bytes to read.
2060 * @buf: buffer pointer which will be populated on successful read.
2061 *
2062 * Return: length of successful bytes read on success and negative
2063 * error code on error.
2064 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2065 int nvmem_device_read(struct nvmem_device *nvmem,
2066 unsigned int offset,
2067 size_t bytes, void *buf)
2068 {
2069 int rc;
2070
2071 if (!nvmem)
2072 return -EINVAL;
2073
2074 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2075
2076 if (rc)
2077 return rc;
2078
2079 return bytes;
2080 }
2081 EXPORT_SYMBOL_GPL(nvmem_device_read);
2082
2083 /**
2084 * nvmem_device_write() - Write cell to a given nvmem device
2085 *
2086 * @nvmem: nvmem device to be written to.
2087 * @offset: offset in nvmem device.
2088 * @bytes: number of bytes to write.
2089 * @buf: buffer to be written.
2090 *
2091 * Return: length of bytes written or negative error code on failure.
2092 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2093 int nvmem_device_write(struct nvmem_device *nvmem,
2094 unsigned int offset,
2095 size_t bytes, void *buf)
2096 {
2097 int rc;
2098
2099 if (!nvmem)
2100 return -EINVAL;
2101
2102 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2103
2104 if (rc)
2105 return rc;
2106
2107
2108 return bytes;
2109 }
2110 EXPORT_SYMBOL_GPL(nvmem_device_write);
2111
2112 /**
2113 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2114 *
2115 * @entries: array of cell lookup entries
2116 * @nentries: number of cell lookup entries in the array
2117 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2118 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2119 {
2120 int i;
2121
2122 mutex_lock(&nvmem_lookup_mutex);
2123 for (i = 0; i < nentries; i++)
2124 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2125 mutex_unlock(&nvmem_lookup_mutex);
2126 }
2127 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2128
2129 /**
2130 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2131 * entries
2132 *
2133 * @entries: array of cell lookup entries
2134 * @nentries: number of cell lookup entries in the array
2135 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2136 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2137 {
2138 int i;
2139
2140 mutex_lock(&nvmem_lookup_mutex);
2141 for (i = 0; i < nentries; i++)
2142 list_del(&entries[i].node);
2143 mutex_unlock(&nvmem_lookup_mutex);
2144 }
2145 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2146
2147 /**
2148 * nvmem_dev_name() - Get the name of a given nvmem device.
2149 *
2150 * @nvmem: nvmem device.
2151 *
2152 * Return: name of the nvmem device.
2153 */
nvmem_dev_name(struct nvmem_device * nvmem)2154 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2155 {
2156 return dev_name(&nvmem->dev);
2157 }
2158 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2159
2160 /**
2161 * nvmem_dev_size() - Get the size of a given nvmem device.
2162 *
2163 * @nvmem: nvmem device.
2164 *
2165 * Return: size of the nvmem device.
2166 */
nvmem_dev_size(struct nvmem_device * nvmem)2167 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2168 {
2169 return nvmem->size;
2170 }
2171 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2172
nvmem_init(void)2173 static int __init nvmem_init(void)
2174 {
2175 int ret;
2176
2177 ret = bus_register(&nvmem_bus_type);
2178 if (ret)
2179 return ret;
2180
2181 ret = nvmem_layout_bus_register();
2182 if (ret)
2183 bus_unregister(&nvmem_bus_type);
2184
2185 return ret;
2186 }
2187
nvmem_exit(void)2188 static void __exit nvmem_exit(void)
2189 {
2190 nvmem_layout_bus_unregister();
2191 bus_unregister(&nvmem_bus_type);
2192 }
2193
2194 subsys_initcall(nvmem_init);
2195 module_exit(nvmem_exit);
2196
2197 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2198 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2199 MODULE_DESCRIPTION("nvmem Driver Core");
2200