xref: /linux/drivers/nvmem/core.c (revision c26f4fbd58375bd6ef74f95eb73d61762ad97c59)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_lookup_mutex);
51 static LIST_HEAD(nvmem_lookup_list);
52 
53 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
54 
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)55 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
56 			    void *val, size_t bytes)
57 {
58 	if (nvmem->reg_read)
59 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
60 
61 	return -EINVAL;
62 }
63 
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)64 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
65 			     void *val, size_t bytes)
66 {
67 	int ret;
68 
69 	if (nvmem->reg_write) {
70 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
71 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
72 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
73 		return ret;
74 	}
75 
76 	return -EINVAL;
77 }
78 
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)79 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
80 				      unsigned int offset, void *val,
81 				      size_t bytes, int write)
82 {
83 
84 	unsigned int end = offset + bytes;
85 	unsigned int kend, ksize;
86 	const struct nvmem_keepout *keepout = nvmem->keepout;
87 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
88 	int rc;
89 
90 	/*
91 	 * Skip all keepouts before the range being accessed.
92 	 * Keepouts are sorted.
93 	 */
94 	while ((keepout < keepoutend) && (keepout->end <= offset))
95 		keepout++;
96 
97 	while ((offset < end) && (keepout < keepoutend)) {
98 		/* Access the valid portion before the keepout. */
99 		if (offset < keepout->start) {
100 			kend = min(end, keepout->start);
101 			ksize = kend - offset;
102 			if (write)
103 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
104 			else
105 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
106 
107 			if (rc)
108 				return rc;
109 
110 			offset += ksize;
111 			val += ksize;
112 		}
113 
114 		/*
115 		 * Now we're aligned to the start of this keepout zone. Go
116 		 * through it.
117 		 */
118 		kend = min(end, keepout->end);
119 		ksize = kend - offset;
120 		if (!write)
121 			memset(val, keepout->value, ksize);
122 
123 		val += ksize;
124 		offset += ksize;
125 		keepout++;
126 	}
127 
128 	/*
129 	 * If we ran out of keepouts but there's still stuff to do, send it
130 	 * down directly
131 	 */
132 	if (offset < end) {
133 		ksize = end - offset;
134 		if (write)
135 			return __nvmem_reg_write(nvmem, offset, val, ksize);
136 		else
137 			return __nvmem_reg_read(nvmem, offset, val, ksize);
138 	}
139 
140 	return 0;
141 }
142 
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)143 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
144 			  void *val, size_t bytes)
145 {
146 	if (!nvmem->nkeepout)
147 		return __nvmem_reg_read(nvmem, offset, val, bytes);
148 
149 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
150 }
151 
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)152 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
153 			   void *val, size_t bytes)
154 {
155 	if (!nvmem->nkeepout)
156 		return __nvmem_reg_write(nvmem, offset, val, bytes);
157 
158 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
159 }
160 
161 #ifdef CONFIG_NVMEM_SYSFS
162 static const char * const nvmem_type_str[] = {
163 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
164 	[NVMEM_TYPE_EEPROM] = "EEPROM",
165 	[NVMEM_TYPE_OTP] = "OTP",
166 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
167 	[NVMEM_TYPE_FRAM] = "FRAM",
168 };
169 
170 #ifdef CONFIG_DEBUG_LOCK_ALLOC
171 static struct lock_class_key eeprom_lock_key;
172 #endif
173 
type_show(struct device * dev,struct device_attribute * attr,char * buf)174 static ssize_t type_show(struct device *dev,
175 			 struct device_attribute *attr, char *buf)
176 {
177 	struct nvmem_device *nvmem = to_nvmem_device(dev);
178 
179 	return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
180 }
181 
182 static DEVICE_ATTR_RO(type);
183 
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)184 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
185 			     char *buf)
186 {
187 	struct nvmem_device *nvmem = to_nvmem_device(dev);
188 
189 	return sysfs_emit(buf, "%d\n", nvmem->read_only);
190 }
191 
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)192 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
193 			      const char *buf, size_t count)
194 {
195 	struct nvmem_device *nvmem = to_nvmem_device(dev);
196 	int ret = kstrtobool(buf, &nvmem->read_only);
197 
198 	if (ret < 0)
199 		return ret;
200 
201 	return count;
202 }
203 
204 static DEVICE_ATTR_RW(force_ro);
205 
206 static struct attribute *nvmem_attrs[] = {
207 	&dev_attr_force_ro.attr,
208 	&dev_attr_type.attr,
209 	NULL,
210 };
211 
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)212 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
213 				   const struct bin_attribute *attr, char *buf,
214 				   loff_t pos, size_t count)
215 {
216 	struct device *dev;
217 	struct nvmem_device *nvmem;
218 	int rc;
219 
220 	if (attr->private)
221 		dev = attr->private;
222 	else
223 		dev = kobj_to_dev(kobj);
224 	nvmem = to_nvmem_device(dev);
225 
226 	if (!IS_ALIGNED(pos, nvmem->stride))
227 		return -EINVAL;
228 
229 	if (count < nvmem->word_size)
230 		return -EINVAL;
231 
232 	count = round_down(count, nvmem->word_size);
233 
234 	if (!nvmem->reg_read)
235 		return -EPERM;
236 
237 	rc = nvmem_reg_read(nvmem, pos, buf, count);
238 
239 	if (rc)
240 		return rc;
241 
242 	return count;
243 }
244 
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246 				    const struct bin_attribute *attr, char *buf,
247 				    loff_t pos, size_t count)
248 {
249 	struct device *dev;
250 	struct nvmem_device *nvmem;
251 	int rc;
252 
253 	if (attr->private)
254 		dev = attr->private;
255 	else
256 		dev = kobj_to_dev(kobj);
257 	nvmem = to_nvmem_device(dev);
258 
259 	if (!IS_ALIGNED(pos, nvmem->stride))
260 		return -EINVAL;
261 
262 	if (count < nvmem->word_size)
263 		return -EINVAL;
264 
265 	count = round_down(count, nvmem->word_size);
266 
267 	if (!nvmem->reg_write || nvmem->read_only)
268 		return -EPERM;
269 
270 	rc = nvmem_reg_write(nvmem, pos, buf, count);
271 
272 	if (rc)
273 		return rc;
274 
275 	return count;
276 }
277 
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)278 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
279 {
280 	umode_t mode = 0400;
281 
282 	if (!nvmem->root_only)
283 		mode |= 0044;
284 
285 	if (!nvmem->read_only)
286 		mode |= 0200;
287 
288 	if (!nvmem->reg_write)
289 		mode &= ~0200;
290 
291 	if (!nvmem->reg_read)
292 		mode &= ~0444;
293 
294 	return mode;
295 }
296 
nvmem_bin_attr_is_visible(struct kobject * kobj,const struct bin_attribute * attr,int i)297 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
298 					 const struct bin_attribute *attr,
299 					 int i)
300 {
301 	struct device *dev = kobj_to_dev(kobj);
302 	struct nvmem_device *nvmem = to_nvmem_device(dev);
303 
304 	return nvmem_bin_attr_get_umode(nvmem);
305 }
306 
nvmem_bin_attr_size(struct kobject * kobj,const struct bin_attribute * attr,int i)307 static size_t nvmem_bin_attr_size(struct kobject *kobj,
308 				  const struct bin_attribute *attr,
309 				  int i)
310 {
311 	struct device *dev = kobj_to_dev(kobj);
312 	struct nvmem_device *nvmem = to_nvmem_device(dev);
313 
314 	return nvmem->size;
315 }
316 
nvmem_attr_is_visible(struct kobject * kobj,struct attribute * attr,int i)317 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
318 				     struct attribute *attr, int i)
319 {
320 	struct device *dev = kobj_to_dev(kobj);
321 	struct nvmem_device *nvmem = to_nvmem_device(dev);
322 
323 	/*
324 	 * If the device has no .reg_write operation, do not allow
325 	 * configuration as read-write.
326 	 * If the device is set as read-only by configuration, it
327 	 * can be forced into read-write mode using the 'force_ro'
328 	 * attribute.
329 	 */
330 	if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
331 		return 0;	/* Attribute not visible */
332 
333 	return attr->mode;
334 }
335 
336 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
337 					    const char *id, int index);
338 
nvmem_cell_attr_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)339 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
340 				    const struct bin_attribute *attr, char *buf,
341 				    loff_t pos, size_t count)
342 {
343 	struct nvmem_cell_entry *entry;
344 	struct nvmem_cell *cell = NULL;
345 	size_t cell_sz, read_len;
346 	void *content;
347 
348 	entry = attr->private;
349 	cell = nvmem_create_cell(entry, entry->name, 0);
350 	if (IS_ERR(cell))
351 		return PTR_ERR(cell);
352 
353 	if (!cell)
354 		return -EINVAL;
355 
356 	content = nvmem_cell_read(cell, &cell_sz);
357 	if (IS_ERR(content)) {
358 		read_len = PTR_ERR(content);
359 		goto destroy_cell;
360 	}
361 
362 	read_len = min_t(unsigned int, cell_sz - pos, count);
363 	memcpy(buf, content + pos, read_len);
364 	kfree(content);
365 
366 destroy_cell:
367 	kfree_const(cell->id);
368 	kfree(cell);
369 
370 	return read_len;
371 }
372 
373 /* default read/write permissions */
374 static const struct bin_attribute bin_attr_rw_nvmem = {
375 	.attr	= {
376 		.name	= "nvmem",
377 		.mode	= 0644,
378 	},
379 	.read_new	= bin_attr_nvmem_read,
380 	.write_new	= bin_attr_nvmem_write,
381 };
382 
383 static const struct bin_attribute *const nvmem_bin_attributes[] = {
384 	&bin_attr_rw_nvmem,
385 	NULL,
386 };
387 
388 static const struct attribute_group nvmem_bin_group = {
389 	.bin_attrs_new	= nvmem_bin_attributes,
390 	.attrs		= nvmem_attrs,
391 	.is_bin_visible = nvmem_bin_attr_is_visible,
392 	.bin_size	= nvmem_bin_attr_size,
393 	.is_visible	= nvmem_attr_is_visible,
394 };
395 
396 static const struct attribute_group *nvmem_dev_groups[] = {
397 	&nvmem_bin_group,
398 	NULL,
399 };
400 
401 static const struct bin_attribute bin_attr_nvmem_eeprom_compat = {
402 	.attr	= {
403 		.name	= "eeprom",
404 	},
405 	.read_new	= bin_attr_nvmem_read,
406 	.write_new	= bin_attr_nvmem_write,
407 };
408 
409 /*
410  * nvmem_setup_compat() - Create an additional binary entry in
411  * drivers sys directory, to be backwards compatible with the older
412  * drivers/misc/eeprom drivers.
413  */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)414 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
415 				    const struct nvmem_config *config)
416 {
417 	int rval;
418 
419 	if (!config->compat)
420 		return 0;
421 
422 	if (!config->base_dev)
423 		return -EINVAL;
424 
425 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
426 	if (config->type == NVMEM_TYPE_FRAM)
427 		nvmem->eeprom.attr.name = "fram";
428 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
429 	nvmem->eeprom.size = nvmem->size;
430 #ifdef CONFIG_DEBUG_LOCK_ALLOC
431 	nvmem->eeprom.attr.key = &eeprom_lock_key;
432 #endif
433 	nvmem->eeprom.private = &nvmem->dev;
434 	nvmem->base_dev = config->base_dev;
435 
436 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
437 	if (rval) {
438 		dev_err(&nvmem->dev,
439 			"Failed to create eeprom binary file %d\n", rval);
440 		return rval;
441 	}
442 
443 	nvmem->flags |= FLAG_COMPAT;
444 
445 	return 0;
446 }
447 
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)448 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
449 			      const struct nvmem_config *config)
450 {
451 	if (config->compat)
452 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
453 }
454 
nvmem_populate_sysfs_cells(struct nvmem_device * nvmem)455 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
456 {
457 	struct attribute_group group = {
458 		.name	= "cells",
459 	};
460 	struct nvmem_cell_entry *entry;
461 	const struct bin_attribute **pattrs;
462 	struct bin_attribute *attrs;
463 	unsigned int ncells = 0, i = 0;
464 	int ret = 0;
465 
466 	mutex_lock(&nvmem_mutex);
467 
468 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
469 		goto unlock_mutex;
470 
471 	/* Allocate an array of attributes with a sentinel */
472 	ncells = list_count_nodes(&nvmem->cells);
473 	pattrs = devm_kcalloc(&nvmem->dev, ncells + 1,
474 			      sizeof(struct bin_attribute *), GFP_KERNEL);
475 	if (!pattrs) {
476 		ret = -ENOMEM;
477 		goto unlock_mutex;
478 	}
479 
480 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
481 	if (!attrs) {
482 		ret = -ENOMEM;
483 		goto unlock_mutex;
484 	}
485 
486 	/* Initialize each attribute to take the name and size of the cell */
487 	list_for_each_entry(entry, &nvmem->cells, node) {
488 		sysfs_bin_attr_init(&attrs[i]);
489 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
490 						    "%s@%x,%x", entry->name,
491 						    entry->offset,
492 						    entry->bit_offset);
493 		attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
494 		attrs[i].size = entry->bytes;
495 		attrs[i].read_new = &nvmem_cell_attr_read;
496 		attrs[i].private = entry;
497 		if (!attrs[i].attr.name) {
498 			ret = -ENOMEM;
499 			goto unlock_mutex;
500 		}
501 
502 		pattrs[i] = &attrs[i];
503 		i++;
504 	}
505 
506 	group.bin_attrs_new = pattrs;
507 
508 	ret = device_add_group(&nvmem->dev, &group);
509 	if (ret)
510 		goto unlock_mutex;
511 
512 	nvmem->sysfs_cells_populated = true;
513 
514 unlock_mutex:
515 	mutex_unlock(&nvmem_mutex);
516 
517 	return ret;
518 }
519 
520 #else /* CONFIG_NVMEM_SYSFS */
521 
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)522 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
523 				    const struct nvmem_config *config)
524 {
525 	return -ENOSYS;
526 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)527 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
528 				      const struct nvmem_config *config)
529 {
530 }
531 
532 #endif /* CONFIG_NVMEM_SYSFS */
533 
nvmem_release(struct device * dev)534 static void nvmem_release(struct device *dev)
535 {
536 	struct nvmem_device *nvmem = to_nvmem_device(dev);
537 
538 	ida_free(&nvmem_ida, nvmem->id);
539 	gpiod_put(nvmem->wp_gpio);
540 	kfree(nvmem);
541 }
542 
543 static const struct device_type nvmem_provider_type = {
544 	.release	= nvmem_release,
545 };
546 
547 static struct bus_type nvmem_bus_type = {
548 	.name		= "nvmem",
549 };
550 
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)551 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
552 {
553 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
554 	mutex_lock(&nvmem_mutex);
555 	list_del(&cell->node);
556 	mutex_unlock(&nvmem_mutex);
557 	of_node_put(cell->np);
558 	kfree_const(cell->name);
559 	kfree(cell);
560 }
561 
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)562 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
563 {
564 	struct nvmem_cell_entry *cell, *p;
565 
566 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
567 		nvmem_cell_entry_drop(cell);
568 }
569 
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)570 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
571 {
572 	mutex_lock(&nvmem_mutex);
573 	list_add_tail(&cell->node, &cell->nvmem->cells);
574 	mutex_unlock(&nvmem_mutex);
575 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
576 }
577 
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)578 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
579 						     const struct nvmem_cell_info *info,
580 						     struct nvmem_cell_entry *cell)
581 {
582 	cell->nvmem = nvmem;
583 	cell->offset = info->offset;
584 	cell->raw_len = info->raw_len ?: info->bytes;
585 	cell->bytes = info->bytes;
586 	cell->name = info->name;
587 	cell->read_post_process = info->read_post_process;
588 	cell->priv = info->priv;
589 
590 	cell->bit_offset = info->bit_offset;
591 	cell->nbits = info->nbits;
592 	cell->np = info->np;
593 
594 	if (cell->nbits) {
595 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
596 					   BITS_PER_BYTE);
597 		cell->raw_len = ALIGN(cell->bytes, nvmem->word_size);
598 	}
599 
600 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
601 		dev_err(&nvmem->dev,
602 			"cell %s unaligned to nvmem stride %d\n",
603 			cell->name ?: "<unknown>", nvmem->stride);
604 		return -EINVAL;
605 	}
606 
607 	if (!IS_ALIGNED(cell->raw_len, nvmem->word_size)) {
608 		dev_err(&nvmem->dev,
609 			"cell %s raw len %zd unaligned to nvmem word size %d\n",
610 			cell->name ?: "<unknown>", cell->raw_len,
611 			nvmem->word_size);
612 
613 		if (info->raw_len)
614 			return -EINVAL;
615 
616 		cell->raw_len = ALIGN(cell->raw_len, nvmem->word_size);
617 	}
618 
619 	return 0;
620 }
621 
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)622 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
623 					       const struct nvmem_cell_info *info,
624 					       struct nvmem_cell_entry *cell)
625 {
626 	int err;
627 
628 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
629 	if (err)
630 		return err;
631 
632 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
633 	if (!cell->name)
634 		return -ENOMEM;
635 
636 	return 0;
637 }
638 
639 /**
640  * nvmem_add_one_cell() - Add one cell information to an nvmem device
641  *
642  * @nvmem: nvmem device to add cells to.
643  * @info: nvmem cell info to add to the device
644  *
645  * Return: 0 or negative error code on failure.
646  */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)647 int nvmem_add_one_cell(struct nvmem_device *nvmem,
648 		       const struct nvmem_cell_info *info)
649 {
650 	struct nvmem_cell_entry *cell;
651 	int rval;
652 
653 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
654 	if (!cell)
655 		return -ENOMEM;
656 
657 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
658 	if (rval) {
659 		kfree(cell);
660 		return rval;
661 	}
662 
663 	nvmem_cell_entry_add(cell);
664 
665 	return 0;
666 }
667 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
668 
669 /**
670  * nvmem_add_cells() - Add cell information to an nvmem device
671  *
672  * @nvmem: nvmem device to add cells to.
673  * @info: nvmem cell info to add to the device
674  * @ncells: number of cells in info
675  *
676  * Return: 0 or negative error code on failure.
677  */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)678 static int nvmem_add_cells(struct nvmem_device *nvmem,
679 		    const struct nvmem_cell_info *info,
680 		    int ncells)
681 {
682 	int i, rval;
683 
684 	for (i = 0; i < ncells; i++) {
685 		rval = nvmem_add_one_cell(nvmem, &info[i]);
686 		if (rval)
687 			return rval;
688 	}
689 
690 	return 0;
691 }
692 
693 /**
694  * nvmem_register_notifier() - Register a notifier block for nvmem events.
695  *
696  * @nb: notifier block to be called on nvmem events.
697  *
698  * Return: 0 on success, negative error number on failure.
699  */
nvmem_register_notifier(struct notifier_block * nb)700 int nvmem_register_notifier(struct notifier_block *nb)
701 {
702 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
703 }
704 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
705 
706 /**
707  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
708  *
709  * @nb: notifier block to be unregistered.
710  *
711  * Return: 0 on success, negative error number on failure.
712  */
nvmem_unregister_notifier(struct notifier_block * nb)713 int nvmem_unregister_notifier(struct notifier_block *nb)
714 {
715 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
716 }
717 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
718 
719 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)720 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
721 {
722 	struct nvmem_cell_entry *iter, *cell = NULL;
723 
724 	mutex_lock(&nvmem_mutex);
725 	list_for_each_entry(iter, &nvmem->cells, node) {
726 		if (strcmp(cell_id, iter->name) == 0) {
727 			cell = iter;
728 			break;
729 		}
730 	}
731 	mutex_unlock(&nvmem_mutex);
732 
733 	return cell;
734 }
735 
nvmem_validate_keepouts(struct nvmem_device * nvmem)736 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
737 {
738 	unsigned int cur = 0;
739 	const struct nvmem_keepout *keepout = nvmem->keepout;
740 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
741 
742 	while (keepout < keepoutend) {
743 		/* Ensure keepouts are sorted and don't overlap. */
744 		if (keepout->start < cur) {
745 			dev_err(&nvmem->dev,
746 				"Keepout regions aren't sorted or overlap.\n");
747 
748 			return -ERANGE;
749 		}
750 
751 		if (keepout->end < keepout->start) {
752 			dev_err(&nvmem->dev,
753 				"Invalid keepout region.\n");
754 
755 			return -EINVAL;
756 		}
757 
758 		/*
759 		 * Validate keepouts (and holes between) don't violate
760 		 * word_size constraints.
761 		 */
762 		if ((keepout->end - keepout->start < nvmem->word_size) ||
763 		    ((keepout->start != cur) &&
764 		     (keepout->start - cur < nvmem->word_size))) {
765 
766 			dev_err(&nvmem->dev,
767 				"Keepout regions violate word_size constraints.\n");
768 
769 			return -ERANGE;
770 		}
771 
772 		/* Validate keepouts don't violate stride (alignment). */
773 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
774 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
775 
776 			dev_err(&nvmem->dev,
777 				"Keepout regions violate stride.\n");
778 
779 			return -EINVAL;
780 		}
781 
782 		cur = keepout->end;
783 		keepout++;
784 	}
785 
786 	return 0;
787 }
788 
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)789 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
790 {
791 	struct device *dev = &nvmem->dev;
792 	struct device_node *child;
793 	const __be32 *addr;
794 	int len, ret;
795 
796 	for_each_child_of_node(np, child) {
797 		struct nvmem_cell_info info = {0};
798 
799 		addr = of_get_property(child, "reg", &len);
800 		if (!addr)
801 			continue;
802 		if (len < 2 * sizeof(u32)) {
803 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
804 			of_node_put(child);
805 			return -EINVAL;
806 		}
807 
808 		info.offset = be32_to_cpup(addr++);
809 		info.bytes = be32_to_cpup(addr);
810 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
811 
812 		addr = of_get_property(child, "bits", &len);
813 		if (addr && len == (2 * sizeof(u32))) {
814 			info.bit_offset = be32_to_cpup(addr++);
815 			info.nbits = be32_to_cpup(addr);
816 			if (info.bit_offset >= BITS_PER_BYTE * info.bytes ||
817 			    info.nbits < 1 ||
818 			    info.bit_offset + info.nbits > BITS_PER_BYTE * info.bytes) {
819 				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
820 				of_node_put(child);
821 				return -EINVAL;
822 			}
823 		}
824 
825 		info.np = of_node_get(child);
826 
827 		if (nvmem->fixup_dt_cell_info)
828 			nvmem->fixup_dt_cell_info(nvmem, &info);
829 
830 		ret = nvmem_add_one_cell(nvmem, &info);
831 		kfree(info.name);
832 		if (ret) {
833 			of_node_put(child);
834 			return ret;
835 		}
836 	}
837 
838 	return 0;
839 }
840 
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)841 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
842 {
843 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
844 }
845 
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)846 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
847 {
848 	struct device_node *layout_np;
849 	int err = 0;
850 
851 	layout_np = of_nvmem_layout_get_container(nvmem);
852 	if (!layout_np)
853 		return 0;
854 
855 	if (of_device_is_compatible(layout_np, "fixed-layout"))
856 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
857 
858 	of_node_put(layout_np);
859 
860 	return err;
861 }
862 
nvmem_layout_register(struct nvmem_layout * layout)863 int nvmem_layout_register(struct nvmem_layout *layout)
864 {
865 	int ret;
866 
867 	if (!layout->add_cells)
868 		return -EINVAL;
869 
870 	/* Populate the cells */
871 	ret = layout->add_cells(layout);
872 	if (ret)
873 		return ret;
874 
875 #ifdef CONFIG_NVMEM_SYSFS
876 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
877 	if (ret) {
878 		nvmem_device_remove_all_cells(layout->nvmem);
879 		return ret;
880 	}
881 #endif
882 
883 	return 0;
884 }
885 EXPORT_SYMBOL_GPL(nvmem_layout_register);
886 
nvmem_layout_unregister(struct nvmem_layout * layout)887 void nvmem_layout_unregister(struct nvmem_layout *layout)
888 {
889 	/* Keep the API even with an empty stub in case we need it later */
890 }
891 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
892 
893 /**
894  * nvmem_register() - Register a nvmem device for given nvmem_config.
895  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
896  *
897  * @config: nvmem device configuration with which nvmem device is created.
898  *
899  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
900  * on success.
901  */
902 
nvmem_register(const struct nvmem_config * config)903 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
904 {
905 	struct nvmem_device *nvmem;
906 	int rval;
907 
908 	if (!config->dev)
909 		return ERR_PTR(-EINVAL);
910 
911 	if (!config->reg_read && !config->reg_write)
912 		return ERR_PTR(-EINVAL);
913 
914 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
915 	if (!nvmem)
916 		return ERR_PTR(-ENOMEM);
917 
918 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
919 	if (rval < 0) {
920 		kfree(nvmem);
921 		return ERR_PTR(rval);
922 	}
923 
924 	nvmem->id = rval;
925 
926 	nvmem->dev.type = &nvmem_provider_type;
927 	nvmem->dev.bus = &nvmem_bus_type;
928 	nvmem->dev.parent = config->dev;
929 
930 	device_initialize(&nvmem->dev);
931 
932 	if (!config->ignore_wp)
933 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
934 						    GPIOD_OUT_HIGH);
935 	if (IS_ERR(nvmem->wp_gpio)) {
936 		rval = PTR_ERR(nvmem->wp_gpio);
937 		nvmem->wp_gpio = NULL;
938 		goto err_put_device;
939 	}
940 
941 	kref_init(&nvmem->refcnt);
942 	INIT_LIST_HEAD(&nvmem->cells);
943 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
944 
945 	nvmem->owner = config->owner;
946 	if (!nvmem->owner && config->dev->driver)
947 		nvmem->owner = config->dev->driver->owner;
948 	nvmem->stride = config->stride ?: 1;
949 	nvmem->word_size = config->word_size ?: 1;
950 	nvmem->size = config->size;
951 	nvmem->root_only = config->root_only;
952 	nvmem->priv = config->priv;
953 	nvmem->type = config->type;
954 	nvmem->reg_read = config->reg_read;
955 	nvmem->reg_write = config->reg_write;
956 	nvmem->keepout = config->keepout;
957 	nvmem->nkeepout = config->nkeepout;
958 	if (config->of_node)
959 		nvmem->dev.of_node = config->of_node;
960 	else
961 		nvmem->dev.of_node = config->dev->of_node;
962 
963 	switch (config->id) {
964 	case NVMEM_DEVID_NONE:
965 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
966 		break;
967 	case NVMEM_DEVID_AUTO:
968 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
969 		break;
970 	default:
971 		rval = dev_set_name(&nvmem->dev, "%s%d",
972 			     config->name ? : "nvmem",
973 			     config->name ? config->id : nvmem->id);
974 		break;
975 	}
976 
977 	if (rval)
978 		goto err_put_device;
979 
980 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
981 			   config->read_only || !nvmem->reg_write;
982 
983 #ifdef CONFIG_NVMEM_SYSFS
984 	nvmem->dev.groups = nvmem_dev_groups;
985 #endif
986 
987 	if (nvmem->nkeepout) {
988 		rval = nvmem_validate_keepouts(nvmem);
989 		if (rval)
990 			goto err_put_device;
991 	}
992 
993 	if (config->compat) {
994 		rval = nvmem_sysfs_setup_compat(nvmem, config);
995 		if (rval)
996 			goto err_put_device;
997 	}
998 
999 	if (config->cells) {
1000 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1001 		if (rval)
1002 			goto err_remove_cells;
1003 	}
1004 
1005 	if (config->add_legacy_fixed_of_cells) {
1006 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1007 		if (rval)
1008 			goto err_remove_cells;
1009 	}
1010 
1011 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1012 	if (rval)
1013 		goto err_remove_cells;
1014 
1015 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1016 
1017 	rval = device_add(&nvmem->dev);
1018 	if (rval)
1019 		goto err_remove_cells;
1020 
1021 	rval = nvmem_populate_layout(nvmem);
1022 	if (rval)
1023 		goto err_remove_dev;
1024 
1025 #ifdef CONFIG_NVMEM_SYSFS
1026 	rval = nvmem_populate_sysfs_cells(nvmem);
1027 	if (rval)
1028 		goto err_destroy_layout;
1029 #endif
1030 
1031 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1032 
1033 	return nvmem;
1034 
1035 #ifdef CONFIG_NVMEM_SYSFS
1036 err_destroy_layout:
1037 	nvmem_destroy_layout(nvmem);
1038 #endif
1039 err_remove_dev:
1040 	device_del(&nvmem->dev);
1041 err_remove_cells:
1042 	nvmem_device_remove_all_cells(nvmem);
1043 	if (config->compat)
1044 		nvmem_sysfs_remove_compat(nvmem, config);
1045 err_put_device:
1046 	put_device(&nvmem->dev);
1047 
1048 	return ERR_PTR(rval);
1049 }
1050 EXPORT_SYMBOL_GPL(nvmem_register);
1051 
nvmem_device_release(struct kref * kref)1052 static void nvmem_device_release(struct kref *kref)
1053 {
1054 	struct nvmem_device *nvmem;
1055 
1056 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1057 
1058 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1059 
1060 	if (nvmem->flags & FLAG_COMPAT)
1061 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1062 
1063 	nvmem_device_remove_all_cells(nvmem);
1064 	nvmem_destroy_layout(nvmem);
1065 	device_unregister(&nvmem->dev);
1066 }
1067 
1068 /**
1069  * nvmem_unregister() - Unregister previously registered nvmem device
1070  *
1071  * @nvmem: Pointer to previously registered nvmem device.
1072  */
nvmem_unregister(struct nvmem_device * nvmem)1073 void nvmem_unregister(struct nvmem_device *nvmem)
1074 {
1075 	if (nvmem)
1076 		kref_put(&nvmem->refcnt, nvmem_device_release);
1077 }
1078 EXPORT_SYMBOL_GPL(nvmem_unregister);
1079 
devm_nvmem_unregister(void * nvmem)1080 static void devm_nvmem_unregister(void *nvmem)
1081 {
1082 	nvmem_unregister(nvmem);
1083 }
1084 
1085 /**
1086  * devm_nvmem_register() - Register a managed nvmem device for given
1087  * nvmem_config.
1088  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1089  *
1090  * @dev: Device that uses the nvmem device.
1091  * @config: nvmem device configuration with which nvmem device is created.
1092  *
1093  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1094  * on success.
1095  */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1096 struct nvmem_device *devm_nvmem_register(struct device *dev,
1097 					 const struct nvmem_config *config)
1098 {
1099 	struct nvmem_device *nvmem;
1100 	int ret;
1101 
1102 	nvmem = nvmem_register(config);
1103 	if (IS_ERR(nvmem))
1104 		return nvmem;
1105 
1106 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1107 	if (ret)
1108 		return ERR_PTR(ret);
1109 
1110 	return nvmem;
1111 }
1112 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1113 
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1114 static struct nvmem_device *__nvmem_device_get(void *data,
1115 			int (*match)(struct device *dev, const void *data))
1116 {
1117 	struct nvmem_device *nvmem = NULL;
1118 	struct device *dev;
1119 
1120 	mutex_lock(&nvmem_mutex);
1121 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1122 	if (dev)
1123 		nvmem = to_nvmem_device(dev);
1124 	mutex_unlock(&nvmem_mutex);
1125 	if (!nvmem)
1126 		return ERR_PTR(-EPROBE_DEFER);
1127 
1128 	if (!try_module_get(nvmem->owner)) {
1129 		dev_err(&nvmem->dev,
1130 			"could not increase module refcount for cell %s\n",
1131 			nvmem_dev_name(nvmem));
1132 
1133 		put_device(&nvmem->dev);
1134 		return ERR_PTR(-EINVAL);
1135 	}
1136 
1137 	kref_get(&nvmem->refcnt);
1138 
1139 	return nvmem;
1140 }
1141 
__nvmem_device_put(struct nvmem_device * nvmem)1142 static void __nvmem_device_put(struct nvmem_device *nvmem)
1143 {
1144 	put_device(&nvmem->dev);
1145 	module_put(nvmem->owner);
1146 	kref_put(&nvmem->refcnt, nvmem_device_release);
1147 }
1148 
1149 #if IS_ENABLED(CONFIG_OF)
1150 /**
1151  * of_nvmem_device_get() - Get nvmem device from a given id
1152  *
1153  * @np: Device tree node that uses the nvmem device.
1154  * @id: nvmem name from nvmem-names property.
1155  *
1156  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1157  * on success.
1158  */
of_nvmem_device_get(struct device_node * np,const char * id)1159 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1160 {
1161 
1162 	struct device_node *nvmem_np;
1163 	struct nvmem_device *nvmem;
1164 	int index = 0;
1165 
1166 	if (id)
1167 		index = of_property_match_string(np, "nvmem-names", id);
1168 
1169 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1170 	if (!nvmem_np)
1171 		return ERR_PTR(-ENOENT);
1172 
1173 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1174 	of_node_put(nvmem_np);
1175 	return nvmem;
1176 }
1177 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1178 #endif
1179 
1180 /**
1181  * nvmem_device_get() - Get nvmem device from a given id
1182  *
1183  * @dev: Device that uses the nvmem device.
1184  * @dev_name: name of the requested nvmem device.
1185  *
1186  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1187  * on success.
1188  */
nvmem_device_get(struct device * dev,const char * dev_name)1189 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1190 {
1191 	if (dev->of_node) { /* try dt first */
1192 		struct nvmem_device *nvmem;
1193 
1194 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1195 
1196 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1197 			return nvmem;
1198 
1199 	}
1200 
1201 	return __nvmem_device_get((void *)dev_name, device_match_name);
1202 }
1203 EXPORT_SYMBOL_GPL(nvmem_device_get);
1204 
1205 /**
1206  * nvmem_device_find() - Find nvmem device with matching function
1207  *
1208  * @data: Data to pass to match function
1209  * @match: Callback function to check device
1210  *
1211  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1212  * on success.
1213  */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1214 struct nvmem_device *nvmem_device_find(void *data,
1215 			int (*match)(struct device *dev, const void *data))
1216 {
1217 	return __nvmem_device_get(data, match);
1218 }
1219 EXPORT_SYMBOL_GPL(nvmem_device_find);
1220 
devm_nvmem_device_match(struct device * dev,void * res,void * data)1221 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1222 {
1223 	struct nvmem_device **nvmem = res;
1224 
1225 	if (WARN_ON(!nvmem || !*nvmem))
1226 		return 0;
1227 
1228 	return *nvmem == data;
1229 }
1230 
devm_nvmem_device_release(struct device * dev,void * res)1231 static void devm_nvmem_device_release(struct device *dev, void *res)
1232 {
1233 	nvmem_device_put(*(struct nvmem_device **)res);
1234 }
1235 
1236 /**
1237  * devm_nvmem_device_put() - put already got nvmem device
1238  *
1239  * @dev: Device that uses the nvmem device.
1240  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1241  * that needs to be released.
1242  */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1243 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1244 {
1245 	int ret;
1246 
1247 	ret = devres_release(dev, devm_nvmem_device_release,
1248 			     devm_nvmem_device_match, nvmem);
1249 
1250 	WARN_ON(ret);
1251 }
1252 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1253 
1254 /**
1255  * nvmem_device_put() - put already got nvmem device
1256  *
1257  * @nvmem: pointer to nvmem device that needs to be released.
1258  */
nvmem_device_put(struct nvmem_device * nvmem)1259 void nvmem_device_put(struct nvmem_device *nvmem)
1260 {
1261 	__nvmem_device_put(nvmem);
1262 }
1263 EXPORT_SYMBOL_GPL(nvmem_device_put);
1264 
1265 /**
1266  * devm_nvmem_device_get() - Get nvmem device of device form a given id
1267  *
1268  * @dev: Device that requests the nvmem device.
1269  * @id: name id for the requested nvmem device.
1270  *
1271  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1272  * on success.  The nvmem_device will be freed by the automatically once the
1273  * device is freed.
1274  */
devm_nvmem_device_get(struct device * dev,const char * id)1275 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1276 {
1277 	struct nvmem_device **ptr, *nvmem;
1278 
1279 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1280 	if (!ptr)
1281 		return ERR_PTR(-ENOMEM);
1282 
1283 	nvmem = nvmem_device_get(dev, id);
1284 	if (!IS_ERR(nvmem)) {
1285 		*ptr = nvmem;
1286 		devres_add(dev, ptr);
1287 	} else {
1288 		devres_free(ptr);
1289 	}
1290 
1291 	return nvmem;
1292 }
1293 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1294 
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1295 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1296 					    const char *id, int index)
1297 {
1298 	struct nvmem_cell *cell;
1299 	const char *name = NULL;
1300 
1301 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1302 	if (!cell)
1303 		return ERR_PTR(-ENOMEM);
1304 
1305 	if (id) {
1306 		name = kstrdup_const(id, GFP_KERNEL);
1307 		if (!name) {
1308 			kfree(cell);
1309 			return ERR_PTR(-ENOMEM);
1310 		}
1311 	}
1312 
1313 	cell->id = name;
1314 	cell->entry = entry;
1315 	cell->index = index;
1316 
1317 	return cell;
1318 }
1319 
1320 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1321 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1322 {
1323 	struct nvmem_cell_entry *cell_entry;
1324 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1325 	struct nvmem_cell_lookup *lookup;
1326 	struct nvmem_device *nvmem;
1327 	const char *dev_id;
1328 
1329 	if (!dev)
1330 		return ERR_PTR(-EINVAL);
1331 
1332 	dev_id = dev_name(dev);
1333 
1334 	mutex_lock(&nvmem_lookup_mutex);
1335 
1336 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1337 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1338 		    (strcmp(lookup->con_id, con_id) == 0)) {
1339 			/* This is the right entry. */
1340 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1341 						   device_match_name);
1342 			if (IS_ERR(nvmem)) {
1343 				/* Provider may not be registered yet. */
1344 				cell = ERR_CAST(nvmem);
1345 				break;
1346 			}
1347 
1348 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1349 								   lookup->cell_name);
1350 			if (!cell_entry) {
1351 				__nvmem_device_put(nvmem);
1352 				cell = ERR_PTR(-ENOENT);
1353 			} else {
1354 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1355 				if (IS_ERR(cell))
1356 					__nvmem_device_put(nvmem);
1357 			}
1358 			break;
1359 		}
1360 	}
1361 
1362 	mutex_unlock(&nvmem_lookup_mutex);
1363 	return cell;
1364 }
1365 
nvmem_layout_module_put(struct nvmem_device * nvmem)1366 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1367 {
1368 	if (nvmem->layout && nvmem->layout->dev.driver)
1369 		module_put(nvmem->layout->dev.driver->owner);
1370 }
1371 
1372 #if IS_ENABLED(CONFIG_OF)
1373 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1374 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1375 {
1376 	struct nvmem_cell_entry *iter, *cell = NULL;
1377 
1378 	mutex_lock(&nvmem_mutex);
1379 	list_for_each_entry(iter, &nvmem->cells, node) {
1380 		if (np == iter->np) {
1381 			cell = iter;
1382 			break;
1383 		}
1384 	}
1385 	mutex_unlock(&nvmem_mutex);
1386 
1387 	return cell;
1388 }
1389 
nvmem_layout_module_get_optional(struct nvmem_device * nvmem)1390 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1391 {
1392 	if (!nvmem->layout)
1393 		return 0;
1394 
1395 	if (!nvmem->layout->dev.driver ||
1396 	    !try_module_get(nvmem->layout->dev.driver->owner))
1397 		return -EPROBE_DEFER;
1398 
1399 	return 0;
1400 }
1401 
1402 /**
1403  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1404  *
1405  * @np: Device tree node that uses the nvmem cell.
1406  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1407  *      for the cell at index 0 (the lone cell with no accompanying
1408  *      nvmem-cell-names property).
1409  *
1410  * Return: Will be an ERR_PTR() on error or a valid pointer
1411  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1412  * nvmem_cell_put().
1413  */
of_nvmem_cell_get(struct device_node * np,const char * id)1414 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1415 {
1416 	struct device_node *cell_np, *nvmem_np;
1417 	struct nvmem_device *nvmem;
1418 	struct nvmem_cell_entry *cell_entry;
1419 	struct nvmem_cell *cell;
1420 	struct of_phandle_args cell_spec;
1421 	int index = 0;
1422 	int cell_index = 0;
1423 	int ret;
1424 
1425 	/* if cell name exists, find index to the name */
1426 	if (id)
1427 		index = of_property_match_string(np, "nvmem-cell-names", id);
1428 
1429 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1430 						  "#nvmem-cell-cells",
1431 						  index, &cell_spec);
1432 	if (ret)
1433 		return ERR_PTR(-ENOENT);
1434 
1435 	if (cell_spec.args_count > 1)
1436 		return ERR_PTR(-EINVAL);
1437 
1438 	cell_np = cell_spec.np;
1439 	if (cell_spec.args_count)
1440 		cell_index = cell_spec.args[0];
1441 
1442 	nvmem_np = of_get_parent(cell_np);
1443 	if (!nvmem_np) {
1444 		of_node_put(cell_np);
1445 		return ERR_PTR(-EINVAL);
1446 	}
1447 
1448 	/* nvmem layouts produce cells within the nvmem-layout container */
1449 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1450 		nvmem_np = of_get_next_parent(nvmem_np);
1451 		if (!nvmem_np) {
1452 			of_node_put(cell_np);
1453 			return ERR_PTR(-EINVAL);
1454 		}
1455 	}
1456 
1457 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1458 	of_node_put(nvmem_np);
1459 	if (IS_ERR(nvmem)) {
1460 		of_node_put(cell_np);
1461 		return ERR_CAST(nvmem);
1462 	}
1463 
1464 	ret = nvmem_layout_module_get_optional(nvmem);
1465 	if (ret) {
1466 		of_node_put(cell_np);
1467 		__nvmem_device_put(nvmem);
1468 		return ERR_PTR(ret);
1469 	}
1470 
1471 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1472 	of_node_put(cell_np);
1473 	if (!cell_entry) {
1474 		__nvmem_device_put(nvmem);
1475 		nvmem_layout_module_put(nvmem);
1476 		if (nvmem->layout)
1477 			return ERR_PTR(-EPROBE_DEFER);
1478 		else
1479 			return ERR_PTR(-ENOENT);
1480 	}
1481 
1482 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1483 	if (IS_ERR(cell)) {
1484 		__nvmem_device_put(nvmem);
1485 		nvmem_layout_module_put(nvmem);
1486 	}
1487 
1488 	return cell;
1489 }
1490 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1491 #endif
1492 
1493 /**
1494  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1495  *
1496  * @dev: Device that requests the nvmem cell.
1497  * @id: nvmem cell name to get (this corresponds with the name from the
1498  *      nvmem-cell-names property for DT systems and with the con_id from
1499  *      the lookup entry for non-DT systems).
1500  *
1501  * Return: Will be an ERR_PTR() on error or a valid pointer
1502  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1503  * nvmem_cell_put().
1504  */
nvmem_cell_get(struct device * dev,const char * id)1505 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1506 {
1507 	struct nvmem_cell *cell;
1508 
1509 	if (dev->of_node) { /* try dt first */
1510 		cell = of_nvmem_cell_get(dev->of_node, id);
1511 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1512 			return cell;
1513 	}
1514 
1515 	/* NULL cell id only allowed for device tree; invalid otherwise */
1516 	if (!id)
1517 		return ERR_PTR(-EINVAL);
1518 
1519 	return nvmem_cell_get_from_lookup(dev, id);
1520 }
1521 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1522 
devm_nvmem_cell_release(struct device * dev,void * res)1523 static void devm_nvmem_cell_release(struct device *dev, void *res)
1524 {
1525 	nvmem_cell_put(*(struct nvmem_cell **)res);
1526 }
1527 
1528 /**
1529  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1530  *
1531  * @dev: Device that requests the nvmem cell.
1532  * @id: nvmem cell name id to get.
1533  *
1534  * Return: Will be an ERR_PTR() on error or a valid pointer
1535  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1536  * automatically once the device is freed.
1537  */
devm_nvmem_cell_get(struct device * dev,const char * id)1538 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1539 {
1540 	struct nvmem_cell **ptr, *cell;
1541 
1542 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1543 	if (!ptr)
1544 		return ERR_PTR(-ENOMEM);
1545 
1546 	cell = nvmem_cell_get(dev, id);
1547 	if (!IS_ERR(cell)) {
1548 		*ptr = cell;
1549 		devres_add(dev, ptr);
1550 	} else {
1551 		devres_free(ptr);
1552 	}
1553 
1554 	return cell;
1555 }
1556 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1557 
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1558 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1559 {
1560 	struct nvmem_cell **c = res;
1561 
1562 	if (WARN_ON(!c || !*c))
1563 		return 0;
1564 
1565 	return *c == data;
1566 }
1567 
1568 /**
1569  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1570  * from devm_nvmem_cell_get.
1571  *
1572  * @dev: Device that requests the nvmem cell.
1573  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1574  */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1575 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1576 {
1577 	int ret;
1578 
1579 	ret = devres_release(dev, devm_nvmem_cell_release,
1580 				devm_nvmem_cell_match, cell);
1581 
1582 	WARN_ON(ret);
1583 }
1584 EXPORT_SYMBOL(devm_nvmem_cell_put);
1585 
1586 /**
1587  * nvmem_cell_put() - Release previously allocated nvmem cell.
1588  *
1589  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1590  */
nvmem_cell_put(struct nvmem_cell * cell)1591 void nvmem_cell_put(struct nvmem_cell *cell)
1592 {
1593 	struct nvmem_device *nvmem = cell->entry->nvmem;
1594 
1595 	if (cell->id)
1596 		kfree_const(cell->id);
1597 
1598 	kfree(cell);
1599 	__nvmem_device_put(nvmem);
1600 	nvmem_layout_module_put(nvmem);
1601 }
1602 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1603 
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1604 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1605 {
1606 	u8 *p, *b;
1607 	int i, extra, bytes_offset;
1608 	int bit_offset = cell->bit_offset;
1609 
1610 	p = b = buf;
1611 
1612 	bytes_offset = bit_offset / BITS_PER_BYTE;
1613 	b += bytes_offset;
1614 	bit_offset %= BITS_PER_BYTE;
1615 
1616 	if (bit_offset % BITS_PER_BYTE) {
1617 		/* First shift */
1618 		*p = *b++ >> bit_offset;
1619 
1620 		/* setup rest of the bytes if any */
1621 		for (i = 1; i < cell->bytes; i++) {
1622 			/* Get bits from next byte and shift them towards msb */
1623 			*p++ |= *b << (BITS_PER_BYTE - bit_offset);
1624 
1625 			*p = *b++ >> bit_offset;
1626 		}
1627 	} else if (p != b) {
1628 		memmove(p, b, cell->bytes - bytes_offset);
1629 		p += cell->bytes - 1;
1630 	} else {
1631 		/* point to the msb */
1632 		p += cell->bytes - 1;
1633 	}
1634 
1635 	/* result fits in less bytes */
1636 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1637 	while (--extra >= 0)
1638 		*p-- = 0;
1639 
1640 	/* clear msb bits if any leftover in the last byte */
1641 	if (cell->nbits % BITS_PER_BYTE)
1642 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1643 }
1644 
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1645 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1646 			     struct nvmem_cell_entry *cell,
1647 			     void *buf, size_t *len, const char *id, int index)
1648 {
1649 	int rc;
1650 
1651 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1652 
1653 	if (rc)
1654 		return rc;
1655 
1656 	/* shift bits in-place */
1657 	if (cell->bit_offset || cell->nbits)
1658 		nvmem_shift_read_buffer_in_place(cell, buf);
1659 
1660 	if (cell->read_post_process) {
1661 		rc = cell->read_post_process(cell->priv, id, index,
1662 					     cell->offset, buf, cell->raw_len);
1663 		if (rc)
1664 			return rc;
1665 	}
1666 
1667 	if (len)
1668 		*len = cell->bytes;
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  * nvmem_cell_read() - Read a given nvmem cell
1675  *
1676  * @cell: nvmem cell to be read.
1677  * @len: pointer to length of cell which will be populated on successful read;
1678  *	 can be NULL.
1679  *
1680  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1681  * buffer should be freed by the consumer with a kfree().
1682  */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1683 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1684 {
1685 	struct nvmem_cell_entry *entry = cell->entry;
1686 	struct nvmem_device *nvmem = entry->nvmem;
1687 	u8 *buf;
1688 	int rc;
1689 
1690 	if (!nvmem)
1691 		return ERR_PTR(-EINVAL);
1692 
1693 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1694 	if (!buf)
1695 		return ERR_PTR(-ENOMEM);
1696 
1697 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1698 	if (rc) {
1699 		kfree(buf);
1700 		return ERR_PTR(rc);
1701 	}
1702 
1703 	return buf;
1704 }
1705 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1706 
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1707 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1708 					     u8 *_buf, int len)
1709 {
1710 	struct nvmem_device *nvmem = cell->nvmem;
1711 	int i, rc, nbits, bit_offset = cell->bit_offset;
1712 	u8 v, *p, *buf, *b, pbyte, pbits;
1713 
1714 	nbits = cell->nbits;
1715 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1716 	if (!buf)
1717 		return ERR_PTR(-ENOMEM);
1718 
1719 	memcpy(buf, _buf, len);
1720 	p = b = buf;
1721 
1722 	if (bit_offset) {
1723 		pbyte = *b;
1724 		*b <<= bit_offset;
1725 
1726 		/* setup the first byte with lsb bits from nvmem */
1727 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1728 		if (rc)
1729 			goto err;
1730 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1731 
1732 		/* setup rest of the byte if any */
1733 		for (i = 1; i < cell->bytes; i++) {
1734 			/* Get last byte bits and shift them towards lsb */
1735 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1736 			pbyte = *b;
1737 			p = b;
1738 			*b <<= bit_offset;
1739 			*b++ |= pbits;
1740 		}
1741 	}
1742 
1743 	/* if it's not end on byte boundary */
1744 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1745 		/* setup the last byte with msb bits from nvmem */
1746 		rc = nvmem_reg_read(nvmem,
1747 				    cell->offset + cell->bytes - 1, &v, 1);
1748 		if (rc)
1749 			goto err;
1750 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1751 
1752 	}
1753 
1754 	return buf;
1755 err:
1756 	kfree(buf);
1757 	return ERR_PTR(rc);
1758 }
1759 
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1760 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1761 {
1762 	struct nvmem_device *nvmem = cell->nvmem;
1763 	int rc;
1764 
1765 	if (!nvmem || nvmem->read_only ||
1766 	    (cell->bit_offset == 0 && len != cell->bytes))
1767 		return -EINVAL;
1768 
1769 	/*
1770 	 * Any cells which have a read_post_process hook are read-only because
1771 	 * we cannot reverse the operation and it might affect other cells,
1772 	 * too.
1773 	 */
1774 	if (cell->read_post_process)
1775 		return -EINVAL;
1776 
1777 	if (cell->bit_offset || cell->nbits) {
1778 		if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1779 			return -EINVAL;
1780 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1781 		if (IS_ERR(buf))
1782 			return PTR_ERR(buf);
1783 	}
1784 
1785 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1786 
1787 	/* free the tmp buffer */
1788 	if (cell->bit_offset || cell->nbits)
1789 		kfree(buf);
1790 
1791 	if (rc)
1792 		return rc;
1793 
1794 	return len;
1795 }
1796 
1797 /**
1798  * nvmem_cell_write() - Write to a given nvmem cell
1799  *
1800  * @cell: nvmem cell to be written.
1801  * @buf: Buffer to be written.
1802  * @len: length of buffer to be written to nvmem cell.
1803  *
1804  * Return: length of bytes written or negative on failure.
1805  */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1806 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1807 {
1808 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1809 }
1810 
1811 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1812 
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1813 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1814 				  void *val, size_t count)
1815 {
1816 	struct nvmem_cell *cell;
1817 	void *buf;
1818 	size_t len;
1819 
1820 	cell = nvmem_cell_get(dev, cell_id);
1821 	if (IS_ERR(cell))
1822 		return PTR_ERR(cell);
1823 
1824 	buf = nvmem_cell_read(cell, &len);
1825 	if (IS_ERR(buf)) {
1826 		nvmem_cell_put(cell);
1827 		return PTR_ERR(buf);
1828 	}
1829 	if (len != count) {
1830 		kfree(buf);
1831 		nvmem_cell_put(cell);
1832 		return -EINVAL;
1833 	}
1834 	memcpy(val, buf, count);
1835 	kfree(buf);
1836 	nvmem_cell_put(cell);
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * nvmem_cell_read_u8() - Read a cell value as a u8
1843  *
1844  * @dev: Device that requests the nvmem cell.
1845  * @cell_id: Name of nvmem cell to read.
1846  * @val: pointer to output value.
1847  *
1848  * Return: 0 on success or negative errno.
1849  */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1850 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1851 {
1852 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1853 }
1854 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1855 
1856 /**
1857  * nvmem_cell_read_u16() - Read a cell value as a u16
1858  *
1859  * @dev: Device that requests the nvmem cell.
1860  * @cell_id: Name of nvmem cell to read.
1861  * @val: pointer to output value.
1862  *
1863  * Return: 0 on success or negative errno.
1864  */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1865 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1866 {
1867 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1868 }
1869 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1870 
1871 /**
1872  * nvmem_cell_read_u32() - Read a cell value as a u32
1873  *
1874  * @dev: Device that requests the nvmem cell.
1875  * @cell_id: Name of nvmem cell to read.
1876  * @val: pointer to output value.
1877  *
1878  * Return: 0 on success or negative errno.
1879  */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1880 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1881 {
1882 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1883 }
1884 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1885 
1886 /**
1887  * nvmem_cell_read_u64() - Read a cell value as a u64
1888  *
1889  * @dev: Device that requests the nvmem cell.
1890  * @cell_id: Name of nvmem cell to read.
1891  * @val: pointer to output value.
1892  *
1893  * Return: 0 on success or negative errno.
1894  */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1895 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1896 {
1897 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1898 }
1899 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1900 
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1901 static const void *nvmem_cell_read_variable_common(struct device *dev,
1902 						   const char *cell_id,
1903 						   size_t max_len, size_t *len)
1904 {
1905 	struct nvmem_cell *cell;
1906 	int nbits;
1907 	void *buf;
1908 
1909 	cell = nvmem_cell_get(dev, cell_id);
1910 	if (IS_ERR(cell))
1911 		return cell;
1912 
1913 	nbits = cell->entry->nbits;
1914 	buf = nvmem_cell_read(cell, len);
1915 	nvmem_cell_put(cell);
1916 	if (IS_ERR(buf))
1917 		return buf;
1918 
1919 	/*
1920 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1921 	 * the length of the real data. Throw away the extra junk.
1922 	 */
1923 	if (nbits)
1924 		*len = DIV_ROUND_UP(nbits, 8);
1925 
1926 	if (*len > max_len) {
1927 		kfree(buf);
1928 		return ERR_PTR(-ERANGE);
1929 	}
1930 
1931 	return buf;
1932 }
1933 
1934 /**
1935  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1936  *
1937  * @dev: Device that requests the nvmem cell.
1938  * @cell_id: Name of nvmem cell to read.
1939  * @val: pointer to output value.
1940  *
1941  * Return: 0 on success or negative errno.
1942  */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1943 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1944 				    u32 *val)
1945 {
1946 	size_t len;
1947 	const u8 *buf;
1948 	int i;
1949 
1950 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1951 	if (IS_ERR(buf))
1952 		return PTR_ERR(buf);
1953 
1954 	/* Copy w/ implicit endian conversion */
1955 	*val = 0;
1956 	for (i = 0; i < len; i++)
1957 		*val |= buf[i] << (8 * i);
1958 
1959 	kfree(buf);
1960 
1961 	return 0;
1962 }
1963 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1964 
1965 /**
1966  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1967  *
1968  * @dev: Device that requests the nvmem cell.
1969  * @cell_id: Name of nvmem cell to read.
1970  * @val: pointer to output value.
1971  *
1972  * Return: 0 on success or negative errno.
1973  */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1974 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1975 				    u64 *val)
1976 {
1977 	size_t len;
1978 	const u8 *buf;
1979 	int i;
1980 
1981 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1982 	if (IS_ERR(buf))
1983 		return PTR_ERR(buf);
1984 
1985 	/* Copy w/ implicit endian conversion */
1986 	*val = 0;
1987 	for (i = 0; i < len; i++)
1988 		*val |= (uint64_t)buf[i] << (8 * i);
1989 
1990 	kfree(buf);
1991 
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1995 
1996 /**
1997  * nvmem_device_cell_read() - Read a given nvmem device and cell
1998  *
1999  * @nvmem: nvmem device to read from.
2000  * @info: nvmem cell info to be read.
2001  * @buf: buffer pointer which will be populated on successful read.
2002  *
2003  * Return: length of successful bytes read on success and negative
2004  * error code on error.
2005  */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2006 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2007 			   struct nvmem_cell_info *info, void *buf)
2008 {
2009 	struct nvmem_cell_entry cell;
2010 	int rc;
2011 	ssize_t len;
2012 
2013 	if (!nvmem)
2014 		return -EINVAL;
2015 
2016 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2017 	if (rc)
2018 		return rc;
2019 
2020 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2021 	if (rc)
2022 		return rc;
2023 
2024 	return len;
2025 }
2026 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2027 
2028 /**
2029  * nvmem_device_cell_write() - Write cell to a given nvmem device
2030  *
2031  * @nvmem: nvmem device to be written to.
2032  * @info: nvmem cell info to be written.
2033  * @buf: buffer to be written to cell.
2034  *
2035  * Return: length of bytes written or negative error code on failure.
2036  */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2037 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2038 			    struct nvmem_cell_info *info, void *buf)
2039 {
2040 	struct nvmem_cell_entry cell;
2041 	int rc;
2042 
2043 	if (!nvmem)
2044 		return -EINVAL;
2045 
2046 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2047 	if (rc)
2048 		return rc;
2049 
2050 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2051 }
2052 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2053 
2054 /**
2055  * nvmem_device_read() - Read from a given nvmem device
2056  *
2057  * @nvmem: nvmem device to read from.
2058  * @offset: offset in nvmem device.
2059  * @bytes: number of bytes to read.
2060  * @buf: buffer pointer which will be populated on successful read.
2061  *
2062  * Return: length of successful bytes read on success and negative
2063  * error code on error.
2064  */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2065 int nvmem_device_read(struct nvmem_device *nvmem,
2066 		      unsigned int offset,
2067 		      size_t bytes, void *buf)
2068 {
2069 	int rc;
2070 
2071 	if (!nvmem)
2072 		return -EINVAL;
2073 
2074 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2075 
2076 	if (rc)
2077 		return rc;
2078 
2079 	return bytes;
2080 }
2081 EXPORT_SYMBOL_GPL(nvmem_device_read);
2082 
2083 /**
2084  * nvmem_device_write() - Write cell to a given nvmem device
2085  *
2086  * @nvmem: nvmem device to be written to.
2087  * @offset: offset in nvmem device.
2088  * @bytes: number of bytes to write.
2089  * @buf: buffer to be written.
2090  *
2091  * Return: length of bytes written or negative error code on failure.
2092  */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2093 int nvmem_device_write(struct nvmem_device *nvmem,
2094 		       unsigned int offset,
2095 		       size_t bytes, void *buf)
2096 {
2097 	int rc;
2098 
2099 	if (!nvmem)
2100 		return -EINVAL;
2101 
2102 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2103 
2104 	if (rc)
2105 		return rc;
2106 
2107 
2108 	return bytes;
2109 }
2110 EXPORT_SYMBOL_GPL(nvmem_device_write);
2111 
2112 /**
2113  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2114  *
2115  * @entries: array of cell lookup entries
2116  * @nentries: number of cell lookup entries in the array
2117  */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2118 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2119 {
2120 	int i;
2121 
2122 	mutex_lock(&nvmem_lookup_mutex);
2123 	for (i = 0; i < nentries; i++)
2124 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2125 	mutex_unlock(&nvmem_lookup_mutex);
2126 }
2127 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2128 
2129 /**
2130  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2131  *                            entries
2132  *
2133  * @entries: array of cell lookup entries
2134  * @nentries: number of cell lookup entries in the array
2135  */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2136 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2137 {
2138 	int i;
2139 
2140 	mutex_lock(&nvmem_lookup_mutex);
2141 	for (i = 0; i < nentries; i++)
2142 		list_del(&entries[i].node);
2143 	mutex_unlock(&nvmem_lookup_mutex);
2144 }
2145 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2146 
2147 /**
2148  * nvmem_dev_name() - Get the name of a given nvmem device.
2149  *
2150  * @nvmem: nvmem device.
2151  *
2152  * Return: name of the nvmem device.
2153  */
nvmem_dev_name(struct nvmem_device * nvmem)2154 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2155 {
2156 	return dev_name(&nvmem->dev);
2157 }
2158 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2159 
2160 /**
2161  * nvmem_dev_size() - Get the size of a given nvmem device.
2162  *
2163  * @nvmem: nvmem device.
2164  *
2165  * Return: size of the nvmem device.
2166  */
nvmem_dev_size(struct nvmem_device * nvmem)2167 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2168 {
2169 	return nvmem->size;
2170 }
2171 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2172 
nvmem_init(void)2173 static int __init nvmem_init(void)
2174 {
2175 	int ret;
2176 
2177 	ret = bus_register(&nvmem_bus_type);
2178 	if (ret)
2179 		return ret;
2180 
2181 	ret = nvmem_layout_bus_register();
2182 	if (ret)
2183 		bus_unregister(&nvmem_bus_type);
2184 
2185 	return ret;
2186 }
2187 
nvmem_exit(void)2188 static void __exit nvmem_exit(void)
2189 {
2190 	nvmem_layout_bus_unregister();
2191 	bus_unregister(&nvmem_bus_type);
2192 }
2193 
2194 subsys_initcall(nvmem_init);
2195 module_exit(nvmem_exit);
2196 
2197 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2198 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2199 MODULE_DESCRIPTION("nvmem Driver Core");
2200