1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 struct nvme_tcp_queue;
28
29 /* Define the socket priority to use for connections were it is desirable
30 * that the NIC consider performing optimized packet processing or filtering.
31 * A non-zero value being sufficient to indicate general consideration of any
32 * possible optimization. Making it a module param allows for alternative
33 * values that may be unique for some NIC implementations.
34 */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38
39 /*
40 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41 * from sysfs.
42 */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46
47 /*
48 * TLS handshake timeout
49 */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56
57 #ifdef CONFIG_DEBUG_LOCK_ALLOC
58 /* lockdep can detect a circular dependency of the form
59 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
60 * because dependencies are tracked for both nvme-tcp and user contexts. Using
61 * a separate class prevents lockdep from conflating nvme-tcp socket use with
62 * user-space socket API use.
63 */
64 static struct lock_class_key nvme_tcp_sk_key[2];
65 static struct lock_class_key nvme_tcp_slock_key[2];
66
nvme_tcp_reclassify_socket(struct socket * sock)67 static void nvme_tcp_reclassify_socket(struct socket *sock)
68 {
69 struct sock *sk = sock->sk;
70
71 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
72 return;
73
74 switch (sk->sk_family) {
75 case AF_INET:
76 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
77 &nvme_tcp_slock_key[0],
78 "sk_lock-AF_INET-NVME",
79 &nvme_tcp_sk_key[0]);
80 break;
81 case AF_INET6:
82 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
83 &nvme_tcp_slock_key[1],
84 "sk_lock-AF_INET6-NVME",
85 &nvme_tcp_sk_key[1]);
86 break;
87 default:
88 WARN_ON_ONCE(1);
89 }
90 }
91 #else
nvme_tcp_reclassify_socket(struct socket * sock)92 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
93 #endif
94
95 enum nvme_tcp_send_state {
96 NVME_TCP_SEND_CMD_PDU = 0,
97 NVME_TCP_SEND_H2C_PDU,
98 NVME_TCP_SEND_DATA,
99 NVME_TCP_SEND_DDGST,
100 };
101
102 struct nvme_tcp_request {
103 struct nvme_request req;
104 void *pdu;
105 struct nvme_tcp_queue *queue;
106 u32 data_len;
107 u32 pdu_len;
108 u32 pdu_sent;
109 u32 h2cdata_left;
110 u32 h2cdata_offset;
111 u16 ttag;
112 __le16 status;
113 struct list_head entry;
114 struct llist_node lentry;
115 __le32 ddgst;
116
117 struct bio *curr_bio;
118 struct iov_iter iter;
119
120 /* send state */
121 size_t offset;
122 size_t data_sent;
123 enum nvme_tcp_send_state state;
124 };
125
126 enum nvme_tcp_queue_flags {
127 NVME_TCP_Q_ALLOCATED = 0,
128 NVME_TCP_Q_LIVE = 1,
129 NVME_TCP_Q_POLLING = 2,
130 };
131
132 enum nvme_tcp_recv_state {
133 NVME_TCP_RECV_PDU = 0,
134 NVME_TCP_RECV_DATA,
135 NVME_TCP_RECV_DDGST,
136 };
137
138 struct nvme_tcp_ctrl;
139 struct nvme_tcp_queue {
140 struct socket *sock;
141 struct work_struct io_work;
142 int io_cpu;
143
144 struct mutex queue_lock;
145 struct mutex send_mutex;
146 struct llist_head req_list;
147 struct list_head send_list;
148
149 /* recv state */
150 void *pdu;
151 int pdu_remaining;
152 int pdu_offset;
153 size_t data_remaining;
154 size_t ddgst_remaining;
155 unsigned int nr_cqe;
156
157 /* send state */
158 struct nvme_tcp_request *request;
159
160 u32 maxh2cdata;
161 size_t cmnd_capsule_len;
162 struct nvme_tcp_ctrl *ctrl;
163 unsigned long flags;
164 bool rd_enabled;
165
166 bool hdr_digest;
167 bool data_digest;
168 bool tls_enabled;
169 struct ahash_request *rcv_hash;
170 struct ahash_request *snd_hash;
171 __le32 exp_ddgst;
172 __le32 recv_ddgst;
173 struct completion tls_complete;
174 int tls_err;
175 struct page_frag_cache pf_cache;
176
177 void (*state_change)(struct sock *);
178 void (*data_ready)(struct sock *);
179 void (*write_space)(struct sock *);
180 };
181
182 struct nvme_tcp_ctrl {
183 /* read only in the hot path */
184 struct nvme_tcp_queue *queues;
185 struct blk_mq_tag_set tag_set;
186
187 /* other member variables */
188 struct list_head list;
189 struct blk_mq_tag_set admin_tag_set;
190 struct sockaddr_storage addr;
191 struct sockaddr_storage src_addr;
192 struct nvme_ctrl ctrl;
193
194 struct work_struct err_work;
195 struct delayed_work connect_work;
196 struct nvme_tcp_request async_req;
197 u32 io_queues[HCTX_MAX_TYPES];
198 };
199
200 static LIST_HEAD(nvme_tcp_ctrl_list);
201 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
202 static struct workqueue_struct *nvme_tcp_wq;
203 static const struct blk_mq_ops nvme_tcp_mq_ops;
204 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
205 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
206
to_tcp_ctrl(struct nvme_ctrl * ctrl)207 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
208 {
209 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
210 }
211
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)212 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
213 {
214 return queue - queue->ctrl->queues;
215 }
216
217 /*
218 * Check if the queue is TLS encrypted
219 */
nvme_tcp_queue_tls(struct nvme_tcp_queue * queue)220 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
221 {
222 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
223 return 0;
224
225 return queue->tls_enabled;
226 }
227
228 /*
229 * Check if TLS is configured for the controller.
230 */
nvme_tcp_tls_configured(struct nvme_ctrl * ctrl)231 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
232 {
233 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
234 return 0;
235
236 return ctrl->opts->tls;
237 }
238
nvme_tcp_tagset(struct nvme_tcp_queue * queue)239 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
240 {
241 u32 queue_idx = nvme_tcp_queue_id(queue);
242
243 if (queue_idx == 0)
244 return queue->ctrl->admin_tag_set.tags[queue_idx];
245 return queue->ctrl->tag_set.tags[queue_idx - 1];
246 }
247
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)248 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
249 {
250 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
251 }
252
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)253 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
254 {
255 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
256 }
257
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)258 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
259 {
260 return req->pdu;
261 }
262
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)263 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
264 {
265 /* use the pdu space in the back for the data pdu */
266 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
267 sizeof(struct nvme_tcp_data_pdu);
268 }
269
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)270 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
271 {
272 if (nvme_is_fabrics(req->req.cmd))
273 return NVME_TCP_ADMIN_CCSZ;
274 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
275 }
276
nvme_tcp_async_req(struct nvme_tcp_request * req)277 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
278 {
279 return req == &req->queue->ctrl->async_req;
280 }
281
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)282 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
283 {
284 struct request *rq;
285
286 if (unlikely(nvme_tcp_async_req(req)))
287 return false; /* async events don't have a request */
288
289 rq = blk_mq_rq_from_pdu(req);
290
291 return rq_data_dir(rq) == WRITE && req->data_len &&
292 req->data_len <= nvme_tcp_inline_data_size(req);
293 }
294
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)295 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
296 {
297 return req->iter.bvec->bv_page;
298 }
299
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)300 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
301 {
302 return req->iter.bvec->bv_offset + req->iter.iov_offset;
303 }
304
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)305 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
306 {
307 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
308 req->pdu_len - req->pdu_sent);
309 }
310
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)311 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
312 {
313 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
314 req->pdu_len - req->pdu_sent : 0;
315 }
316
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)317 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
318 int len)
319 {
320 return nvme_tcp_pdu_data_left(req) <= len;
321 }
322
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)323 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
324 unsigned int dir)
325 {
326 struct request *rq = blk_mq_rq_from_pdu(req);
327 struct bio_vec *vec;
328 unsigned int size;
329 int nr_bvec;
330 size_t offset;
331
332 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
333 vec = &rq->special_vec;
334 nr_bvec = 1;
335 size = blk_rq_payload_bytes(rq);
336 offset = 0;
337 } else {
338 struct bio *bio = req->curr_bio;
339 struct bvec_iter bi;
340 struct bio_vec bv;
341
342 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
343 nr_bvec = 0;
344 bio_for_each_bvec(bv, bio, bi) {
345 nr_bvec++;
346 }
347 size = bio->bi_iter.bi_size;
348 offset = bio->bi_iter.bi_bvec_done;
349 }
350
351 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
352 req->iter.iov_offset = offset;
353 }
354
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)355 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
356 int len)
357 {
358 req->data_sent += len;
359 req->pdu_sent += len;
360 iov_iter_advance(&req->iter, len);
361 if (!iov_iter_count(&req->iter) &&
362 req->data_sent < req->data_len) {
363 req->curr_bio = req->curr_bio->bi_next;
364 nvme_tcp_init_iter(req, ITER_SOURCE);
365 }
366 }
367
nvme_tcp_send_all(struct nvme_tcp_queue * queue)368 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
369 {
370 int ret;
371
372 /* drain the send queue as much as we can... */
373 do {
374 ret = nvme_tcp_try_send(queue);
375 } while (ret > 0);
376 }
377
nvme_tcp_queue_has_pending(struct nvme_tcp_queue * queue)378 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
379 {
380 return !list_empty(&queue->send_list) ||
381 !llist_empty(&queue->req_list);
382 }
383
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)384 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
385 {
386 return !nvme_tcp_queue_tls(queue) &&
387 nvme_tcp_queue_has_pending(queue);
388 }
389
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)390 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
391 bool sync, bool last)
392 {
393 struct nvme_tcp_queue *queue = req->queue;
394 bool empty;
395
396 empty = llist_add(&req->lentry, &queue->req_list) &&
397 list_empty(&queue->send_list) && !queue->request;
398
399 /*
400 * if we're the first on the send_list and we can try to send
401 * directly, otherwise queue io_work. Also, only do that if we
402 * are on the same cpu, so we don't introduce contention.
403 */
404 if (queue->io_cpu == raw_smp_processor_id() &&
405 sync && empty && mutex_trylock(&queue->send_mutex)) {
406 nvme_tcp_send_all(queue);
407 mutex_unlock(&queue->send_mutex);
408 }
409
410 if (last && nvme_tcp_queue_has_pending(queue))
411 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
412 }
413
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)414 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
415 {
416 struct nvme_tcp_request *req;
417 struct llist_node *node;
418
419 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
420 req = llist_entry(node, struct nvme_tcp_request, lentry);
421 list_add(&req->entry, &queue->send_list);
422 }
423 }
424
425 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)426 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
427 {
428 struct nvme_tcp_request *req;
429
430 req = list_first_entry_or_null(&queue->send_list,
431 struct nvme_tcp_request, entry);
432 if (!req) {
433 nvme_tcp_process_req_list(queue);
434 req = list_first_entry_or_null(&queue->send_list,
435 struct nvme_tcp_request, entry);
436 if (unlikely(!req))
437 return NULL;
438 }
439
440 list_del(&req->entry);
441 return req;
442 }
443
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)444 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
445 __le32 *dgst)
446 {
447 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
448 crypto_ahash_final(hash);
449 }
450
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)451 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
452 struct page *page, off_t off, size_t len)
453 {
454 struct scatterlist sg;
455
456 sg_init_table(&sg, 1);
457 sg_set_page(&sg, page, len, off);
458 ahash_request_set_crypt(hash, &sg, NULL, len);
459 crypto_ahash_update(hash);
460 }
461
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)462 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
463 void *pdu, size_t len)
464 {
465 struct scatterlist sg;
466
467 sg_init_one(&sg, pdu, len);
468 ahash_request_set_crypt(hash, &sg, pdu + len, len);
469 crypto_ahash_digest(hash);
470 }
471
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)472 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
473 void *pdu, size_t pdu_len)
474 {
475 struct nvme_tcp_hdr *hdr = pdu;
476 __le32 recv_digest;
477 __le32 exp_digest;
478
479 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
480 dev_err(queue->ctrl->ctrl.device,
481 "queue %d: header digest flag is cleared\n",
482 nvme_tcp_queue_id(queue));
483 return -EPROTO;
484 }
485
486 recv_digest = *(__le32 *)(pdu + hdr->hlen);
487 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
488 exp_digest = *(__le32 *)(pdu + hdr->hlen);
489 if (recv_digest != exp_digest) {
490 dev_err(queue->ctrl->ctrl.device,
491 "header digest error: recv %#x expected %#x\n",
492 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
493 return -EIO;
494 }
495
496 return 0;
497 }
498
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)499 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
500 {
501 struct nvme_tcp_hdr *hdr = pdu;
502 u8 digest_len = nvme_tcp_hdgst_len(queue);
503 u32 len;
504
505 len = le32_to_cpu(hdr->plen) - hdr->hlen -
506 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
507
508 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
509 dev_err(queue->ctrl->ctrl.device,
510 "queue %d: data digest flag is cleared\n",
511 nvme_tcp_queue_id(queue));
512 return -EPROTO;
513 }
514 crypto_ahash_init(queue->rcv_hash);
515
516 return 0;
517 }
518
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)519 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
520 struct request *rq, unsigned int hctx_idx)
521 {
522 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
523
524 page_frag_free(req->pdu);
525 }
526
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)527 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
528 struct request *rq, unsigned int hctx_idx,
529 unsigned int numa_node)
530 {
531 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
532 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
533 struct nvme_tcp_cmd_pdu *pdu;
534 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
535 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
536 u8 hdgst = nvme_tcp_hdgst_len(queue);
537
538 req->pdu = page_frag_alloc(&queue->pf_cache,
539 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
540 GFP_KERNEL | __GFP_ZERO);
541 if (!req->pdu)
542 return -ENOMEM;
543
544 pdu = req->pdu;
545 req->queue = queue;
546 nvme_req(rq)->ctrl = &ctrl->ctrl;
547 nvme_req(rq)->cmd = &pdu->cmd;
548
549 return 0;
550 }
551
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)552 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
553 unsigned int hctx_idx)
554 {
555 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
556 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
557
558 hctx->driver_data = queue;
559 return 0;
560 }
561
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)562 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
563 unsigned int hctx_idx)
564 {
565 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
566 struct nvme_tcp_queue *queue = &ctrl->queues[0];
567
568 hctx->driver_data = queue;
569 return 0;
570 }
571
572 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)573 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
574 {
575 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
576 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
577 NVME_TCP_RECV_DATA;
578 }
579
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)580 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
581 {
582 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
583 nvme_tcp_hdgst_len(queue);
584 queue->pdu_offset = 0;
585 queue->data_remaining = -1;
586 queue->ddgst_remaining = 0;
587 }
588
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)589 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
590 {
591 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
592 return;
593
594 dev_warn(ctrl->device, "starting error recovery\n");
595 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
596 }
597
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)598 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
599 struct nvme_completion *cqe)
600 {
601 struct nvme_tcp_request *req;
602 struct request *rq;
603
604 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
605 if (!rq) {
606 dev_err(queue->ctrl->ctrl.device,
607 "got bad cqe.command_id %#x on queue %d\n",
608 cqe->command_id, nvme_tcp_queue_id(queue));
609 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
610 return -EINVAL;
611 }
612
613 req = blk_mq_rq_to_pdu(rq);
614 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
615 req->status = cqe->status;
616
617 if (!nvme_try_complete_req(rq, req->status, cqe->result))
618 nvme_complete_rq(rq);
619 queue->nr_cqe++;
620
621 return 0;
622 }
623
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)624 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
625 struct nvme_tcp_data_pdu *pdu)
626 {
627 struct request *rq;
628
629 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
630 if (!rq) {
631 dev_err(queue->ctrl->ctrl.device,
632 "got bad c2hdata.command_id %#x on queue %d\n",
633 pdu->command_id, nvme_tcp_queue_id(queue));
634 return -ENOENT;
635 }
636
637 if (!blk_rq_payload_bytes(rq)) {
638 dev_err(queue->ctrl->ctrl.device,
639 "queue %d tag %#x unexpected data\n",
640 nvme_tcp_queue_id(queue), rq->tag);
641 return -EIO;
642 }
643
644 queue->data_remaining = le32_to_cpu(pdu->data_length);
645
646 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
647 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
648 dev_err(queue->ctrl->ctrl.device,
649 "queue %d tag %#x SUCCESS set but not last PDU\n",
650 nvme_tcp_queue_id(queue), rq->tag);
651 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
652 return -EPROTO;
653 }
654
655 return 0;
656 }
657
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)658 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
659 struct nvme_tcp_rsp_pdu *pdu)
660 {
661 struct nvme_completion *cqe = &pdu->cqe;
662 int ret = 0;
663
664 /*
665 * AEN requests are special as they don't time out and can
666 * survive any kind of queue freeze and often don't respond to
667 * aborts. We don't even bother to allocate a struct request
668 * for them but rather special case them here.
669 */
670 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
671 cqe->command_id)))
672 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
673 &cqe->result);
674 else
675 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
676
677 return ret;
678 }
679
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)680 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
681 {
682 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
683 struct nvme_tcp_queue *queue = req->queue;
684 struct request *rq = blk_mq_rq_from_pdu(req);
685 u32 h2cdata_sent = req->pdu_len;
686 u8 hdgst = nvme_tcp_hdgst_len(queue);
687 u8 ddgst = nvme_tcp_ddgst_len(queue);
688
689 req->state = NVME_TCP_SEND_H2C_PDU;
690 req->offset = 0;
691 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
692 req->pdu_sent = 0;
693 req->h2cdata_left -= req->pdu_len;
694 req->h2cdata_offset += h2cdata_sent;
695
696 memset(data, 0, sizeof(*data));
697 data->hdr.type = nvme_tcp_h2c_data;
698 if (!req->h2cdata_left)
699 data->hdr.flags = NVME_TCP_F_DATA_LAST;
700 if (queue->hdr_digest)
701 data->hdr.flags |= NVME_TCP_F_HDGST;
702 if (queue->data_digest)
703 data->hdr.flags |= NVME_TCP_F_DDGST;
704 data->hdr.hlen = sizeof(*data);
705 data->hdr.pdo = data->hdr.hlen + hdgst;
706 data->hdr.plen =
707 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
708 data->ttag = req->ttag;
709 data->command_id = nvme_cid(rq);
710 data->data_offset = cpu_to_le32(req->h2cdata_offset);
711 data->data_length = cpu_to_le32(req->pdu_len);
712 }
713
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)714 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
715 struct nvme_tcp_r2t_pdu *pdu)
716 {
717 struct nvme_tcp_request *req;
718 struct request *rq;
719 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
720 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
721
722 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
723 if (!rq) {
724 dev_err(queue->ctrl->ctrl.device,
725 "got bad r2t.command_id %#x on queue %d\n",
726 pdu->command_id, nvme_tcp_queue_id(queue));
727 return -ENOENT;
728 }
729 req = blk_mq_rq_to_pdu(rq);
730
731 if (unlikely(!r2t_length)) {
732 dev_err(queue->ctrl->ctrl.device,
733 "req %d r2t len is %u, probably a bug...\n",
734 rq->tag, r2t_length);
735 return -EPROTO;
736 }
737
738 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
739 dev_err(queue->ctrl->ctrl.device,
740 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
741 rq->tag, r2t_length, req->data_len, req->data_sent);
742 return -EPROTO;
743 }
744
745 if (unlikely(r2t_offset < req->data_sent)) {
746 dev_err(queue->ctrl->ctrl.device,
747 "req %d unexpected r2t offset %u (expected %zu)\n",
748 rq->tag, r2t_offset, req->data_sent);
749 return -EPROTO;
750 }
751
752 req->pdu_len = 0;
753 req->h2cdata_left = r2t_length;
754 req->h2cdata_offset = r2t_offset;
755 req->ttag = pdu->ttag;
756
757 nvme_tcp_setup_h2c_data_pdu(req);
758 nvme_tcp_queue_request(req, false, true);
759
760 return 0;
761 }
762
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)763 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
764 unsigned int *offset, size_t *len)
765 {
766 struct nvme_tcp_hdr *hdr;
767 char *pdu = queue->pdu;
768 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
769 int ret;
770
771 ret = skb_copy_bits(skb, *offset,
772 &pdu[queue->pdu_offset], rcv_len);
773 if (unlikely(ret))
774 return ret;
775
776 queue->pdu_remaining -= rcv_len;
777 queue->pdu_offset += rcv_len;
778 *offset += rcv_len;
779 *len -= rcv_len;
780 if (queue->pdu_remaining)
781 return 0;
782
783 hdr = queue->pdu;
784 if (queue->hdr_digest) {
785 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
786 if (unlikely(ret))
787 return ret;
788 }
789
790
791 if (queue->data_digest) {
792 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
793 if (unlikely(ret))
794 return ret;
795 }
796
797 switch (hdr->type) {
798 case nvme_tcp_c2h_data:
799 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
800 case nvme_tcp_rsp:
801 nvme_tcp_init_recv_ctx(queue);
802 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
803 case nvme_tcp_r2t:
804 nvme_tcp_init_recv_ctx(queue);
805 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
806 default:
807 dev_err(queue->ctrl->ctrl.device,
808 "unsupported pdu type (%d)\n", hdr->type);
809 return -EINVAL;
810 }
811 }
812
nvme_tcp_end_request(struct request * rq,u16 status)813 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
814 {
815 union nvme_result res = {};
816
817 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
818 nvme_complete_rq(rq);
819 }
820
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)821 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
822 unsigned int *offset, size_t *len)
823 {
824 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
825 struct request *rq =
826 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
827 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
828
829 while (true) {
830 int recv_len, ret;
831
832 recv_len = min_t(size_t, *len, queue->data_remaining);
833 if (!recv_len)
834 break;
835
836 if (!iov_iter_count(&req->iter)) {
837 req->curr_bio = req->curr_bio->bi_next;
838
839 /*
840 * If we don`t have any bios it means that controller
841 * sent more data than we requested, hence error
842 */
843 if (!req->curr_bio) {
844 dev_err(queue->ctrl->ctrl.device,
845 "queue %d no space in request %#x",
846 nvme_tcp_queue_id(queue), rq->tag);
847 nvme_tcp_init_recv_ctx(queue);
848 return -EIO;
849 }
850 nvme_tcp_init_iter(req, ITER_DEST);
851 }
852
853 /* we can read only from what is left in this bio */
854 recv_len = min_t(size_t, recv_len,
855 iov_iter_count(&req->iter));
856
857 if (queue->data_digest)
858 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
859 &req->iter, recv_len, queue->rcv_hash);
860 else
861 ret = skb_copy_datagram_iter(skb, *offset,
862 &req->iter, recv_len);
863 if (ret) {
864 dev_err(queue->ctrl->ctrl.device,
865 "queue %d failed to copy request %#x data",
866 nvme_tcp_queue_id(queue), rq->tag);
867 return ret;
868 }
869
870 *len -= recv_len;
871 *offset += recv_len;
872 queue->data_remaining -= recv_len;
873 }
874
875 if (!queue->data_remaining) {
876 if (queue->data_digest) {
877 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
878 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
879 } else {
880 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
881 nvme_tcp_end_request(rq,
882 le16_to_cpu(req->status));
883 queue->nr_cqe++;
884 }
885 nvme_tcp_init_recv_ctx(queue);
886 }
887 }
888
889 return 0;
890 }
891
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)892 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
893 struct sk_buff *skb, unsigned int *offset, size_t *len)
894 {
895 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
896 char *ddgst = (char *)&queue->recv_ddgst;
897 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
898 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
899 int ret;
900
901 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
902 if (unlikely(ret))
903 return ret;
904
905 queue->ddgst_remaining -= recv_len;
906 *offset += recv_len;
907 *len -= recv_len;
908 if (queue->ddgst_remaining)
909 return 0;
910
911 if (queue->recv_ddgst != queue->exp_ddgst) {
912 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
913 pdu->command_id);
914 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
915
916 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
917
918 dev_err(queue->ctrl->ctrl.device,
919 "data digest error: recv %#x expected %#x\n",
920 le32_to_cpu(queue->recv_ddgst),
921 le32_to_cpu(queue->exp_ddgst));
922 }
923
924 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
925 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
926 pdu->command_id);
927 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
928
929 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
930 queue->nr_cqe++;
931 }
932
933 nvme_tcp_init_recv_ctx(queue);
934 return 0;
935 }
936
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)937 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
938 unsigned int offset, size_t len)
939 {
940 struct nvme_tcp_queue *queue = desc->arg.data;
941 size_t consumed = len;
942 int result;
943
944 if (unlikely(!queue->rd_enabled))
945 return -EFAULT;
946
947 while (len) {
948 switch (nvme_tcp_recv_state(queue)) {
949 case NVME_TCP_RECV_PDU:
950 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
951 break;
952 case NVME_TCP_RECV_DATA:
953 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
954 break;
955 case NVME_TCP_RECV_DDGST:
956 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
957 break;
958 default:
959 result = -EFAULT;
960 }
961 if (result) {
962 dev_err(queue->ctrl->ctrl.device,
963 "receive failed: %d\n", result);
964 queue->rd_enabled = false;
965 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
966 return result;
967 }
968 }
969
970 return consumed;
971 }
972
nvme_tcp_data_ready(struct sock * sk)973 static void nvme_tcp_data_ready(struct sock *sk)
974 {
975 struct nvme_tcp_queue *queue;
976
977 trace_sk_data_ready(sk);
978
979 read_lock_bh(&sk->sk_callback_lock);
980 queue = sk->sk_user_data;
981 if (likely(queue && queue->rd_enabled) &&
982 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
983 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
984 read_unlock_bh(&sk->sk_callback_lock);
985 }
986
nvme_tcp_write_space(struct sock * sk)987 static void nvme_tcp_write_space(struct sock *sk)
988 {
989 struct nvme_tcp_queue *queue;
990
991 read_lock_bh(&sk->sk_callback_lock);
992 queue = sk->sk_user_data;
993 if (likely(queue && sk_stream_is_writeable(sk))) {
994 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
995 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
996 }
997 read_unlock_bh(&sk->sk_callback_lock);
998 }
999
nvme_tcp_state_change(struct sock * sk)1000 static void nvme_tcp_state_change(struct sock *sk)
1001 {
1002 struct nvme_tcp_queue *queue;
1003
1004 read_lock_bh(&sk->sk_callback_lock);
1005 queue = sk->sk_user_data;
1006 if (!queue)
1007 goto done;
1008
1009 switch (sk->sk_state) {
1010 case TCP_CLOSE:
1011 case TCP_CLOSE_WAIT:
1012 case TCP_LAST_ACK:
1013 case TCP_FIN_WAIT1:
1014 case TCP_FIN_WAIT2:
1015 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1016 break;
1017 default:
1018 dev_info(queue->ctrl->ctrl.device,
1019 "queue %d socket state %d\n",
1020 nvme_tcp_queue_id(queue), sk->sk_state);
1021 }
1022
1023 queue->state_change(sk);
1024 done:
1025 read_unlock_bh(&sk->sk_callback_lock);
1026 }
1027
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1028 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1029 {
1030 queue->request = NULL;
1031 }
1032
nvme_tcp_fail_request(struct nvme_tcp_request * req)1033 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1034 {
1035 if (nvme_tcp_async_req(req)) {
1036 union nvme_result res = {};
1037
1038 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1039 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1040 } else {
1041 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1042 NVME_SC_HOST_PATH_ERROR);
1043 }
1044 }
1045
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1046 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1047 {
1048 struct nvme_tcp_queue *queue = req->queue;
1049 int req_data_len = req->data_len;
1050 u32 h2cdata_left = req->h2cdata_left;
1051
1052 while (true) {
1053 struct bio_vec bvec;
1054 struct msghdr msg = {
1055 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1056 };
1057 struct page *page = nvme_tcp_req_cur_page(req);
1058 size_t offset = nvme_tcp_req_cur_offset(req);
1059 size_t len = nvme_tcp_req_cur_length(req);
1060 bool last = nvme_tcp_pdu_last_send(req, len);
1061 int req_data_sent = req->data_sent;
1062 int ret;
1063
1064 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1065 msg.msg_flags |= MSG_EOR;
1066 else
1067 msg.msg_flags |= MSG_MORE;
1068
1069 if (!sendpages_ok(page, len, offset))
1070 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1071
1072 bvec_set_page(&bvec, page, len, offset);
1073 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1074 ret = sock_sendmsg(queue->sock, &msg);
1075 if (ret <= 0)
1076 return ret;
1077
1078 if (queue->data_digest)
1079 nvme_tcp_ddgst_update(queue->snd_hash, page,
1080 offset, ret);
1081
1082 /*
1083 * update the request iterator except for the last payload send
1084 * in the request where we don't want to modify it as we may
1085 * compete with the RX path completing the request.
1086 */
1087 if (req_data_sent + ret < req_data_len)
1088 nvme_tcp_advance_req(req, ret);
1089
1090 /* fully successful last send in current PDU */
1091 if (last && ret == len) {
1092 if (queue->data_digest) {
1093 nvme_tcp_ddgst_final(queue->snd_hash,
1094 &req->ddgst);
1095 req->state = NVME_TCP_SEND_DDGST;
1096 req->offset = 0;
1097 } else {
1098 if (h2cdata_left)
1099 nvme_tcp_setup_h2c_data_pdu(req);
1100 else
1101 nvme_tcp_done_send_req(queue);
1102 }
1103 return 1;
1104 }
1105 }
1106 return -EAGAIN;
1107 }
1108
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1109 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1110 {
1111 struct nvme_tcp_queue *queue = req->queue;
1112 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1113 struct bio_vec bvec;
1114 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1115 bool inline_data = nvme_tcp_has_inline_data(req);
1116 u8 hdgst = nvme_tcp_hdgst_len(queue);
1117 int len = sizeof(*pdu) + hdgst - req->offset;
1118 int ret;
1119
1120 if (inline_data || nvme_tcp_queue_more(queue))
1121 msg.msg_flags |= MSG_MORE;
1122 else
1123 msg.msg_flags |= MSG_EOR;
1124
1125 if (queue->hdr_digest && !req->offset)
1126 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1127
1128 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1129 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1130 ret = sock_sendmsg(queue->sock, &msg);
1131 if (unlikely(ret <= 0))
1132 return ret;
1133
1134 len -= ret;
1135 if (!len) {
1136 if (inline_data) {
1137 req->state = NVME_TCP_SEND_DATA;
1138 if (queue->data_digest)
1139 crypto_ahash_init(queue->snd_hash);
1140 } else {
1141 nvme_tcp_done_send_req(queue);
1142 }
1143 return 1;
1144 }
1145 req->offset += ret;
1146
1147 return -EAGAIN;
1148 }
1149
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1150 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1151 {
1152 struct nvme_tcp_queue *queue = req->queue;
1153 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1154 struct bio_vec bvec;
1155 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1156 u8 hdgst = nvme_tcp_hdgst_len(queue);
1157 int len = sizeof(*pdu) - req->offset + hdgst;
1158 int ret;
1159
1160 if (queue->hdr_digest && !req->offset)
1161 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1162
1163 if (!req->h2cdata_left)
1164 msg.msg_flags |= MSG_SPLICE_PAGES;
1165
1166 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1167 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1168 ret = sock_sendmsg(queue->sock, &msg);
1169 if (unlikely(ret <= 0))
1170 return ret;
1171
1172 len -= ret;
1173 if (!len) {
1174 req->state = NVME_TCP_SEND_DATA;
1175 if (queue->data_digest)
1176 crypto_ahash_init(queue->snd_hash);
1177 return 1;
1178 }
1179 req->offset += ret;
1180
1181 return -EAGAIN;
1182 }
1183
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1184 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1185 {
1186 struct nvme_tcp_queue *queue = req->queue;
1187 size_t offset = req->offset;
1188 u32 h2cdata_left = req->h2cdata_left;
1189 int ret;
1190 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1191 struct kvec iov = {
1192 .iov_base = (u8 *)&req->ddgst + req->offset,
1193 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1194 };
1195
1196 if (nvme_tcp_queue_more(queue))
1197 msg.msg_flags |= MSG_MORE;
1198 else
1199 msg.msg_flags |= MSG_EOR;
1200
1201 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1202 if (unlikely(ret <= 0))
1203 return ret;
1204
1205 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1206 if (h2cdata_left)
1207 nvme_tcp_setup_h2c_data_pdu(req);
1208 else
1209 nvme_tcp_done_send_req(queue);
1210 return 1;
1211 }
1212
1213 req->offset += ret;
1214 return -EAGAIN;
1215 }
1216
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1217 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1218 {
1219 struct nvme_tcp_request *req;
1220 unsigned int noreclaim_flag;
1221 int ret = 1;
1222
1223 if (!queue->request) {
1224 queue->request = nvme_tcp_fetch_request(queue);
1225 if (!queue->request)
1226 return 0;
1227 }
1228 req = queue->request;
1229
1230 noreclaim_flag = memalloc_noreclaim_save();
1231 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1232 ret = nvme_tcp_try_send_cmd_pdu(req);
1233 if (ret <= 0)
1234 goto done;
1235 if (!nvme_tcp_has_inline_data(req))
1236 goto out;
1237 }
1238
1239 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1240 ret = nvme_tcp_try_send_data_pdu(req);
1241 if (ret <= 0)
1242 goto done;
1243 }
1244
1245 if (req->state == NVME_TCP_SEND_DATA) {
1246 ret = nvme_tcp_try_send_data(req);
1247 if (ret <= 0)
1248 goto done;
1249 }
1250
1251 if (req->state == NVME_TCP_SEND_DDGST)
1252 ret = nvme_tcp_try_send_ddgst(req);
1253 done:
1254 if (ret == -EAGAIN) {
1255 ret = 0;
1256 } else if (ret < 0) {
1257 dev_err(queue->ctrl->ctrl.device,
1258 "failed to send request %d\n", ret);
1259 nvme_tcp_fail_request(queue->request);
1260 nvme_tcp_done_send_req(queue);
1261 }
1262 out:
1263 memalloc_noreclaim_restore(noreclaim_flag);
1264 return ret;
1265 }
1266
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1267 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1268 {
1269 struct socket *sock = queue->sock;
1270 struct sock *sk = sock->sk;
1271 read_descriptor_t rd_desc;
1272 int consumed;
1273
1274 rd_desc.arg.data = queue;
1275 rd_desc.count = 1;
1276 lock_sock(sk);
1277 queue->nr_cqe = 0;
1278 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1279 release_sock(sk);
1280 return consumed;
1281 }
1282
nvme_tcp_io_work(struct work_struct * w)1283 static void nvme_tcp_io_work(struct work_struct *w)
1284 {
1285 struct nvme_tcp_queue *queue =
1286 container_of(w, struct nvme_tcp_queue, io_work);
1287 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1288
1289 do {
1290 bool pending = false;
1291 int result;
1292
1293 if (mutex_trylock(&queue->send_mutex)) {
1294 result = nvme_tcp_try_send(queue);
1295 mutex_unlock(&queue->send_mutex);
1296 if (result > 0)
1297 pending = true;
1298 else if (unlikely(result < 0))
1299 break;
1300 }
1301
1302 result = nvme_tcp_try_recv(queue);
1303 if (result > 0)
1304 pending = true;
1305 else if (unlikely(result < 0))
1306 return;
1307
1308 if (!pending || !queue->rd_enabled)
1309 return;
1310
1311 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1312
1313 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1314 }
1315
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1316 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1317 {
1318 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1319
1320 ahash_request_free(queue->rcv_hash);
1321 ahash_request_free(queue->snd_hash);
1322 crypto_free_ahash(tfm);
1323 }
1324
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1325 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1326 {
1327 struct crypto_ahash *tfm;
1328
1329 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1330 if (IS_ERR(tfm))
1331 return PTR_ERR(tfm);
1332
1333 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1334 if (!queue->snd_hash)
1335 goto free_tfm;
1336 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1337
1338 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1339 if (!queue->rcv_hash)
1340 goto free_snd_hash;
1341 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1342
1343 return 0;
1344 free_snd_hash:
1345 ahash_request_free(queue->snd_hash);
1346 free_tfm:
1347 crypto_free_ahash(tfm);
1348 return -ENOMEM;
1349 }
1350
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1351 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1352 {
1353 struct nvme_tcp_request *async = &ctrl->async_req;
1354
1355 page_frag_free(async->pdu);
1356 }
1357
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1358 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1359 {
1360 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1361 struct nvme_tcp_request *async = &ctrl->async_req;
1362 u8 hdgst = nvme_tcp_hdgst_len(queue);
1363
1364 async->pdu = page_frag_alloc(&queue->pf_cache,
1365 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1366 GFP_KERNEL | __GFP_ZERO);
1367 if (!async->pdu)
1368 return -ENOMEM;
1369
1370 async->queue = &ctrl->queues[0];
1371 return 0;
1372 }
1373
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1374 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1375 {
1376 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1377 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1378 unsigned int noreclaim_flag;
1379
1380 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1381 return;
1382
1383 if (queue->hdr_digest || queue->data_digest)
1384 nvme_tcp_free_crypto(queue);
1385
1386 page_frag_cache_drain(&queue->pf_cache);
1387
1388 noreclaim_flag = memalloc_noreclaim_save();
1389 /* ->sock will be released by fput() */
1390 fput(queue->sock->file);
1391 queue->sock = NULL;
1392 memalloc_noreclaim_restore(noreclaim_flag);
1393
1394 kfree(queue->pdu);
1395 mutex_destroy(&queue->send_mutex);
1396 mutex_destroy(&queue->queue_lock);
1397 }
1398
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1399 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1400 {
1401 struct nvme_tcp_icreq_pdu *icreq;
1402 struct nvme_tcp_icresp_pdu *icresp;
1403 char cbuf[CMSG_LEN(sizeof(char))] = {};
1404 u8 ctype;
1405 struct msghdr msg = {};
1406 struct kvec iov;
1407 bool ctrl_hdgst, ctrl_ddgst;
1408 u32 maxh2cdata;
1409 int ret;
1410
1411 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1412 if (!icreq)
1413 return -ENOMEM;
1414
1415 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1416 if (!icresp) {
1417 ret = -ENOMEM;
1418 goto free_icreq;
1419 }
1420
1421 icreq->hdr.type = nvme_tcp_icreq;
1422 icreq->hdr.hlen = sizeof(*icreq);
1423 icreq->hdr.pdo = 0;
1424 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1425 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1426 icreq->maxr2t = 0; /* single inflight r2t supported */
1427 icreq->hpda = 0; /* no alignment constraint */
1428 if (queue->hdr_digest)
1429 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1430 if (queue->data_digest)
1431 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1432
1433 iov.iov_base = icreq;
1434 iov.iov_len = sizeof(*icreq);
1435 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1436 if (ret < 0) {
1437 pr_warn("queue %d: failed to send icreq, error %d\n",
1438 nvme_tcp_queue_id(queue), ret);
1439 goto free_icresp;
1440 }
1441
1442 memset(&msg, 0, sizeof(msg));
1443 iov.iov_base = icresp;
1444 iov.iov_len = sizeof(*icresp);
1445 if (nvme_tcp_queue_tls(queue)) {
1446 msg.msg_control = cbuf;
1447 msg.msg_controllen = sizeof(cbuf);
1448 }
1449 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1450 iov.iov_len, msg.msg_flags);
1451 if (ret < 0) {
1452 pr_warn("queue %d: failed to receive icresp, error %d\n",
1453 nvme_tcp_queue_id(queue), ret);
1454 goto free_icresp;
1455 }
1456 ret = -ENOTCONN;
1457 if (nvme_tcp_queue_tls(queue)) {
1458 ctype = tls_get_record_type(queue->sock->sk,
1459 (struct cmsghdr *)cbuf);
1460 if (ctype != TLS_RECORD_TYPE_DATA) {
1461 pr_err("queue %d: unhandled TLS record %d\n",
1462 nvme_tcp_queue_id(queue), ctype);
1463 goto free_icresp;
1464 }
1465 }
1466 ret = -EINVAL;
1467 if (icresp->hdr.type != nvme_tcp_icresp) {
1468 pr_err("queue %d: bad type returned %d\n",
1469 nvme_tcp_queue_id(queue), icresp->hdr.type);
1470 goto free_icresp;
1471 }
1472
1473 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1474 pr_err("queue %d: bad pdu length returned %d\n",
1475 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1476 goto free_icresp;
1477 }
1478
1479 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1480 pr_err("queue %d: bad pfv returned %d\n",
1481 nvme_tcp_queue_id(queue), icresp->pfv);
1482 goto free_icresp;
1483 }
1484
1485 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1486 if ((queue->data_digest && !ctrl_ddgst) ||
1487 (!queue->data_digest && ctrl_ddgst)) {
1488 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1489 nvme_tcp_queue_id(queue),
1490 queue->data_digest ? "enabled" : "disabled",
1491 ctrl_ddgst ? "enabled" : "disabled");
1492 goto free_icresp;
1493 }
1494
1495 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1496 if ((queue->hdr_digest && !ctrl_hdgst) ||
1497 (!queue->hdr_digest && ctrl_hdgst)) {
1498 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1499 nvme_tcp_queue_id(queue),
1500 queue->hdr_digest ? "enabled" : "disabled",
1501 ctrl_hdgst ? "enabled" : "disabled");
1502 goto free_icresp;
1503 }
1504
1505 if (icresp->cpda != 0) {
1506 pr_err("queue %d: unsupported cpda returned %d\n",
1507 nvme_tcp_queue_id(queue), icresp->cpda);
1508 goto free_icresp;
1509 }
1510
1511 maxh2cdata = le32_to_cpu(icresp->maxdata);
1512 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1513 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1514 nvme_tcp_queue_id(queue), maxh2cdata);
1515 goto free_icresp;
1516 }
1517 queue->maxh2cdata = maxh2cdata;
1518
1519 ret = 0;
1520 free_icresp:
1521 kfree(icresp);
1522 free_icreq:
1523 kfree(icreq);
1524 return ret;
1525 }
1526
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1527 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1528 {
1529 return nvme_tcp_queue_id(queue) == 0;
1530 }
1531
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1532 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1533 {
1534 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1535 int qid = nvme_tcp_queue_id(queue);
1536
1537 return !nvme_tcp_admin_queue(queue) &&
1538 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1539 }
1540
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1541 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1542 {
1543 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1544 int qid = nvme_tcp_queue_id(queue);
1545
1546 return !nvme_tcp_admin_queue(queue) &&
1547 !nvme_tcp_default_queue(queue) &&
1548 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1549 ctrl->io_queues[HCTX_TYPE_READ];
1550 }
1551
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1552 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1553 {
1554 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1555 int qid = nvme_tcp_queue_id(queue);
1556
1557 return !nvme_tcp_admin_queue(queue) &&
1558 !nvme_tcp_default_queue(queue) &&
1559 !nvme_tcp_read_queue(queue) &&
1560 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1561 ctrl->io_queues[HCTX_TYPE_READ] +
1562 ctrl->io_queues[HCTX_TYPE_POLL];
1563 }
1564
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1565 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1566 {
1567 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1568 int qid = nvme_tcp_queue_id(queue);
1569 int n = 0;
1570
1571 if (nvme_tcp_default_queue(queue))
1572 n = qid - 1;
1573 else if (nvme_tcp_read_queue(queue))
1574 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1575 else if (nvme_tcp_poll_queue(queue))
1576 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1577 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1578 if (wq_unbound)
1579 queue->io_cpu = WORK_CPU_UNBOUND;
1580 else
1581 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1582 }
1583
nvme_tcp_tls_done(void * data,int status,key_serial_t pskid)1584 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1585 {
1586 struct nvme_tcp_queue *queue = data;
1587 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1588 int qid = nvme_tcp_queue_id(queue);
1589 struct key *tls_key;
1590
1591 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1592 qid, pskid, status);
1593
1594 if (status) {
1595 queue->tls_err = -status;
1596 goto out_complete;
1597 }
1598
1599 tls_key = nvme_tls_key_lookup(pskid);
1600 if (IS_ERR(tls_key)) {
1601 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1602 qid, pskid);
1603 queue->tls_err = -ENOKEY;
1604 } else {
1605 queue->tls_enabled = true;
1606 if (qid == 0)
1607 ctrl->ctrl.tls_pskid = key_serial(tls_key);
1608 key_put(tls_key);
1609 queue->tls_err = 0;
1610 }
1611
1612 out_complete:
1613 complete(&queue->tls_complete);
1614 }
1615
nvme_tcp_start_tls(struct nvme_ctrl * nctrl,struct nvme_tcp_queue * queue,key_serial_t pskid)1616 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1617 struct nvme_tcp_queue *queue,
1618 key_serial_t pskid)
1619 {
1620 int qid = nvme_tcp_queue_id(queue);
1621 int ret;
1622 struct tls_handshake_args args;
1623 unsigned long tmo = tls_handshake_timeout * HZ;
1624 key_serial_t keyring = nvme_keyring_id();
1625
1626 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1627 qid, pskid);
1628 memset(&args, 0, sizeof(args));
1629 args.ta_sock = queue->sock;
1630 args.ta_done = nvme_tcp_tls_done;
1631 args.ta_data = queue;
1632 args.ta_my_peerids[0] = pskid;
1633 args.ta_num_peerids = 1;
1634 if (nctrl->opts->keyring)
1635 keyring = key_serial(nctrl->opts->keyring);
1636 args.ta_keyring = keyring;
1637 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1638 queue->tls_err = -EOPNOTSUPP;
1639 init_completion(&queue->tls_complete);
1640 ret = tls_client_hello_psk(&args, GFP_KERNEL);
1641 if (ret) {
1642 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1643 qid, ret);
1644 return ret;
1645 }
1646 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1647 if (ret <= 0) {
1648 if (ret == 0)
1649 ret = -ETIMEDOUT;
1650
1651 dev_err(nctrl->device,
1652 "queue %d: TLS handshake failed, error %d\n",
1653 qid, ret);
1654 tls_handshake_cancel(queue->sock->sk);
1655 } else {
1656 dev_dbg(nctrl->device,
1657 "queue %d: TLS handshake complete, error %d\n",
1658 qid, queue->tls_err);
1659 ret = queue->tls_err;
1660 }
1661 return ret;
1662 }
1663
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,key_serial_t pskid)1664 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1665 key_serial_t pskid)
1666 {
1667 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1668 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1669 int ret, rcv_pdu_size;
1670 struct file *sock_file;
1671
1672 mutex_init(&queue->queue_lock);
1673 queue->ctrl = ctrl;
1674 init_llist_head(&queue->req_list);
1675 INIT_LIST_HEAD(&queue->send_list);
1676 mutex_init(&queue->send_mutex);
1677 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1678
1679 if (qid > 0)
1680 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1681 else
1682 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1683 NVME_TCP_ADMIN_CCSZ;
1684
1685 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1686 IPPROTO_TCP, &queue->sock);
1687 if (ret) {
1688 dev_err(nctrl->device,
1689 "failed to create socket: %d\n", ret);
1690 goto err_destroy_mutex;
1691 }
1692
1693 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1694 if (IS_ERR(sock_file)) {
1695 ret = PTR_ERR(sock_file);
1696 goto err_destroy_mutex;
1697 }
1698 nvme_tcp_reclassify_socket(queue->sock);
1699
1700 /* Single syn retry */
1701 tcp_sock_set_syncnt(queue->sock->sk, 1);
1702
1703 /* Set TCP no delay */
1704 tcp_sock_set_nodelay(queue->sock->sk);
1705
1706 /*
1707 * Cleanup whatever is sitting in the TCP transmit queue on socket
1708 * close. This is done to prevent stale data from being sent should
1709 * the network connection be restored before TCP times out.
1710 */
1711 sock_no_linger(queue->sock->sk);
1712
1713 if (so_priority > 0)
1714 sock_set_priority(queue->sock->sk, so_priority);
1715
1716 /* Set socket type of service */
1717 if (nctrl->opts->tos >= 0)
1718 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1719
1720 /* Set 10 seconds timeout for icresp recvmsg */
1721 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1722
1723 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1724 queue->sock->sk->sk_use_task_frag = false;
1725 nvme_tcp_set_queue_io_cpu(queue);
1726 queue->request = NULL;
1727 queue->data_remaining = 0;
1728 queue->ddgst_remaining = 0;
1729 queue->pdu_remaining = 0;
1730 queue->pdu_offset = 0;
1731 sk_set_memalloc(queue->sock->sk);
1732
1733 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1734 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1735 sizeof(ctrl->src_addr));
1736 if (ret) {
1737 dev_err(nctrl->device,
1738 "failed to bind queue %d socket %d\n",
1739 qid, ret);
1740 goto err_sock;
1741 }
1742 }
1743
1744 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1745 char *iface = nctrl->opts->host_iface;
1746 sockptr_t optval = KERNEL_SOCKPTR(iface);
1747
1748 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1749 optval, strlen(iface));
1750 if (ret) {
1751 dev_err(nctrl->device,
1752 "failed to bind to interface %s queue %d err %d\n",
1753 iface, qid, ret);
1754 goto err_sock;
1755 }
1756 }
1757
1758 queue->hdr_digest = nctrl->opts->hdr_digest;
1759 queue->data_digest = nctrl->opts->data_digest;
1760 if (queue->hdr_digest || queue->data_digest) {
1761 ret = nvme_tcp_alloc_crypto(queue);
1762 if (ret) {
1763 dev_err(nctrl->device,
1764 "failed to allocate queue %d crypto\n", qid);
1765 goto err_sock;
1766 }
1767 }
1768
1769 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1770 nvme_tcp_hdgst_len(queue);
1771 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1772 if (!queue->pdu) {
1773 ret = -ENOMEM;
1774 goto err_crypto;
1775 }
1776
1777 dev_dbg(nctrl->device, "connecting queue %d\n",
1778 nvme_tcp_queue_id(queue));
1779
1780 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1781 sizeof(ctrl->addr), 0);
1782 if (ret) {
1783 dev_err(nctrl->device,
1784 "failed to connect socket: %d\n", ret);
1785 goto err_rcv_pdu;
1786 }
1787
1788 /* If PSKs are configured try to start TLS */
1789 if (nvme_tcp_tls_configured(nctrl) && pskid) {
1790 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1791 if (ret)
1792 goto err_init_connect;
1793 }
1794
1795 ret = nvme_tcp_init_connection(queue);
1796 if (ret)
1797 goto err_init_connect;
1798
1799 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1800
1801 return 0;
1802
1803 err_init_connect:
1804 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1805 err_rcv_pdu:
1806 kfree(queue->pdu);
1807 err_crypto:
1808 if (queue->hdr_digest || queue->data_digest)
1809 nvme_tcp_free_crypto(queue);
1810 err_sock:
1811 /* ->sock will be released by fput() */
1812 fput(queue->sock->file);
1813 queue->sock = NULL;
1814 err_destroy_mutex:
1815 mutex_destroy(&queue->send_mutex);
1816 mutex_destroy(&queue->queue_lock);
1817 return ret;
1818 }
1819
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1820 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1821 {
1822 struct socket *sock = queue->sock;
1823
1824 write_lock_bh(&sock->sk->sk_callback_lock);
1825 sock->sk->sk_user_data = NULL;
1826 sock->sk->sk_data_ready = queue->data_ready;
1827 sock->sk->sk_state_change = queue->state_change;
1828 sock->sk->sk_write_space = queue->write_space;
1829 write_unlock_bh(&sock->sk->sk_callback_lock);
1830 }
1831
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1832 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1833 {
1834 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1835 nvme_tcp_restore_sock_ops(queue);
1836 cancel_work_sync(&queue->io_work);
1837 }
1838
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1839 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1840 {
1841 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1842 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1843
1844 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1845 return;
1846
1847 mutex_lock(&queue->queue_lock);
1848 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1849 __nvme_tcp_stop_queue(queue);
1850 /* Stopping the queue will disable TLS */
1851 queue->tls_enabled = false;
1852 mutex_unlock(&queue->queue_lock);
1853 }
1854
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1855 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1856 {
1857 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1858 queue->sock->sk->sk_user_data = queue;
1859 queue->state_change = queue->sock->sk->sk_state_change;
1860 queue->data_ready = queue->sock->sk->sk_data_ready;
1861 queue->write_space = queue->sock->sk->sk_write_space;
1862 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1863 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1864 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1865 #ifdef CONFIG_NET_RX_BUSY_POLL
1866 queue->sock->sk->sk_ll_usec = 1;
1867 #endif
1868 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1869 }
1870
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1871 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1872 {
1873 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1874 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1875 int ret;
1876
1877 queue->rd_enabled = true;
1878 nvme_tcp_init_recv_ctx(queue);
1879 nvme_tcp_setup_sock_ops(queue);
1880
1881 if (idx)
1882 ret = nvmf_connect_io_queue(nctrl, idx);
1883 else
1884 ret = nvmf_connect_admin_queue(nctrl);
1885
1886 if (!ret) {
1887 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1888 } else {
1889 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1890 __nvme_tcp_stop_queue(queue);
1891 dev_err(nctrl->device,
1892 "failed to connect queue: %d ret=%d\n", idx, ret);
1893 }
1894 return ret;
1895 }
1896
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1897 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1898 {
1899 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1900 cancel_work_sync(&ctrl->async_event_work);
1901 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1902 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1903 }
1904
1905 nvme_tcp_free_queue(ctrl, 0);
1906 }
1907
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1908 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1909 {
1910 int i;
1911
1912 for (i = 1; i < ctrl->queue_count; i++)
1913 nvme_tcp_free_queue(ctrl, i);
1914 }
1915
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1916 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1917 {
1918 int i;
1919
1920 for (i = 1; i < ctrl->queue_count; i++)
1921 nvme_tcp_stop_queue(ctrl, i);
1922 }
1923
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)1924 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1925 int first, int last)
1926 {
1927 int i, ret;
1928
1929 for (i = first; i < last; i++) {
1930 ret = nvme_tcp_start_queue(ctrl, i);
1931 if (ret)
1932 goto out_stop_queues;
1933 }
1934
1935 return 0;
1936
1937 out_stop_queues:
1938 for (i--; i >= first; i--)
1939 nvme_tcp_stop_queue(ctrl, i);
1940 return ret;
1941 }
1942
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1943 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1944 {
1945 int ret;
1946 key_serial_t pskid = 0;
1947
1948 if (nvme_tcp_tls_configured(ctrl)) {
1949 if (ctrl->opts->tls_key)
1950 pskid = key_serial(ctrl->opts->tls_key);
1951 else {
1952 pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1953 ctrl->opts->host->nqn,
1954 ctrl->opts->subsysnqn);
1955 if (!pskid) {
1956 dev_err(ctrl->device, "no valid PSK found\n");
1957 return -ENOKEY;
1958 }
1959 }
1960 }
1961
1962 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1963 if (ret)
1964 return ret;
1965
1966 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1967 if (ret)
1968 goto out_free_queue;
1969
1970 return 0;
1971
1972 out_free_queue:
1973 nvme_tcp_free_queue(ctrl, 0);
1974 return ret;
1975 }
1976
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1977 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1978 {
1979 int i, ret;
1980
1981 if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
1982 dev_err(ctrl->device, "no PSK negotiated\n");
1983 return -ENOKEY;
1984 }
1985
1986 for (i = 1; i < ctrl->queue_count; i++) {
1987 ret = nvme_tcp_alloc_queue(ctrl, i,
1988 ctrl->tls_pskid);
1989 if (ret)
1990 goto out_free_queues;
1991 }
1992
1993 return 0;
1994
1995 out_free_queues:
1996 for (i--; i >= 1; i--)
1997 nvme_tcp_free_queue(ctrl, i);
1998
1999 return ret;
2000 }
2001
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2002 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2003 {
2004 unsigned int nr_io_queues;
2005 int ret;
2006
2007 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2008 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2009 if (ret)
2010 return ret;
2011
2012 if (nr_io_queues == 0) {
2013 dev_err(ctrl->device,
2014 "unable to set any I/O queues\n");
2015 return -ENOMEM;
2016 }
2017
2018 ctrl->queue_count = nr_io_queues + 1;
2019 dev_info(ctrl->device,
2020 "creating %d I/O queues.\n", nr_io_queues);
2021
2022 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2023 to_tcp_ctrl(ctrl)->io_queues);
2024 return __nvme_tcp_alloc_io_queues(ctrl);
2025 }
2026
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)2027 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
2028 {
2029 nvme_tcp_stop_io_queues(ctrl);
2030 if (remove)
2031 nvme_remove_io_tag_set(ctrl);
2032 nvme_tcp_free_io_queues(ctrl);
2033 }
2034
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)2035 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2036 {
2037 int ret, nr_queues;
2038
2039 ret = nvme_tcp_alloc_io_queues(ctrl);
2040 if (ret)
2041 return ret;
2042
2043 if (new) {
2044 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2045 &nvme_tcp_mq_ops,
2046 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2047 sizeof(struct nvme_tcp_request));
2048 if (ret)
2049 goto out_free_io_queues;
2050 }
2051
2052 /*
2053 * Only start IO queues for which we have allocated the tagset
2054 * and limitted it to the available queues. On reconnects, the
2055 * queue number might have changed.
2056 */
2057 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2058 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2059 if (ret)
2060 goto out_cleanup_connect_q;
2061
2062 if (!new) {
2063 nvme_start_freeze(ctrl);
2064 nvme_unquiesce_io_queues(ctrl);
2065 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2066 /*
2067 * If we timed out waiting for freeze we are likely to
2068 * be stuck. Fail the controller initialization just
2069 * to be safe.
2070 */
2071 ret = -ENODEV;
2072 nvme_unfreeze(ctrl);
2073 goto out_wait_freeze_timed_out;
2074 }
2075 blk_mq_update_nr_hw_queues(ctrl->tagset,
2076 ctrl->queue_count - 1);
2077 nvme_unfreeze(ctrl);
2078 }
2079
2080 /*
2081 * If the number of queues has increased (reconnect case)
2082 * start all new queues now.
2083 */
2084 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2085 ctrl->tagset->nr_hw_queues + 1);
2086 if (ret)
2087 goto out_wait_freeze_timed_out;
2088
2089 return 0;
2090
2091 out_wait_freeze_timed_out:
2092 nvme_quiesce_io_queues(ctrl);
2093 nvme_sync_io_queues(ctrl);
2094 nvme_tcp_stop_io_queues(ctrl);
2095 out_cleanup_connect_q:
2096 nvme_cancel_tagset(ctrl);
2097 if (new)
2098 nvme_remove_io_tag_set(ctrl);
2099 out_free_io_queues:
2100 nvme_tcp_free_io_queues(ctrl);
2101 return ret;
2102 }
2103
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)2104 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2105 {
2106 int error;
2107
2108 error = nvme_tcp_alloc_admin_queue(ctrl);
2109 if (error)
2110 return error;
2111
2112 if (new) {
2113 error = nvme_alloc_admin_tag_set(ctrl,
2114 &to_tcp_ctrl(ctrl)->admin_tag_set,
2115 &nvme_tcp_admin_mq_ops,
2116 sizeof(struct nvme_tcp_request));
2117 if (error)
2118 goto out_free_queue;
2119 }
2120
2121 error = nvme_tcp_start_queue(ctrl, 0);
2122 if (error)
2123 goto out_cleanup_tagset;
2124
2125 error = nvme_enable_ctrl(ctrl);
2126 if (error)
2127 goto out_stop_queue;
2128
2129 nvme_unquiesce_admin_queue(ctrl);
2130
2131 error = nvme_init_ctrl_finish(ctrl, false);
2132 if (error)
2133 goto out_quiesce_queue;
2134
2135 return 0;
2136
2137 out_quiesce_queue:
2138 nvme_quiesce_admin_queue(ctrl);
2139 blk_sync_queue(ctrl->admin_q);
2140 out_stop_queue:
2141 nvme_tcp_stop_queue(ctrl, 0);
2142 nvme_cancel_admin_tagset(ctrl);
2143 out_cleanup_tagset:
2144 if (new)
2145 nvme_remove_admin_tag_set(ctrl);
2146 out_free_queue:
2147 nvme_tcp_free_admin_queue(ctrl);
2148 return error;
2149 }
2150
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2151 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2152 bool remove)
2153 {
2154 nvme_quiesce_admin_queue(ctrl);
2155 blk_sync_queue(ctrl->admin_q);
2156 nvme_tcp_stop_queue(ctrl, 0);
2157 nvme_cancel_admin_tagset(ctrl);
2158 if (remove) {
2159 nvme_unquiesce_admin_queue(ctrl);
2160 nvme_remove_admin_tag_set(ctrl);
2161 }
2162 nvme_tcp_free_admin_queue(ctrl);
2163 if (ctrl->tls_pskid) {
2164 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2165 ctrl->tls_pskid);
2166 ctrl->tls_pskid = 0;
2167 }
2168 }
2169
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2170 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2171 bool remove)
2172 {
2173 if (ctrl->queue_count <= 1)
2174 return;
2175 nvme_quiesce_io_queues(ctrl);
2176 nvme_sync_io_queues(ctrl);
2177 nvme_tcp_stop_io_queues(ctrl);
2178 nvme_cancel_tagset(ctrl);
2179 if (remove)
2180 nvme_unquiesce_io_queues(ctrl);
2181 nvme_tcp_destroy_io_queues(ctrl, remove);
2182 }
2183
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl,int status)2184 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2185 int status)
2186 {
2187 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2188
2189 /* If we are resetting/deleting then do nothing */
2190 if (state != NVME_CTRL_CONNECTING) {
2191 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2192 return;
2193 }
2194
2195 if (nvmf_should_reconnect(ctrl, status)) {
2196 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2197 ctrl->opts->reconnect_delay);
2198 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2199 ctrl->opts->reconnect_delay * HZ);
2200 } else {
2201 dev_info(ctrl->device, "Removing controller (%d)...\n",
2202 status);
2203 nvme_delete_ctrl(ctrl);
2204 }
2205 }
2206
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2207 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2208 {
2209 struct nvmf_ctrl_options *opts = ctrl->opts;
2210 int ret;
2211
2212 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2213 if (ret)
2214 return ret;
2215
2216 if (ctrl->icdoff) {
2217 ret = -EOPNOTSUPP;
2218 dev_err(ctrl->device, "icdoff is not supported!\n");
2219 goto destroy_admin;
2220 }
2221
2222 if (!nvme_ctrl_sgl_supported(ctrl)) {
2223 ret = -EOPNOTSUPP;
2224 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2225 goto destroy_admin;
2226 }
2227
2228 if (opts->queue_size > ctrl->sqsize + 1)
2229 dev_warn(ctrl->device,
2230 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2231 opts->queue_size, ctrl->sqsize + 1);
2232
2233 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2234 dev_warn(ctrl->device,
2235 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2236 ctrl->sqsize + 1, ctrl->maxcmd);
2237 ctrl->sqsize = ctrl->maxcmd - 1;
2238 }
2239
2240 if (ctrl->queue_count > 1) {
2241 ret = nvme_tcp_configure_io_queues(ctrl, new);
2242 if (ret)
2243 goto destroy_admin;
2244 }
2245
2246 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2247 /*
2248 * state change failure is ok if we started ctrl delete,
2249 * unless we're during creation of a new controller to
2250 * avoid races with teardown flow.
2251 */
2252 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2253
2254 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2255 state != NVME_CTRL_DELETING_NOIO);
2256 WARN_ON_ONCE(new);
2257 ret = -EINVAL;
2258 goto destroy_io;
2259 }
2260
2261 nvme_start_ctrl(ctrl);
2262 return 0;
2263
2264 destroy_io:
2265 if (ctrl->queue_count > 1) {
2266 nvme_quiesce_io_queues(ctrl);
2267 nvme_sync_io_queues(ctrl);
2268 nvme_tcp_stop_io_queues(ctrl);
2269 nvme_cancel_tagset(ctrl);
2270 nvme_tcp_destroy_io_queues(ctrl, new);
2271 }
2272 destroy_admin:
2273 nvme_stop_keep_alive(ctrl);
2274 nvme_tcp_teardown_admin_queue(ctrl, new);
2275 return ret;
2276 }
2277
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2278 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2279 {
2280 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2281 struct nvme_tcp_ctrl, connect_work);
2282 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2283 int ret;
2284
2285 ++ctrl->nr_reconnects;
2286
2287 ret = nvme_tcp_setup_ctrl(ctrl, false);
2288 if (ret)
2289 goto requeue;
2290
2291 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2292 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2293
2294 ctrl->nr_reconnects = 0;
2295
2296 return;
2297
2298 requeue:
2299 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2300 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2301 nvme_tcp_reconnect_or_remove(ctrl, ret);
2302 }
2303
nvme_tcp_error_recovery_work(struct work_struct * work)2304 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2305 {
2306 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2307 struct nvme_tcp_ctrl, err_work);
2308 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2309
2310 nvme_stop_keep_alive(ctrl);
2311 flush_work(&ctrl->async_event_work);
2312 nvme_tcp_teardown_io_queues(ctrl, false);
2313 /* unquiesce to fail fast pending requests */
2314 nvme_unquiesce_io_queues(ctrl);
2315 nvme_tcp_teardown_admin_queue(ctrl, false);
2316 nvme_unquiesce_admin_queue(ctrl);
2317 nvme_auth_stop(ctrl);
2318
2319 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2320 /* state change failure is ok if we started ctrl delete */
2321 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2322
2323 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2324 state != NVME_CTRL_DELETING_NOIO);
2325 return;
2326 }
2327
2328 nvme_tcp_reconnect_or_remove(ctrl, 0);
2329 }
2330
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2331 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2332 {
2333 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2334 nvme_quiesce_admin_queue(ctrl);
2335 nvme_disable_ctrl(ctrl, shutdown);
2336 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2337 }
2338
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2339 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2340 {
2341 nvme_tcp_teardown_ctrl(ctrl, true);
2342 }
2343
nvme_reset_ctrl_work(struct work_struct * work)2344 static void nvme_reset_ctrl_work(struct work_struct *work)
2345 {
2346 struct nvme_ctrl *ctrl =
2347 container_of(work, struct nvme_ctrl, reset_work);
2348 int ret;
2349
2350 nvme_stop_ctrl(ctrl);
2351 nvme_tcp_teardown_ctrl(ctrl, false);
2352
2353 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2354 /* state change failure is ok if we started ctrl delete */
2355 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2356
2357 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2358 state != NVME_CTRL_DELETING_NOIO);
2359 return;
2360 }
2361
2362 ret = nvme_tcp_setup_ctrl(ctrl, false);
2363 if (ret)
2364 goto out_fail;
2365
2366 return;
2367
2368 out_fail:
2369 ++ctrl->nr_reconnects;
2370 nvme_tcp_reconnect_or_remove(ctrl, ret);
2371 }
2372
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2373 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2374 {
2375 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2376 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2377 }
2378
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2379 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2380 {
2381 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2382
2383 if (list_empty(&ctrl->list))
2384 goto free_ctrl;
2385
2386 mutex_lock(&nvme_tcp_ctrl_mutex);
2387 list_del(&ctrl->list);
2388 mutex_unlock(&nvme_tcp_ctrl_mutex);
2389
2390 nvmf_free_options(nctrl->opts);
2391 free_ctrl:
2392 kfree(ctrl->queues);
2393 kfree(ctrl);
2394 }
2395
nvme_tcp_set_sg_null(struct nvme_command * c)2396 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2397 {
2398 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2399
2400 sg->addr = 0;
2401 sg->length = 0;
2402 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2403 NVME_SGL_FMT_TRANSPORT_A;
2404 }
2405
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2406 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2407 struct nvme_command *c, u32 data_len)
2408 {
2409 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2410
2411 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2412 sg->length = cpu_to_le32(data_len);
2413 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2414 }
2415
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2416 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2417 u32 data_len)
2418 {
2419 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2420
2421 sg->addr = 0;
2422 sg->length = cpu_to_le32(data_len);
2423 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2424 NVME_SGL_FMT_TRANSPORT_A;
2425 }
2426
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2427 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2428 {
2429 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2430 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2431 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2432 struct nvme_command *cmd = &pdu->cmd;
2433 u8 hdgst = nvme_tcp_hdgst_len(queue);
2434
2435 memset(pdu, 0, sizeof(*pdu));
2436 pdu->hdr.type = nvme_tcp_cmd;
2437 if (queue->hdr_digest)
2438 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2439 pdu->hdr.hlen = sizeof(*pdu);
2440 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2441
2442 cmd->common.opcode = nvme_admin_async_event;
2443 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2444 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2445 nvme_tcp_set_sg_null(cmd);
2446
2447 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2448 ctrl->async_req.offset = 0;
2449 ctrl->async_req.curr_bio = NULL;
2450 ctrl->async_req.data_len = 0;
2451
2452 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2453 }
2454
nvme_tcp_complete_timed_out(struct request * rq)2455 static void nvme_tcp_complete_timed_out(struct request *rq)
2456 {
2457 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2458 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2459
2460 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2461 nvmf_complete_timed_out_request(rq);
2462 }
2463
nvme_tcp_timeout(struct request * rq)2464 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2465 {
2466 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2467 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2468 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2469 struct nvme_command *cmd = &pdu->cmd;
2470 int qid = nvme_tcp_queue_id(req->queue);
2471
2472 dev_warn(ctrl->device,
2473 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2474 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2475 nvme_fabrics_opcode_str(qid, cmd), qid);
2476
2477 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2478 /*
2479 * If we are resetting, connecting or deleting we should
2480 * complete immediately because we may block controller
2481 * teardown or setup sequence
2482 * - ctrl disable/shutdown fabrics requests
2483 * - connect requests
2484 * - initialization admin requests
2485 * - I/O requests that entered after unquiescing and
2486 * the controller stopped responding
2487 *
2488 * All other requests should be cancelled by the error
2489 * recovery work, so it's fine that we fail it here.
2490 */
2491 nvme_tcp_complete_timed_out(rq);
2492 return BLK_EH_DONE;
2493 }
2494
2495 /*
2496 * LIVE state should trigger the normal error recovery which will
2497 * handle completing this request.
2498 */
2499 nvme_tcp_error_recovery(ctrl);
2500 return BLK_EH_RESET_TIMER;
2501 }
2502
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2503 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2504 struct request *rq)
2505 {
2506 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2507 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2508 struct nvme_command *c = &pdu->cmd;
2509
2510 c->common.flags |= NVME_CMD_SGL_METABUF;
2511
2512 if (!blk_rq_nr_phys_segments(rq))
2513 nvme_tcp_set_sg_null(c);
2514 else if (rq_data_dir(rq) == WRITE &&
2515 req->data_len <= nvme_tcp_inline_data_size(req))
2516 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2517 else
2518 nvme_tcp_set_sg_host_data(c, req->data_len);
2519
2520 return 0;
2521 }
2522
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2523 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2524 struct request *rq)
2525 {
2526 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2527 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2528 struct nvme_tcp_queue *queue = req->queue;
2529 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2530 blk_status_t ret;
2531
2532 ret = nvme_setup_cmd(ns, rq);
2533 if (ret)
2534 return ret;
2535
2536 req->state = NVME_TCP_SEND_CMD_PDU;
2537 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2538 req->offset = 0;
2539 req->data_sent = 0;
2540 req->pdu_len = 0;
2541 req->pdu_sent = 0;
2542 req->h2cdata_left = 0;
2543 req->data_len = blk_rq_nr_phys_segments(rq) ?
2544 blk_rq_payload_bytes(rq) : 0;
2545 req->curr_bio = rq->bio;
2546 if (req->curr_bio && req->data_len)
2547 nvme_tcp_init_iter(req, rq_data_dir(rq));
2548
2549 if (rq_data_dir(rq) == WRITE &&
2550 req->data_len <= nvme_tcp_inline_data_size(req))
2551 req->pdu_len = req->data_len;
2552
2553 pdu->hdr.type = nvme_tcp_cmd;
2554 pdu->hdr.flags = 0;
2555 if (queue->hdr_digest)
2556 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2557 if (queue->data_digest && req->pdu_len) {
2558 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2559 ddgst = nvme_tcp_ddgst_len(queue);
2560 }
2561 pdu->hdr.hlen = sizeof(*pdu);
2562 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2563 pdu->hdr.plen =
2564 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2565
2566 ret = nvme_tcp_map_data(queue, rq);
2567 if (unlikely(ret)) {
2568 nvme_cleanup_cmd(rq);
2569 dev_err(queue->ctrl->ctrl.device,
2570 "Failed to map data (%d)\n", ret);
2571 return ret;
2572 }
2573
2574 return 0;
2575 }
2576
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2577 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2578 {
2579 struct nvme_tcp_queue *queue = hctx->driver_data;
2580
2581 if (!llist_empty(&queue->req_list))
2582 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2583 }
2584
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2585 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2586 const struct blk_mq_queue_data *bd)
2587 {
2588 struct nvme_ns *ns = hctx->queue->queuedata;
2589 struct nvme_tcp_queue *queue = hctx->driver_data;
2590 struct request *rq = bd->rq;
2591 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2592 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2593 blk_status_t ret;
2594
2595 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2596 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2597
2598 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2599 if (unlikely(ret))
2600 return ret;
2601
2602 nvme_start_request(rq);
2603
2604 nvme_tcp_queue_request(req, true, bd->last);
2605
2606 return BLK_STS_OK;
2607 }
2608
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2609 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2610 {
2611 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2612
2613 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2614 }
2615
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2616 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2617 {
2618 struct nvme_tcp_queue *queue = hctx->driver_data;
2619 struct sock *sk = queue->sock->sk;
2620
2621 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2622 return 0;
2623
2624 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2625 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2626 sk_busy_loop(sk, true);
2627 nvme_tcp_try_recv(queue);
2628 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2629 return queue->nr_cqe;
2630 }
2631
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2632 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2633 {
2634 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2635 struct sockaddr_storage src_addr;
2636 int ret, len;
2637
2638 len = nvmf_get_address(ctrl, buf, size);
2639
2640 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2641 return len;
2642
2643 mutex_lock(&queue->queue_lock);
2644
2645 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2646 if (ret > 0) {
2647 if (len > 0)
2648 len--; /* strip trailing newline */
2649 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2650 (len) ? "," : "", &src_addr);
2651 }
2652
2653 mutex_unlock(&queue->queue_lock);
2654
2655 return len;
2656 }
2657
2658 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2659 .queue_rq = nvme_tcp_queue_rq,
2660 .commit_rqs = nvme_tcp_commit_rqs,
2661 .complete = nvme_complete_rq,
2662 .init_request = nvme_tcp_init_request,
2663 .exit_request = nvme_tcp_exit_request,
2664 .init_hctx = nvme_tcp_init_hctx,
2665 .timeout = nvme_tcp_timeout,
2666 .map_queues = nvme_tcp_map_queues,
2667 .poll = nvme_tcp_poll,
2668 };
2669
2670 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2671 .queue_rq = nvme_tcp_queue_rq,
2672 .complete = nvme_complete_rq,
2673 .init_request = nvme_tcp_init_request,
2674 .exit_request = nvme_tcp_exit_request,
2675 .init_hctx = nvme_tcp_init_admin_hctx,
2676 .timeout = nvme_tcp_timeout,
2677 };
2678
2679 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2680 .name = "tcp",
2681 .module = THIS_MODULE,
2682 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2683 .reg_read32 = nvmf_reg_read32,
2684 .reg_read64 = nvmf_reg_read64,
2685 .reg_write32 = nvmf_reg_write32,
2686 .subsystem_reset = nvmf_subsystem_reset,
2687 .free_ctrl = nvme_tcp_free_ctrl,
2688 .submit_async_event = nvme_tcp_submit_async_event,
2689 .delete_ctrl = nvme_tcp_delete_ctrl,
2690 .get_address = nvme_tcp_get_address,
2691 .stop_ctrl = nvme_tcp_stop_ctrl,
2692 };
2693
2694 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2695 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2696 {
2697 struct nvme_tcp_ctrl *ctrl;
2698 bool found = false;
2699
2700 mutex_lock(&nvme_tcp_ctrl_mutex);
2701 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2702 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2703 if (found)
2704 break;
2705 }
2706 mutex_unlock(&nvme_tcp_ctrl_mutex);
2707
2708 return found;
2709 }
2710
nvme_tcp_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2711 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2712 struct nvmf_ctrl_options *opts)
2713 {
2714 struct nvme_tcp_ctrl *ctrl;
2715 int ret;
2716
2717 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2718 if (!ctrl)
2719 return ERR_PTR(-ENOMEM);
2720
2721 INIT_LIST_HEAD(&ctrl->list);
2722 ctrl->ctrl.opts = opts;
2723 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2724 opts->nr_poll_queues + 1;
2725 ctrl->ctrl.sqsize = opts->queue_size - 1;
2726 ctrl->ctrl.kato = opts->kato;
2727
2728 INIT_DELAYED_WORK(&ctrl->connect_work,
2729 nvme_tcp_reconnect_ctrl_work);
2730 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2731 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2732
2733 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2734 opts->trsvcid =
2735 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2736 if (!opts->trsvcid) {
2737 ret = -ENOMEM;
2738 goto out_free_ctrl;
2739 }
2740 opts->mask |= NVMF_OPT_TRSVCID;
2741 }
2742
2743 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2744 opts->traddr, opts->trsvcid, &ctrl->addr);
2745 if (ret) {
2746 pr_err("malformed address passed: %s:%s\n",
2747 opts->traddr, opts->trsvcid);
2748 goto out_free_ctrl;
2749 }
2750
2751 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2752 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2753 opts->host_traddr, NULL, &ctrl->src_addr);
2754 if (ret) {
2755 pr_err("malformed src address passed: %s\n",
2756 opts->host_traddr);
2757 goto out_free_ctrl;
2758 }
2759 }
2760
2761 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2762 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2763 pr_err("invalid interface passed: %s\n",
2764 opts->host_iface);
2765 ret = -ENODEV;
2766 goto out_free_ctrl;
2767 }
2768 }
2769
2770 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2771 ret = -EALREADY;
2772 goto out_free_ctrl;
2773 }
2774
2775 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2776 GFP_KERNEL);
2777 if (!ctrl->queues) {
2778 ret = -ENOMEM;
2779 goto out_free_ctrl;
2780 }
2781
2782 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2783 if (ret)
2784 goto out_kfree_queues;
2785
2786 return ctrl;
2787 out_kfree_queues:
2788 kfree(ctrl->queues);
2789 out_free_ctrl:
2790 kfree(ctrl);
2791 return ERR_PTR(ret);
2792 }
2793
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2794 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2795 struct nvmf_ctrl_options *opts)
2796 {
2797 struct nvme_tcp_ctrl *ctrl;
2798 int ret;
2799
2800 ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2801 if (IS_ERR(ctrl))
2802 return ERR_CAST(ctrl);
2803
2804 ret = nvme_add_ctrl(&ctrl->ctrl);
2805 if (ret)
2806 goto out_put_ctrl;
2807
2808 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2809 WARN_ON_ONCE(1);
2810 ret = -EINTR;
2811 goto out_uninit_ctrl;
2812 }
2813
2814 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2815 if (ret)
2816 goto out_uninit_ctrl;
2817
2818 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2819 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2820
2821 mutex_lock(&nvme_tcp_ctrl_mutex);
2822 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2823 mutex_unlock(&nvme_tcp_ctrl_mutex);
2824
2825 return &ctrl->ctrl;
2826
2827 out_uninit_ctrl:
2828 nvme_uninit_ctrl(&ctrl->ctrl);
2829 out_put_ctrl:
2830 nvme_put_ctrl(&ctrl->ctrl);
2831 if (ret > 0)
2832 ret = -EIO;
2833 return ERR_PTR(ret);
2834 }
2835
2836 static struct nvmf_transport_ops nvme_tcp_transport = {
2837 .name = "tcp",
2838 .module = THIS_MODULE,
2839 .required_opts = NVMF_OPT_TRADDR,
2840 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2841 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2842 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2843 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2844 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2845 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2846 .create_ctrl = nvme_tcp_create_ctrl,
2847 };
2848
nvme_tcp_init_module(void)2849 static int __init nvme_tcp_init_module(void)
2850 {
2851 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2852
2853 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2854 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2855 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2856 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2857 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2858 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2859 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2860 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2861
2862 if (wq_unbound)
2863 wq_flags |= WQ_UNBOUND;
2864
2865 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2866 if (!nvme_tcp_wq)
2867 return -ENOMEM;
2868
2869 nvmf_register_transport(&nvme_tcp_transport);
2870 return 0;
2871 }
2872
nvme_tcp_cleanup_module(void)2873 static void __exit nvme_tcp_cleanup_module(void)
2874 {
2875 struct nvme_tcp_ctrl *ctrl;
2876
2877 nvmf_unregister_transport(&nvme_tcp_transport);
2878
2879 mutex_lock(&nvme_tcp_ctrl_mutex);
2880 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2881 nvme_delete_ctrl(&ctrl->ctrl);
2882 mutex_unlock(&nvme_tcp_ctrl_mutex);
2883 flush_workqueue(nvme_delete_wq);
2884
2885 destroy_workqueue(nvme_tcp_wq);
2886 }
2887
2888 module_init(nvme_tcp_init_module);
2889 module_exit(nvme_tcp_cleanup_module);
2890
2891 MODULE_DESCRIPTION("NVMe host TCP transport driver");
2892 MODULE_LICENSE("GPL v2");
2893