1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2015 Intel Corporation
4 * Keith Busch <kbusch@kernel.org>
5 */
6 #include <linux/blkdev.h>
7 #include <linux/pr.h>
8 #include <linux/unaligned.h>
9
10 #include "nvme.h"
11
nvme_pr_type_from_blk(enum pr_type type)12 static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type)
13 {
14 switch (type) {
15 case PR_WRITE_EXCLUSIVE:
16 return NVME_PR_WRITE_EXCLUSIVE;
17 case PR_EXCLUSIVE_ACCESS:
18 return NVME_PR_EXCLUSIVE_ACCESS;
19 case PR_WRITE_EXCLUSIVE_REG_ONLY:
20 return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY;
21 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
22 return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY;
23 case PR_WRITE_EXCLUSIVE_ALL_REGS:
24 return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS;
25 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
26 return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS;
27 }
28
29 return 0;
30 }
31
block_pr_type_from_nvme(enum nvme_pr_type type)32 static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type)
33 {
34 switch (type) {
35 case NVME_PR_WRITE_EXCLUSIVE:
36 return PR_WRITE_EXCLUSIVE;
37 case NVME_PR_EXCLUSIVE_ACCESS:
38 return PR_EXCLUSIVE_ACCESS;
39 case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY:
40 return PR_WRITE_EXCLUSIVE_REG_ONLY;
41 case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY:
42 return PR_EXCLUSIVE_ACCESS_REG_ONLY;
43 case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS:
44 return PR_WRITE_EXCLUSIVE_ALL_REGS;
45 case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS:
46 return PR_EXCLUSIVE_ACCESS_ALL_REGS;
47 }
48
49 return 0;
50 }
51
nvme_send_ns_head_pr_command(struct block_device * bdev,struct nvme_command * c,void * data,unsigned int data_len)52 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
53 struct nvme_command *c, void *data, unsigned int data_len)
54 {
55 struct nvme_ns_head *head = bdev->bd_disk->private_data;
56 int srcu_idx = srcu_read_lock(&head->srcu);
57 struct nvme_ns *ns = nvme_find_path(head);
58 int ret = -EWOULDBLOCK;
59
60 if (ns) {
61 c->common.nsid = cpu_to_le32(ns->head->ns_id);
62 ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len);
63 }
64 srcu_read_unlock(&head->srcu, srcu_idx);
65 return ret;
66 }
67
nvme_send_ns_pr_command(struct nvme_ns * ns,struct nvme_command * c,void * data,unsigned int data_len)68 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
69 void *data, unsigned int data_len)
70 {
71 c->common.nsid = cpu_to_le32(ns->head->ns_id);
72 return nvme_submit_sync_cmd(ns->queue, c, data, data_len);
73 }
74
nvme_status_to_pr_err(int status)75 static int nvme_status_to_pr_err(int status)
76 {
77 if (nvme_is_path_error(status))
78 return PR_STS_PATH_FAILED;
79
80 switch (status & NVME_SCT_SC_MASK) {
81 case NVME_SC_SUCCESS:
82 return PR_STS_SUCCESS;
83 case NVME_SC_RESERVATION_CONFLICT:
84 return PR_STS_RESERVATION_CONFLICT;
85 case NVME_SC_ONCS_NOT_SUPPORTED:
86 return -EOPNOTSUPP;
87 case NVME_SC_BAD_ATTRIBUTES:
88 case NVME_SC_INVALID_OPCODE:
89 case NVME_SC_INVALID_FIELD:
90 case NVME_SC_INVALID_NS:
91 return -EINVAL;
92 default:
93 return PR_STS_IOERR;
94 }
95 }
96
__nvme_send_pr_command(struct block_device * bdev,u32 cdw10,u32 cdw11,u8 op,void * data,unsigned int data_len)97 static int __nvme_send_pr_command(struct block_device *bdev, u32 cdw10,
98 u32 cdw11, u8 op, void *data, unsigned int data_len)
99 {
100 struct nvme_command c = { 0 };
101
102 c.common.opcode = op;
103 c.common.cdw10 = cpu_to_le32(cdw10);
104 c.common.cdw11 = cpu_to_le32(cdw11);
105
106 if (nvme_disk_is_ns_head(bdev->bd_disk))
107 return nvme_send_ns_head_pr_command(bdev, &c, data, data_len);
108 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c,
109 data, data_len);
110 }
111
nvme_send_pr_command(struct block_device * bdev,u32 cdw10,u32 cdw11,u8 op,void * data,unsigned int data_len)112 static int nvme_send_pr_command(struct block_device *bdev, u32 cdw10, u32 cdw11,
113 u8 op, void *data, unsigned int data_len)
114 {
115 int ret;
116
117 ret = __nvme_send_pr_command(bdev, cdw10, cdw11, op, data, data_len);
118 return ret < 0 ? ret : nvme_status_to_pr_err(ret);
119 }
120
nvme_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,unsigned int flags)121 static int nvme_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
122 unsigned int flags)
123 {
124 struct nvmet_pr_register_data data = { 0 };
125 u32 cdw10;
126
127 if (flags & ~PR_FL_IGNORE_KEY)
128 return -EOPNOTSUPP;
129
130 data.crkey = cpu_to_le64(old_key);
131 data.nrkey = cpu_to_le64(new_key);
132
133 cdw10 = old_key ? NVME_PR_REGISTER_ACT_REPLACE :
134 NVME_PR_REGISTER_ACT_REG;
135 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0;
136 cdw10 |= NVME_PR_CPTPL_PERSIST;
137
138 return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_register,
139 &data, sizeof(data));
140 }
141
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)142 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
143 enum pr_type type, unsigned flags)
144 {
145 struct nvmet_pr_acquire_data data = { 0 };
146 u32 cdw10;
147
148 if (flags & ~PR_FL_IGNORE_KEY)
149 return -EOPNOTSUPP;
150
151 data.crkey = cpu_to_le64(key);
152
153 cdw10 = NVME_PR_ACQUIRE_ACT_ACQUIRE;
154 cdw10 |= nvme_pr_type_from_blk(type) << 8;
155 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0;
156
157 return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire,
158 &data, sizeof(data));
159 }
160
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)161 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
162 enum pr_type type, bool abort)
163 {
164 struct nvmet_pr_acquire_data data = { 0 };
165 u32 cdw10;
166
167 data.crkey = cpu_to_le64(old);
168 data.prkey = cpu_to_le64(new);
169
170 cdw10 = abort ? NVME_PR_ACQUIRE_ACT_PREEMPT_AND_ABORT :
171 NVME_PR_ACQUIRE_ACT_PREEMPT;
172 cdw10 |= nvme_pr_type_from_blk(type) << 8;
173
174 return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire,
175 &data, sizeof(data));
176 }
177
nvme_pr_clear(struct block_device * bdev,u64 key)178 static int nvme_pr_clear(struct block_device *bdev, u64 key)
179 {
180 struct nvmet_pr_release_data data = { 0 };
181 u32 cdw10;
182
183 data.crkey = cpu_to_le64(key);
184
185 cdw10 = NVME_PR_RELEASE_ACT_CLEAR;
186 cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY;
187
188 return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release,
189 &data, sizeof(data));
190 }
191
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)192 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
193 {
194 struct nvmet_pr_release_data data = { 0 };
195 u32 cdw10;
196
197 data.crkey = cpu_to_le64(key);
198
199 cdw10 = NVME_PR_RELEASE_ACT_RELEASE;
200 cdw10 |= nvme_pr_type_from_blk(type) << 8;
201 cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY;
202
203 return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release,
204 &data, sizeof(data));
205 }
206
nvme_pr_resv_report(struct block_device * bdev,void * data,u32 data_len,bool * eds)207 static int nvme_pr_resv_report(struct block_device *bdev, void *data,
208 u32 data_len, bool *eds)
209 {
210 u32 cdw10, cdw11;
211 int ret;
212
213 cdw10 = nvme_bytes_to_numd(data_len);
214 cdw11 = NVME_EXTENDED_DATA_STRUCT;
215 *eds = true;
216
217 retry:
218 ret = __nvme_send_pr_command(bdev, cdw10, cdw11, nvme_cmd_resv_report,
219 data, data_len);
220 if (ret == NVME_SC_HOST_ID_INCONSIST &&
221 cdw11 == NVME_EXTENDED_DATA_STRUCT) {
222 cdw11 = 0;
223 *eds = false;
224 goto retry;
225 }
226
227 return ret < 0 ? ret : nvme_status_to_pr_err(ret);
228 }
229
nvme_pr_read_keys(struct block_device * bdev,struct pr_keys * keys_info)230 static int nvme_pr_read_keys(struct block_device *bdev,
231 struct pr_keys *keys_info)
232 {
233 u32 rse_len, num_keys = keys_info->num_keys;
234 struct nvme_reservation_status_ext *rse;
235 int ret, i;
236 bool eds;
237
238 /*
239 * Assume we are using 128-bit host IDs and allocate a buffer large
240 * enough to get enough keys to fill the return keys buffer.
241 */
242 rse_len = struct_size(rse, regctl_eds, num_keys);
243 rse = kzalloc(rse_len, GFP_KERNEL);
244 if (!rse)
245 return -ENOMEM;
246
247 ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
248 if (ret)
249 goto free_rse;
250
251 keys_info->generation = le32_to_cpu(rse->gen);
252 keys_info->num_keys = get_unaligned_le16(&rse->regctl);
253
254 num_keys = min(num_keys, keys_info->num_keys);
255 for (i = 0; i < num_keys; i++) {
256 if (eds) {
257 keys_info->keys[i] =
258 le64_to_cpu(rse->regctl_eds[i].rkey);
259 } else {
260 struct nvme_reservation_status *rs;
261
262 rs = (struct nvme_reservation_status *)rse;
263 keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey);
264 }
265 }
266
267 free_rse:
268 kfree(rse);
269 return ret;
270 }
271
nvme_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * resv)272 static int nvme_pr_read_reservation(struct block_device *bdev,
273 struct pr_held_reservation *resv)
274 {
275 struct nvme_reservation_status_ext tmp_rse, *rse;
276 int ret, i, num_regs;
277 u32 rse_len;
278 bool eds;
279
280 get_num_regs:
281 /*
282 * Get the number of registrations so we know how big to allocate
283 * the response buffer.
284 */
285 ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds);
286 if (ret)
287 return ret;
288
289 num_regs = get_unaligned_le16(&tmp_rse.regctl);
290 if (!num_regs) {
291 resv->generation = le32_to_cpu(tmp_rse.gen);
292 return 0;
293 }
294
295 rse_len = struct_size(rse, regctl_eds, num_regs);
296 rse = kzalloc(rse_len, GFP_KERNEL);
297 if (!rse)
298 return -ENOMEM;
299
300 ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
301 if (ret)
302 goto free_rse;
303
304 if (num_regs != get_unaligned_le16(&rse->regctl)) {
305 kfree(rse);
306 goto get_num_regs;
307 }
308
309 resv->generation = le32_to_cpu(rse->gen);
310 resv->type = block_pr_type_from_nvme(rse->rtype);
311
312 for (i = 0; i < num_regs; i++) {
313 if (eds) {
314 if (rse->regctl_eds[i].rcsts) {
315 resv->key = le64_to_cpu(rse->regctl_eds[i].rkey);
316 break;
317 }
318 } else {
319 struct nvme_reservation_status *rs;
320
321 rs = (struct nvme_reservation_status *)rse;
322 if (rs->regctl_ds[i].rcsts) {
323 resv->key = le64_to_cpu(rs->regctl_ds[i].rkey);
324 break;
325 }
326 }
327 }
328
329 free_rse:
330 kfree(rse);
331 return ret;
332 }
333
334 const struct pr_ops nvme_pr_ops = {
335 .pr_register = nvme_pr_register,
336 .pr_reserve = nvme_pr_reserve,
337 .pr_release = nvme_pr_release,
338 .pr_preempt = nvme_pr_preempt,
339 .pr_clear = nvme_pr_clear,
340 .pr_read_keys = nvme_pr_read_keys,
341 .pr_read_reservation = nvme_pr_read_reservation,
342 };
343