1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30
31 #include "trace.h"
32 #include "nvme.h"
33
34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
36
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE 256
39
40 /*
41 * Arbitrary upper bound.
42 */
43 #define NVME_MAX_BYTES SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS 5
45
46 /*
47 * For data SGLs we support a single descriptors worth of SGL entries.
48 * For PRPs, segments don't matter at all.
49 */
50 #define NVME_MAX_SEGS \
51 (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52
53 /*
54 * For metadata SGLs, only the small descriptor is supported, and the first
55 * entry is the segment descriptor, which for the data pointer sits in the SQE.
56 */
57 #define NVME_MAX_META_SEGS \
58 ((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59
60 /*
61 * The last entry is used to link to the next descriptor.
62 */
63 #define PRPS_PER_PAGE \
64 (((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65
66 /*
67 * I/O could be non-aligned both at the beginning and end.
68 */
69 #define MAX_PRP_RANGE \
70 (NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 (1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 "Use SGLs when average request segment size is larger or equal to "
91 "this size. Use 0 to disable SGLs.");
92
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 .set = io_queue_depth_set,
98 .get = param_get_uint,
99 };
100
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104
io_queue_count_set(const char * val,const struct kernel_param * kp)105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 unsigned int n;
108 int ret;
109
110 ret = kstrtouint(val, 10, &n);
111 if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 return -EINVAL;
113 return param_set_uint(val, kp);
114 }
115
116 static const struct kernel_param_ops io_queue_count_ops = {
117 .set = io_queue_count_set,
118 .get = param_get_uint,
119 };
120
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 "Number of queues to use for writes. If not set, reads and writes "
125 "will share a queue set.");
126
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134
135 struct nvme_dev;
136 struct nvme_queue;
137
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141
142 struct nvme_descriptor_pools {
143 struct dma_pool *large;
144 struct dma_pool *small;
145 };
146
147 /*
148 * Represents an NVM Express device. Each nvme_dev is a PCI function.
149 */
150 struct nvme_dev {
151 struct nvme_queue *queues;
152 struct blk_mq_tag_set tagset;
153 struct blk_mq_tag_set admin_tagset;
154 u32 __iomem *dbs;
155 struct device *dev;
156 unsigned online_queues;
157 unsigned max_qid;
158 unsigned io_queues[HCTX_MAX_TYPES];
159 unsigned int num_vecs;
160 u32 q_depth;
161 int io_sqes;
162 u32 db_stride;
163 void __iomem *bar;
164 unsigned long bar_mapped_size;
165 struct mutex shutdown_lock;
166 bool subsystem;
167 u64 cmb_size;
168 bool cmb_use_sqes;
169 u32 cmbsz;
170 u32 cmbloc;
171 struct nvme_ctrl ctrl;
172 u32 last_ps;
173 bool hmb;
174 struct sg_table *hmb_sgt;
175 mempool_t *dmavec_mempool;
176
177 /* shadow doorbell buffer support: */
178 __le32 *dbbuf_dbs;
179 dma_addr_t dbbuf_dbs_dma_addr;
180 __le32 *dbbuf_eis;
181 dma_addr_t dbbuf_eis_dma_addr;
182
183 /* host memory buffer support: */
184 u64 host_mem_size;
185 u32 nr_host_mem_descs;
186 u32 host_mem_descs_size;
187 dma_addr_t host_mem_descs_dma;
188 struct nvme_host_mem_buf_desc *host_mem_descs;
189 void **host_mem_desc_bufs;
190 unsigned int nr_allocated_queues;
191 unsigned int nr_write_queues;
192 unsigned int nr_poll_queues;
193 struct nvme_descriptor_pools descriptor_pools[];
194 };
195
io_queue_depth_set(const char * val,const struct kernel_param * kp)196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
197 {
198 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
199 NVME_PCI_MAX_QUEUE_SIZE);
200 }
201
sq_idx(unsigned int qid,u32 stride)202 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
203 {
204 return qid * 2 * stride;
205 }
206
cq_idx(unsigned int qid,u32 stride)207 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
208 {
209 return (qid * 2 + 1) * stride;
210 }
211
to_nvme_dev(struct nvme_ctrl * ctrl)212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
213 {
214 return container_of(ctrl, struct nvme_dev, ctrl);
215 }
216
217 /*
218 * An NVM Express queue. Each device has at least two (one for admin
219 * commands and one for I/O commands).
220 */
221 struct nvme_queue {
222 struct nvme_dev *dev;
223 struct nvme_descriptor_pools descriptor_pools;
224 spinlock_t sq_lock;
225 void *sq_cmds;
226 /* only used for poll queues: */
227 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
228 struct nvme_completion *cqes;
229 dma_addr_t sq_dma_addr;
230 dma_addr_t cq_dma_addr;
231 u32 __iomem *q_db;
232 u32 q_depth;
233 u16 cq_vector;
234 u16 sq_tail;
235 u16 last_sq_tail;
236 u16 cq_head;
237 u16 qid;
238 u8 cq_phase;
239 u8 sqes;
240 unsigned long flags;
241 #define NVMEQ_ENABLED 0
242 #define NVMEQ_SQ_CMB 1
243 #define NVMEQ_DELETE_ERROR 2
244 #define NVMEQ_POLLED 3
245 __le32 *dbbuf_sq_db;
246 __le32 *dbbuf_cq_db;
247 __le32 *dbbuf_sq_ei;
248 __le32 *dbbuf_cq_ei;
249 struct completion delete_done;
250 };
251
252 /* bits for iod->flags */
253 enum nvme_iod_flags {
254 /* this command has been aborted by the timeout handler */
255 IOD_ABORTED = 1U << 0,
256
257 /* uses the small descriptor pool */
258 IOD_SMALL_DESCRIPTOR = 1U << 1,
259
260 /* single segment dma mapping */
261 IOD_SINGLE_SEGMENT = 1U << 2,
262
263 /* Metadata using non-coalesced MPTR */
264 IOD_SINGLE_META_SEGMENT = 1U << 5,
265 };
266
267 struct nvme_dma_vec {
268 dma_addr_t addr;
269 unsigned int len;
270 };
271
272 /*
273 * The nvme_iod describes the data in an I/O.
274 */
275 struct nvme_iod {
276 struct nvme_request req;
277 struct nvme_command cmd;
278 u8 flags;
279 u8 nr_descriptors;
280
281 unsigned int total_len;
282 struct dma_iova_state dma_state;
283 void *descriptors[NVME_MAX_NR_DESCRIPTORS];
284 struct nvme_dma_vec *dma_vecs;
285 unsigned int nr_dma_vecs;
286
287 dma_addr_t meta_dma;
288 unsigned int meta_total_len;
289 struct dma_iova_state meta_dma_state;
290 struct nvme_sgl_desc *meta_descriptor;
291 };
292
nvme_dbbuf_size(struct nvme_dev * dev)293 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
294 {
295 return dev->nr_allocated_queues * 8 * dev->db_stride;
296 }
297
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)298 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
299 {
300 unsigned int mem_size = nvme_dbbuf_size(dev);
301
302 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
303 return;
304
305 if (dev->dbbuf_dbs) {
306 /*
307 * Clear the dbbuf memory so the driver doesn't observe stale
308 * values from the previous instantiation.
309 */
310 memset(dev->dbbuf_dbs, 0, mem_size);
311 memset(dev->dbbuf_eis, 0, mem_size);
312 return;
313 }
314
315 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
316 &dev->dbbuf_dbs_dma_addr,
317 GFP_KERNEL);
318 if (!dev->dbbuf_dbs)
319 goto fail;
320 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
321 &dev->dbbuf_eis_dma_addr,
322 GFP_KERNEL);
323 if (!dev->dbbuf_eis)
324 goto fail_free_dbbuf_dbs;
325 return;
326
327 fail_free_dbbuf_dbs:
328 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
329 dev->dbbuf_dbs_dma_addr);
330 dev->dbbuf_dbs = NULL;
331 fail:
332 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
333 }
334
nvme_dbbuf_dma_free(struct nvme_dev * dev)335 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
336 {
337 unsigned int mem_size = nvme_dbbuf_size(dev);
338
339 if (dev->dbbuf_dbs) {
340 dma_free_coherent(dev->dev, mem_size,
341 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
342 dev->dbbuf_dbs = NULL;
343 }
344 if (dev->dbbuf_eis) {
345 dma_free_coherent(dev->dev, mem_size,
346 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
347 dev->dbbuf_eis = NULL;
348 }
349 }
350
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)351 static void nvme_dbbuf_init(struct nvme_dev *dev,
352 struct nvme_queue *nvmeq, int qid)
353 {
354 if (!dev->dbbuf_dbs || !qid)
355 return;
356
357 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
358 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
359 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
360 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
361 }
362
nvme_dbbuf_free(struct nvme_queue * nvmeq)363 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
364 {
365 if (!nvmeq->qid)
366 return;
367
368 nvmeq->dbbuf_sq_db = NULL;
369 nvmeq->dbbuf_cq_db = NULL;
370 nvmeq->dbbuf_sq_ei = NULL;
371 nvmeq->dbbuf_cq_ei = NULL;
372 }
373
nvme_dbbuf_set(struct nvme_dev * dev)374 static void nvme_dbbuf_set(struct nvme_dev *dev)
375 {
376 struct nvme_command c = { };
377 unsigned int i;
378
379 if (!dev->dbbuf_dbs)
380 return;
381
382 c.dbbuf.opcode = nvme_admin_dbbuf;
383 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
384 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
385
386 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
387 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
388 /* Free memory and continue on */
389 nvme_dbbuf_dma_free(dev);
390
391 for (i = 1; i <= dev->online_queues; i++)
392 nvme_dbbuf_free(&dev->queues[i]);
393 }
394 }
395
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)396 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
397 {
398 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
399 }
400
401 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)402 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
403 volatile __le32 *dbbuf_ei)
404 {
405 if (dbbuf_db) {
406 u16 old_value, event_idx;
407
408 /*
409 * Ensure that the queue is written before updating
410 * the doorbell in memory
411 */
412 wmb();
413
414 old_value = le32_to_cpu(*dbbuf_db);
415 *dbbuf_db = cpu_to_le32(value);
416
417 /*
418 * Ensure that the doorbell is updated before reading the event
419 * index from memory. The controller needs to provide similar
420 * ordering to ensure the event index is updated before reading
421 * the doorbell.
422 */
423 mb();
424
425 event_idx = le32_to_cpu(*dbbuf_ei);
426 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
427 return false;
428 }
429
430 return true;
431 }
432
433 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)434 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
435 {
436 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
437 size_t small_align = NVME_SMALL_POOL_SIZE;
438
439 if (pools->small)
440 return pools; /* already initialized */
441
442 pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
443 NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
444 if (!pools->large)
445 return ERR_PTR(-ENOMEM);
446
447 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
448 small_align = 512;
449
450 pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
451 NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
452 if (!pools->small) {
453 dma_pool_destroy(pools->large);
454 pools->large = NULL;
455 return ERR_PTR(-ENOMEM);
456 }
457
458 return pools;
459 }
460
nvme_release_descriptor_pools(struct nvme_dev * dev)461 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
462 {
463 unsigned i;
464
465 for (i = 0; i < nr_node_ids; i++) {
466 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
467
468 dma_pool_destroy(pools->large);
469 dma_pool_destroy(pools->small);
470 }
471 }
472
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)473 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
474 unsigned qid)
475 {
476 struct nvme_dev *dev = to_nvme_dev(data);
477 struct nvme_queue *nvmeq = &dev->queues[qid];
478 struct nvme_descriptor_pools *pools;
479 struct blk_mq_tags *tags;
480
481 tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
482 WARN_ON(tags != hctx->tags);
483 pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
484 if (IS_ERR(pools))
485 return PTR_ERR(pools);
486
487 nvmeq->descriptor_pools = *pools;
488 hctx->driver_data = nvmeq;
489 return 0;
490 }
491
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)492 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
493 unsigned int hctx_idx)
494 {
495 WARN_ON(hctx_idx != 0);
496 return nvme_init_hctx_common(hctx, data, 0);
497 }
498
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)499 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
500 unsigned int hctx_idx)
501 {
502 return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
503 }
504
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)505 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
506 struct request *req, unsigned int hctx_idx,
507 unsigned int numa_node)
508 {
509 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
510
511 nvme_req(req)->ctrl = set->driver_data;
512 nvme_req(req)->cmd = &iod->cmd;
513 return 0;
514 }
515
queue_irq_offset(struct nvme_dev * dev)516 static int queue_irq_offset(struct nvme_dev *dev)
517 {
518 /* if we have more than 1 vec, admin queue offsets us by 1 */
519 if (dev->num_vecs > 1)
520 return 1;
521
522 return 0;
523 }
524
nvme_pci_map_queues(struct blk_mq_tag_set * set)525 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
526 {
527 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
528 int i, qoff, offset;
529
530 offset = queue_irq_offset(dev);
531 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
532 struct blk_mq_queue_map *map = &set->map[i];
533
534 map->nr_queues = dev->io_queues[i];
535 if (!map->nr_queues) {
536 BUG_ON(i == HCTX_TYPE_DEFAULT);
537 continue;
538 }
539
540 /*
541 * The poll queue(s) doesn't have an IRQ (and hence IRQ
542 * affinity), so use the regular blk-mq cpu mapping
543 */
544 map->queue_offset = qoff;
545 if (i != HCTX_TYPE_POLL && offset)
546 blk_mq_map_hw_queues(map, dev->dev, offset);
547 else
548 blk_mq_map_queues(map);
549 qoff += map->nr_queues;
550 offset += map->nr_queues;
551 }
552 }
553
554 /*
555 * Write sq tail if we are asked to, or if the next command would wrap.
556 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)557 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
558 {
559 if (!write_sq) {
560 u16 next_tail = nvmeq->sq_tail + 1;
561
562 if (next_tail == nvmeq->q_depth)
563 next_tail = 0;
564 if (next_tail != nvmeq->last_sq_tail)
565 return;
566 }
567
568 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
569 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
570 writel(nvmeq->sq_tail, nvmeq->q_db);
571 nvmeq->last_sq_tail = nvmeq->sq_tail;
572 }
573
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)574 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
575 struct nvme_command *cmd)
576 {
577 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
578 absolute_pointer(cmd), sizeof(*cmd));
579 if (++nvmeq->sq_tail == nvmeq->q_depth)
580 nvmeq->sq_tail = 0;
581 }
582
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)583 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
584 {
585 struct nvme_queue *nvmeq = hctx->driver_data;
586
587 spin_lock(&nvmeq->sq_lock);
588 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
589 nvme_write_sq_db(nvmeq, true);
590 spin_unlock(&nvmeq->sq_lock);
591 }
592
593 enum nvme_use_sgl {
594 SGL_UNSUPPORTED,
595 SGL_SUPPORTED,
596 SGL_FORCED,
597 };
598
nvme_pci_metadata_use_sgls(struct request * req)599 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
600 {
601 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
602 struct nvme_dev *dev = nvmeq->dev;
603
604 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
605 return false;
606 return req->nr_integrity_segments > 1 ||
607 nvme_req(req)->flags & NVME_REQ_USERCMD;
608 }
609
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)610 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
611 struct request *req)
612 {
613 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
614
615 if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
616 if (nvme_req(req)->flags & NVME_REQ_USERCMD)
617 return SGL_FORCED;
618 if (req->nr_integrity_segments > 1)
619 return SGL_FORCED;
620 return SGL_SUPPORTED;
621 }
622
623 return SGL_UNSUPPORTED;
624 }
625
nvme_pci_avg_seg_size(struct request * req)626 static unsigned int nvme_pci_avg_seg_size(struct request *req)
627 {
628 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
629 unsigned int nseg;
630
631 if (blk_rq_dma_map_coalesce(&iod->dma_state))
632 nseg = 1;
633 else
634 nseg = blk_rq_nr_phys_segments(req);
635 return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
636 }
637
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)638 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
639 struct nvme_iod *iod)
640 {
641 if (iod->flags & IOD_SMALL_DESCRIPTOR)
642 return nvmeq->descriptor_pools.small;
643 return nvmeq->descriptor_pools.large;
644 }
645
nvme_pci_cmd_use_meta_sgl(struct nvme_command * cmd)646 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd)
647 {
648 return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG;
649 }
650
nvme_pci_cmd_use_sgl(struct nvme_command * cmd)651 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
652 {
653 return cmd->common.flags &
654 (NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
655 }
656
nvme_pci_first_desc_dma_addr(struct nvme_command * cmd)657 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
658 {
659 if (nvme_pci_cmd_use_sgl(cmd))
660 return le64_to_cpu(cmd->common.dptr.sgl.addr);
661 return le64_to_cpu(cmd->common.dptr.prp2);
662 }
663
nvme_free_descriptors(struct request * req)664 static void nvme_free_descriptors(struct request *req)
665 {
666 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
667 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
668 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
669 dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
670 int i;
671
672 if (iod->nr_descriptors == 1) {
673 dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
674 dma_addr);
675 return;
676 }
677
678 for (i = 0; i < iod->nr_descriptors; i++) {
679 __le64 *prp_list = iod->descriptors[i];
680 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
681
682 dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
683 dma_addr);
684 dma_addr = next_dma_addr;
685 }
686 }
687
nvme_free_prps(struct request * req)688 static void nvme_free_prps(struct request *req)
689 {
690 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
691 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
692 unsigned int i;
693
694 for (i = 0; i < iod->nr_dma_vecs; i++)
695 dma_unmap_page(nvmeq->dev->dev, iod->dma_vecs[i].addr,
696 iod->dma_vecs[i].len, rq_dma_dir(req));
697 mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
698 }
699
nvme_free_sgls(struct request * req,struct nvme_sgl_desc * sge,struct nvme_sgl_desc * sg_list)700 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge,
701 struct nvme_sgl_desc *sg_list)
702 {
703 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
704 enum dma_data_direction dir = rq_dma_dir(req);
705 unsigned int len = le32_to_cpu(sge->length);
706 struct device *dma_dev = nvmeq->dev->dev;
707 unsigned int i;
708
709 if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
710 dma_unmap_page(dma_dev, le64_to_cpu(sge->addr), len, dir);
711 return;
712 }
713
714 for (i = 0; i < len / sizeof(*sg_list); i++)
715 dma_unmap_page(dma_dev, le64_to_cpu(sg_list[i].addr),
716 le32_to_cpu(sg_list[i].length), dir);
717 }
718
nvme_unmap_metadata(struct request * req)719 static void nvme_unmap_metadata(struct request *req)
720 {
721 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
722 enum dma_data_direction dir = rq_dma_dir(req);
723 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
724 struct device *dma_dev = nvmeq->dev->dev;
725 struct nvme_sgl_desc *sge = iod->meta_descriptor;
726
727 if (iod->flags & IOD_SINGLE_META_SEGMENT) {
728 dma_unmap_page(dma_dev, iod->meta_dma,
729 rq_integrity_vec(req).bv_len,
730 rq_dma_dir(req));
731 return;
732 }
733
734 if (!blk_rq_integrity_dma_unmap(req, dma_dev, &iod->meta_dma_state,
735 iod->meta_total_len)) {
736 if (nvme_pci_cmd_use_meta_sgl(&iod->cmd))
737 nvme_free_sgls(req, sge, &sge[1]);
738 else
739 dma_unmap_page(dma_dev, iod->meta_dma,
740 iod->meta_total_len, dir);
741 }
742
743 if (iod->meta_descriptor)
744 dma_pool_free(nvmeq->descriptor_pools.small,
745 iod->meta_descriptor, iod->meta_dma);
746 }
747
nvme_unmap_data(struct request * req)748 static void nvme_unmap_data(struct request *req)
749 {
750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
752 struct device *dma_dev = nvmeq->dev->dev;
753
754 if (iod->flags & IOD_SINGLE_SEGMENT) {
755 static_assert(offsetof(union nvme_data_ptr, prp1) ==
756 offsetof(union nvme_data_ptr, sgl.addr));
757 dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
758 iod->total_len, rq_dma_dir(req));
759 return;
760 }
761
762 if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len)) {
763 if (nvme_pci_cmd_use_sgl(&iod->cmd))
764 nvme_free_sgls(req, iod->descriptors[0],
765 &iod->cmd.common.dptr.sgl);
766 else
767 nvme_free_prps(req);
768 }
769
770 if (iod->nr_descriptors)
771 nvme_free_descriptors(req);
772 }
773
nvme_pci_prp_iter_next(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)774 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
775 struct blk_dma_iter *iter)
776 {
777 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
778
779 if (iter->len)
780 return true;
781 if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
782 return false;
783 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) {
784 iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
785 iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
786 iod->nr_dma_vecs++;
787 }
788 return true;
789 }
790
nvme_pci_setup_data_prp(struct request * req,struct blk_dma_iter * iter)791 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
792 struct blk_dma_iter *iter)
793 {
794 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
795 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
796 unsigned int length = blk_rq_payload_bytes(req);
797 dma_addr_t prp1_dma, prp2_dma = 0;
798 unsigned int prp_len, i;
799 __le64 *prp_list;
800
801 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) {
802 iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
803 GFP_ATOMIC);
804 if (!iod->dma_vecs)
805 return BLK_STS_RESOURCE;
806 iod->dma_vecs[0].addr = iter->addr;
807 iod->dma_vecs[0].len = iter->len;
808 iod->nr_dma_vecs = 1;
809 }
810
811 /*
812 * PRP1 always points to the start of the DMA transfers.
813 *
814 * This is the only PRP (except for the list entries) that could be
815 * non-aligned.
816 */
817 prp1_dma = iter->addr;
818 prp_len = min(length, NVME_CTRL_PAGE_SIZE -
819 (iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
820 iod->total_len += prp_len;
821 iter->addr += prp_len;
822 iter->len -= prp_len;
823 length -= prp_len;
824 if (!length)
825 goto done;
826
827 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
828 if (WARN_ON_ONCE(!iter->status))
829 goto bad_sgl;
830 goto done;
831 }
832
833 /*
834 * PRP2 is usually a list, but can point to data if all data to be
835 * transferred fits into PRP1 + PRP2:
836 */
837 if (length <= NVME_CTRL_PAGE_SIZE) {
838 prp2_dma = iter->addr;
839 iod->total_len += length;
840 goto done;
841 }
842
843 if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
844 NVME_SMALL_POOL_SIZE / sizeof(__le64))
845 iod->flags |= IOD_SMALL_DESCRIPTOR;
846
847 prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
848 &prp2_dma);
849 if (!prp_list) {
850 iter->status = BLK_STS_RESOURCE;
851 goto done;
852 }
853 iod->descriptors[iod->nr_descriptors++] = prp_list;
854
855 i = 0;
856 for (;;) {
857 prp_list[i++] = cpu_to_le64(iter->addr);
858 prp_len = min(length, NVME_CTRL_PAGE_SIZE);
859 if (WARN_ON_ONCE(iter->len < prp_len))
860 goto bad_sgl;
861
862 iod->total_len += prp_len;
863 iter->addr += prp_len;
864 iter->len -= prp_len;
865 length -= prp_len;
866 if (!length)
867 break;
868
869 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
870 if (WARN_ON_ONCE(!iter->status))
871 goto bad_sgl;
872 goto done;
873 }
874
875 /*
876 * If we've filled the entire descriptor, allocate a new that is
877 * pointed to be the last entry in the previous PRP list. To
878 * accommodate for that move the last actual entry to the new
879 * descriptor.
880 */
881 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
882 __le64 *old_prp_list = prp_list;
883 dma_addr_t prp_list_dma;
884
885 prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
886 GFP_ATOMIC, &prp_list_dma);
887 if (!prp_list) {
888 iter->status = BLK_STS_RESOURCE;
889 goto done;
890 }
891 iod->descriptors[iod->nr_descriptors++] = prp_list;
892
893 prp_list[0] = old_prp_list[i - 1];
894 old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
895 i = 1;
896 }
897 }
898
899 done:
900 /*
901 * nvme_unmap_data uses the DPT field in the SQE to tear down the
902 * mapping, so initialize it even for failures.
903 */
904 iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
905 iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
906 if (unlikely(iter->status))
907 nvme_unmap_data(req);
908 return iter->status;
909
910 bad_sgl:
911 dev_err_once(nvmeq->dev->dev,
912 "Incorrectly formed request for payload:%d nents:%d\n",
913 blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
914 return BLK_STS_IOERR;
915 }
916
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct blk_dma_iter * iter)917 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
918 struct blk_dma_iter *iter)
919 {
920 sge->addr = cpu_to_le64(iter->addr);
921 sge->length = cpu_to_le32(iter->len);
922 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
923 }
924
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)925 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
926 dma_addr_t dma_addr, int entries)
927 {
928 sge->addr = cpu_to_le64(dma_addr);
929 sge->length = cpu_to_le32(entries * sizeof(*sge));
930 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
931 }
932
nvme_pci_setup_data_sgl(struct request * req,struct blk_dma_iter * iter)933 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
934 struct blk_dma_iter *iter)
935 {
936 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
937 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
938 unsigned int entries = blk_rq_nr_phys_segments(req);
939 struct nvme_sgl_desc *sg_list;
940 dma_addr_t sgl_dma;
941 unsigned int mapped = 0;
942
943 /* set the transfer type as SGL */
944 iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
945
946 if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
947 nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
948 iod->total_len += iter->len;
949 return BLK_STS_OK;
950 }
951
952 if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
953 iod->flags |= IOD_SMALL_DESCRIPTOR;
954
955 sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
956 &sgl_dma);
957 if (!sg_list)
958 return BLK_STS_RESOURCE;
959 iod->descriptors[iod->nr_descriptors++] = sg_list;
960
961 do {
962 if (WARN_ON_ONCE(mapped == entries)) {
963 iter->status = BLK_STS_IOERR;
964 break;
965 }
966 nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
967 iod->total_len += iter->len;
968 } while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
969 iter));
970
971 nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
972 if (unlikely(iter->status))
973 nvme_unmap_data(req);
974 return iter->status;
975 }
976
nvme_pci_setup_data_simple(struct request * req,enum nvme_use_sgl use_sgl)977 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
978 enum nvme_use_sgl use_sgl)
979 {
980 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
981 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
982 struct bio_vec bv = req_bvec(req);
983 unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
984 bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
985 dma_addr_t dma_addr;
986
987 if (!use_sgl && !prp_possible)
988 return BLK_STS_AGAIN;
989 if (is_pci_p2pdma_page(bv.bv_page))
990 return BLK_STS_AGAIN;
991
992 dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
993 if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
994 return BLK_STS_RESOURCE;
995 iod->total_len = bv.bv_len;
996 iod->flags |= IOD_SINGLE_SEGMENT;
997
998 if (use_sgl == SGL_FORCED || !prp_possible) {
999 iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1000 iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
1001 iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
1002 iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
1003 } else {
1004 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
1005
1006 iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
1007 iod->cmd.common.dptr.prp2 = 0;
1008 if (bv.bv_len > first_prp_len)
1009 iod->cmd.common.dptr.prp2 =
1010 cpu_to_le64(dma_addr + first_prp_len);
1011 }
1012
1013 return BLK_STS_OK;
1014 }
1015
nvme_map_data(struct request * req)1016 static blk_status_t nvme_map_data(struct request *req)
1017 {
1018 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1019 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1020 struct nvme_dev *dev = nvmeq->dev;
1021 enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
1022 struct blk_dma_iter iter;
1023 blk_status_t ret;
1024
1025 /*
1026 * Try to skip the DMA iterator for single segment requests, as that
1027 * significantly improves performances for small I/O sizes.
1028 */
1029 if (blk_rq_nr_phys_segments(req) == 1) {
1030 ret = nvme_pci_setup_data_simple(req, use_sgl);
1031 if (ret != BLK_STS_AGAIN)
1032 return ret;
1033 }
1034
1035 if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1036 return iter.status;
1037
1038 if (use_sgl == SGL_FORCED ||
1039 (use_sgl == SGL_SUPPORTED &&
1040 (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1041 return nvme_pci_setup_data_sgl(req, &iter);
1042 return nvme_pci_setup_data_prp(req, &iter);
1043 }
1044
nvme_pci_setup_meta_iter(struct request * req)1045 static blk_status_t nvme_pci_setup_meta_iter(struct request *req)
1046 {
1047 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1048 unsigned int entries = req->nr_integrity_segments;
1049 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1050 struct nvme_dev *dev = nvmeq->dev;
1051 struct nvme_sgl_desc *sg_list;
1052 struct blk_dma_iter iter;
1053 dma_addr_t sgl_dma;
1054 int i = 0;
1055
1056 if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev,
1057 &iod->meta_dma_state, &iter))
1058 return iter.status;
1059
1060 if (blk_rq_dma_map_coalesce(&iod->meta_dma_state))
1061 entries = 1;
1062
1063 /*
1064 * The NVMe MPTR descriptor has an implicit length that the host and
1065 * device must agree on to avoid data/memory corruption. We trust the
1066 * kernel allocated correctly based on the format's parameters, so use
1067 * the more efficient MPTR to avoid extra dma pool allocations for the
1068 * SGL indirection.
1069 *
1070 * But for user commands, we don't necessarily know what they do, so
1071 * the driver can't validate the metadata buffer size. The SGL
1072 * descriptor provides an explicit length, so we're relying on that
1073 * mechanism to catch any misunderstandings between the application and
1074 * device.
1075 *
1076 * P2P DMA also needs to use the blk_dma_iter method, so mptr setup
1077 * leverages this routine when that happens.
1078 */
1079 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) ||
1080 (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) {
1081 iod->cmd.common.metadata = cpu_to_le64(iter.addr);
1082 iod->meta_total_len = iter.len;
1083 iod->meta_dma = iter.addr;
1084 iod->meta_descriptor = NULL;
1085 return BLK_STS_OK;
1086 }
1087
1088 sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1089 &sgl_dma);
1090 if (!sg_list)
1091 return BLK_STS_RESOURCE;
1092
1093 iod->meta_descriptor = sg_list;
1094 iod->meta_dma = sgl_dma;
1095 iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1096 iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1097 if (entries == 1) {
1098 iod->meta_total_len = iter.len;
1099 nvme_pci_sgl_set_data(sg_list, &iter);
1100 return BLK_STS_OK;
1101 }
1102
1103 sgl_dma += sizeof(*sg_list);
1104 do {
1105 nvme_pci_sgl_set_data(&sg_list[++i], &iter);
1106 iod->meta_total_len += iter.len;
1107 } while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter));
1108
1109 nvme_pci_sgl_set_seg(sg_list, sgl_dma, i);
1110 if (unlikely(iter.status))
1111 nvme_unmap_metadata(req);
1112 return iter.status;
1113 }
1114
nvme_pci_setup_meta_mptr(struct request * req)1115 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1116 {
1117 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1118 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1119 struct bio_vec bv = rq_integrity_vec(req);
1120
1121 if (is_pci_p2pdma_page(bv.bv_page))
1122 return nvme_pci_setup_meta_iter(req);
1123
1124 iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1125 if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1126 return BLK_STS_IOERR;
1127 iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1128 iod->flags |= IOD_SINGLE_META_SEGMENT;
1129 return BLK_STS_OK;
1130 }
1131
nvme_map_metadata(struct request * req)1132 static blk_status_t nvme_map_metadata(struct request *req)
1133 {
1134 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1135
1136 if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1137 nvme_pci_metadata_use_sgls(req))
1138 return nvme_pci_setup_meta_iter(req);
1139 return nvme_pci_setup_meta_mptr(req);
1140 }
1141
nvme_prep_rq(struct request * req)1142 static blk_status_t nvme_prep_rq(struct request *req)
1143 {
1144 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1145 blk_status_t ret;
1146
1147 iod->flags = 0;
1148 iod->nr_descriptors = 0;
1149 iod->total_len = 0;
1150 iod->meta_total_len = 0;
1151
1152 ret = nvme_setup_cmd(req->q->queuedata, req);
1153 if (ret)
1154 return ret;
1155
1156 if (blk_rq_nr_phys_segments(req)) {
1157 ret = nvme_map_data(req);
1158 if (ret)
1159 goto out_free_cmd;
1160 }
1161
1162 if (blk_integrity_rq(req)) {
1163 ret = nvme_map_metadata(req);
1164 if (ret)
1165 goto out_unmap_data;
1166 }
1167
1168 nvme_start_request(req);
1169 return BLK_STS_OK;
1170 out_unmap_data:
1171 if (blk_rq_nr_phys_segments(req))
1172 nvme_unmap_data(req);
1173 out_free_cmd:
1174 nvme_cleanup_cmd(req);
1175 return ret;
1176 }
1177
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1178 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1179 const struct blk_mq_queue_data *bd)
1180 {
1181 struct nvme_queue *nvmeq = hctx->driver_data;
1182 struct nvme_dev *dev = nvmeq->dev;
1183 struct request *req = bd->rq;
1184 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1185 blk_status_t ret;
1186
1187 /*
1188 * We should not need to do this, but we're still using this to
1189 * ensure we can drain requests on a dying queue.
1190 */
1191 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1192 return BLK_STS_IOERR;
1193
1194 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1195 return nvme_fail_nonready_command(&dev->ctrl, req);
1196
1197 ret = nvme_prep_rq(req);
1198 if (unlikely(ret))
1199 return ret;
1200 spin_lock(&nvmeq->sq_lock);
1201 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1202 nvme_write_sq_db(nvmeq, bd->last);
1203 spin_unlock(&nvmeq->sq_lock);
1204 return BLK_STS_OK;
1205 }
1206
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1207 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1208 {
1209 struct request *req;
1210
1211 if (rq_list_empty(rqlist))
1212 return;
1213
1214 spin_lock(&nvmeq->sq_lock);
1215 while ((req = rq_list_pop(rqlist))) {
1216 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1217
1218 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1219 }
1220 nvme_write_sq_db(nvmeq, true);
1221 spin_unlock(&nvmeq->sq_lock);
1222 }
1223
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1224 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1225 {
1226 /*
1227 * We should not need to do this, but we're still using this to
1228 * ensure we can drain requests on a dying queue.
1229 */
1230 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1231 return false;
1232 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1233 return false;
1234
1235 return nvme_prep_rq(req) == BLK_STS_OK;
1236 }
1237
nvme_queue_rqs(struct rq_list * rqlist)1238 static void nvme_queue_rqs(struct rq_list *rqlist)
1239 {
1240 struct rq_list submit_list = { };
1241 struct rq_list requeue_list = { };
1242 struct nvme_queue *nvmeq = NULL;
1243 struct request *req;
1244
1245 while ((req = rq_list_pop(rqlist))) {
1246 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1247 nvme_submit_cmds(nvmeq, &submit_list);
1248 nvmeq = req->mq_hctx->driver_data;
1249
1250 if (nvme_prep_rq_batch(nvmeq, req))
1251 rq_list_add_tail(&submit_list, req);
1252 else
1253 rq_list_add_tail(&requeue_list, req);
1254 }
1255
1256 if (nvmeq)
1257 nvme_submit_cmds(nvmeq, &submit_list);
1258 *rqlist = requeue_list;
1259 }
1260
nvme_pci_unmap_rq(struct request * req)1261 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1262 {
1263 if (blk_integrity_rq(req))
1264 nvme_unmap_metadata(req);
1265 if (blk_rq_nr_phys_segments(req))
1266 nvme_unmap_data(req);
1267 }
1268
nvme_pci_complete_rq(struct request * req)1269 static void nvme_pci_complete_rq(struct request *req)
1270 {
1271 nvme_pci_unmap_rq(req);
1272 nvme_complete_rq(req);
1273 }
1274
nvme_pci_complete_batch(struct io_comp_batch * iob)1275 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1276 {
1277 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1278 }
1279
1280 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1281 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1282 {
1283 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1284
1285 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1286 }
1287
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1288 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1289 {
1290 u16 head = nvmeq->cq_head;
1291
1292 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1293 nvmeq->dbbuf_cq_ei))
1294 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1295 }
1296
nvme_queue_tagset(struct nvme_queue * nvmeq)1297 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1298 {
1299 if (!nvmeq->qid)
1300 return nvmeq->dev->admin_tagset.tags[0];
1301 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1302 }
1303
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1304 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1305 struct io_comp_batch *iob, u16 idx)
1306 {
1307 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1308 __u16 command_id = READ_ONCE(cqe->command_id);
1309 struct request *req;
1310
1311 /*
1312 * AEN requests are special as they don't time out and can
1313 * survive any kind of queue freeze and often don't respond to
1314 * aborts. We don't even bother to allocate a struct request
1315 * for them but rather special case them here.
1316 */
1317 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1318 nvme_complete_async_event(&nvmeq->dev->ctrl,
1319 cqe->status, &cqe->result);
1320 return;
1321 }
1322
1323 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1324 if (unlikely(!req)) {
1325 dev_warn(nvmeq->dev->ctrl.device,
1326 "invalid id %d completed on queue %d\n",
1327 command_id, le16_to_cpu(cqe->sq_id));
1328 return;
1329 }
1330
1331 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1332 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1333 !blk_mq_add_to_batch(req, iob,
1334 nvme_req(req)->status != NVME_SC_SUCCESS,
1335 nvme_pci_complete_batch))
1336 nvme_pci_complete_rq(req);
1337 }
1338
nvme_update_cq_head(struct nvme_queue * nvmeq)1339 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1340 {
1341 u32 tmp = nvmeq->cq_head + 1;
1342
1343 if (tmp == nvmeq->q_depth) {
1344 nvmeq->cq_head = 0;
1345 nvmeq->cq_phase ^= 1;
1346 } else {
1347 nvmeq->cq_head = tmp;
1348 }
1349 }
1350
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1351 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1352 struct io_comp_batch *iob)
1353 {
1354 bool found = false;
1355
1356 while (nvme_cqe_pending(nvmeq)) {
1357 found = true;
1358 /*
1359 * load-load control dependency between phase and the rest of
1360 * the cqe requires a full read memory barrier
1361 */
1362 dma_rmb();
1363 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1364 nvme_update_cq_head(nvmeq);
1365 }
1366
1367 if (found)
1368 nvme_ring_cq_doorbell(nvmeq);
1369 return found;
1370 }
1371
nvme_irq(int irq,void * data)1372 static irqreturn_t nvme_irq(int irq, void *data)
1373 {
1374 struct nvme_queue *nvmeq = data;
1375 DEFINE_IO_COMP_BATCH(iob);
1376
1377 if (nvme_poll_cq(nvmeq, &iob)) {
1378 if (!rq_list_empty(&iob.req_list))
1379 nvme_pci_complete_batch(&iob);
1380 return IRQ_HANDLED;
1381 }
1382 return IRQ_NONE;
1383 }
1384
nvme_irq_check(int irq,void * data)1385 static irqreturn_t nvme_irq_check(int irq, void *data)
1386 {
1387 struct nvme_queue *nvmeq = data;
1388
1389 if (nvme_cqe_pending(nvmeq))
1390 return IRQ_WAKE_THREAD;
1391 return IRQ_NONE;
1392 }
1393
1394 /*
1395 * Poll for completions for any interrupt driven queue
1396 * Can be called from any context.
1397 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1398 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1399 {
1400 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1401
1402 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1403
1404 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1405 spin_lock(&nvmeq->cq_poll_lock);
1406 nvme_poll_cq(nvmeq, NULL);
1407 spin_unlock(&nvmeq->cq_poll_lock);
1408 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1409 }
1410
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1411 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1412 {
1413 struct nvme_queue *nvmeq = hctx->driver_data;
1414 bool found;
1415
1416 if (!nvme_cqe_pending(nvmeq))
1417 return 0;
1418
1419 spin_lock(&nvmeq->cq_poll_lock);
1420 found = nvme_poll_cq(nvmeq, iob);
1421 spin_unlock(&nvmeq->cq_poll_lock);
1422
1423 return found;
1424 }
1425
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1426 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1427 {
1428 struct nvme_dev *dev = to_nvme_dev(ctrl);
1429 struct nvme_queue *nvmeq = &dev->queues[0];
1430 struct nvme_command c = { };
1431
1432 c.common.opcode = nvme_admin_async_event;
1433 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1434
1435 spin_lock(&nvmeq->sq_lock);
1436 nvme_sq_copy_cmd(nvmeq, &c);
1437 nvme_write_sq_db(nvmeq, true);
1438 spin_unlock(&nvmeq->sq_lock);
1439 }
1440
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1441 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1442 {
1443 struct nvme_dev *dev = to_nvme_dev(ctrl);
1444 int ret = 0;
1445
1446 /*
1447 * Taking the shutdown_lock ensures the BAR mapping is not being
1448 * altered by reset_work. Holding this lock before the RESETTING state
1449 * change, if successful, also ensures nvme_remove won't be able to
1450 * proceed to iounmap until we're done.
1451 */
1452 mutex_lock(&dev->shutdown_lock);
1453 if (!dev->bar_mapped_size) {
1454 ret = -ENODEV;
1455 goto unlock;
1456 }
1457
1458 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1459 ret = -EBUSY;
1460 goto unlock;
1461 }
1462
1463 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1464 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1465
1466 /*
1467 * Read controller status to flush the previous write and trigger a
1468 * pcie read error.
1469 */
1470 readl(dev->bar + NVME_REG_CSTS);
1471 unlock:
1472 mutex_unlock(&dev->shutdown_lock);
1473 return ret;
1474 }
1475
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1476 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1477 {
1478 struct nvme_command c = { };
1479
1480 c.delete_queue.opcode = opcode;
1481 c.delete_queue.qid = cpu_to_le16(id);
1482
1483 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1484 }
1485
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1486 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1487 struct nvme_queue *nvmeq, s16 vector)
1488 {
1489 struct nvme_command c = { };
1490 int flags = NVME_QUEUE_PHYS_CONTIG;
1491
1492 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1493 flags |= NVME_CQ_IRQ_ENABLED;
1494
1495 /*
1496 * Note: we (ab)use the fact that the prp fields survive if no data
1497 * is attached to the request.
1498 */
1499 c.create_cq.opcode = nvme_admin_create_cq;
1500 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1501 c.create_cq.cqid = cpu_to_le16(qid);
1502 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1503 c.create_cq.cq_flags = cpu_to_le16(flags);
1504 c.create_cq.irq_vector = cpu_to_le16(vector);
1505
1506 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1507 }
1508
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1509 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1510 struct nvme_queue *nvmeq)
1511 {
1512 struct nvme_ctrl *ctrl = &dev->ctrl;
1513 struct nvme_command c = { };
1514 int flags = NVME_QUEUE_PHYS_CONTIG;
1515
1516 /*
1517 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1518 * set. Since URGENT priority is zeroes, it makes all queues
1519 * URGENT.
1520 */
1521 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1522 flags |= NVME_SQ_PRIO_MEDIUM;
1523
1524 /*
1525 * Note: we (ab)use the fact that the prp fields survive if no data
1526 * is attached to the request.
1527 */
1528 c.create_sq.opcode = nvme_admin_create_sq;
1529 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1530 c.create_sq.sqid = cpu_to_le16(qid);
1531 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1532 c.create_sq.sq_flags = cpu_to_le16(flags);
1533 c.create_sq.cqid = cpu_to_le16(qid);
1534
1535 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1536 }
1537
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1538 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1539 {
1540 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1541 }
1542
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1543 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1544 {
1545 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1546 }
1547
abort_endio(struct request * req,blk_status_t error)1548 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1549 {
1550 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1551
1552 dev_warn(nvmeq->dev->ctrl.device,
1553 "Abort status: 0x%x", nvme_req(req)->status);
1554 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1555 blk_mq_free_request(req);
1556 return RQ_END_IO_NONE;
1557 }
1558
nvme_should_reset(struct nvme_dev * dev,u32 csts)1559 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1560 {
1561 /* If true, indicates loss of adapter communication, possibly by a
1562 * NVMe Subsystem reset.
1563 */
1564 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1565
1566 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1567 switch (nvme_ctrl_state(&dev->ctrl)) {
1568 case NVME_CTRL_RESETTING:
1569 case NVME_CTRL_CONNECTING:
1570 return false;
1571 default:
1572 break;
1573 }
1574
1575 /* We shouldn't reset unless the controller is on fatal error state
1576 * _or_ if we lost the communication with it.
1577 */
1578 if (!(csts & NVME_CSTS_CFS) && !nssro)
1579 return false;
1580
1581 return true;
1582 }
1583
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1584 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1585 {
1586 /* Read a config register to help see what died. */
1587 u16 pci_status;
1588 int result;
1589
1590 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1591 &pci_status);
1592 if (result == PCIBIOS_SUCCESSFUL)
1593 dev_warn(dev->ctrl.device,
1594 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1595 csts, pci_status);
1596 else
1597 dev_warn(dev->ctrl.device,
1598 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1599 csts, result);
1600
1601 if (csts != ~0)
1602 return;
1603
1604 dev_warn(dev->ctrl.device,
1605 "Does your device have a faulty power saving mode enabled?\n");
1606 dev_warn(dev->ctrl.device,
1607 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1608 }
1609
nvme_timeout(struct request * req)1610 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1611 {
1612 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1613 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1614 struct nvme_dev *dev = nvmeq->dev;
1615 struct request *abort_req;
1616 struct nvme_command cmd = { };
1617 struct pci_dev *pdev = to_pci_dev(dev->dev);
1618 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1619 u8 opcode;
1620
1621 /*
1622 * Shutdown the device immediately if we see it is disconnected. This
1623 * unblocks PCIe error handling if the nvme driver is waiting in
1624 * error_resume for a device that has been removed. We can't unbind the
1625 * driver while the driver's error callback is waiting to complete, so
1626 * we're relying on a timeout to break that deadlock if a removal
1627 * occurs while reset work is running.
1628 */
1629 if (pci_dev_is_disconnected(pdev))
1630 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1631 if (nvme_state_terminal(&dev->ctrl))
1632 goto disable;
1633
1634 /* If PCI error recovery process is happening, we cannot reset or
1635 * the recovery mechanism will surely fail.
1636 */
1637 mb();
1638 if (pci_channel_offline(pdev))
1639 return BLK_EH_RESET_TIMER;
1640
1641 /*
1642 * Reset immediately if the controller is failed
1643 */
1644 if (nvme_should_reset(dev, csts)) {
1645 nvme_warn_reset(dev, csts);
1646 goto disable;
1647 }
1648
1649 /*
1650 * Did we miss an interrupt?
1651 */
1652 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1653 nvme_poll(req->mq_hctx, NULL);
1654 else
1655 nvme_poll_irqdisable(nvmeq);
1656
1657 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1658 dev_warn(dev->ctrl.device,
1659 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1660 req->tag, nvme_cid(req), nvmeq->qid);
1661 return BLK_EH_DONE;
1662 }
1663
1664 /*
1665 * Shutdown immediately if controller times out while starting. The
1666 * reset work will see the pci device disabled when it gets the forced
1667 * cancellation error. All outstanding requests are completed on
1668 * shutdown, so we return BLK_EH_DONE.
1669 */
1670 switch (nvme_ctrl_state(&dev->ctrl)) {
1671 case NVME_CTRL_CONNECTING:
1672 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1673 fallthrough;
1674 case NVME_CTRL_DELETING:
1675 dev_warn_ratelimited(dev->ctrl.device,
1676 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1677 req->tag, nvme_cid(req), nvmeq->qid);
1678 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1679 nvme_dev_disable(dev, true);
1680 return BLK_EH_DONE;
1681 case NVME_CTRL_RESETTING:
1682 return BLK_EH_RESET_TIMER;
1683 default:
1684 break;
1685 }
1686
1687 /*
1688 * Shutdown the controller immediately and schedule a reset if the
1689 * command was already aborted once before and still hasn't been
1690 * returned to the driver, or if this is the admin queue.
1691 */
1692 opcode = nvme_req(req)->cmd->common.opcode;
1693 if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1694 dev_warn(dev->ctrl.device,
1695 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1696 req->tag, nvme_cid(req), opcode,
1697 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1698 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1699 goto disable;
1700 }
1701
1702 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1703 atomic_inc(&dev->ctrl.abort_limit);
1704 return BLK_EH_RESET_TIMER;
1705 }
1706 iod->flags |= IOD_ABORTED;
1707
1708 cmd.abort.opcode = nvme_admin_abort_cmd;
1709 cmd.abort.cid = nvme_cid(req);
1710 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1711
1712 dev_warn(nvmeq->dev->ctrl.device,
1713 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1714 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1715 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1716 blk_rq_bytes(req));
1717
1718 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1719 BLK_MQ_REQ_NOWAIT);
1720 if (IS_ERR(abort_req)) {
1721 atomic_inc(&dev->ctrl.abort_limit);
1722 return BLK_EH_RESET_TIMER;
1723 }
1724 nvme_init_request(abort_req, &cmd);
1725
1726 abort_req->end_io = abort_endio;
1727 abort_req->end_io_data = NULL;
1728 blk_execute_rq_nowait(abort_req, false);
1729
1730 /*
1731 * The aborted req will be completed on receiving the abort req.
1732 * We enable the timer again. If hit twice, it'll cause a device reset,
1733 * as the device then is in a faulty state.
1734 */
1735 return BLK_EH_RESET_TIMER;
1736
1737 disable:
1738 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1739 if (nvme_state_terminal(&dev->ctrl))
1740 nvme_dev_disable(dev, true);
1741 return BLK_EH_DONE;
1742 }
1743
1744 nvme_dev_disable(dev, false);
1745 if (nvme_try_sched_reset(&dev->ctrl))
1746 nvme_unquiesce_io_queues(&dev->ctrl);
1747 return BLK_EH_DONE;
1748 }
1749
nvme_free_queue(struct nvme_queue * nvmeq)1750 static void nvme_free_queue(struct nvme_queue *nvmeq)
1751 {
1752 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1753 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1754 if (!nvmeq->sq_cmds)
1755 return;
1756
1757 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1758 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1759 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1760 } else {
1761 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1762 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1763 }
1764 }
1765
nvme_free_queues(struct nvme_dev * dev,int lowest)1766 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1767 {
1768 int i;
1769
1770 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1771 dev->ctrl.queue_count--;
1772 nvme_free_queue(&dev->queues[i]);
1773 }
1774 }
1775
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1776 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1777 {
1778 struct nvme_queue *nvmeq = &dev->queues[qid];
1779
1780 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1781 return;
1782
1783 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1784 mb();
1785
1786 nvmeq->dev->online_queues--;
1787 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1788 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1789 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1790 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1791 }
1792
nvme_suspend_io_queues(struct nvme_dev * dev)1793 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1794 {
1795 int i;
1796
1797 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1798 nvme_suspend_queue(dev, i);
1799 }
1800
1801 /*
1802 * Called only on a device that has been disabled and after all other threads
1803 * that can check this device's completion queues have synced, except
1804 * nvme_poll(). This is the last chance for the driver to see a natural
1805 * completion before nvme_cancel_request() terminates all incomplete requests.
1806 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1807 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1808 {
1809 int i;
1810
1811 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1812 spin_lock(&dev->queues[i].cq_poll_lock);
1813 nvme_poll_cq(&dev->queues[i], NULL);
1814 spin_unlock(&dev->queues[i].cq_poll_lock);
1815 }
1816 }
1817
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1818 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1819 int entry_size)
1820 {
1821 int q_depth = dev->q_depth;
1822 unsigned q_size_aligned = roundup(q_depth * entry_size,
1823 NVME_CTRL_PAGE_SIZE);
1824
1825 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1826 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1827
1828 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1829 q_depth = div_u64(mem_per_q, entry_size);
1830
1831 /*
1832 * Ensure the reduced q_depth is above some threshold where it
1833 * would be better to map queues in system memory with the
1834 * original depth
1835 */
1836 if (q_depth < 64)
1837 return -ENOMEM;
1838 }
1839
1840 return q_depth;
1841 }
1842
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1843 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1844 int qid)
1845 {
1846 struct pci_dev *pdev = to_pci_dev(dev->dev);
1847
1848 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1849 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1850 if (nvmeq->sq_cmds) {
1851 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1852 nvmeq->sq_cmds);
1853 if (nvmeq->sq_dma_addr) {
1854 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1855 return 0;
1856 }
1857
1858 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1859 }
1860 }
1861
1862 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1863 &nvmeq->sq_dma_addr, GFP_KERNEL);
1864 if (!nvmeq->sq_cmds)
1865 return -ENOMEM;
1866 return 0;
1867 }
1868
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1869 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1870 {
1871 struct nvme_queue *nvmeq = &dev->queues[qid];
1872
1873 if (dev->ctrl.queue_count > qid)
1874 return 0;
1875
1876 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1877 nvmeq->q_depth = depth;
1878 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1879 &nvmeq->cq_dma_addr, GFP_KERNEL);
1880 if (!nvmeq->cqes)
1881 goto free_nvmeq;
1882
1883 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1884 goto free_cqdma;
1885
1886 nvmeq->dev = dev;
1887 spin_lock_init(&nvmeq->sq_lock);
1888 spin_lock_init(&nvmeq->cq_poll_lock);
1889 nvmeq->cq_head = 0;
1890 nvmeq->cq_phase = 1;
1891 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1892 nvmeq->qid = qid;
1893 dev->ctrl.queue_count++;
1894
1895 return 0;
1896
1897 free_cqdma:
1898 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1899 nvmeq->cq_dma_addr);
1900 free_nvmeq:
1901 return -ENOMEM;
1902 }
1903
queue_request_irq(struct nvme_queue * nvmeq)1904 static int queue_request_irq(struct nvme_queue *nvmeq)
1905 {
1906 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1907 int nr = nvmeq->dev->ctrl.instance;
1908
1909 if (use_threaded_interrupts) {
1910 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1911 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1912 } else {
1913 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1914 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1915 }
1916 }
1917
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1918 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1919 {
1920 struct nvme_dev *dev = nvmeq->dev;
1921
1922 nvmeq->sq_tail = 0;
1923 nvmeq->last_sq_tail = 0;
1924 nvmeq->cq_head = 0;
1925 nvmeq->cq_phase = 1;
1926 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1927 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1928 nvme_dbbuf_init(dev, nvmeq, qid);
1929 dev->online_queues++;
1930 wmb(); /* ensure the first interrupt sees the initialization */
1931 }
1932
1933 /*
1934 * Try getting shutdown_lock while setting up IO queues.
1935 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1936 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1937 {
1938 /*
1939 * Give up if the lock is being held by nvme_dev_disable.
1940 */
1941 if (!mutex_trylock(&dev->shutdown_lock))
1942 return -ENODEV;
1943
1944 /*
1945 * Controller is in wrong state, fail early.
1946 */
1947 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1948 mutex_unlock(&dev->shutdown_lock);
1949 return -ENODEV;
1950 }
1951
1952 return 0;
1953 }
1954
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1955 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1956 {
1957 struct nvme_dev *dev = nvmeq->dev;
1958 int result;
1959 u16 vector = 0;
1960
1961 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1962
1963 /*
1964 * A queue's vector matches the queue identifier unless the controller
1965 * has only one vector available.
1966 */
1967 if (!polled)
1968 vector = dev->num_vecs == 1 ? 0 : qid;
1969 else
1970 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1971
1972 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1973 if (result)
1974 return result;
1975
1976 result = adapter_alloc_sq(dev, qid, nvmeq);
1977 if (result < 0)
1978 return result;
1979 if (result)
1980 goto release_cq;
1981
1982 nvmeq->cq_vector = vector;
1983
1984 result = nvme_setup_io_queues_trylock(dev);
1985 if (result)
1986 return result;
1987 nvme_init_queue(nvmeq, qid);
1988 if (!polled) {
1989 result = queue_request_irq(nvmeq);
1990 if (result < 0)
1991 goto release_sq;
1992 }
1993
1994 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1995 mutex_unlock(&dev->shutdown_lock);
1996 return result;
1997
1998 release_sq:
1999 dev->online_queues--;
2000 mutex_unlock(&dev->shutdown_lock);
2001 adapter_delete_sq(dev, qid);
2002 release_cq:
2003 adapter_delete_cq(dev, qid);
2004 return result;
2005 }
2006
2007 static const struct blk_mq_ops nvme_mq_admin_ops = {
2008 .queue_rq = nvme_queue_rq,
2009 .complete = nvme_pci_complete_rq,
2010 .init_hctx = nvme_admin_init_hctx,
2011 .init_request = nvme_pci_init_request,
2012 .timeout = nvme_timeout,
2013 };
2014
2015 static const struct blk_mq_ops nvme_mq_ops = {
2016 .queue_rq = nvme_queue_rq,
2017 .queue_rqs = nvme_queue_rqs,
2018 .complete = nvme_pci_complete_rq,
2019 .commit_rqs = nvme_commit_rqs,
2020 .init_hctx = nvme_init_hctx,
2021 .init_request = nvme_pci_init_request,
2022 .map_queues = nvme_pci_map_queues,
2023 .timeout = nvme_timeout,
2024 .poll = nvme_poll,
2025 };
2026
nvme_dev_remove_admin(struct nvme_dev * dev)2027 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2028 {
2029 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2030 /*
2031 * If the controller was reset during removal, it's possible
2032 * user requests may be waiting on a stopped queue. Start the
2033 * queue to flush these to completion.
2034 */
2035 nvme_unquiesce_admin_queue(&dev->ctrl);
2036 nvme_remove_admin_tag_set(&dev->ctrl);
2037 }
2038 }
2039
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2040 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2041 {
2042 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2043 }
2044
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)2045 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2046 {
2047 struct pci_dev *pdev = to_pci_dev(dev->dev);
2048
2049 if (size <= dev->bar_mapped_size)
2050 return 0;
2051 if (size > pci_resource_len(pdev, 0))
2052 return -ENOMEM;
2053 if (dev->bar)
2054 iounmap(dev->bar);
2055 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2056 if (!dev->bar) {
2057 dev->bar_mapped_size = 0;
2058 return -ENOMEM;
2059 }
2060 dev->bar_mapped_size = size;
2061 dev->dbs = dev->bar + NVME_REG_DBS;
2062
2063 return 0;
2064 }
2065
nvme_pci_configure_admin_queue(struct nvme_dev * dev)2066 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2067 {
2068 int result;
2069 u32 aqa;
2070 struct nvme_queue *nvmeq;
2071
2072 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2073 if (result < 0)
2074 return result;
2075
2076 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2077 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2078
2079 if (dev->subsystem &&
2080 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2081 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2082
2083 /*
2084 * If the device has been passed off to us in an enabled state, just
2085 * clear the enabled bit. The spec says we should set the 'shutdown
2086 * notification bits', but doing so may cause the device to complete
2087 * commands to the admin queue ... and we don't know what memory that
2088 * might be pointing at!
2089 */
2090 result = nvme_disable_ctrl(&dev->ctrl, false);
2091 if (result < 0) {
2092 struct pci_dev *pdev = to_pci_dev(dev->dev);
2093
2094 /*
2095 * The NVMe Controller Reset method did not get an expected
2096 * CSTS.RDY transition, so something with the device appears to
2097 * be stuck. Use the lower level and bigger hammer PCIe
2098 * Function Level Reset to attempt restoring the device to its
2099 * initial state, and try again.
2100 */
2101 result = pcie_reset_flr(pdev, false);
2102 if (result < 0)
2103 return result;
2104
2105 pci_restore_state(pdev);
2106 result = nvme_disable_ctrl(&dev->ctrl, false);
2107 if (result < 0)
2108 return result;
2109
2110 dev_info(dev->ctrl.device,
2111 "controller reset completed after pcie flr\n");
2112 }
2113
2114 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2115 if (result)
2116 return result;
2117
2118 dev->ctrl.numa_node = dev_to_node(dev->dev);
2119
2120 nvmeq = &dev->queues[0];
2121 aqa = nvmeq->q_depth - 1;
2122 aqa |= aqa << 16;
2123
2124 writel(aqa, dev->bar + NVME_REG_AQA);
2125 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2126 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2127
2128 result = nvme_enable_ctrl(&dev->ctrl);
2129 if (result)
2130 return result;
2131
2132 nvmeq->cq_vector = 0;
2133 nvme_init_queue(nvmeq, 0);
2134 result = queue_request_irq(nvmeq);
2135 if (result) {
2136 dev->online_queues--;
2137 return result;
2138 }
2139
2140 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2141 return result;
2142 }
2143
nvme_create_io_queues(struct nvme_dev * dev)2144 static int nvme_create_io_queues(struct nvme_dev *dev)
2145 {
2146 unsigned i, max, rw_queues;
2147 int ret = 0;
2148
2149 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2150 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2151 ret = -ENOMEM;
2152 break;
2153 }
2154 }
2155
2156 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2157 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2158 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2159 dev->io_queues[HCTX_TYPE_READ];
2160 } else {
2161 rw_queues = max;
2162 }
2163
2164 for (i = dev->online_queues; i <= max; i++) {
2165 bool polled = i > rw_queues;
2166
2167 ret = nvme_create_queue(&dev->queues[i], i, polled);
2168 if (ret)
2169 break;
2170 }
2171
2172 /*
2173 * Ignore failing Create SQ/CQ commands, we can continue with less
2174 * than the desired amount of queues, and even a controller without
2175 * I/O queues can still be used to issue admin commands. This might
2176 * be useful to upgrade a buggy firmware for example.
2177 */
2178 return ret >= 0 ? 0 : ret;
2179 }
2180
nvme_cmb_size_unit(struct nvme_dev * dev)2181 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2182 {
2183 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2184
2185 return 1ULL << (12 + 4 * szu);
2186 }
2187
nvme_cmb_size(struct nvme_dev * dev)2188 static u32 nvme_cmb_size(struct nvme_dev *dev)
2189 {
2190 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2191 }
2192
nvme_map_cmb(struct nvme_dev * dev)2193 static void nvme_map_cmb(struct nvme_dev *dev)
2194 {
2195 u64 size, offset;
2196 resource_size_t bar_size;
2197 struct pci_dev *pdev = to_pci_dev(dev->dev);
2198 int bar;
2199
2200 if (dev->cmb_size)
2201 return;
2202
2203 if (NVME_CAP_CMBS(dev->ctrl.cap))
2204 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2205
2206 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2207 if (!dev->cmbsz)
2208 return;
2209 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2210
2211 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2212 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2213 bar = NVME_CMB_BIR(dev->cmbloc);
2214 bar_size = pci_resource_len(pdev, bar);
2215
2216 if (offset > bar_size)
2217 return;
2218
2219 /*
2220 * Controllers may support a CMB size larger than their BAR, for
2221 * example, due to being behind a bridge. Reduce the CMB to the
2222 * reported size of the BAR
2223 */
2224 size = min(size, bar_size - offset);
2225
2226 if (!IS_ALIGNED(size, memremap_compat_align()) ||
2227 !IS_ALIGNED(pci_resource_start(pdev, bar),
2228 memremap_compat_align()))
2229 return;
2230
2231 /*
2232 * Tell the controller about the host side address mapping the CMB,
2233 * and enable CMB decoding for the NVMe 1.4+ scheme:
2234 */
2235 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2236 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2237 (pci_bus_address(pdev, bar) + offset),
2238 dev->bar + NVME_REG_CMBMSC);
2239 }
2240
2241 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2242 dev_warn(dev->ctrl.device,
2243 "failed to register the CMB\n");
2244 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2245 return;
2246 }
2247
2248 dev->cmb_size = size;
2249 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2250
2251 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2252 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2253 pci_p2pmem_publish(pdev, true);
2254 }
2255
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2256 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2257 {
2258 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2259 u64 dma_addr = dev->host_mem_descs_dma;
2260 struct nvme_command c = { };
2261 int ret;
2262
2263 c.features.opcode = nvme_admin_set_features;
2264 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2265 c.features.dword11 = cpu_to_le32(bits);
2266 c.features.dword12 = cpu_to_le32(host_mem_size);
2267 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
2268 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
2269 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
2270
2271 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2272 if (ret) {
2273 dev_warn(dev->ctrl.device,
2274 "failed to set host mem (err %d, flags %#x).\n",
2275 ret, bits);
2276 } else
2277 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2278
2279 return ret;
2280 }
2281
nvme_free_host_mem_multi(struct nvme_dev * dev)2282 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2283 {
2284 int i;
2285
2286 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2287 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2288 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2289
2290 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2291 le64_to_cpu(desc->addr),
2292 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2293 }
2294
2295 kfree(dev->host_mem_desc_bufs);
2296 dev->host_mem_desc_bufs = NULL;
2297 }
2298
nvme_free_host_mem(struct nvme_dev * dev)2299 static void nvme_free_host_mem(struct nvme_dev *dev)
2300 {
2301 if (dev->hmb_sgt)
2302 dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2303 dev->hmb_sgt, DMA_BIDIRECTIONAL);
2304 else
2305 nvme_free_host_mem_multi(dev);
2306
2307 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2308 dev->host_mem_descs, dev->host_mem_descs_dma);
2309 dev->host_mem_descs = NULL;
2310 dev->host_mem_descs_size = 0;
2311 dev->nr_host_mem_descs = 0;
2312 }
2313
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2314 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2315 {
2316 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2317 DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2318 if (!dev->hmb_sgt)
2319 return -ENOMEM;
2320
2321 dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2322 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2323 GFP_KERNEL);
2324 if (!dev->host_mem_descs) {
2325 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2326 DMA_BIDIRECTIONAL);
2327 dev->hmb_sgt = NULL;
2328 return -ENOMEM;
2329 }
2330 dev->host_mem_size = size;
2331 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2332 dev->nr_host_mem_descs = 1;
2333
2334 dev->host_mem_descs[0].addr =
2335 cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2336 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2337 return 0;
2338 }
2339
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2340 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2341 u32 chunk_size)
2342 {
2343 struct nvme_host_mem_buf_desc *descs;
2344 u32 max_entries, len, descs_size;
2345 dma_addr_t descs_dma;
2346 int i = 0;
2347 void **bufs;
2348 u64 size, tmp;
2349
2350 tmp = (preferred + chunk_size - 1);
2351 do_div(tmp, chunk_size);
2352 max_entries = tmp;
2353
2354 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2355 max_entries = dev->ctrl.hmmaxd;
2356
2357 descs_size = max_entries * sizeof(*descs);
2358 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2359 GFP_KERNEL);
2360 if (!descs)
2361 goto out;
2362
2363 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2364 if (!bufs)
2365 goto out_free_descs;
2366
2367 for (size = 0; size < preferred && i < max_entries; size += len) {
2368 dma_addr_t dma_addr;
2369
2370 len = min_t(u64, chunk_size, preferred - size);
2371 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2372 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2373 if (!bufs[i])
2374 break;
2375
2376 descs[i].addr = cpu_to_le64(dma_addr);
2377 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2378 i++;
2379 }
2380
2381 if (!size)
2382 goto out_free_bufs;
2383
2384 dev->nr_host_mem_descs = i;
2385 dev->host_mem_size = size;
2386 dev->host_mem_descs = descs;
2387 dev->host_mem_descs_dma = descs_dma;
2388 dev->host_mem_descs_size = descs_size;
2389 dev->host_mem_desc_bufs = bufs;
2390 return 0;
2391
2392 out_free_bufs:
2393 kfree(bufs);
2394 out_free_descs:
2395 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2396 out:
2397 dev->host_mem_descs = NULL;
2398 return -ENOMEM;
2399 }
2400
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2401 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2402 {
2403 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2404 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2405 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2406 u64 chunk_size;
2407
2408 /*
2409 * If there is an IOMMU that can merge pages, try a virtually
2410 * non-contiguous allocation for a single segment first.
2411 */
2412 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2413 if (!nvme_alloc_host_mem_single(dev, preferred))
2414 return 0;
2415 }
2416
2417 /* start big and work our way down */
2418 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2419 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2420 if (!min || dev->host_mem_size >= min)
2421 return 0;
2422 nvme_free_host_mem(dev);
2423 }
2424 }
2425
2426 return -ENOMEM;
2427 }
2428
nvme_setup_host_mem(struct nvme_dev * dev)2429 static int nvme_setup_host_mem(struct nvme_dev *dev)
2430 {
2431 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2432 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2433 u64 min = (u64)dev->ctrl.hmmin * 4096;
2434 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2435 int ret;
2436
2437 if (!dev->ctrl.hmpre)
2438 return 0;
2439
2440 preferred = min(preferred, max);
2441 if (min > max) {
2442 dev_warn(dev->ctrl.device,
2443 "min host memory (%lld MiB) above limit (%d MiB).\n",
2444 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2445 nvme_free_host_mem(dev);
2446 return 0;
2447 }
2448
2449 /*
2450 * If we already have a buffer allocated check if we can reuse it.
2451 */
2452 if (dev->host_mem_descs) {
2453 if (dev->host_mem_size >= min)
2454 enable_bits |= NVME_HOST_MEM_RETURN;
2455 else
2456 nvme_free_host_mem(dev);
2457 }
2458
2459 if (!dev->host_mem_descs) {
2460 if (nvme_alloc_host_mem(dev, min, preferred)) {
2461 dev_warn(dev->ctrl.device,
2462 "failed to allocate host memory buffer.\n");
2463 return 0; /* controller must work without HMB */
2464 }
2465
2466 dev_info(dev->ctrl.device,
2467 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2468 dev->host_mem_size >> ilog2(SZ_1M),
2469 dev->nr_host_mem_descs,
2470 str_plural(dev->nr_host_mem_descs));
2471 }
2472
2473 ret = nvme_set_host_mem(dev, enable_bits);
2474 if (ret)
2475 nvme_free_host_mem(dev);
2476 return ret;
2477 }
2478
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2479 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2480 char *buf)
2481 {
2482 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2483
2484 return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz : 0x%08x\n",
2485 ndev->cmbloc, ndev->cmbsz);
2486 }
2487 static DEVICE_ATTR_RO(cmb);
2488
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2489 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2490 char *buf)
2491 {
2492 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2493
2494 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2495 }
2496 static DEVICE_ATTR_RO(cmbloc);
2497
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2498 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2499 char *buf)
2500 {
2501 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2502
2503 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2504 }
2505 static DEVICE_ATTR_RO(cmbsz);
2506
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2507 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2508 char *buf)
2509 {
2510 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2511
2512 return sysfs_emit(buf, "%d\n", ndev->hmb);
2513 }
2514
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2515 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2516 const char *buf, size_t count)
2517 {
2518 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2519 bool new;
2520 int ret;
2521
2522 if (kstrtobool(buf, &new) < 0)
2523 return -EINVAL;
2524
2525 if (new == ndev->hmb)
2526 return count;
2527
2528 if (new) {
2529 ret = nvme_setup_host_mem(ndev);
2530 } else {
2531 ret = nvme_set_host_mem(ndev, 0);
2532 if (!ret)
2533 nvme_free_host_mem(ndev);
2534 }
2535
2536 if (ret < 0)
2537 return ret;
2538
2539 return count;
2540 }
2541 static DEVICE_ATTR_RW(hmb);
2542
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2543 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2544 struct attribute *a, int n)
2545 {
2546 struct nvme_ctrl *ctrl =
2547 dev_get_drvdata(container_of(kobj, struct device, kobj));
2548 struct nvme_dev *dev = to_nvme_dev(ctrl);
2549
2550 if (a == &dev_attr_cmb.attr ||
2551 a == &dev_attr_cmbloc.attr ||
2552 a == &dev_attr_cmbsz.attr) {
2553 if (!dev->cmbsz)
2554 return 0;
2555 }
2556 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2557 return 0;
2558
2559 return a->mode;
2560 }
2561
2562 static struct attribute *nvme_pci_attrs[] = {
2563 &dev_attr_cmb.attr,
2564 &dev_attr_cmbloc.attr,
2565 &dev_attr_cmbsz.attr,
2566 &dev_attr_hmb.attr,
2567 NULL,
2568 };
2569
2570 static const struct attribute_group nvme_pci_dev_attrs_group = {
2571 .attrs = nvme_pci_attrs,
2572 .is_visible = nvme_pci_attrs_are_visible,
2573 };
2574
2575 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2576 &nvme_dev_attrs_group,
2577 &nvme_pci_dev_attrs_group,
2578 NULL,
2579 };
2580
nvme_update_attrs(struct nvme_dev * dev)2581 static void nvme_update_attrs(struct nvme_dev *dev)
2582 {
2583 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2584 }
2585
2586 /*
2587 * nirqs is the number of interrupts available for write and read
2588 * queues. The core already reserved an interrupt for the admin queue.
2589 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2590 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2591 {
2592 struct nvme_dev *dev = affd->priv;
2593 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2594
2595 /*
2596 * If there is no interrupt available for queues, ensure that
2597 * the default queue is set to 1. The affinity set size is
2598 * also set to one, but the irq core ignores it for this case.
2599 *
2600 * If only one interrupt is available or 'write_queue' == 0, combine
2601 * write and read queues.
2602 *
2603 * If 'write_queues' > 0, ensure it leaves room for at least one read
2604 * queue.
2605 */
2606 if (!nrirqs) {
2607 nrirqs = 1;
2608 nr_read_queues = 0;
2609 } else if (nrirqs == 1 || !nr_write_queues) {
2610 nr_read_queues = 0;
2611 } else if (nr_write_queues >= nrirqs) {
2612 nr_read_queues = 1;
2613 } else {
2614 nr_read_queues = nrirqs - nr_write_queues;
2615 }
2616
2617 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2618 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2619 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2620 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2621 affd->nr_sets = nr_read_queues ? 2 : 1;
2622 }
2623
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2624 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2625 {
2626 struct pci_dev *pdev = to_pci_dev(dev->dev);
2627 struct irq_affinity affd = {
2628 .pre_vectors = 1,
2629 .calc_sets = nvme_calc_irq_sets,
2630 .priv = dev,
2631 };
2632 unsigned int irq_queues, poll_queues;
2633 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2634
2635 /*
2636 * Poll queues don't need interrupts, but we need at least one I/O queue
2637 * left over for non-polled I/O.
2638 */
2639 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2640 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2641
2642 /*
2643 * Initialize for the single interrupt case, will be updated in
2644 * nvme_calc_irq_sets().
2645 */
2646 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2647 dev->io_queues[HCTX_TYPE_READ] = 0;
2648
2649 /*
2650 * We need interrupts for the admin queue and each non-polled I/O queue,
2651 * but some Apple controllers require all queues to use the first
2652 * vector.
2653 */
2654 irq_queues = 1;
2655 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2656 irq_queues += (nr_io_queues - poll_queues);
2657 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2658 flags &= ~PCI_IRQ_MSI;
2659 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2660 &affd);
2661 }
2662
nvme_max_io_queues(struct nvme_dev * dev)2663 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2664 {
2665 /*
2666 * If tags are shared with admin queue (Apple bug), then
2667 * make sure we only use one IO queue.
2668 */
2669 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2670 return 1;
2671 return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2672 dev->nr_poll_queues;
2673 }
2674
nvme_setup_io_queues(struct nvme_dev * dev)2675 static int nvme_setup_io_queues(struct nvme_dev *dev)
2676 {
2677 struct nvme_queue *adminq = &dev->queues[0];
2678 struct pci_dev *pdev = to_pci_dev(dev->dev);
2679 unsigned int nr_io_queues;
2680 unsigned long size;
2681 int result;
2682
2683 /*
2684 * Sample the module parameters once at reset time so that we have
2685 * stable values to work with.
2686 */
2687 dev->nr_write_queues = write_queues;
2688 dev->nr_poll_queues = poll_queues;
2689
2690 nr_io_queues = dev->nr_allocated_queues - 1;
2691 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2692 if (result < 0)
2693 return result;
2694
2695 if (nr_io_queues == 0)
2696 return 0;
2697
2698 /*
2699 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2700 * from set to unset. If there is a window to it is truely freed,
2701 * pci_free_irq_vectors() jumping into this window will crash.
2702 * And take lock to avoid racing with pci_free_irq_vectors() in
2703 * nvme_dev_disable() path.
2704 */
2705 result = nvme_setup_io_queues_trylock(dev);
2706 if (result)
2707 return result;
2708 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2709 pci_free_irq(pdev, 0, adminq);
2710
2711 if (dev->cmb_use_sqes) {
2712 result = nvme_cmb_qdepth(dev, nr_io_queues,
2713 sizeof(struct nvme_command));
2714 if (result > 0) {
2715 dev->q_depth = result;
2716 dev->ctrl.sqsize = result - 1;
2717 } else {
2718 dev->cmb_use_sqes = false;
2719 }
2720 }
2721
2722 do {
2723 size = db_bar_size(dev, nr_io_queues);
2724 result = nvme_remap_bar(dev, size);
2725 if (!result)
2726 break;
2727 if (!--nr_io_queues) {
2728 result = -ENOMEM;
2729 goto out_unlock;
2730 }
2731 } while (1);
2732 adminq->q_db = dev->dbs;
2733
2734 retry:
2735 /* Deregister the admin queue's interrupt */
2736 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2737 pci_free_irq(pdev, 0, adminq);
2738
2739 /*
2740 * If we enable msix early due to not intx, disable it again before
2741 * setting up the full range we need.
2742 */
2743 pci_free_irq_vectors(pdev);
2744
2745 result = nvme_setup_irqs(dev, nr_io_queues);
2746 if (result <= 0) {
2747 result = -EIO;
2748 goto out_unlock;
2749 }
2750
2751 dev->num_vecs = result;
2752 result = max(result - 1, 1);
2753 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2754
2755 /*
2756 * Should investigate if there's a performance win from allocating
2757 * more queues than interrupt vectors; it might allow the submission
2758 * path to scale better, even if the receive path is limited by the
2759 * number of interrupts.
2760 */
2761 result = queue_request_irq(adminq);
2762 if (result)
2763 goto out_unlock;
2764 set_bit(NVMEQ_ENABLED, &adminq->flags);
2765 mutex_unlock(&dev->shutdown_lock);
2766
2767 result = nvme_create_io_queues(dev);
2768 if (result || dev->online_queues < 2)
2769 return result;
2770
2771 if (dev->online_queues - 1 < dev->max_qid) {
2772 nr_io_queues = dev->online_queues - 1;
2773 nvme_delete_io_queues(dev);
2774 result = nvme_setup_io_queues_trylock(dev);
2775 if (result)
2776 return result;
2777 nvme_suspend_io_queues(dev);
2778 goto retry;
2779 }
2780 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2781 dev->io_queues[HCTX_TYPE_DEFAULT],
2782 dev->io_queues[HCTX_TYPE_READ],
2783 dev->io_queues[HCTX_TYPE_POLL]);
2784 return 0;
2785 out_unlock:
2786 mutex_unlock(&dev->shutdown_lock);
2787 return result;
2788 }
2789
nvme_del_queue_end(struct request * req,blk_status_t error)2790 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2791 blk_status_t error)
2792 {
2793 struct nvme_queue *nvmeq = req->end_io_data;
2794
2795 blk_mq_free_request(req);
2796 complete(&nvmeq->delete_done);
2797 return RQ_END_IO_NONE;
2798 }
2799
nvme_del_cq_end(struct request * req,blk_status_t error)2800 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2801 blk_status_t error)
2802 {
2803 struct nvme_queue *nvmeq = req->end_io_data;
2804
2805 if (error)
2806 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2807
2808 return nvme_del_queue_end(req, error);
2809 }
2810
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2811 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2812 {
2813 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2814 struct request *req;
2815 struct nvme_command cmd = { };
2816
2817 cmd.delete_queue.opcode = opcode;
2818 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2819
2820 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2821 if (IS_ERR(req))
2822 return PTR_ERR(req);
2823 nvme_init_request(req, &cmd);
2824
2825 if (opcode == nvme_admin_delete_cq)
2826 req->end_io = nvme_del_cq_end;
2827 else
2828 req->end_io = nvme_del_queue_end;
2829 req->end_io_data = nvmeq;
2830
2831 init_completion(&nvmeq->delete_done);
2832 blk_execute_rq_nowait(req, false);
2833 return 0;
2834 }
2835
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2836 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2837 {
2838 int nr_queues = dev->online_queues - 1, sent = 0;
2839 unsigned long timeout;
2840
2841 retry:
2842 timeout = NVME_ADMIN_TIMEOUT;
2843 while (nr_queues > 0) {
2844 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2845 break;
2846 nr_queues--;
2847 sent++;
2848 }
2849 while (sent) {
2850 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2851
2852 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2853 timeout);
2854 if (timeout == 0)
2855 return false;
2856
2857 sent--;
2858 if (nr_queues)
2859 goto retry;
2860 }
2861 return true;
2862 }
2863
nvme_delete_io_queues(struct nvme_dev * dev)2864 static void nvme_delete_io_queues(struct nvme_dev *dev)
2865 {
2866 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2867 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2868 }
2869
nvme_pci_nr_maps(struct nvme_dev * dev)2870 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2871 {
2872 if (dev->io_queues[HCTX_TYPE_POLL])
2873 return 3;
2874 if (dev->io_queues[HCTX_TYPE_READ])
2875 return 2;
2876 return 1;
2877 }
2878
nvme_pci_update_nr_queues(struct nvme_dev * dev)2879 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2880 {
2881 if (!dev->ctrl.tagset) {
2882 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2883 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2884 return true;
2885 }
2886
2887 /* Give up if we are racing with nvme_dev_disable() */
2888 if (!mutex_trylock(&dev->shutdown_lock))
2889 return false;
2890
2891 /* Check if nvme_dev_disable() has been executed already */
2892 if (!dev->online_queues) {
2893 mutex_unlock(&dev->shutdown_lock);
2894 return false;
2895 }
2896
2897 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2898 /* free previously allocated queues that are no longer usable */
2899 nvme_free_queues(dev, dev->online_queues);
2900 mutex_unlock(&dev->shutdown_lock);
2901 return true;
2902 }
2903
nvme_pci_enable(struct nvme_dev * dev)2904 static int nvme_pci_enable(struct nvme_dev *dev)
2905 {
2906 int result = -ENOMEM;
2907 struct pci_dev *pdev = to_pci_dev(dev->dev);
2908 unsigned int flags = PCI_IRQ_ALL_TYPES;
2909
2910 if (pci_enable_device_mem(pdev))
2911 return result;
2912
2913 pci_set_master(pdev);
2914
2915 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2916 result = -ENODEV;
2917 goto disable;
2918 }
2919
2920 /*
2921 * Some devices and/or platforms don't advertise or work with INTx
2922 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2923 * adjust this later.
2924 */
2925 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2926 flags &= ~PCI_IRQ_MSI;
2927 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2928 if (result < 0)
2929 goto disable;
2930
2931 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2932
2933 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2934 io_queue_depth);
2935 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2936 dev->dbs = dev->bar + 4096;
2937
2938 /*
2939 * Some Apple controllers require a non-standard SQE size.
2940 * Interestingly they also seem to ignore the CC:IOSQES register
2941 * so we don't bother updating it here.
2942 */
2943 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2944 dev->io_sqes = 7;
2945 else
2946 dev->io_sqes = NVME_NVM_IOSQES;
2947
2948 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2949 dev->q_depth = 2;
2950 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2951 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2952 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2953 dev->q_depth = 64;
2954 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2955 "set queue depth=%u\n", dev->q_depth);
2956 }
2957
2958 /*
2959 * Controllers with the shared tags quirk need the IO queue to be
2960 * big enough so that we get 32 tags for the admin queue
2961 */
2962 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2963 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2964 dev->q_depth = NVME_AQ_DEPTH + 2;
2965 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2966 dev->q_depth);
2967 }
2968 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2969
2970 nvme_map_cmb(dev);
2971
2972 pci_save_state(pdev);
2973
2974 result = nvme_pci_configure_admin_queue(dev);
2975 if (result)
2976 goto free_irq;
2977 return result;
2978
2979 free_irq:
2980 pci_free_irq_vectors(pdev);
2981 disable:
2982 pci_disable_device(pdev);
2983 return result;
2984 }
2985
nvme_dev_unmap(struct nvme_dev * dev)2986 static void nvme_dev_unmap(struct nvme_dev *dev)
2987 {
2988 if (dev->bar)
2989 iounmap(dev->bar);
2990 pci_release_mem_regions(to_pci_dev(dev->dev));
2991 }
2992
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2993 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2994 {
2995 struct pci_dev *pdev = to_pci_dev(dev->dev);
2996 u32 csts;
2997
2998 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2999 return true;
3000 if (pdev->error_state != pci_channel_io_normal)
3001 return true;
3002
3003 csts = readl(dev->bar + NVME_REG_CSTS);
3004 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
3005 }
3006
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)3007 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
3008 {
3009 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
3010 struct pci_dev *pdev = to_pci_dev(dev->dev);
3011 bool dead;
3012
3013 mutex_lock(&dev->shutdown_lock);
3014 dead = nvme_pci_ctrl_is_dead(dev);
3015 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
3016 if (pci_is_enabled(pdev))
3017 nvme_start_freeze(&dev->ctrl);
3018 /*
3019 * Give the controller a chance to complete all entered requests
3020 * if doing a safe shutdown.
3021 */
3022 if (!dead && shutdown)
3023 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3024 }
3025
3026 nvme_quiesce_io_queues(&dev->ctrl);
3027
3028 if (!dead && dev->ctrl.queue_count > 0) {
3029 nvme_delete_io_queues(dev);
3030 nvme_disable_ctrl(&dev->ctrl, shutdown);
3031 nvme_poll_irqdisable(&dev->queues[0]);
3032 }
3033 nvme_suspend_io_queues(dev);
3034 nvme_suspend_queue(dev, 0);
3035 pci_free_irq_vectors(pdev);
3036 if (pci_is_enabled(pdev))
3037 pci_disable_device(pdev);
3038 nvme_reap_pending_cqes(dev);
3039
3040 nvme_cancel_tagset(&dev->ctrl);
3041 nvme_cancel_admin_tagset(&dev->ctrl);
3042
3043 /*
3044 * The driver will not be starting up queues again if shutting down so
3045 * must flush all entered requests to their failed completion to avoid
3046 * deadlocking blk-mq hot-cpu notifier.
3047 */
3048 if (shutdown) {
3049 nvme_unquiesce_io_queues(&dev->ctrl);
3050 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3051 nvme_unquiesce_admin_queue(&dev->ctrl);
3052 }
3053 mutex_unlock(&dev->shutdown_lock);
3054 }
3055
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)3056 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3057 {
3058 if (!nvme_wait_reset(&dev->ctrl))
3059 return -EBUSY;
3060 nvme_dev_disable(dev, shutdown);
3061 return 0;
3062 }
3063
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)3064 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3065 {
3066 size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3067
3068 dev->dmavec_mempool = mempool_create_node(1,
3069 mempool_kmalloc, mempool_kfree,
3070 (void *)alloc_size, GFP_KERNEL,
3071 dev_to_node(dev->dev));
3072 if (!dev->dmavec_mempool)
3073 return -ENOMEM;
3074 return 0;
3075 }
3076
nvme_free_tagset(struct nvme_dev * dev)3077 static void nvme_free_tagset(struct nvme_dev *dev)
3078 {
3079 if (dev->tagset.tags)
3080 nvme_remove_io_tag_set(&dev->ctrl);
3081 dev->ctrl.tagset = NULL;
3082 }
3083
3084 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)3085 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3086 {
3087 struct nvme_dev *dev = to_nvme_dev(ctrl);
3088
3089 nvme_free_tagset(dev);
3090 put_device(dev->dev);
3091 kfree(dev->queues);
3092 kfree(dev);
3093 }
3094
nvme_reset_work(struct work_struct * work)3095 static void nvme_reset_work(struct work_struct *work)
3096 {
3097 struct nvme_dev *dev =
3098 container_of(work, struct nvme_dev, ctrl.reset_work);
3099 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3100 int result;
3101
3102 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3103 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3104 dev->ctrl.state);
3105 result = -ENODEV;
3106 goto out;
3107 }
3108
3109 /*
3110 * If we're called to reset a live controller first shut it down before
3111 * moving on.
3112 */
3113 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3114 nvme_dev_disable(dev, false);
3115 nvme_sync_queues(&dev->ctrl);
3116
3117 mutex_lock(&dev->shutdown_lock);
3118 result = nvme_pci_enable(dev);
3119 if (result)
3120 goto out_unlock;
3121 nvme_unquiesce_admin_queue(&dev->ctrl);
3122 mutex_unlock(&dev->shutdown_lock);
3123
3124 /*
3125 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3126 * initializing procedure here.
3127 */
3128 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3129 dev_warn(dev->ctrl.device,
3130 "failed to mark controller CONNECTING\n");
3131 result = -EBUSY;
3132 goto out;
3133 }
3134
3135 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3136 if (result)
3137 goto out;
3138
3139 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3140 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3141 else
3142 dev->ctrl.max_integrity_segments = 1;
3143
3144 nvme_dbbuf_dma_alloc(dev);
3145
3146 result = nvme_setup_host_mem(dev);
3147 if (result < 0)
3148 goto out;
3149
3150 nvme_update_attrs(dev);
3151
3152 result = nvme_setup_io_queues(dev);
3153 if (result)
3154 goto out;
3155
3156 /*
3157 * Freeze and update the number of I/O queues as those might have
3158 * changed. If there are no I/O queues left after this reset, keep the
3159 * controller around but remove all namespaces.
3160 */
3161 if (dev->online_queues > 1) {
3162 nvme_dbbuf_set(dev);
3163 nvme_unquiesce_io_queues(&dev->ctrl);
3164 nvme_wait_freeze(&dev->ctrl);
3165 if (!nvme_pci_update_nr_queues(dev))
3166 goto out;
3167 nvme_unfreeze(&dev->ctrl);
3168 } else {
3169 dev_warn(dev->ctrl.device, "IO queues lost\n");
3170 nvme_mark_namespaces_dead(&dev->ctrl);
3171 nvme_unquiesce_io_queues(&dev->ctrl);
3172 nvme_remove_namespaces(&dev->ctrl);
3173 nvme_free_tagset(dev);
3174 }
3175
3176 /*
3177 * If only admin queue live, keep it to do further investigation or
3178 * recovery.
3179 */
3180 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3181 dev_warn(dev->ctrl.device,
3182 "failed to mark controller live state\n");
3183 result = -ENODEV;
3184 goto out;
3185 }
3186
3187 nvme_start_ctrl(&dev->ctrl);
3188 return;
3189
3190 out_unlock:
3191 mutex_unlock(&dev->shutdown_lock);
3192 out:
3193 /*
3194 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3195 * may be holding this pci_dev's device lock.
3196 */
3197 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3198 result);
3199 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3200 nvme_dev_disable(dev, true);
3201 nvme_sync_queues(&dev->ctrl);
3202 nvme_mark_namespaces_dead(&dev->ctrl);
3203 nvme_unquiesce_io_queues(&dev->ctrl);
3204 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3205 }
3206
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3207 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3208 {
3209 *val = readl(to_nvme_dev(ctrl)->bar + off);
3210 return 0;
3211 }
3212
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3213 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3214 {
3215 writel(val, to_nvme_dev(ctrl)->bar + off);
3216 return 0;
3217 }
3218
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3219 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3220 {
3221 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3222 return 0;
3223 }
3224
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3225 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3226 {
3227 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3228
3229 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3230 }
3231
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3232 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3233 {
3234 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3235 struct nvme_subsystem *subsys = ctrl->subsys;
3236
3237 dev_err(ctrl->device,
3238 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3239 pdev->vendor, pdev->device,
3240 nvme_strlen(subsys->model, sizeof(subsys->model)),
3241 subsys->model, nvme_strlen(subsys->firmware_rev,
3242 sizeof(subsys->firmware_rev)),
3243 subsys->firmware_rev);
3244 }
3245
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3246 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3247 {
3248 struct nvme_dev *dev = to_nvme_dev(ctrl);
3249
3250 return dma_pci_p2pdma_supported(dev->dev);
3251 }
3252
3253 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3254 .name = "pcie",
3255 .module = THIS_MODULE,
3256 .flags = NVME_F_METADATA_SUPPORTED,
3257 .dev_attr_groups = nvme_pci_dev_attr_groups,
3258 .reg_read32 = nvme_pci_reg_read32,
3259 .reg_write32 = nvme_pci_reg_write32,
3260 .reg_read64 = nvme_pci_reg_read64,
3261 .free_ctrl = nvme_pci_free_ctrl,
3262 .submit_async_event = nvme_pci_submit_async_event,
3263 .subsystem_reset = nvme_pci_subsystem_reset,
3264 .get_address = nvme_pci_get_address,
3265 .print_device_info = nvme_pci_print_device_info,
3266 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3267 };
3268
nvme_dev_map(struct nvme_dev * dev)3269 static int nvme_dev_map(struct nvme_dev *dev)
3270 {
3271 struct pci_dev *pdev = to_pci_dev(dev->dev);
3272
3273 if (pci_request_mem_regions(pdev, "nvme"))
3274 return -ENODEV;
3275
3276 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3277 goto release;
3278
3279 return 0;
3280 release:
3281 pci_release_mem_regions(pdev);
3282 return -ENODEV;
3283 }
3284
check_vendor_combination_bug(struct pci_dev * pdev)3285 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3286 {
3287 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3288 /*
3289 * Several Samsung devices seem to drop off the PCIe bus
3290 * randomly when APST is on and uses the deepest sleep state.
3291 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3292 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3293 * 950 PRO 256GB", but it seems to be restricted to two Dell
3294 * laptops.
3295 */
3296 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3297 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3298 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3299 return NVME_QUIRK_NO_DEEPEST_PS;
3300 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3301 /*
3302 * Samsung SSD 960 EVO drops off the PCIe bus after system
3303 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3304 * within few minutes after bootup on a Coffee Lake board -
3305 * ASUS PRIME Z370-A
3306 */
3307 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3308 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3309 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3310 return NVME_QUIRK_NO_APST;
3311 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3312 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3313 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3314 /*
3315 * Forcing to use host managed nvme power settings for
3316 * lowest idle power with quick resume latency on
3317 * Samsung and Toshiba SSDs based on suspend behavior
3318 * on Coffee Lake board for LENOVO C640
3319 */
3320 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3321 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3322 return NVME_QUIRK_SIMPLE_SUSPEND;
3323 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3324 pdev->device == 0x500f)) {
3325 /*
3326 * Exclude some Kingston NV1 and A2000 devices from
3327 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3328 * lot of energy with s2idle sleep on some TUXEDO platforms.
3329 */
3330 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3331 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3332 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3333 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3334 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3335 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3336 /*
3337 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3338 * because of high power consumption (> 2 Watt) in s2idle
3339 * sleep. Only some boards with Intel CPU are affected.
3340 * (Note for testing: Samsung 990 Evo Plus has same PCI ID)
3341 */
3342 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3343 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3344 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3345 dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3346 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3347 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3348 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3349 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3350 }
3351
3352 /*
3353 * NVMe SSD drops off the PCIe bus after system idle
3354 * for 10 hours on a Lenovo N60z board.
3355 */
3356 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3357 return NVME_QUIRK_NO_APST;
3358
3359 return 0;
3360 }
3361
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3362 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3363 const struct pci_device_id *id)
3364 {
3365 unsigned long quirks = id->driver_data;
3366 int node = dev_to_node(&pdev->dev);
3367 struct nvme_dev *dev;
3368 int ret = -ENOMEM;
3369
3370 dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3371 GFP_KERNEL, node);
3372 if (!dev)
3373 return ERR_PTR(-ENOMEM);
3374 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3375 mutex_init(&dev->shutdown_lock);
3376
3377 dev->nr_write_queues = write_queues;
3378 dev->nr_poll_queues = poll_queues;
3379 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3380 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3381 sizeof(struct nvme_queue), GFP_KERNEL, node);
3382 if (!dev->queues)
3383 goto out_free_dev;
3384
3385 dev->dev = get_device(&pdev->dev);
3386
3387 quirks |= check_vendor_combination_bug(pdev);
3388 if (!noacpi &&
3389 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3390 acpi_storage_d3(&pdev->dev)) {
3391 /*
3392 * Some systems use a bios work around to ask for D3 on
3393 * platforms that support kernel managed suspend.
3394 */
3395 dev_info(&pdev->dev,
3396 "platform quirk: setting simple suspend\n");
3397 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3398 }
3399 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3400 quirks);
3401 if (ret)
3402 goto out_put_device;
3403
3404 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3405 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3406 else
3407 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3408 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3409 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3410
3411 /*
3412 * Limit the max command size to prevent iod->sg allocations going
3413 * over a single page.
3414 */
3415 dev->ctrl.max_hw_sectors = min_t(u32,
3416 NVME_MAX_BYTES >> SECTOR_SHIFT,
3417 dma_opt_mapping_size(&pdev->dev) >> 9);
3418 dev->ctrl.max_segments = NVME_MAX_SEGS;
3419 dev->ctrl.max_integrity_segments = 1;
3420 return dev;
3421
3422 out_put_device:
3423 put_device(dev->dev);
3424 kfree(dev->queues);
3425 out_free_dev:
3426 kfree(dev);
3427 return ERR_PTR(ret);
3428 }
3429
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3430 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3431 {
3432 struct nvme_dev *dev;
3433 int result = -ENOMEM;
3434
3435 dev = nvme_pci_alloc_dev(pdev, id);
3436 if (IS_ERR(dev))
3437 return PTR_ERR(dev);
3438
3439 result = nvme_add_ctrl(&dev->ctrl);
3440 if (result)
3441 goto out_put_ctrl;
3442
3443 result = nvme_dev_map(dev);
3444 if (result)
3445 goto out_uninit_ctrl;
3446
3447 result = nvme_pci_alloc_iod_mempool(dev);
3448 if (result)
3449 goto out_dev_unmap;
3450
3451 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3452
3453 result = nvme_pci_enable(dev);
3454 if (result)
3455 goto out_release_iod_mempool;
3456
3457 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3458 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3459 if (result)
3460 goto out_disable;
3461
3462 /*
3463 * Mark the controller as connecting before sending admin commands to
3464 * allow the timeout handler to do the right thing.
3465 */
3466 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3467 dev_warn(dev->ctrl.device,
3468 "failed to mark controller CONNECTING\n");
3469 result = -EBUSY;
3470 goto out_disable;
3471 }
3472
3473 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3474 if (result)
3475 goto out_disable;
3476
3477 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3478 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3479 else
3480 dev->ctrl.max_integrity_segments = 1;
3481
3482 nvme_dbbuf_dma_alloc(dev);
3483
3484 result = nvme_setup_host_mem(dev);
3485 if (result < 0)
3486 goto out_disable;
3487
3488 nvme_update_attrs(dev);
3489
3490 result = nvme_setup_io_queues(dev);
3491 if (result)
3492 goto out_disable;
3493
3494 if (dev->online_queues > 1) {
3495 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3496 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3497 nvme_dbbuf_set(dev);
3498 }
3499
3500 if (!dev->ctrl.tagset)
3501 dev_warn(dev->ctrl.device, "IO queues not created\n");
3502
3503 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3504 dev_warn(dev->ctrl.device,
3505 "failed to mark controller live state\n");
3506 result = -ENODEV;
3507 goto out_disable;
3508 }
3509
3510 pci_set_drvdata(pdev, dev);
3511
3512 nvme_start_ctrl(&dev->ctrl);
3513 nvme_put_ctrl(&dev->ctrl);
3514 flush_work(&dev->ctrl.scan_work);
3515 return 0;
3516
3517 out_disable:
3518 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3519 nvme_dev_disable(dev, true);
3520 nvme_free_host_mem(dev);
3521 nvme_dev_remove_admin(dev);
3522 nvme_dbbuf_dma_free(dev);
3523 nvme_free_queues(dev, 0);
3524 out_release_iod_mempool:
3525 mempool_destroy(dev->dmavec_mempool);
3526 out_dev_unmap:
3527 nvme_dev_unmap(dev);
3528 out_uninit_ctrl:
3529 nvme_uninit_ctrl(&dev->ctrl);
3530 out_put_ctrl:
3531 nvme_put_ctrl(&dev->ctrl);
3532 return result;
3533 }
3534
nvme_reset_prepare(struct pci_dev * pdev)3535 static void nvme_reset_prepare(struct pci_dev *pdev)
3536 {
3537 struct nvme_dev *dev = pci_get_drvdata(pdev);
3538
3539 /*
3540 * We don't need to check the return value from waiting for the reset
3541 * state as pci_dev device lock is held, making it impossible to race
3542 * with ->remove().
3543 */
3544 nvme_disable_prepare_reset(dev, false);
3545 nvme_sync_queues(&dev->ctrl);
3546 }
3547
nvme_reset_done(struct pci_dev * pdev)3548 static void nvme_reset_done(struct pci_dev *pdev)
3549 {
3550 struct nvme_dev *dev = pci_get_drvdata(pdev);
3551
3552 if (!nvme_try_sched_reset(&dev->ctrl))
3553 flush_work(&dev->ctrl.reset_work);
3554 }
3555
nvme_shutdown(struct pci_dev * pdev)3556 static void nvme_shutdown(struct pci_dev *pdev)
3557 {
3558 struct nvme_dev *dev = pci_get_drvdata(pdev);
3559
3560 nvme_disable_prepare_reset(dev, true);
3561 }
3562
3563 /*
3564 * The driver's remove may be called on a device in a partially initialized
3565 * state. This function must not have any dependencies on the device state in
3566 * order to proceed.
3567 */
nvme_remove(struct pci_dev * pdev)3568 static void nvme_remove(struct pci_dev *pdev)
3569 {
3570 struct nvme_dev *dev = pci_get_drvdata(pdev);
3571
3572 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3573 pci_set_drvdata(pdev, NULL);
3574
3575 if (!pci_device_is_present(pdev)) {
3576 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3577 nvme_dev_disable(dev, true);
3578 }
3579
3580 flush_work(&dev->ctrl.reset_work);
3581 nvme_stop_ctrl(&dev->ctrl);
3582 nvme_remove_namespaces(&dev->ctrl);
3583 nvme_dev_disable(dev, true);
3584 nvme_free_host_mem(dev);
3585 nvme_dev_remove_admin(dev);
3586 nvme_dbbuf_dma_free(dev);
3587 nvme_free_queues(dev, 0);
3588 mempool_destroy(dev->dmavec_mempool);
3589 nvme_release_descriptor_pools(dev);
3590 nvme_dev_unmap(dev);
3591 nvme_uninit_ctrl(&dev->ctrl);
3592 }
3593
3594 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3595 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3596 {
3597 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3598 }
3599
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3600 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3601 {
3602 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3603 }
3604
nvme_resume(struct device * dev)3605 static int nvme_resume(struct device *dev)
3606 {
3607 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3608 struct nvme_ctrl *ctrl = &ndev->ctrl;
3609
3610 if (ndev->last_ps == U32_MAX ||
3611 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3612 goto reset;
3613 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3614 goto reset;
3615
3616 return 0;
3617 reset:
3618 return nvme_try_sched_reset(ctrl);
3619 }
3620
nvme_suspend(struct device * dev)3621 static int nvme_suspend(struct device *dev)
3622 {
3623 struct pci_dev *pdev = to_pci_dev(dev);
3624 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3625 struct nvme_ctrl *ctrl = &ndev->ctrl;
3626 int ret = -EBUSY;
3627
3628 ndev->last_ps = U32_MAX;
3629
3630 /*
3631 * The platform does not remove power for a kernel managed suspend so
3632 * use host managed nvme power settings for lowest idle power if
3633 * possible. This should have quicker resume latency than a full device
3634 * shutdown. But if the firmware is involved after the suspend or the
3635 * device does not support any non-default power states, shut down the
3636 * device fully.
3637 *
3638 * If ASPM is not enabled for the device, shut down the device and allow
3639 * the PCI bus layer to put it into D3 in order to take the PCIe link
3640 * down, so as to allow the platform to achieve its minimum low-power
3641 * state (which may not be possible if the link is up).
3642 */
3643 if (pm_suspend_via_firmware() || !ctrl->npss ||
3644 !pcie_aspm_enabled(pdev) ||
3645 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3646 return nvme_disable_prepare_reset(ndev, true);
3647
3648 nvme_start_freeze(ctrl);
3649 nvme_wait_freeze(ctrl);
3650 nvme_sync_queues(ctrl);
3651
3652 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3653 goto unfreeze;
3654
3655 /*
3656 * Host memory access may not be successful in a system suspend state,
3657 * but the specification allows the controller to access memory in a
3658 * non-operational power state.
3659 */
3660 if (ndev->hmb) {
3661 ret = nvme_set_host_mem(ndev, 0);
3662 if (ret < 0)
3663 goto unfreeze;
3664 }
3665
3666 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3667 if (ret < 0)
3668 goto unfreeze;
3669
3670 /*
3671 * A saved state prevents pci pm from generically controlling the
3672 * device's power. If we're using protocol specific settings, we don't
3673 * want pci interfering.
3674 */
3675 pci_save_state(pdev);
3676
3677 ret = nvme_set_power_state(ctrl, ctrl->npss);
3678 if (ret < 0)
3679 goto unfreeze;
3680
3681 if (ret) {
3682 /* discard the saved state */
3683 pci_load_saved_state(pdev, NULL);
3684
3685 /*
3686 * Clearing npss forces a controller reset on resume. The
3687 * correct value will be rediscovered then.
3688 */
3689 ret = nvme_disable_prepare_reset(ndev, true);
3690 ctrl->npss = 0;
3691 }
3692 unfreeze:
3693 nvme_unfreeze(ctrl);
3694 return ret;
3695 }
3696
nvme_simple_suspend(struct device * dev)3697 static int nvme_simple_suspend(struct device *dev)
3698 {
3699 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3700
3701 return nvme_disable_prepare_reset(ndev, true);
3702 }
3703
nvme_simple_resume(struct device * dev)3704 static int nvme_simple_resume(struct device *dev)
3705 {
3706 struct pci_dev *pdev = to_pci_dev(dev);
3707 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3708
3709 return nvme_try_sched_reset(&ndev->ctrl);
3710 }
3711
3712 static const struct dev_pm_ops nvme_dev_pm_ops = {
3713 .suspend = nvme_suspend,
3714 .resume = nvme_resume,
3715 .freeze = nvme_simple_suspend,
3716 .thaw = nvme_simple_resume,
3717 .poweroff = nvme_simple_suspend,
3718 .restore = nvme_simple_resume,
3719 };
3720 #endif /* CONFIG_PM_SLEEP */
3721
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3722 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3723 pci_channel_state_t state)
3724 {
3725 struct nvme_dev *dev = pci_get_drvdata(pdev);
3726
3727 /*
3728 * A frozen channel requires a reset. When detected, this method will
3729 * shutdown the controller to quiesce. The controller will be restarted
3730 * after the slot reset through driver's slot_reset callback.
3731 */
3732 switch (state) {
3733 case pci_channel_io_normal:
3734 return PCI_ERS_RESULT_CAN_RECOVER;
3735 case pci_channel_io_frozen:
3736 dev_warn(dev->ctrl.device,
3737 "frozen state error detected, reset controller\n");
3738 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3739 nvme_dev_disable(dev, true);
3740 return PCI_ERS_RESULT_DISCONNECT;
3741 }
3742 nvme_dev_disable(dev, false);
3743 return PCI_ERS_RESULT_NEED_RESET;
3744 case pci_channel_io_perm_failure:
3745 dev_warn(dev->ctrl.device,
3746 "failure state error detected, request disconnect\n");
3747 return PCI_ERS_RESULT_DISCONNECT;
3748 }
3749 return PCI_ERS_RESULT_NEED_RESET;
3750 }
3751
nvme_slot_reset(struct pci_dev * pdev)3752 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3753 {
3754 struct nvme_dev *dev = pci_get_drvdata(pdev);
3755
3756 dev_info(dev->ctrl.device, "restart after slot reset\n");
3757 pci_restore_state(pdev);
3758 if (nvme_try_sched_reset(&dev->ctrl))
3759 nvme_unquiesce_io_queues(&dev->ctrl);
3760 return PCI_ERS_RESULT_RECOVERED;
3761 }
3762
nvme_error_resume(struct pci_dev * pdev)3763 static void nvme_error_resume(struct pci_dev *pdev)
3764 {
3765 struct nvme_dev *dev = pci_get_drvdata(pdev);
3766
3767 flush_work(&dev->ctrl.reset_work);
3768 }
3769
3770 static const struct pci_error_handlers nvme_err_handler = {
3771 .error_detected = nvme_error_detected,
3772 .slot_reset = nvme_slot_reset,
3773 .resume = nvme_error_resume,
3774 .reset_prepare = nvme_reset_prepare,
3775 .reset_done = nvme_reset_done,
3776 };
3777
3778 static const struct pci_device_id nvme_id_table[] = {
3779 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3780 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3781 NVME_QUIRK_DEALLOCATE_ZEROES, },
3782 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3783 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3784 NVME_QUIRK_DEALLOCATE_ZEROES, },
3785 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3786 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3787 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3788 NVME_QUIRK_BOGUS_NID, },
3789 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3790 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
3791 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3792 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3793 NVME_QUIRK_MEDIUM_PRIO_SQ |
3794 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3795 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3796 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3797 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3798 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3799 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3800 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3801 NVME_QUIRK_BOGUS_NID, },
3802 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3803 .driver_data = NVME_QUIRK_BOGUS_NID, },
3804 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3805 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3806 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */
3807 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3808 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3809 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3810 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3811 NVME_QUIRK_BOGUS_NID, },
3812 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3813 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3814 NVME_QUIRK_BOGUS_NID, },
3815 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3816 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3817 NVME_QUIRK_NO_NS_DESC_LIST, },
3818 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3819 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3820 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3821 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3822 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3823 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3824 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3825 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3826 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3827 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3828 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3829 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3830 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3831 .driver_data = NVME_QUIRK_BROKEN_MSI },
3832 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */
3833 .driver_data = NVME_QUIRK_BROKEN_MSI |
3834 NVME_QUIRK_NO_DEEPEST_PS },
3835 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3836 .driver_data = NVME_QUIRK_BOGUS_NID, },
3837 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3838 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3839 NVME_QUIRK_BOGUS_NID, },
3840 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3841 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3842 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3843 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3844 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3845 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3846 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3847 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3848 .driver_data = NVME_QUIRK_BOGUS_NID, },
3849 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3850 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3851 NVME_QUIRK_BOGUS_NID, },
3852 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3853 .driver_data = NVME_QUIRK_BOGUS_NID, },
3854 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3855 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3856 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3857 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3858 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3859 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3860 .driver_data = NVME_QUIRK_BOGUS_NID, },
3861 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3862 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3863 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3864 .driver_data = NVME_QUIRK_BOGUS_NID, },
3865 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3866 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3867 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3868 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3869 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3870 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3871 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3872 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3873 NVME_QUIRK_BOGUS_NID, },
3874 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3875 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3876 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3877 .driver_data = NVME_QUIRK_BOGUS_NID, },
3878 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3879 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3880 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3881 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3882 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3883 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3884 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3885 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3886 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3887 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3888 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3889 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3890 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3891 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3892 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3893 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3894 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3895 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3896 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3897 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3898 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3899 .driver_data = NVME_QUIRK_BOGUS_NID, },
3900 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3901 .driver_data = NVME_QUIRK_BOGUS_NID, },
3902 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3903 .driver_data = NVME_QUIRK_BOGUS_NID, },
3904 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3905 .driver_data = NVME_QUIRK_BOGUS_NID, },
3906 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3907 .driver_data = NVME_QUIRK_BOGUS_NID, },
3908 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3909 .driver_data = NVME_QUIRK_BOGUS_NID, },
3910 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3911 .driver_data = NVME_QUIRK_BOGUS_NID, },
3912 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3913 .driver_data = NVME_QUIRK_BOGUS_NID, },
3914 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3915 .driver_data = NVME_QUIRK_BOGUS_NID, },
3916 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3917 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3918 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3919 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3920 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */
3921 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3922 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3923 .driver_data = NVME_QUIRK_BOGUS_NID, },
3924 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3925 .driver_data = NVME_QUIRK_BOGUS_NID, },
3926 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3927 .driver_data = NVME_QUIRK_BOGUS_NID, },
3928 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3929 .driver_data = NVME_QUIRK_BOGUS_NID |
3930 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3931 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3932 .driver_data = NVME_QUIRK_BOGUS_NID, },
3933 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3934 .driver_data = NVME_QUIRK_BOGUS_NID, },
3935 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3936 .driver_data = NVME_QUIRK_BOGUS_NID, },
3937 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3938 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3939 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3940 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3941 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3942 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3943 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3944 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3945 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3946 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3947 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3948 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3949 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3950 /*
3951 * Fix for the Apple controller found in the MacBook8,1 and
3952 * some MacBook7,1 to avoid controller resets and data loss.
3953 */
3954 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3955 NVME_QUIRK_QDEPTH_ONE },
3956 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3957 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3958 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3959 NVME_QUIRK_128_BYTES_SQES |
3960 NVME_QUIRK_SHARED_TAGS |
3961 NVME_QUIRK_SKIP_CID_GEN |
3962 NVME_QUIRK_IDENTIFY_CNS },
3963 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3964 { 0, }
3965 };
3966 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3967
3968 static struct pci_driver nvme_driver = {
3969 .name = "nvme",
3970 .id_table = nvme_id_table,
3971 .probe = nvme_probe,
3972 .remove = nvme_remove,
3973 .shutdown = nvme_shutdown,
3974 .driver = {
3975 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3976 #ifdef CONFIG_PM_SLEEP
3977 .pm = &nvme_dev_pm_ops,
3978 #endif
3979 },
3980 .sriov_configure = pci_sriov_configure_simple,
3981 .err_handler = &nvme_err_handler,
3982 };
3983
nvme_init(void)3984 static int __init nvme_init(void)
3985 {
3986 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3987 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3988 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3989 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3990
3991 return pci_register_driver(&nvme_driver);
3992 }
3993
nvme_exit(void)3994 static void __exit nvme_exit(void)
3995 {
3996 pci_unregister_driver(&nvme_driver);
3997 flush_workqueue(nvme_wq);
3998 }
3999
4000 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
4001 MODULE_LICENSE("GPL");
4002 MODULE_VERSION("1.0");
4003 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
4004 module_init(nvme_init);
4005 module_exit(nvme_exit);
4006