xref: /linux/drivers/nvme/host/pci.c (revision a5beb58e53092f77b89181bec9d30c8bdced3103)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE	256
39 
40 /*
41  * Arbitrary upper bound.
42  */
43 #define NVME_MAX_BYTES		SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS	5
45 
46 /*
47  * For data SGLs we support a single descriptors worth of SGL entries.
48  * For PRPs, segments don't matter at all.
49  */
50 #define NVME_MAX_SEGS \
51 	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52 
53 /*
54  * For metadata SGLs, only the small descriptor is supported, and the first
55  * entry is the segment descriptor, which for the data pointer sits in the SQE.
56  */
57 #define NVME_MAX_META_SEGS \
58 	((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59 
60 /*
61  * The last entry is used to link to the next descriptor.
62  */
63 #define PRPS_PER_PAGE \
64 	(((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65 
66 /*
67  * I/O could be non-aligned both at the beginning and end.
68  */
69 #define MAX_PRP_RANGE \
70 	(NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71 
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 	(1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74 
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77 
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81 
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86 
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 		"Use SGLs when average request segment size is larger or equal to "
91 		"this size. Use 0 to disable SGLs.");
92 
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 	.set = io_queue_depth_set,
98 	.get = param_get_uint,
99 };
100 
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104 
io_queue_count_set(const char * val,const struct kernel_param * kp)105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 	unsigned int n;
108 	int ret;
109 
110 	ret = kstrtouint(val, 10, &n);
111 	if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 		return -EINVAL;
113 	return param_set_uint(val, kp);
114 }
115 
116 static const struct kernel_param_ops io_queue_count_ops = {
117 	.set = io_queue_count_set,
118 	.get = param_get_uint,
119 };
120 
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 	"Number of queues to use for writes. If not set, reads and writes "
125 	"will share a queue set.");
126 
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130 
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134 
135 struct nvme_dev;
136 struct nvme_queue;
137 
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141 
142 struct nvme_descriptor_pools {
143 	struct dma_pool *large;
144 	struct dma_pool *small;
145 };
146 
147 /*
148  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
149  */
150 struct nvme_dev {
151 	struct nvme_queue *queues;
152 	struct blk_mq_tag_set tagset;
153 	struct blk_mq_tag_set admin_tagset;
154 	u32 __iomem *dbs;
155 	struct device *dev;
156 	unsigned online_queues;
157 	unsigned max_qid;
158 	unsigned io_queues[HCTX_MAX_TYPES];
159 	unsigned int num_vecs;
160 	u32 q_depth;
161 	int io_sqes;
162 	u32 db_stride;
163 	void __iomem *bar;
164 	unsigned long bar_mapped_size;
165 	struct mutex shutdown_lock;
166 	bool subsystem;
167 	u64 cmb_size;
168 	bool cmb_use_sqes;
169 	u32 cmbsz;
170 	u32 cmbloc;
171 	struct nvme_ctrl ctrl;
172 	u32 last_ps;
173 	bool hmb;
174 	struct sg_table *hmb_sgt;
175 	mempool_t *dmavec_mempool;
176 
177 	/* shadow doorbell buffer support: */
178 	__le32 *dbbuf_dbs;
179 	dma_addr_t dbbuf_dbs_dma_addr;
180 	__le32 *dbbuf_eis;
181 	dma_addr_t dbbuf_eis_dma_addr;
182 
183 	/* host memory buffer support: */
184 	u64 host_mem_size;
185 	u32 nr_host_mem_descs;
186 	u32 host_mem_descs_size;
187 	dma_addr_t host_mem_descs_dma;
188 	struct nvme_host_mem_buf_desc *host_mem_descs;
189 	void **host_mem_desc_bufs;
190 	unsigned int nr_allocated_queues;
191 	unsigned int nr_write_queues;
192 	unsigned int nr_poll_queues;
193 	struct nvme_descriptor_pools descriptor_pools[];
194 };
195 
io_queue_depth_set(const char * val,const struct kernel_param * kp)196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
197 {
198 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
199 			NVME_PCI_MAX_QUEUE_SIZE);
200 }
201 
sq_idx(unsigned int qid,u32 stride)202 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
203 {
204 	return qid * 2 * stride;
205 }
206 
cq_idx(unsigned int qid,u32 stride)207 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
208 {
209 	return (qid * 2 + 1) * stride;
210 }
211 
to_nvme_dev(struct nvme_ctrl * ctrl)212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
213 {
214 	return container_of(ctrl, struct nvme_dev, ctrl);
215 }
216 
217 /*
218  * An NVM Express queue.  Each device has at least two (one for admin
219  * commands and one for I/O commands).
220  */
221 struct nvme_queue {
222 	struct nvme_dev *dev;
223 	struct nvme_descriptor_pools descriptor_pools;
224 	spinlock_t sq_lock;
225 	void *sq_cmds;
226 	 /* only used for poll queues: */
227 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
228 	struct nvme_completion *cqes;
229 	dma_addr_t sq_dma_addr;
230 	dma_addr_t cq_dma_addr;
231 	u32 __iomem *q_db;
232 	u32 q_depth;
233 	u16 cq_vector;
234 	u16 sq_tail;
235 	u16 last_sq_tail;
236 	u16 cq_head;
237 	u16 qid;
238 	u8 cq_phase;
239 	u8 sqes;
240 	unsigned long flags;
241 #define NVMEQ_ENABLED		0
242 #define NVMEQ_SQ_CMB		1
243 #define NVMEQ_DELETE_ERROR	2
244 #define NVMEQ_POLLED		3
245 	__le32 *dbbuf_sq_db;
246 	__le32 *dbbuf_cq_db;
247 	__le32 *dbbuf_sq_ei;
248 	__le32 *dbbuf_cq_ei;
249 	struct completion delete_done;
250 };
251 
252 /* bits for iod->flags */
253 enum nvme_iod_flags {
254 	/* this command has been aborted by the timeout handler */
255 	IOD_ABORTED		= 1U << 0,
256 
257 	/* uses the small descriptor pool */
258 	IOD_SMALL_DESCRIPTOR	= 1U << 1,
259 
260 	/* single segment dma mapping */
261 	IOD_SINGLE_SEGMENT	= 1U << 2,
262 
263 	/* Metadata using non-coalesced MPTR */
264 	IOD_SINGLE_META_SEGMENT	= 1U << 5,
265 };
266 
267 struct nvme_dma_vec {
268 	dma_addr_t addr;
269 	unsigned int len;
270 };
271 
272 /*
273  * The nvme_iod describes the data in an I/O.
274  */
275 struct nvme_iod {
276 	struct nvme_request req;
277 	struct nvme_command cmd;
278 	u8 flags;
279 	u8 nr_descriptors;
280 
281 	unsigned int total_len;
282 	struct dma_iova_state dma_state;
283 	void *descriptors[NVME_MAX_NR_DESCRIPTORS];
284 	struct nvme_dma_vec *dma_vecs;
285 	unsigned int nr_dma_vecs;
286 
287 	dma_addr_t meta_dma;
288 	unsigned int meta_total_len;
289 	struct dma_iova_state meta_dma_state;
290 	struct nvme_sgl_desc *meta_descriptor;
291 };
292 
nvme_dbbuf_size(struct nvme_dev * dev)293 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
294 {
295 	return dev->nr_allocated_queues * 8 * dev->db_stride;
296 }
297 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)298 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
299 {
300 	unsigned int mem_size = nvme_dbbuf_size(dev);
301 
302 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
303 		return;
304 
305 	if (dev->dbbuf_dbs) {
306 		/*
307 		 * Clear the dbbuf memory so the driver doesn't observe stale
308 		 * values from the previous instantiation.
309 		 */
310 		memset(dev->dbbuf_dbs, 0, mem_size);
311 		memset(dev->dbbuf_eis, 0, mem_size);
312 		return;
313 	}
314 
315 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
316 					    &dev->dbbuf_dbs_dma_addr,
317 					    GFP_KERNEL);
318 	if (!dev->dbbuf_dbs)
319 		goto fail;
320 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
321 					    &dev->dbbuf_eis_dma_addr,
322 					    GFP_KERNEL);
323 	if (!dev->dbbuf_eis)
324 		goto fail_free_dbbuf_dbs;
325 	return;
326 
327 fail_free_dbbuf_dbs:
328 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
329 			  dev->dbbuf_dbs_dma_addr);
330 	dev->dbbuf_dbs = NULL;
331 fail:
332 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
333 }
334 
nvme_dbbuf_dma_free(struct nvme_dev * dev)335 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
336 {
337 	unsigned int mem_size = nvme_dbbuf_size(dev);
338 
339 	if (dev->dbbuf_dbs) {
340 		dma_free_coherent(dev->dev, mem_size,
341 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
342 		dev->dbbuf_dbs = NULL;
343 	}
344 	if (dev->dbbuf_eis) {
345 		dma_free_coherent(dev->dev, mem_size,
346 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
347 		dev->dbbuf_eis = NULL;
348 	}
349 }
350 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)351 static void nvme_dbbuf_init(struct nvme_dev *dev,
352 			    struct nvme_queue *nvmeq, int qid)
353 {
354 	if (!dev->dbbuf_dbs || !qid)
355 		return;
356 
357 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
358 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
359 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
360 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
361 }
362 
nvme_dbbuf_free(struct nvme_queue * nvmeq)363 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
364 {
365 	if (!nvmeq->qid)
366 		return;
367 
368 	nvmeq->dbbuf_sq_db = NULL;
369 	nvmeq->dbbuf_cq_db = NULL;
370 	nvmeq->dbbuf_sq_ei = NULL;
371 	nvmeq->dbbuf_cq_ei = NULL;
372 }
373 
nvme_dbbuf_set(struct nvme_dev * dev)374 static void nvme_dbbuf_set(struct nvme_dev *dev)
375 {
376 	struct nvme_command c = { };
377 	unsigned int i;
378 
379 	if (!dev->dbbuf_dbs)
380 		return;
381 
382 	c.dbbuf.opcode = nvme_admin_dbbuf;
383 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
384 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
385 
386 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
387 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
388 		/* Free memory and continue on */
389 		nvme_dbbuf_dma_free(dev);
390 
391 		for (i = 1; i <= dev->online_queues; i++)
392 			nvme_dbbuf_free(&dev->queues[i]);
393 	}
394 }
395 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)396 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
397 {
398 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
399 }
400 
401 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)402 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
403 					      volatile __le32 *dbbuf_ei)
404 {
405 	if (dbbuf_db) {
406 		u16 old_value, event_idx;
407 
408 		/*
409 		 * Ensure that the queue is written before updating
410 		 * the doorbell in memory
411 		 */
412 		wmb();
413 
414 		old_value = le32_to_cpu(*dbbuf_db);
415 		*dbbuf_db = cpu_to_le32(value);
416 
417 		/*
418 		 * Ensure that the doorbell is updated before reading the event
419 		 * index from memory.  The controller needs to provide similar
420 		 * ordering to ensure the event index is updated before reading
421 		 * the doorbell.
422 		 */
423 		mb();
424 
425 		event_idx = le32_to_cpu(*dbbuf_ei);
426 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
427 			return false;
428 	}
429 
430 	return true;
431 }
432 
433 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)434 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
435 {
436 	struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
437 	size_t small_align = NVME_SMALL_POOL_SIZE;
438 
439 	if (pools->small)
440 		return pools; /* already initialized */
441 
442 	pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
443 			NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
444 	if (!pools->large)
445 		return ERR_PTR(-ENOMEM);
446 
447 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
448 		small_align = 512;
449 
450 	pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
451 			NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
452 	if (!pools->small) {
453 		dma_pool_destroy(pools->large);
454 		pools->large = NULL;
455 		return ERR_PTR(-ENOMEM);
456 	}
457 
458 	return pools;
459 }
460 
nvme_release_descriptor_pools(struct nvme_dev * dev)461 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
462 {
463 	unsigned i;
464 
465 	for (i = 0; i < nr_node_ids; i++) {
466 		struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
467 
468 		dma_pool_destroy(pools->large);
469 		dma_pool_destroy(pools->small);
470 	}
471 }
472 
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)473 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
474 		unsigned qid)
475 {
476 	struct nvme_dev *dev = to_nvme_dev(data);
477 	struct nvme_queue *nvmeq = &dev->queues[qid];
478 	struct nvme_descriptor_pools *pools;
479 	struct blk_mq_tags *tags;
480 
481 	tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
482 	WARN_ON(tags != hctx->tags);
483 	pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
484 	if (IS_ERR(pools))
485 		return PTR_ERR(pools);
486 
487 	nvmeq->descriptor_pools = *pools;
488 	hctx->driver_data = nvmeq;
489 	return 0;
490 }
491 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)492 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
493 				unsigned int hctx_idx)
494 {
495 	WARN_ON(hctx_idx != 0);
496 	return nvme_init_hctx_common(hctx, data, 0);
497 }
498 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)499 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
500 			     unsigned int hctx_idx)
501 {
502 	return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
503 }
504 
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)505 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
506 		struct request *req, unsigned int hctx_idx,
507 		unsigned int numa_node)
508 {
509 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
510 
511 	nvme_req(req)->ctrl = set->driver_data;
512 	nvme_req(req)->cmd = &iod->cmd;
513 	return 0;
514 }
515 
queue_irq_offset(struct nvme_dev * dev)516 static int queue_irq_offset(struct nvme_dev *dev)
517 {
518 	/* if we have more than 1 vec, admin queue offsets us by 1 */
519 	if (dev->num_vecs > 1)
520 		return 1;
521 
522 	return 0;
523 }
524 
nvme_pci_map_queues(struct blk_mq_tag_set * set)525 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
526 {
527 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
528 	int i, qoff, offset;
529 
530 	offset = queue_irq_offset(dev);
531 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
532 		struct blk_mq_queue_map *map = &set->map[i];
533 
534 		map->nr_queues = dev->io_queues[i];
535 		if (!map->nr_queues) {
536 			BUG_ON(i == HCTX_TYPE_DEFAULT);
537 			continue;
538 		}
539 
540 		/*
541 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
542 		 * affinity), so use the regular blk-mq cpu mapping
543 		 */
544 		map->queue_offset = qoff;
545 		if (i != HCTX_TYPE_POLL && offset)
546 			blk_mq_map_hw_queues(map, dev->dev, offset);
547 		else
548 			blk_mq_map_queues(map);
549 		qoff += map->nr_queues;
550 		offset += map->nr_queues;
551 	}
552 }
553 
554 /*
555  * Write sq tail if we are asked to, or if the next command would wrap.
556  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)557 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
558 {
559 	if (!write_sq) {
560 		u16 next_tail = nvmeq->sq_tail + 1;
561 
562 		if (next_tail == nvmeq->q_depth)
563 			next_tail = 0;
564 		if (next_tail != nvmeq->last_sq_tail)
565 			return;
566 	}
567 
568 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
569 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
570 		writel(nvmeq->sq_tail, nvmeq->q_db);
571 	nvmeq->last_sq_tail = nvmeq->sq_tail;
572 }
573 
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)574 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
575 				    struct nvme_command *cmd)
576 {
577 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
578 		absolute_pointer(cmd), sizeof(*cmd));
579 	if (++nvmeq->sq_tail == nvmeq->q_depth)
580 		nvmeq->sq_tail = 0;
581 }
582 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)583 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
584 {
585 	struct nvme_queue *nvmeq = hctx->driver_data;
586 
587 	spin_lock(&nvmeq->sq_lock);
588 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
589 		nvme_write_sq_db(nvmeq, true);
590 	spin_unlock(&nvmeq->sq_lock);
591 }
592 
593 enum nvme_use_sgl {
594 	SGL_UNSUPPORTED,
595 	SGL_SUPPORTED,
596 	SGL_FORCED,
597 };
598 
nvme_pci_metadata_use_sgls(struct request * req)599 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
600 {
601 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
602 	struct nvme_dev *dev = nvmeq->dev;
603 
604 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
605 		return false;
606 	return req->nr_integrity_segments > 1 ||
607 		nvme_req(req)->flags & NVME_REQ_USERCMD;
608 }
609 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)610 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
611 		struct request *req)
612 {
613 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
614 
615 	if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
616 		if (nvme_req(req)->flags & NVME_REQ_USERCMD)
617 			return SGL_FORCED;
618 		if (req->nr_integrity_segments > 1)
619 			return SGL_FORCED;
620 		return SGL_SUPPORTED;
621 	}
622 
623 	return SGL_UNSUPPORTED;
624 }
625 
nvme_pci_avg_seg_size(struct request * req)626 static unsigned int nvme_pci_avg_seg_size(struct request *req)
627 {
628 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
629 	unsigned int nseg;
630 
631 	if (blk_rq_dma_map_coalesce(&iod->dma_state))
632 		nseg = 1;
633 	else
634 		nseg = blk_rq_nr_phys_segments(req);
635 	return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
636 }
637 
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)638 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
639 		struct nvme_iod *iod)
640 {
641 	if (iod->flags & IOD_SMALL_DESCRIPTOR)
642 		return nvmeq->descriptor_pools.small;
643 	return nvmeq->descriptor_pools.large;
644 }
645 
nvme_pci_cmd_use_meta_sgl(struct nvme_command * cmd)646 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd)
647 {
648 	return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG;
649 }
650 
nvme_pci_cmd_use_sgl(struct nvme_command * cmd)651 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
652 {
653 	return cmd->common.flags &
654 		(NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
655 }
656 
nvme_pci_first_desc_dma_addr(struct nvme_command * cmd)657 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
658 {
659 	if (nvme_pci_cmd_use_sgl(cmd))
660 		return le64_to_cpu(cmd->common.dptr.sgl.addr);
661 	return le64_to_cpu(cmd->common.dptr.prp2);
662 }
663 
nvme_free_descriptors(struct request * req)664 static void nvme_free_descriptors(struct request *req)
665 {
666 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
667 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
668 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
669 	dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
670 	int i;
671 
672 	if (iod->nr_descriptors == 1) {
673 		dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
674 				dma_addr);
675 		return;
676 	}
677 
678 	for (i = 0; i < iod->nr_descriptors; i++) {
679 		__le64 *prp_list = iod->descriptors[i];
680 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
681 
682 		dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
683 				dma_addr);
684 		dma_addr = next_dma_addr;
685 	}
686 }
687 
nvme_free_prps(struct request * req)688 static void nvme_free_prps(struct request *req)
689 {
690 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
691 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
692 	unsigned int i;
693 
694 	for (i = 0; i < iod->nr_dma_vecs; i++)
695 		dma_unmap_page(nvmeq->dev->dev, iod->dma_vecs[i].addr,
696 				iod->dma_vecs[i].len, rq_dma_dir(req));
697 	mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
698 }
699 
nvme_free_sgls(struct request * req,struct nvme_sgl_desc * sge,struct nvme_sgl_desc * sg_list)700 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge,
701 		struct nvme_sgl_desc *sg_list)
702 {
703 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
704 	enum dma_data_direction dir = rq_dma_dir(req);
705 	unsigned int len = le32_to_cpu(sge->length);
706 	struct device *dma_dev = nvmeq->dev->dev;
707 	unsigned int i;
708 
709 	if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
710 		dma_unmap_page(dma_dev, le64_to_cpu(sge->addr), len, dir);
711 		return;
712 	}
713 
714 	for (i = 0; i < len / sizeof(*sg_list); i++)
715 		dma_unmap_page(dma_dev, le64_to_cpu(sg_list[i].addr),
716 			le32_to_cpu(sg_list[i].length), dir);
717 }
718 
nvme_unmap_metadata(struct request * req)719 static void nvme_unmap_metadata(struct request *req)
720 {
721 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
722 	enum dma_data_direction dir = rq_dma_dir(req);
723 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
724 	struct device *dma_dev = nvmeq->dev->dev;
725 	struct nvme_sgl_desc *sge = iod->meta_descriptor;
726 
727 	if (iod->flags & IOD_SINGLE_META_SEGMENT) {
728 		dma_unmap_page(dma_dev, iod->meta_dma,
729 			       rq_integrity_vec(req).bv_len,
730 			       rq_dma_dir(req));
731 		return;
732 	}
733 
734 	if (!blk_rq_integrity_dma_unmap(req, dma_dev, &iod->meta_dma_state,
735 					iod->meta_total_len)) {
736 		if (nvme_pci_cmd_use_meta_sgl(&iod->cmd))
737 			nvme_free_sgls(req, sge, &sge[1]);
738 		else
739 			dma_unmap_page(dma_dev, iod->meta_dma,
740 				       iod->meta_total_len, dir);
741 	}
742 
743 	if (iod->meta_descriptor)
744 		dma_pool_free(nvmeq->descriptor_pools.small,
745 			      iod->meta_descriptor, iod->meta_dma);
746 }
747 
nvme_unmap_data(struct request * req)748 static void nvme_unmap_data(struct request *req)
749 {
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
752 	struct device *dma_dev = nvmeq->dev->dev;
753 
754 	if (iod->flags & IOD_SINGLE_SEGMENT) {
755 		static_assert(offsetof(union nvme_data_ptr, prp1) ==
756 				offsetof(union nvme_data_ptr, sgl.addr));
757 		dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
758 				iod->total_len, rq_dma_dir(req));
759 		return;
760 	}
761 
762 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len)) {
763 		if (nvme_pci_cmd_use_sgl(&iod->cmd))
764 			nvme_free_sgls(req, iod->descriptors[0],
765 				       &iod->cmd.common.dptr.sgl);
766 		else
767 			nvme_free_prps(req);
768 	}
769 
770 	if (iod->nr_descriptors)
771 		nvme_free_descriptors(req);
772 }
773 
nvme_pci_prp_iter_next(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)774 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
775 		struct blk_dma_iter *iter)
776 {
777 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
778 
779 	if (iter->len)
780 		return true;
781 	if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
782 		return false;
783 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) {
784 		iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
785 		iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
786 		iod->nr_dma_vecs++;
787 	}
788 	return true;
789 }
790 
nvme_pci_setup_data_prp(struct request * req,struct blk_dma_iter * iter)791 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
792 		struct blk_dma_iter *iter)
793 {
794 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
795 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
796 	unsigned int length = blk_rq_payload_bytes(req);
797 	dma_addr_t prp1_dma, prp2_dma = 0;
798 	unsigned int prp_len, i;
799 	__le64 *prp_list;
800 
801 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) {
802 		iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
803 				GFP_ATOMIC);
804 		if (!iod->dma_vecs)
805 			return BLK_STS_RESOURCE;
806 		iod->dma_vecs[0].addr = iter->addr;
807 		iod->dma_vecs[0].len = iter->len;
808 		iod->nr_dma_vecs = 1;
809 	}
810 
811 	/*
812 	 * PRP1 always points to the start of the DMA transfers.
813 	 *
814 	 * This is the only PRP (except for the list entries) that could be
815 	 * non-aligned.
816 	 */
817 	prp1_dma = iter->addr;
818 	prp_len = min(length, NVME_CTRL_PAGE_SIZE -
819 			(iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
820 	iod->total_len += prp_len;
821 	iter->addr += prp_len;
822 	iter->len -= prp_len;
823 	length -= prp_len;
824 	if (!length)
825 		goto done;
826 
827 	if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
828 		if (WARN_ON_ONCE(!iter->status))
829 			goto bad_sgl;
830 		goto done;
831 	}
832 
833 	/*
834 	 * PRP2 is usually a list, but can point to data if all data to be
835 	 * transferred fits into PRP1 + PRP2:
836 	 */
837 	if (length <= NVME_CTRL_PAGE_SIZE) {
838 		prp2_dma = iter->addr;
839 		iod->total_len += length;
840 		goto done;
841 	}
842 
843 	if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
844 	    NVME_SMALL_POOL_SIZE / sizeof(__le64))
845 		iod->flags |= IOD_SMALL_DESCRIPTOR;
846 
847 	prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
848 			&prp2_dma);
849 	if (!prp_list) {
850 		iter->status = BLK_STS_RESOURCE;
851 		goto done;
852 	}
853 	iod->descriptors[iod->nr_descriptors++] = prp_list;
854 
855 	i = 0;
856 	for (;;) {
857 		prp_list[i++] = cpu_to_le64(iter->addr);
858 		prp_len = min(length, NVME_CTRL_PAGE_SIZE);
859 		if (WARN_ON_ONCE(iter->len < prp_len))
860 			goto bad_sgl;
861 
862 		iod->total_len += prp_len;
863 		iter->addr += prp_len;
864 		iter->len -= prp_len;
865 		length -= prp_len;
866 		if (!length)
867 			break;
868 
869 		if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
870 			if (WARN_ON_ONCE(!iter->status))
871 				goto bad_sgl;
872 			goto done;
873 		}
874 
875 		/*
876 		 * If we've filled the entire descriptor, allocate a new that is
877 		 * pointed to be the last entry in the previous PRP list.  To
878 		 * accommodate for that move the last actual entry to the new
879 		 * descriptor.
880 		 */
881 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
882 			__le64 *old_prp_list = prp_list;
883 			dma_addr_t prp_list_dma;
884 
885 			prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
886 					GFP_ATOMIC, &prp_list_dma);
887 			if (!prp_list) {
888 				iter->status = BLK_STS_RESOURCE;
889 				goto done;
890 			}
891 			iod->descriptors[iod->nr_descriptors++] = prp_list;
892 
893 			prp_list[0] = old_prp_list[i - 1];
894 			old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
895 			i = 1;
896 		}
897 	}
898 
899 done:
900 	/*
901 	 * nvme_unmap_data uses the DPT field in the SQE to tear down the
902 	 * mapping, so initialize it even for failures.
903 	 */
904 	iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
905 	iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
906 	if (unlikely(iter->status))
907 		nvme_unmap_data(req);
908 	return iter->status;
909 
910 bad_sgl:
911 	dev_err_once(nvmeq->dev->dev,
912 		"Incorrectly formed request for payload:%d nents:%d\n",
913 		blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
914 	return BLK_STS_IOERR;
915 }
916 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct blk_dma_iter * iter)917 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
918 		struct blk_dma_iter *iter)
919 {
920 	sge->addr = cpu_to_le64(iter->addr);
921 	sge->length = cpu_to_le32(iter->len);
922 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
923 }
924 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)925 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
926 		dma_addr_t dma_addr, int entries)
927 {
928 	sge->addr = cpu_to_le64(dma_addr);
929 	sge->length = cpu_to_le32(entries * sizeof(*sge));
930 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
931 }
932 
nvme_pci_setup_data_sgl(struct request * req,struct blk_dma_iter * iter)933 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
934 		struct blk_dma_iter *iter)
935 {
936 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
937 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
938 	unsigned int entries = blk_rq_nr_phys_segments(req);
939 	struct nvme_sgl_desc *sg_list;
940 	dma_addr_t sgl_dma;
941 	unsigned int mapped = 0;
942 
943 	/* set the transfer type as SGL */
944 	iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
945 
946 	if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
947 		nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
948 		iod->total_len += iter->len;
949 		return BLK_STS_OK;
950 	}
951 
952 	if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
953 		iod->flags |= IOD_SMALL_DESCRIPTOR;
954 
955 	sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
956 			&sgl_dma);
957 	if (!sg_list)
958 		return BLK_STS_RESOURCE;
959 	iod->descriptors[iod->nr_descriptors++] = sg_list;
960 
961 	do {
962 		if (WARN_ON_ONCE(mapped == entries)) {
963 			iter->status = BLK_STS_IOERR;
964 			break;
965 		}
966 		nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
967 		iod->total_len += iter->len;
968 	} while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
969 				iter));
970 
971 	nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
972 	if (unlikely(iter->status))
973 		nvme_unmap_data(req);
974 	return iter->status;
975 }
976 
nvme_pci_setup_data_simple(struct request * req,enum nvme_use_sgl use_sgl)977 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
978 		enum nvme_use_sgl use_sgl)
979 {
980 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
981 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
982 	struct bio_vec bv = req_bvec(req);
983 	unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
984 	bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
985 	dma_addr_t dma_addr;
986 
987 	if (!use_sgl && !prp_possible)
988 		return BLK_STS_AGAIN;
989 	if (is_pci_p2pdma_page(bv.bv_page))
990 		return BLK_STS_AGAIN;
991 
992 	dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
993 	if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
994 		return BLK_STS_RESOURCE;
995 	iod->total_len = bv.bv_len;
996 	iod->flags |= IOD_SINGLE_SEGMENT;
997 
998 	if (use_sgl == SGL_FORCED || !prp_possible) {
999 		iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1000 		iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
1001 		iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
1002 		iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
1003 	} else {
1004 		unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
1005 
1006 		iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
1007 		iod->cmd.common.dptr.prp2 = 0;
1008 		if (bv.bv_len > first_prp_len)
1009 			iod->cmd.common.dptr.prp2 =
1010 				cpu_to_le64(dma_addr + first_prp_len);
1011 	}
1012 
1013 	return BLK_STS_OK;
1014 }
1015 
nvme_map_data(struct request * req)1016 static blk_status_t nvme_map_data(struct request *req)
1017 {
1018 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1019 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1020 	struct nvme_dev *dev = nvmeq->dev;
1021 	enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
1022 	struct blk_dma_iter iter;
1023 	blk_status_t ret;
1024 
1025 	/*
1026 	 * Try to skip the DMA iterator for single segment requests, as that
1027 	 * significantly improves performances for small I/O sizes.
1028 	 */
1029 	if (blk_rq_nr_phys_segments(req) == 1) {
1030 		ret = nvme_pci_setup_data_simple(req, use_sgl);
1031 		if (ret != BLK_STS_AGAIN)
1032 			return ret;
1033 	}
1034 
1035 	if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1036 		return iter.status;
1037 
1038 	if (use_sgl == SGL_FORCED ||
1039 	    (use_sgl == SGL_SUPPORTED &&
1040 	     (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1041 		return nvme_pci_setup_data_sgl(req, &iter);
1042 	return nvme_pci_setup_data_prp(req, &iter);
1043 }
1044 
nvme_pci_setup_meta_iter(struct request * req)1045 static blk_status_t nvme_pci_setup_meta_iter(struct request *req)
1046 {
1047 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1048 	unsigned int entries = req->nr_integrity_segments;
1049 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1050 	struct nvme_dev *dev = nvmeq->dev;
1051 	struct nvme_sgl_desc *sg_list;
1052 	struct blk_dma_iter iter;
1053 	dma_addr_t sgl_dma;
1054 	int i = 0;
1055 
1056 	if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev,
1057 						&iod->meta_dma_state, &iter))
1058 		return iter.status;
1059 
1060 	if (blk_rq_dma_map_coalesce(&iod->meta_dma_state))
1061 		entries = 1;
1062 
1063 	/*
1064 	 * The NVMe MPTR descriptor has an implicit length that the host and
1065 	 * device must agree on to avoid data/memory corruption. We trust the
1066 	 * kernel allocated correctly based on the format's parameters, so use
1067 	 * the more efficient MPTR to avoid extra dma pool allocations for the
1068 	 * SGL indirection.
1069 	 *
1070 	 * But for user commands, we don't necessarily know what they do, so
1071 	 * the driver can't validate the metadata buffer size. The SGL
1072 	 * descriptor provides an explicit length, so we're relying on that
1073 	 * mechanism to catch any misunderstandings between the application and
1074 	 * device.
1075 	 *
1076 	 * P2P DMA also needs to use the blk_dma_iter method, so mptr setup
1077 	 * leverages this routine when that happens.
1078 	 */
1079 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) ||
1080 	    (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) {
1081 		iod->cmd.common.metadata = cpu_to_le64(iter.addr);
1082 		iod->meta_total_len = iter.len;
1083 		iod->meta_dma = iter.addr;
1084 		iod->meta_descriptor = NULL;
1085 		return BLK_STS_OK;
1086 	}
1087 
1088 	sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1089 			&sgl_dma);
1090 	if (!sg_list)
1091 		return BLK_STS_RESOURCE;
1092 
1093 	iod->meta_descriptor = sg_list;
1094 	iod->meta_dma = sgl_dma;
1095 	iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1096 	iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1097 	if (entries == 1) {
1098 		iod->meta_total_len = iter.len;
1099 		nvme_pci_sgl_set_data(sg_list, &iter);
1100 		return BLK_STS_OK;
1101 	}
1102 
1103 	sgl_dma += sizeof(*sg_list);
1104 	do {
1105 		nvme_pci_sgl_set_data(&sg_list[++i], &iter);
1106 		iod->meta_total_len += iter.len;
1107 	} while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter));
1108 
1109 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, i);
1110 	if (unlikely(iter.status))
1111 		nvme_unmap_metadata(req);
1112 	return iter.status;
1113 }
1114 
nvme_pci_setup_meta_mptr(struct request * req)1115 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1116 {
1117 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1118 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1119 	struct bio_vec bv = rq_integrity_vec(req);
1120 
1121 	if (is_pci_p2pdma_page(bv.bv_page))
1122 		return nvme_pci_setup_meta_iter(req);
1123 
1124 	iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1125 	if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1126 		return BLK_STS_IOERR;
1127 	iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1128 	iod->flags |= IOD_SINGLE_META_SEGMENT;
1129 	return BLK_STS_OK;
1130 }
1131 
nvme_map_metadata(struct request * req)1132 static blk_status_t nvme_map_metadata(struct request *req)
1133 {
1134 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1135 
1136 	if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1137 	    nvme_pci_metadata_use_sgls(req))
1138 		return nvme_pci_setup_meta_iter(req);
1139 	return nvme_pci_setup_meta_mptr(req);
1140 }
1141 
nvme_prep_rq(struct request * req)1142 static blk_status_t nvme_prep_rq(struct request *req)
1143 {
1144 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1145 	blk_status_t ret;
1146 
1147 	iod->flags = 0;
1148 	iod->nr_descriptors = 0;
1149 	iod->total_len = 0;
1150 	iod->meta_total_len = 0;
1151 
1152 	ret = nvme_setup_cmd(req->q->queuedata, req);
1153 	if (ret)
1154 		return ret;
1155 
1156 	if (blk_rq_nr_phys_segments(req)) {
1157 		ret = nvme_map_data(req);
1158 		if (ret)
1159 			goto out_free_cmd;
1160 	}
1161 
1162 	if (blk_integrity_rq(req)) {
1163 		ret = nvme_map_metadata(req);
1164 		if (ret)
1165 			goto out_unmap_data;
1166 	}
1167 
1168 	nvme_start_request(req);
1169 	return BLK_STS_OK;
1170 out_unmap_data:
1171 	if (blk_rq_nr_phys_segments(req))
1172 		nvme_unmap_data(req);
1173 out_free_cmd:
1174 	nvme_cleanup_cmd(req);
1175 	return ret;
1176 }
1177 
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1178 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1179 			 const struct blk_mq_queue_data *bd)
1180 {
1181 	struct nvme_queue *nvmeq = hctx->driver_data;
1182 	struct nvme_dev *dev = nvmeq->dev;
1183 	struct request *req = bd->rq;
1184 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1185 	blk_status_t ret;
1186 
1187 	/*
1188 	 * We should not need to do this, but we're still using this to
1189 	 * ensure we can drain requests on a dying queue.
1190 	 */
1191 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1192 		return BLK_STS_IOERR;
1193 
1194 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1195 		return nvme_fail_nonready_command(&dev->ctrl, req);
1196 
1197 	ret = nvme_prep_rq(req);
1198 	if (unlikely(ret))
1199 		return ret;
1200 	spin_lock(&nvmeq->sq_lock);
1201 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1202 	nvme_write_sq_db(nvmeq, bd->last);
1203 	spin_unlock(&nvmeq->sq_lock);
1204 	return BLK_STS_OK;
1205 }
1206 
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1207 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1208 {
1209 	struct request *req;
1210 
1211 	if (rq_list_empty(rqlist))
1212 		return;
1213 
1214 	spin_lock(&nvmeq->sq_lock);
1215 	while ((req = rq_list_pop(rqlist))) {
1216 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1217 
1218 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1219 	}
1220 	nvme_write_sq_db(nvmeq, true);
1221 	spin_unlock(&nvmeq->sq_lock);
1222 }
1223 
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1224 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1225 {
1226 	/*
1227 	 * We should not need to do this, but we're still using this to
1228 	 * ensure we can drain requests on a dying queue.
1229 	 */
1230 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1231 		return false;
1232 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1233 		return false;
1234 
1235 	return nvme_prep_rq(req) == BLK_STS_OK;
1236 }
1237 
nvme_queue_rqs(struct rq_list * rqlist)1238 static void nvme_queue_rqs(struct rq_list *rqlist)
1239 {
1240 	struct rq_list submit_list = { };
1241 	struct rq_list requeue_list = { };
1242 	struct nvme_queue *nvmeq = NULL;
1243 	struct request *req;
1244 
1245 	while ((req = rq_list_pop(rqlist))) {
1246 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1247 			nvme_submit_cmds(nvmeq, &submit_list);
1248 		nvmeq = req->mq_hctx->driver_data;
1249 
1250 		if (nvme_prep_rq_batch(nvmeq, req))
1251 			rq_list_add_tail(&submit_list, req);
1252 		else
1253 			rq_list_add_tail(&requeue_list, req);
1254 	}
1255 
1256 	if (nvmeq)
1257 		nvme_submit_cmds(nvmeq, &submit_list);
1258 	*rqlist = requeue_list;
1259 }
1260 
nvme_pci_unmap_rq(struct request * req)1261 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1262 {
1263 	if (blk_integrity_rq(req))
1264 		nvme_unmap_metadata(req);
1265 	if (blk_rq_nr_phys_segments(req))
1266 		nvme_unmap_data(req);
1267 }
1268 
nvme_pci_complete_rq(struct request * req)1269 static void nvme_pci_complete_rq(struct request *req)
1270 {
1271 	nvme_pci_unmap_rq(req);
1272 	nvme_complete_rq(req);
1273 }
1274 
nvme_pci_complete_batch(struct io_comp_batch * iob)1275 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1276 {
1277 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1278 }
1279 
1280 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1281 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1282 {
1283 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1284 
1285 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1286 }
1287 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1288 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1289 {
1290 	u16 head = nvmeq->cq_head;
1291 
1292 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1293 					      nvmeq->dbbuf_cq_ei))
1294 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1295 }
1296 
nvme_queue_tagset(struct nvme_queue * nvmeq)1297 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1298 {
1299 	if (!nvmeq->qid)
1300 		return nvmeq->dev->admin_tagset.tags[0];
1301 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1302 }
1303 
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1304 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1305 				   struct io_comp_batch *iob, u16 idx)
1306 {
1307 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1308 	__u16 command_id = READ_ONCE(cqe->command_id);
1309 	struct request *req;
1310 
1311 	/*
1312 	 * AEN requests are special as they don't time out and can
1313 	 * survive any kind of queue freeze and often don't respond to
1314 	 * aborts.  We don't even bother to allocate a struct request
1315 	 * for them but rather special case them here.
1316 	 */
1317 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1318 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1319 				cqe->status, &cqe->result);
1320 		return;
1321 	}
1322 
1323 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1324 	if (unlikely(!req)) {
1325 		dev_warn(nvmeq->dev->ctrl.device,
1326 			"invalid id %d completed on queue %d\n",
1327 			command_id, le16_to_cpu(cqe->sq_id));
1328 		return;
1329 	}
1330 
1331 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1332 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1333 	    !blk_mq_add_to_batch(req, iob,
1334 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1335 				 nvme_pci_complete_batch))
1336 		nvme_pci_complete_rq(req);
1337 }
1338 
nvme_update_cq_head(struct nvme_queue * nvmeq)1339 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1340 {
1341 	u32 tmp = nvmeq->cq_head + 1;
1342 
1343 	if (tmp == nvmeq->q_depth) {
1344 		nvmeq->cq_head = 0;
1345 		nvmeq->cq_phase ^= 1;
1346 	} else {
1347 		nvmeq->cq_head = tmp;
1348 	}
1349 }
1350 
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1351 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1352 			        struct io_comp_batch *iob)
1353 {
1354 	bool found = false;
1355 
1356 	while (nvme_cqe_pending(nvmeq)) {
1357 		found = true;
1358 		/*
1359 		 * load-load control dependency between phase and the rest of
1360 		 * the cqe requires a full read memory barrier
1361 		 */
1362 		dma_rmb();
1363 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1364 		nvme_update_cq_head(nvmeq);
1365 	}
1366 
1367 	if (found)
1368 		nvme_ring_cq_doorbell(nvmeq);
1369 	return found;
1370 }
1371 
nvme_irq(int irq,void * data)1372 static irqreturn_t nvme_irq(int irq, void *data)
1373 {
1374 	struct nvme_queue *nvmeq = data;
1375 	DEFINE_IO_COMP_BATCH(iob);
1376 
1377 	if (nvme_poll_cq(nvmeq, &iob)) {
1378 		if (!rq_list_empty(&iob.req_list))
1379 			nvme_pci_complete_batch(&iob);
1380 		return IRQ_HANDLED;
1381 	}
1382 	return IRQ_NONE;
1383 }
1384 
nvme_irq_check(int irq,void * data)1385 static irqreturn_t nvme_irq_check(int irq, void *data)
1386 {
1387 	struct nvme_queue *nvmeq = data;
1388 
1389 	if (nvme_cqe_pending(nvmeq))
1390 		return IRQ_WAKE_THREAD;
1391 	return IRQ_NONE;
1392 }
1393 
1394 /*
1395  * Poll for completions for any interrupt driven queue
1396  * Can be called from any context.
1397  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1398 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1399 {
1400 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1401 
1402 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1403 
1404 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1405 	spin_lock(&nvmeq->cq_poll_lock);
1406 	nvme_poll_cq(nvmeq, NULL);
1407 	spin_unlock(&nvmeq->cq_poll_lock);
1408 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1409 }
1410 
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1411 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1412 {
1413 	struct nvme_queue *nvmeq = hctx->driver_data;
1414 	bool found;
1415 
1416 	if (!nvme_cqe_pending(nvmeq))
1417 		return 0;
1418 
1419 	spin_lock(&nvmeq->cq_poll_lock);
1420 	found = nvme_poll_cq(nvmeq, iob);
1421 	spin_unlock(&nvmeq->cq_poll_lock);
1422 
1423 	return found;
1424 }
1425 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1426 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1427 {
1428 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1429 	struct nvme_queue *nvmeq = &dev->queues[0];
1430 	struct nvme_command c = { };
1431 
1432 	c.common.opcode = nvme_admin_async_event;
1433 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1434 
1435 	spin_lock(&nvmeq->sq_lock);
1436 	nvme_sq_copy_cmd(nvmeq, &c);
1437 	nvme_write_sq_db(nvmeq, true);
1438 	spin_unlock(&nvmeq->sq_lock);
1439 }
1440 
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1441 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1442 {
1443 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1444 	int ret = 0;
1445 
1446 	/*
1447 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1448 	 * altered by reset_work. Holding this lock before the RESETTING state
1449 	 * change, if successful, also ensures nvme_remove won't be able to
1450 	 * proceed to iounmap until we're done.
1451 	 */
1452 	mutex_lock(&dev->shutdown_lock);
1453 	if (!dev->bar_mapped_size) {
1454 		ret = -ENODEV;
1455 		goto unlock;
1456 	}
1457 
1458 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1459 		ret = -EBUSY;
1460 		goto unlock;
1461 	}
1462 
1463 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1464 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1465 
1466 	/*
1467 	 * Read controller status to flush the previous write and trigger a
1468 	 * pcie read error.
1469 	 */
1470 	readl(dev->bar + NVME_REG_CSTS);
1471 unlock:
1472 	mutex_unlock(&dev->shutdown_lock);
1473 	return ret;
1474 }
1475 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1476 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1477 {
1478 	struct nvme_command c = { };
1479 
1480 	c.delete_queue.opcode = opcode;
1481 	c.delete_queue.qid = cpu_to_le16(id);
1482 
1483 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1484 }
1485 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1486 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1487 		struct nvme_queue *nvmeq, s16 vector)
1488 {
1489 	struct nvme_command c = { };
1490 	int flags = NVME_QUEUE_PHYS_CONTIG;
1491 
1492 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1493 		flags |= NVME_CQ_IRQ_ENABLED;
1494 
1495 	/*
1496 	 * Note: we (ab)use the fact that the prp fields survive if no data
1497 	 * is attached to the request.
1498 	 */
1499 	c.create_cq.opcode = nvme_admin_create_cq;
1500 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1501 	c.create_cq.cqid = cpu_to_le16(qid);
1502 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1503 	c.create_cq.cq_flags = cpu_to_le16(flags);
1504 	c.create_cq.irq_vector = cpu_to_le16(vector);
1505 
1506 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1507 }
1508 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1509 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1510 						struct nvme_queue *nvmeq)
1511 {
1512 	struct nvme_ctrl *ctrl = &dev->ctrl;
1513 	struct nvme_command c = { };
1514 	int flags = NVME_QUEUE_PHYS_CONTIG;
1515 
1516 	/*
1517 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1518 	 * set. Since URGENT priority is zeroes, it makes all queues
1519 	 * URGENT.
1520 	 */
1521 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1522 		flags |= NVME_SQ_PRIO_MEDIUM;
1523 
1524 	/*
1525 	 * Note: we (ab)use the fact that the prp fields survive if no data
1526 	 * is attached to the request.
1527 	 */
1528 	c.create_sq.opcode = nvme_admin_create_sq;
1529 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1530 	c.create_sq.sqid = cpu_to_le16(qid);
1531 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1532 	c.create_sq.sq_flags = cpu_to_le16(flags);
1533 	c.create_sq.cqid = cpu_to_le16(qid);
1534 
1535 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1536 }
1537 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1538 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1539 {
1540 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1541 }
1542 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1543 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1544 {
1545 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1546 }
1547 
abort_endio(struct request * req,blk_status_t error)1548 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1549 {
1550 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1551 
1552 	dev_warn(nvmeq->dev->ctrl.device,
1553 		 "Abort status: 0x%x", nvme_req(req)->status);
1554 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1555 	blk_mq_free_request(req);
1556 	return RQ_END_IO_NONE;
1557 }
1558 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1559 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1560 {
1561 	/* If true, indicates loss of adapter communication, possibly by a
1562 	 * NVMe Subsystem reset.
1563 	 */
1564 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1565 
1566 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1567 	switch (nvme_ctrl_state(&dev->ctrl)) {
1568 	case NVME_CTRL_RESETTING:
1569 	case NVME_CTRL_CONNECTING:
1570 		return false;
1571 	default:
1572 		break;
1573 	}
1574 
1575 	/* We shouldn't reset unless the controller is on fatal error state
1576 	 * _or_ if we lost the communication with it.
1577 	 */
1578 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1579 		return false;
1580 
1581 	return true;
1582 }
1583 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1584 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1585 {
1586 	/* Read a config register to help see what died. */
1587 	u16 pci_status;
1588 	int result;
1589 
1590 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1591 				      &pci_status);
1592 	if (result == PCIBIOS_SUCCESSFUL)
1593 		dev_warn(dev->ctrl.device,
1594 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1595 			 csts, pci_status);
1596 	else
1597 		dev_warn(dev->ctrl.device,
1598 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1599 			 csts, result);
1600 
1601 	if (csts != ~0)
1602 		return;
1603 
1604 	dev_warn(dev->ctrl.device,
1605 		 "Does your device have a faulty power saving mode enabled?\n");
1606 	dev_warn(dev->ctrl.device,
1607 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1608 }
1609 
nvme_timeout(struct request * req)1610 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1611 {
1612 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1613 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1614 	struct nvme_dev *dev = nvmeq->dev;
1615 	struct request *abort_req;
1616 	struct nvme_command cmd = { };
1617 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1618 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1619 	u8 opcode;
1620 
1621 	/*
1622 	 * Shutdown the device immediately if we see it is disconnected. This
1623 	 * unblocks PCIe error handling if the nvme driver is waiting in
1624 	 * error_resume for a device that has been removed. We can't unbind the
1625 	 * driver while the driver's error callback is waiting to complete, so
1626 	 * we're relying on a timeout to break that deadlock if a removal
1627 	 * occurs while reset work is running.
1628 	 */
1629 	if (pci_dev_is_disconnected(pdev))
1630 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1631 	if (nvme_state_terminal(&dev->ctrl))
1632 		goto disable;
1633 
1634 	/* If PCI error recovery process is happening, we cannot reset or
1635 	 * the recovery mechanism will surely fail.
1636 	 */
1637 	mb();
1638 	if (pci_channel_offline(pdev))
1639 		return BLK_EH_RESET_TIMER;
1640 
1641 	/*
1642 	 * Reset immediately if the controller is failed
1643 	 */
1644 	if (nvme_should_reset(dev, csts)) {
1645 		nvme_warn_reset(dev, csts);
1646 		goto disable;
1647 	}
1648 
1649 	/*
1650 	 * Did we miss an interrupt?
1651 	 */
1652 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1653 		nvme_poll(req->mq_hctx, NULL);
1654 	else
1655 		nvme_poll_irqdisable(nvmeq);
1656 
1657 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1658 		dev_warn(dev->ctrl.device,
1659 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1660 			 req->tag, nvme_cid(req), nvmeq->qid);
1661 		return BLK_EH_DONE;
1662 	}
1663 
1664 	/*
1665 	 * Shutdown immediately if controller times out while starting. The
1666 	 * reset work will see the pci device disabled when it gets the forced
1667 	 * cancellation error. All outstanding requests are completed on
1668 	 * shutdown, so we return BLK_EH_DONE.
1669 	 */
1670 	switch (nvme_ctrl_state(&dev->ctrl)) {
1671 	case NVME_CTRL_CONNECTING:
1672 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1673 		fallthrough;
1674 	case NVME_CTRL_DELETING:
1675 		dev_warn_ratelimited(dev->ctrl.device,
1676 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1677 			 req->tag, nvme_cid(req), nvmeq->qid);
1678 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1679 		nvme_dev_disable(dev, true);
1680 		return BLK_EH_DONE;
1681 	case NVME_CTRL_RESETTING:
1682 		return BLK_EH_RESET_TIMER;
1683 	default:
1684 		break;
1685 	}
1686 
1687 	/*
1688 	 * Shutdown the controller immediately and schedule a reset if the
1689 	 * command was already aborted once before and still hasn't been
1690 	 * returned to the driver, or if this is the admin queue.
1691 	 */
1692 	opcode = nvme_req(req)->cmd->common.opcode;
1693 	if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1694 		dev_warn(dev->ctrl.device,
1695 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1696 			 req->tag, nvme_cid(req), opcode,
1697 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1698 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1699 		goto disable;
1700 	}
1701 
1702 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1703 		atomic_inc(&dev->ctrl.abort_limit);
1704 		return BLK_EH_RESET_TIMER;
1705 	}
1706 	iod->flags |= IOD_ABORTED;
1707 
1708 	cmd.abort.opcode = nvme_admin_abort_cmd;
1709 	cmd.abort.cid = nvme_cid(req);
1710 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1711 
1712 	dev_warn(nvmeq->dev->ctrl.device,
1713 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1714 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1715 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1716 		 blk_rq_bytes(req));
1717 
1718 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1719 					 BLK_MQ_REQ_NOWAIT);
1720 	if (IS_ERR(abort_req)) {
1721 		atomic_inc(&dev->ctrl.abort_limit);
1722 		return BLK_EH_RESET_TIMER;
1723 	}
1724 	nvme_init_request(abort_req, &cmd);
1725 
1726 	abort_req->end_io = abort_endio;
1727 	abort_req->end_io_data = NULL;
1728 	blk_execute_rq_nowait(abort_req, false);
1729 
1730 	/*
1731 	 * The aborted req will be completed on receiving the abort req.
1732 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1733 	 * as the device then is in a faulty state.
1734 	 */
1735 	return BLK_EH_RESET_TIMER;
1736 
1737 disable:
1738 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1739 		if (nvme_state_terminal(&dev->ctrl))
1740 			nvme_dev_disable(dev, true);
1741 		return BLK_EH_DONE;
1742 	}
1743 
1744 	nvme_dev_disable(dev, false);
1745 	if (nvme_try_sched_reset(&dev->ctrl))
1746 		nvme_unquiesce_io_queues(&dev->ctrl);
1747 	return BLK_EH_DONE;
1748 }
1749 
nvme_free_queue(struct nvme_queue * nvmeq)1750 static void nvme_free_queue(struct nvme_queue *nvmeq)
1751 {
1752 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1753 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1754 	if (!nvmeq->sq_cmds)
1755 		return;
1756 
1757 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1758 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1759 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1760 	} else {
1761 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1762 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1763 	}
1764 }
1765 
nvme_free_queues(struct nvme_dev * dev,int lowest)1766 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1767 {
1768 	int i;
1769 
1770 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1771 		dev->ctrl.queue_count--;
1772 		nvme_free_queue(&dev->queues[i]);
1773 	}
1774 }
1775 
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1776 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1777 {
1778 	struct nvme_queue *nvmeq = &dev->queues[qid];
1779 
1780 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1781 		return;
1782 
1783 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1784 	mb();
1785 
1786 	nvmeq->dev->online_queues--;
1787 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1788 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1789 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1790 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1791 }
1792 
nvme_suspend_io_queues(struct nvme_dev * dev)1793 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1794 {
1795 	int i;
1796 
1797 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1798 		nvme_suspend_queue(dev, i);
1799 }
1800 
1801 /*
1802  * Called only on a device that has been disabled and after all other threads
1803  * that can check this device's completion queues have synced, except
1804  * nvme_poll(). This is the last chance for the driver to see a natural
1805  * completion before nvme_cancel_request() terminates all incomplete requests.
1806  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1807 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1808 {
1809 	int i;
1810 
1811 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1812 		spin_lock(&dev->queues[i].cq_poll_lock);
1813 		nvme_poll_cq(&dev->queues[i], NULL);
1814 		spin_unlock(&dev->queues[i].cq_poll_lock);
1815 	}
1816 }
1817 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1818 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1819 				int entry_size)
1820 {
1821 	int q_depth = dev->q_depth;
1822 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1823 					  NVME_CTRL_PAGE_SIZE);
1824 
1825 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1826 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1827 
1828 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1829 		q_depth = div_u64(mem_per_q, entry_size);
1830 
1831 		/*
1832 		 * Ensure the reduced q_depth is above some threshold where it
1833 		 * would be better to map queues in system memory with the
1834 		 * original depth
1835 		 */
1836 		if (q_depth < 64)
1837 			return -ENOMEM;
1838 	}
1839 
1840 	return q_depth;
1841 }
1842 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1843 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1844 				int qid)
1845 {
1846 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1847 
1848 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1849 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1850 		if (nvmeq->sq_cmds) {
1851 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1852 							nvmeq->sq_cmds);
1853 			if (nvmeq->sq_dma_addr) {
1854 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1855 				return 0;
1856 			}
1857 
1858 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1859 		}
1860 	}
1861 
1862 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1863 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1864 	if (!nvmeq->sq_cmds)
1865 		return -ENOMEM;
1866 	return 0;
1867 }
1868 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1869 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1870 {
1871 	struct nvme_queue *nvmeq = &dev->queues[qid];
1872 
1873 	if (dev->ctrl.queue_count > qid)
1874 		return 0;
1875 
1876 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1877 	nvmeq->q_depth = depth;
1878 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1879 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1880 	if (!nvmeq->cqes)
1881 		goto free_nvmeq;
1882 
1883 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1884 		goto free_cqdma;
1885 
1886 	nvmeq->dev = dev;
1887 	spin_lock_init(&nvmeq->sq_lock);
1888 	spin_lock_init(&nvmeq->cq_poll_lock);
1889 	nvmeq->cq_head = 0;
1890 	nvmeq->cq_phase = 1;
1891 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1892 	nvmeq->qid = qid;
1893 	dev->ctrl.queue_count++;
1894 
1895 	return 0;
1896 
1897  free_cqdma:
1898 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1899 			  nvmeq->cq_dma_addr);
1900  free_nvmeq:
1901 	return -ENOMEM;
1902 }
1903 
queue_request_irq(struct nvme_queue * nvmeq)1904 static int queue_request_irq(struct nvme_queue *nvmeq)
1905 {
1906 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1907 	int nr = nvmeq->dev->ctrl.instance;
1908 
1909 	if (use_threaded_interrupts) {
1910 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1911 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1912 	} else {
1913 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1914 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1915 	}
1916 }
1917 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1918 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1919 {
1920 	struct nvme_dev *dev = nvmeq->dev;
1921 
1922 	nvmeq->sq_tail = 0;
1923 	nvmeq->last_sq_tail = 0;
1924 	nvmeq->cq_head = 0;
1925 	nvmeq->cq_phase = 1;
1926 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1927 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1928 	nvme_dbbuf_init(dev, nvmeq, qid);
1929 	dev->online_queues++;
1930 	wmb(); /* ensure the first interrupt sees the initialization */
1931 }
1932 
1933 /*
1934  * Try getting shutdown_lock while setting up IO queues.
1935  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1936 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1937 {
1938 	/*
1939 	 * Give up if the lock is being held by nvme_dev_disable.
1940 	 */
1941 	if (!mutex_trylock(&dev->shutdown_lock))
1942 		return -ENODEV;
1943 
1944 	/*
1945 	 * Controller is in wrong state, fail early.
1946 	 */
1947 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1948 		mutex_unlock(&dev->shutdown_lock);
1949 		return -ENODEV;
1950 	}
1951 
1952 	return 0;
1953 }
1954 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1955 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1956 {
1957 	struct nvme_dev *dev = nvmeq->dev;
1958 	int result;
1959 	u16 vector = 0;
1960 
1961 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1962 
1963 	/*
1964 	 * A queue's vector matches the queue identifier unless the controller
1965 	 * has only one vector available.
1966 	 */
1967 	if (!polled)
1968 		vector = dev->num_vecs == 1 ? 0 : qid;
1969 	else
1970 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1971 
1972 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1973 	if (result)
1974 		return result;
1975 
1976 	result = adapter_alloc_sq(dev, qid, nvmeq);
1977 	if (result < 0)
1978 		return result;
1979 	if (result)
1980 		goto release_cq;
1981 
1982 	nvmeq->cq_vector = vector;
1983 
1984 	result = nvme_setup_io_queues_trylock(dev);
1985 	if (result)
1986 		return result;
1987 	nvme_init_queue(nvmeq, qid);
1988 	if (!polled) {
1989 		result = queue_request_irq(nvmeq);
1990 		if (result < 0)
1991 			goto release_sq;
1992 	}
1993 
1994 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1995 	mutex_unlock(&dev->shutdown_lock);
1996 	return result;
1997 
1998 release_sq:
1999 	dev->online_queues--;
2000 	mutex_unlock(&dev->shutdown_lock);
2001 	adapter_delete_sq(dev, qid);
2002 release_cq:
2003 	adapter_delete_cq(dev, qid);
2004 	return result;
2005 }
2006 
2007 static const struct blk_mq_ops nvme_mq_admin_ops = {
2008 	.queue_rq	= nvme_queue_rq,
2009 	.complete	= nvme_pci_complete_rq,
2010 	.init_hctx	= nvme_admin_init_hctx,
2011 	.init_request	= nvme_pci_init_request,
2012 	.timeout	= nvme_timeout,
2013 };
2014 
2015 static const struct blk_mq_ops nvme_mq_ops = {
2016 	.queue_rq	= nvme_queue_rq,
2017 	.queue_rqs	= nvme_queue_rqs,
2018 	.complete	= nvme_pci_complete_rq,
2019 	.commit_rqs	= nvme_commit_rqs,
2020 	.init_hctx	= nvme_init_hctx,
2021 	.init_request	= nvme_pci_init_request,
2022 	.map_queues	= nvme_pci_map_queues,
2023 	.timeout	= nvme_timeout,
2024 	.poll		= nvme_poll,
2025 };
2026 
nvme_dev_remove_admin(struct nvme_dev * dev)2027 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2028 {
2029 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2030 		/*
2031 		 * If the controller was reset during removal, it's possible
2032 		 * user requests may be waiting on a stopped queue. Start the
2033 		 * queue to flush these to completion.
2034 		 */
2035 		nvme_unquiesce_admin_queue(&dev->ctrl);
2036 		nvme_remove_admin_tag_set(&dev->ctrl);
2037 	}
2038 }
2039 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2040 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2041 {
2042 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2043 }
2044 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)2045 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2046 {
2047 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2048 
2049 	if (size <= dev->bar_mapped_size)
2050 		return 0;
2051 	if (size > pci_resource_len(pdev, 0))
2052 		return -ENOMEM;
2053 	if (dev->bar)
2054 		iounmap(dev->bar);
2055 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2056 	if (!dev->bar) {
2057 		dev->bar_mapped_size = 0;
2058 		return -ENOMEM;
2059 	}
2060 	dev->bar_mapped_size = size;
2061 	dev->dbs = dev->bar + NVME_REG_DBS;
2062 
2063 	return 0;
2064 }
2065 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)2066 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2067 {
2068 	int result;
2069 	u32 aqa;
2070 	struct nvme_queue *nvmeq;
2071 
2072 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2073 	if (result < 0)
2074 		return result;
2075 
2076 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2077 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2078 
2079 	if (dev->subsystem &&
2080 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2081 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2082 
2083 	/*
2084 	 * If the device has been passed off to us in an enabled state, just
2085 	 * clear the enabled bit.  The spec says we should set the 'shutdown
2086 	 * notification bits', but doing so may cause the device to complete
2087 	 * commands to the admin queue ... and we don't know what memory that
2088 	 * might be pointing at!
2089 	 */
2090 	result = nvme_disable_ctrl(&dev->ctrl, false);
2091 	if (result < 0) {
2092 		struct pci_dev *pdev = to_pci_dev(dev->dev);
2093 
2094 		/*
2095 		 * The NVMe Controller Reset method did not get an expected
2096 		 * CSTS.RDY transition, so something with the device appears to
2097 		 * be stuck. Use the lower level and bigger hammer PCIe
2098 		 * Function Level Reset to attempt restoring the device to its
2099 		 * initial state, and try again.
2100 		 */
2101 		result = pcie_reset_flr(pdev, false);
2102 		if (result < 0)
2103 			return result;
2104 
2105 		pci_restore_state(pdev);
2106 		result = nvme_disable_ctrl(&dev->ctrl, false);
2107 		if (result < 0)
2108 			return result;
2109 
2110 		dev_info(dev->ctrl.device,
2111 			"controller reset completed after pcie flr\n");
2112 	}
2113 
2114 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2115 	if (result)
2116 		return result;
2117 
2118 	dev->ctrl.numa_node = dev_to_node(dev->dev);
2119 
2120 	nvmeq = &dev->queues[0];
2121 	aqa = nvmeq->q_depth - 1;
2122 	aqa |= aqa << 16;
2123 
2124 	writel(aqa, dev->bar + NVME_REG_AQA);
2125 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2126 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2127 
2128 	result = nvme_enable_ctrl(&dev->ctrl);
2129 	if (result)
2130 		return result;
2131 
2132 	nvmeq->cq_vector = 0;
2133 	nvme_init_queue(nvmeq, 0);
2134 	result = queue_request_irq(nvmeq);
2135 	if (result) {
2136 		dev->online_queues--;
2137 		return result;
2138 	}
2139 
2140 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2141 	return result;
2142 }
2143 
nvme_create_io_queues(struct nvme_dev * dev)2144 static int nvme_create_io_queues(struct nvme_dev *dev)
2145 {
2146 	unsigned i, max, rw_queues;
2147 	int ret = 0;
2148 
2149 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2150 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2151 			ret = -ENOMEM;
2152 			break;
2153 		}
2154 	}
2155 
2156 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2157 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2158 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2159 				dev->io_queues[HCTX_TYPE_READ];
2160 	} else {
2161 		rw_queues = max;
2162 	}
2163 
2164 	for (i = dev->online_queues; i <= max; i++) {
2165 		bool polled = i > rw_queues;
2166 
2167 		ret = nvme_create_queue(&dev->queues[i], i, polled);
2168 		if (ret)
2169 			break;
2170 	}
2171 
2172 	/*
2173 	 * Ignore failing Create SQ/CQ commands, we can continue with less
2174 	 * than the desired amount of queues, and even a controller without
2175 	 * I/O queues can still be used to issue admin commands.  This might
2176 	 * be useful to upgrade a buggy firmware for example.
2177 	 */
2178 	return ret >= 0 ? 0 : ret;
2179 }
2180 
nvme_cmb_size_unit(struct nvme_dev * dev)2181 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2182 {
2183 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2184 
2185 	return 1ULL << (12 + 4 * szu);
2186 }
2187 
nvme_cmb_size(struct nvme_dev * dev)2188 static u32 nvme_cmb_size(struct nvme_dev *dev)
2189 {
2190 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2191 }
2192 
nvme_map_cmb(struct nvme_dev * dev)2193 static void nvme_map_cmb(struct nvme_dev *dev)
2194 {
2195 	u64 size, offset;
2196 	resource_size_t bar_size;
2197 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2198 	int bar;
2199 
2200 	if (dev->cmb_size)
2201 		return;
2202 
2203 	if (NVME_CAP_CMBS(dev->ctrl.cap))
2204 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2205 
2206 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2207 	if (!dev->cmbsz)
2208 		return;
2209 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2210 
2211 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2212 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2213 	bar = NVME_CMB_BIR(dev->cmbloc);
2214 	bar_size = pci_resource_len(pdev, bar);
2215 
2216 	if (offset > bar_size)
2217 		return;
2218 
2219 	/*
2220 	 * Controllers may support a CMB size larger than their BAR, for
2221 	 * example, due to being behind a bridge. Reduce the CMB to the
2222 	 * reported size of the BAR
2223 	 */
2224 	size = min(size, bar_size - offset);
2225 
2226 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2227 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2228 			memremap_compat_align()))
2229 		return;
2230 
2231 	/*
2232 	 * Tell the controller about the host side address mapping the CMB,
2233 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2234 	 */
2235 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2236 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2237 			     (pci_bus_address(pdev, bar) + offset),
2238 			     dev->bar + NVME_REG_CMBMSC);
2239 	}
2240 
2241 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2242 		dev_warn(dev->ctrl.device,
2243 			 "failed to register the CMB\n");
2244 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2245 		return;
2246 	}
2247 
2248 	dev->cmb_size = size;
2249 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2250 
2251 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2252 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2253 		pci_p2pmem_publish(pdev, true);
2254 }
2255 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2256 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2257 {
2258 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2259 	u64 dma_addr = dev->host_mem_descs_dma;
2260 	struct nvme_command c = { };
2261 	int ret;
2262 
2263 	c.features.opcode	= nvme_admin_set_features;
2264 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2265 	c.features.dword11	= cpu_to_le32(bits);
2266 	c.features.dword12	= cpu_to_le32(host_mem_size);
2267 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2268 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2269 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2270 
2271 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2272 	if (ret) {
2273 		dev_warn(dev->ctrl.device,
2274 			 "failed to set host mem (err %d, flags %#x).\n",
2275 			 ret, bits);
2276 	} else
2277 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2278 
2279 	return ret;
2280 }
2281 
nvme_free_host_mem_multi(struct nvme_dev * dev)2282 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2283 {
2284 	int i;
2285 
2286 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2287 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2288 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2289 
2290 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2291 			       le64_to_cpu(desc->addr),
2292 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2293 	}
2294 
2295 	kfree(dev->host_mem_desc_bufs);
2296 	dev->host_mem_desc_bufs = NULL;
2297 }
2298 
nvme_free_host_mem(struct nvme_dev * dev)2299 static void nvme_free_host_mem(struct nvme_dev *dev)
2300 {
2301 	if (dev->hmb_sgt)
2302 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2303 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2304 	else
2305 		nvme_free_host_mem_multi(dev);
2306 
2307 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2308 			dev->host_mem_descs, dev->host_mem_descs_dma);
2309 	dev->host_mem_descs = NULL;
2310 	dev->host_mem_descs_size = 0;
2311 	dev->nr_host_mem_descs = 0;
2312 }
2313 
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2314 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2315 {
2316 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2317 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2318 	if (!dev->hmb_sgt)
2319 		return -ENOMEM;
2320 
2321 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2322 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2323 			GFP_KERNEL);
2324 	if (!dev->host_mem_descs) {
2325 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2326 				DMA_BIDIRECTIONAL);
2327 		dev->hmb_sgt = NULL;
2328 		return -ENOMEM;
2329 	}
2330 	dev->host_mem_size = size;
2331 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2332 	dev->nr_host_mem_descs = 1;
2333 
2334 	dev->host_mem_descs[0].addr =
2335 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2336 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2337 	return 0;
2338 }
2339 
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2340 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2341 		u32 chunk_size)
2342 {
2343 	struct nvme_host_mem_buf_desc *descs;
2344 	u32 max_entries, len, descs_size;
2345 	dma_addr_t descs_dma;
2346 	int i = 0;
2347 	void **bufs;
2348 	u64 size, tmp;
2349 
2350 	tmp = (preferred + chunk_size - 1);
2351 	do_div(tmp, chunk_size);
2352 	max_entries = tmp;
2353 
2354 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2355 		max_entries = dev->ctrl.hmmaxd;
2356 
2357 	descs_size = max_entries * sizeof(*descs);
2358 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2359 			GFP_KERNEL);
2360 	if (!descs)
2361 		goto out;
2362 
2363 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2364 	if (!bufs)
2365 		goto out_free_descs;
2366 
2367 	for (size = 0; size < preferred && i < max_entries; size += len) {
2368 		dma_addr_t dma_addr;
2369 
2370 		len = min_t(u64, chunk_size, preferred - size);
2371 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2372 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2373 		if (!bufs[i])
2374 			break;
2375 
2376 		descs[i].addr = cpu_to_le64(dma_addr);
2377 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2378 		i++;
2379 	}
2380 
2381 	if (!size)
2382 		goto out_free_bufs;
2383 
2384 	dev->nr_host_mem_descs = i;
2385 	dev->host_mem_size = size;
2386 	dev->host_mem_descs = descs;
2387 	dev->host_mem_descs_dma = descs_dma;
2388 	dev->host_mem_descs_size = descs_size;
2389 	dev->host_mem_desc_bufs = bufs;
2390 	return 0;
2391 
2392 out_free_bufs:
2393 	kfree(bufs);
2394 out_free_descs:
2395 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2396 out:
2397 	dev->host_mem_descs = NULL;
2398 	return -ENOMEM;
2399 }
2400 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2401 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2402 {
2403 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2404 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2405 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2406 	u64 chunk_size;
2407 
2408 	/*
2409 	 * If there is an IOMMU that can merge pages, try a virtually
2410 	 * non-contiguous allocation for a single segment first.
2411 	 */
2412 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2413 		if (!nvme_alloc_host_mem_single(dev, preferred))
2414 			return 0;
2415 	}
2416 
2417 	/* start big and work our way down */
2418 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2419 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2420 			if (!min || dev->host_mem_size >= min)
2421 				return 0;
2422 			nvme_free_host_mem(dev);
2423 		}
2424 	}
2425 
2426 	return -ENOMEM;
2427 }
2428 
nvme_setup_host_mem(struct nvme_dev * dev)2429 static int nvme_setup_host_mem(struct nvme_dev *dev)
2430 {
2431 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2432 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2433 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2434 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2435 	int ret;
2436 
2437 	if (!dev->ctrl.hmpre)
2438 		return 0;
2439 
2440 	preferred = min(preferred, max);
2441 	if (min > max) {
2442 		dev_warn(dev->ctrl.device,
2443 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2444 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2445 		nvme_free_host_mem(dev);
2446 		return 0;
2447 	}
2448 
2449 	/*
2450 	 * If we already have a buffer allocated check if we can reuse it.
2451 	 */
2452 	if (dev->host_mem_descs) {
2453 		if (dev->host_mem_size >= min)
2454 			enable_bits |= NVME_HOST_MEM_RETURN;
2455 		else
2456 			nvme_free_host_mem(dev);
2457 	}
2458 
2459 	if (!dev->host_mem_descs) {
2460 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2461 			dev_warn(dev->ctrl.device,
2462 				"failed to allocate host memory buffer.\n");
2463 			return 0; /* controller must work without HMB */
2464 		}
2465 
2466 		dev_info(dev->ctrl.device,
2467 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2468 			dev->host_mem_size >> ilog2(SZ_1M),
2469 			dev->nr_host_mem_descs,
2470 			str_plural(dev->nr_host_mem_descs));
2471 	}
2472 
2473 	ret = nvme_set_host_mem(dev, enable_bits);
2474 	if (ret)
2475 		nvme_free_host_mem(dev);
2476 	return ret;
2477 }
2478 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2479 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2480 		char *buf)
2481 {
2482 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2483 
2484 	return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz  : 0x%08x\n",
2485 		       ndev->cmbloc, ndev->cmbsz);
2486 }
2487 static DEVICE_ATTR_RO(cmb);
2488 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2489 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2490 		char *buf)
2491 {
2492 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2493 
2494 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2495 }
2496 static DEVICE_ATTR_RO(cmbloc);
2497 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2498 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2499 		char *buf)
2500 {
2501 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2502 
2503 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2504 }
2505 static DEVICE_ATTR_RO(cmbsz);
2506 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2507 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2508 			char *buf)
2509 {
2510 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2511 
2512 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2513 }
2514 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2515 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2516 			 const char *buf, size_t count)
2517 {
2518 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2519 	bool new;
2520 	int ret;
2521 
2522 	if (kstrtobool(buf, &new) < 0)
2523 		return -EINVAL;
2524 
2525 	if (new == ndev->hmb)
2526 		return count;
2527 
2528 	if (new) {
2529 		ret = nvme_setup_host_mem(ndev);
2530 	} else {
2531 		ret = nvme_set_host_mem(ndev, 0);
2532 		if (!ret)
2533 			nvme_free_host_mem(ndev);
2534 	}
2535 
2536 	if (ret < 0)
2537 		return ret;
2538 
2539 	return count;
2540 }
2541 static DEVICE_ATTR_RW(hmb);
2542 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2543 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2544 		struct attribute *a, int n)
2545 {
2546 	struct nvme_ctrl *ctrl =
2547 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2548 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2549 
2550 	if (a == &dev_attr_cmb.attr ||
2551 	    a == &dev_attr_cmbloc.attr ||
2552 	    a == &dev_attr_cmbsz.attr) {
2553 	    	if (!dev->cmbsz)
2554 			return 0;
2555 	}
2556 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2557 		return 0;
2558 
2559 	return a->mode;
2560 }
2561 
2562 static struct attribute *nvme_pci_attrs[] = {
2563 	&dev_attr_cmb.attr,
2564 	&dev_attr_cmbloc.attr,
2565 	&dev_attr_cmbsz.attr,
2566 	&dev_attr_hmb.attr,
2567 	NULL,
2568 };
2569 
2570 static const struct attribute_group nvme_pci_dev_attrs_group = {
2571 	.attrs		= nvme_pci_attrs,
2572 	.is_visible	= nvme_pci_attrs_are_visible,
2573 };
2574 
2575 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2576 	&nvme_dev_attrs_group,
2577 	&nvme_pci_dev_attrs_group,
2578 	NULL,
2579 };
2580 
nvme_update_attrs(struct nvme_dev * dev)2581 static void nvme_update_attrs(struct nvme_dev *dev)
2582 {
2583 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2584 }
2585 
2586 /*
2587  * nirqs is the number of interrupts available for write and read
2588  * queues. The core already reserved an interrupt for the admin queue.
2589  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2590 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2591 {
2592 	struct nvme_dev *dev = affd->priv;
2593 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2594 
2595 	/*
2596 	 * If there is no interrupt available for queues, ensure that
2597 	 * the default queue is set to 1. The affinity set size is
2598 	 * also set to one, but the irq core ignores it for this case.
2599 	 *
2600 	 * If only one interrupt is available or 'write_queue' == 0, combine
2601 	 * write and read queues.
2602 	 *
2603 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2604 	 * queue.
2605 	 */
2606 	if (!nrirqs) {
2607 		nrirqs = 1;
2608 		nr_read_queues = 0;
2609 	} else if (nrirqs == 1 || !nr_write_queues) {
2610 		nr_read_queues = 0;
2611 	} else if (nr_write_queues >= nrirqs) {
2612 		nr_read_queues = 1;
2613 	} else {
2614 		nr_read_queues = nrirqs - nr_write_queues;
2615 	}
2616 
2617 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2618 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2619 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2620 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2621 	affd->nr_sets = nr_read_queues ? 2 : 1;
2622 }
2623 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2624 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2625 {
2626 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2627 	struct irq_affinity affd = {
2628 		.pre_vectors	= 1,
2629 		.calc_sets	= nvme_calc_irq_sets,
2630 		.priv		= dev,
2631 	};
2632 	unsigned int irq_queues, poll_queues;
2633 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2634 
2635 	/*
2636 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2637 	 * left over for non-polled I/O.
2638 	 */
2639 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2640 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2641 
2642 	/*
2643 	 * Initialize for the single interrupt case, will be updated in
2644 	 * nvme_calc_irq_sets().
2645 	 */
2646 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2647 	dev->io_queues[HCTX_TYPE_READ] = 0;
2648 
2649 	/*
2650 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2651 	 * but some Apple controllers require all queues to use the first
2652 	 * vector.
2653 	 */
2654 	irq_queues = 1;
2655 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2656 		irq_queues += (nr_io_queues - poll_queues);
2657 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2658 		flags &= ~PCI_IRQ_MSI;
2659 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2660 					      &affd);
2661 }
2662 
nvme_max_io_queues(struct nvme_dev * dev)2663 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2664 {
2665 	/*
2666 	 * If tags are shared with admin queue (Apple bug), then
2667 	 * make sure we only use one IO queue.
2668 	 */
2669 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2670 		return 1;
2671 	return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2672 		dev->nr_poll_queues;
2673 }
2674 
nvme_setup_io_queues(struct nvme_dev * dev)2675 static int nvme_setup_io_queues(struct nvme_dev *dev)
2676 {
2677 	struct nvme_queue *adminq = &dev->queues[0];
2678 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2679 	unsigned int nr_io_queues;
2680 	unsigned long size;
2681 	int result;
2682 
2683 	/*
2684 	 * Sample the module parameters once at reset time so that we have
2685 	 * stable values to work with.
2686 	 */
2687 	dev->nr_write_queues = write_queues;
2688 	dev->nr_poll_queues = poll_queues;
2689 
2690 	nr_io_queues = dev->nr_allocated_queues - 1;
2691 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2692 	if (result < 0)
2693 		return result;
2694 
2695 	if (nr_io_queues == 0)
2696 		return 0;
2697 
2698 	/*
2699 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2700 	 * from set to unset. If there is a window to it is truely freed,
2701 	 * pci_free_irq_vectors() jumping into this window will crash.
2702 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2703 	 * nvme_dev_disable() path.
2704 	 */
2705 	result = nvme_setup_io_queues_trylock(dev);
2706 	if (result)
2707 		return result;
2708 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2709 		pci_free_irq(pdev, 0, adminq);
2710 
2711 	if (dev->cmb_use_sqes) {
2712 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2713 				sizeof(struct nvme_command));
2714 		if (result > 0) {
2715 			dev->q_depth = result;
2716 			dev->ctrl.sqsize = result - 1;
2717 		} else {
2718 			dev->cmb_use_sqes = false;
2719 		}
2720 	}
2721 
2722 	do {
2723 		size = db_bar_size(dev, nr_io_queues);
2724 		result = nvme_remap_bar(dev, size);
2725 		if (!result)
2726 			break;
2727 		if (!--nr_io_queues) {
2728 			result = -ENOMEM;
2729 			goto out_unlock;
2730 		}
2731 	} while (1);
2732 	adminq->q_db = dev->dbs;
2733 
2734  retry:
2735 	/* Deregister the admin queue's interrupt */
2736 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2737 		pci_free_irq(pdev, 0, adminq);
2738 
2739 	/*
2740 	 * If we enable msix early due to not intx, disable it again before
2741 	 * setting up the full range we need.
2742 	 */
2743 	pci_free_irq_vectors(pdev);
2744 
2745 	result = nvme_setup_irqs(dev, nr_io_queues);
2746 	if (result <= 0) {
2747 		result = -EIO;
2748 		goto out_unlock;
2749 	}
2750 
2751 	dev->num_vecs = result;
2752 	result = max(result - 1, 1);
2753 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2754 
2755 	/*
2756 	 * Should investigate if there's a performance win from allocating
2757 	 * more queues than interrupt vectors; it might allow the submission
2758 	 * path to scale better, even if the receive path is limited by the
2759 	 * number of interrupts.
2760 	 */
2761 	result = queue_request_irq(adminq);
2762 	if (result)
2763 		goto out_unlock;
2764 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2765 	mutex_unlock(&dev->shutdown_lock);
2766 
2767 	result = nvme_create_io_queues(dev);
2768 	if (result || dev->online_queues < 2)
2769 		return result;
2770 
2771 	if (dev->online_queues - 1 < dev->max_qid) {
2772 		nr_io_queues = dev->online_queues - 1;
2773 		nvme_delete_io_queues(dev);
2774 		result = nvme_setup_io_queues_trylock(dev);
2775 		if (result)
2776 			return result;
2777 		nvme_suspend_io_queues(dev);
2778 		goto retry;
2779 	}
2780 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2781 					dev->io_queues[HCTX_TYPE_DEFAULT],
2782 					dev->io_queues[HCTX_TYPE_READ],
2783 					dev->io_queues[HCTX_TYPE_POLL]);
2784 	return 0;
2785 out_unlock:
2786 	mutex_unlock(&dev->shutdown_lock);
2787 	return result;
2788 }
2789 
nvme_del_queue_end(struct request * req,blk_status_t error)2790 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2791 					     blk_status_t error)
2792 {
2793 	struct nvme_queue *nvmeq = req->end_io_data;
2794 
2795 	blk_mq_free_request(req);
2796 	complete(&nvmeq->delete_done);
2797 	return RQ_END_IO_NONE;
2798 }
2799 
nvme_del_cq_end(struct request * req,blk_status_t error)2800 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2801 					  blk_status_t error)
2802 {
2803 	struct nvme_queue *nvmeq = req->end_io_data;
2804 
2805 	if (error)
2806 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2807 
2808 	return nvme_del_queue_end(req, error);
2809 }
2810 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2811 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2812 {
2813 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2814 	struct request *req;
2815 	struct nvme_command cmd = { };
2816 
2817 	cmd.delete_queue.opcode = opcode;
2818 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2819 
2820 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2821 	if (IS_ERR(req))
2822 		return PTR_ERR(req);
2823 	nvme_init_request(req, &cmd);
2824 
2825 	if (opcode == nvme_admin_delete_cq)
2826 		req->end_io = nvme_del_cq_end;
2827 	else
2828 		req->end_io = nvme_del_queue_end;
2829 	req->end_io_data = nvmeq;
2830 
2831 	init_completion(&nvmeq->delete_done);
2832 	blk_execute_rq_nowait(req, false);
2833 	return 0;
2834 }
2835 
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2836 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2837 {
2838 	int nr_queues = dev->online_queues - 1, sent = 0;
2839 	unsigned long timeout;
2840 
2841  retry:
2842 	timeout = NVME_ADMIN_TIMEOUT;
2843 	while (nr_queues > 0) {
2844 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2845 			break;
2846 		nr_queues--;
2847 		sent++;
2848 	}
2849 	while (sent) {
2850 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2851 
2852 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2853 				timeout);
2854 		if (timeout == 0)
2855 			return false;
2856 
2857 		sent--;
2858 		if (nr_queues)
2859 			goto retry;
2860 	}
2861 	return true;
2862 }
2863 
nvme_delete_io_queues(struct nvme_dev * dev)2864 static void nvme_delete_io_queues(struct nvme_dev *dev)
2865 {
2866 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2867 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2868 }
2869 
nvme_pci_nr_maps(struct nvme_dev * dev)2870 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2871 {
2872 	if (dev->io_queues[HCTX_TYPE_POLL])
2873 		return 3;
2874 	if (dev->io_queues[HCTX_TYPE_READ])
2875 		return 2;
2876 	return 1;
2877 }
2878 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2879 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2880 {
2881 	if (!dev->ctrl.tagset) {
2882 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2883 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2884 		return true;
2885 	}
2886 
2887 	/* Give up if we are racing with nvme_dev_disable() */
2888 	if (!mutex_trylock(&dev->shutdown_lock))
2889 		return false;
2890 
2891 	/* Check if nvme_dev_disable() has been executed already */
2892 	if (!dev->online_queues) {
2893 		mutex_unlock(&dev->shutdown_lock);
2894 		return false;
2895 	}
2896 
2897 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2898 	/* free previously allocated queues that are no longer usable */
2899 	nvme_free_queues(dev, dev->online_queues);
2900 	mutex_unlock(&dev->shutdown_lock);
2901 	return true;
2902 }
2903 
nvme_pci_enable(struct nvme_dev * dev)2904 static int nvme_pci_enable(struct nvme_dev *dev)
2905 {
2906 	int result = -ENOMEM;
2907 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2908 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2909 
2910 	if (pci_enable_device_mem(pdev))
2911 		return result;
2912 
2913 	pci_set_master(pdev);
2914 
2915 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2916 		result = -ENODEV;
2917 		goto disable;
2918 	}
2919 
2920 	/*
2921 	 * Some devices and/or platforms don't advertise or work with INTx
2922 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2923 	 * adjust this later.
2924 	 */
2925 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2926 		flags &= ~PCI_IRQ_MSI;
2927 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2928 	if (result < 0)
2929 		goto disable;
2930 
2931 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2932 
2933 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2934 				io_queue_depth);
2935 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2936 	dev->dbs = dev->bar + 4096;
2937 
2938 	/*
2939 	 * Some Apple controllers require a non-standard SQE size.
2940 	 * Interestingly they also seem to ignore the CC:IOSQES register
2941 	 * so we don't bother updating it here.
2942 	 */
2943 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2944 		dev->io_sqes = 7;
2945 	else
2946 		dev->io_sqes = NVME_NVM_IOSQES;
2947 
2948 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2949 		dev->q_depth = 2;
2950 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2951 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2952 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2953 		dev->q_depth = 64;
2954 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2955                         "set queue depth=%u\n", dev->q_depth);
2956 	}
2957 
2958 	/*
2959 	 * Controllers with the shared tags quirk need the IO queue to be
2960 	 * big enough so that we get 32 tags for the admin queue
2961 	 */
2962 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2963 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2964 		dev->q_depth = NVME_AQ_DEPTH + 2;
2965 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2966 			 dev->q_depth);
2967 	}
2968 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2969 
2970 	nvme_map_cmb(dev);
2971 
2972 	pci_save_state(pdev);
2973 
2974 	result = nvme_pci_configure_admin_queue(dev);
2975 	if (result)
2976 		goto free_irq;
2977 	return result;
2978 
2979  free_irq:
2980 	pci_free_irq_vectors(pdev);
2981  disable:
2982 	pci_disable_device(pdev);
2983 	return result;
2984 }
2985 
nvme_dev_unmap(struct nvme_dev * dev)2986 static void nvme_dev_unmap(struct nvme_dev *dev)
2987 {
2988 	if (dev->bar)
2989 		iounmap(dev->bar);
2990 	pci_release_mem_regions(to_pci_dev(dev->dev));
2991 }
2992 
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2993 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2994 {
2995 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2996 	u32 csts;
2997 
2998 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2999 		return true;
3000 	if (pdev->error_state != pci_channel_io_normal)
3001 		return true;
3002 
3003 	csts = readl(dev->bar + NVME_REG_CSTS);
3004 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
3005 }
3006 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)3007 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
3008 {
3009 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
3010 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3011 	bool dead;
3012 
3013 	mutex_lock(&dev->shutdown_lock);
3014 	dead = nvme_pci_ctrl_is_dead(dev);
3015 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
3016 		if (pci_is_enabled(pdev))
3017 			nvme_start_freeze(&dev->ctrl);
3018 		/*
3019 		 * Give the controller a chance to complete all entered requests
3020 		 * if doing a safe shutdown.
3021 		 */
3022 		if (!dead && shutdown)
3023 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3024 	}
3025 
3026 	nvme_quiesce_io_queues(&dev->ctrl);
3027 
3028 	if (!dead && dev->ctrl.queue_count > 0) {
3029 		nvme_delete_io_queues(dev);
3030 		nvme_disable_ctrl(&dev->ctrl, shutdown);
3031 		nvme_poll_irqdisable(&dev->queues[0]);
3032 	}
3033 	nvme_suspend_io_queues(dev);
3034 	nvme_suspend_queue(dev, 0);
3035 	pci_free_irq_vectors(pdev);
3036 	if (pci_is_enabled(pdev))
3037 		pci_disable_device(pdev);
3038 	nvme_reap_pending_cqes(dev);
3039 
3040 	nvme_cancel_tagset(&dev->ctrl);
3041 	nvme_cancel_admin_tagset(&dev->ctrl);
3042 
3043 	/*
3044 	 * The driver will not be starting up queues again if shutting down so
3045 	 * must flush all entered requests to their failed completion to avoid
3046 	 * deadlocking blk-mq hot-cpu notifier.
3047 	 */
3048 	if (shutdown) {
3049 		nvme_unquiesce_io_queues(&dev->ctrl);
3050 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3051 			nvme_unquiesce_admin_queue(&dev->ctrl);
3052 	}
3053 	mutex_unlock(&dev->shutdown_lock);
3054 }
3055 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)3056 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3057 {
3058 	if (!nvme_wait_reset(&dev->ctrl))
3059 		return -EBUSY;
3060 	nvme_dev_disable(dev, shutdown);
3061 	return 0;
3062 }
3063 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)3064 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3065 {
3066 	size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3067 
3068 	dev->dmavec_mempool = mempool_create_node(1,
3069 			mempool_kmalloc, mempool_kfree,
3070 			(void *)alloc_size, GFP_KERNEL,
3071 			dev_to_node(dev->dev));
3072 	if (!dev->dmavec_mempool)
3073 		return -ENOMEM;
3074 	return 0;
3075 }
3076 
nvme_free_tagset(struct nvme_dev * dev)3077 static void nvme_free_tagset(struct nvme_dev *dev)
3078 {
3079 	if (dev->tagset.tags)
3080 		nvme_remove_io_tag_set(&dev->ctrl);
3081 	dev->ctrl.tagset = NULL;
3082 }
3083 
3084 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)3085 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3086 {
3087 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3088 
3089 	nvme_free_tagset(dev);
3090 	put_device(dev->dev);
3091 	kfree(dev->queues);
3092 	kfree(dev);
3093 }
3094 
nvme_reset_work(struct work_struct * work)3095 static void nvme_reset_work(struct work_struct *work)
3096 {
3097 	struct nvme_dev *dev =
3098 		container_of(work, struct nvme_dev, ctrl.reset_work);
3099 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3100 	int result;
3101 
3102 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3103 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3104 			 dev->ctrl.state);
3105 		result = -ENODEV;
3106 		goto out;
3107 	}
3108 
3109 	/*
3110 	 * If we're called to reset a live controller first shut it down before
3111 	 * moving on.
3112 	 */
3113 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3114 		nvme_dev_disable(dev, false);
3115 	nvme_sync_queues(&dev->ctrl);
3116 
3117 	mutex_lock(&dev->shutdown_lock);
3118 	result = nvme_pci_enable(dev);
3119 	if (result)
3120 		goto out_unlock;
3121 	nvme_unquiesce_admin_queue(&dev->ctrl);
3122 	mutex_unlock(&dev->shutdown_lock);
3123 
3124 	/*
3125 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3126 	 * initializing procedure here.
3127 	 */
3128 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3129 		dev_warn(dev->ctrl.device,
3130 			"failed to mark controller CONNECTING\n");
3131 		result = -EBUSY;
3132 		goto out;
3133 	}
3134 
3135 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3136 	if (result)
3137 		goto out;
3138 
3139 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3140 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3141 	else
3142 		dev->ctrl.max_integrity_segments = 1;
3143 
3144 	nvme_dbbuf_dma_alloc(dev);
3145 
3146 	result = nvme_setup_host_mem(dev);
3147 	if (result < 0)
3148 		goto out;
3149 
3150 	nvme_update_attrs(dev);
3151 
3152 	result = nvme_setup_io_queues(dev);
3153 	if (result)
3154 		goto out;
3155 
3156 	/*
3157 	 * Freeze and update the number of I/O queues as those might have
3158 	 * changed.  If there are no I/O queues left after this reset, keep the
3159 	 * controller around but remove all namespaces.
3160 	 */
3161 	if (dev->online_queues > 1) {
3162 		nvme_dbbuf_set(dev);
3163 		nvme_unquiesce_io_queues(&dev->ctrl);
3164 		nvme_wait_freeze(&dev->ctrl);
3165 		if (!nvme_pci_update_nr_queues(dev))
3166 			goto out;
3167 		nvme_unfreeze(&dev->ctrl);
3168 	} else {
3169 		dev_warn(dev->ctrl.device, "IO queues lost\n");
3170 		nvme_mark_namespaces_dead(&dev->ctrl);
3171 		nvme_unquiesce_io_queues(&dev->ctrl);
3172 		nvme_remove_namespaces(&dev->ctrl);
3173 		nvme_free_tagset(dev);
3174 	}
3175 
3176 	/*
3177 	 * If only admin queue live, keep it to do further investigation or
3178 	 * recovery.
3179 	 */
3180 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3181 		dev_warn(dev->ctrl.device,
3182 			"failed to mark controller live state\n");
3183 		result = -ENODEV;
3184 		goto out;
3185 	}
3186 
3187 	nvme_start_ctrl(&dev->ctrl);
3188 	return;
3189 
3190  out_unlock:
3191 	mutex_unlock(&dev->shutdown_lock);
3192  out:
3193 	/*
3194 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3195 	 * may be holding this pci_dev's device lock.
3196 	 */
3197 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3198 		 result);
3199 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3200 	nvme_dev_disable(dev, true);
3201 	nvme_sync_queues(&dev->ctrl);
3202 	nvme_mark_namespaces_dead(&dev->ctrl);
3203 	nvme_unquiesce_io_queues(&dev->ctrl);
3204 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3205 }
3206 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3207 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3208 {
3209 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3210 	return 0;
3211 }
3212 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3213 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3214 {
3215 	writel(val, to_nvme_dev(ctrl)->bar + off);
3216 	return 0;
3217 }
3218 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3219 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3220 {
3221 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3222 	return 0;
3223 }
3224 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3225 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3226 {
3227 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3228 
3229 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3230 }
3231 
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3232 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3233 {
3234 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3235 	struct nvme_subsystem *subsys = ctrl->subsys;
3236 
3237 	dev_err(ctrl->device,
3238 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3239 		pdev->vendor, pdev->device,
3240 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3241 		subsys->model, nvme_strlen(subsys->firmware_rev,
3242 					   sizeof(subsys->firmware_rev)),
3243 		subsys->firmware_rev);
3244 }
3245 
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3246 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3247 {
3248 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3249 
3250 	return dma_pci_p2pdma_supported(dev->dev);
3251 }
3252 
3253 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3254 	.name			= "pcie",
3255 	.module			= THIS_MODULE,
3256 	.flags			= NVME_F_METADATA_SUPPORTED,
3257 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3258 	.reg_read32		= nvme_pci_reg_read32,
3259 	.reg_write32		= nvme_pci_reg_write32,
3260 	.reg_read64		= nvme_pci_reg_read64,
3261 	.free_ctrl		= nvme_pci_free_ctrl,
3262 	.submit_async_event	= nvme_pci_submit_async_event,
3263 	.subsystem_reset	= nvme_pci_subsystem_reset,
3264 	.get_address		= nvme_pci_get_address,
3265 	.print_device_info	= nvme_pci_print_device_info,
3266 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3267 };
3268 
nvme_dev_map(struct nvme_dev * dev)3269 static int nvme_dev_map(struct nvme_dev *dev)
3270 {
3271 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3272 
3273 	if (pci_request_mem_regions(pdev, "nvme"))
3274 		return -ENODEV;
3275 
3276 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3277 		goto release;
3278 
3279 	return 0;
3280   release:
3281 	pci_release_mem_regions(pdev);
3282 	return -ENODEV;
3283 }
3284 
check_vendor_combination_bug(struct pci_dev * pdev)3285 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3286 {
3287 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3288 		/*
3289 		 * Several Samsung devices seem to drop off the PCIe bus
3290 		 * randomly when APST is on and uses the deepest sleep state.
3291 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3292 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3293 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3294 		 * laptops.
3295 		 */
3296 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3297 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3298 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3299 			return NVME_QUIRK_NO_DEEPEST_PS;
3300 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3301 		/*
3302 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3303 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3304 		 * within few minutes after bootup on a Coffee Lake board -
3305 		 * ASUS PRIME Z370-A
3306 		 */
3307 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3308 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3309 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3310 			return NVME_QUIRK_NO_APST;
3311 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3312 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3313 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3314 		/*
3315 		 * Forcing to use host managed nvme power settings for
3316 		 * lowest idle power with quick resume latency on
3317 		 * Samsung and Toshiba SSDs based on suspend behavior
3318 		 * on Coffee Lake board for LENOVO C640
3319 		 */
3320 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3321 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3322 			return NVME_QUIRK_SIMPLE_SUSPEND;
3323 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3324 		   pdev->device == 0x500f)) {
3325 		/*
3326 		 * Exclude some Kingston NV1 and A2000 devices from
3327 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3328 		 * lot of energy with s2idle sleep on some TUXEDO platforms.
3329 		 */
3330 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3331 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3332 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3333 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3334 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3335 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3336 		/*
3337 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3338 		 * because of high power consumption (> 2 Watt) in s2idle
3339 		 * sleep. Only some boards with Intel CPU are affected.
3340 		 * (Note for testing: Samsung 990 Evo Plus has same PCI ID)
3341 		 */
3342 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3343 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3344 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3345 		    dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3346 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3347 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3348 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3349 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3350 	}
3351 
3352 	/*
3353 	 * NVMe SSD drops off the PCIe bus after system idle
3354 	 * for 10 hours on a Lenovo N60z board.
3355 	 */
3356 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3357 		return NVME_QUIRK_NO_APST;
3358 
3359 	return 0;
3360 }
3361 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3362 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3363 		const struct pci_device_id *id)
3364 {
3365 	unsigned long quirks = id->driver_data;
3366 	int node = dev_to_node(&pdev->dev);
3367 	struct nvme_dev *dev;
3368 	int ret = -ENOMEM;
3369 
3370 	dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3371 			GFP_KERNEL, node);
3372 	if (!dev)
3373 		return ERR_PTR(-ENOMEM);
3374 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3375 	mutex_init(&dev->shutdown_lock);
3376 
3377 	dev->nr_write_queues = write_queues;
3378 	dev->nr_poll_queues = poll_queues;
3379 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3380 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3381 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3382 	if (!dev->queues)
3383 		goto out_free_dev;
3384 
3385 	dev->dev = get_device(&pdev->dev);
3386 
3387 	quirks |= check_vendor_combination_bug(pdev);
3388 	if (!noacpi &&
3389 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3390 	    acpi_storage_d3(&pdev->dev)) {
3391 		/*
3392 		 * Some systems use a bios work around to ask for D3 on
3393 		 * platforms that support kernel managed suspend.
3394 		 */
3395 		dev_info(&pdev->dev,
3396 			 "platform quirk: setting simple suspend\n");
3397 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3398 	}
3399 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3400 			     quirks);
3401 	if (ret)
3402 		goto out_put_device;
3403 
3404 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3405 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3406 	else
3407 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3408 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3409 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3410 
3411 	/*
3412 	 * Limit the max command size to prevent iod->sg allocations going
3413 	 * over a single page.
3414 	 */
3415 	dev->ctrl.max_hw_sectors = min_t(u32,
3416 			NVME_MAX_BYTES >> SECTOR_SHIFT,
3417 			dma_opt_mapping_size(&pdev->dev) >> 9);
3418 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3419 	dev->ctrl.max_integrity_segments = 1;
3420 	return dev;
3421 
3422 out_put_device:
3423 	put_device(dev->dev);
3424 	kfree(dev->queues);
3425 out_free_dev:
3426 	kfree(dev);
3427 	return ERR_PTR(ret);
3428 }
3429 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3430 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3431 {
3432 	struct nvme_dev *dev;
3433 	int result = -ENOMEM;
3434 
3435 	dev = nvme_pci_alloc_dev(pdev, id);
3436 	if (IS_ERR(dev))
3437 		return PTR_ERR(dev);
3438 
3439 	result = nvme_add_ctrl(&dev->ctrl);
3440 	if (result)
3441 		goto out_put_ctrl;
3442 
3443 	result = nvme_dev_map(dev);
3444 	if (result)
3445 		goto out_uninit_ctrl;
3446 
3447 	result = nvme_pci_alloc_iod_mempool(dev);
3448 	if (result)
3449 		goto out_dev_unmap;
3450 
3451 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3452 
3453 	result = nvme_pci_enable(dev);
3454 	if (result)
3455 		goto out_release_iod_mempool;
3456 
3457 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3458 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3459 	if (result)
3460 		goto out_disable;
3461 
3462 	/*
3463 	 * Mark the controller as connecting before sending admin commands to
3464 	 * allow the timeout handler to do the right thing.
3465 	 */
3466 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3467 		dev_warn(dev->ctrl.device,
3468 			"failed to mark controller CONNECTING\n");
3469 		result = -EBUSY;
3470 		goto out_disable;
3471 	}
3472 
3473 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3474 	if (result)
3475 		goto out_disable;
3476 
3477 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3478 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3479 	else
3480 		dev->ctrl.max_integrity_segments = 1;
3481 
3482 	nvme_dbbuf_dma_alloc(dev);
3483 
3484 	result = nvme_setup_host_mem(dev);
3485 	if (result < 0)
3486 		goto out_disable;
3487 
3488 	nvme_update_attrs(dev);
3489 
3490 	result = nvme_setup_io_queues(dev);
3491 	if (result)
3492 		goto out_disable;
3493 
3494 	if (dev->online_queues > 1) {
3495 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3496 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3497 		nvme_dbbuf_set(dev);
3498 	}
3499 
3500 	if (!dev->ctrl.tagset)
3501 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3502 
3503 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3504 		dev_warn(dev->ctrl.device,
3505 			"failed to mark controller live state\n");
3506 		result = -ENODEV;
3507 		goto out_disable;
3508 	}
3509 
3510 	pci_set_drvdata(pdev, dev);
3511 
3512 	nvme_start_ctrl(&dev->ctrl);
3513 	nvme_put_ctrl(&dev->ctrl);
3514 	flush_work(&dev->ctrl.scan_work);
3515 	return 0;
3516 
3517 out_disable:
3518 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3519 	nvme_dev_disable(dev, true);
3520 	nvme_free_host_mem(dev);
3521 	nvme_dev_remove_admin(dev);
3522 	nvme_dbbuf_dma_free(dev);
3523 	nvme_free_queues(dev, 0);
3524 out_release_iod_mempool:
3525 	mempool_destroy(dev->dmavec_mempool);
3526 out_dev_unmap:
3527 	nvme_dev_unmap(dev);
3528 out_uninit_ctrl:
3529 	nvme_uninit_ctrl(&dev->ctrl);
3530 out_put_ctrl:
3531 	nvme_put_ctrl(&dev->ctrl);
3532 	return result;
3533 }
3534 
nvme_reset_prepare(struct pci_dev * pdev)3535 static void nvme_reset_prepare(struct pci_dev *pdev)
3536 {
3537 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3538 
3539 	/*
3540 	 * We don't need to check the return value from waiting for the reset
3541 	 * state as pci_dev device lock is held, making it impossible to race
3542 	 * with ->remove().
3543 	 */
3544 	nvme_disable_prepare_reset(dev, false);
3545 	nvme_sync_queues(&dev->ctrl);
3546 }
3547 
nvme_reset_done(struct pci_dev * pdev)3548 static void nvme_reset_done(struct pci_dev *pdev)
3549 {
3550 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3551 
3552 	if (!nvme_try_sched_reset(&dev->ctrl))
3553 		flush_work(&dev->ctrl.reset_work);
3554 }
3555 
nvme_shutdown(struct pci_dev * pdev)3556 static void nvme_shutdown(struct pci_dev *pdev)
3557 {
3558 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3559 
3560 	nvme_disable_prepare_reset(dev, true);
3561 }
3562 
3563 /*
3564  * The driver's remove may be called on a device in a partially initialized
3565  * state. This function must not have any dependencies on the device state in
3566  * order to proceed.
3567  */
nvme_remove(struct pci_dev * pdev)3568 static void nvme_remove(struct pci_dev *pdev)
3569 {
3570 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3571 
3572 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3573 	pci_set_drvdata(pdev, NULL);
3574 
3575 	if (!pci_device_is_present(pdev)) {
3576 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3577 		nvme_dev_disable(dev, true);
3578 	}
3579 
3580 	flush_work(&dev->ctrl.reset_work);
3581 	nvme_stop_ctrl(&dev->ctrl);
3582 	nvme_remove_namespaces(&dev->ctrl);
3583 	nvme_dev_disable(dev, true);
3584 	nvme_free_host_mem(dev);
3585 	nvme_dev_remove_admin(dev);
3586 	nvme_dbbuf_dma_free(dev);
3587 	nvme_free_queues(dev, 0);
3588 	mempool_destroy(dev->dmavec_mempool);
3589 	nvme_release_descriptor_pools(dev);
3590 	nvme_dev_unmap(dev);
3591 	nvme_uninit_ctrl(&dev->ctrl);
3592 }
3593 
3594 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3595 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3596 {
3597 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3598 }
3599 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3600 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3601 {
3602 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3603 }
3604 
nvme_resume(struct device * dev)3605 static int nvme_resume(struct device *dev)
3606 {
3607 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3608 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3609 
3610 	if (ndev->last_ps == U32_MAX ||
3611 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3612 		goto reset;
3613 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3614 		goto reset;
3615 
3616 	return 0;
3617 reset:
3618 	return nvme_try_sched_reset(ctrl);
3619 }
3620 
nvme_suspend(struct device * dev)3621 static int nvme_suspend(struct device *dev)
3622 {
3623 	struct pci_dev *pdev = to_pci_dev(dev);
3624 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3625 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3626 	int ret = -EBUSY;
3627 
3628 	ndev->last_ps = U32_MAX;
3629 
3630 	/*
3631 	 * The platform does not remove power for a kernel managed suspend so
3632 	 * use host managed nvme power settings for lowest idle power if
3633 	 * possible. This should have quicker resume latency than a full device
3634 	 * shutdown.  But if the firmware is involved after the suspend or the
3635 	 * device does not support any non-default power states, shut down the
3636 	 * device fully.
3637 	 *
3638 	 * If ASPM is not enabled for the device, shut down the device and allow
3639 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3640 	 * down, so as to allow the platform to achieve its minimum low-power
3641 	 * state (which may not be possible if the link is up).
3642 	 */
3643 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3644 	    !pcie_aspm_enabled(pdev) ||
3645 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3646 		return nvme_disable_prepare_reset(ndev, true);
3647 
3648 	nvme_start_freeze(ctrl);
3649 	nvme_wait_freeze(ctrl);
3650 	nvme_sync_queues(ctrl);
3651 
3652 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3653 		goto unfreeze;
3654 
3655 	/*
3656 	 * Host memory access may not be successful in a system suspend state,
3657 	 * but the specification allows the controller to access memory in a
3658 	 * non-operational power state.
3659 	 */
3660 	if (ndev->hmb) {
3661 		ret = nvme_set_host_mem(ndev, 0);
3662 		if (ret < 0)
3663 			goto unfreeze;
3664 	}
3665 
3666 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3667 	if (ret < 0)
3668 		goto unfreeze;
3669 
3670 	/*
3671 	 * A saved state prevents pci pm from generically controlling the
3672 	 * device's power. If we're using protocol specific settings, we don't
3673 	 * want pci interfering.
3674 	 */
3675 	pci_save_state(pdev);
3676 
3677 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3678 	if (ret < 0)
3679 		goto unfreeze;
3680 
3681 	if (ret) {
3682 		/* discard the saved state */
3683 		pci_load_saved_state(pdev, NULL);
3684 
3685 		/*
3686 		 * Clearing npss forces a controller reset on resume. The
3687 		 * correct value will be rediscovered then.
3688 		 */
3689 		ret = nvme_disable_prepare_reset(ndev, true);
3690 		ctrl->npss = 0;
3691 	}
3692 unfreeze:
3693 	nvme_unfreeze(ctrl);
3694 	return ret;
3695 }
3696 
nvme_simple_suspend(struct device * dev)3697 static int nvme_simple_suspend(struct device *dev)
3698 {
3699 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3700 
3701 	return nvme_disable_prepare_reset(ndev, true);
3702 }
3703 
nvme_simple_resume(struct device * dev)3704 static int nvme_simple_resume(struct device *dev)
3705 {
3706 	struct pci_dev *pdev = to_pci_dev(dev);
3707 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3708 
3709 	return nvme_try_sched_reset(&ndev->ctrl);
3710 }
3711 
3712 static const struct dev_pm_ops nvme_dev_pm_ops = {
3713 	.suspend	= nvme_suspend,
3714 	.resume		= nvme_resume,
3715 	.freeze		= nvme_simple_suspend,
3716 	.thaw		= nvme_simple_resume,
3717 	.poweroff	= nvme_simple_suspend,
3718 	.restore	= nvme_simple_resume,
3719 };
3720 #endif /* CONFIG_PM_SLEEP */
3721 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3722 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3723 						pci_channel_state_t state)
3724 {
3725 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3726 
3727 	/*
3728 	 * A frozen channel requires a reset. When detected, this method will
3729 	 * shutdown the controller to quiesce. The controller will be restarted
3730 	 * after the slot reset through driver's slot_reset callback.
3731 	 */
3732 	switch (state) {
3733 	case pci_channel_io_normal:
3734 		return PCI_ERS_RESULT_CAN_RECOVER;
3735 	case pci_channel_io_frozen:
3736 		dev_warn(dev->ctrl.device,
3737 			"frozen state error detected, reset controller\n");
3738 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3739 			nvme_dev_disable(dev, true);
3740 			return PCI_ERS_RESULT_DISCONNECT;
3741 		}
3742 		nvme_dev_disable(dev, false);
3743 		return PCI_ERS_RESULT_NEED_RESET;
3744 	case pci_channel_io_perm_failure:
3745 		dev_warn(dev->ctrl.device,
3746 			"failure state error detected, request disconnect\n");
3747 		return PCI_ERS_RESULT_DISCONNECT;
3748 	}
3749 	return PCI_ERS_RESULT_NEED_RESET;
3750 }
3751 
nvme_slot_reset(struct pci_dev * pdev)3752 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3753 {
3754 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3755 
3756 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3757 	pci_restore_state(pdev);
3758 	if (nvme_try_sched_reset(&dev->ctrl))
3759 		nvme_unquiesce_io_queues(&dev->ctrl);
3760 	return PCI_ERS_RESULT_RECOVERED;
3761 }
3762 
nvme_error_resume(struct pci_dev * pdev)3763 static void nvme_error_resume(struct pci_dev *pdev)
3764 {
3765 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3766 
3767 	flush_work(&dev->ctrl.reset_work);
3768 }
3769 
3770 static const struct pci_error_handlers nvme_err_handler = {
3771 	.error_detected	= nvme_error_detected,
3772 	.slot_reset	= nvme_slot_reset,
3773 	.resume		= nvme_error_resume,
3774 	.reset_prepare	= nvme_reset_prepare,
3775 	.reset_done	= nvme_reset_done,
3776 };
3777 
3778 static const struct pci_device_id nvme_id_table[] = {
3779 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3780 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3781 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3782 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3783 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3784 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3785 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3786 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3787 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3788 				NVME_QUIRK_BOGUS_NID, },
3789 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3790 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3791 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3792 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3793 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3794 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3795 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3796 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3797 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3798 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3799 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3800 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3801 				NVME_QUIRK_BOGUS_NID, },
3802 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3803 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3804 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3805 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3806 	{ PCI_DEVICE(0x126f, 0x1001),	/* Silicon Motion generic */
3807 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3808 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3809 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3810 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3811 				NVME_QUIRK_BOGUS_NID, },
3812 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3813 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3814 				NVME_QUIRK_BOGUS_NID, },
3815 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3816 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3817 				NVME_QUIRK_NO_NS_DESC_LIST, },
3818 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3819 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3820 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3821 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3822 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3823 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3824 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3825 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3826 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3827 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3828 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3829 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3830 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3831 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3832 	{ PCI_DEVICE(0x15b7, 0x5009),   /* Sandisk SN550 */
3833 		.driver_data = NVME_QUIRK_BROKEN_MSI |
3834 				NVME_QUIRK_NO_DEEPEST_PS },
3835 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3836 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3837 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3838 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3839 				NVME_QUIRK_BOGUS_NID, },
3840 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3841 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3842 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3843 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3844 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3845 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3846 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3847 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3848 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3849 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3850 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3851 				NVME_QUIRK_BOGUS_NID, },
3852 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3853 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3854 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3855 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3856 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3857 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3858 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3859 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3860 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3861 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3862 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3863 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3864 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3865 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3866 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3867 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3868 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3869 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3870 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3871 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3872 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3873 				NVME_QUIRK_BOGUS_NID, },
3874 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3875 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3876 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3877 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3878 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3879 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3880 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3881 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3882 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3883 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3884 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3885 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3886 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3887 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3888 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3889 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3890 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3891 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3892 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3893 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3894 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3895 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3896 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3897 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3898 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3899 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3900 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3901 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3902 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3903 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3904 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3905 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3906 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3907 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3908 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3909 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3910 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3911 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3912 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3913 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3914 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3915 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3916 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3917 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3918 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3919 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3920 	{ PCI_DEVICE(0x025e, 0xf1ac),   /* SOLIDIGM  P44 pro SSDPFKKW020X7  */
3921 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3922 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3923 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3924 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3925 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3926 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3927 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3928 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3929 		.driver_data = NVME_QUIRK_BOGUS_NID |
3930 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3931 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3932 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3933 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3934 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3935 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3936 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3937 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3938 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3939 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3940 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3941 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3942 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3943 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3944 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3945 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3946 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3947 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3948 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3949 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3950 		/*
3951 		 * Fix for the Apple controller found in the MacBook8,1 and
3952 		 * some MacBook7,1 to avoid controller resets and data loss.
3953 		 */
3954 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3955 				NVME_QUIRK_QDEPTH_ONE },
3956 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3957 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3958 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3959 				NVME_QUIRK_128_BYTES_SQES |
3960 				NVME_QUIRK_SHARED_TAGS |
3961 				NVME_QUIRK_SKIP_CID_GEN |
3962 				NVME_QUIRK_IDENTIFY_CNS },
3963 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3964 	{ 0, }
3965 };
3966 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3967 
3968 static struct pci_driver nvme_driver = {
3969 	.name		= "nvme",
3970 	.id_table	= nvme_id_table,
3971 	.probe		= nvme_probe,
3972 	.remove		= nvme_remove,
3973 	.shutdown	= nvme_shutdown,
3974 	.driver		= {
3975 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3976 #ifdef CONFIG_PM_SLEEP
3977 		.pm		= &nvme_dev_pm_ops,
3978 #endif
3979 	},
3980 	.sriov_configure = pci_sriov_configure_simple,
3981 	.err_handler	= &nvme_err_handler,
3982 };
3983 
nvme_init(void)3984 static int __init nvme_init(void)
3985 {
3986 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3987 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3988 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3989 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3990 
3991 	return pci_register_driver(&nvme_driver);
3992 }
3993 
nvme_exit(void)3994 static void __exit nvme_exit(void)
3995 {
3996 	pci_unregister_driver(&nvme_driver);
3997 	flush_workqueue(nvme_wq);
3998 }
3999 
4000 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
4001 MODULE_LICENSE("GPL");
4002 MODULE_VERSION("1.0");
4003 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
4004 module_init(nvme_init);
4005 module_exit(nvme_exit);
4006