xref: /linux/drivers/nvme/host/pci.c (revision 6e11664f148454a127dd89e8698c3e3e80e5f62f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE	256
39 
40 /*
41  * Arbitrary upper bound.
42  */
43 #define NVME_MAX_BYTES		SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS	5
45 
46 /*
47  * For data SGLs we support a single descriptors worth of SGL entries.
48  * For PRPs, segments don't matter at all.
49  */
50 #define NVME_MAX_SEGS \
51 	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52 
53 /*
54  * For metadata SGLs, only the small descriptor is supported, and the first
55  * entry is the segment descriptor, which for the data pointer sits in the SQE.
56  */
57 #define NVME_MAX_META_SEGS \
58 	((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59 
60 /*
61  * The last entry is used to link to the next descriptor.
62  */
63 #define PRPS_PER_PAGE \
64 	(((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65 
66 /*
67  * I/O could be non-aligned both at the beginning and end.
68  */
69 #define MAX_PRP_RANGE \
70 	(NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71 
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 	(1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74 
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77 
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81 
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86 
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 		"Use SGLs when average request segment size is larger or equal to "
91 		"this size. Use 0 to disable SGLs.");
92 
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 	.set = io_queue_depth_set,
98 	.get = param_get_uint,
99 };
100 
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104 
io_queue_count_set(const char * val,const struct kernel_param * kp)105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 	unsigned int n;
108 	int ret;
109 
110 	ret = kstrtouint(val, 10, &n);
111 	if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 		return -EINVAL;
113 	return param_set_uint(val, kp);
114 }
115 
116 static const struct kernel_param_ops io_queue_count_ops = {
117 	.set = io_queue_count_set,
118 	.get = param_get_uint,
119 };
120 
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 	"Number of queues to use for writes. If not set, reads and writes "
125 	"will share a queue set.");
126 
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130 
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134 
135 struct nvme_dev;
136 struct nvme_queue;
137 
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141 
142 struct nvme_descriptor_pools {
143 	struct dma_pool *large;
144 	struct dma_pool *small;
145 };
146 
147 /*
148  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
149  */
150 struct nvme_dev {
151 	struct nvme_queue *queues;
152 	struct blk_mq_tag_set tagset;
153 	struct blk_mq_tag_set admin_tagset;
154 	u32 __iomem *dbs;
155 	struct device *dev;
156 	unsigned online_queues;
157 	unsigned max_qid;
158 	unsigned io_queues[HCTX_MAX_TYPES];
159 	unsigned int num_vecs;
160 	u32 q_depth;
161 	int io_sqes;
162 	u32 db_stride;
163 	void __iomem *bar;
164 	unsigned long bar_mapped_size;
165 	struct mutex shutdown_lock;
166 	bool subsystem;
167 	u64 cmb_size;
168 	bool cmb_use_sqes;
169 	u32 cmbsz;
170 	u32 cmbloc;
171 	struct nvme_ctrl ctrl;
172 	u32 last_ps;
173 	bool hmb;
174 	struct sg_table *hmb_sgt;
175 
176 	mempool_t *dmavec_mempool;
177 	mempool_t *iod_meta_mempool;
178 
179 	/* shadow doorbell buffer support: */
180 	__le32 *dbbuf_dbs;
181 	dma_addr_t dbbuf_dbs_dma_addr;
182 	__le32 *dbbuf_eis;
183 	dma_addr_t dbbuf_eis_dma_addr;
184 
185 	/* host memory buffer support: */
186 	u64 host_mem_size;
187 	u32 nr_host_mem_descs;
188 	u32 host_mem_descs_size;
189 	dma_addr_t host_mem_descs_dma;
190 	struct nvme_host_mem_buf_desc *host_mem_descs;
191 	void **host_mem_desc_bufs;
192 	unsigned int nr_allocated_queues;
193 	unsigned int nr_write_queues;
194 	unsigned int nr_poll_queues;
195 	struct nvme_descriptor_pools descriptor_pools[];
196 };
197 
io_queue_depth_set(const char * val,const struct kernel_param * kp)198 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
199 {
200 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
201 			NVME_PCI_MAX_QUEUE_SIZE);
202 }
203 
sq_idx(unsigned int qid,u32 stride)204 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
205 {
206 	return qid * 2 * stride;
207 }
208 
cq_idx(unsigned int qid,u32 stride)209 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
210 {
211 	return (qid * 2 + 1) * stride;
212 }
213 
to_nvme_dev(struct nvme_ctrl * ctrl)214 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
215 {
216 	return container_of(ctrl, struct nvme_dev, ctrl);
217 }
218 
219 /*
220  * An NVM Express queue.  Each device has at least two (one for admin
221  * commands and one for I/O commands).
222  */
223 struct nvme_queue {
224 	struct nvme_dev *dev;
225 	struct nvme_descriptor_pools descriptor_pools;
226 	spinlock_t sq_lock;
227 	void *sq_cmds;
228 	 /* only used for poll queues: */
229 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
230 	struct nvme_completion *cqes;
231 	dma_addr_t sq_dma_addr;
232 	dma_addr_t cq_dma_addr;
233 	u32 __iomem *q_db;
234 	u32 q_depth;
235 	u16 cq_vector;
236 	u16 sq_tail;
237 	u16 last_sq_tail;
238 	u16 cq_head;
239 	u16 qid;
240 	u8 cq_phase;
241 	u8 sqes;
242 	unsigned long flags;
243 #define NVMEQ_ENABLED		0
244 #define NVMEQ_SQ_CMB		1
245 #define NVMEQ_DELETE_ERROR	2
246 #define NVMEQ_POLLED		3
247 	__le32 *dbbuf_sq_db;
248 	__le32 *dbbuf_cq_db;
249 	__le32 *dbbuf_sq_ei;
250 	__le32 *dbbuf_cq_ei;
251 	struct completion delete_done;
252 };
253 
254 /* bits for iod->flags */
255 enum nvme_iod_flags {
256 	/* this command has been aborted by the timeout handler */
257 	IOD_ABORTED		= 1U << 0,
258 
259 	/* uses the small descriptor pool */
260 	IOD_SMALL_DESCRIPTOR	= 1U << 1,
261 
262 	/* single segment dma mapping */
263 	IOD_SINGLE_SEGMENT	= 1U << 2,
264 };
265 
266 struct nvme_dma_vec {
267 	dma_addr_t addr;
268 	unsigned int len;
269 };
270 
271 /*
272  * The nvme_iod describes the data in an I/O.
273  */
274 struct nvme_iod {
275 	struct nvme_request req;
276 	struct nvme_command cmd;
277 	u8 flags;
278 	u8 nr_descriptors;
279 
280 	unsigned int total_len;
281 	struct dma_iova_state dma_state;
282 	void *descriptors[NVME_MAX_NR_DESCRIPTORS];
283 	struct nvme_dma_vec *dma_vecs;
284 	unsigned int nr_dma_vecs;
285 
286 	dma_addr_t meta_dma;
287 	struct sg_table meta_sgt;
288 	struct nvme_sgl_desc *meta_descriptor;
289 };
290 
nvme_dbbuf_size(struct nvme_dev * dev)291 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
292 {
293 	return dev->nr_allocated_queues * 8 * dev->db_stride;
294 }
295 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)296 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
297 {
298 	unsigned int mem_size = nvme_dbbuf_size(dev);
299 
300 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
301 		return;
302 
303 	if (dev->dbbuf_dbs) {
304 		/*
305 		 * Clear the dbbuf memory so the driver doesn't observe stale
306 		 * values from the previous instantiation.
307 		 */
308 		memset(dev->dbbuf_dbs, 0, mem_size);
309 		memset(dev->dbbuf_eis, 0, mem_size);
310 		return;
311 	}
312 
313 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
314 					    &dev->dbbuf_dbs_dma_addr,
315 					    GFP_KERNEL);
316 	if (!dev->dbbuf_dbs)
317 		goto fail;
318 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
319 					    &dev->dbbuf_eis_dma_addr,
320 					    GFP_KERNEL);
321 	if (!dev->dbbuf_eis)
322 		goto fail_free_dbbuf_dbs;
323 	return;
324 
325 fail_free_dbbuf_dbs:
326 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
327 			  dev->dbbuf_dbs_dma_addr);
328 	dev->dbbuf_dbs = NULL;
329 fail:
330 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
331 }
332 
nvme_dbbuf_dma_free(struct nvme_dev * dev)333 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
334 {
335 	unsigned int mem_size = nvme_dbbuf_size(dev);
336 
337 	if (dev->dbbuf_dbs) {
338 		dma_free_coherent(dev->dev, mem_size,
339 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
340 		dev->dbbuf_dbs = NULL;
341 	}
342 	if (dev->dbbuf_eis) {
343 		dma_free_coherent(dev->dev, mem_size,
344 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
345 		dev->dbbuf_eis = NULL;
346 	}
347 }
348 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)349 static void nvme_dbbuf_init(struct nvme_dev *dev,
350 			    struct nvme_queue *nvmeq, int qid)
351 {
352 	if (!dev->dbbuf_dbs || !qid)
353 		return;
354 
355 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
356 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
357 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
358 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
359 }
360 
nvme_dbbuf_free(struct nvme_queue * nvmeq)361 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
362 {
363 	if (!nvmeq->qid)
364 		return;
365 
366 	nvmeq->dbbuf_sq_db = NULL;
367 	nvmeq->dbbuf_cq_db = NULL;
368 	nvmeq->dbbuf_sq_ei = NULL;
369 	nvmeq->dbbuf_cq_ei = NULL;
370 }
371 
nvme_dbbuf_set(struct nvme_dev * dev)372 static void nvme_dbbuf_set(struct nvme_dev *dev)
373 {
374 	struct nvme_command c = { };
375 	unsigned int i;
376 
377 	if (!dev->dbbuf_dbs)
378 		return;
379 
380 	c.dbbuf.opcode = nvme_admin_dbbuf;
381 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
382 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
383 
384 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
385 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
386 		/* Free memory and continue on */
387 		nvme_dbbuf_dma_free(dev);
388 
389 		for (i = 1; i <= dev->online_queues; i++)
390 			nvme_dbbuf_free(&dev->queues[i]);
391 	}
392 }
393 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)394 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
395 {
396 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
397 }
398 
399 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)400 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
401 					      volatile __le32 *dbbuf_ei)
402 {
403 	if (dbbuf_db) {
404 		u16 old_value, event_idx;
405 
406 		/*
407 		 * Ensure that the queue is written before updating
408 		 * the doorbell in memory
409 		 */
410 		wmb();
411 
412 		old_value = le32_to_cpu(*dbbuf_db);
413 		*dbbuf_db = cpu_to_le32(value);
414 
415 		/*
416 		 * Ensure that the doorbell is updated before reading the event
417 		 * index from memory.  The controller needs to provide similar
418 		 * ordering to ensure the event index is updated before reading
419 		 * the doorbell.
420 		 */
421 		mb();
422 
423 		event_idx = le32_to_cpu(*dbbuf_ei);
424 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
425 			return false;
426 	}
427 
428 	return true;
429 }
430 
431 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)432 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
433 {
434 	struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
435 	size_t small_align = NVME_SMALL_POOL_SIZE;
436 
437 	if (pools->small)
438 		return pools; /* already initialized */
439 
440 	pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
441 			NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
442 	if (!pools->large)
443 		return ERR_PTR(-ENOMEM);
444 
445 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
446 		small_align = 512;
447 
448 	pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
449 			NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
450 	if (!pools->small) {
451 		dma_pool_destroy(pools->large);
452 		pools->large = NULL;
453 		return ERR_PTR(-ENOMEM);
454 	}
455 
456 	return pools;
457 }
458 
nvme_release_descriptor_pools(struct nvme_dev * dev)459 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
460 {
461 	unsigned i;
462 
463 	for (i = 0; i < nr_node_ids; i++) {
464 		struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
465 
466 		dma_pool_destroy(pools->large);
467 		dma_pool_destroy(pools->small);
468 	}
469 }
470 
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)471 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
472 		unsigned qid)
473 {
474 	struct nvme_dev *dev = to_nvme_dev(data);
475 	struct nvme_queue *nvmeq = &dev->queues[qid];
476 	struct nvme_descriptor_pools *pools;
477 	struct blk_mq_tags *tags;
478 
479 	tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
480 	WARN_ON(tags != hctx->tags);
481 	pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
482 	if (IS_ERR(pools))
483 		return PTR_ERR(pools);
484 
485 	nvmeq->descriptor_pools = *pools;
486 	hctx->driver_data = nvmeq;
487 	return 0;
488 }
489 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)490 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
491 				unsigned int hctx_idx)
492 {
493 	WARN_ON(hctx_idx != 0);
494 	return nvme_init_hctx_common(hctx, data, 0);
495 }
496 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)497 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
498 			     unsigned int hctx_idx)
499 {
500 	return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
501 }
502 
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)503 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
504 		struct request *req, unsigned int hctx_idx,
505 		unsigned int numa_node)
506 {
507 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508 
509 	nvme_req(req)->ctrl = set->driver_data;
510 	nvme_req(req)->cmd = &iod->cmd;
511 	return 0;
512 }
513 
queue_irq_offset(struct nvme_dev * dev)514 static int queue_irq_offset(struct nvme_dev *dev)
515 {
516 	/* if we have more than 1 vec, admin queue offsets us by 1 */
517 	if (dev->num_vecs > 1)
518 		return 1;
519 
520 	return 0;
521 }
522 
nvme_pci_map_queues(struct blk_mq_tag_set * set)523 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
524 {
525 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
526 	int i, qoff, offset;
527 
528 	offset = queue_irq_offset(dev);
529 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
530 		struct blk_mq_queue_map *map = &set->map[i];
531 
532 		map->nr_queues = dev->io_queues[i];
533 		if (!map->nr_queues) {
534 			BUG_ON(i == HCTX_TYPE_DEFAULT);
535 			continue;
536 		}
537 
538 		/*
539 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
540 		 * affinity), so use the regular blk-mq cpu mapping
541 		 */
542 		map->queue_offset = qoff;
543 		if (i != HCTX_TYPE_POLL && offset)
544 			blk_mq_map_hw_queues(map, dev->dev, offset);
545 		else
546 			blk_mq_map_queues(map);
547 		qoff += map->nr_queues;
548 		offset += map->nr_queues;
549 	}
550 }
551 
552 /*
553  * Write sq tail if we are asked to, or if the next command would wrap.
554  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)555 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
556 {
557 	if (!write_sq) {
558 		u16 next_tail = nvmeq->sq_tail + 1;
559 
560 		if (next_tail == nvmeq->q_depth)
561 			next_tail = 0;
562 		if (next_tail != nvmeq->last_sq_tail)
563 			return;
564 	}
565 
566 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
567 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
568 		writel(nvmeq->sq_tail, nvmeq->q_db);
569 	nvmeq->last_sq_tail = nvmeq->sq_tail;
570 }
571 
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)572 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
573 				    struct nvme_command *cmd)
574 {
575 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
576 		absolute_pointer(cmd), sizeof(*cmd));
577 	if (++nvmeq->sq_tail == nvmeq->q_depth)
578 		nvmeq->sq_tail = 0;
579 }
580 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)581 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
582 {
583 	struct nvme_queue *nvmeq = hctx->driver_data;
584 
585 	spin_lock(&nvmeq->sq_lock);
586 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
587 		nvme_write_sq_db(nvmeq, true);
588 	spin_unlock(&nvmeq->sq_lock);
589 }
590 
591 enum nvme_use_sgl {
592 	SGL_UNSUPPORTED,
593 	SGL_SUPPORTED,
594 	SGL_FORCED,
595 };
596 
nvme_pci_metadata_use_sgls(struct request * req)597 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
598 {
599 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
600 	struct nvme_dev *dev = nvmeq->dev;
601 
602 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
603 		return false;
604 	return req->nr_integrity_segments > 1 ||
605 		nvme_req(req)->flags & NVME_REQ_USERCMD;
606 }
607 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)608 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
609 		struct request *req)
610 {
611 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
612 
613 	if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
614 		if (nvme_req(req)->flags & NVME_REQ_USERCMD)
615 			return SGL_FORCED;
616 		if (req->nr_integrity_segments > 1)
617 			return SGL_FORCED;
618 		return SGL_SUPPORTED;
619 	}
620 
621 	return SGL_UNSUPPORTED;
622 }
623 
nvme_pci_avg_seg_size(struct request * req)624 static unsigned int nvme_pci_avg_seg_size(struct request *req)
625 {
626 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
627 	unsigned int nseg;
628 
629 	if (blk_rq_dma_map_coalesce(&iod->dma_state))
630 		nseg = 1;
631 	else
632 		nseg = blk_rq_nr_phys_segments(req);
633 	return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
634 }
635 
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)636 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
637 		struct nvme_iod *iod)
638 {
639 	if (iod->flags & IOD_SMALL_DESCRIPTOR)
640 		return nvmeq->descriptor_pools.small;
641 	return nvmeq->descriptor_pools.large;
642 }
643 
nvme_pci_cmd_use_sgl(struct nvme_command * cmd)644 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
645 {
646 	return cmd->common.flags &
647 		(NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
648 }
649 
nvme_pci_first_desc_dma_addr(struct nvme_command * cmd)650 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
651 {
652 	if (nvme_pci_cmd_use_sgl(cmd))
653 		return le64_to_cpu(cmd->common.dptr.sgl.addr);
654 	return le64_to_cpu(cmd->common.dptr.prp2);
655 }
656 
nvme_free_descriptors(struct request * req)657 static void nvme_free_descriptors(struct request *req)
658 {
659 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
660 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
661 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
662 	dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
663 	int i;
664 
665 	if (iod->nr_descriptors == 1) {
666 		dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
667 				dma_addr);
668 		return;
669 	}
670 
671 	for (i = 0; i < iod->nr_descriptors; i++) {
672 		__le64 *prp_list = iod->descriptors[i];
673 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
674 
675 		dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
676 				dma_addr);
677 		dma_addr = next_dma_addr;
678 	}
679 }
680 
nvme_free_prps(struct request * req)681 static void nvme_free_prps(struct request *req)
682 {
683 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
684 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
685 	unsigned int i;
686 
687 	for (i = 0; i < iod->nr_dma_vecs; i++)
688 		dma_unmap_page(nvmeq->dev->dev, iod->dma_vecs[i].addr,
689 				iod->dma_vecs[i].len, rq_dma_dir(req));
690 	mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
691 }
692 
nvme_free_sgls(struct request * req)693 static void nvme_free_sgls(struct request *req)
694 {
695 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
696 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
697 	struct device *dma_dev = nvmeq->dev->dev;
698 	dma_addr_t sqe_dma_addr = le64_to_cpu(iod->cmd.common.dptr.sgl.addr);
699 	unsigned int sqe_dma_len = le32_to_cpu(iod->cmd.common.dptr.sgl.length);
700 	struct nvme_sgl_desc *sg_list = iod->descriptors[0];
701 	enum dma_data_direction dir = rq_dma_dir(req);
702 
703 	if (iod->nr_descriptors) {
704 		unsigned int nr_entries = sqe_dma_len / sizeof(*sg_list), i;
705 
706 		for (i = 0; i < nr_entries; i++)
707 			dma_unmap_page(dma_dev, le64_to_cpu(sg_list[i].addr),
708 				le32_to_cpu(sg_list[i].length), dir);
709 	} else {
710 		dma_unmap_page(dma_dev, sqe_dma_addr, sqe_dma_len, dir);
711 	}
712 }
713 
nvme_unmap_data(struct request * req)714 static void nvme_unmap_data(struct request *req)
715 {
716 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
717 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
718 	struct device *dma_dev = nvmeq->dev->dev;
719 
720 	if (iod->flags & IOD_SINGLE_SEGMENT) {
721 		static_assert(offsetof(union nvme_data_ptr, prp1) ==
722 				offsetof(union nvme_data_ptr, sgl.addr));
723 		dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
724 				iod->total_len, rq_dma_dir(req));
725 		return;
726 	}
727 
728 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len)) {
729 		if (nvme_pci_cmd_use_sgl(&iod->cmd))
730 			nvme_free_sgls(req);
731 		else
732 			nvme_free_prps(req);
733 	}
734 
735 	if (iod->nr_descriptors)
736 		nvme_free_descriptors(req);
737 }
738 
nvme_pci_prp_iter_next(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)739 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
740 		struct blk_dma_iter *iter)
741 {
742 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
743 
744 	if (iter->len)
745 		return true;
746 	if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
747 		return false;
748 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) {
749 		iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
750 		iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
751 		iod->nr_dma_vecs++;
752 	}
753 	return true;
754 }
755 
nvme_pci_setup_data_prp(struct request * req,struct blk_dma_iter * iter)756 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
757 		struct blk_dma_iter *iter)
758 {
759 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
760 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
761 	unsigned int length = blk_rq_payload_bytes(req);
762 	dma_addr_t prp1_dma, prp2_dma = 0;
763 	unsigned int prp_len, i;
764 	__le64 *prp_list;
765 
766 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) {
767 		iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
768 				GFP_ATOMIC);
769 		if (!iod->dma_vecs)
770 			return BLK_STS_RESOURCE;
771 		iod->dma_vecs[0].addr = iter->addr;
772 		iod->dma_vecs[0].len = iter->len;
773 		iod->nr_dma_vecs = 1;
774 	}
775 
776 	/*
777 	 * PRP1 always points to the start of the DMA transfers.
778 	 *
779 	 * This is the only PRP (except for the list entries) that could be
780 	 * non-aligned.
781 	 */
782 	prp1_dma = iter->addr;
783 	prp_len = min(length, NVME_CTRL_PAGE_SIZE -
784 			(iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
785 	iod->total_len += prp_len;
786 	iter->addr += prp_len;
787 	iter->len -= prp_len;
788 	length -= prp_len;
789 	if (!length)
790 		goto done;
791 
792 	if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
793 		if (WARN_ON_ONCE(!iter->status))
794 			goto bad_sgl;
795 		goto done;
796 	}
797 
798 	/*
799 	 * PRP2 is usually a list, but can point to data if all data to be
800 	 * transferred fits into PRP1 + PRP2:
801 	 */
802 	if (length <= NVME_CTRL_PAGE_SIZE) {
803 		prp2_dma = iter->addr;
804 		iod->total_len += length;
805 		goto done;
806 	}
807 
808 	if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
809 	    NVME_SMALL_POOL_SIZE / sizeof(__le64))
810 		iod->flags |= IOD_SMALL_DESCRIPTOR;
811 
812 	prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
813 			&prp2_dma);
814 	if (!prp_list) {
815 		iter->status = BLK_STS_RESOURCE;
816 		goto done;
817 	}
818 	iod->descriptors[iod->nr_descriptors++] = prp_list;
819 
820 	i = 0;
821 	for (;;) {
822 		prp_list[i++] = cpu_to_le64(iter->addr);
823 		prp_len = min(length, NVME_CTRL_PAGE_SIZE);
824 		if (WARN_ON_ONCE(iter->len < prp_len))
825 			goto bad_sgl;
826 
827 		iod->total_len += prp_len;
828 		iter->addr += prp_len;
829 		iter->len -= prp_len;
830 		length -= prp_len;
831 		if (!length)
832 			break;
833 
834 		if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
835 			if (WARN_ON_ONCE(!iter->status))
836 				goto bad_sgl;
837 			goto done;
838 		}
839 
840 		/*
841 		 * If we've filled the entire descriptor, allocate a new that is
842 		 * pointed to be the last entry in the previous PRP list.  To
843 		 * accommodate for that move the last actual entry to the new
844 		 * descriptor.
845 		 */
846 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
847 			__le64 *old_prp_list = prp_list;
848 			dma_addr_t prp_list_dma;
849 
850 			prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
851 					GFP_ATOMIC, &prp_list_dma);
852 			if (!prp_list) {
853 				iter->status = BLK_STS_RESOURCE;
854 				goto done;
855 			}
856 			iod->descriptors[iod->nr_descriptors++] = prp_list;
857 
858 			prp_list[0] = old_prp_list[i - 1];
859 			old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
860 			i = 1;
861 		}
862 	}
863 
864 done:
865 	/*
866 	 * nvme_unmap_data uses the DPT field in the SQE to tear down the
867 	 * mapping, so initialize it even for failures.
868 	 */
869 	iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
870 	iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
871 	if (unlikely(iter->status))
872 		nvme_unmap_data(req);
873 	return iter->status;
874 
875 bad_sgl:
876 	dev_err_once(nvmeq->dev->dev,
877 		"Incorrectly formed request for payload:%d nents:%d\n",
878 		blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
879 	return BLK_STS_IOERR;
880 }
881 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct blk_dma_iter * iter)882 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
883 		struct blk_dma_iter *iter)
884 {
885 	sge->addr = cpu_to_le64(iter->addr);
886 	sge->length = cpu_to_le32(iter->len);
887 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
888 }
889 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)890 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
891 		dma_addr_t dma_addr, int entries)
892 {
893 	sge->addr = cpu_to_le64(dma_addr);
894 	sge->length = cpu_to_le32(entries * sizeof(*sge));
895 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
896 }
897 
nvme_pci_setup_data_sgl(struct request * req,struct blk_dma_iter * iter)898 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
899 		struct blk_dma_iter *iter)
900 {
901 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
902 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
903 	unsigned int entries = blk_rq_nr_phys_segments(req);
904 	struct nvme_sgl_desc *sg_list;
905 	dma_addr_t sgl_dma;
906 	unsigned int mapped = 0;
907 
908 	/* set the transfer type as SGL */
909 	iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
910 
911 	if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
912 		nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
913 		iod->total_len += iter->len;
914 		return BLK_STS_OK;
915 	}
916 
917 	if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
918 		iod->flags |= IOD_SMALL_DESCRIPTOR;
919 
920 	sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
921 			&sgl_dma);
922 	if (!sg_list)
923 		return BLK_STS_RESOURCE;
924 	iod->descriptors[iod->nr_descriptors++] = sg_list;
925 
926 	do {
927 		if (WARN_ON_ONCE(mapped == entries)) {
928 			iter->status = BLK_STS_IOERR;
929 			break;
930 		}
931 		nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
932 		iod->total_len += iter->len;
933 	} while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
934 				iter));
935 
936 	nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
937 	if (unlikely(iter->status))
938 		nvme_free_sgls(req);
939 	return iter->status;
940 }
941 
nvme_pci_setup_data_simple(struct request * req,enum nvme_use_sgl use_sgl)942 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
943 		enum nvme_use_sgl use_sgl)
944 {
945 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
946 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
947 	struct bio_vec bv = req_bvec(req);
948 	unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
949 	bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
950 	dma_addr_t dma_addr;
951 
952 	if (!use_sgl && !prp_possible)
953 		return BLK_STS_AGAIN;
954 	if (is_pci_p2pdma_page(bv.bv_page))
955 		return BLK_STS_AGAIN;
956 
957 	dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
958 	if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
959 		return BLK_STS_RESOURCE;
960 	iod->total_len = bv.bv_len;
961 	iod->flags |= IOD_SINGLE_SEGMENT;
962 
963 	if (use_sgl == SGL_FORCED || !prp_possible) {
964 		iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
965 		iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
966 		iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
967 		iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
968 	} else {
969 		unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
970 
971 		iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
972 		iod->cmd.common.dptr.prp2 = 0;
973 		if (bv.bv_len > first_prp_len)
974 			iod->cmd.common.dptr.prp2 =
975 				cpu_to_le64(dma_addr + first_prp_len);
976 	}
977 
978 	return BLK_STS_OK;
979 }
980 
nvme_map_data(struct request * req)981 static blk_status_t nvme_map_data(struct request *req)
982 {
983 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
984 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
985 	struct nvme_dev *dev = nvmeq->dev;
986 	enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
987 	struct blk_dma_iter iter;
988 	blk_status_t ret;
989 
990 	/*
991 	 * Try to skip the DMA iterator for single segment requests, as that
992 	 * significantly improves performances for small I/O sizes.
993 	 */
994 	if (blk_rq_nr_phys_segments(req) == 1) {
995 		ret = nvme_pci_setup_data_simple(req, use_sgl);
996 		if (ret != BLK_STS_AGAIN)
997 			return ret;
998 	}
999 
1000 	if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1001 		return iter.status;
1002 
1003 	if (use_sgl == SGL_FORCED ||
1004 	    (use_sgl == SGL_SUPPORTED &&
1005 	     (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1006 		return nvme_pci_setup_data_sgl(req, &iter);
1007 	return nvme_pci_setup_data_prp(req, &iter);
1008 }
1009 
nvme_pci_sgl_set_data_sg(struct nvme_sgl_desc * sge,struct scatterlist * sg)1010 static void nvme_pci_sgl_set_data_sg(struct nvme_sgl_desc *sge,
1011 		struct scatterlist *sg)
1012 {
1013 	sge->addr = cpu_to_le64(sg_dma_address(sg));
1014 	sge->length = cpu_to_le32(sg_dma_len(sg));
1015 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
1016 }
1017 
nvme_pci_setup_meta_sgls(struct request * req)1018 static blk_status_t nvme_pci_setup_meta_sgls(struct request *req)
1019 {
1020 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1021 	struct nvme_dev *dev = nvmeq->dev;
1022 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1023 	struct nvme_sgl_desc *sg_list;
1024 	struct scatterlist *sgl, *sg;
1025 	unsigned int entries;
1026 	dma_addr_t sgl_dma;
1027 	int rc, i;
1028 
1029 	iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
1030 	if (!iod->meta_sgt.sgl)
1031 		return BLK_STS_RESOURCE;
1032 
1033 	sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
1034 	iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
1035 							   iod->meta_sgt.sgl);
1036 	if (!iod->meta_sgt.orig_nents)
1037 		goto out_free_sg;
1038 
1039 	rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
1040 			     DMA_ATTR_NO_WARN);
1041 	if (rc)
1042 		goto out_free_sg;
1043 
1044 	sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1045 			&sgl_dma);
1046 	if (!sg_list)
1047 		goto out_unmap_sg;
1048 
1049 	entries = iod->meta_sgt.nents;
1050 	iod->meta_descriptor = sg_list;
1051 	iod->meta_dma = sgl_dma;
1052 
1053 	iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1054 	iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1055 
1056 	sgl = iod->meta_sgt.sgl;
1057 	if (entries == 1) {
1058 		nvme_pci_sgl_set_data_sg(sg_list, sgl);
1059 		return BLK_STS_OK;
1060 	}
1061 
1062 	sgl_dma += sizeof(*sg_list);
1063 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
1064 	for_each_sg(sgl, sg, entries, i)
1065 		nvme_pci_sgl_set_data_sg(&sg_list[i + 1], sg);
1066 
1067 	return BLK_STS_OK;
1068 
1069 out_unmap_sg:
1070 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1071 out_free_sg:
1072 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1073 	return BLK_STS_RESOURCE;
1074 }
1075 
nvme_pci_setup_meta_mptr(struct request * req)1076 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1077 {
1078 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1079 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1080 	struct bio_vec bv = rq_integrity_vec(req);
1081 
1082 	iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1083 	if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1084 		return BLK_STS_IOERR;
1085 	iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1086 	return BLK_STS_OK;
1087 }
1088 
nvme_map_metadata(struct request * req)1089 static blk_status_t nvme_map_metadata(struct request *req)
1090 {
1091 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1092 
1093 	if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1094 	    nvme_pci_metadata_use_sgls(req))
1095 		return nvme_pci_setup_meta_sgls(req);
1096 	return nvme_pci_setup_meta_mptr(req);
1097 }
1098 
nvme_prep_rq(struct request * req)1099 static blk_status_t nvme_prep_rq(struct request *req)
1100 {
1101 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1102 	blk_status_t ret;
1103 
1104 	iod->flags = 0;
1105 	iod->nr_descriptors = 0;
1106 	iod->total_len = 0;
1107 	iod->meta_sgt.nents = 0;
1108 
1109 	ret = nvme_setup_cmd(req->q->queuedata, req);
1110 	if (ret)
1111 		return ret;
1112 
1113 	if (blk_rq_nr_phys_segments(req)) {
1114 		ret = nvme_map_data(req);
1115 		if (ret)
1116 			goto out_free_cmd;
1117 	}
1118 
1119 	if (blk_integrity_rq(req)) {
1120 		ret = nvme_map_metadata(req);
1121 		if (ret)
1122 			goto out_unmap_data;
1123 	}
1124 
1125 	nvme_start_request(req);
1126 	return BLK_STS_OK;
1127 out_unmap_data:
1128 	if (blk_rq_nr_phys_segments(req))
1129 		nvme_unmap_data(req);
1130 out_free_cmd:
1131 	nvme_cleanup_cmd(req);
1132 	return ret;
1133 }
1134 
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1135 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1136 			 const struct blk_mq_queue_data *bd)
1137 {
1138 	struct nvme_queue *nvmeq = hctx->driver_data;
1139 	struct nvme_dev *dev = nvmeq->dev;
1140 	struct request *req = bd->rq;
1141 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1142 	blk_status_t ret;
1143 
1144 	/*
1145 	 * We should not need to do this, but we're still using this to
1146 	 * ensure we can drain requests on a dying queue.
1147 	 */
1148 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1149 		return BLK_STS_IOERR;
1150 
1151 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1152 		return nvme_fail_nonready_command(&dev->ctrl, req);
1153 
1154 	ret = nvme_prep_rq(req);
1155 	if (unlikely(ret))
1156 		return ret;
1157 	spin_lock(&nvmeq->sq_lock);
1158 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1159 	nvme_write_sq_db(nvmeq, bd->last);
1160 	spin_unlock(&nvmeq->sq_lock);
1161 	return BLK_STS_OK;
1162 }
1163 
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1164 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1165 {
1166 	struct request *req;
1167 
1168 	if (rq_list_empty(rqlist))
1169 		return;
1170 
1171 	spin_lock(&nvmeq->sq_lock);
1172 	while ((req = rq_list_pop(rqlist))) {
1173 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1174 
1175 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1176 	}
1177 	nvme_write_sq_db(nvmeq, true);
1178 	spin_unlock(&nvmeq->sq_lock);
1179 }
1180 
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1181 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1182 {
1183 	/*
1184 	 * We should not need to do this, but we're still using this to
1185 	 * ensure we can drain requests on a dying queue.
1186 	 */
1187 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1188 		return false;
1189 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1190 		return false;
1191 
1192 	return nvme_prep_rq(req) == BLK_STS_OK;
1193 }
1194 
nvme_queue_rqs(struct rq_list * rqlist)1195 static void nvme_queue_rqs(struct rq_list *rqlist)
1196 {
1197 	struct rq_list submit_list = { };
1198 	struct rq_list requeue_list = { };
1199 	struct nvme_queue *nvmeq = NULL;
1200 	struct request *req;
1201 
1202 	while ((req = rq_list_pop(rqlist))) {
1203 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1204 			nvme_submit_cmds(nvmeq, &submit_list);
1205 		nvmeq = req->mq_hctx->driver_data;
1206 
1207 		if (nvme_prep_rq_batch(nvmeq, req))
1208 			rq_list_add_tail(&submit_list, req);
1209 		else
1210 			rq_list_add_tail(&requeue_list, req);
1211 	}
1212 
1213 	if (nvmeq)
1214 		nvme_submit_cmds(nvmeq, &submit_list);
1215 	*rqlist = requeue_list;
1216 }
1217 
nvme_unmap_metadata(struct request * req)1218 static __always_inline void nvme_unmap_metadata(struct request *req)
1219 {
1220 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1221 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1222 	struct nvme_dev *dev = nvmeq->dev;
1223 
1224 	if (!iod->meta_sgt.nents) {
1225 		dma_unmap_page(dev->dev, iod->meta_dma,
1226 			       rq_integrity_vec(req).bv_len,
1227 			       rq_dma_dir(req));
1228 		return;
1229 	}
1230 
1231 	dma_pool_free(nvmeq->descriptor_pools.small, iod->meta_descriptor,
1232 			iod->meta_dma);
1233 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1234 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1235 }
1236 
nvme_pci_unmap_rq(struct request * req)1237 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1238 {
1239 	if (blk_integrity_rq(req))
1240 		nvme_unmap_metadata(req);
1241 	if (blk_rq_nr_phys_segments(req))
1242 		nvme_unmap_data(req);
1243 }
1244 
nvme_pci_complete_rq(struct request * req)1245 static void nvme_pci_complete_rq(struct request *req)
1246 {
1247 	nvme_pci_unmap_rq(req);
1248 	nvme_complete_rq(req);
1249 }
1250 
nvme_pci_complete_batch(struct io_comp_batch * iob)1251 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1252 {
1253 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1254 }
1255 
1256 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1257 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1258 {
1259 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1260 
1261 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1262 }
1263 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1264 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1265 {
1266 	u16 head = nvmeq->cq_head;
1267 
1268 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1269 					      nvmeq->dbbuf_cq_ei))
1270 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1271 }
1272 
nvme_queue_tagset(struct nvme_queue * nvmeq)1273 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1274 {
1275 	if (!nvmeq->qid)
1276 		return nvmeq->dev->admin_tagset.tags[0];
1277 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1278 }
1279 
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1280 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1281 				   struct io_comp_batch *iob, u16 idx)
1282 {
1283 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1284 	__u16 command_id = READ_ONCE(cqe->command_id);
1285 	struct request *req;
1286 
1287 	/*
1288 	 * AEN requests are special as they don't time out and can
1289 	 * survive any kind of queue freeze and often don't respond to
1290 	 * aborts.  We don't even bother to allocate a struct request
1291 	 * for them but rather special case them here.
1292 	 */
1293 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1294 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1295 				cqe->status, &cqe->result);
1296 		return;
1297 	}
1298 
1299 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1300 	if (unlikely(!req)) {
1301 		dev_warn(nvmeq->dev->ctrl.device,
1302 			"invalid id %d completed on queue %d\n",
1303 			command_id, le16_to_cpu(cqe->sq_id));
1304 		return;
1305 	}
1306 
1307 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1308 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1309 	    !blk_mq_add_to_batch(req, iob,
1310 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1311 				 nvme_pci_complete_batch))
1312 		nvme_pci_complete_rq(req);
1313 }
1314 
nvme_update_cq_head(struct nvme_queue * nvmeq)1315 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1316 {
1317 	u32 tmp = nvmeq->cq_head + 1;
1318 
1319 	if (tmp == nvmeq->q_depth) {
1320 		nvmeq->cq_head = 0;
1321 		nvmeq->cq_phase ^= 1;
1322 	} else {
1323 		nvmeq->cq_head = tmp;
1324 	}
1325 }
1326 
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1327 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1328 			        struct io_comp_batch *iob)
1329 {
1330 	bool found = false;
1331 
1332 	while (nvme_cqe_pending(nvmeq)) {
1333 		found = true;
1334 		/*
1335 		 * load-load control dependency between phase and the rest of
1336 		 * the cqe requires a full read memory barrier
1337 		 */
1338 		dma_rmb();
1339 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1340 		nvme_update_cq_head(nvmeq);
1341 	}
1342 
1343 	if (found)
1344 		nvme_ring_cq_doorbell(nvmeq);
1345 	return found;
1346 }
1347 
nvme_irq(int irq,void * data)1348 static irqreturn_t nvme_irq(int irq, void *data)
1349 {
1350 	struct nvme_queue *nvmeq = data;
1351 	DEFINE_IO_COMP_BATCH(iob);
1352 
1353 	if (nvme_poll_cq(nvmeq, &iob)) {
1354 		if (!rq_list_empty(&iob.req_list))
1355 			nvme_pci_complete_batch(&iob);
1356 		return IRQ_HANDLED;
1357 	}
1358 	return IRQ_NONE;
1359 }
1360 
nvme_irq_check(int irq,void * data)1361 static irqreturn_t nvme_irq_check(int irq, void *data)
1362 {
1363 	struct nvme_queue *nvmeq = data;
1364 
1365 	if (nvme_cqe_pending(nvmeq))
1366 		return IRQ_WAKE_THREAD;
1367 	return IRQ_NONE;
1368 }
1369 
1370 /*
1371  * Poll for completions for any interrupt driven queue
1372  * Can be called from any context.
1373  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1374 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1375 {
1376 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1377 
1378 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1379 
1380 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1381 	spin_lock(&nvmeq->cq_poll_lock);
1382 	nvme_poll_cq(nvmeq, NULL);
1383 	spin_unlock(&nvmeq->cq_poll_lock);
1384 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1385 }
1386 
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1387 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1388 {
1389 	struct nvme_queue *nvmeq = hctx->driver_data;
1390 	bool found;
1391 
1392 	if (!nvme_cqe_pending(nvmeq))
1393 		return 0;
1394 
1395 	spin_lock(&nvmeq->cq_poll_lock);
1396 	found = nvme_poll_cq(nvmeq, iob);
1397 	spin_unlock(&nvmeq->cq_poll_lock);
1398 
1399 	return found;
1400 }
1401 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1402 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1403 {
1404 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1405 	struct nvme_queue *nvmeq = &dev->queues[0];
1406 	struct nvme_command c = { };
1407 
1408 	c.common.opcode = nvme_admin_async_event;
1409 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1410 
1411 	spin_lock(&nvmeq->sq_lock);
1412 	nvme_sq_copy_cmd(nvmeq, &c);
1413 	nvme_write_sq_db(nvmeq, true);
1414 	spin_unlock(&nvmeq->sq_lock);
1415 }
1416 
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1417 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1418 {
1419 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1420 	int ret = 0;
1421 
1422 	/*
1423 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1424 	 * altered by reset_work. Holding this lock before the RESETTING state
1425 	 * change, if successful, also ensures nvme_remove won't be able to
1426 	 * proceed to iounmap until we're done.
1427 	 */
1428 	mutex_lock(&dev->shutdown_lock);
1429 	if (!dev->bar_mapped_size) {
1430 		ret = -ENODEV;
1431 		goto unlock;
1432 	}
1433 
1434 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1435 		ret = -EBUSY;
1436 		goto unlock;
1437 	}
1438 
1439 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1440 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1441 
1442 	/*
1443 	 * Read controller status to flush the previous write and trigger a
1444 	 * pcie read error.
1445 	 */
1446 	readl(dev->bar + NVME_REG_CSTS);
1447 unlock:
1448 	mutex_unlock(&dev->shutdown_lock);
1449 	return ret;
1450 }
1451 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1452 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1453 {
1454 	struct nvme_command c = { };
1455 
1456 	c.delete_queue.opcode = opcode;
1457 	c.delete_queue.qid = cpu_to_le16(id);
1458 
1459 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1460 }
1461 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1462 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1463 		struct nvme_queue *nvmeq, s16 vector)
1464 {
1465 	struct nvme_command c = { };
1466 	int flags = NVME_QUEUE_PHYS_CONTIG;
1467 
1468 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1469 		flags |= NVME_CQ_IRQ_ENABLED;
1470 
1471 	/*
1472 	 * Note: we (ab)use the fact that the prp fields survive if no data
1473 	 * is attached to the request.
1474 	 */
1475 	c.create_cq.opcode = nvme_admin_create_cq;
1476 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1477 	c.create_cq.cqid = cpu_to_le16(qid);
1478 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1479 	c.create_cq.cq_flags = cpu_to_le16(flags);
1480 	c.create_cq.irq_vector = cpu_to_le16(vector);
1481 
1482 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1483 }
1484 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1485 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1486 						struct nvme_queue *nvmeq)
1487 {
1488 	struct nvme_ctrl *ctrl = &dev->ctrl;
1489 	struct nvme_command c = { };
1490 	int flags = NVME_QUEUE_PHYS_CONTIG;
1491 
1492 	/*
1493 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1494 	 * set. Since URGENT priority is zeroes, it makes all queues
1495 	 * URGENT.
1496 	 */
1497 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1498 		flags |= NVME_SQ_PRIO_MEDIUM;
1499 
1500 	/*
1501 	 * Note: we (ab)use the fact that the prp fields survive if no data
1502 	 * is attached to the request.
1503 	 */
1504 	c.create_sq.opcode = nvme_admin_create_sq;
1505 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1506 	c.create_sq.sqid = cpu_to_le16(qid);
1507 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1508 	c.create_sq.sq_flags = cpu_to_le16(flags);
1509 	c.create_sq.cqid = cpu_to_le16(qid);
1510 
1511 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1512 }
1513 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1514 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1515 {
1516 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1517 }
1518 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1519 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1520 {
1521 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1522 }
1523 
abort_endio(struct request * req,blk_status_t error)1524 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1525 {
1526 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1527 
1528 	dev_warn(nvmeq->dev->ctrl.device,
1529 		 "Abort status: 0x%x", nvme_req(req)->status);
1530 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1531 	blk_mq_free_request(req);
1532 	return RQ_END_IO_NONE;
1533 }
1534 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1535 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1536 {
1537 	/* If true, indicates loss of adapter communication, possibly by a
1538 	 * NVMe Subsystem reset.
1539 	 */
1540 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1541 
1542 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1543 	switch (nvme_ctrl_state(&dev->ctrl)) {
1544 	case NVME_CTRL_RESETTING:
1545 	case NVME_CTRL_CONNECTING:
1546 		return false;
1547 	default:
1548 		break;
1549 	}
1550 
1551 	/* We shouldn't reset unless the controller is on fatal error state
1552 	 * _or_ if we lost the communication with it.
1553 	 */
1554 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1555 		return false;
1556 
1557 	return true;
1558 }
1559 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1560 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1561 {
1562 	/* Read a config register to help see what died. */
1563 	u16 pci_status;
1564 	int result;
1565 
1566 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1567 				      &pci_status);
1568 	if (result == PCIBIOS_SUCCESSFUL)
1569 		dev_warn(dev->ctrl.device,
1570 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1571 			 csts, pci_status);
1572 	else
1573 		dev_warn(dev->ctrl.device,
1574 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1575 			 csts, result);
1576 
1577 	if (csts != ~0)
1578 		return;
1579 
1580 	dev_warn(dev->ctrl.device,
1581 		 "Does your device have a faulty power saving mode enabled?\n");
1582 	dev_warn(dev->ctrl.device,
1583 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1584 }
1585 
nvme_timeout(struct request * req)1586 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1587 {
1588 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1589 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1590 	struct nvme_dev *dev = nvmeq->dev;
1591 	struct request *abort_req;
1592 	struct nvme_command cmd = { };
1593 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1594 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1595 	u8 opcode;
1596 
1597 	/*
1598 	 * Shutdown the device immediately if we see it is disconnected. This
1599 	 * unblocks PCIe error handling if the nvme driver is waiting in
1600 	 * error_resume for a device that has been removed. We can't unbind the
1601 	 * driver while the driver's error callback is waiting to complete, so
1602 	 * we're relying on a timeout to break that deadlock if a removal
1603 	 * occurs while reset work is running.
1604 	 */
1605 	if (pci_dev_is_disconnected(pdev))
1606 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1607 	if (nvme_state_terminal(&dev->ctrl))
1608 		goto disable;
1609 
1610 	/* If PCI error recovery process is happening, we cannot reset or
1611 	 * the recovery mechanism will surely fail.
1612 	 */
1613 	mb();
1614 	if (pci_channel_offline(pdev))
1615 		return BLK_EH_RESET_TIMER;
1616 
1617 	/*
1618 	 * Reset immediately if the controller is failed
1619 	 */
1620 	if (nvme_should_reset(dev, csts)) {
1621 		nvme_warn_reset(dev, csts);
1622 		goto disable;
1623 	}
1624 
1625 	/*
1626 	 * Did we miss an interrupt?
1627 	 */
1628 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1629 		nvme_poll(req->mq_hctx, NULL);
1630 	else
1631 		nvme_poll_irqdisable(nvmeq);
1632 
1633 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1634 		dev_warn(dev->ctrl.device,
1635 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1636 			 req->tag, nvme_cid(req), nvmeq->qid);
1637 		return BLK_EH_DONE;
1638 	}
1639 
1640 	/*
1641 	 * Shutdown immediately if controller times out while starting. The
1642 	 * reset work will see the pci device disabled when it gets the forced
1643 	 * cancellation error. All outstanding requests are completed on
1644 	 * shutdown, so we return BLK_EH_DONE.
1645 	 */
1646 	switch (nvme_ctrl_state(&dev->ctrl)) {
1647 	case NVME_CTRL_CONNECTING:
1648 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1649 		fallthrough;
1650 	case NVME_CTRL_DELETING:
1651 		dev_warn_ratelimited(dev->ctrl.device,
1652 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1653 			 req->tag, nvme_cid(req), nvmeq->qid);
1654 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1655 		nvme_dev_disable(dev, true);
1656 		return BLK_EH_DONE;
1657 	case NVME_CTRL_RESETTING:
1658 		return BLK_EH_RESET_TIMER;
1659 	default:
1660 		break;
1661 	}
1662 
1663 	/*
1664 	 * Shutdown the controller immediately and schedule a reset if the
1665 	 * command was already aborted once before and still hasn't been
1666 	 * returned to the driver, or if this is the admin queue.
1667 	 */
1668 	opcode = nvme_req(req)->cmd->common.opcode;
1669 	if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1670 		dev_warn(dev->ctrl.device,
1671 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1672 			 req->tag, nvme_cid(req), opcode,
1673 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1674 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1675 		goto disable;
1676 	}
1677 
1678 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1679 		atomic_inc(&dev->ctrl.abort_limit);
1680 		return BLK_EH_RESET_TIMER;
1681 	}
1682 	iod->flags |= IOD_ABORTED;
1683 
1684 	cmd.abort.opcode = nvme_admin_abort_cmd;
1685 	cmd.abort.cid = nvme_cid(req);
1686 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1687 
1688 	dev_warn(nvmeq->dev->ctrl.device,
1689 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1690 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1691 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1692 		 blk_rq_bytes(req));
1693 
1694 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1695 					 BLK_MQ_REQ_NOWAIT);
1696 	if (IS_ERR(abort_req)) {
1697 		atomic_inc(&dev->ctrl.abort_limit);
1698 		return BLK_EH_RESET_TIMER;
1699 	}
1700 	nvme_init_request(abort_req, &cmd);
1701 
1702 	abort_req->end_io = abort_endio;
1703 	abort_req->end_io_data = NULL;
1704 	blk_execute_rq_nowait(abort_req, false);
1705 
1706 	/*
1707 	 * The aborted req will be completed on receiving the abort req.
1708 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1709 	 * as the device then is in a faulty state.
1710 	 */
1711 	return BLK_EH_RESET_TIMER;
1712 
1713 disable:
1714 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1715 		if (nvme_state_terminal(&dev->ctrl))
1716 			nvme_dev_disable(dev, true);
1717 		return BLK_EH_DONE;
1718 	}
1719 
1720 	nvme_dev_disable(dev, false);
1721 	if (nvme_try_sched_reset(&dev->ctrl))
1722 		nvme_unquiesce_io_queues(&dev->ctrl);
1723 	return BLK_EH_DONE;
1724 }
1725 
nvme_free_queue(struct nvme_queue * nvmeq)1726 static void nvme_free_queue(struct nvme_queue *nvmeq)
1727 {
1728 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1729 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1730 	if (!nvmeq->sq_cmds)
1731 		return;
1732 
1733 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1734 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1735 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1736 	} else {
1737 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1738 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1739 	}
1740 }
1741 
nvme_free_queues(struct nvme_dev * dev,int lowest)1742 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1743 {
1744 	int i;
1745 
1746 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1747 		dev->ctrl.queue_count--;
1748 		nvme_free_queue(&dev->queues[i]);
1749 	}
1750 }
1751 
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1752 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1753 {
1754 	struct nvme_queue *nvmeq = &dev->queues[qid];
1755 
1756 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1757 		return;
1758 
1759 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1760 	mb();
1761 
1762 	nvmeq->dev->online_queues--;
1763 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1764 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1765 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1766 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1767 }
1768 
nvme_suspend_io_queues(struct nvme_dev * dev)1769 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1770 {
1771 	int i;
1772 
1773 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1774 		nvme_suspend_queue(dev, i);
1775 }
1776 
1777 /*
1778  * Called only on a device that has been disabled and after all other threads
1779  * that can check this device's completion queues have synced, except
1780  * nvme_poll(). This is the last chance for the driver to see a natural
1781  * completion before nvme_cancel_request() terminates all incomplete requests.
1782  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1783 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1784 {
1785 	int i;
1786 
1787 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1788 		spin_lock(&dev->queues[i].cq_poll_lock);
1789 		nvme_poll_cq(&dev->queues[i], NULL);
1790 		spin_unlock(&dev->queues[i].cq_poll_lock);
1791 	}
1792 }
1793 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1794 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1795 				int entry_size)
1796 {
1797 	int q_depth = dev->q_depth;
1798 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1799 					  NVME_CTRL_PAGE_SIZE);
1800 
1801 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1802 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1803 
1804 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1805 		q_depth = div_u64(mem_per_q, entry_size);
1806 
1807 		/*
1808 		 * Ensure the reduced q_depth is above some threshold where it
1809 		 * would be better to map queues in system memory with the
1810 		 * original depth
1811 		 */
1812 		if (q_depth < 64)
1813 			return -ENOMEM;
1814 	}
1815 
1816 	return q_depth;
1817 }
1818 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1819 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1820 				int qid)
1821 {
1822 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1823 
1824 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1825 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1826 		if (nvmeq->sq_cmds) {
1827 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1828 							nvmeq->sq_cmds);
1829 			if (nvmeq->sq_dma_addr) {
1830 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1831 				return 0;
1832 			}
1833 
1834 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1835 		}
1836 	}
1837 
1838 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1839 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1840 	if (!nvmeq->sq_cmds)
1841 		return -ENOMEM;
1842 	return 0;
1843 }
1844 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1845 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1846 {
1847 	struct nvme_queue *nvmeq = &dev->queues[qid];
1848 
1849 	if (dev->ctrl.queue_count > qid)
1850 		return 0;
1851 
1852 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1853 	nvmeq->q_depth = depth;
1854 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1855 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1856 	if (!nvmeq->cqes)
1857 		goto free_nvmeq;
1858 
1859 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1860 		goto free_cqdma;
1861 
1862 	nvmeq->dev = dev;
1863 	spin_lock_init(&nvmeq->sq_lock);
1864 	spin_lock_init(&nvmeq->cq_poll_lock);
1865 	nvmeq->cq_head = 0;
1866 	nvmeq->cq_phase = 1;
1867 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1868 	nvmeq->qid = qid;
1869 	dev->ctrl.queue_count++;
1870 
1871 	return 0;
1872 
1873  free_cqdma:
1874 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1875 			  nvmeq->cq_dma_addr);
1876  free_nvmeq:
1877 	return -ENOMEM;
1878 }
1879 
queue_request_irq(struct nvme_queue * nvmeq)1880 static int queue_request_irq(struct nvme_queue *nvmeq)
1881 {
1882 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1883 	int nr = nvmeq->dev->ctrl.instance;
1884 
1885 	if (use_threaded_interrupts) {
1886 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1887 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1888 	} else {
1889 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1890 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1891 	}
1892 }
1893 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1894 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1895 {
1896 	struct nvme_dev *dev = nvmeq->dev;
1897 
1898 	nvmeq->sq_tail = 0;
1899 	nvmeq->last_sq_tail = 0;
1900 	nvmeq->cq_head = 0;
1901 	nvmeq->cq_phase = 1;
1902 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1903 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1904 	nvme_dbbuf_init(dev, nvmeq, qid);
1905 	dev->online_queues++;
1906 	wmb(); /* ensure the first interrupt sees the initialization */
1907 }
1908 
1909 /*
1910  * Try getting shutdown_lock while setting up IO queues.
1911  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1912 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1913 {
1914 	/*
1915 	 * Give up if the lock is being held by nvme_dev_disable.
1916 	 */
1917 	if (!mutex_trylock(&dev->shutdown_lock))
1918 		return -ENODEV;
1919 
1920 	/*
1921 	 * Controller is in wrong state, fail early.
1922 	 */
1923 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1924 		mutex_unlock(&dev->shutdown_lock);
1925 		return -ENODEV;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1931 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1932 {
1933 	struct nvme_dev *dev = nvmeq->dev;
1934 	int result;
1935 	u16 vector = 0;
1936 
1937 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1938 
1939 	/*
1940 	 * A queue's vector matches the queue identifier unless the controller
1941 	 * has only one vector available.
1942 	 */
1943 	if (!polled)
1944 		vector = dev->num_vecs == 1 ? 0 : qid;
1945 	else
1946 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1947 
1948 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1949 	if (result)
1950 		return result;
1951 
1952 	result = adapter_alloc_sq(dev, qid, nvmeq);
1953 	if (result < 0)
1954 		return result;
1955 	if (result)
1956 		goto release_cq;
1957 
1958 	nvmeq->cq_vector = vector;
1959 
1960 	result = nvme_setup_io_queues_trylock(dev);
1961 	if (result)
1962 		return result;
1963 	nvme_init_queue(nvmeq, qid);
1964 	if (!polled) {
1965 		result = queue_request_irq(nvmeq);
1966 		if (result < 0)
1967 			goto release_sq;
1968 	}
1969 
1970 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1971 	mutex_unlock(&dev->shutdown_lock);
1972 	return result;
1973 
1974 release_sq:
1975 	dev->online_queues--;
1976 	mutex_unlock(&dev->shutdown_lock);
1977 	adapter_delete_sq(dev, qid);
1978 release_cq:
1979 	adapter_delete_cq(dev, qid);
1980 	return result;
1981 }
1982 
1983 static const struct blk_mq_ops nvme_mq_admin_ops = {
1984 	.queue_rq	= nvme_queue_rq,
1985 	.complete	= nvme_pci_complete_rq,
1986 	.init_hctx	= nvme_admin_init_hctx,
1987 	.init_request	= nvme_pci_init_request,
1988 	.timeout	= nvme_timeout,
1989 };
1990 
1991 static const struct blk_mq_ops nvme_mq_ops = {
1992 	.queue_rq	= nvme_queue_rq,
1993 	.queue_rqs	= nvme_queue_rqs,
1994 	.complete	= nvme_pci_complete_rq,
1995 	.commit_rqs	= nvme_commit_rqs,
1996 	.init_hctx	= nvme_init_hctx,
1997 	.init_request	= nvme_pci_init_request,
1998 	.map_queues	= nvme_pci_map_queues,
1999 	.timeout	= nvme_timeout,
2000 	.poll		= nvme_poll,
2001 };
2002 
nvme_dev_remove_admin(struct nvme_dev * dev)2003 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2004 {
2005 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2006 		/*
2007 		 * If the controller was reset during removal, it's possible
2008 		 * user requests may be waiting on a stopped queue. Start the
2009 		 * queue to flush these to completion.
2010 		 */
2011 		nvme_unquiesce_admin_queue(&dev->ctrl);
2012 		nvme_remove_admin_tag_set(&dev->ctrl);
2013 	}
2014 }
2015 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2016 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2017 {
2018 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2019 }
2020 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)2021 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2022 {
2023 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2024 
2025 	if (size <= dev->bar_mapped_size)
2026 		return 0;
2027 	if (size > pci_resource_len(pdev, 0))
2028 		return -ENOMEM;
2029 	if (dev->bar)
2030 		iounmap(dev->bar);
2031 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2032 	if (!dev->bar) {
2033 		dev->bar_mapped_size = 0;
2034 		return -ENOMEM;
2035 	}
2036 	dev->bar_mapped_size = size;
2037 	dev->dbs = dev->bar + NVME_REG_DBS;
2038 
2039 	return 0;
2040 }
2041 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)2042 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2043 {
2044 	int result;
2045 	u32 aqa;
2046 	struct nvme_queue *nvmeq;
2047 
2048 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2049 	if (result < 0)
2050 		return result;
2051 
2052 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2053 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2054 
2055 	if (dev->subsystem &&
2056 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2057 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2058 
2059 	/*
2060 	 * If the device has been passed off to us in an enabled state, just
2061 	 * clear the enabled bit.  The spec says we should set the 'shutdown
2062 	 * notification bits', but doing so may cause the device to complete
2063 	 * commands to the admin queue ... and we don't know what memory that
2064 	 * might be pointing at!
2065 	 */
2066 	result = nvme_disable_ctrl(&dev->ctrl, false);
2067 	if (result < 0) {
2068 		struct pci_dev *pdev = to_pci_dev(dev->dev);
2069 
2070 		/*
2071 		 * The NVMe Controller Reset method did not get an expected
2072 		 * CSTS.RDY transition, so something with the device appears to
2073 		 * be stuck. Use the lower level and bigger hammer PCIe
2074 		 * Function Level Reset to attempt restoring the device to its
2075 		 * initial state, and try again.
2076 		 */
2077 		result = pcie_reset_flr(pdev, false);
2078 		if (result < 0)
2079 			return result;
2080 
2081 		pci_restore_state(pdev);
2082 		result = nvme_disable_ctrl(&dev->ctrl, false);
2083 		if (result < 0)
2084 			return result;
2085 
2086 		dev_info(dev->ctrl.device,
2087 			"controller reset completed after pcie flr\n");
2088 	}
2089 
2090 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2091 	if (result)
2092 		return result;
2093 
2094 	dev->ctrl.numa_node = dev_to_node(dev->dev);
2095 
2096 	nvmeq = &dev->queues[0];
2097 	aqa = nvmeq->q_depth - 1;
2098 	aqa |= aqa << 16;
2099 
2100 	writel(aqa, dev->bar + NVME_REG_AQA);
2101 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2102 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2103 
2104 	result = nvme_enable_ctrl(&dev->ctrl);
2105 	if (result)
2106 		return result;
2107 
2108 	nvmeq->cq_vector = 0;
2109 	nvme_init_queue(nvmeq, 0);
2110 	result = queue_request_irq(nvmeq);
2111 	if (result) {
2112 		dev->online_queues--;
2113 		return result;
2114 	}
2115 
2116 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2117 	return result;
2118 }
2119 
nvme_create_io_queues(struct nvme_dev * dev)2120 static int nvme_create_io_queues(struct nvme_dev *dev)
2121 {
2122 	unsigned i, max, rw_queues;
2123 	int ret = 0;
2124 
2125 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2126 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2127 			ret = -ENOMEM;
2128 			break;
2129 		}
2130 	}
2131 
2132 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2133 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2134 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2135 				dev->io_queues[HCTX_TYPE_READ];
2136 	} else {
2137 		rw_queues = max;
2138 	}
2139 
2140 	for (i = dev->online_queues; i <= max; i++) {
2141 		bool polled = i > rw_queues;
2142 
2143 		ret = nvme_create_queue(&dev->queues[i], i, polled);
2144 		if (ret)
2145 			break;
2146 	}
2147 
2148 	/*
2149 	 * Ignore failing Create SQ/CQ commands, we can continue with less
2150 	 * than the desired amount of queues, and even a controller without
2151 	 * I/O queues can still be used to issue admin commands.  This might
2152 	 * be useful to upgrade a buggy firmware for example.
2153 	 */
2154 	return ret >= 0 ? 0 : ret;
2155 }
2156 
nvme_cmb_size_unit(struct nvme_dev * dev)2157 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2158 {
2159 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2160 
2161 	return 1ULL << (12 + 4 * szu);
2162 }
2163 
nvme_cmb_size(struct nvme_dev * dev)2164 static u32 nvme_cmb_size(struct nvme_dev *dev)
2165 {
2166 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2167 }
2168 
nvme_map_cmb(struct nvme_dev * dev)2169 static void nvme_map_cmb(struct nvme_dev *dev)
2170 {
2171 	u64 size, offset;
2172 	resource_size_t bar_size;
2173 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2174 	int bar;
2175 
2176 	if (dev->cmb_size)
2177 		return;
2178 
2179 	if (NVME_CAP_CMBS(dev->ctrl.cap))
2180 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2181 
2182 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2183 	if (!dev->cmbsz)
2184 		return;
2185 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2186 
2187 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2188 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2189 	bar = NVME_CMB_BIR(dev->cmbloc);
2190 	bar_size = pci_resource_len(pdev, bar);
2191 
2192 	if (offset > bar_size)
2193 		return;
2194 
2195 	/*
2196 	 * Controllers may support a CMB size larger than their BAR, for
2197 	 * example, due to being behind a bridge. Reduce the CMB to the
2198 	 * reported size of the BAR
2199 	 */
2200 	size = min(size, bar_size - offset);
2201 
2202 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2203 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2204 			memremap_compat_align()))
2205 		return;
2206 
2207 	/*
2208 	 * Tell the controller about the host side address mapping the CMB,
2209 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2210 	 */
2211 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2212 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2213 			     (pci_bus_address(pdev, bar) + offset),
2214 			     dev->bar + NVME_REG_CMBMSC);
2215 	}
2216 
2217 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2218 		dev_warn(dev->ctrl.device,
2219 			 "failed to register the CMB\n");
2220 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2221 		return;
2222 	}
2223 
2224 	dev->cmb_size = size;
2225 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2226 
2227 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2228 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2229 		pci_p2pmem_publish(pdev, true);
2230 }
2231 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2232 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2233 {
2234 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2235 	u64 dma_addr = dev->host_mem_descs_dma;
2236 	struct nvme_command c = { };
2237 	int ret;
2238 
2239 	c.features.opcode	= nvme_admin_set_features;
2240 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2241 	c.features.dword11	= cpu_to_le32(bits);
2242 	c.features.dword12	= cpu_to_le32(host_mem_size);
2243 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2244 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2245 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2246 
2247 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2248 	if (ret) {
2249 		dev_warn(dev->ctrl.device,
2250 			 "failed to set host mem (err %d, flags %#x).\n",
2251 			 ret, bits);
2252 	} else
2253 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2254 
2255 	return ret;
2256 }
2257 
nvme_free_host_mem_multi(struct nvme_dev * dev)2258 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2259 {
2260 	int i;
2261 
2262 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2263 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2264 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2265 
2266 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2267 			       le64_to_cpu(desc->addr),
2268 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2269 	}
2270 
2271 	kfree(dev->host_mem_desc_bufs);
2272 	dev->host_mem_desc_bufs = NULL;
2273 }
2274 
nvme_free_host_mem(struct nvme_dev * dev)2275 static void nvme_free_host_mem(struct nvme_dev *dev)
2276 {
2277 	if (dev->hmb_sgt)
2278 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2279 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2280 	else
2281 		nvme_free_host_mem_multi(dev);
2282 
2283 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2284 			dev->host_mem_descs, dev->host_mem_descs_dma);
2285 	dev->host_mem_descs = NULL;
2286 	dev->host_mem_descs_size = 0;
2287 	dev->nr_host_mem_descs = 0;
2288 }
2289 
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2290 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2291 {
2292 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2293 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2294 	if (!dev->hmb_sgt)
2295 		return -ENOMEM;
2296 
2297 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2298 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2299 			GFP_KERNEL);
2300 	if (!dev->host_mem_descs) {
2301 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2302 				DMA_BIDIRECTIONAL);
2303 		dev->hmb_sgt = NULL;
2304 		return -ENOMEM;
2305 	}
2306 	dev->host_mem_size = size;
2307 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2308 	dev->nr_host_mem_descs = 1;
2309 
2310 	dev->host_mem_descs[0].addr =
2311 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2312 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2313 	return 0;
2314 }
2315 
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2316 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2317 		u32 chunk_size)
2318 {
2319 	struct nvme_host_mem_buf_desc *descs;
2320 	u32 max_entries, len, descs_size;
2321 	dma_addr_t descs_dma;
2322 	int i = 0;
2323 	void **bufs;
2324 	u64 size, tmp;
2325 
2326 	tmp = (preferred + chunk_size - 1);
2327 	do_div(tmp, chunk_size);
2328 	max_entries = tmp;
2329 
2330 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2331 		max_entries = dev->ctrl.hmmaxd;
2332 
2333 	descs_size = max_entries * sizeof(*descs);
2334 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2335 			GFP_KERNEL);
2336 	if (!descs)
2337 		goto out;
2338 
2339 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2340 	if (!bufs)
2341 		goto out_free_descs;
2342 
2343 	for (size = 0; size < preferred && i < max_entries; size += len) {
2344 		dma_addr_t dma_addr;
2345 
2346 		len = min_t(u64, chunk_size, preferred - size);
2347 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2348 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2349 		if (!bufs[i])
2350 			break;
2351 
2352 		descs[i].addr = cpu_to_le64(dma_addr);
2353 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2354 		i++;
2355 	}
2356 
2357 	if (!size)
2358 		goto out_free_bufs;
2359 
2360 	dev->nr_host_mem_descs = i;
2361 	dev->host_mem_size = size;
2362 	dev->host_mem_descs = descs;
2363 	dev->host_mem_descs_dma = descs_dma;
2364 	dev->host_mem_descs_size = descs_size;
2365 	dev->host_mem_desc_bufs = bufs;
2366 	return 0;
2367 
2368 out_free_bufs:
2369 	kfree(bufs);
2370 out_free_descs:
2371 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2372 out:
2373 	dev->host_mem_descs = NULL;
2374 	return -ENOMEM;
2375 }
2376 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2377 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2378 {
2379 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2380 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2381 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2382 	u64 chunk_size;
2383 
2384 	/*
2385 	 * If there is an IOMMU that can merge pages, try a virtually
2386 	 * non-contiguous allocation for a single segment first.
2387 	 */
2388 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2389 		if (!nvme_alloc_host_mem_single(dev, preferred))
2390 			return 0;
2391 	}
2392 
2393 	/* start big and work our way down */
2394 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2395 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2396 			if (!min || dev->host_mem_size >= min)
2397 				return 0;
2398 			nvme_free_host_mem(dev);
2399 		}
2400 	}
2401 
2402 	return -ENOMEM;
2403 }
2404 
nvme_setup_host_mem(struct nvme_dev * dev)2405 static int nvme_setup_host_mem(struct nvme_dev *dev)
2406 {
2407 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2408 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2409 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2410 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2411 	int ret;
2412 
2413 	if (!dev->ctrl.hmpre)
2414 		return 0;
2415 
2416 	preferred = min(preferred, max);
2417 	if (min > max) {
2418 		dev_warn(dev->ctrl.device,
2419 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2420 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2421 		nvme_free_host_mem(dev);
2422 		return 0;
2423 	}
2424 
2425 	/*
2426 	 * If we already have a buffer allocated check if we can reuse it.
2427 	 */
2428 	if (dev->host_mem_descs) {
2429 		if (dev->host_mem_size >= min)
2430 			enable_bits |= NVME_HOST_MEM_RETURN;
2431 		else
2432 			nvme_free_host_mem(dev);
2433 	}
2434 
2435 	if (!dev->host_mem_descs) {
2436 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2437 			dev_warn(dev->ctrl.device,
2438 				"failed to allocate host memory buffer.\n");
2439 			return 0; /* controller must work without HMB */
2440 		}
2441 
2442 		dev_info(dev->ctrl.device,
2443 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2444 			dev->host_mem_size >> ilog2(SZ_1M),
2445 			dev->nr_host_mem_descs,
2446 			str_plural(dev->nr_host_mem_descs));
2447 	}
2448 
2449 	ret = nvme_set_host_mem(dev, enable_bits);
2450 	if (ret)
2451 		nvme_free_host_mem(dev);
2452 	return ret;
2453 }
2454 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2455 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2456 		char *buf)
2457 {
2458 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2459 
2460 	return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz  : 0x%08x\n",
2461 		       ndev->cmbloc, ndev->cmbsz);
2462 }
2463 static DEVICE_ATTR_RO(cmb);
2464 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2465 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2466 		char *buf)
2467 {
2468 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2469 
2470 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2471 }
2472 static DEVICE_ATTR_RO(cmbloc);
2473 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2474 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2475 		char *buf)
2476 {
2477 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2478 
2479 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2480 }
2481 static DEVICE_ATTR_RO(cmbsz);
2482 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2483 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2484 			char *buf)
2485 {
2486 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2487 
2488 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2489 }
2490 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2491 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2492 			 const char *buf, size_t count)
2493 {
2494 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2495 	bool new;
2496 	int ret;
2497 
2498 	if (kstrtobool(buf, &new) < 0)
2499 		return -EINVAL;
2500 
2501 	if (new == ndev->hmb)
2502 		return count;
2503 
2504 	if (new) {
2505 		ret = nvme_setup_host_mem(ndev);
2506 	} else {
2507 		ret = nvme_set_host_mem(ndev, 0);
2508 		if (!ret)
2509 			nvme_free_host_mem(ndev);
2510 	}
2511 
2512 	if (ret < 0)
2513 		return ret;
2514 
2515 	return count;
2516 }
2517 static DEVICE_ATTR_RW(hmb);
2518 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2519 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2520 		struct attribute *a, int n)
2521 {
2522 	struct nvme_ctrl *ctrl =
2523 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2524 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2525 
2526 	if (a == &dev_attr_cmb.attr ||
2527 	    a == &dev_attr_cmbloc.attr ||
2528 	    a == &dev_attr_cmbsz.attr) {
2529 	    	if (!dev->cmbsz)
2530 			return 0;
2531 	}
2532 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2533 		return 0;
2534 
2535 	return a->mode;
2536 }
2537 
2538 static struct attribute *nvme_pci_attrs[] = {
2539 	&dev_attr_cmb.attr,
2540 	&dev_attr_cmbloc.attr,
2541 	&dev_attr_cmbsz.attr,
2542 	&dev_attr_hmb.attr,
2543 	NULL,
2544 };
2545 
2546 static const struct attribute_group nvme_pci_dev_attrs_group = {
2547 	.attrs		= nvme_pci_attrs,
2548 	.is_visible	= nvme_pci_attrs_are_visible,
2549 };
2550 
2551 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2552 	&nvme_dev_attrs_group,
2553 	&nvme_pci_dev_attrs_group,
2554 	NULL,
2555 };
2556 
nvme_update_attrs(struct nvme_dev * dev)2557 static void nvme_update_attrs(struct nvme_dev *dev)
2558 {
2559 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2560 }
2561 
2562 /*
2563  * nirqs is the number of interrupts available for write and read
2564  * queues. The core already reserved an interrupt for the admin queue.
2565  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2566 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2567 {
2568 	struct nvme_dev *dev = affd->priv;
2569 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2570 
2571 	/*
2572 	 * If there is no interrupt available for queues, ensure that
2573 	 * the default queue is set to 1. The affinity set size is
2574 	 * also set to one, but the irq core ignores it for this case.
2575 	 *
2576 	 * If only one interrupt is available or 'write_queue' == 0, combine
2577 	 * write and read queues.
2578 	 *
2579 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2580 	 * queue.
2581 	 */
2582 	if (!nrirqs) {
2583 		nrirqs = 1;
2584 		nr_read_queues = 0;
2585 	} else if (nrirqs == 1 || !nr_write_queues) {
2586 		nr_read_queues = 0;
2587 	} else if (nr_write_queues >= nrirqs) {
2588 		nr_read_queues = 1;
2589 	} else {
2590 		nr_read_queues = nrirqs - nr_write_queues;
2591 	}
2592 
2593 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2594 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2595 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2596 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2597 	affd->nr_sets = nr_read_queues ? 2 : 1;
2598 }
2599 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2600 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2601 {
2602 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2603 	struct irq_affinity affd = {
2604 		.pre_vectors	= 1,
2605 		.calc_sets	= nvme_calc_irq_sets,
2606 		.priv		= dev,
2607 	};
2608 	unsigned int irq_queues, poll_queues;
2609 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2610 
2611 	/*
2612 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2613 	 * left over for non-polled I/O.
2614 	 */
2615 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2616 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2617 
2618 	/*
2619 	 * Initialize for the single interrupt case, will be updated in
2620 	 * nvme_calc_irq_sets().
2621 	 */
2622 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2623 	dev->io_queues[HCTX_TYPE_READ] = 0;
2624 
2625 	/*
2626 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2627 	 * but some Apple controllers require all queues to use the first
2628 	 * vector.
2629 	 */
2630 	irq_queues = 1;
2631 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2632 		irq_queues += (nr_io_queues - poll_queues);
2633 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2634 		flags &= ~PCI_IRQ_MSI;
2635 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2636 					      &affd);
2637 }
2638 
nvme_max_io_queues(struct nvme_dev * dev)2639 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2640 {
2641 	/*
2642 	 * If tags are shared with admin queue (Apple bug), then
2643 	 * make sure we only use one IO queue.
2644 	 */
2645 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2646 		return 1;
2647 	return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2648 		dev->nr_poll_queues;
2649 }
2650 
nvme_setup_io_queues(struct nvme_dev * dev)2651 static int nvme_setup_io_queues(struct nvme_dev *dev)
2652 {
2653 	struct nvme_queue *adminq = &dev->queues[0];
2654 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2655 	unsigned int nr_io_queues;
2656 	unsigned long size;
2657 	int result;
2658 
2659 	/*
2660 	 * Sample the module parameters once at reset time so that we have
2661 	 * stable values to work with.
2662 	 */
2663 	dev->nr_write_queues = write_queues;
2664 	dev->nr_poll_queues = poll_queues;
2665 
2666 	nr_io_queues = dev->nr_allocated_queues - 1;
2667 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2668 	if (result < 0)
2669 		return result;
2670 
2671 	if (nr_io_queues == 0)
2672 		return 0;
2673 
2674 	/*
2675 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2676 	 * from set to unset. If there is a window to it is truely freed,
2677 	 * pci_free_irq_vectors() jumping into this window will crash.
2678 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2679 	 * nvme_dev_disable() path.
2680 	 */
2681 	result = nvme_setup_io_queues_trylock(dev);
2682 	if (result)
2683 		return result;
2684 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2685 		pci_free_irq(pdev, 0, adminq);
2686 
2687 	if (dev->cmb_use_sqes) {
2688 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2689 				sizeof(struct nvme_command));
2690 		if (result > 0) {
2691 			dev->q_depth = result;
2692 			dev->ctrl.sqsize = result - 1;
2693 		} else {
2694 			dev->cmb_use_sqes = false;
2695 		}
2696 	}
2697 
2698 	do {
2699 		size = db_bar_size(dev, nr_io_queues);
2700 		result = nvme_remap_bar(dev, size);
2701 		if (!result)
2702 			break;
2703 		if (!--nr_io_queues) {
2704 			result = -ENOMEM;
2705 			goto out_unlock;
2706 		}
2707 	} while (1);
2708 	adminq->q_db = dev->dbs;
2709 
2710  retry:
2711 	/* Deregister the admin queue's interrupt */
2712 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2713 		pci_free_irq(pdev, 0, adminq);
2714 
2715 	/*
2716 	 * If we enable msix early due to not intx, disable it again before
2717 	 * setting up the full range we need.
2718 	 */
2719 	pci_free_irq_vectors(pdev);
2720 
2721 	result = nvme_setup_irqs(dev, nr_io_queues);
2722 	if (result <= 0) {
2723 		result = -EIO;
2724 		goto out_unlock;
2725 	}
2726 
2727 	dev->num_vecs = result;
2728 	result = max(result - 1, 1);
2729 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2730 
2731 	/*
2732 	 * Should investigate if there's a performance win from allocating
2733 	 * more queues than interrupt vectors; it might allow the submission
2734 	 * path to scale better, even if the receive path is limited by the
2735 	 * number of interrupts.
2736 	 */
2737 	result = queue_request_irq(adminq);
2738 	if (result)
2739 		goto out_unlock;
2740 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2741 	mutex_unlock(&dev->shutdown_lock);
2742 
2743 	result = nvme_create_io_queues(dev);
2744 	if (result || dev->online_queues < 2)
2745 		return result;
2746 
2747 	if (dev->online_queues - 1 < dev->max_qid) {
2748 		nr_io_queues = dev->online_queues - 1;
2749 		nvme_delete_io_queues(dev);
2750 		result = nvme_setup_io_queues_trylock(dev);
2751 		if (result)
2752 			return result;
2753 		nvme_suspend_io_queues(dev);
2754 		goto retry;
2755 	}
2756 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2757 					dev->io_queues[HCTX_TYPE_DEFAULT],
2758 					dev->io_queues[HCTX_TYPE_READ],
2759 					dev->io_queues[HCTX_TYPE_POLL]);
2760 	return 0;
2761 out_unlock:
2762 	mutex_unlock(&dev->shutdown_lock);
2763 	return result;
2764 }
2765 
nvme_del_queue_end(struct request * req,blk_status_t error)2766 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2767 					     blk_status_t error)
2768 {
2769 	struct nvme_queue *nvmeq = req->end_io_data;
2770 
2771 	blk_mq_free_request(req);
2772 	complete(&nvmeq->delete_done);
2773 	return RQ_END_IO_NONE;
2774 }
2775 
nvme_del_cq_end(struct request * req,blk_status_t error)2776 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2777 					  blk_status_t error)
2778 {
2779 	struct nvme_queue *nvmeq = req->end_io_data;
2780 
2781 	if (error)
2782 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2783 
2784 	return nvme_del_queue_end(req, error);
2785 }
2786 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2787 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2788 {
2789 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2790 	struct request *req;
2791 	struct nvme_command cmd = { };
2792 
2793 	cmd.delete_queue.opcode = opcode;
2794 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2795 
2796 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2797 	if (IS_ERR(req))
2798 		return PTR_ERR(req);
2799 	nvme_init_request(req, &cmd);
2800 
2801 	if (opcode == nvme_admin_delete_cq)
2802 		req->end_io = nvme_del_cq_end;
2803 	else
2804 		req->end_io = nvme_del_queue_end;
2805 	req->end_io_data = nvmeq;
2806 
2807 	init_completion(&nvmeq->delete_done);
2808 	blk_execute_rq_nowait(req, false);
2809 	return 0;
2810 }
2811 
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2812 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2813 {
2814 	int nr_queues = dev->online_queues - 1, sent = 0;
2815 	unsigned long timeout;
2816 
2817  retry:
2818 	timeout = NVME_ADMIN_TIMEOUT;
2819 	while (nr_queues > 0) {
2820 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2821 			break;
2822 		nr_queues--;
2823 		sent++;
2824 	}
2825 	while (sent) {
2826 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2827 
2828 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2829 				timeout);
2830 		if (timeout == 0)
2831 			return false;
2832 
2833 		sent--;
2834 		if (nr_queues)
2835 			goto retry;
2836 	}
2837 	return true;
2838 }
2839 
nvme_delete_io_queues(struct nvme_dev * dev)2840 static void nvme_delete_io_queues(struct nvme_dev *dev)
2841 {
2842 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2843 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2844 }
2845 
nvme_pci_nr_maps(struct nvme_dev * dev)2846 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2847 {
2848 	if (dev->io_queues[HCTX_TYPE_POLL])
2849 		return 3;
2850 	if (dev->io_queues[HCTX_TYPE_READ])
2851 		return 2;
2852 	return 1;
2853 }
2854 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2855 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2856 {
2857 	if (!dev->ctrl.tagset) {
2858 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2859 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2860 		return true;
2861 	}
2862 
2863 	/* Give up if we are racing with nvme_dev_disable() */
2864 	if (!mutex_trylock(&dev->shutdown_lock))
2865 		return false;
2866 
2867 	/* Check if nvme_dev_disable() has been executed already */
2868 	if (!dev->online_queues) {
2869 		mutex_unlock(&dev->shutdown_lock);
2870 		return false;
2871 	}
2872 
2873 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2874 	/* free previously allocated queues that are no longer usable */
2875 	nvme_free_queues(dev, dev->online_queues);
2876 	mutex_unlock(&dev->shutdown_lock);
2877 	return true;
2878 }
2879 
nvme_pci_enable(struct nvme_dev * dev)2880 static int nvme_pci_enable(struct nvme_dev *dev)
2881 {
2882 	int result = -ENOMEM;
2883 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2884 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2885 
2886 	if (pci_enable_device_mem(pdev))
2887 		return result;
2888 
2889 	pci_set_master(pdev);
2890 
2891 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2892 		result = -ENODEV;
2893 		goto disable;
2894 	}
2895 
2896 	/*
2897 	 * Some devices and/or platforms don't advertise or work with INTx
2898 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2899 	 * adjust this later.
2900 	 */
2901 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2902 		flags &= ~PCI_IRQ_MSI;
2903 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2904 	if (result < 0)
2905 		goto disable;
2906 
2907 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2908 
2909 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2910 				io_queue_depth);
2911 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2912 	dev->dbs = dev->bar + 4096;
2913 
2914 	/*
2915 	 * Some Apple controllers require a non-standard SQE size.
2916 	 * Interestingly they also seem to ignore the CC:IOSQES register
2917 	 * so we don't bother updating it here.
2918 	 */
2919 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2920 		dev->io_sqes = 7;
2921 	else
2922 		dev->io_sqes = NVME_NVM_IOSQES;
2923 
2924 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2925 		dev->q_depth = 2;
2926 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2927 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2928 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2929 		dev->q_depth = 64;
2930 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2931                         "set queue depth=%u\n", dev->q_depth);
2932 	}
2933 
2934 	/*
2935 	 * Controllers with the shared tags quirk need the IO queue to be
2936 	 * big enough so that we get 32 tags for the admin queue
2937 	 */
2938 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2939 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2940 		dev->q_depth = NVME_AQ_DEPTH + 2;
2941 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2942 			 dev->q_depth);
2943 	}
2944 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2945 
2946 	nvme_map_cmb(dev);
2947 
2948 	pci_save_state(pdev);
2949 
2950 	result = nvme_pci_configure_admin_queue(dev);
2951 	if (result)
2952 		goto free_irq;
2953 	return result;
2954 
2955  free_irq:
2956 	pci_free_irq_vectors(pdev);
2957  disable:
2958 	pci_disable_device(pdev);
2959 	return result;
2960 }
2961 
nvme_dev_unmap(struct nvme_dev * dev)2962 static void nvme_dev_unmap(struct nvme_dev *dev)
2963 {
2964 	if (dev->bar)
2965 		iounmap(dev->bar);
2966 	pci_release_mem_regions(to_pci_dev(dev->dev));
2967 }
2968 
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2969 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2970 {
2971 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2972 	u32 csts;
2973 
2974 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2975 		return true;
2976 	if (pdev->error_state != pci_channel_io_normal)
2977 		return true;
2978 
2979 	csts = readl(dev->bar + NVME_REG_CSTS);
2980 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2981 }
2982 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2983 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2984 {
2985 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2986 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2987 	bool dead;
2988 
2989 	mutex_lock(&dev->shutdown_lock);
2990 	dead = nvme_pci_ctrl_is_dead(dev);
2991 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2992 		if (pci_is_enabled(pdev))
2993 			nvme_start_freeze(&dev->ctrl);
2994 		/*
2995 		 * Give the controller a chance to complete all entered requests
2996 		 * if doing a safe shutdown.
2997 		 */
2998 		if (!dead && shutdown)
2999 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3000 	}
3001 
3002 	nvme_quiesce_io_queues(&dev->ctrl);
3003 
3004 	if (!dead && dev->ctrl.queue_count > 0) {
3005 		nvme_delete_io_queues(dev);
3006 		nvme_disable_ctrl(&dev->ctrl, shutdown);
3007 		nvme_poll_irqdisable(&dev->queues[0]);
3008 	}
3009 	nvme_suspend_io_queues(dev);
3010 	nvme_suspend_queue(dev, 0);
3011 	pci_free_irq_vectors(pdev);
3012 	if (pci_is_enabled(pdev))
3013 		pci_disable_device(pdev);
3014 	nvme_reap_pending_cqes(dev);
3015 
3016 	nvme_cancel_tagset(&dev->ctrl);
3017 	nvme_cancel_admin_tagset(&dev->ctrl);
3018 
3019 	/*
3020 	 * The driver will not be starting up queues again if shutting down so
3021 	 * must flush all entered requests to their failed completion to avoid
3022 	 * deadlocking blk-mq hot-cpu notifier.
3023 	 */
3024 	if (shutdown) {
3025 		nvme_unquiesce_io_queues(&dev->ctrl);
3026 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3027 			nvme_unquiesce_admin_queue(&dev->ctrl);
3028 	}
3029 	mutex_unlock(&dev->shutdown_lock);
3030 }
3031 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)3032 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3033 {
3034 	if (!nvme_wait_reset(&dev->ctrl))
3035 		return -EBUSY;
3036 	nvme_dev_disable(dev, shutdown);
3037 	return 0;
3038 }
3039 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)3040 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3041 {
3042 	size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
3043 	size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3044 
3045 	dev->dmavec_mempool = mempool_create_node(1,
3046 			mempool_kmalloc, mempool_kfree,
3047 			(void *)alloc_size, GFP_KERNEL,
3048 			dev_to_node(dev->dev));
3049 	if (!dev->dmavec_mempool)
3050 		return -ENOMEM;
3051 
3052 	dev->iod_meta_mempool = mempool_create_node(1,
3053 			mempool_kmalloc, mempool_kfree,
3054 			(void *)meta_size, GFP_KERNEL,
3055 			dev_to_node(dev->dev));
3056 	if (!dev->iod_meta_mempool)
3057 		goto free;
3058 	return 0;
3059 free:
3060 	mempool_destroy(dev->dmavec_mempool);
3061 	return -ENOMEM;
3062 }
3063 
nvme_free_tagset(struct nvme_dev * dev)3064 static void nvme_free_tagset(struct nvme_dev *dev)
3065 {
3066 	if (dev->tagset.tags)
3067 		nvme_remove_io_tag_set(&dev->ctrl);
3068 	dev->ctrl.tagset = NULL;
3069 }
3070 
3071 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)3072 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3073 {
3074 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3075 
3076 	nvme_free_tagset(dev);
3077 	put_device(dev->dev);
3078 	kfree(dev->queues);
3079 	kfree(dev);
3080 }
3081 
nvme_reset_work(struct work_struct * work)3082 static void nvme_reset_work(struct work_struct *work)
3083 {
3084 	struct nvme_dev *dev =
3085 		container_of(work, struct nvme_dev, ctrl.reset_work);
3086 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3087 	int result;
3088 
3089 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3090 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3091 			 dev->ctrl.state);
3092 		result = -ENODEV;
3093 		goto out;
3094 	}
3095 
3096 	/*
3097 	 * If we're called to reset a live controller first shut it down before
3098 	 * moving on.
3099 	 */
3100 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3101 		nvme_dev_disable(dev, false);
3102 	nvme_sync_queues(&dev->ctrl);
3103 
3104 	mutex_lock(&dev->shutdown_lock);
3105 	result = nvme_pci_enable(dev);
3106 	if (result)
3107 		goto out_unlock;
3108 	nvme_unquiesce_admin_queue(&dev->ctrl);
3109 	mutex_unlock(&dev->shutdown_lock);
3110 
3111 	/*
3112 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3113 	 * initializing procedure here.
3114 	 */
3115 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3116 		dev_warn(dev->ctrl.device,
3117 			"failed to mark controller CONNECTING\n");
3118 		result = -EBUSY;
3119 		goto out;
3120 	}
3121 
3122 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3123 	if (result)
3124 		goto out;
3125 
3126 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3127 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3128 	else
3129 		dev->ctrl.max_integrity_segments = 1;
3130 
3131 	nvme_dbbuf_dma_alloc(dev);
3132 
3133 	result = nvme_setup_host_mem(dev);
3134 	if (result < 0)
3135 		goto out;
3136 
3137 	nvme_update_attrs(dev);
3138 
3139 	result = nvme_setup_io_queues(dev);
3140 	if (result)
3141 		goto out;
3142 
3143 	/*
3144 	 * Freeze and update the number of I/O queues as those might have
3145 	 * changed.  If there are no I/O queues left after this reset, keep the
3146 	 * controller around but remove all namespaces.
3147 	 */
3148 	if (dev->online_queues > 1) {
3149 		nvme_dbbuf_set(dev);
3150 		nvme_unquiesce_io_queues(&dev->ctrl);
3151 		nvme_wait_freeze(&dev->ctrl);
3152 		if (!nvme_pci_update_nr_queues(dev))
3153 			goto out;
3154 		nvme_unfreeze(&dev->ctrl);
3155 	} else {
3156 		dev_warn(dev->ctrl.device, "IO queues lost\n");
3157 		nvme_mark_namespaces_dead(&dev->ctrl);
3158 		nvme_unquiesce_io_queues(&dev->ctrl);
3159 		nvme_remove_namespaces(&dev->ctrl);
3160 		nvme_free_tagset(dev);
3161 	}
3162 
3163 	/*
3164 	 * If only admin queue live, keep it to do further investigation or
3165 	 * recovery.
3166 	 */
3167 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3168 		dev_warn(dev->ctrl.device,
3169 			"failed to mark controller live state\n");
3170 		result = -ENODEV;
3171 		goto out;
3172 	}
3173 
3174 	nvme_start_ctrl(&dev->ctrl);
3175 	return;
3176 
3177  out_unlock:
3178 	mutex_unlock(&dev->shutdown_lock);
3179  out:
3180 	/*
3181 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3182 	 * may be holding this pci_dev's device lock.
3183 	 */
3184 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3185 		 result);
3186 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3187 	nvme_dev_disable(dev, true);
3188 	nvme_sync_queues(&dev->ctrl);
3189 	nvme_mark_namespaces_dead(&dev->ctrl);
3190 	nvme_unquiesce_io_queues(&dev->ctrl);
3191 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3192 }
3193 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3194 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3195 {
3196 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3197 	return 0;
3198 }
3199 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3200 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3201 {
3202 	writel(val, to_nvme_dev(ctrl)->bar + off);
3203 	return 0;
3204 }
3205 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3206 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3207 {
3208 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3209 	return 0;
3210 }
3211 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3212 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3213 {
3214 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3215 
3216 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3217 }
3218 
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3219 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3220 {
3221 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3222 	struct nvme_subsystem *subsys = ctrl->subsys;
3223 
3224 	dev_err(ctrl->device,
3225 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3226 		pdev->vendor, pdev->device,
3227 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3228 		subsys->model, nvme_strlen(subsys->firmware_rev,
3229 					   sizeof(subsys->firmware_rev)),
3230 		subsys->firmware_rev);
3231 }
3232 
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3233 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3234 {
3235 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3236 
3237 	return dma_pci_p2pdma_supported(dev->dev);
3238 }
3239 
3240 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3241 	.name			= "pcie",
3242 	.module			= THIS_MODULE,
3243 	.flags			= NVME_F_METADATA_SUPPORTED,
3244 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3245 	.reg_read32		= nvme_pci_reg_read32,
3246 	.reg_write32		= nvme_pci_reg_write32,
3247 	.reg_read64		= nvme_pci_reg_read64,
3248 	.free_ctrl		= nvme_pci_free_ctrl,
3249 	.submit_async_event	= nvme_pci_submit_async_event,
3250 	.subsystem_reset	= nvme_pci_subsystem_reset,
3251 	.get_address		= nvme_pci_get_address,
3252 	.print_device_info	= nvme_pci_print_device_info,
3253 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3254 };
3255 
nvme_dev_map(struct nvme_dev * dev)3256 static int nvme_dev_map(struct nvme_dev *dev)
3257 {
3258 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3259 
3260 	if (pci_request_mem_regions(pdev, "nvme"))
3261 		return -ENODEV;
3262 
3263 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3264 		goto release;
3265 
3266 	return 0;
3267   release:
3268 	pci_release_mem_regions(pdev);
3269 	return -ENODEV;
3270 }
3271 
check_vendor_combination_bug(struct pci_dev * pdev)3272 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3273 {
3274 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3275 		/*
3276 		 * Several Samsung devices seem to drop off the PCIe bus
3277 		 * randomly when APST is on and uses the deepest sleep state.
3278 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3279 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3280 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3281 		 * laptops.
3282 		 */
3283 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3284 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3285 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3286 			return NVME_QUIRK_NO_DEEPEST_PS;
3287 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3288 		/*
3289 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3290 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3291 		 * within few minutes after bootup on a Coffee Lake board -
3292 		 * ASUS PRIME Z370-A
3293 		 */
3294 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3295 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3296 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3297 			return NVME_QUIRK_NO_APST;
3298 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3299 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3300 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3301 		/*
3302 		 * Forcing to use host managed nvme power settings for
3303 		 * lowest idle power with quick resume latency on
3304 		 * Samsung and Toshiba SSDs based on suspend behavior
3305 		 * on Coffee Lake board for LENOVO C640
3306 		 */
3307 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3308 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3309 			return NVME_QUIRK_SIMPLE_SUSPEND;
3310 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3311 		   pdev->device == 0x500f)) {
3312 		/*
3313 		 * Exclude some Kingston NV1 and A2000 devices from
3314 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3315 		 * lot of energy with s2idle sleep on some TUXEDO platforms.
3316 		 */
3317 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3318 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3319 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3320 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3321 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3322 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3323 		/*
3324 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3325 		 * because of high power consumption (> 2 Watt) in s2idle
3326 		 * sleep. Only some boards with Intel CPU are affected.
3327 		 */
3328 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3329 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3330 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3331 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3332 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3333 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3334 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3335 	}
3336 
3337 	/*
3338 	 * NVMe SSD drops off the PCIe bus after system idle
3339 	 * for 10 hours on a Lenovo N60z board.
3340 	 */
3341 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3342 		return NVME_QUIRK_NO_APST;
3343 
3344 	return 0;
3345 }
3346 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3347 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3348 		const struct pci_device_id *id)
3349 {
3350 	unsigned long quirks = id->driver_data;
3351 	int node = dev_to_node(&pdev->dev);
3352 	struct nvme_dev *dev;
3353 	int ret = -ENOMEM;
3354 
3355 	dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3356 			GFP_KERNEL, node);
3357 	if (!dev)
3358 		return ERR_PTR(-ENOMEM);
3359 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3360 	mutex_init(&dev->shutdown_lock);
3361 
3362 	dev->nr_write_queues = write_queues;
3363 	dev->nr_poll_queues = poll_queues;
3364 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3365 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3366 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3367 	if (!dev->queues)
3368 		goto out_free_dev;
3369 
3370 	dev->dev = get_device(&pdev->dev);
3371 
3372 	quirks |= check_vendor_combination_bug(pdev);
3373 	if (!noacpi &&
3374 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3375 	    acpi_storage_d3(&pdev->dev)) {
3376 		/*
3377 		 * Some systems use a bios work around to ask for D3 on
3378 		 * platforms that support kernel managed suspend.
3379 		 */
3380 		dev_info(&pdev->dev,
3381 			 "platform quirk: setting simple suspend\n");
3382 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3383 	}
3384 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3385 			     quirks);
3386 	if (ret)
3387 		goto out_put_device;
3388 
3389 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3390 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3391 	else
3392 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3393 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3394 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3395 
3396 	/*
3397 	 * Limit the max command size to prevent iod->sg allocations going
3398 	 * over a single page.
3399 	 */
3400 	dev->ctrl.max_hw_sectors = min_t(u32,
3401 			NVME_MAX_BYTES >> SECTOR_SHIFT,
3402 			dma_opt_mapping_size(&pdev->dev) >> 9);
3403 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3404 	dev->ctrl.max_integrity_segments = 1;
3405 	return dev;
3406 
3407 out_put_device:
3408 	put_device(dev->dev);
3409 	kfree(dev->queues);
3410 out_free_dev:
3411 	kfree(dev);
3412 	return ERR_PTR(ret);
3413 }
3414 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3415 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3416 {
3417 	struct nvme_dev *dev;
3418 	int result = -ENOMEM;
3419 
3420 	dev = nvme_pci_alloc_dev(pdev, id);
3421 	if (IS_ERR(dev))
3422 		return PTR_ERR(dev);
3423 
3424 	result = nvme_add_ctrl(&dev->ctrl);
3425 	if (result)
3426 		goto out_put_ctrl;
3427 
3428 	result = nvme_dev_map(dev);
3429 	if (result)
3430 		goto out_uninit_ctrl;
3431 
3432 	result = nvme_pci_alloc_iod_mempool(dev);
3433 	if (result)
3434 		goto out_dev_unmap;
3435 
3436 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3437 
3438 	result = nvme_pci_enable(dev);
3439 	if (result)
3440 		goto out_release_iod_mempool;
3441 
3442 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3443 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3444 	if (result)
3445 		goto out_disable;
3446 
3447 	/*
3448 	 * Mark the controller as connecting before sending admin commands to
3449 	 * allow the timeout handler to do the right thing.
3450 	 */
3451 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3452 		dev_warn(dev->ctrl.device,
3453 			"failed to mark controller CONNECTING\n");
3454 		result = -EBUSY;
3455 		goto out_disable;
3456 	}
3457 
3458 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3459 	if (result)
3460 		goto out_disable;
3461 
3462 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3463 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3464 	else
3465 		dev->ctrl.max_integrity_segments = 1;
3466 
3467 	nvme_dbbuf_dma_alloc(dev);
3468 
3469 	result = nvme_setup_host_mem(dev);
3470 	if (result < 0)
3471 		goto out_disable;
3472 
3473 	nvme_update_attrs(dev);
3474 
3475 	result = nvme_setup_io_queues(dev);
3476 	if (result)
3477 		goto out_disable;
3478 
3479 	if (dev->online_queues > 1) {
3480 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3481 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3482 		nvme_dbbuf_set(dev);
3483 	}
3484 
3485 	if (!dev->ctrl.tagset)
3486 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3487 
3488 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3489 		dev_warn(dev->ctrl.device,
3490 			"failed to mark controller live state\n");
3491 		result = -ENODEV;
3492 		goto out_disable;
3493 	}
3494 
3495 	pci_set_drvdata(pdev, dev);
3496 
3497 	nvme_start_ctrl(&dev->ctrl);
3498 	nvme_put_ctrl(&dev->ctrl);
3499 	flush_work(&dev->ctrl.scan_work);
3500 	return 0;
3501 
3502 out_disable:
3503 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3504 	nvme_dev_disable(dev, true);
3505 	nvme_free_host_mem(dev);
3506 	nvme_dev_remove_admin(dev);
3507 	nvme_dbbuf_dma_free(dev);
3508 	nvme_free_queues(dev, 0);
3509 out_release_iod_mempool:
3510 	mempool_destroy(dev->dmavec_mempool);
3511 	mempool_destroy(dev->iod_meta_mempool);
3512 out_dev_unmap:
3513 	nvme_dev_unmap(dev);
3514 out_uninit_ctrl:
3515 	nvme_uninit_ctrl(&dev->ctrl);
3516 out_put_ctrl:
3517 	nvme_put_ctrl(&dev->ctrl);
3518 	return result;
3519 }
3520 
nvme_reset_prepare(struct pci_dev * pdev)3521 static void nvme_reset_prepare(struct pci_dev *pdev)
3522 {
3523 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3524 
3525 	/*
3526 	 * We don't need to check the return value from waiting for the reset
3527 	 * state as pci_dev device lock is held, making it impossible to race
3528 	 * with ->remove().
3529 	 */
3530 	nvme_disable_prepare_reset(dev, false);
3531 	nvme_sync_queues(&dev->ctrl);
3532 }
3533 
nvme_reset_done(struct pci_dev * pdev)3534 static void nvme_reset_done(struct pci_dev *pdev)
3535 {
3536 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3537 
3538 	if (!nvme_try_sched_reset(&dev->ctrl))
3539 		flush_work(&dev->ctrl.reset_work);
3540 }
3541 
nvme_shutdown(struct pci_dev * pdev)3542 static void nvme_shutdown(struct pci_dev *pdev)
3543 {
3544 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3545 
3546 	nvme_disable_prepare_reset(dev, true);
3547 }
3548 
3549 /*
3550  * The driver's remove may be called on a device in a partially initialized
3551  * state. This function must not have any dependencies on the device state in
3552  * order to proceed.
3553  */
nvme_remove(struct pci_dev * pdev)3554 static void nvme_remove(struct pci_dev *pdev)
3555 {
3556 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3557 
3558 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3559 	pci_set_drvdata(pdev, NULL);
3560 
3561 	if (!pci_device_is_present(pdev)) {
3562 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3563 		nvme_dev_disable(dev, true);
3564 	}
3565 
3566 	flush_work(&dev->ctrl.reset_work);
3567 	nvme_stop_ctrl(&dev->ctrl);
3568 	nvme_remove_namespaces(&dev->ctrl);
3569 	nvme_dev_disable(dev, true);
3570 	nvme_free_host_mem(dev);
3571 	nvme_dev_remove_admin(dev);
3572 	nvme_dbbuf_dma_free(dev);
3573 	nvme_free_queues(dev, 0);
3574 	mempool_destroy(dev->dmavec_mempool);
3575 	mempool_destroy(dev->iod_meta_mempool);
3576 	nvme_release_descriptor_pools(dev);
3577 	nvme_dev_unmap(dev);
3578 	nvme_uninit_ctrl(&dev->ctrl);
3579 }
3580 
3581 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3582 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3583 {
3584 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3585 }
3586 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3587 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3588 {
3589 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3590 }
3591 
nvme_resume(struct device * dev)3592 static int nvme_resume(struct device *dev)
3593 {
3594 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3595 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3596 
3597 	if (ndev->last_ps == U32_MAX ||
3598 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3599 		goto reset;
3600 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3601 		goto reset;
3602 
3603 	return 0;
3604 reset:
3605 	return nvme_try_sched_reset(ctrl);
3606 }
3607 
nvme_suspend(struct device * dev)3608 static int nvme_suspend(struct device *dev)
3609 {
3610 	struct pci_dev *pdev = to_pci_dev(dev);
3611 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3612 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3613 	int ret = -EBUSY;
3614 
3615 	ndev->last_ps = U32_MAX;
3616 
3617 	/*
3618 	 * The platform does not remove power for a kernel managed suspend so
3619 	 * use host managed nvme power settings for lowest idle power if
3620 	 * possible. This should have quicker resume latency than a full device
3621 	 * shutdown.  But if the firmware is involved after the suspend or the
3622 	 * device does not support any non-default power states, shut down the
3623 	 * device fully.
3624 	 *
3625 	 * If ASPM is not enabled for the device, shut down the device and allow
3626 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3627 	 * down, so as to allow the platform to achieve its minimum low-power
3628 	 * state (which may not be possible if the link is up).
3629 	 */
3630 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3631 	    !pcie_aspm_enabled(pdev) ||
3632 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3633 		return nvme_disable_prepare_reset(ndev, true);
3634 
3635 	nvme_start_freeze(ctrl);
3636 	nvme_wait_freeze(ctrl);
3637 	nvme_sync_queues(ctrl);
3638 
3639 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3640 		goto unfreeze;
3641 
3642 	/*
3643 	 * Host memory access may not be successful in a system suspend state,
3644 	 * but the specification allows the controller to access memory in a
3645 	 * non-operational power state.
3646 	 */
3647 	if (ndev->hmb) {
3648 		ret = nvme_set_host_mem(ndev, 0);
3649 		if (ret < 0)
3650 			goto unfreeze;
3651 	}
3652 
3653 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3654 	if (ret < 0)
3655 		goto unfreeze;
3656 
3657 	/*
3658 	 * A saved state prevents pci pm from generically controlling the
3659 	 * device's power. If we're using protocol specific settings, we don't
3660 	 * want pci interfering.
3661 	 */
3662 	pci_save_state(pdev);
3663 
3664 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3665 	if (ret < 0)
3666 		goto unfreeze;
3667 
3668 	if (ret) {
3669 		/* discard the saved state */
3670 		pci_load_saved_state(pdev, NULL);
3671 
3672 		/*
3673 		 * Clearing npss forces a controller reset on resume. The
3674 		 * correct value will be rediscovered then.
3675 		 */
3676 		ret = nvme_disable_prepare_reset(ndev, true);
3677 		ctrl->npss = 0;
3678 	}
3679 unfreeze:
3680 	nvme_unfreeze(ctrl);
3681 	return ret;
3682 }
3683 
nvme_simple_suspend(struct device * dev)3684 static int nvme_simple_suspend(struct device *dev)
3685 {
3686 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3687 
3688 	return nvme_disable_prepare_reset(ndev, true);
3689 }
3690 
nvme_simple_resume(struct device * dev)3691 static int nvme_simple_resume(struct device *dev)
3692 {
3693 	struct pci_dev *pdev = to_pci_dev(dev);
3694 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3695 
3696 	return nvme_try_sched_reset(&ndev->ctrl);
3697 }
3698 
3699 static const struct dev_pm_ops nvme_dev_pm_ops = {
3700 	.suspend	= nvme_suspend,
3701 	.resume		= nvme_resume,
3702 	.freeze		= nvme_simple_suspend,
3703 	.thaw		= nvme_simple_resume,
3704 	.poweroff	= nvme_simple_suspend,
3705 	.restore	= nvme_simple_resume,
3706 };
3707 #endif /* CONFIG_PM_SLEEP */
3708 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3709 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3710 						pci_channel_state_t state)
3711 {
3712 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3713 
3714 	/*
3715 	 * A frozen channel requires a reset. When detected, this method will
3716 	 * shutdown the controller to quiesce. The controller will be restarted
3717 	 * after the slot reset through driver's slot_reset callback.
3718 	 */
3719 	switch (state) {
3720 	case pci_channel_io_normal:
3721 		return PCI_ERS_RESULT_CAN_RECOVER;
3722 	case pci_channel_io_frozen:
3723 		dev_warn(dev->ctrl.device,
3724 			"frozen state error detected, reset controller\n");
3725 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3726 			nvme_dev_disable(dev, true);
3727 			return PCI_ERS_RESULT_DISCONNECT;
3728 		}
3729 		nvme_dev_disable(dev, false);
3730 		return PCI_ERS_RESULT_NEED_RESET;
3731 	case pci_channel_io_perm_failure:
3732 		dev_warn(dev->ctrl.device,
3733 			"failure state error detected, request disconnect\n");
3734 		return PCI_ERS_RESULT_DISCONNECT;
3735 	}
3736 	return PCI_ERS_RESULT_NEED_RESET;
3737 }
3738 
nvme_slot_reset(struct pci_dev * pdev)3739 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3740 {
3741 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3742 
3743 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3744 	pci_restore_state(pdev);
3745 	if (nvme_try_sched_reset(&dev->ctrl))
3746 		nvme_unquiesce_io_queues(&dev->ctrl);
3747 	return PCI_ERS_RESULT_RECOVERED;
3748 }
3749 
nvme_error_resume(struct pci_dev * pdev)3750 static void nvme_error_resume(struct pci_dev *pdev)
3751 {
3752 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3753 
3754 	flush_work(&dev->ctrl.reset_work);
3755 }
3756 
3757 static const struct pci_error_handlers nvme_err_handler = {
3758 	.error_detected	= nvme_error_detected,
3759 	.slot_reset	= nvme_slot_reset,
3760 	.resume		= nvme_error_resume,
3761 	.reset_prepare	= nvme_reset_prepare,
3762 	.reset_done	= nvme_reset_done,
3763 };
3764 
3765 static const struct pci_device_id nvme_id_table[] = {
3766 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3767 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3768 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3769 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3770 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3771 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3772 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3773 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3774 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3775 				NVME_QUIRK_BOGUS_NID, },
3776 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3777 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3778 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3779 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3780 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3781 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3782 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3783 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3784 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3785 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3786 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3787 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3788 				NVME_QUIRK_BOGUS_NID, },
3789 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3790 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3791 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3792 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3793 	{ PCI_DEVICE(0x126f, 0x1001),	/* Silicon Motion generic */
3794 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3795 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3796 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3797 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3798 				NVME_QUIRK_BOGUS_NID, },
3799 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3800 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3801 				NVME_QUIRK_BOGUS_NID, },
3802 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3803 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3804 				NVME_QUIRK_NO_NS_DESC_LIST, },
3805 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3806 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3807 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3808 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3809 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3810 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3811 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3812 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3813 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3814 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3815 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3816 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3817 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3818 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3819 	{ PCI_DEVICE(0x15b7, 0x5009),   /* Sandisk SN550 */
3820 		.driver_data = NVME_QUIRK_BROKEN_MSI |
3821 				NVME_QUIRK_NO_DEEPEST_PS },
3822 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3823 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3824 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3825 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3826 				NVME_QUIRK_BOGUS_NID, },
3827 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3828 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3829 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3830 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3831 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3832 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3833 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3834 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3835 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3836 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3837 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3838 				NVME_QUIRK_BOGUS_NID, },
3839 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3840 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3841 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3842 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3843 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3844 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3845 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3846 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3847 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3848 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3849 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3850 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3851 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3852 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3853 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3854 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3855 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3856 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3857 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3858 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3859 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3860 				NVME_QUIRK_BOGUS_NID, },
3861 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3862 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3863 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3864 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3865 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3866 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3867 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3868 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3869 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3870 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3871 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3872 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3873 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3874 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3875 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3876 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3877 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3878 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3879 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3880 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3881 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3882 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3883 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3884 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3885 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3886 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3887 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3888 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3889 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3890 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3891 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3892 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3893 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3894 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3895 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3896 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3897 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3898 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3899 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3900 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3901 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3902 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3903 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3904 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3905 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3906 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3907 	{ PCI_DEVICE(0x025e, 0xf1ac),   /* SOLIDIGM  P44 pro SSDPFKKW020X7  */
3908 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3909 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3910 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3911 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3912 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3913 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3914 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3915 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3916 		.driver_data = NVME_QUIRK_BOGUS_NID |
3917 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3918 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3919 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3920 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3921 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3922 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3923 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3924 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3925 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3926 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3927 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3928 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3929 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3930 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3931 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3932 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3933 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3934 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3935 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3936 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3937 		/*
3938 		 * Fix for the Apple controller found in the MacBook8,1 and
3939 		 * some MacBook7,1 to avoid controller resets and data loss.
3940 		 */
3941 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3942 				NVME_QUIRK_QDEPTH_ONE },
3943 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3944 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3945 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3946 				NVME_QUIRK_128_BYTES_SQES |
3947 				NVME_QUIRK_SHARED_TAGS |
3948 				NVME_QUIRK_SKIP_CID_GEN |
3949 				NVME_QUIRK_IDENTIFY_CNS },
3950 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3951 	{ 0, }
3952 };
3953 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3954 
3955 static struct pci_driver nvme_driver = {
3956 	.name		= "nvme",
3957 	.id_table	= nvme_id_table,
3958 	.probe		= nvme_probe,
3959 	.remove		= nvme_remove,
3960 	.shutdown	= nvme_shutdown,
3961 	.driver		= {
3962 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3963 #ifdef CONFIG_PM_SLEEP
3964 		.pm		= &nvme_dev_pm_ops,
3965 #endif
3966 	},
3967 	.sriov_configure = pci_sriov_configure_simple,
3968 	.err_handler	= &nvme_err_handler,
3969 };
3970 
nvme_init(void)3971 static int __init nvme_init(void)
3972 {
3973 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3974 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3975 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3976 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3977 
3978 	return pci_register_driver(&nvme_driver);
3979 }
3980 
nvme_exit(void)3981 static void __exit nvme_exit(void)
3982 {
3983 	pci_unregister_driver(&nvme_driver);
3984 	flush_workqueue(nvme_wq);
3985 }
3986 
3987 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3988 MODULE_LICENSE("GPL");
3989 MODULE_VERSION("1.0");
3990 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3991 module_init(nvme_init);
3992 module_exit(nvme_exit);
3993