1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30
31 #include "trace.h"
32 #include "nvme.h"
33
34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
36
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE 256
39
40 /*
41 * Arbitrary upper bound.
42 */
43 #define NVME_MAX_BYTES SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS 5
45
46 /*
47 * For data SGLs we support a single descriptors worth of SGL entries.
48 * For PRPs, segments don't matter at all.
49 */
50 #define NVME_MAX_SEGS \
51 (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52
53 /*
54 * For metadata SGLs, only the small descriptor is supported, and the first
55 * entry is the segment descriptor, which for the data pointer sits in the SQE.
56 */
57 #define NVME_MAX_META_SEGS \
58 ((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59
60 /*
61 * The last entry is used to link to the next descriptor.
62 */
63 #define PRPS_PER_PAGE \
64 (((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65
66 /*
67 * I/O could be non-aligned both at the beginning and end.
68 */
69 #define MAX_PRP_RANGE \
70 (NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 (1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 "Use SGLs when average request segment size is larger or equal to "
91 "this size. Use 0 to disable SGLs.");
92
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 .set = io_queue_depth_set,
98 .get = param_get_uint,
99 };
100
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104
io_queue_count_set(const char * val,const struct kernel_param * kp)105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 unsigned int n;
108 int ret;
109
110 ret = kstrtouint(val, 10, &n);
111 if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 return -EINVAL;
113 return param_set_uint(val, kp);
114 }
115
116 static const struct kernel_param_ops io_queue_count_ops = {
117 .set = io_queue_count_set,
118 .get = param_get_uint,
119 };
120
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 "Number of queues to use for writes. If not set, reads and writes "
125 "will share a queue set.");
126
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134
135 struct nvme_dev;
136 struct nvme_queue;
137
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141
142 struct nvme_descriptor_pools {
143 struct dma_pool *large;
144 struct dma_pool *small;
145 };
146
147 /*
148 * Represents an NVM Express device. Each nvme_dev is a PCI function.
149 */
150 struct nvme_dev {
151 struct nvme_queue *queues;
152 struct blk_mq_tag_set tagset;
153 struct blk_mq_tag_set admin_tagset;
154 u32 __iomem *dbs;
155 struct device *dev;
156 unsigned online_queues;
157 unsigned max_qid;
158 unsigned io_queues[HCTX_MAX_TYPES];
159 unsigned int num_vecs;
160 u32 q_depth;
161 int io_sqes;
162 u32 db_stride;
163 void __iomem *bar;
164 unsigned long bar_mapped_size;
165 struct mutex shutdown_lock;
166 bool subsystem;
167 u64 cmb_size;
168 bool cmb_use_sqes;
169 u32 cmbsz;
170 u32 cmbloc;
171 struct nvme_ctrl ctrl;
172 u32 last_ps;
173 bool hmb;
174 struct sg_table *hmb_sgt;
175
176 mempool_t *dmavec_mempool;
177 mempool_t *iod_meta_mempool;
178
179 /* shadow doorbell buffer support: */
180 __le32 *dbbuf_dbs;
181 dma_addr_t dbbuf_dbs_dma_addr;
182 __le32 *dbbuf_eis;
183 dma_addr_t dbbuf_eis_dma_addr;
184
185 /* host memory buffer support: */
186 u64 host_mem_size;
187 u32 nr_host_mem_descs;
188 u32 host_mem_descs_size;
189 dma_addr_t host_mem_descs_dma;
190 struct nvme_host_mem_buf_desc *host_mem_descs;
191 void **host_mem_desc_bufs;
192 unsigned int nr_allocated_queues;
193 unsigned int nr_write_queues;
194 unsigned int nr_poll_queues;
195 struct nvme_descriptor_pools descriptor_pools[];
196 };
197
io_queue_depth_set(const char * val,const struct kernel_param * kp)198 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
199 {
200 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
201 NVME_PCI_MAX_QUEUE_SIZE);
202 }
203
sq_idx(unsigned int qid,u32 stride)204 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
205 {
206 return qid * 2 * stride;
207 }
208
cq_idx(unsigned int qid,u32 stride)209 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
210 {
211 return (qid * 2 + 1) * stride;
212 }
213
to_nvme_dev(struct nvme_ctrl * ctrl)214 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
215 {
216 return container_of(ctrl, struct nvme_dev, ctrl);
217 }
218
219 /*
220 * An NVM Express queue. Each device has at least two (one for admin
221 * commands and one for I/O commands).
222 */
223 struct nvme_queue {
224 struct nvme_dev *dev;
225 struct nvme_descriptor_pools descriptor_pools;
226 spinlock_t sq_lock;
227 void *sq_cmds;
228 /* only used for poll queues: */
229 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
230 struct nvme_completion *cqes;
231 dma_addr_t sq_dma_addr;
232 dma_addr_t cq_dma_addr;
233 u32 __iomem *q_db;
234 u32 q_depth;
235 u16 cq_vector;
236 u16 sq_tail;
237 u16 last_sq_tail;
238 u16 cq_head;
239 u16 qid;
240 u8 cq_phase;
241 u8 sqes;
242 unsigned long flags;
243 #define NVMEQ_ENABLED 0
244 #define NVMEQ_SQ_CMB 1
245 #define NVMEQ_DELETE_ERROR 2
246 #define NVMEQ_POLLED 3
247 __le32 *dbbuf_sq_db;
248 __le32 *dbbuf_cq_db;
249 __le32 *dbbuf_sq_ei;
250 __le32 *dbbuf_cq_ei;
251 struct completion delete_done;
252 };
253
254 /* bits for iod->flags */
255 enum nvme_iod_flags {
256 /* this command has been aborted by the timeout handler */
257 IOD_ABORTED = 1U << 0,
258
259 /* uses the small descriptor pool */
260 IOD_SMALL_DESCRIPTOR = 1U << 1,
261
262 /* single segment dma mapping */
263 IOD_SINGLE_SEGMENT = 1U << 2,
264 };
265
266 struct nvme_dma_vec {
267 dma_addr_t addr;
268 unsigned int len;
269 };
270
271 /*
272 * The nvme_iod describes the data in an I/O.
273 */
274 struct nvme_iod {
275 struct nvme_request req;
276 struct nvme_command cmd;
277 u8 flags;
278 u8 nr_descriptors;
279
280 unsigned int total_len;
281 struct dma_iova_state dma_state;
282 void *descriptors[NVME_MAX_NR_DESCRIPTORS];
283 struct nvme_dma_vec *dma_vecs;
284 unsigned int nr_dma_vecs;
285
286 dma_addr_t meta_dma;
287 struct sg_table meta_sgt;
288 struct nvme_sgl_desc *meta_descriptor;
289 };
290
nvme_dbbuf_size(struct nvme_dev * dev)291 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
292 {
293 return dev->nr_allocated_queues * 8 * dev->db_stride;
294 }
295
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)296 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
297 {
298 unsigned int mem_size = nvme_dbbuf_size(dev);
299
300 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
301 return;
302
303 if (dev->dbbuf_dbs) {
304 /*
305 * Clear the dbbuf memory so the driver doesn't observe stale
306 * values from the previous instantiation.
307 */
308 memset(dev->dbbuf_dbs, 0, mem_size);
309 memset(dev->dbbuf_eis, 0, mem_size);
310 return;
311 }
312
313 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
314 &dev->dbbuf_dbs_dma_addr,
315 GFP_KERNEL);
316 if (!dev->dbbuf_dbs)
317 goto fail;
318 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
319 &dev->dbbuf_eis_dma_addr,
320 GFP_KERNEL);
321 if (!dev->dbbuf_eis)
322 goto fail_free_dbbuf_dbs;
323 return;
324
325 fail_free_dbbuf_dbs:
326 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
327 dev->dbbuf_dbs_dma_addr);
328 dev->dbbuf_dbs = NULL;
329 fail:
330 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
331 }
332
nvme_dbbuf_dma_free(struct nvme_dev * dev)333 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
334 {
335 unsigned int mem_size = nvme_dbbuf_size(dev);
336
337 if (dev->dbbuf_dbs) {
338 dma_free_coherent(dev->dev, mem_size,
339 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
340 dev->dbbuf_dbs = NULL;
341 }
342 if (dev->dbbuf_eis) {
343 dma_free_coherent(dev->dev, mem_size,
344 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
345 dev->dbbuf_eis = NULL;
346 }
347 }
348
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)349 static void nvme_dbbuf_init(struct nvme_dev *dev,
350 struct nvme_queue *nvmeq, int qid)
351 {
352 if (!dev->dbbuf_dbs || !qid)
353 return;
354
355 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
356 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
357 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
358 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
359 }
360
nvme_dbbuf_free(struct nvme_queue * nvmeq)361 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
362 {
363 if (!nvmeq->qid)
364 return;
365
366 nvmeq->dbbuf_sq_db = NULL;
367 nvmeq->dbbuf_cq_db = NULL;
368 nvmeq->dbbuf_sq_ei = NULL;
369 nvmeq->dbbuf_cq_ei = NULL;
370 }
371
nvme_dbbuf_set(struct nvme_dev * dev)372 static void nvme_dbbuf_set(struct nvme_dev *dev)
373 {
374 struct nvme_command c = { };
375 unsigned int i;
376
377 if (!dev->dbbuf_dbs)
378 return;
379
380 c.dbbuf.opcode = nvme_admin_dbbuf;
381 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
382 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
383
384 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
385 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
386 /* Free memory and continue on */
387 nvme_dbbuf_dma_free(dev);
388
389 for (i = 1; i <= dev->online_queues; i++)
390 nvme_dbbuf_free(&dev->queues[i]);
391 }
392 }
393
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)394 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
395 {
396 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
397 }
398
399 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)400 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
401 volatile __le32 *dbbuf_ei)
402 {
403 if (dbbuf_db) {
404 u16 old_value, event_idx;
405
406 /*
407 * Ensure that the queue is written before updating
408 * the doorbell in memory
409 */
410 wmb();
411
412 old_value = le32_to_cpu(*dbbuf_db);
413 *dbbuf_db = cpu_to_le32(value);
414
415 /*
416 * Ensure that the doorbell is updated before reading the event
417 * index from memory. The controller needs to provide similar
418 * ordering to ensure the event index is updated before reading
419 * the doorbell.
420 */
421 mb();
422
423 event_idx = le32_to_cpu(*dbbuf_ei);
424 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
425 return false;
426 }
427
428 return true;
429 }
430
431 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)432 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
433 {
434 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
435 size_t small_align = NVME_SMALL_POOL_SIZE;
436
437 if (pools->small)
438 return pools; /* already initialized */
439
440 pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
441 NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
442 if (!pools->large)
443 return ERR_PTR(-ENOMEM);
444
445 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
446 small_align = 512;
447
448 pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
449 NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
450 if (!pools->small) {
451 dma_pool_destroy(pools->large);
452 pools->large = NULL;
453 return ERR_PTR(-ENOMEM);
454 }
455
456 return pools;
457 }
458
nvme_release_descriptor_pools(struct nvme_dev * dev)459 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
460 {
461 unsigned i;
462
463 for (i = 0; i < nr_node_ids; i++) {
464 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
465
466 dma_pool_destroy(pools->large);
467 dma_pool_destroy(pools->small);
468 }
469 }
470
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)471 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
472 unsigned qid)
473 {
474 struct nvme_dev *dev = to_nvme_dev(data);
475 struct nvme_queue *nvmeq = &dev->queues[qid];
476 struct nvme_descriptor_pools *pools;
477 struct blk_mq_tags *tags;
478
479 tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
480 WARN_ON(tags != hctx->tags);
481 pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
482 if (IS_ERR(pools))
483 return PTR_ERR(pools);
484
485 nvmeq->descriptor_pools = *pools;
486 hctx->driver_data = nvmeq;
487 return 0;
488 }
489
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)490 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
491 unsigned int hctx_idx)
492 {
493 WARN_ON(hctx_idx != 0);
494 return nvme_init_hctx_common(hctx, data, 0);
495 }
496
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)497 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
498 unsigned int hctx_idx)
499 {
500 return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
501 }
502
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)503 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
504 struct request *req, unsigned int hctx_idx,
505 unsigned int numa_node)
506 {
507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508
509 nvme_req(req)->ctrl = set->driver_data;
510 nvme_req(req)->cmd = &iod->cmd;
511 return 0;
512 }
513
queue_irq_offset(struct nvme_dev * dev)514 static int queue_irq_offset(struct nvme_dev *dev)
515 {
516 /* if we have more than 1 vec, admin queue offsets us by 1 */
517 if (dev->num_vecs > 1)
518 return 1;
519
520 return 0;
521 }
522
nvme_pci_map_queues(struct blk_mq_tag_set * set)523 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
524 {
525 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
526 int i, qoff, offset;
527
528 offset = queue_irq_offset(dev);
529 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
530 struct blk_mq_queue_map *map = &set->map[i];
531
532 map->nr_queues = dev->io_queues[i];
533 if (!map->nr_queues) {
534 BUG_ON(i == HCTX_TYPE_DEFAULT);
535 continue;
536 }
537
538 /*
539 * The poll queue(s) doesn't have an IRQ (and hence IRQ
540 * affinity), so use the regular blk-mq cpu mapping
541 */
542 map->queue_offset = qoff;
543 if (i != HCTX_TYPE_POLL && offset)
544 blk_mq_map_hw_queues(map, dev->dev, offset);
545 else
546 blk_mq_map_queues(map);
547 qoff += map->nr_queues;
548 offset += map->nr_queues;
549 }
550 }
551
552 /*
553 * Write sq tail if we are asked to, or if the next command would wrap.
554 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)555 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
556 {
557 if (!write_sq) {
558 u16 next_tail = nvmeq->sq_tail + 1;
559
560 if (next_tail == nvmeq->q_depth)
561 next_tail = 0;
562 if (next_tail != nvmeq->last_sq_tail)
563 return;
564 }
565
566 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
567 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
568 writel(nvmeq->sq_tail, nvmeq->q_db);
569 nvmeq->last_sq_tail = nvmeq->sq_tail;
570 }
571
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)572 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
573 struct nvme_command *cmd)
574 {
575 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
576 absolute_pointer(cmd), sizeof(*cmd));
577 if (++nvmeq->sq_tail == nvmeq->q_depth)
578 nvmeq->sq_tail = 0;
579 }
580
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)581 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
582 {
583 struct nvme_queue *nvmeq = hctx->driver_data;
584
585 spin_lock(&nvmeq->sq_lock);
586 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
587 nvme_write_sq_db(nvmeq, true);
588 spin_unlock(&nvmeq->sq_lock);
589 }
590
591 enum nvme_use_sgl {
592 SGL_UNSUPPORTED,
593 SGL_SUPPORTED,
594 SGL_FORCED,
595 };
596
nvme_pci_metadata_use_sgls(struct request * req)597 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
598 {
599 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
600 struct nvme_dev *dev = nvmeq->dev;
601
602 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
603 return false;
604 return req->nr_integrity_segments > 1 ||
605 nvme_req(req)->flags & NVME_REQ_USERCMD;
606 }
607
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)608 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
609 struct request *req)
610 {
611 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
612
613 if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
614 if (nvme_req(req)->flags & NVME_REQ_USERCMD)
615 return SGL_FORCED;
616 if (req->nr_integrity_segments > 1)
617 return SGL_FORCED;
618 return SGL_SUPPORTED;
619 }
620
621 return SGL_UNSUPPORTED;
622 }
623
nvme_pci_avg_seg_size(struct request * req)624 static unsigned int nvme_pci_avg_seg_size(struct request *req)
625 {
626 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
627 unsigned int nseg;
628
629 if (blk_rq_dma_map_coalesce(&iod->dma_state))
630 nseg = 1;
631 else
632 nseg = blk_rq_nr_phys_segments(req);
633 return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
634 }
635
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)636 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
637 struct nvme_iod *iod)
638 {
639 if (iod->flags & IOD_SMALL_DESCRIPTOR)
640 return nvmeq->descriptor_pools.small;
641 return nvmeq->descriptor_pools.large;
642 }
643
nvme_pci_cmd_use_sgl(struct nvme_command * cmd)644 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
645 {
646 return cmd->common.flags &
647 (NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
648 }
649
nvme_pci_first_desc_dma_addr(struct nvme_command * cmd)650 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
651 {
652 if (nvme_pci_cmd_use_sgl(cmd))
653 return le64_to_cpu(cmd->common.dptr.sgl.addr);
654 return le64_to_cpu(cmd->common.dptr.prp2);
655 }
656
nvme_free_descriptors(struct request * req)657 static void nvme_free_descriptors(struct request *req)
658 {
659 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
660 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
661 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
662 dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
663 int i;
664
665 if (iod->nr_descriptors == 1) {
666 dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
667 dma_addr);
668 return;
669 }
670
671 for (i = 0; i < iod->nr_descriptors; i++) {
672 __le64 *prp_list = iod->descriptors[i];
673 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
674
675 dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
676 dma_addr);
677 dma_addr = next_dma_addr;
678 }
679 }
680
nvme_free_prps(struct request * req)681 static void nvme_free_prps(struct request *req)
682 {
683 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
684 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
685 unsigned int i;
686
687 for (i = 0; i < iod->nr_dma_vecs; i++)
688 dma_unmap_page(nvmeq->dev->dev, iod->dma_vecs[i].addr,
689 iod->dma_vecs[i].len, rq_dma_dir(req));
690 mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
691 }
692
nvme_free_sgls(struct request * req)693 static void nvme_free_sgls(struct request *req)
694 {
695 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
696 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
697 struct device *dma_dev = nvmeq->dev->dev;
698 dma_addr_t sqe_dma_addr = le64_to_cpu(iod->cmd.common.dptr.sgl.addr);
699 unsigned int sqe_dma_len = le32_to_cpu(iod->cmd.common.dptr.sgl.length);
700 struct nvme_sgl_desc *sg_list = iod->descriptors[0];
701 enum dma_data_direction dir = rq_dma_dir(req);
702
703 if (iod->nr_descriptors) {
704 unsigned int nr_entries = sqe_dma_len / sizeof(*sg_list), i;
705
706 for (i = 0; i < nr_entries; i++)
707 dma_unmap_page(dma_dev, le64_to_cpu(sg_list[i].addr),
708 le32_to_cpu(sg_list[i].length), dir);
709 } else {
710 dma_unmap_page(dma_dev, sqe_dma_addr, sqe_dma_len, dir);
711 }
712 }
713
nvme_unmap_data(struct request * req)714 static void nvme_unmap_data(struct request *req)
715 {
716 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
717 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
718 struct device *dma_dev = nvmeq->dev->dev;
719
720 if (iod->flags & IOD_SINGLE_SEGMENT) {
721 static_assert(offsetof(union nvme_data_ptr, prp1) ==
722 offsetof(union nvme_data_ptr, sgl.addr));
723 dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
724 iod->total_len, rq_dma_dir(req));
725 return;
726 }
727
728 if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len)) {
729 if (nvme_pci_cmd_use_sgl(&iod->cmd))
730 nvme_free_sgls(req);
731 else
732 nvme_free_prps(req);
733 }
734
735 if (iod->nr_descriptors)
736 nvme_free_descriptors(req);
737 }
738
nvme_pci_prp_iter_next(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)739 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
740 struct blk_dma_iter *iter)
741 {
742 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
743
744 if (iter->len)
745 return true;
746 if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
747 return false;
748 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) {
749 iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
750 iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
751 iod->nr_dma_vecs++;
752 }
753 return true;
754 }
755
nvme_pci_setup_data_prp(struct request * req,struct blk_dma_iter * iter)756 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
757 struct blk_dma_iter *iter)
758 {
759 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
760 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
761 unsigned int length = blk_rq_payload_bytes(req);
762 dma_addr_t prp1_dma, prp2_dma = 0;
763 unsigned int prp_len, i;
764 __le64 *prp_list;
765
766 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) {
767 iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
768 GFP_ATOMIC);
769 if (!iod->dma_vecs)
770 return BLK_STS_RESOURCE;
771 iod->dma_vecs[0].addr = iter->addr;
772 iod->dma_vecs[0].len = iter->len;
773 iod->nr_dma_vecs = 1;
774 }
775
776 /*
777 * PRP1 always points to the start of the DMA transfers.
778 *
779 * This is the only PRP (except for the list entries) that could be
780 * non-aligned.
781 */
782 prp1_dma = iter->addr;
783 prp_len = min(length, NVME_CTRL_PAGE_SIZE -
784 (iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
785 iod->total_len += prp_len;
786 iter->addr += prp_len;
787 iter->len -= prp_len;
788 length -= prp_len;
789 if (!length)
790 goto done;
791
792 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
793 if (WARN_ON_ONCE(!iter->status))
794 goto bad_sgl;
795 goto done;
796 }
797
798 /*
799 * PRP2 is usually a list, but can point to data if all data to be
800 * transferred fits into PRP1 + PRP2:
801 */
802 if (length <= NVME_CTRL_PAGE_SIZE) {
803 prp2_dma = iter->addr;
804 iod->total_len += length;
805 goto done;
806 }
807
808 if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
809 NVME_SMALL_POOL_SIZE / sizeof(__le64))
810 iod->flags |= IOD_SMALL_DESCRIPTOR;
811
812 prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
813 &prp2_dma);
814 if (!prp_list) {
815 iter->status = BLK_STS_RESOURCE;
816 goto done;
817 }
818 iod->descriptors[iod->nr_descriptors++] = prp_list;
819
820 i = 0;
821 for (;;) {
822 prp_list[i++] = cpu_to_le64(iter->addr);
823 prp_len = min(length, NVME_CTRL_PAGE_SIZE);
824 if (WARN_ON_ONCE(iter->len < prp_len))
825 goto bad_sgl;
826
827 iod->total_len += prp_len;
828 iter->addr += prp_len;
829 iter->len -= prp_len;
830 length -= prp_len;
831 if (!length)
832 break;
833
834 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
835 if (WARN_ON_ONCE(!iter->status))
836 goto bad_sgl;
837 goto done;
838 }
839
840 /*
841 * If we've filled the entire descriptor, allocate a new that is
842 * pointed to be the last entry in the previous PRP list. To
843 * accommodate for that move the last actual entry to the new
844 * descriptor.
845 */
846 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
847 __le64 *old_prp_list = prp_list;
848 dma_addr_t prp_list_dma;
849
850 prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
851 GFP_ATOMIC, &prp_list_dma);
852 if (!prp_list) {
853 iter->status = BLK_STS_RESOURCE;
854 goto done;
855 }
856 iod->descriptors[iod->nr_descriptors++] = prp_list;
857
858 prp_list[0] = old_prp_list[i - 1];
859 old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
860 i = 1;
861 }
862 }
863
864 done:
865 /*
866 * nvme_unmap_data uses the DPT field in the SQE to tear down the
867 * mapping, so initialize it even for failures.
868 */
869 iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
870 iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
871 if (unlikely(iter->status))
872 nvme_unmap_data(req);
873 return iter->status;
874
875 bad_sgl:
876 dev_err_once(nvmeq->dev->dev,
877 "Incorrectly formed request for payload:%d nents:%d\n",
878 blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
879 return BLK_STS_IOERR;
880 }
881
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct blk_dma_iter * iter)882 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
883 struct blk_dma_iter *iter)
884 {
885 sge->addr = cpu_to_le64(iter->addr);
886 sge->length = cpu_to_le32(iter->len);
887 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
888 }
889
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)890 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
891 dma_addr_t dma_addr, int entries)
892 {
893 sge->addr = cpu_to_le64(dma_addr);
894 sge->length = cpu_to_le32(entries * sizeof(*sge));
895 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
896 }
897
nvme_pci_setup_data_sgl(struct request * req,struct blk_dma_iter * iter)898 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
899 struct blk_dma_iter *iter)
900 {
901 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
902 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
903 unsigned int entries = blk_rq_nr_phys_segments(req);
904 struct nvme_sgl_desc *sg_list;
905 dma_addr_t sgl_dma;
906 unsigned int mapped = 0;
907
908 /* set the transfer type as SGL */
909 iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
910
911 if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
912 nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
913 iod->total_len += iter->len;
914 return BLK_STS_OK;
915 }
916
917 if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
918 iod->flags |= IOD_SMALL_DESCRIPTOR;
919
920 sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
921 &sgl_dma);
922 if (!sg_list)
923 return BLK_STS_RESOURCE;
924 iod->descriptors[iod->nr_descriptors++] = sg_list;
925
926 do {
927 if (WARN_ON_ONCE(mapped == entries)) {
928 iter->status = BLK_STS_IOERR;
929 break;
930 }
931 nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
932 iod->total_len += iter->len;
933 } while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
934 iter));
935
936 nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
937 if (unlikely(iter->status))
938 nvme_free_sgls(req);
939 return iter->status;
940 }
941
nvme_pci_setup_data_simple(struct request * req,enum nvme_use_sgl use_sgl)942 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
943 enum nvme_use_sgl use_sgl)
944 {
945 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
946 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
947 struct bio_vec bv = req_bvec(req);
948 unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
949 bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
950 dma_addr_t dma_addr;
951
952 if (!use_sgl && !prp_possible)
953 return BLK_STS_AGAIN;
954 if (is_pci_p2pdma_page(bv.bv_page))
955 return BLK_STS_AGAIN;
956
957 dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
958 if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
959 return BLK_STS_RESOURCE;
960 iod->total_len = bv.bv_len;
961 iod->flags |= IOD_SINGLE_SEGMENT;
962
963 if (use_sgl == SGL_FORCED || !prp_possible) {
964 iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
965 iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
966 iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
967 iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
968 } else {
969 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
970
971 iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
972 iod->cmd.common.dptr.prp2 = 0;
973 if (bv.bv_len > first_prp_len)
974 iod->cmd.common.dptr.prp2 =
975 cpu_to_le64(dma_addr + first_prp_len);
976 }
977
978 return BLK_STS_OK;
979 }
980
nvme_map_data(struct request * req)981 static blk_status_t nvme_map_data(struct request *req)
982 {
983 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
984 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
985 struct nvme_dev *dev = nvmeq->dev;
986 enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
987 struct blk_dma_iter iter;
988 blk_status_t ret;
989
990 /*
991 * Try to skip the DMA iterator for single segment requests, as that
992 * significantly improves performances for small I/O sizes.
993 */
994 if (blk_rq_nr_phys_segments(req) == 1) {
995 ret = nvme_pci_setup_data_simple(req, use_sgl);
996 if (ret != BLK_STS_AGAIN)
997 return ret;
998 }
999
1000 if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1001 return iter.status;
1002
1003 if (use_sgl == SGL_FORCED ||
1004 (use_sgl == SGL_SUPPORTED &&
1005 (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1006 return nvme_pci_setup_data_sgl(req, &iter);
1007 return nvme_pci_setup_data_prp(req, &iter);
1008 }
1009
nvme_pci_sgl_set_data_sg(struct nvme_sgl_desc * sge,struct scatterlist * sg)1010 static void nvme_pci_sgl_set_data_sg(struct nvme_sgl_desc *sge,
1011 struct scatterlist *sg)
1012 {
1013 sge->addr = cpu_to_le64(sg_dma_address(sg));
1014 sge->length = cpu_to_le32(sg_dma_len(sg));
1015 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
1016 }
1017
nvme_pci_setup_meta_sgls(struct request * req)1018 static blk_status_t nvme_pci_setup_meta_sgls(struct request *req)
1019 {
1020 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1021 struct nvme_dev *dev = nvmeq->dev;
1022 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1023 struct nvme_sgl_desc *sg_list;
1024 struct scatterlist *sgl, *sg;
1025 unsigned int entries;
1026 dma_addr_t sgl_dma;
1027 int rc, i;
1028
1029 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
1030 if (!iod->meta_sgt.sgl)
1031 return BLK_STS_RESOURCE;
1032
1033 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
1034 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
1035 iod->meta_sgt.sgl);
1036 if (!iod->meta_sgt.orig_nents)
1037 goto out_free_sg;
1038
1039 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
1040 DMA_ATTR_NO_WARN);
1041 if (rc)
1042 goto out_free_sg;
1043
1044 sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1045 &sgl_dma);
1046 if (!sg_list)
1047 goto out_unmap_sg;
1048
1049 entries = iod->meta_sgt.nents;
1050 iod->meta_descriptor = sg_list;
1051 iod->meta_dma = sgl_dma;
1052
1053 iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1054 iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1055
1056 sgl = iod->meta_sgt.sgl;
1057 if (entries == 1) {
1058 nvme_pci_sgl_set_data_sg(sg_list, sgl);
1059 return BLK_STS_OK;
1060 }
1061
1062 sgl_dma += sizeof(*sg_list);
1063 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
1064 for_each_sg(sgl, sg, entries, i)
1065 nvme_pci_sgl_set_data_sg(&sg_list[i + 1], sg);
1066
1067 return BLK_STS_OK;
1068
1069 out_unmap_sg:
1070 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1071 out_free_sg:
1072 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1073 return BLK_STS_RESOURCE;
1074 }
1075
nvme_pci_setup_meta_mptr(struct request * req)1076 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1077 {
1078 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1079 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1080 struct bio_vec bv = rq_integrity_vec(req);
1081
1082 iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1083 if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1084 return BLK_STS_IOERR;
1085 iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1086 return BLK_STS_OK;
1087 }
1088
nvme_map_metadata(struct request * req)1089 static blk_status_t nvme_map_metadata(struct request *req)
1090 {
1091 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1092
1093 if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1094 nvme_pci_metadata_use_sgls(req))
1095 return nvme_pci_setup_meta_sgls(req);
1096 return nvme_pci_setup_meta_mptr(req);
1097 }
1098
nvme_prep_rq(struct request * req)1099 static blk_status_t nvme_prep_rq(struct request *req)
1100 {
1101 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1102 blk_status_t ret;
1103
1104 iod->flags = 0;
1105 iod->nr_descriptors = 0;
1106 iod->total_len = 0;
1107 iod->meta_sgt.nents = 0;
1108
1109 ret = nvme_setup_cmd(req->q->queuedata, req);
1110 if (ret)
1111 return ret;
1112
1113 if (blk_rq_nr_phys_segments(req)) {
1114 ret = nvme_map_data(req);
1115 if (ret)
1116 goto out_free_cmd;
1117 }
1118
1119 if (blk_integrity_rq(req)) {
1120 ret = nvme_map_metadata(req);
1121 if (ret)
1122 goto out_unmap_data;
1123 }
1124
1125 nvme_start_request(req);
1126 return BLK_STS_OK;
1127 out_unmap_data:
1128 if (blk_rq_nr_phys_segments(req))
1129 nvme_unmap_data(req);
1130 out_free_cmd:
1131 nvme_cleanup_cmd(req);
1132 return ret;
1133 }
1134
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1135 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1136 const struct blk_mq_queue_data *bd)
1137 {
1138 struct nvme_queue *nvmeq = hctx->driver_data;
1139 struct nvme_dev *dev = nvmeq->dev;
1140 struct request *req = bd->rq;
1141 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1142 blk_status_t ret;
1143
1144 /*
1145 * We should not need to do this, but we're still using this to
1146 * ensure we can drain requests on a dying queue.
1147 */
1148 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1149 return BLK_STS_IOERR;
1150
1151 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1152 return nvme_fail_nonready_command(&dev->ctrl, req);
1153
1154 ret = nvme_prep_rq(req);
1155 if (unlikely(ret))
1156 return ret;
1157 spin_lock(&nvmeq->sq_lock);
1158 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1159 nvme_write_sq_db(nvmeq, bd->last);
1160 spin_unlock(&nvmeq->sq_lock);
1161 return BLK_STS_OK;
1162 }
1163
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1164 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1165 {
1166 struct request *req;
1167
1168 if (rq_list_empty(rqlist))
1169 return;
1170
1171 spin_lock(&nvmeq->sq_lock);
1172 while ((req = rq_list_pop(rqlist))) {
1173 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1174
1175 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1176 }
1177 nvme_write_sq_db(nvmeq, true);
1178 spin_unlock(&nvmeq->sq_lock);
1179 }
1180
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1181 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1182 {
1183 /*
1184 * We should not need to do this, but we're still using this to
1185 * ensure we can drain requests on a dying queue.
1186 */
1187 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1188 return false;
1189 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1190 return false;
1191
1192 return nvme_prep_rq(req) == BLK_STS_OK;
1193 }
1194
nvme_queue_rqs(struct rq_list * rqlist)1195 static void nvme_queue_rqs(struct rq_list *rqlist)
1196 {
1197 struct rq_list submit_list = { };
1198 struct rq_list requeue_list = { };
1199 struct nvme_queue *nvmeq = NULL;
1200 struct request *req;
1201
1202 while ((req = rq_list_pop(rqlist))) {
1203 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1204 nvme_submit_cmds(nvmeq, &submit_list);
1205 nvmeq = req->mq_hctx->driver_data;
1206
1207 if (nvme_prep_rq_batch(nvmeq, req))
1208 rq_list_add_tail(&submit_list, req);
1209 else
1210 rq_list_add_tail(&requeue_list, req);
1211 }
1212
1213 if (nvmeq)
1214 nvme_submit_cmds(nvmeq, &submit_list);
1215 *rqlist = requeue_list;
1216 }
1217
nvme_unmap_metadata(struct request * req)1218 static __always_inline void nvme_unmap_metadata(struct request *req)
1219 {
1220 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1221 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1222 struct nvme_dev *dev = nvmeq->dev;
1223
1224 if (!iod->meta_sgt.nents) {
1225 dma_unmap_page(dev->dev, iod->meta_dma,
1226 rq_integrity_vec(req).bv_len,
1227 rq_dma_dir(req));
1228 return;
1229 }
1230
1231 dma_pool_free(nvmeq->descriptor_pools.small, iod->meta_descriptor,
1232 iod->meta_dma);
1233 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1234 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1235 }
1236
nvme_pci_unmap_rq(struct request * req)1237 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1238 {
1239 if (blk_integrity_rq(req))
1240 nvme_unmap_metadata(req);
1241 if (blk_rq_nr_phys_segments(req))
1242 nvme_unmap_data(req);
1243 }
1244
nvme_pci_complete_rq(struct request * req)1245 static void nvme_pci_complete_rq(struct request *req)
1246 {
1247 nvme_pci_unmap_rq(req);
1248 nvme_complete_rq(req);
1249 }
1250
nvme_pci_complete_batch(struct io_comp_batch * iob)1251 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1252 {
1253 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1254 }
1255
1256 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1257 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1258 {
1259 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1260
1261 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1262 }
1263
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1264 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1265 {
1266 u16 head = nvmeq->cq_head;
1267
1268 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1269 nvmeq->dbbuf_cq_ei))
1270 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1271 }
1272
nvme_queue_tagset(struct nvme_queue * nvmeq)1273 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1274 {
1275 if (!nvmeq->qid)
1276 return nvmeq->dev->admin_tagset.tags[0];
1277 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1278 }
1279
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1280 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1281 struct io_comp_batch *iob, u16 idx)
1282 {
1283 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1284 __u16 command_id = READ_ONCE(cqe->command_id);
1285 struct request *req;
1286
1287 /*
1288 * AEN requests are special as they don't time out and can
1289 * survive any kind of queue freeze and often don't respond to
1290 * aborts. We don't even bother to allocate a struct request
1291 * for them but rather special case them here.
1292 */
1293 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1294 nvme_complete_async_event(&nvmeq->dev->ctrl,
1295 cqe->status, &cqe->result);
1296 return;
1297 }
1298
1299 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1300 if (unlikely(!req)) {
1301 dev_warn(nvmeq->dev->ctrl.device,
1302 "invalid id %d completed on queue %d\n",
1303 command_id, le16_to_cpu(cqe->sq_id));
1304 return;
1305 }
1306
1307 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1308 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1309 !blk_mq_add_to_batch(req, iob,
1310 nvme_req(req)->status != NVME_SC_SUCCESS,
1311 nvme_pci_complete_batch))
1312 nvme_pci_complete_rq(req);
1313 }
1314
nvme_update_cq_head(struct nvme_queue * nvmeq)1315 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1316 {
1317 u32 tmp = nvmeq->cq_head + 1;
1318
1319 if (tmp == nvmeq->q_depth) {
1320 nvmeq->cq_head = 0;
1321 nvmeq->cq_phase ^= 1;
1322 } else {
1323 nvmeq->cq_head = tmp;
1324 }
1325 }
1326
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1327 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1328 struct io_comp_batch *iob)
1329 {
1330 bool found = false;
1331
1332 while (nvme_cqe_pending(nvmeq)) {
1333 found = true;
1334 /*
1335 * load-load control dependency between phase and the rest of
1336 * the cqe requires a full read memory barrier
1337 */
1338 dma_rmb();
1339 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1340 nvme_update_cq_head(nvmeq);
1341 }
1342
1343 if (found)
1344 nvme_ring_cq_doorbell(nvmeq);
1345 return found;
1346 }
1347
nvme_irq(int irq,void * data)1348 static irqreturn_t nvme_irq(int irq, void *data)
1349 {
1350 struct nvme_queue *nvmeq = data;
1351 DEFINE_IO_COMP_BATCH(iob);
1352
1353 if (nvme_poll_cq(nvmeq, &iob)) {
1354 if (!rq_list_empty(&iob.req_list))
1355 nvme_pci_complete_batch(&iob);
1356 return IRQ_HANDLED;
1357 }
1358 return IRQ_NONE;
1359 }
1360
nvme_irq_check(int irq,void * data)1361 static irqreturn_t nvme_irq_check(int irq, void *data)
1362 {
1363 struct nvme_queue *nvmeq = data;
1364
1365 if (nvme_cqe_pending(nvmeq))
1366 return IRQ_WAKE_THREAD;
1367 return IRQ_NONE;
1368 }
1369
1370 /*
1371 * Poll for completions for any interrupt driven queue
1372 * Can be called from any context.
1373 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1374 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1375 {
1376 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1377
1378 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1379
1380 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1381 spin_lock(&nvmeq->cq_poll_lock);
1382 nvme_poll_cq(nvmeq, NULL);
1383 spin_unlock(&nvmeq->cq_poll_lock);
1384 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1385 }
1386
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1387 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1388 {
1389 struct nvme_queue *nvmeq = hctx->driver_data;
1390 bool found;
1391
1392 if (!nvme_cqe_pending(nvmeq))
1393 return 0;
1394
1395 spin_lock(&nvmeq->cq_poll_lock);
1396 found = nvme_poll_cq(nvmeq, iob);
1397 spin_unlock(&nvmeq->cq_poll_lock);
1398
1399 return found;
1400 }
1401
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1402 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1403 {
1404 struct nvme_dev *dev = to_nvme_dev(ctrl);
1405 struct nvme_queue *nvmeq = &dev->queues[0];
1406 struct nvme_command c = { };
1407
1408 c.common.opcode = nvme_admin_async_event;
1409 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1410
1411 spin_lock(&nvmeq->sq_lock);
1412 nvme_sq_copy_cmd(nvmeq, &c);
1413 nvme_write_sq_db(nvmeq, true);
1414 spin_unlock(&nvmeq->sq_lock);
1415 }
1416
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1417 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1418 {
1419 struct nvme_dev *dev = to_nvme_dev(ctrl);
1420 int ret = 0;
1421
1422 /*
1423 * Taking the shutdown_lock ensures the BAR mapping is not being
1424 * altered by reset_work. Holding this lock before the RESETTING state
1425 * change, if successful, also ensures nvme_remove won't be able to
1426 * proceed to iounmap until we're done.
1427 */
1428 mutex_lock(&dev->shutdown_lock);
1429 if (!dev->bar_mapped_size) {
1430 ret = -ENODEV;
1431 goto unlock;
1432 }
1433
1434 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1435 ret = -EBUSY;
1436 goto unlock;
1437 }
1438
1439 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1440 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1441
1442 /*
1443 * Read controller status to flush the previous write and trigger a
1444 * pcie read error.
1445 */
1446 readl(dev->bar + NVME_REG_CSTS);
1447 unlock:
1448 mutex_unlock(&dev->shutdown_lock);
1449 return ret;
1450 }
1451
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1452 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1453 {
1454 struct nvme_command c = { };
1455
1456 c.delete_queue.opcode = opcode;
1457 c.delete_queue.qid = cpu_to_le16(id);
1458
1459 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1460 }
1461
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1462 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1463 struct nvme_queue *nvmeq, s16 vector)
1464 {
1465 struct nvme_command c = { };
1466 int flags = NVME_QUEUE_PHYS_CONTIG;
1467
1468 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1469 flags |= NVME_CQ_IRQ_ENABLED;
1470
1471 /*
1472 * Note: we (ab)use the fact that the prp fields survive if no data
1473 * is attached to the request.
1474 */
1475 c.create_cq.opcode = nvme_admin_create_cq;
1476 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1477 c.create_cq.cqid = cpu_to_le16(qid);
1478 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1479 c.create_cq.cq_flags = cpu_to_le16(flags);
1480 c.create_cq.irq_vector = cpu_to_le16(vector);
1481
1482 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1483 }
1484
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1485 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1486 struct nvme_queue *nvmeq)
1487 {
1488 struct nvme_ctrl *ctrl = &dev->ctrl;
1489 struct nvme_command c = { };
1490 int flags = NVME_QUEUE_PHYS_CONTIG;
1491
1492 /*
1493 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1494 * set. Since URGENT priority is zeroes, it makes all queues
1495 * URGENT.
1496 */
1497 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1498 flags |= NVME_SQ_PRIO_MEDIUM;
1499
1500 /*
1501 * Note: we (ab)use the fact that the prp fields survive if no data
1502 * is attached to the request.
1503 */
1504 c.create_sq.opcode = nvme_admin_create_sq;
1505 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1506 c.create_sq.sqid = cpu_to_le16(qid);
1507 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1508 c.create_sq.sq_flags = cpu_to_le16(flags);
1509 c.create_sq.cqid = cpu_to_le16(qid);
1510
1511 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1512 }
1513
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1514 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1515 {
1516 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1517 }
1518
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1519 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1520 {
1521 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1522 }
1523
abort_endio(struct request * req,blk_status_t error)1524 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1525 {
1526 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1527
1528 dev_warn(nvmeq->dev->ctrl.device,
1529 "Abort status: 0x%x", nvme_req(req)->status);
1530 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1531 blk_mq_free_request(req);
1532 return RQ_END_IO_NONE;
1533 }
1534
nvme_should_reset(struct nvme_dev * dev,u32 csts)1535 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1536 {
1537 /* If true, indicates loss of adapter communication, possibly by a
1538 * NVMe Subsystem reset.
1539 */
1540 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1541
1542 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1543 switch (nvme_ctrl_state(&dev->ctrl)) {
1544 case NVME_CTRL_RESETTING:
1545 case NVME_CTRL_CONNECTING:
1546 return false;
1547 default:
1548 break;
1549 }
1550
1551 /* We shouldn't reset unless the controller is on fatal error state
1552 * _or_ if we lost the communication with it.
1553 */
1554 if (!(csts & NVME_CSTS_CFS) && !nssro)
1555 return false;
1556
1557 return true;
1558 }
1559
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1560 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1561 {
1562 /* Read a config register to help see what died. */
1563 u16 pci_status;
1564 int result;
1565
1566 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1567 &pci_status);
1568 if (result == PCIBIOS_SUCCESSFUL)
1569 dev_warn(dev->ctrl.device,
1570 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1571 csts, pci_status);
1572 else
1573 dev_warn(dev->ctrl.device,
1574 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1575 csts, result);
1576
1577 if (csts != ~0)
1578 return;
1579
1580 dev_warn(dev->ctrl.device,
1581 "Does your device have a faulty power saving mode enabled?\n");
1582 dev_warn(dev->ctrl.device,
1583 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1584 }
1585
nvme_timeout(struct request * req)1586 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1587 {
1588 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1589 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1590 struct nvme_dev *dev = nvmeq->dev;
1591 struct request *abort_req;
1592 struct nvme_command cmd = { };
1593 struct pci_dev *pdev = to_pci_dev(dev->dev);
1594 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1595 u8 opcode;
1596
1597 /*
1598 * Shutdown the device immediately if we see it is disconnected. This
1599 * unblocks PCIe error handling if the nvme driver is waiting in
1600 * error_resume for a device that has been removed. We can't unbind the
1601 * driver while the driver's error callback is waiting to complete, so
1602 * we're relying on a timeout to break that deadlock if a removal
1603 * occurs while reset work is running.
1604 */
1605 if (pci_dev_is_disconnected(pdev))
1606 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1607 if (nvme_state_terminal(&dev->ctrl))
1608 goto disable;
1609
1610 /* If PCI error recovery process is happening, we cannot reset or
1611 * the recovery mechanism will surely fail.
1612 */
1613 mb();
1614 if (pci_channel_offline(pdev))
1615 return BLK_EH_RESET_TIMER;
1616
1617 /*
1618 * Reset immediately if the controller is failed
1619 */
1620 if (nvme_should_reset(dev, csts)) {
1621 nvme_warn_reset(dev, csts);
1622 goto disable;
1623 }
1624
1625 /*
1626 * Did we miss an interrupt?
1627 */
1628 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1629 nvme_poll(req->mq_hctx, NULL);
1630 else
1631 nvme_poll_irqdisable(nvmeq);
1632
1633 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1634 dev_warn(dev->ctrl.device,
1635 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1636 req->tag, nvme_cid(req), nvmeq->qid);
1637 return BLK_EH_DONE;
1638 }
1639
1640 /*
1641 * Shutdown immediately if controller times out while starting. The
1642 * reset work will see the pci device disabled when it gets the forced
1643 * cancellation error. All outstanding requests are completed on
1644 * shutdown, so we return BLK_EH_DONE.
1645 */
1646 switch (nvme_ctrl_state(&dev->ctrl)) {
1647 case NVME_CTRL_CONNECTING:
1648 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1649 fallthrough;
1650 case NVME_CTRL_DELETING:
1651 dev_warn_ratelimited(dev->ctrl.device,
1652 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1653 req->tag, nvme_cid(req), nvmeq->qid);
1654 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1655 nvme_dev_disable(dev, true);
1656 return BLK_EH_DONE;
1657 case NVME_CTRL_RESETTING:
1658 return BLK_EH_RESET_TIMER;
1659 default:
1660 break;
1661 }
1662
1663 /*
1664 * Shutdown the controller immediately and schedule a reset if the
1665 * command was already aborted once before and still hasn't been
1666 * returned to the driver, or if this is the admin queue.
1667 */
1668 opcode = nvme_req(req)->cmd->common.opcode;
1669 if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1670 dev_warn(dev->ctrl.device,
1671 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1672 req->tag, nvme_cid(req), opcode,
1673 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1674 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1675 goto disable;
1676 }
1677
1678 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1679 atomic_inc(&dev->ctrl.abort_limit);
1680 return BLK_EH_RESET_TIMER;
1681 }
1682 iod->flags |= IOD_ABORTED;
1683
1684 cmd.abort.opcode = nvme_admin_abort_cmd;
1685 cmd.abort.cid = nvme_cid(req);
1686 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1687
1688 dev_warn(nvmeq->dev->ctrl.device,
1689 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1690 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1691 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1692 blk_rq_bytes(req));
1693
1694 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1695 BLK_MQ_REQ_NOWAIT);
1696 if (IS_ERR(abort_req)) {
1697 atomic_inc(&dev->ctrl.abort_limit);
1698 return BLK_EH_RESET_TIMER;
1699 }
1700 nvme_init_request(abort_req, &cmd);
1701
1702 abort_req->end_io = abort_endio;
1703 abort_req->end_io_data = NULL;
1704 blk_execute_rq_nowait(abort_req, false);
1705
1706 /*
1707 * The aborted req will be completed on receiving the abort req.
1708 * We enable the timer again. If hit twice, it'll cause a device reset,
1709 * as the device then is in a faulty state.
1710 */
1711 return BLK_EH_RESET_TIMER;
1712
1713 disable:
1714 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1715 if (nvme_state_terminal(&dev->ctrl))
1716 nvme_dev_disable(dev, true);
1717 return BLK_EH_DONE;
1718 }
1719
1720 nvme_dev_disable(dev, false);
1721 if (nvme_try_sched_reset(&dev->ctrl))
1722 nvme_unquiesce_io_queues(&dev->ctrl);
1723 return BLK_EH_DONE;
1724 }
1725
nvme_free_queue(struct nvme_queue * nvmeq)1726 static void nvme_free_queue(struct nvme_queue *nvmeq)
1727 {
1728 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1729 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1730 if (!nvmeq->sq_cmds)
1731 return;
1732
1733 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1734 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1735 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1736 } else {
1737 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1738 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1739 }
1740 }
1741
nvme_free_queues(struct nvme_dev * dev,int lowest)1742 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1743 {
1744 int i;
1745
1746 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1747 dev->ctrl.queue_count--;
1748 nvme_free_queue(&dev->queues[i]);
1749 }
1750 }
1751
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1752 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1753 {
1754 struct nvme_queue *nvmeq = &dev->queues[qid];
1755
1756 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1757 return;
1758
1759 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1760 mb();
1761
1762 nvmeq->dev->online_queues--;
1763 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1764 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1765 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1766 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1767 }
1768
nvme_suspend_io_queues(struct nvme_dev * dev)1769 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1770 {
1771 int i;
1772
1773 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1774 nvme_suspend_queue(dev, i);
1775 }
1776
1777 /*
1778 * Called only on a device that has been disabled and after all other threads
1779 * that can check this device's completion queues have synced, except
1780 * nvme_poll(). This is the last chance for the driver to see a natural
1781 * completion before nvme_cancel_request() terminates all incomplete requests.
1782 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1783 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1784 {
1785 int i;
1786
1787 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1788 spin_lock(&dev->queues[i].cq_poll_lock);
1789 nvme_poll_cq(&dev->queues[i], NULL);
1790 spin_unlock(&dev->queues[i].cq_poll_lock);
1791 }
1792 }
1793
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1794 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1795 int entry_size)
1796 {
1797 int q_depth = dev->q_depth;
1798 unsigned q_size_aligned = roundup(q_depth * entry_size,
1799 NVME_CTRL_PAGE_SIZE);
1800
1801 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1802 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1803
1804 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1805 q_depth = div_u64(mem_per_q, entry_size);
1806
1807 /*
1808 * Ensure the reduced q_depth is above some threshold where it
1809 * would be better to map queues in system memory with the
1810 * original depth
1811 */
1812 if (q_depth < 64)
1813 return -ENOMEM;
1814 }
1815
1816 return q_depth;
1817 }
1818
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1819 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1820 int qid)
1821 {
1822 struct pci_dev *pdev = to_pci_dev(dev->dev);
1823
1824 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1825 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1826 if (nvmeq->sq_cmds) {
1827 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1828 nvmeq->sq_cmds);
1829 if (nvmeq->sq_dma_addr) {
1830 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1831 return 0;
1832 }
1833
1834 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1835 }
1836 }
1837
1838 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1839 &nvmeq->sq_dma_addr, GFP_KERNEL);
1840 if (!nvmeq->sq_cmds)
1841 return -ENOMEM;
1842 return 0;
1843 }
1844
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1845 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1846 {
1847 struct nvme_queue *nvmeq = &dev->queues[qid];
1848
1849 if (dev->ctrl.queue_count > qid)
1850 return 0;
1851
1852 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1853 nvmeq->q_depth = depth;
1854 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1855 &nvmeq->cq_dma_addr, GFP_KERNEL);
1856 if (!nvmeq->cqes)
1857 goto free_nvmeq;
1858
1859 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1860 goto free_cqdma;
1861
1862 nvmeq->dev = dev;
1863 spin_lock_init(&nvmeq->sq_lock);
1864 spin_lock_init(&nvmeq->cq_poll_lock);
1865 nvmeq->cq_head = 0;
1866 nvmeq->cq_phase = 1;
1867 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1868 nvmeq->qid = qid;
1869 dev->ctrl.queue_count++;
1870
1871 return 0;
1872
1873 free_cqdma:
1874 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1875 nvmeq->cq_dma_addr);
1876 free_nvmeq:
1877 return -ENOMEM;
1878 }
1879
queue_request_irq(struct nvme_queue * nvmeq)1880 static int queue_request_irq(struct nvme_queue *nvmeq)
1881 {
1882 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1883 int nr = nvmeq->dev->ctrl.instance;
1884
1885 if (use_threaded_interrupts) {
1886 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1887 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1888 } else {
1889 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1890 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1891 }
1892 }
1893
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1894 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1895 {
1896 struct nvme_dev *dev = nvmeq->dev;
1897
1898 nvmeq->sq_tail = 0;
1899 nvmeq->last_sq_tail = 0;
1900 nvmeq->cq_head = 0;
1901 nvmeq->cq_phase = 1;
1902 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1903 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1904 nvme_dbbuf_init(dev, nvmeq, qid);
1905 dev->online_queues++;
1906 wmb(); /* ensure the first interrupt sees the initialization */
1907 }
1908
1909 /*
1910 * Try getting shutdown_lock while setting up IO queues.
1911 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1912 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1913 {
1914 /*
1915 * Give up if the lock is being held by nvme_dev_disable.
1916 */
1917 if (!mutex_trylock(&dev->shutdown_lock))
1918 return -ENODEV;
1919
1920 /*
1921 * Controller is in wrong state, fail early.
1922 */
1923 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1924 mutex_unlock(&dev->shutdown_lock);
1925 return -ENODEV;
1926 }
1927
1928 return 0;
1929 }
1930
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1931 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1932 {
1933 struct nvme_dev *dev = nvmeq->dev;
1934 int result;
1935 u16 vector = 0;
1936
1937 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1938
1939 /*
1940 * A queue's vector matches the queue identifier unless the controller
1941 * has only one vector available.
1942 */
1943 if (!polled)
1944 vector = dev->num_vecs == 1 ? 0 : qid;
1945 else
1946 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1947
1948 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1949 if (result)
1950 return result;
1951
1952 result = adapter_alloc_sq(dev, qid, nvmeq);
1953 if (result < 0)
1954 return result;
1955 if (result)
1956 goto release_cq;
1957
1958 nvmeq->cq_vector = vector;
1959
1960 result = nvme_setup_io_queues_trylock(dev);
1961 if (result)
1962 return result;
1963 nvme_init_queue(nvmeq, qid);
1964 if (!polled) {
1965 result = queue_request_irq(nvmeq);
1966 if (result < 0)
1967 goto release_sq;
1968 }
1969
1970 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1971 mutex_unlock(&dev->shutdown_lock);
1972 return result;
1973
1974 release_sq:
1975 dev->online_queues--;
1976 mutex_unlock(&dev->shutdown_lock);
1977 adapter_delete_sq(dev, qid);
1978 release_cq:
1979 adapter_delete_cq(dev, qid);
1980 return result;
1981 }
1982
1983 static const struct blk_mq_ops nvme_mq_admin_ops = {
1984 .queue_rq = nvme_queue_rq,
1985 .complete = nvme_pci_complete_rq,
1986 .init_hctx = nvme_admin_init_hctx,
1987 .init_request = nvme_pci_init_request,
1988 .timeout = nvme_timeout,
1989 };
1990
1991 static const struct blk_mq_ops nvme_mq_ops = {
1992 .queue_rq = nvme_queue_rq,
1993 .queue_rqs = nvme_queue_rqs,
1994 .complete = nvme_pci_complete_rq,
1995 .commit_rqs = nvme_commit_rqs,
1996 .init_hctx = nvme_init_hctx,
1997 .init_request = nvme_pci_init_request,
1998 .map_queues = nvme_pci_map_queues,
1999 .timeout = nvme_timeout,
2000 .poll = nvme_poll,
2001 };
2002
nvme_dev_remove_admin(struct nvme_dev * dev)2003 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2004 {
2005 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2006 /*
2007 * If the controller was reset during removal, it's possible
2008 * user requests may be waiting on a stopped queue. Start the
2009 * queue to flush these to completion.
2010 */
2011 nvme_unquiesce_admin_queue(&dev->ctrl);
2012 nvme_remove_admin_tag_set(&dev->ctrl);
2013 }
2014 }
2015
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2016 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2017 {
2018 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2019 }
2020
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)2021 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2022 {
2023 struct pci_dev *pdev = to_pci_dev(dev->dev);
2024
2025 if (size <= dev->bar_mapped_size)
2026 return 0;
2027 if (size > pci_resource_len(pdev, 0))
2028 return -ENOMEM;
2029 if (dev->bar)
2030 iounmap(dev->bar);
2031 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2032 if (!dev->bar) {
2033 dev->bar_mapped_size = 0;
2034 return -ENOMEM;
2035 }
2036 dev->bar_mapped_size = size;
2037 dev->dbs = dev->bar + NVME_REG_DBS;
2038
2039 return 0;
2040 }
2041
nvme_pci_configure_admin_queue(struct nvme_dev * dev)2042 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2043 {
2044 int result;
2045 u32 aqa;
2046 struct nvme_queue *nvmeq;
2047
2048 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2049 if (result < 0)
2050 return result;
2051
2052 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2053 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2054
2055 if (dev->subsystem &&
2056 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2057 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2058
2059 /*
2060 * If the device has been passed off to us in an enabled state, just
2061 * clear the enabled bit. The spec says we should set the 'shutdown
2062 * notification bits', but doing so may cause the device to complete
2063 * commands to the admin queue ... and we don't know what memory that
2064 * might be pointing at!
2065 */
2066 result = nvme_disable_ctrl(&dev->ctrl, false);
2067 if (result < 0) {
2068 struct pci_dev *pdev = to_pci_dev(dev->dev);
2069
2070 /*
2071 * The NVMe Controller Reset method did not get an expected
2072 * CSTS.RDY transition, so something with the device appears to
2073 * be stuck. Use the lower level and bigger hammer PCIe
2074 * Function Level Reset to attempt restoring the device to its
2075 * initial state, and try again.
2076 */
2077 result = pcie_reset_flr(pdev, false);
2078 if (result < 0)
2079 return result;
2080
2081 pci_restore_state(pdev);
2082 result = nvme_disable_ctrl(&dev->ctrl, false);
2083 if (result < 0)
2084 return result;
2085
2086 dev_info(dev->ctrl.device,
2087 "controller reset completed after pcie flr\n");
2088 }
2089
2090 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2091 if (result)
2092 return result;
2093
2094 dev->ctrl.numa_node = dev_to_node(dev->dev);
2095
2096 nvmeq = &dev->queues[0];
2097 aqa = nvmeq->q_depth - 1;
2098 aqa |= aqa << 16;
2099
2100 writel(aqa, dev->bar + NVME_REG_AQA);
2101 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2102 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2103
2104 result = nvme_enable_ctrl(&dev->ctrl);
2105 if (result)
2106 return result;
2107
2108 nvmeq->cq_vector = 0;
2109 nvme_init_queue(nvmeq, 0);
2110 result = queue_request_irq(nvmeq);
2111 if (result) {
2112 dev->online_queues--;
2113 return result;
2114 }
2115
2116 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2117 return result;
2118 }
2119
nvme_create_io_queues(struct nvme_dev * dev)2120 static int nvme_create_io_queues(struct nvme_dev *dev)
2121 {
2122 unsigned i, max, rw_queues;
2123 int ret = 0;
2124
2125 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2126 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2127 ret = -ENOMEM;
2128 break;
2129 }
2130 }
2131
2132 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2133 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2134 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2135 dev->io_queues[HCTX_TYPE_READ];
2136 } else {
2137 rw_queues = max;
2138 }
2139
2140 for (i = dev->online_queues; i <= max; i++) {
2141 bool polled = i > rw_queues;
2142
2143 ret = nvme_create_queue(&dev->queues[i], i, polled);
2144 if (ret)
2145 break;
2146 }
2147
2148 /*
2149 * Ignore failing Create SQ/CQ commands, we can continue with less
2150 * than the desired amount of queues, and even a controller without
2151 * I/O queues can still be used to issue admin commands. This might
2152 * be useful to upgrade a buggy firmware for example.
2153 */
2154 return ret >= 0 ? 0 : ret;
2155 }
2156
nvme_cmb_size_unit(struct nvme_dev * dev)2157 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2158 {
2159 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2160
2161 return 1ULL << (12 + 4 * szu);
2162 }
2163
nvme_cmb_size(struct nvme_dev * dev)2164 static u32 nvme_cmb_size(struct nvme_dev *dev)
2165 {
2166 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2167 }
2168
nvme_map_cmb(struct nvme_dev * dev)2169 static void nvme_map_cmb(struct nvme_dev *dev)
2170 {
2171 u64 size, offset;
2172 resource_size_t bar_size;
2173 struct pci_dev *pdev = to_pci_dev(dev->dev);
2174 int bar;
2175
2176 if (dev->cmb_size)
2177 return;
2178
2179 if (NVME_CAP_CMBS(dev->ctrl.cap))
2180 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2181
2182 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2183 if (!dev->cmbsz)
2184 return;
2185 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2186
2187 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2188 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2189 bar = NVME_CMB_BIR(dev->cmbloc);
2190 bar_size = pci_resource_len(pdev, bar);
2191
2192 if (offset > bar_size)
2193 return;
2194
2195 /*
2196 * Controllers may support a CMB size larger than their BAR, for
2197 * example, due to being behind a bridge. Reduce the CMB to the
2198 * reported size of the BAR
2199 */
2200 size = min(size, bar_size - offset);
2201
2202 if (!IS_ALIGNED(size, memremap_compat_align()) ||
2203 !IS_ALIGNED(pci_resource_start(pdev, bar),
2204 memremap_compat_align()))
2205 return;
2206
2207 /*
2208 * Tell the controller about the host side address mapping the CMB,
2209 * and enable CMB decoding for the NVMe 1.4+ scheme:
2210 */
2211 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2212 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2213 (pci_bus_address(pdev, bar) + offset),
2214 dev->bar + NVME_REG_CMBMSC);
2215 }
2216
2217 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2218 dev_warn(dev->ctrl.device,
2219 "failed to register the CMB\n");
2220 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2221 return;
2222 }
2223
2224 dev->cmb_size = size;
2225 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2226
2227 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2228 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2229 pci_p2pmem_publish(pdev, true);
2230 }
2231
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2232 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2233 {
2234 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2235 u64 dma_addr = dev->host_mem_descs_dma;
2236 struct nvme_command c = { };
2237 int ret;
2238
2239 c.features.opcode = nvme_admin_set_features;
2240 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2241 c.features.dword11 = cpu_to_le32(bits);
2242 c.features.dword12 = cpu_to_le32(host_mem_size);
2243 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
2244 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
2245 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
2246
2247 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2248 if (ret) {
2249 dev_warn(dev->ctrl.device,
2250 "failed to set host mem (err %d, flags %#x).\n",
2251 ret, bits);
2252 } else
2253 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2254
2255 return ret;
2256 }
2257
nvme_free_host_mem_multi(struct nvme_dev * dev)2258 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2259 {
2260 int i;
2261
2262 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2263 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2264 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2265
2266 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2267 le64_to_cpu(desc->addr),
2268 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2269 }
2270
2271 kfree(dev->host_mem_desc_bufs);
2272 dev->host_mem_desc_bufs = NULL;
2273 }
2274
nvme_free_host_mem(struct nvme_dev * dev)2275 static void nvme_free_host_mem(struct nvme_dev *dev)
2276 {
2277 if (dev->hmb_sgt)
2278 dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2279 dev->hmb_sgt, DMA_BIDIRECTIONAL);
2280 else
2281 nvme_free_host_mem_multi(dev);
2282
2283 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2284 dev->host_mem_descs, dev->host_mem_descs_dma);
2285 dev->host_mem_descs = NULL;
2286 dev->host_mem_descs_size = 0;
2287 dev->nr_host_mem_descs = 0;
2288 }
2289
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2290 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2291 {
2292 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2293 DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2294 if (!dev->hmb_sgt)
2295 return -ENOMEM;
2296
2297 dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2298 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2299 GFP_KERNEL);
2300 if (!dev->host_mem_descs) {
2301 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2302 DMA_BIDIRECTIONAL);
2303 dev->hmb_sgt = NULL;
2304 return -ENOMEM;
2305 }
2306 dev->host_mem_size = size;
2307 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2308 dev->nr_host_mem_descs = 1;
2309
2310 dev->host_mem_descs[0].addr =
2311 cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2312 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2313 return 0;
2314 }
2315
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2316 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2317 u32 chunk_size)
2318 {
2319 struct nvme_host_mem_buf_desc *descs;
2320 u32 max_entries, len, descs_size;
2321 dma_addr_t descs_dma;
2322 int i = 0;
2323 void **bufs;
2324 u64 size, tmp;
2325
2326 tmp = (preferred + chunk_size - 1);
2327 do_div(tmp, chunk_size);
2328 max_entries = tmp;
2329
2330 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2331 max_entries = dev->ctrl.hmmaxd;
2332
2333 descs_size = max_entries * sizeof(*descs);
2334 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2335 GFP_KERNEL);
2336 if (!descs)
2337 goto out;
2338
2339 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2340 if (!bufs)
2341 goto out_free_descs;
2342
2343 for (size = 0; size < preferred && i < max_entries; size += len) {
2344 dma_addr_t dma_addr;
2345
2346 len = min_t(u64, chunk_size, preferred - size);
2347 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2348 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2349 if (!bufs[i])
2350 break;
2351
2352 descs[i].addr = cpu_to_le64(dma_addr);
2353 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2354 i++;
2355 }
2356
2357 if (!size)
2358 goto out_free_bufs;
2359
2360 dev->nr_host_mem_descs = i;
2361 dev->host_mem_size = size;
2362 dev->host_mem_descs = descs;
2363 dev->host_mem_descs_dma = descs_dma;
2364 dev->host_mem_descs_size = descs_size;
2365 dev->host_mem_desc_bufs = bufs;
2366 return 0;
2367
2368 out_free_bufs:
2369 kfree(bufs);
2370 out_free_descs:
2371 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2372 out:
2373 dev->host_mem_descs = NULL;
2374 return -ENOMEM;
2375 }
2376
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2377 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2378 {
2379 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2380 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2381 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2382 u64 chunk_size;
2383
2384 /*
2385 * If there is an IOMMU that can merge pages, try a virtually
2386 * non-contiguous allocation for a single segment first.
2387 */
2388 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2389 if (!nvme_alloc_host_mem_single(dev, preferred))
2390 return 0;
2391 }
2392
2393 /* start big and work our way down */
2394 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2395 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2396 if (!min || dev->host_mem_size >= min)
2397 return 0;
2398 nvme_free_host_mem(dev);
2399 }
2400 }
2401
2402 return -ENOMEM;
2403 }
2404
nvme_setup_host_mem(struct nvme_dev * dev)2405 static int nvme_setup_host_mem(struct nvme_dev *dev)
2406 {
2407 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2408 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2409 u64 min = (u64)dev->ctrl.hmmin * 4096;
2410 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2411 int ret;
2412
2413 if (!dev->ctrl.hmpre)
2414 return 0;
2415
2416 preferred = min(preferred, max);
2417 if (min > max) {
2418 dev_warn(dev->ctrl.device,
2419 "min host memory (%lld MiB) above limit (%d MiB).\n",
2420 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2421 nvme_free_host_mem(dev);
2422 return 0;
2423 }
2424
2425 /*
2426 * If we already have a buffer allocated check if we can reuse it.
2427 */
2428 if (dev->host_mem_descs) {
2429 if (dev->host_mem_size >= min)
2430 enable_bits |= NVME_HOST_MEM_RETURN;
2431 else
2432 nvme_free_host_mem(dev);
2433 }
2434
2435 if (!dev->host_mem_descs) {
2436 if (nvme_alloc_host_mem(dev, min, preferred)) {
2437 dev_warn(dev->ctrl.device,
2438 "failed to allocate host memory buffer.\n");
2439 return 0; /* controller must work without HMB */
2440 }
2441
2442 dev_info(dev->ctrl.device,
2443 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2444 dev->host_mem_size >> ilog2(SZ_1M),
2445 dev->nr_host_mem_descs,
2446 str_plural(dev->nr_host_mem_descs));
2447 }
2448
2449 ret = nvme_set_host_mem(dev, enable_bits);
2450 if (ret)
2451 nvme_free_host_mem(dev);
2452 return ret;
2453 }
2454
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2455 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2456 char *buf)
2457 {
2458 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2459
2460 return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz : 0x%08x\n",
2461 ndev->cmbloc, ndev->cmbsz);
2462 }
2463 static DEVICE_ATTR_RO(cmb);
2464
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2465 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2466 char *buf)
2467 {
2468 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2469
2470 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2471 }
2472 static DEVICE_ATTR_RO(cmbloc);
2473
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2474 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2475 char *buf)
2476 {
2477 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2478
2479 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2480 }
2481 static DEVICE_ATTR_RO(cmbsz);
2482
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2483 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2484 char *buf)
2485 {
2486 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2487
2488 return sysfs_emit(buf, "%d\n", ndev->hmb);
2489 }
2490
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2491 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2492 const char *buf, size_t count)
2493 {
2494 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2495 bool new;
2496 int ret;
2497
2498 if (kstrtobool(buf, &new) < 0)
2499 return -EINVAL;
2500
2501 if (new == ndev->hmb)
2502 return count;
2503
2504 if (new) {
2505 ret = nvme_setup_host_mem(ndev);
2506 } else {
2507 ret = nvme_set_host_mem(ndev, 0);
2508 if (!ret)
2509 nvme_free_host_mem(ndev);
2510 }
2511
2512 if (ret < 0)
2513 return ret;
2514
2515 return count;
2516 }
2517 static DEVICE_ATTR_RW(hmb);
2518
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2519 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2520 struct attribute *a, int n)
2521 {
2522 struct nvme_ctrl *ctrl =
2523 dev_get_drvdata(container_of(kobj, struct device, kobj));
2524 struct nvme_dev *dev = to_nvme_dev(ctrl);
2525
2526 if (a == &dev_attr_cmb.attr ||
2527 a == &dev_attr_cmbloc.attr ||
2528 a == &dev_attr_cmbsz.attr) {
2529 if (!dev->cmbsz)
2530 return 0;
2531 }
2532 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2533 return 0;
2534
2535 return a->mode;
2536 }
2537
2538 static struct attribute *nvme_pci_attrs[] = {
2539 &dev_attr_cmb.attr,
2540 &dev_attr_cmbloc.attr,
2541 &dev_attr_cmbsz.attr,
2542 &dev_attr_hmb.attr,
2543 NULL,
2544 };
2545
2546 static const struct attribute_group nvme_pci_dev_attrs_group = {
2547 .attrs = nvme_pci_attrs,
2548 .is_visible = nvme_pci_attrs_are_visible,
2549 };
2550
2551 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2552 &nvme_dev_attrs_group,
2553 &nvme_pci_dev_attrs_group,
2554 NULL,
2555 };
2556
nvme_update_attrs(struct nvme_dev * dev)2557 static void nvme_update_attrs(struct nvme_dev *dev)
2558 {
2559 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2560 }
2561
2562 /*
2563 * nirqs is the number of interrupts available for write and read
2564 * queues. The core already reserved an interrupt for the admin queue.
2565 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2566 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2567 {
2568 struct nvme_dev *dev = affd->priv;
2569 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2570
2571 /*
2572 * If there is no interrupt available for queues, ensure that
2573 * the default queue is set to 1. The affinity set size is
2574 * also set to one, but the irq core ignores it for this case.
2575 *
2576 * If only one interrupt is available or 'write_queue' == 0, combine
2577 * write and read queues.
2578 *
2579 * If 'write_queues' > 0, ensure it leaves room for at least one read
2580 * queue.
2581 */
2582 if (!nrirqs) {
2583 nrirqs = 1;
2584 nr_read_queues = 0;
2585 } else if (nrirqs == 1 || !nr_write_queues) {
2586 nr_read_queues = 0;
2587 } else if (nr_write_queues >= nrirqs) {
2588 nr_read_queues = 1;
2589 } else {
2590 nr_read_queues = nrirqs - nr_write_queues;
2591 }
2592
2593 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2594 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2595 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2596 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2597 affd->nr_sets = nr_read_queues ? 2 : 1;
2598 }
2599
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2600 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2601 {
2602 struct pci_dev *pdev = to_pci_dev(dev->dev);
2603 struct irq_affinity affd = {
2604 .pre_vectors = 1,
2605 .calc_sets = nvme_calc_irq_sets,
2606 .priv = dev,
2607 };
2608 unsigned int irq_queues, poll_queues;
2609 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2610
2611 /*
2612 * Poll queues don't need interrupts, but we need at least one I/O queue
2613 * left over for non-polled I/O.
2614 */
2615 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2616 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2617
2618 /*
2619 * Initialize for the single interrupt case, will be updated in
2620 * nvme_calc_irq_sets().
2621 */
2622 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2623 dev->io_queues[HCTX_TYPE_READ] = 0;
2624
2625 /*
2626 * We need interrupts for the admin queue and each non-polled I/O queue,
2627 * but some Apple controllers require all queues to use the first
2628 * vector.
2629 */
2630 irq_queues = 1;
2631 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2632 irq_queues += (nr_io_queues - poll_queues);
2633 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2634 flags &= ~PCI_IRQ_MSI;
2635 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2636 &affd);
2637 }
2638
nvme_max_io_queues(struct nvme_dev * dev)2639 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2640 {
2641 /*
2642 * If tags are shared with admin queue (Apple bug), then
2643 * make sure we only use one IO queue.
2644 */
2645 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2646 return 1;
2647 return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2648 dev->nr_poll_queues;
2649 }
2650
nvme_setup_io_queues(struct nvme_dev * dev)2651 static int nvme_setup_io_queues(struct nvme_dev *dev)
2652 {
2653 struct nvme_queue *adminq = &dev->queues[0];
2654 struct pci_dev *pdev = to_pci_dev(dev->dev);
2655 unsigned int nr_io_queues;
2656 unsigned long size;
2657 int result;
2658
2659 /*
2660 * Sample the module parameters once at reset time so that we have
2661 * stable values to work with.
2662 */
2663 dev->nr_write_queues = write_queues;
2664 dev->nr_poll_queues = poll_queues;
2665
2666 nr_io_queues = dev->nr_allocated_queues - 1;
2667 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2668 if (result < 0)
2669 return result;
2670
2671 if (nr_io_queues == 0)
2672 return 0;
2673
2674 /*
2675 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2676 * from set to unset. If there is a window to it is truely freed,
2677 * pci_free_irq_vectors() jumping into this window will crash.
2678 * And take lock to avoid racing with pci_free_irq_vectors() in
2679 * nvme_dev_disable() path.
2680 */
2681 result = nvme_setup_io_queues_trylock(dev);
2682 if (result)
2683 return result;
2684 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2685 pci_free_irq(pdev, 0, adminq);
2686
2687 if (dev->cmb_use_sqes) {
2688 result = nvme_cmb_qdepth(dev, nr_io_queues,
2689 sizeof(struct nvme_command));
2690 if (result > 0) {
2691 dev->q_depth = result;
2692 dev->ctrl.sqsize = result - 1;
2693 } else {
2694 dev->cmb_use_sqes = false;
2695 }
2696 }
2697
2698 do {
2699 size = db_bar_size(dev, nr_io_queues);
2700 result = nvme_remap_bar(dev, size);
2701 if (!result)
2702 break;
2703 if (!--nr_io_queues) {
2704 result = -ENOMEM;
2705 goto out_unlock;
2706 }
2707 } while (1);
2708 adminq->q_db = dev->dbs;
2709
2710 retry:
2711 /* Deregister the admin queue's interrupt */
2712 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2713 pci_free_irq(pdev, 0, adminq);
2714
2715 /*
2716 * If we enable msix early due to not intx, disable it again before
2717 * setting up the full range we need.
2718 */
2719 pci_free_irq_vectors(pdev);
2720
2721 result = nvme_setup_irqs(dev, nr_io_queues);
2722 if (result <= 0) {
2723 result = -EIO;
2724 goto out_unlock;
2725 }
2726
2727 dev->num_vecs = result;
2728 result = max(result - 1, 1);
2729 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2730
2731 /*
2732 * Should investigate if there's a performance win from allocating
2733 * more queues than interrupt vectors; it might allow the submission
2734 * path to scale better, even if the receive path is limited by the
2735 * number of interrupts.
2736 */
2737 result = queue_request_irq(adminq);
2738 if (result)
2739 goto out_unlock;
2740 set_bit(NVMEQ_ENABLED, &adminq->flags);
2741 mutex_unlock(&dev->shutdown_lock);
2742
2743 result = nvme_create_io_queues(dev);
2744 if (result || dev->online_queues < 2)
2745 return result;
2746
2747 if (dev->online_queues - 1 < dev->max_qid) {
2748 nr_io_queues = dev->online_queues - 1;
2749 nvme_delete_io_queues(dev);
2750 result = nvme_setup_io_queues_trylock(dev);
2751 if (result)
2752 return result;
2753 nvme_suspend_io_queues(dev);
2754 goto retry;
2755 }
2756 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2757 dev->io_queues[HCTX_TYPE_DEFAULT],
2758 dev->io_queues[HCTX_TYPE_READ],
2759 dev->io_queues[HCTX_TYPE_POLL]);
2760 return 0;
2761 out_unlock:
2762 mutex_unlock(&dev->shutdown_lock);
2763 return result;
2764 }
2765
nvme_del_queue_end(struct request * req,blk_status_t error)2766 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2767 blk_status_t error)
2768 {
2769 struct nvme_queue *nvmeq = req->end_io_data;
2770
2771 blk_mq_free_request(req);
2772 complete(&nvmeq->delete_done);
2773 return RQ_END_IO_NONE;
2774 }
2775
nvme_del_cq_end(struct request * req,blk_status_t error)2776 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2777 blk_status_t error)
2778 {
2779 struct nvme_queue *nvmeq = req->end_io_data;
2780
2781 if (error)
2782 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2783
2784 return nvme_del_queue_end(req, error);
2785 }
2786
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2787 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2788 {
2789 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2790 struct request *req;
2791 struct nvme_command cmd = { };
2792
2793 cmd.delete_queue.opcode = opcode;
2794 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2795
2796 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2797 if (IS_ERR(req))
2798 return PTR_ERR(req);
2799 nvme_init_request(req, &cmd);
2800
2801 if (opcode == nvme_admin_delete_cq)
2802 req->end_io = nvme_del_cq_end;
2803 else
2804 req->end_io = nvme_del_queue_end;
2805 req->end_io_data = nvmeq;
2806
2807 init_completion(&nvmeq->delete_done);
2808 blk_execute_rq_nowait(req, false);
2809 return 0;
2810 }
2811
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2812 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2813 {
2814 int nr_queues = dev->online_queues - 1, sent = 0;
2815 unsigned long timeout;
2816
2817 retry:
2818 timeout = NVME_ADMIN_TIMEOUT;
2819 while (nr_queues > 0) {
2820 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2821 break;
2822 nr_queues--;
2823 sent++;
2824 }
2825 while (sent) {
2826 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2827
2828 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2829 timeout);
2830 if (timeout == 0)
2831 return false;
2832
2833 sent--;
2834 if (nr_queues)
2835 goto retry;
2836 }
2837 return true;
2838 }
2839
nvme_delete_io_queues(struct nvme_dev * dev)2840 static void nvme_delete_io_queues(struct nvme_dev *dev)
2841 {
2842 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2843 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2844 }
2845
nvme_pci_nr_maps(struct nvme_dev * dev)2846 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2847 {
2848 if (dev->io_queues[HCTX_TYPE_POLL])
2849 return 3;
2850 if (dev->io_queues[HCTX_TYPE_READ])
2851 return 2;
2852 return 1;
2853 }
2854
nvme_pci_update_nr_queues(struct nvme_dev * dev)2855 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2856 {
2857 if (!dev->ctrl.tagset) {
2858 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2859 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2860 return true;
2861 }
2862
2863 /* Give up if we are racing with nvme_dev_disable() */
2864 if (!mutex_trylock(&dev->shutdown_lock))
2865 return false;
2866
2867 /* Check if nvme_dev_disable() has been executed already */
2868 if (!dev->online_queues) {
2869 mutex_unlock(&dev->shutdown_lock);
2870 return false;
2871 }
2872
2873 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2874 /* free previously allocated queues that are no longer usable */
2875 nvme_free_queues(dev, dev->online_queues);
2876 mutex_unlock(&dev->shutdown_lock);
2877 return true;
2878 }
2879
nvme_pci_enable(struct nvme_dev * dev)2880 static int nvme_pci_enable(struct nvme_dev *dev)
2881 {
2882 int result = -ENOMEM;
2883 struct pci_dev *pdev = to_pci_dev(dev->dev);
2884 unsigned int flags = PCI_IRQ_ALL_TYPES;
2885
2886 if (pci_enable_device_mem(pdev))
2887 return result;
2888
2889 pci_set_master(pdev);
2890
2891 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2892 result = -ENODEV;
2893 goto disable;
2894 }
2895
2896 /*
2897 * Some devices and/or platforms don't advertise or work with INTx
2898 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2899 * adjust this later.
2900 */
2901 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2902 flags &= ~PCI_IRQ_MSI;
2903 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2904 if (result < 0)
2905 goto disable;
2906
2907 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2908
2909 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2910 io_queue_depth);
2911 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2912 dev->dbs = dev->bar + 4096;
2913
2914 /*
2915 * Some Apple controllers require a non-standard SQE size.
2916 * Interestingly they also seem to ignore the CC:IOSQES register
2917 * so we don't bother updating it here.
2918 */
2919 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2920 dev->io_sqes = 7;
2921 else
2922 dev->io_sqes = NVME_NVM_IOSQES;
2923
2924 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2925 dev->q_depth = 2;
2926 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2927 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2928 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2929 dev->q_depth = 64;
2930 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2931 "set queue depth=%u\n", dev->q_depth);
2932 }
2933
2934 /*
2935 * Controllers with the shared tags quirk need the IO queue to be
2936 * big enough so that we get 32 tags for the admin queue
2937 */
2938 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2939 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2940 dev->q_depth = NVME_AQ_DEPTH + 2;
2941 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2942 dev->q_depth);
2943 }
2944 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2945
2946 nvme_map_cmb(dev);
2947
2948 pci_save_state(pdev);
2949
2950 result = nvme_pci_configure_admin_queue(dev);
2951 if (result)
2952 goto free_irq;
2953 return result;
2954
2955 free_irq:
2956 pci_free_irq_vectors(pdev);
2957 disable:
2958 pci_disable_device(pdev);
2959 return result;
2960 }
2961
nvme_dev_unmap(struct nvme_dev * dev)2962 static void nvme_dev_unmap(struct nvme_dev *dev)
2963 {
2964 if (dev->bar)
2965 iounmap(dev->bar);
2966 pci_release_mem_regions(to_pci_dev(dev->dev));
2967 }
2968
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2969 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2970 {
2971 struct pci_dev *pdev = to_pci_dev(dev->dev);
2972 u32 csts;
2973
2974 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2975 return true;
2976 if (pdev->error_state != pci_channel_io_normal)
2977 return true;
2978
2979 csts = readl(dev->bar + NVME_REG_CSTS);
2980 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2981 }
2982
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2983 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2984 {
2985 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2986 struct pci_dev *pdev = to_pci_dev(dev->dev);
2987 bool dead;
2988
2989 mutex_lock(&dev->shutdown_lock);
2990 dead = nvme_pci_ctrl_is_dead(dev);
2991 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2992 if (pci_is_enabled(pdev))
2993 nvme_start_freeze(&dev->ctrl);
2994 /*
2995 * Give the controller a chance to complete all entered requests
2996 * if doing a safe shutdown.
2997 */
2998 if (!dead && shutdown)
2999 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3000 }
3001
3002 nvme_quiesce_io_queues(&dev->ctrl);
3003
3004 if (!dead && dev->ctrl.queue_count > 0) {
3005 nvme_delete_io_queues(dev);
3006 nvme_disable_ctrl(&dev->ctrl, shutdown);
3007 nvme_poll_irqdisable(&dev->queues[0]);
3008 }
3009 nvme_suspend_io_queues(dev);
3010 nvme_suspend_queue(dev, 0);
3011 pci_free_irq_vectors(pdev);
3012 if (pci_is_enabled(pdev))
3013 pci_disable_device(pdev);
3014 nvme_reap_pending_cqes(dev);
3015
3016 nvme_cancel_tagset(&dev->ctrl);
3017 nvme_cancel_admin_tagset(&dev->ctrl);
3018
3019 /*
3020 * The driver will not be starting up queues again if shutting down so
3021 * must flush all entered requests to their failed completion to avoid
3022 * deadlocking blk-mq hot-cpu notifier.
3023 */
3024 if (shutdown) {
3025 nvme_unquiesce_io_queues(&dev->ctrl);
3026 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3027 nvme_unquiesce_admin_queue(&dev->ctrl);
3028 }
3029 mutex_unlock(&dev->shutdown_lock);
3030 }
3031
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)3032 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3033 {
3034 if (!nvme_wait_reset(&dev->ctrl))
3035 return -EBUSY;
3036 nvme_dev_disable(dev, shutdown);
3037 return 0;
3038 }
3039
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)3040 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3041 {
3042 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
3043 size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3044
3045 dev->dmavec_mempool = mempool_create_node(1,
3046 mempool_kmalloc, mempool_kfree,
3047 (void *)alloc_size, GFP_KERNEL,
3048 dev_to_node(dev->dev));
3049 if (!dev->dmavec_mempool)
3050 return -ENOMEM;
3051
3052 dev->iod_meta_mempool = mempool_create_node(1,
3053 mempool_kmalloc, mempool_kfree,
3054 (void *)meta_size, GFP_KERNEL,
3055 dev_to_node(dev->dev));
3056 if (!dev->iod_meta_mempool)
3057 goto free;
3058 return 0;
3059 free:
3060 mempool_destroy(dev->dmavec_mempool);
3061 return -ENOMEM;
3062 }
3063
nvme_free_tagset(struct nvme_dev * dev)3064 static void nvme_free_tagset(struct nvme_dev *dev)
3065 {
3066 if (dev->tagset.tags)
3067 nvme_remove_io_tag_set(&dev->ctrl);
3068 dev->ctrl.tagset = NULL;
3069 }
3070
3071 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)3072 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3073 {
3074 struct nvme_dev *dev = to_nvme_dev(ctrl);
3075
3076 nvme_free_tagset(dev);
3077 put_device(dev->dev);
3078 kfree(dev->queues);
3079 kfree(dev);
3080 }
3081
nvme_reset_work(struct work_struct * work)3082 static void nvme_reset_work(struct work_struct *work)
3083 {
3084 struct nvme_dev *dev =
3085 container_of(work, struct nvme_dev, ctrl.reset_work);
3086 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3087 int result;
3088
3089 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3090 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3091 dev->ctrl.state);
3092 result = -ENODEV;
3093 goto out;
3094 }
3095
3096 /*
3097 * If we're called to reset a live controller first shut it down before
3098 * moving on.
3099 */
3100 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3101 nvme_dev_disable(dev, false);
3102 nvme_sync_queues(&dev->ctrl);
3103
3104 mutex_lock(&dev->shutdown_lock);
3105 result = nvme_pci_enable(dev);
3106 if (result)
3107 goto out_unlock;
3108 nvme_unquiesce_admin_queue(&dev->ctrl);
3109 mutex_unlock(&dev->shutdown_lock);
3110
3111 /*
3112 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3113 * initializing procedure here.
3114 */
3115 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3116 dev_warn(dev->ctrl.device,
3117 "failed to mark controller CONNECTING\n");
3118 result = -EBUSY;
3119 goto out;
3120 }
3121
3122 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3123 if (result)
3124 goto out;
3125
3126 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3127 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3128 else
3129 dev->ctrl.max_integrity_segments = 1;
3130
3131 nvme_dbbuf_dma_alloc(dev);
3132
3133 result = nvme_setup_host_mem(dev);
3134 if (result < 0)
3135 goto out;
3136
3137 nvme_update_attrs(dev);
3138
3139 result = nvme_setup_io_queues(dev);
3140 if (result)
3141 goto out;
3142
3143 /*
3144 * Freeze and update the number of I/O queues as those might have
3145 * changed. If there are no I/O queues left after this reset, keep the
3146 * controller around but remove all namespaces.
3147 */
3148 if (dev->online_queues > 1) {
3149 nvme_dbbuf_set(dev);
3150 nvme_unquiesce_io_queues(&dev->ctrl);
3151 nvme_wait_freeze(&dev->ctrl);
3152 if (!nvme_pci_update_nr_queues(dev))
3153 goto out;
3154 nvme_unfreeze(&dev->ctrl);
3155 } else {
3156 dev_warn(dev->ctrl.device, "IO queues lost\n");
3157 nvme_mark_namespaces_dead(&dev->ctrl);
3158 nvme_unquiesce_io_queues(&dev->ctrl);
3159 nvme_remove_namespaces(&dev->ctrl);
3160 nvme_free_tagset(dev);
3161 }
3162
3163 /*
3164 * If only admin queue live, keep it to do further investigation or
3165 * recovery.
3166 */
3167 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3168 dev_warn(dev->ctrl.device,
3169 "failed to mark controller live state\n");
3170 result = -ENODEV;
3171 goto out;
3172 }
3173
3174 nvme_start_ctrl(&dev->ctrl);
3175 return;
3176
3177 out_unlock:
3178 mutex_unlock(&dev->shutdown_lock);
3179 out:
3180 /*
3181 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3182 * may be holding this pci_dev's device lock.
3183 */
3184 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3185 result);
3186 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3187 nvme_dev_disable(dev, true);
3188 nvme_sync_queues(&dev->ctrl);
3189 nvme_mark_namespaces_dead(&dev->ctrl);
3190 nvme_unquiesce_io_queues(&dev->ctrl);
3191 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3192 }
3193
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3194 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3195 {
3196 *val = readl(to_nvme_dev(ctrl)->bar + off);
3197 return 0;
3198 }
3199
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3200 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3201 {
3202 writel(val, to_nvme_dev(ctrl)->bar + off);
3203 return 0;
3204 }
3205
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3206 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3207 {
3208 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3209 return 0;
3210 }
3211
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3212 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3213 {
3214 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3215
3216 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3217 }
3218
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3219 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3220 {
3221 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3222 struct nvme_subsystem *subsys = ctrl->subsys;
3223
3224 dev_err(ctrl->device,
3225 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3226 pdev->vendor, pdev->device,
3227 nvme_strlen(subsys->model, sizeof(subsys->model)),
3228 subsys->model, nvme_strlen(subsys->firmware_rev,
3229 sizeof(subsys->firmware_rev)),
3230 subsys->firmware_rev);
3231 }
3232
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3233 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3234 {
3235 struct nvme_dev *dev = to_nvme_dev(ctrl);
3236
3237 return dma_pci_p2pdma_supported(dev->dev);
3238 }
3239
3240 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3241 .name = "pcie",
3242 .module = THIS_MODULE,
3243 .flags = NVME_F_METADATA_SUPPORTED,
3244 .dev_attr_groups = nvme_pci_dev_attr_groups,
3245 .reg_read32 = nvme_pci_reg_read32,
3246 .reg_write32 = nvme_pci_reg_write32,
3247 .reg_read64 = nvme_pci_reg_read64,
3248 .free_ctrl = nvme_pci_free_ctrl,
3249 .submit_async_event = nvme_pci_submit_async_event,
3250 .subsystem_reset = nvme_pci_subsystem_reset,
3251 .get_address = nvme_pci_get_address,
3252 .print_device_info = nvme_pci_print_device_info,
3253 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3254 };
3255
nvme_dev_map(struct nvme_dev * dev)3256 static int nvme_dev_map(struct nvme_dev *dev)
3257 {
3258 struct pci_dev *pdev = to_pci_dev(dev->dev);
3259
3260 if (pci_request_mem_regions(pdev, "nvme"))
3261 return -ENODEV;
3262
3263 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3264 goto release;
3265
3266 return 0;
3267 release:
3268 pci_release_mem_regions(pdev);
3269 return -ENODEV;
3270 }
3271
check_vendor_combination_bug(struct pci_dev * pdev)3272 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3273 {
3274 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3275 /*
3276 * Several Samsung devices seem to drop off the PCIe bus
3277 * randomly when APST is on and uses the deepest sleep state.
3278 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3279 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3280 * 950 PRO 256GB", but it seems to be restricted to two Dell
3281 * laptops.
3282 */
3283 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3284 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3285 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3286 return NVME_QUIRK_NO_DEEPEST_PS;
3287 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3288 /*
3289 * Samsung SSD 960 EVO drops off the PCIe bus after system
3290 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3291 * within few minutes after bootup on a Coffee Lake board -
3292 * ASUS PRIME Z370-A
3293 */
3294 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3295 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3296 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3297 return NVME_QUIRK_NO_APST;
3298 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3299 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3300 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3301 /*
3302 * Forcing to use host managed nvme power settings for
3303 * lowest idle power with quick resume latency on
3304 * Samsung and Toshiba SSDs based on suspend behavior
3305 * on Coffee Lake board for LENOVO C640
3306 */
3307 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3308 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3309 return NVME_QUIRK_SIMPLE_SUSPEND;
3310 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3311 pdev->device == 0x500f)) {
3312 /*
3313 * Exclude some Kingston NV1 and A2000 devices from
3314 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3315 * lot of energy with s2idle sleep on some TUXEDO platforms.
3316 */
3317 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3318 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3319 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3320 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3321 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3322 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3323 /*
3324 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3325 * because of high power consumption (> 2 Watt) in s2idle
3326 * sleep. Only some boards with Intel CPU are affected.
3327 */
3328 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3329 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3330 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3331 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3332 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3333 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3334 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3335 }
3336
3337 /*
3338 * NVMe SSD drops off the PCIe bus after system idle
3339 * for 10 hours on a Lenovo N60z board.
3340 */
3341 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3342 return NVME_QUIRK_NO_APST;
3343
3344 return 0;
3345 }
3346
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3347 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3348 const struct pci_device_id *id)
3349 {
3350 unsigned long quirks = id->driver_data;
3351 int node = dev_to_node(&pdev->dev);
3352 struct nvme_dev *dev;
3353 int ret = -ENOMEM;
3354
3355 dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3356 GFP_KERNEL, node);
3357 if (!dev)
3358 return ERR_PTR(-ENOMEM);
3359 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3360 mutex_init(&dev->shutdown_lock);
3361
3362 dev->nr_write_queues = write_queues;
3363 dev->nr_poll_queues = poll_queues;
3364 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3365 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3366 sizeof(struct nvme_queue), GFP_KERNEL, node);
3367 if (!dev->queues)
3368 goto out_free_dev;
3369
3370 dev->dev = get_device(&pdev->dev);
3371
3372 quirks |= check_vendor_combination_bug(pdev);
3373 if (!noacpi &&
3374 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3375 acpi_storage_d3(&pdev->dev)) {
3376 /*
3377 * Some systems use a bios work around to ask for D3 on
3378 * platforms that support kernel managed suspend.
3379 */
3380 dev_info(&pdev->dev,
3381 "platform quirk: setting simple suspend\n");
3382 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3383 }
3384 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3385 quirks);
3386 if (ret)
3387 goto out_put_device;
3388
3389 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3390 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3391 else
3392 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3393 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3394 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3395
3396 /*
3397 * Limit the max command size to prevent iod->sg allocations going
3398 * over a single page.
3399 */
3400 dev->ctrl.max_hw_sectors = min_t(u32,
3401 NVME_MAX_BYTES >> SECTOR_SHIFT,
3402 dma_opt_mapping_size(&pdev->dev) >> 9);
3403 dev->ctrl.max_segments = NVME_MAX_SEGS;
3404 dev->ctrl.max_integrity_segments = 1;
3405 return dev;
3406
3407 out_put_device:
3408 put_device(dev->dev);
3409 kfree(dev->queues);
3410 out_free_dev:
3411 kfree(dev);
3412 return ERR_PTR(ret);
3413 }
3414
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3415 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3416 {
3417 struct nvme_dev *dev;
3418 int result = -ENOMEM;
3419
3420 dev = nvme_pci_alloc_dev(pdev, id);
3421 if (IS_ERR(dev))
3422 return PTR_ERR(dev);
3423
3424 result = nvme_add_ctrl(&dev->ctrl);
3425 if (result)
3426 goto out_put_ctrl;
3427
3428 result = nvme_dev_map(dev);
3429 if (result)
3430 goto out_uninit_ctrl;
3431
3432 result = nvme_pci_alloc_iod_mempool(dev);
3433 if (result)
3434 goto out_dev_unmap;
3435
3436 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3437
3438 result = nvme_pci_enable(dev);
3439 if (result)
3440 goto out_release_iod_mempool;
3441
3442 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3443 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3444 if (result)
3445 goto out_disable;
3446
3447 /*
3448 * Mark the controller as connecting before sending admin commands to
3449 * allow the timeout handler to do the right thing.
3450 */
3451 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3452 dev_warn(dev->ctrl.device,
3453 "failed to mark controller CONNECTING\n");
3454 result = -EBUSY;
3455 goto out_disable;
3456 }
3457
3458 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3459 if (result)
3460 goto out_disable;
3461
3462 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3463 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3464 else
3465 dev->ctrl.max_integrity_segments = 1;
3466
3467 nvme_dbbuf_dma_alloc(dev);
3468
3469 result = nvme_setup_host_mem(dev);
3470 if (result < 0)
3471 goto out_disable;
3472
3473 nvme_update_attrs(dev);
3474
3475 result = nvme_setup_io_queues(dev);
3476 if (result)
3477 goto out_disable;
3478
3479 if (dev->online_queues > 1) {
3480 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3481 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3482 nvme_dbbuf_set(dev);
3483 }
3484
3485 if (!dev->ctrl.tagset)
3486 dev_warn(dev->ctrl.device, "IO queues not created\n");
3487
3488 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3489 dev_warn(dev->ctrl.device,
3490 "failed to mark controller live state\n");
3491 result = -ENODEV;
3492 goto out_disable;
3493 }
3494
3495 pci_set_drvdata(pdev, dev);
3496
3497 nvme_start_ctrl(&dev->ctrl);
3498 nvme_put_ctrl(&dev->ctrl);
3499 flush_work(&dev->ctrl.scan_work);
3500 return 0;
3501
3502 out_disable:
3503 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3504 nvme_dev_disable(dev, true);
3505 nvme_free_host_mem(dev);
3506 nvme_dev_remove_admin(dev);
3507 nvme_dbbuf_dma_free(dev);
3508 nvme_free_queues(dev, 0);
3509 out_release_iod_mempool:
3510 mempool_destroy(dev->dmavec_mempool);
3511 mempool_destroy(dev->iod_meta_mempool);
3512 out_dev_unmap:
3513 nvme_dev_unmap(dev);
3514 out_uninit_ctrl:
3515 nvme_uninit_ctrl(&dev->ctrl);
3516 out_put_ctrl:
3517 nvme_put_ctrl(&dev->ctrl);
3518 return result;
3519 }
3520
nvme_reset_prepare(struct pci_dev * pdev)3521 static void nvme_reset_prepare(struct pci_dev *pdev)
3522 {
3523 struct nvme_dev *dev = pci_get_drvdata(pdev);
3524
3525 /*
3526 * We don't need to check the return value from waiting for the reset
3527 * state as pci_dev device lock is held, making it impossible to race
3528 * with ->remove().
3529 */
3530 nvme_disable_prepare_reset(dev, false);
3531 nvme_sync_queues(&dev->ctrl);
3532 }
3533
nvme_reset_done(struct pci_dev * pdev)3534 static void nvme_reset_done(struct pci_dev *pdev)
3535 {
3536 struct nvme_dev *dev = pci_get_drvdata(pdev);
3537
3538 if (!nvme_try_sched_reset(&dev->ctrl))
3539 flush_work(&dev->ctrl.reset_work);
3540 }
3541
nvme_shutdown(struct pci_dev * pdev)3542 static void nvme_shutdown(struct pci_dev *pdev)
3543 {
3544 struct nvme_dev *dev = pci_get_drvdata(pdev);
3545
3546 nvme_disable_prepare_reset(dev, true);
3547 }
3548
3549 /*
3550 * The driver's remove may be called on a device in a partially initialized
3551 * state. This function must not have any dependencies on the device state in
3552 * order to proceed.
3553 */
nvme_remove(struct pci_dev * pdev)3554 static void nvme_remove(struct pci_dev *pdev)
3555 {
3556 struct nvme_dev *dev = pci_get_drvdata(pdev);
3557
3558 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3559 pci_set_drvdata(pdev, NULL);
3560
3561 if (!pci_device_is_present(pdev)) {
3562 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3563 nvme_dev_disable(dev, true);
3564 }
3565
3566 flush_work(&dev->ctrl.reset_work);
3567 nvme_stop_ctrl(&dev->ctrl);
3568 nvme_remove_namespaces(&dev->ctrl);
3569 nvme_dev_disable(dev, true);
3570 nvme_free_host_mem(dev);
3571 nvme_dev_remove_admin(dev);
3572 nvme_dbbuf_dma_free(dev);
3573 nvme_free_queues(dev, 0);
3574 mempool_destroy(dev->dmavec_mempool);
3575 mempool_destroy(dev->iod_meta_mempool);
3576 nvme_release_descriptor_pools(dev);
3577 nvme_dev_unmap(dev);
3578 nvme_uninit_ctrl(&dev->ctrl);
3579 }
3580
3581 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3582 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3583 {
3584 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3585 }
3586
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3587 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3588 {
3589 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3590 }
3591
nvme_resume(struct device * dev)3592 static int nvme_resume(struct device *dev)
3593 {
3594 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3595 struct nvme_ctrl *ctrl = &ndev->ctrl;
3596
3597 if (ndev->last_ps == U32_MAX ||
3598 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3599 goto reset;
3600 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3601 goto reset;
3602
3603 return 0;
3604 reset:
3605 return nvme_try_sched_reset(ctrl);
3606 }
3607
nvme_suspend(struct device * dev)3608 static int nvme_suspend(struct device *dev)
3609 {
3610 struct pci_dev *pdev = to_pci_dev(dev);
3611 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3612 struct nvme_ctrl *ctrl = &ndev->ctrl;
3613 int ret = -EBUSY;
3614
3615 ndev->last_ps = U32_MAX;
3616
3617 /*
3618 * The platform does not remove power for a kernel managed suspend so
3619 * use host managed nvme power settings for lowest idle power if
3620 * possible. This should have quicker resume latency than a full device
3621 * shutdown. But if the firmware is involved after the suspend or the
3622 * device does not support any non-default power states, shut down the
3623 * device fully.
3624 *
3625 * If ASPM is not enabled for the device, shut down the device and allow
3626 * the PCI bus layer to put it into D3 in order to take the PCIe link
3627 * down, so as to allow the platform to achieve its minimum low-power
3628 * state (which may not be possible if the link is up).
3629 */
3630 if (pm_suspend_via_firmware() || !ctrl->npss ||
3631 !pcie_aspm_enabled(pdev) ||
3632 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3633 return nvme_disable_prepare_reset(ndev, true);
3634
3635 nvme_start_freeze(ctrl);
3636 nvme_wait_freeze(ctrl);
3637 nvme_sync_queues(ctrl);
3638
3639 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3640 goto unfreeze;
3641
3642 /*
3643 * Host memory access may not be successful in a system suspend state,
3644 * but the specification allows the controller to access memory in a
3645 * non-operational power state.
3646 */
3647 if (ndev->hmb) {
3648 ret = nvme_set_host_mem(ndev, 0);
3649 if (ret < 0)
3650 goto unfreeze;
3651 }
3652
3653 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3654 if (ret < 0)
3655 goto unfreeze;
3656
3657 /*
3658 * A saved state prevents pci pm from generically controlling the
3659 * device's power. If we're using protocol specific settings, we don't
3660 * want pci interfering.
3661 */
3662 pci_save_state(pdev);
3663
3664 ret = nvme_set_power_state(ctrl, ctrl->npss);
3665 if (ret < 0)
3666 goto unfreeze;
3667
3668 if (ret) {
3669 /* discard the saved state */
3670 pci_load_saved_state(pdev, NULL);
3671
3672 /*
3673 * Clearing npss forces a controller reset on resume. The
3674 * correct value will be rediscovered then.
3675 */
3676 ret = nvme_disable_prepare_reset(ndev, true);
3677 ctrl->npss = 0;
3678 }
3679 unfreeze:
3680 nvme_unfreeze(ctrl);
3681 return ret;
3682 }
3683
nvme_simple_suspend(struct device * dev)3684 static int nvme_simple_suspend(struct device *dev)
3685 {
3686 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3687
3688 return nvme_disable_prepare_reset(ndev, true);
3689 }
3690
nvme_simple_resume(struct device * dev)3691 static int nvme_simple_resume(struct device *dev)
3692 {
3693 struct pci_dev *pdev = to_pci_dev(dev);
3694 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3695
3696 return nvme_try_sched_reset(&ndev->ctrl);
3697 }
3698
3699 static const struct dev_pm_ops nvme_dev_pm_ops = {
3700 .suspend = nvme_suspend,
3701 .resume = nvme_resume,
3702 .freeze = nvme_simple_suspend,
3703 .thaw = nvme_simple_resume,
3704 .poweroff = nvme_simple_suspend,
3705 .restore = nvme_simple_resume,
3706 };
3707 #endif /* CONFIG_PM_SLEEP */
3708
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3709 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3710 pci_channel_state_t state)
3711 {
3712 struct nvme_dev *dev = pci_get_drvdata(pdev);
3713
3714 /*
3715 * A frozen channel requires a reset. When detected, this method will
3716 * shutdown the controller to quiesce. The controller will be restarted
3717 * after the slot reset through driver's slot_reset callback.
3718 */
3719 switch (state) {
3720 case pci_channel_io_normal:
3721 return PCI_ERS_RESULT_CAN_RECOVER;
3722 case pci_channel_io_frozen:
3723 dev_warn(dev->ctrl.device,
3724 "frozen state error detected, reset controller\n");
3725 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3726 nvme_dev_disable(dev, true);
3727 return PCI_ERS_RESULT_DISCONNECT;
3728 }
3729 nvme_dev_disable(dev, false);
3730 return PCI_ERS_RESULT_NEED_RESET;
3731 case pci_channel_io_perm_failure:
3732 dev_warn(dev->ctrl.device,
3733 "failure state error detected, request disconnect\n");
3734 return PCI_ERS_RESULT_DISCONNECT;
3735 }
3736 return PCI_ERS_RESULT_NEED_RESET;
3737 }
3738
nvme_slot_reset(struct pci_dev * pdev)3739 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3740 {
3741 struct nvme_dev *dev = pci_get_drvdata(pdev);
3742
3743 dev_info(dev->ctrl.device, "restart after slot reset\n");
3744 pci_restore_state(pdev);
3745 if (nvme_try_sched_reset(&dev->ctrl))
3746 nvme_unquiesce_io_queues(&dev->ctrl);
3747 return PCI_ERS_RESULT_RECOVERED;
3748 }
3749
nvme_error_resume(struct pci_dev * pdev)3750 static void nvme_error_resume(struct pci_dev *pdev)
3751 {
3752 struct nvme_dev *dev = pci_get_drvdata(pdev);
3753
3754 flush_work(&dev->ctrl.reset_work);
3755 }
3756
3757 static const struct pci_error_handlers nvme_err_handler = {
3758 .error_detected = nvme_error_detected,
3759 .slot_reset = nvme_slot_reset,
3760 .resume = nvme_error_resume,
3761 .reset_prepare = nvme_reset_prepare,
3762 .reset_done = nvme_reset_done,
3763 };
3764
3765 static const struct pci_device_id nvme_id_table[] = {
3766 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3767 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3768 NVME_QUIRK_DEALLOCATE_ZEROES, },
3769 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3770 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3771 NVME_QUIRK_DEALLOCATE_ZEROES, },
3772 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3773 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3774 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3775 NVME_QUIRK_BOGUS_NID, },
3776 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3777 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
3778 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3779 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3780 NVME_QUIRK_MEDIUM_PRIO_SQ |
3781 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3782 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3783 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3784 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3785 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3786 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3787 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3788 NVME_QUIRK_BOGUS_NID, },
3789 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3790 .driver_data = NVME_QUIRK_BOGUS_NID, },
3791 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3792 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3793 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */
3794 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3795 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3796 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3797 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3798 NVME_QUIRK_BOGUS_NID, },
3799 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3800 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3801 NVME_QUIRK_BOGUS_NID, },
3802 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3803 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3804 NVME_QUIRK_NO_NS_DESC_LIST, },
3805 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3806 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3807 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3808 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3809 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3810 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3811 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3812 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3813 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3814 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3815 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3816 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3817 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3818 .driver_data = NVME_QUIRK_BROKEN_MSI },
3819 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */
3820 .driver_data = NVME_QUIRK_BROKEN_MSI |
3821 NVME_QUIRK_NO_DEEPEST_PS },
3822 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3823 .driver_data = NVME_QUIRK_BOGUS_NID, },
3824 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3825 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3826 NVME_QUIRK_BOGUS_NID, },
3827 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3828 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3829 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3830 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3831 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3832 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3833 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3834 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3835 .driver_data = NVME_QUIRK_BOGUS_NID, },
3836 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3837 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3838 NVME_QUIRK_BOGUS_NID, },
3839 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3840 .driver_data = NVME_QUIRK_BOGUS_NID, },
3841 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3842 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3843 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3844 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3845 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3846 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3847 .driver_data = NVME_QUIRK_BOGUS_NID, },
3848 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3849 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3850 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3851 .driver_data = NVME_QUIRK_BOGUS_NID, },
3852 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3853 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3854 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3855 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3856 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3857 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3858 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3859 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3860 NVME_QUIRK_BOGUS_NID, },
3861 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3862 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3863 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3864 .driver_data = NVME_QUIRK_BOGUS_NID, },
3865 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3866 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3867 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3868 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3869 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3870 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3871 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3872 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3873 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3874 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3875 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3876 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3877 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3878 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3879 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3880 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3881 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3882 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3883 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3884 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3885 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3886 .driver_data = NVME_QUIRK_BOGUS_NID, },
3887 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3888 .driver_data = NVME_QUIRK_BOGUS_NID, },
3889 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3890 .driver_data = NVME_QUIRK_BOGUS_NID, },
3891 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3892 .driver_data = NVME_QUIRK_BOGUS_NID, },
3893 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3894 .driver_data = NVME_QUIRK_BOGUS_NID, },
3895 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3896 .driver_data = NVME_QUIRK_BOGUS_NID, },
3897 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3898 .driver_data = NVME_QUIRK_BOGUS_NID, },
3899 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3900 .driver_data = NVME_QUIRK_BOGUS_NID, },
3901 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3902 .driver_data = NVME_QUIRK_BOGUS_NID, },
3903 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3904 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3905 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3906 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3907 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */
3908 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3909 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3910 .driver_data = NVME_QUIRK_BOGUS_NID, },
3911 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3912 .driver_data = NVME_QUIRK_BOGUS_NID, },
3913 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3914 .driver_data = NVME_QUIRK_BOGUS_NID, },
3915 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3916 .driver_data = NVME_QUIRK_BOGUS_NID |
3917 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3918 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3919 .driver_data = NVME_QUIRK_BOGUS_NID, },
3920 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3921 .driver_data = NVME_QUIRK_BOGUS_NID, },
3922 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3923 .driver_data = NVME_QUIRK_BOGUS_NID, },
3924 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3925 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3926 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3927 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3928 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3929 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3930 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3931 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3932 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3933 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3934 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3935 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3936 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3937 /*
3938 * Fix for the Apple controller found in the MacBook8,1 and
3939 * some MacBook7,1 to avoid controller resets and data loss.
3940 */
3941 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3942 NVME_QUIRK_QDEPTH_ONE },
3943 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3944 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3945 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3946 NVME_QUIRK_128_BYTES_SQES |
3947 NVME_QUIRK_SHARED_TAGS |
3948 NVME_QUIRK_SKIP_CID_GEN |
3949 NVME_QUIRK_IDENTIFY_CNS },
3950 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3951 { 0, }
3952 };
3953 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3954
3955 static struct pci_driver nvme_driver = {
3956 .name = "nvme",
3957 .id_table = nvme_id_table,
3958 .probe = nvme_probe,
3959 .remove = nvme_remove,
3960 .shutdown = nvme_shutdown,
3961 .driver = {
3962 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3963 #ifdef CONFIG_PM_SLEEP
3964 .pm = &nvme_dev_pm_ops,
3965 #endif
3966 },
3967 .sriov_configure = pci_sriov_configure_simple,
3968 .err_handler = &nvme_err_handler,
3969 };
3970
nvme_init(void)3971 static int __init nvme_init(void)
3972 {
3973 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3974 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3975 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3976 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3977
3978 return pci_register_driver(&nvme_driver);
3979 }
3980
nvme_exit(void)3981 static void __exit nvme_exit(void)
3982 {
3983 pci_unregister_driver(&nvme_driver);
3984 flush_workqueue(nvme_wq);
3985 }
3986
3987 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3988 MODULE_LICENSE("GPL");
3989 MODULE_VERSION("1.0");
3990 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3991 module_init(nvme_init);
3992 module_exit(nvme_exit);
3993