1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30
31 #include "trace.h"
32 #include "nvme.h"
33
34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
36
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE 256
39
40 /*
41 * Arbitrary upper bound.
42 */
43 #define NVME_MAX_BYTES SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS 5
45
46 /*
47 * For data SGLs we support a single descriptors worth of SGL entries.
48 * For PRPs, segments don't matter at all.
49 */
50 #define NVME_MAX_SEGS \
51 (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52
53 /*
54 * For metadata SGLs, only the small descriptor is supported, and the first
55 * entry is the segment descriptor, which for the data pointer sits in the SQE.
56 */
57 #define NVME_MAX_META_SEGS \
58 ((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59
60 /*
61 * The last entry is used to link to the next descriptor.
62 */
63 #define PRPS_PER_PAGE \
64 (((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65
66 /*
67 * I/O could be non-aligned both at the beginning and end.
68 */
69 #define MAX_PRP_RANGE \
70 (NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 (1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 "Use SGLs when average request segment size is larger or equal to "
91 "this size. Use 0 to disable SGLs.");
92
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 .set = io_queue_depth_set,
98 .get = param_get_uint,
99 };
100
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104
io_queue_count_set(const char * val,const struct kernel_param * kp)105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 unsigned int n;
108 int ret;
109
110 ret = kstrtouint(val, 10, &n);
111 if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 return -EINVAL;
113 return param_set_uint(val, kp);
114 }
115
116 static const struct kernel_param_ops io_queue_count_ops = {
117 .set = io_queue_count_set,
118 .get = param_get_uint,
119 };
120
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 "Number of queues to use for writes. If not set, reads and writes "
125 "will share a queue set.");
126
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134
135 struct nvme_dev;
136 struct nvme_queue;
137
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141
142 struct nvme_descriptor_pools {
143 struct dma_pool *large;
144 struct dma_pool *small;
145 };
146
147 /*
148 * Represents an NVM Express device. Each nvme_dev is a PCI function.
149 */
150 struct nvme_dev {
151 struct nvme_queue *queues;
152 struct blk_mq_tag_set tagset;
153 struct blk_mq_tag_set admin_tagset;
154 u32 __iomem *dbs;
155 struct device *dev;
156 unsigned online_queues;
157 unsigned max_qid;
158 unsigned io_queues[HCTX_MAX_TYPES];
159 unsigned int num_vecs;
160 u32 q_depth;
161 int io_sqes;
162 u32 db_stride;
163 void __iomem *bar;
164 unsigned long bar_mapped_size;
165 struct mutex shutdown_lock;
166 bool subsystem;
167 u64 cmb_size;
168 bool cmb_use_sqes;
169 u32 cmbsz;
170 u32 cmbloc;
171 struct nvme_ctrl ctrl;
172 u32 last_ps;
173 bool hmb;
174 struct sg_table *hmb_sgt;
175 mempool_t *dmavec_mempool;
176
177 /* shadow doorbell buffer support: */
178 __le32 *dbbuf_dbs;
179 dma_addr_t dbbuf_dbs_dma_addr;
180 __le32 *dbbuf_eis;
181 dma_addr_t dbbuf_eis_dma_addr;
182
183 /* host memory buffer support: */
184 u64 host_mem_size;
185 u32 nr_host_mem_descs;
186 u32 host_mem_descs_size;
187 dma_addr_t host_mem_descs_dma;
188 struct nvme_host_mem_buf_desc *host_mem_descs;
189 void **host_mem_desc_bufs;
190 unsigned int nr_allocated_queues;
191 unsigned int nr_write_queues;
192 unsigned int nr_poll_queues;
193 struct nvme_descriptor_pools descriptor_pools[];
194 };
195
io_queue_depth_set(const char * val,const struct kernel_param * kp)196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
197 {
198 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
199 NVME_PCI_MAX_QUEUE_SIZE);
200 }
201
sq_idx(unsigned int qid,u32 stride)202 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
203 {
204 return qid * 2 * stride;
205 }
206
cq_idx(unsigned int qid,u32 stride)207 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
208 {
209 return (qid * 2 + 1) * stride;
210 }
211
to_nvme_dev(struct nvme_ctrl * ctrl)212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
213 {
214 return container_of(ctrl, struct nvme_dev, ctrl);
215 }
216
217 /*
218 * An NVM Express queue. Each device has at least two (one for admin
219 * commands and one for I/O commands).
220 */
221 struct nvme_queue {
222 struct nvme_dev *dev;
223 struct nvme_descriptor_pools descriptor_pools;
224 spinlock_t sq_lock;
225 void *sq_cmds;
226 /* only used for poll queues: */
227 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
228 struct nvme_completion *cqes;
229 dma_addr_t sq_dma_addr;
230 dma_addr_t cq_dma_addr;
231 u32 __iomem *q_db;
232 u32 q_depth;
233 u16 cq_vector;
234 u16 sq_tail;
235 u16 last_sq_tail;
236 u16 cq_head;
237 u16 qid;
238 u8 cq_phase;
239 u8 sqes;
240 unsigned long flags;
241 #define NVMEQ_ENABLED 0
242 #define NVMEQ_SQ_CMB 1
243 #define NVMEQ_DELETE_ERROR 2
244 #define NVMEQ_POLLED 3
245 __le32 *dbbuf_sq_db;
246 __le32 *dbbuf_cq_db;
247 __le32 *dbbuf_sq_ei;
248 __le32 *dbbuf_cq_ei;
249 struct completion delete_done;
250 };
251
252 /* bits for iod->flags */
253 enum nvme_iod_flags {
254 /* this command has been aborted by the timeout handler */
255 IOD_ABORTED = 1U << 0,
256
257 /* uses the small descriptor pool */
258 IOD_SMALL_DESCRIPTOR = 1U << 1,
259
260 /* single segment dma mapping */
261 IOD_SINGLE_SEGMENT = 1U << 2,
262
263 /* Data payload contains p2p memory */
264 IOD_DATA_P2P = 1U << 3,
265
266 /* Metadata contains p2p memory */
267 IOD_META_P2P = 1U << 4,
268
269 /* Data payload contains MMIO memory */
270 IOD_DATA_MMIO = 1U << 5,
271
272 /* Metadata contains MMIO memory */
273 IOD_META_MMIO = 1U << 6,
274
275 /* Metadata using non-coalesced MPTR */
276 IOD_SINGLE_META_SEGMENT = 1U << 7,
277 };
278
279 struct nvme_dma_vec {
280 dma_addr_t addr;
281 unsigned int len;
282 };
283
284 /*
285 * The nvme_iod describes the data in an I/O.
286 */
287 struct nvme_iod {
288 struct nvme_request req;
289 struct nvme_command cmd;
290 u8 flags;
291 u8 nr_descriptors;
292
293 unsigned int total_len;
294 struct dma_iova_state dma_state;
295 void *descriptors[NVME_MAX_NR_DESCRIPTORS];
296 struct nvme_dma_vec *dma_vecs;
297 unsigned int nr_dma_vecs;
298
299 dma_addr_t meta_dma;
300 unsigned int meta_total_len;
301 struct dma_iova_state meta_dma_state;
302 struct nvme_sgl_desc *meta_descriptor;
303 };
304
nvme_dbbuf_size(struct nvme_dev * dev)305 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
306 {
307 return dev->nr_allocated_queues * 8 * dev->db_stride;
308 }
309
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)310 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
311 {
312 unsigned int mem_size = nvme_dbbuf_size(dev);
313
314 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
315 return;
316
317 if (dev->dbbuf_dbs) {
318 /*
319 * Clear the dbbuf memory so the driver doesn't observe stale
320 * values from the previous instantiation.
321 */
322 memset(dev->dbbuf_dbs, 0, mem_size);
323 memset(dev->dbbuf_eis, 0, mem_size);
324 return;
325 }
326
327 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
328 &dev->dbbuf_dbs_dma_addr,
329 GFP_KERNEL);
330 if (!dev->dbbuf_dbs)
331 goto fail;
332 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
333 &dev->dbbuf_eis_dma_addr,
334 GFP_KERNEL);
335 if (!dev->dbbuf_eis)
336 goto fail_free_dbbuf_dbs;
337 return;
338
339 fail_free_dbbuf_dbs:
340 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
341 dev->dbbuf_dbs_dma_addr);
342 dev->dbbuf_dbs = NULL;
343 fail:
344 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
345 }
346
nvme_dbbuf_dma_free(struct nvme_dev * dev)347 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
348 {
349 unsigned int mem_size = nvme_dbbuf_size(dev);
350
351 if (dev->dbbuf_dbs) {
352 dma_free_coherent(dev->dev, mem_size,
353 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
354 dev->dbbuf_dbs = NULL;
355 }
356 if (dev->dbbuf_eis) {
357 dma_free_coherent(dev->dev, mem_size,
358 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
359 dev->dbbuf_eis = NULL;
360 }
361 }
362
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)363 static void nvme_dbbuf_init(struct nvme_dev *dev,
364 struct nvme_queue *nvmeq, int qid)
365 {
366 if (!dev->dbbuf_dbs || !qid)
367 return;
368
369 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
370 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
371 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
372 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
373 }
374
nvme_dbbuf_free(struct nvme_queue * nvmeq)375 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
376 {
377 if (!nvmeq->qid)
378 return;
379
380 nvmeq->dbbuf_sq_db = NULL;
381 nvmeq->dbbuf_cq_db = NULL;
382 nvmeq->dbbuf_sq_ei = NULL;
383 nvmeq->dbbuf_cq_ei = NULL;
384 }
385
nvme_dbbuf_set(struct nvme_dev * dev)386 static void nvme_dbbuf_set(struct nvme_dev *dev)
387 {
388 struct nvme_command c = { };
389 unsigned int i;
390
391 if (!dev->dbbuf_dbs)
392 return;
393
394 c.dbbuf.opcode = nvme_admin_dbbuf;
395 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
396 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
397
398 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
399 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
400 /* Free memory and continue on */
401 nvme_dbbuf_dma_free(dev);
402
403 for (i = 1; i <= dev->online_queues; i++)
404 nvme_dbbuf_free(&dev->queues[i]);
405 }
406 }
407
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)408 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
409 {
410 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
411 }
412
413 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)414 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
415 volatile __le32 *dbbuf_ei)
416 {
417 if (dbbuf_db) {
418 u16 old_value, event_idx;
419
420 /*
421 * Ensure that the queue is written before updating
422 * the doorbell in memory
423 */
424 wmb();
425
426 old_value = le32_to_cpu(*dbbuf_db);
427 *dbbuf_db = cpu_to_le32(value);
428
429 /*
430 * Ensure that the doorbell is updated before reading the event
431 * index from memory. The controller needs to provide similar
432 * ordering to ensure the event index is updated before reading
433 * the doorbell.
434 */
435 mb();
436
437 event_idx = le32_to_cpu(*dbbuf_ei);
438 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
439 return false;
440 }
441
442 return true;
443 }
444
445 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)446 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
447 {
448 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
449 size_t small_align = NVME_SMALL_POOL_SIZE;
450
451 if (pools->small)
452 return pools; /* already initialized */
453
454 pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
455 NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
456 if (!pools->large)
457 return ERR_PTR(-ENOMEM);
458
459 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
460 small_align = 512;
461
462 pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
463 NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
464 if (!pools->small) {
465 dma_pool_destroy(pools->large);
466 pools->large = NULL;
467 return ERR_PTR(-ENOMEM);
468 }
469
470 return pools;
471 }
472
nvme_release_descriptor_pools(struct nvme_dev * dev)473 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
474 {
475 unsigned i;
476
477 for (i = 0; i < nr_node_ids; i++) {
478 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
479
480 dma_pool_destroy(pools->large);
481 dma_pool_destroy(pools->small);
482 }
483 }
484
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)485 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
486 unsigned qid)
487 {
488 struct nvme_dev *dev = to_nvme_dev(data);
489 struct nvme_queue *nvmeq = &dev->queues[qid];
490 struct nvme_descriptor_pools *pools;
491 struct blk_mq_tags *tags;
492
493 tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
494 WARN_ON(tags != hctx->tags);
495 pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
496 if (IS_ERR(pools))
497 return PTR_ERR(pools);
498
499 nvmeq->descriptor_pools = *pools;
500 hctx->driver_data = nvmeq;
501 return 0;
502 }
503
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)504 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
505 unsigned int hctx_idx)
506 {
507 WARN_ON(hctx_idx != 0);
508 return nvme_init_hctx_common(hctx, data, 0);
509 }
510
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)511 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
512 unsigned int hctx_idx)
513 {
514 return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
515 }
516
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)517 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
518 struct request *req, unsigned int hctx_idx,
519 unsigned int numa_node)
520 {
521 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
522
523 nvme_req(req)->ctrl = set->driver_data;
524 nvme_req(req)->cmd = &iod->cmd;
525 return 0;
526 }
527
queue_irq_offset(struct nvme_dev * dev)528 static int queue_irq_offset(struct nvme_dev *dev)
529 {
530 /* if we have more than 1 vec, admin queue offsets us by 1 */
531 if (dev->num_vecs > 1)
532 return 1;
533
534 return 0;
535 }
536
nvme_pci_map_queues(struct blk_mq_tag_set * set)537 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
538 {
539 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
540 int i, qoff, offset;
541
542 offset = queue_irq_offset(dev);
543 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
544 struct blk_mq_queue_map *map = &set->map[i];
545
546 map->nr_queues = dev->io_queues[i];
547 if (!map->nr_queues) {
548 BUG_ON(i == HCTX_TYPE_DEFAULT);
549 continue;
550 }
551
552 /*
553 * The poll queue(s) doesn't have an IRQ (and hence IRQ
554 * affinity), so use the regular blk-mq cpu mapping
555 */
556 map->queue_offset = qoff;
557 if (i != HCTX_TYPE_POLL && offset)
558 blk_mq_map_hw_queues(map, dev->dev, offset);
559 else
560 blk_mq_map_queues(map);
561 qoff += map->nr_queues;
562 offset += map->nr_queues;
563 }
564 }
565
566 /*
567 * Write sq tail if we are asked to, or if the next command would wrap.
568 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)569 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
570 {
571 if (!write_sq) {
572 u16 next_tail = nvmeq->sq_tail + 1;
573
574 if (next_tail == nvmeq->q_depth)
575 next_tail = 0;
576 if (next_tail != nvmeq->last_sq_tail)
577 return;
578 }
579
580 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
581 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
582 writel(nvmeq->sq_tail, nvmeq->q_db);
583 nvmeq->last_sq_tail = nvmeq->sq_tail;
584 }
585
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)586 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
587 struct nvme_command *cmd)
588 {
589 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
590 absolute_pointer(cmd), sizeof(*cmd));
591 if (++nvmeq->sq_tail == nvmeq->q_depth)
592 nvmeq->sq_tail = 0;
593 }
594
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)595 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
596 {
597 struct nvme_queue *nvmeq = hctx->driver_data;
598
599 spin_lock(&nvmeq->sq_lock);
600 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
601 nvme_write_sq_db(nvmeq, true);
602 spin_unlock(&nvmeq->sq_lock);
603 }
604
605 enum nvme_use_sgl {
606 SGL_UNSUPPORTED,
607 SGL_SUPPORTED,
608 SGL_FORCED,
609 };
610
nvme_pci_metadata_use_sgls(struct request * req)611 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
612 {
613 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
614 struct nvme_dev *dev = nvmeq->dev;
615
616 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
617 return false;
618 return req->nr_integrity_segments > 1 ||
619 nvme_req(req)->flags & NVME_REQ_USERCMD;
620 }
621
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)622 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
623 struct request *req)
624 {
625 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
626
627 if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
628 /*
629 * When the controller is capable of using SGL, there are
630 * several conditions that we force to use it:
631 *
632 * 1. A request containing page gaps within the controller's
633 * mask can not use the PRP format.
634 *
635 * 2. User commands use SGL because that lets the device
636 * validate the requested transfer lengths.
637 *
638 * 3. Multiple integrity segments must use SGL as that's the
639 * only way to describe such a command in NVMe.
640 */
641 if (req_phys_gap_mask(req) & (NVME_CTRL_PAGE_SIZE - 1) ||
642 nvme_req(req)->flags & NVME_REQ_USERCMD ||
643 req->nr_integrity_segments > 1)
644 return SGL_FORCED;
645 return SGL_SUPPORTED;
646 }
647
648 return SGL_UNSUPPORTED;
649 }
650
nvme_pci_avg_seg_size(struct request * req)651 static unsigned int nvme_pci_avg_seg_size(struct request *req)
652 {
653 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
654 unsigned int nseg;
655
656 if (blk_rq_dma_map_coalesce(&iod->dma_state))
657 nseg = 1;
658 else
659 nseg = blk_rq_nr_phys_segments(req);
660 return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
661 }
662
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)663 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
664 struct nvme_iod *iod)
665 {
666 if (iod->flags & IOD_SMALL_DESCRIPTOR)
667 return nvmeq->descriptor_pools.small;
668 return nvmeq->descriptor_pools.large;
669 }
670
nvme_pci_cmd_use_meta_sgl(struct nvme_command * cmd)671 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd)
672 {
673 return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG;
674 }
675
nvme_pci_cmd_use_sgl(struct nvme_command * cmd)676 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
677 {
678 return cmd->common.flags &
679 (NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
680 }
681
nvme_pci_first_desc_dma_addr(struct nvme_command * cmd)682 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
683 {
684 if (nvme_pci_cmd_use_sgl(cmd))
685 return le64_to_cpu(cmd->common.dptr.sgl.addr);
686 return le64_to_cpu(cmd->common.dptr.prp2);
687 }
688
nvme_free_descriptors(struct request * req)689 static void nvme_free_descriptors(struct request *req)
690 {
691 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
692 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
693 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694 dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
695 int i;
696
697 if (iod->nr_descriptors == 1) {
698 dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
699 dma_addr);
700 return;
701 }
702
703 for (i = 0; i < iod->nr_descriptors; i++) {
704 __le64 *prp_list = iod->descriptors[i];
705 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
706
707 dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
708 dma_addr);
709 dma_addr = next_dma_addr;
710 }
711 }
712
nvme_free_prps(struct request * req,unsigned int attrs)713 static void nvme_free_prps(struct request *req, unsigned int attrs)
714 {
715 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
716 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
717 unsigned int i;
718
719 for (i = 0; i < iod->nr_dma_vecs; i++)
720 dma_unmap_phys(nvmeq->dev->dev, iod->dma_vecs[i].addr,
721 iod->dma_vecs[i].len, rq_dma_dir(req), attrs);
722 mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
723 }
724
nvme_free_sgls(struct request * req,struct nvme_sgl_desc * sge,struct nvme_sgl_desc * sg_list,unsigned int attrs)725 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge,
726 struct nvme_sgl_desc *sg_list, unsigned int attrs)
727 {
728 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
729 enum dma_data_direction dir = rq_dma_dir(req);
730 unsigned int len = le32_to_cpu(sge->length);
731 struct device *dma_dev = nvmeq->dev->dev;
732 unsigned int i;
733
734 if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
735 dma_unmap_phys(dma_dev, le64_to_cpu(sge->addr), len, dir,
736 attrs);
737 return;
738 }
739
740 for (i = 0; i < len / sizeof(*sg_list); i++)
741 dma_unmap_phys(dma_dev, le64_to_cpu(sg_list[i].addr),
742 le32_to_cpu(sg_list[i].length), dir, attrs);
743 }
744
nvme_unmap_metadata(struct request * req)745 static void nvme_unmap_metadata(struct request *req)
746 {
747 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
748 enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
749 enum dma_data_direction dir = rq_dma_dir(req);
750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 struct device *dma_dev = nvmeq->dev->dev;
752 struct nvme_sgl_desc *sge = iod->meta_descriptor;
753 unsigned int attrs = 0;
754
755 if (iod->flags & IOD_SINGLE_META_SEGMENT) {
756 dma_unmap_page(dma_dev, iod->meta_dma,
757 rq_integrity_vec(req).bv_len,
758 rq_dma_dir(req));
759 return;
760 }
761
762 if (iod->flags & IOD_META_P2P)
763 map = PCI_P2PDMA_MAP_BUS_ADDR;
764 else if (iod->flags & IOD_META_MMIO) {
765 map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
766 attrs |= DMA_ATTR_MMIO;
767 }
768
769 if (!blk_rq_dma_unmap(req, dma_dev, &iod->meta_dma_state,
770 iod->meta_total_len, map)) {
771 if (nvme_pci_cmd_use_meta_sgl(&iod->cmd))
772 nvme_free_sgls(req, sge, &sge[1], attrs);
773 else
774 dma_unmap_phys(dma_dev, iod->meta_dma,
775 iod->meta_total_len, dir, attrs);
776 }
777
778 if (iod->meta_descriptor)
779 dma_pool_free(nvmeq->descriptor_pools.small,
780 iod->meta_descriptor, iod->meta_dma);
781 }
782
nvme_unmap_data(struct request * req)783 static void nvme_unmap_data(struct request *req)
784 {
785 enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
786 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
787 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
788 struct device *dma_dev = nvmeq->dev->dev;
789 unsigned int attrs = 0;
790
791 if (iod->flags & IOD_SINGLE_SEGMENT) {
792 static_assert(offsetof(union nvme_data_ptr, prp1) ==
793 offsetof(union nvme_data_ptr, sgl.addr));
794 dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
795 iod->total_len, rq_dma_dir(req));
796 return;
797 }
798
799 if (iod->flags & IOD_DATA_P2P)
800 map = PCI_P2PDMA_MAP_BUS_ADDR;
801 else if (iod->flags & IOD_DATA_MMIO) {
802 map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
803 attrs |= DMA_ATTR_MMIO;
804 }
805
806 if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len,
807 map)) {
808 if (nvme_pci_cmd_use_sgl(&iod->cmd))
809 nvme_free_sgls(req, &iod->cmd.common.dptr.sgl,
810 iod->descriptors[0], attrs);
811 else
812 nvme_free_prps(req, attrs);
813 }
814
815 if (iod->nr_descriptors)
816 nvme_free_descriptors(req);
817 }
818
nvme_pci_prp_save_mapping(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)819 static bool nvme_pci_prp_save_mapping(struct request *req,
820 struct device *dma_dev,
821 struct blk_dma_iter *iter)
822 {
823 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
824
825 if (dma_use_iova(&iod->dma_state) || !dma_need_unmap(dma_dev))
826 return true;
827
828 if (!iod->nr_dma_vecs) {
829 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
830
831 iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
832 GFP_ATOMIC);
833 if (!iod->dma_vecs) {
834 iter->status = BLK_STS_RESOURCE;
835 return false;
836 }
837 }
838
839 iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
840 iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
841 iod->nr_dma_vecs++;
842 return true;
843 }
844
nvme_pci_prp_iter_next(struct request * req,struct device * dma_dev,struct blk_dma_iter * iter)845 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
846 struct blk_dma_iter *iter)
847 {
848 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
849
850 if (iter->len)
851 return true;
852 if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
853 return false;
854 return nvme_pci_prp_save_mapping(req, dma_dev, iter);
855 }
856
nvme_pci_setup_data_prp(struct request * req,struct blk_dma_iter * iter)857 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
858 struct blk_dma_iter *iter)
859 {
860 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
861 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
862 unsigned int length = blk_rq_payload_bytes(req);
863 dma_addr_t prp1_dma, prp2_dma = 0;
864 unsigned int prp_len, i;
865 __le64 *prp_list;
866
867 if (!nvme_pci_prp_save_mapping(req, nvmeq->dev->dev, iter))
868 return iter->status;
869
870 /*
871 * PRP1 always points to the start of the DMA transfers.
872 *
873 * This is the only PRP (except for the list entries) that could be
874 * non-aligned.
875 */
876 prp1_dma = iter->addr;
877 prp_len = min(length, NVME_CTRL_PAGE_SIZE -
878 (iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
879 iod->total_len += prp_len;
880 iter->addr += prp_len;
881 iter->len -= prp_len;
882 length -= prp_len;
883 if (!length)
884 goto done;
885
886 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
887 if (WARN_ON_ONCE(!iter->status))
888 goto bad_sgl;
889 goto done;
890 }
891
892 /*
893 * PRP2 is usually a list, but can point to data if all data to be
894 * transferred fits into PRP1 + PRP2:
895 */
896 if (length <= NVME_CTRL_PAGE_SIZE) {
897 prp2_dma = iter->addr;
898 iod->total_len += length;
899 goto done;
900 }
901
902 if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
903 NVME_SMALL_POOL_SIZE / sizeof(__le64))
904 iod->flags |= IOD_SMALL_DESCRIPTOR;
905
906 prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
907 &prp2_dma);
908 if (!prp_list) {
909 iter->status = BLK_STS_RESOURCE;
910 goto done;
911 }
912 iod->descriptors[iod->nr_descriptors++] = prp_list;
913
914 i = 0;
915 for (;;) {
916 prp_list[i++] = cpu_to_le64(iter->addr);
917 prp_len = min(length, NVME_CTRL_PAGE_SIZE);
918 if (WARN_ON_ONCE(iter->len < prp_len))
919 goto bad_sgl;
920
921 iod->total_len += prp_len;
922 iter->addr += prp_len;
923 iter->len -= prp_len;
924 length -= prp_len;
925 if (!length)
926 break;
927
928 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
929 if (WARN_ON_ONCE(!iter->status))
930 goto bad_sgl;
931 goto done;
932 }
933
934 /*
935 * If we've filled the entire descriptor, allocate a new that is
936 * pointed to be the last entry in the previous PRP list. To
937 * accommodate for that move the last actual entry to the new
938 * descriptor.
939 */
940 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
941 __le64 *old_prp_list = prp_list;
942 dma_addr_t prp_list_dma;
943
944 prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
945 GFP_ATOMIC, &prp_list_dma);
946 if (!prp_list) {
947 iter->status = BLK_STS_RESOURCE;
948 goto done;
949 }
950 iod->descriptors[iod->nr_descriptors++] = prp_list;
951
952 prp_list[0] = old_prp_list[i - 1];
953 old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
954 i = 1;
955 }
956 }
957
958 done:
959 /*
960 * nvme_unmap_data uses the DPT field in the SQE to tear down the
961 * mapping, so initialize it even for failures.
962 */
963 iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
964 iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
965 if (unlikely(iter->status))
966 nvme_unmap_data(req);
967 return iter->status;
968
969 bad_sgl:
970 dev_err_once(nvmeq->dev->dev,
971 "Incorrectly formed request for payload:%d nents:%d\n",
972 blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
973 return BLK_STS_IOERR;
974 }
975
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct blk_dma_iter * iter)976 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
977 struct blk_dma_iter *iter)
978 {
979 sge->addr = cpu_to_le64(iter->addr);
980 sge->length = cpu_to_le32(iter->len);
981 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
982 }
983
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)984 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
985 dma_addr_t dma_addr, int entries)
986 {
987 sge->addr = cpu_to_le64(dma_addr);
988 sge->length = cpu_to_le32(entries * sizeof(*sge));
989 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
990 }
991
nvme_pci_setup_data_sgl(struct request * req,struct blk_dma_iter * iter)992 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
993 struct blk_dma_iter *iter)
994 {
995 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
996 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
997 unsigned int entries = blk_rq_nr_phys_segments(req);
998 struct nvme_sgl_desc *sg_list;
999 dma_addr_t sgl_dma;
1000 unsigned int mapped = 0;
1001
1002 /* set the transfer type as SGL */
1003 iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1004
1005 if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
1006 nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
1007 iod->total_len += iter->len;
1008 return BLK_STS_OK;
1009 }
1010
1011 if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
1012 iod->flags |= IOD_SMALL_DESCRIPTOR;
1013
1014 sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
1015 &sgl_dma);
1016 if (!sg_list)
1017 return BLK_STS_RESOURCE;
1018 iod->descriptors[iod->nr_descriptors++] = sg_list;
1019
1020 do {
1021 if (WARN_ON_ONCE(mapped == entries)) {
1022 iter->status = BLK_STS_IOERR;
1023 break;
1024 }
1025 nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
1026 iod->total_len += iter->len;
1027 } while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
1028 iter));
1029
1030 nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
1031 if (unlikely(iter->status))
1032 nvme_unmap_data(req);
1033 return iter->status;
1034 }
1035
nvme_pci_setup_data_simple(struct request * req,enum nvme_use_sgl use_sgl)1036 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
1037 enum nvme_use_sgl use_sgl)
1038 {
1039 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1040 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1041 struct bio_vec bv = req_bvec(req);
1042 unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
1043 bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
1044 dma_addr_t dma_addr;
1045
1046 if (!use_sgl && !prp_possible)
1047 return BLK_STS_AGAIN;
1048 if (is_pci_p2pdma_page(bv.bv_page))
1049 return BLK_STS_AGAIN;
1050
1051 dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1052 if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
1053 return BLK_STS_RESOURCE;
1054 iod->total_len = bv.bv_len;
1055 iod->flags |= IOD_SINGLE_SEGMENT;
1056
1057 if (use_sgl == SGL_FORCED || !prp_possible) {
1058 iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1059 iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
1060 iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
1061 iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
1062 } else {
1063 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
1064
1065 iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
1066 iod->cmd.common.dptr.prp2 = 0;
1067 if (bv.bv_len > first_prp_len)
1068 iod->cmd.common.dptr.prp2 =
1069 cpu_to_le64(dma_addr + first_prp_len);
1070 }
1071
1072 return BLK_STS_OK;
1073 }
1074
nvme_map_data(struct request * req)1075 static blk_status_t nvme_map_data(struct request *req)
1076 {
1077 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1078 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1079 struct nvme_dev *dev = nvmeq->dev;
1080 enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
1081 struct blk_dma_iter iter;
1082 blk_status_t ret;
1083
1084 /*
1085 * Try to skip the DMA iterator for single segment requests, as that
1086 * significantly improves performances for small I/O sizes.
1087 */
1088 if (blk_rq_nr_phys_segments(req) == 1) {
1089 ret = nvme_pci_setup_data_simple(req, use_sgl);
1090 if (ret != BLK_STS_AGAIN)
1091 return ret;
1092 }
1093
1094 if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1095 return iter.status;
1096
1097 switch (iter.p2pdma.map) {
1098 case PCI_P2PDMA_MAP_BUS_ADDR:
1099 iod->flags |= IOD_DATA_P2P;
1100 break;
1101 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1102 iod->flags |= IOD_DATA_MMIO;
1103 break;
1104 case PCI_P2PDMA_MAP_NONE:
1105 break;
1106 default:
1107 return BLK_STS_RESOURCE;
1108 }
1109
1110 if (use_sgl == SGL_FORCED ||
1111 (use_sgl == SGL_SUPPORTED &&
1112 (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1113 return nvme_pci_setup_data_sgl(req, &iter);
1114 return nvme_pci_setup_data_prp(req, &iter);
1115 }
1116
nvme_pci_setup_meta_iter(struct request * req)1117 static blk_status_t nvme_pci_setup_meta_iter(struct request *req)
1118 {
1119 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1120 unsigned int entries = req->nr_integrity_segments;
1121 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1122 struct nvme_dev *dev = nvmeq->dev;
1123 struct nvme_sgl_desc *sg_list;
1124 struct blk_dma_iter iter;
1125 dma_addr_t sgl_dma;
1126 int i = 0;
1127
1128 if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev,
1129 &iod->meta_dma_state, &iter))
1130 return iter.status;
1131
1132 switch (iter.p2pdma.map) {
1133 case PCI_P2PDMA_MAP_BUS_ADDR:
1134 iod->flags |= IOD_META_P2P;
1135 break;
1136 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1137 iod->flags |= IOD_META_MMIO;
1138 break;
1139 case PCI_P2PDMA_MAP_NONE:
1140 break;
1141 default:
1142 return BLK_STS_RESOURCE;
1143 }
1144
1145 if (blk_rq_dma_map_coalesce(&iod->meta_dma_state))
1146 entries = 1;
1147
1148 /*
1149 * The NVMe MPTR descriptor has an implicit length that the host and
1150 * device must agree on to avoid data/memory corruption. We trust the
1151 * kernel allocated correctly based on the format's parameters, so use
1152 * the more efficient MPTR to avoid extra dma pool allocations for the
1153 * SGL indirection.
1154 *
1155 * But for user commands, we don't necessarily know what they do, so
1156 * the driver can't validate the metadata buffer size. The SGL
1157 * descriptor provides an explicit length, so we're relying on that
1158 * mechanism to catch any misunderstandings between the application and
1159 * device.
1160 *
1161 * P2P DMA also needs to use the blk_dma_iter method, so mptr setup
1162 * leverages this routine when that happens.
1163 */
1164 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) ||
1165 (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) {
1166 iod->cmd.common.metadata = cpu_to_le64(iter.addr);
1167 iod->meta_total_len = iter.len;
1168 iod->meta_dma = iter.addr;
1169 iod->meta_descriptor = NULL;
1170 return BLK_STS_OK;
1171 }
1172
1173 sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1174 &sgl_dma);
1175 if (!sg_list)
1176 return BLK_STS_RESOURCE;
1177
1178 iod->meta_descriptor = sg_list;
1179 iod->meta_dma = sgl_dma;
1180 iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1181 iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1182 if (entries == 1) {
1183 iod->meta_total_len = iter.len;
1184 nvme_pci_sgl_set_data(sg_list, &iter);
1185 return BLK_STS_OK;
1186 }
1187
1188 sgl_dma += sizeof(*sg_list);
1189 do {
1190 nvme_pci_sgl_set_data(&sg_list[++i], &iter);
1191 iod->meta_total_len += iter.len;
1192 } while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter));
1193
1194 nvme_pci_sgl_set_seg(sg_list, sgl_dma, i);
1195 if (unlikely(iter.status))
1196 nvme_unmap_metadata(req);
1197 return iter.status;
1198 }
1199
nvme_pci_setup_meta_mptr(struct request * req)1200 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1201 {
1202 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1203 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1204 struct bio_vec bv = rq_integrity_vec(req);
1205
1206 if (is_pci_p2pdma_page(bv.bv_page))
1207 return nvme_pci_setup_meta_iter(req);
1208
1209 iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1210 if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1211 return BLK_STS_IOERR;
1212 iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1213 iod->flags |= IOD_SINGLE_META_SEGMENT;
1214 return BLK_STS_OK;
1215 }
1216
nvme_map_metadata(struct request * req)1217 static blk_status_t nvme_map_metadata(struct request *req)
1218 {
1219 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1220
1221 if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1222 nvme_pci_metadata_use_sgls(req))
1223 return nvme_pci_setup_meta_iter(req);
1224 return nvme_pci_setup_meta_mptr(req);
1225 }
1226
nvme_prep_rq(struct request * req)1227 static blk_status_t nvme_prep_rq(struct request *req)
1228 {
1229 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1230 blk_status_t ret;
1231
1232 iod->flags = 0;
1233 iod->nr_descriptors = 0;
1234 iod->total_len = 0;
1235 iod->meta_total_len = 0;
1236 iod->nr_dma_vecs = 0;
1237
1238 ret = nvme_setup_cmd(req->q->queuedata, req);
1239 if (ret)
1240 return ret;
1241
1242 if (blk_rq_nr_phys_segments(req)) {
1243 ret = nvme_map_data(req);
1244 if (ret)
1245 goto out_free_cmd;
1246 }
1247
1248 if (blk_integrity_rq(req)) {
1249 ret = nvme_map_metadata(req);
1250 if (ret)
1251 goto out_unmap_data;
1252 }
1253
1254 nvme_start_request(req);
1255 return BLK_STS_OK;
1256 out_unmap_data:
1257 if (blk_rq_nr_phys_segments(req))
1258 nvme_unmap_data(req);
1259 out_free_cmd:
1260 nvme_cleanup_cmd(req);
1261 return ret;
1262 }
1263
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1264 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1265 const struct blk_mq_queue_data *bd)
1266 {
1267 struct nvme_queue *nvmeq = hctx->driver_data;
1268 struct nvme_dev *dev = nvmeq->dev;
1269 struct request *req = bd->rq;
1270 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1271 blk_status_t ret;
1272
1273 /*
1274 * We should not need to do this, but we're still using this to
1275 * ensure we can drain requests on a dying queue.
1276 */
1277 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1278 return BLK_STS_IOERR;
1279
1280 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1281 return nvme_fail_nonready_command(&dev->ctrl, req);
1282
1283 ret = nvme_prep_rq(req);
1284 if (unlikely(ret))
1285 return ret;
1286 spin_lock(&nvmeq->sq_lock);
1287 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1288 nvme_write_sq_db(nvmeq, bd->last);
1289 spin_unlock(&nvmeq->sq_lock);
1290 return BLK_STS_OK;
1291 }
1292
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1293 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1294 {
1295 struct request *req;
1296
1297 if (rq_list_empty(rqlist))
1298 return;
1299
1300 spin_lock(&nvmeq->sq_lock);
1301 while ((req = rq_list_pop(rqlist))) {
1302 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1303
1304 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1305 }
1306 nvme_write_sq_db(nvmeq, true);
1307 spin_unlock(&nvmeq->sq_lock);
1308 }
1309
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1310 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1311 {
1312 /*
1313 * We should not need to do this, but we're still using this to
1314 * ensure we can drain requests on a dying queue.
1315 */
1316 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1317 return false;
1318 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1319 return false;
1320
1321 return nvme_prep_rq(req) == BLK_STS_OK;
1322 }
1323
nvme_queue_rqs(struct rq_list * rqlist)1324 static void nvme_queue_rqs(struct rq_list *rqlist)
1325 {
1326 struct rq_list submit_list = { };
1327 struct rq_list requeue_list = { };
1328 struct nvme_queue *nvmeq = NULL;
1329 struct request *req;
1330
1331 while ((req = rq_list_pop(rqlist))) {
1332 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1333 nvme_submit_cmds(nvmeq, &submit_list);
1334 nvmeq = req->mq_hctx->driver_data;
1335
1336 if (nvme_prep_rq_batch(nvmeq, req))
1337 rq_list_add_tail(&submit_list, req);
1338 else
1339 rq_list_add_tail(&requeue_list, req);
1340 }
1341
1342 if (nvmeq)
1343 nvme_submit_cmds(nvmeq, &submit_list);
1344 *rqlist = requeue_list;
1345 }
1346
nvme_pci_unmap_rq(struct request * req)1347 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1348 {
1349 if (blk_integrity_rq(req))
1350 nvme_unmap_metadata(req);
1351 if (blk_rq_nr_phys_segments(req))
1352 nvme_unmap_data(req);
1353 }
1354
nvme_pci_complete_rq(struct request * req)1355 static void nvme_pci_complete_rq(struct request *req)
1356 {
1357 nvme_pci_unmap_rq(req);
1358 nvme_complete_rq(req);
1359 }
1360
nvme_pci_complete_batch(struct io_comp_batch * iob)1361 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1362 {
1363 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1364 }
1365
1366 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1367 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1368 {
1369 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1370
1371 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1372 }
1373
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1374 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1375 {
1376 u16 head = nvmeq->cq_head;
1377
1378 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1379 nvmeq->dbbuf_cq_ei))
1380 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1381 }
1382
nvme_queue_tagset(struct nvme_queue * nvmeq)1383 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1384 {
1385 if (!nvmeq->qid)
1386 return nvmeq->dev->admin_tagset.tags[0];
1387 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1388 }
1389
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1390 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1391 struct io_comp_batch *iob, u16 idx)
1392 {
1393 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1394 __u16 command_id = READ_ONCE(cqe->command_id);
1395 struct request *req;
1396
1397 /*
1398 * AEN requests are special as they don't time out and can
1399 * survive any kind of queue freeze and often don't respond to
1400 * aborts. We don't even bother to allocate a struct request
1401 * for them but rather special case them here.
1402 */
1403 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1404 nvme_complete_async_event(&nvmeq->dev->ctrl,
1405 cqe->status, &cqe->result);
1406 return;
1407 }
1408
1409 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1410 if (unlikely(!req)) {
1411 dev_warn(nvmeq->dev->ctrl.device,
1412 "invalid id %d completed on queue %d\n",
1413 command_id, le16_to_cpu(cqe->sq_id));
1414 return;
1415 }
1416
1417 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1418 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1419 !blk_mq_add_to_batch(req, iob,
1420 nvme_req(req)->status != NVME_SC_SUCCESS,
1421 nvme_pci_complete_batch))
1422 nvme_pci_complete_rq(req);
1423 }
1424
nvme_update_cq_head(struct nvme_queue * nvmeq)1425 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1426 {
1427 u32 tmp = nvmeq->cq_head + 1;
1428
1429 if (tmp == nvmeq->q_depth) {
1430 nvmeq->cq_head = 0;
1431 nvmeq->cq_phase ^= 1;
1432 } else {
1433 nvmeq->cq_head = tmp;
1434 }
1435 }
1436
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1437 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1438 struct io_comp_batch *iob)
1439 {
1440 bool found = false;
1441
1442 while (nvme_cqe_pending(nvmeq)) {
1443 found = true;
1444 /*
1445 * load-load control dependency between phase and the rest of
1446 * the cqe requires a full read memory barrier
1447 */
1448 dma_rmb();
1449 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1450 nvme_update_cq_head(nvmeq);
1451 }
1452
1453 if (found)
1454 nvme_ring_cq_doorbell(nvmeq);
1455 return found;
1456 }
1457
nvme_irq(int irq,void * data)1458 static irqreturn_t nvme_irq(int irq, void *data)
1459 {
1460 struct nvme_queue *nvmeq = data;
1461 DEFINE_IO_COMP_BATCH(iob);
1462
1463 if (nvme_poll_cq(nvmeq, &iob)) {
1464 if (!rq_list_empty(&iob.req_list))
1465 nvme_pci_complete_batch(&iob);
1466 return IRQ_HANDLED;
1467 }
1468 return IRQ_NONE;
1469 }
1470
nvme_irq_check(int irq,void * data)1471 static irqreturn_t nvme_irq_check(int irq, void *data)
1472 {
1473 struct nvme_queue *nvmeq = data;
1474
1475 if (nvme_cqe_pending(nvmeq))
1476 return IRQ_WAKE_THREAD;
1477 return IRQ_NONE;
1478 }
1479
1480 /*
1481 * Poll for completions for any interrupt driven queue
1482 * Can be called from any context.
1483 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1484 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1485 {
1486 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1487
1488 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1489
1490 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1491 spin_lock(&nvmeq->cq_poll_lock);
1492 nvme_poll_cq(nvmeq, NULL);
1493 spin_unlock(&nvmeq->cq_poll_lock);
1494 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1495 }
1496
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1497 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1498 {
1499 struct nvme_queue *nvmeq = hctx->driver_data;
1500 bool found;
1501
1502 if (!nvme_cqe_pending(nvmeq))
1503 return 0;
1504
1505 spin_lock(&nvmeq->cq_poll_lock);
1506 found = nvme_poll_cq(nvmeq, iob);
1507 spin_unlock(&nvmeq->cq_poll_lock);
1508
1509 return found;
1510 }
1511
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1512 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1513 {
1514 struct nvme_dev *dev = to_nvme_dev(ctrl);
1515 struct nvme_queue *nvmeq = &dev->queues[0];
1516 struct nvme_command c = { };
1517
1518 c.common.opcode = nvme_admin_async_event;
1519 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1520
1521 spin_lock(&nvmeq->sq_lock);
1522 nvme_sq_copy_cmd(nvmeq, &c);
1523 nvme_write_sq_db(nvmeq, true);
1524 spin_unlock(&nvmeq->sq_lock);
1525 }
1526
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1527 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1528 {
1529 struct nvme_dev *dev = to_nvme_dev(ctrl);
1530 int ret = 0;
1531
1532 /*
1533 * Taking the shutdown_lock ensures the BAR mapping is not being
1534 * altered by reset_work. Holding this lock before the RESETTING state
1535 * change, if successful, also ensures nvme_remove won't be able to
1536 * proceed to iounmap until we're done.
1537 */
1538 mutex_lock(&dev->shutdown_lock);
1539 if (!dev->bar_mapped_size) {
1540 ret = -ENODEV;
1541 goto unlock;
1542 }
1543
1544 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1545 ret = -EBUSY;
1546 goto unlock;
1547 }
1548
1549 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1550
1551 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
1552 !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
1553 goto unlock;
1554
1555 /*
1556 * Read controller status to flush the previous write and trigger a
1557 * pcie read error.
1558 */
1559 readl(dev->bar + NVME_REG_CSTS);
1560 unlock:
1561 mutex_unlock(&dev->shutdown_lock);
1562 return ret;
1563 }
1564
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1565 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1566 {
1567 struct nvme_command c = { };
1568
1569 c.delete_queue.opcode = opcode;
1570 c.delete_queue.qid = cpu_to_le16(id);
1571
1572 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1573 }
1574
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1575 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1576 struct nvme_queue *nvmeq, s16 vector)
1577 {
1578 struct nvme_command c = { };
1579 int flags = NVME_QUEUE_PHYS_CONTIG;
1580
1581 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1582 flags |= NVME_CQ_IRQ_ENABLED;
1583
1584 /*
1585 * Note: we (ab)use the fact that the prp fields survive if no data
1586 * is attached to the request.
1587 */
1588 c.create_cq.opcode = nvme_admin_create_cq;
1589 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1590 c.create_cq.cqid = cpu_to_le16(qid);
1591 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1592 c.create_cq.cq_flags = cpu_to_le16(flags);
1593 c.create_cq.irq_vector = cpu_to_le16(vector);
1594
1595 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1596 }
1597
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1598 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1599 struct nvme_queue *nvmeq)
1600 {
1601 struct nvme_ctrl *ctrl = &dev->ctrl;
1602 struct nvme_command c = { };
1603 int flags = NVME_QUEUE_PHYS_CONTIG;
1604
1605 /*
1606 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1607 * set. Since URGENT priority is zeroes, it makes all queues
1608 * URGENT.
1609 */
1610 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1611 flags |= NVME_SQ_PRIO_MEDIUM;
1612
1613 /*
1614 * Note: we (ab)use the fact that the prp fields survive if no data
1615 * is attached to the request.
1616 */
1617 c.create_sq.opcode = nvme_admin_create_sq;
1618 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1619 c.create_sq.sqid = cpu_to_le16(qid);
1620 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1621 c.create_sq.sq_flags = cpu_to_le16(flags);
1622 c.create_sq.cqid = cpu_to_le16(qid);
1623
1624 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1625 }
1626
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1627 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1628 {
1629 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1630 }
1631
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1632 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1633 {
1634 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1635 }
1636
abort_endio(struct request * req,blk_status_t error)1637 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1638 {
1639 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1640
1641 dev_warn(nvmeq->dev->ctrl.device,
1642 "Abort status: 0x%x", nvme_req(req)->status);
1643 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1644 blk_mq_free_request(req);
1645 return RQ_END_IO_NONE;
1646 }
1647
nvme_should_reset(struct nvme_dev * dev,u32 csts)1648 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1649 {
1650 /* If true, indicates loss of adapter communication, possibly by a
1651 * NVMe Subsystem reset.
1652 */
1653 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1654
1655 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1656 switch (nvme_ctrl_state(&dev->ctrl)) {
1657 case NVME_CTRL_RESETTING:
1658 case NVME_CTRL_CONNECTING:
1659 return false;
1660 default:
1661 break;
1662 }
1663
1664 /* We shouldn't reset unless the controller is on fatal error state
1665 * _or_ if we lost the communication with it.
1666 */
1667 if (!(csts & NVME_CSTS_CFS) && !nssro)
1668 return false;
1669
1670 return true;
1671 }
1672
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1673 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1674 {
1675 /* Read a config register to help see what died. */
1676 u16 pci_status;
1677 int result;
1678
1679 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1680 &pci_status);
1681 if (result == PCIBIOS_SUCCESSFUL)
1682 dev_warn(dev->ctrl.device,
1683 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1684 csts, pci_status);
1685 else
1686 dev_warn(dev->ctrl.device,
1687 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1688 csts, result);
1689
1690 if (csts != ~0)
1691 return;
1692
1693 dev_warn(dev->ctrl.device,
1694 "Does your device have a faulty power saving mode enabled?\n");
1695 dev_warn(dev->ctrl.device,
1696 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1697 }
1698
nvme_timeout(struct request * req)1699 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1700 {
1701 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1702 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1703 struct nvme_dev *dev = nvmeq->dev;
1704 struct request *abort_req;
1705 struct nvme_command cmd = { };
1706 struct pci_dev *pdev = to_pci_dev(dev->dev);
1707 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1708 u8 opcode;
1709
1710 /*
1711 * Shutdown the device immediately if we see it is disconnected. This
1712 * unblocks PCIe error handling if the nvme driver is waiting in
1713 * error_resume for a device that has been removed. We can't unbind the
1714 * driver while the driver's error callback is waiting to complete, so
1715 * we're relying on a timeout to break that deadlock if a removal
1716 * occurs while reset work is running.
1717 */
1718 if (pci_dev_is_disconnected(pdev))
1719 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1720 if (nvme_state_terminal(&dev->ctrl))
1721 goto disable;
1722
1723 /* If PCI error recovery process is happening, we cannot reset or
1724 * the recovery mechanism will surely fail.
1725 */
1726 mb();
1727 if (pci_channel_offline(pdev))
1728 return BLK_EH_RESET_TIMER;
1729
1730 /*
1731 * Reset immediately if the controller is failed
1732 */
1733 if (nvme_should_reset(dev, csts)) {
1734 nvme_warn_reset(dev, csts);
1735 goto disable;
1736 }
1737
1738 /*
1739 * Did we miss an interrupt?
1740 */
1741 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1742 nvme_poll(req->mq_hctx, NULL);
1743 else
1744 nvme_poll_irqdisable(nvmeq);
1745
1746 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1747 dev_warn(dev->ctrl.device,
1748 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1749 req->tag, nvme_cid(req), nvmeq->qid);
1750 return BLK_EH_DONE;
1751 }
1752
1753 /*
1754 * Shutdown immediately if controller times out while starting. The
1755 * reset work will see the pci device disabled when it gets the forced
1756 * cancellation error. All outstanding requests are completed on
1757 * shutdown, so we return BLK_EH_DONE.
1758 */
1759 switch (nvme_ctrl_state(&dev->ctrl)) {
1760 case NVME_CTRL_CONNECTING:
1761 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1762 fallthrough;
1763 case NVME_CTRL_DELETING:
1764 dev_warn_ratelimited(dev->ctrl.device,
1765 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1766 req->tag, nvme_cid(req), nvmeq->qid);
1767 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1768 nvme_dev_disable(dev, true);
1769 return BLK_EH_DONE;
1770 case NVME_CTRL_RESETTING:
1771 return BLK_EH_RESET_TIMER;
1772 default:
1773 break;
1774 }
1775
1776 /*
1777 * Shutdown the controller immediately and schedule a reset if the
1778 * command was already aborted once before and still hasn't been
1779 * returned to the driver, or if this is the admin queue.
1780 */
1781 opcode = nvme_req(req)->cmd->common.opcode;
1782 if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1783 dev_warn(dev->ctrl.device,
1784 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1785 req->tag, nvme_cid(req), opcode,
1786 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1787 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1788 goto disable;
1789 }
1790
1791 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1792 atomic_inc(&dev->ctrl.abort_limit);
1793 return BLK_EH_RESET_TIMER;
1794 }
1795 iod->flags |= IOD_ABORTED;
1796
1797 cmd.abort.opcode = nvme_admin_abort_cmd;
1798 cmd.abort.cid = nvme_cid(req);
1799 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1800
1801 dev_warn(nvmeq->dev->ctrl.device,
1802 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1803 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1804 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1805 blk_rq_bytes(req));
1806
1807 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1808 BLK_MQ_REQ_NOWAIT);
1809 if (IS_ERR(abort_req)) {
1810 atomic_inc(&dev->ctrl.abort_limit);
1811 return BLK_EH_RESET_TIMER;
1812 }
1813 nvme_init_request(abort_req, &cmd);
1814
1815 abort_req->end_io = abort_endio;
1816 abort_req->end_io_data = NULL;
1817 blk_execute_rq_nowait(abort_req, false);
1818
1819 /*
1820 * The aborted req will be completed on receiving the abort req.
1821 * We enable the timer again. If hit twice, it'll cause a device reset,
1822 * as the device then is in a faulty state.
1823 */
1824 return BLK_EH_RESET_TIMER;
1825
1826 disable:
1827 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1828 if (nvme_state_terminal(&dev->ctrl))
1829 nvme_dev_disable(dev, true);
1830 return BLK_EH_DONE;
1831 }
1832
1833 nvme_dev_disable(dev, false);
1834 if (nvme_try_sched_reset(&dev->ctrl))
1835 nvme_unquiesce_io_queues(&dev->ctrl);
1836 return BLK_EH_DONE;
1837 }
1838
nvme_free_queue(struct nvme_queue * nvmeq)1839 static void nvme_free_queue(struct nvme_queue *nvmeq)
1840 {
1841 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1842 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1843 if (!nvmeq->sq_cmds)
1844 return;
1845
1846 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1847 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1848 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1849 } else {
1850 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1851 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1852 }
1853 }
1854
nvme_free_queues(struct nvme_dev * dev,int lowest)1855 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1856 {
1857 int i;
1858
1859 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1860 dev->ctrl.queue_count--;
1861 nvme_free_queue(&dev->queues[i]);
1862 }
1863 }
1864
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1865 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1866 {
1867 struct nvme_queue *nvmeq = &dev->queues[qid];
1868
1869 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1870 return;
1871
1872 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1873 mb();
1874
1875 nvmeq->dev->online_queues--;
1876 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1877 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1878 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1879 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1880 }
1881
nvme_suspend_io_queues(struct nvme_dev * dev)1882 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1883 {
1884 int i;
1885
1886 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1887 nvme_suspend_queue(dev, i);
1888 }
1889
1890 /*
1891 * Called only on a device that has been disabled and after all other threads
1892 * that can check this device's completion queues have synced, except
1893 * nvme_poll(). This is the last chance for the driver to see a natural
1894 * completion before nvme_cancel_request() terminates all incomplete requests.
1895 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1896 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1897 {
1898 int i;
1899
1900 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1901 spin_lock(&dev->queues[i].cq_poll_lock);
1902 nvme_poll_cq(&dev->queues[i], NULL);
1903 spin_unlock(&dev->queues[i].cq_poll_lock);
1904 }
1905 }
1906
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1907 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1908 int entry_size)
1909 {
1910 int q_depth = dev->q_depth;
1911 unsigned q_size_aligned = roundup(q_depth * entry_size,
1912 NVME_CTRL_PAGE_SIZE);
1913
1914 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1915 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1916
1917 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1918 q_depth = div_u64(mem_per_q, entry_size);
1919
1920 /*
1921 * Ensure the reduced q_depth is above some threshold where it
1922 * would be better to map queues in system memory with the
1923 * original depth
1924 */
1925 if (q_depth < 64)
1926 return -ENOMEM;
1927 }
1928
1929 return q_depth;
1930 }
1931
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1932 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1933 int qid)
1934 {
1935 struct pci_dev *pdev = to_pci_dev(dev->dev);
1936
1937 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1938 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1939 if (nvmeq->sq_cmds) {
1940 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1941 nvmeq->sq_cmds);
1942 if (nvmeq->sq_dma_addr) {
1943 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1944 return 0;
1945 }
1946
1947 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1948 }
1949 }
1950
1951 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1952 &nvmeq->sq_dma_addr, GFP_KERNEL);
1953 if (!nvmeq->sq_cmds)
1954 return -ENOMEM;
1955 return 0;
1956 }
1957
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1958 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1959 {
1960 struct nvme_queue *nvmeq = &dev->queues[qid];
1961
1962 if (dev->ctrl.queue_count > qid)
1963 return 0;
1964
1965 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1966 nvmeq->q_depth = depth;
1967 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1968 &nvmeq->cq_dma_addr, GFP_KERNEL);
1969 if (!nvmeq->cqes)
1970 goto free_nvmeq;
1971
1972 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1973 goto free_cqdma;
1974
1975 nvmeq->dev = dev;
1976 spin_lock_init(&nvmeq->sq_lock);
1977 spin_lock_init(&nvmeq->cq_poll_lock);
1978 nvmeq->cq_head = 0;
1979 nvmeq->cq_phase = 1;
1980 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1981 nvmeq->qid = qid;
1982 dev->ctrl.queue_count++;
1983
1984 return 0;
1985
1986 free_cqdma:
1987 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1988 nvmeq->cq_dma_addr);
1989 free_nvmeq:
1990 return -ENOMEM;
1991 }
1992
queue_request_irq(struct nvme_queue * nvmeq)1993 static int queue_request_irq(struct nvme_queue *nvmeq)
1994 {
1995 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1996 int nr = nvmeq->dev->ctrl.instance;
1997
1998 if (use_threaded_interrupts) {
1999 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
2000 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
2001 } else {
2002 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
2003 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
2004 }
2005 }
2006
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)2007 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
2008 {
2009 struct nvme_dev *dev = nvmeq->dev;
2010
2011 nvmeq->sq_tail = 0;
2012 nvmeq->last_sq_tail = 0;
2013 nvmeq->cq_head = 0;
2014 nvmeq->cq_phase = 1;
2015 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
2016 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
2017 nvme_dbbuf_init(dev, nvmeq, qid);
2018 dev->online_queues++;
2019 wmb(); /* ensure the first interrupt sees the initialization */
2020 }
2021
2022 /*
2023 * Try getting shutdown_lock while setting up IO queues.
2024 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)2025 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
2026 {
2027 /*
2028 * Give up if the lock is being held by nvme_dev_disable.
2029 */
2030 if (!mutex_trylock(&dev->shutdown_lock))
2031 return -ENODEV;
2032
2033 /*
2034 * Controller is in wrong state, fail early.
2035 */
2036 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
2037 mutex_unlock(&dev->shutdown_lock);
2038 return -ENODEV;
2039 }
2040
2041 return 0;
2042 }
2043
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)2044 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
2045 {
2046 struct nvme_dev *dev = nvmeq->dev;
2047 int result;
2048 u16 vector = 0;
2049
2050 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2051
2052 /*
2053 * A queue's vector matches the queue identifier unless the controller
2054 * has only one vector available.
2055 */
2056 if (!polled)
2057 vector = dev->num_vecs == 1 ? 0 : qid;
2058 else
2059 set_bit(NVMEQ_POLLED, &nvmeq->flags);
2060
2061 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
2062 if (result)
2063 return result;
2064
2065 result = adapter_alloc_sq(dev, qid, nvmeq);
2066 if (result < 0)
2067 return result;
2068 if (result)
2069 goto release_cq;
2070
2071 nvmeq->cq_vector = vector;
2072
2073 result = nvme_setup_io_queues_trylock(dev);
2074 if (result)
2075 return result;
2076 nvme_init_queue(nvmeq, qid);
2077 if (!polled) {
2078 result = queue_request_irq(nvmeq);
2079 if (result < 0)
2080 goto release_sq;
2081 }
2082
2083 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2084 mutex_unlock(&dev->shutdown_lock);
2085 return result;
2086
2087 release_sq:
2088 dev->online_queues--;
2089 mutex_unlock(&dev->shutdown_lock);
2090 adapter_delete_sq(dev, qid);
2091 release_cq:
2092 adapter_delete_cq(dev, qid);
2093 return result;
2094 }
2095
2096 static const struct blk_mq_ops nvme_mq_admin_ops = {
2097 .queue_rq = nvme_queue_rq,
2098 .complete = nvme_pci_complete_rq,
2099 .init_hctx = nvme_admin_init_hctx,
2100 .init_request = nvme_pci_init_request,
2101 .timeout = nvme_timeout,
2102 };
2103
2104 static const struct blk_mq_ops nvme_mq_ops = {
2105 .queue_rq = nvme_queue_rq,
2106 .queue_rqs = nvme_queue_rqs,
2107 .complete = nvme_pci_complete_rq,
2108 .commit_rqs = nvme_commit_rqs,
2109 .init_hctx = nvme_init_hctx,
2110 .init_request = nvme_pci_init_request,
2111 .map_queues = nvme_pci_map_queues,
2112 .timeout = nvme_timeout,
2113 .poll = nvme_poll,
2114 };
2115
nvme_dev_remove_admin(struct nvme_dev * dev)2116 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2117 {
2118 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2119 /*
2120 * If the controller was reset during removal, it's possible
2121 * user requests may be waiting on a stopped queue. Start the
2122 * queue to flush these to completion.
2123 */
2124 nvme_unquiesce_admin_queue(&dev->ctrl);
2125 nvme_remove_admin_tag_set(&dev->ctrl);
2126 }
2127 }
2128
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2129 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2130 {
2131 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2132 }
2133
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)2134 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2135 {
2136 struct pci_dev *pdev = to_pci_dev(dev->dev);
2137
2138 if (size <= dev->bar_mapped_size)
2139 return 0;
2140 if (size > pci_resource_len(pdev, 0))
2141 return -ENOMEM;
2142 if (dev->bar)
2143 iounmap(dev->bar);
2144 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2145 if (!dev->bar) {
2146 dev->bar_mapped_size = 0;
2147 return -ENOMEM;
2148 }
2149 dev->bar_mapped_size = size;
2150 dev->dbs = dev->bar + NVME_REG_DBS;
2151
2152 return 0;
2153 }
2154
nvme_pci_configure_admin_queue(struct nvme_dev * dev)2155 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2156 {
2157 int result;
2158 u32 aqa;
2159 struct nvme_queue *nvmeq;
2160
2161 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2162 if (result < 0)
2163 return result;
2164
2165 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2166 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2167
2168 if (dev->subsystem &&
2169 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2170 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2171
2172 /*
2173 * If the device has been passed off to us in an enabled state, just
2174 * clear the enabled bit. The spec says we should set the 'shutdown
2175 * notification bits', but doing so may cause the device to complete
2176 * commands to the admin queue ... and we don't know what memory that
2177 * might be pointing at!
2178 */
2179 result = nvme_disable_ctrl(&dev->ctrl, false);
2180 if (result < 0) {
2181 struct pci_dev *pdev = to_pci_dev(dev->dev);
2182
2183 /*
2184 * The NVMe Controller Reset method did not get an expected
2185 * CSTS.RDY transition, so something with the device appears to
2186 * be stuck. Use the lower level and bigger hammer PCIe
2187 * Function Level Reset to attempt restoring the device to its
2188 * initial state, and try again.
2189 */
2190 result = pcie_reset_flr(pdev, false);
2191 if (result < 0)
2192 return result;
2193
2194 pci_restore_state(pdev);
2195 result = nvme_disable_ctrl(&dev->ctrl, false);
2196 if (result < 0)
2197 return result;
2198
2199 dev_info(dev->ctrl.device,
2200 "controller reset completed after pcie flr\n");
2201 }
2202
2203 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2204 if (result)
2205 return result;
2206
2207 dev->ctrl.numa_node = dev_to_node(dev->dev);
2208
2209 nvmeq = &dev->queues[0];
2210 aqa = nvmeq->q_depth - 1;
2211 aqa |= aqa << 16;
2212
2213 writel(aqa, dev->bar + NVME_REG_AQA);
2214 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2215 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2216
2217 result = nvme_enable_ctrl(&dev->ctrl);
2218 if (result)
2219 return result;
2220
2221 nvmeq->cq_vector = 0;
2222 nvme_init_queue(nvmeq, 0);
2223 result = queue_request_irq(nvmeq);
2224 if (result) {
2225 dev->online_queues--;
2226 return result;
2227 }
2228
2229 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2230 return result;
2231 }
2232
nvme_create_io_queues(struct nvme_dev * dev)2233 static int nvme_create_io_queues(struct nvme_dev *dev)
2234 {
2235 unsigned i, max, rw_queues;
2236 int ret = 0;
2237
2238 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2239 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2240 ret = -ENOMEM;
2241 break;
2242 }
2243 }
2244
2245 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2246 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2247 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2248 dev->io_queues[HCTX_TYPE_READ];
2249 } else {
2250 rw_queues = max;
2251 }
2252
2253 for (i = dev->online_queues; i <= max; i++) {
2254 bool polled = i > rw_queues;
2255
2256 ret = nvme_create_queue(&dev->queues[i], i, polled);
2257 if (ret)
2258 break;
2259 }
2260
2261 /*
2262 * Ignore failing Create SQ/CQ commands, we can continue with less
2263 * than the desired amount of queues, and even a controller without
2264 * I/O queues can still be used to issue admin commands. This might
2265 * be useful to upgrade a buggy firmware for example.
2266 */
2267 return ret >= 0 ? 0 : ret;
2268 }
2269
nvme_cmb_size_unit(struct nvme_dev * dev)2270 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2271 {
2272 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2273
2274 return 1ULL << (12 + 4 * szu);
2275 }
2276
nvme_cmb_size(struct nvme_dev * dev)2277 static u32 nvme_cmb_size(struct nvme_dev *dev)
2278 {
2279 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2280 }
2281
nvme_map_cmb(struct nvme_dev * dev)2282 static void nvme_map_cmb(struct nvme_dev *dev)
2283 {
2284 u64 size, offset;
2285 resource_size_t bar_size;
2286 struct pci_dev *pdev = to_pci_dev(dev->dev);
2287 int bar;
2288
2289 if (dev->cmb_size)
2290 return;
2291
2292 if (NVME_CAP_CMBS(dev->ctrl.cap))
2293 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2294
2295 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2296 if (!dev->cmbsz)
2297 return;
2298 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2299
2300 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2301 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2302 bar = NVME_CMB_BIR(dev->cmbloc);
2303 bar_size = pci_resource_len(pdev, bar);
2304
2305 if (offset > bar_size)
2306 return;
2307
2308 /*
2309 * Controllers may support a CMB size larger than their BAR, for
2310 * example, due to being behind a bridge. Reduce the CMB to the
2311 * reported size of the BAR
2312 */
2313 size = min(size, bar_size - offset);
2314
2315 if (!IS_ALIGNED(size, memremap_compat_align()) ||
2316 !IS_ALIGNED(pci_resource_start(pdev, bar),
2317 memremap_compat_align()))
2318 return;
2319
2320 /*
2321 * Tell the controller about the host side address mapping the CMB,
2322 * and enable CMB decoding for the NVMe 1.4+ scheme:
2323 */
2324 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2325 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2326 (pci_bus_address(pdev, bar) + offset),
2327 dev->bar + NVME_REG_CMBMSC);
2328 }
2329
2330 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2331 dev_warn(dev->ctrl.device,
2332 "failed to register the CMB\n");
2333 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2334 return;
2335 }
2336
2337 dev->cmb_size = size;
2338 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2339
2340 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2341 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2342 pci_p2pmem_publish(pdev, true);
2343 }
2344
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2345 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2346 {
2347 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2348 u64 dma_addr = dev->host_mem_descs_dma;
2349 struct nvme_command c = { };
2350 int ret;
2351
2352 c.features.opcode = nvme_admin_set_features;
2353 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2354 c.features.dword11 = cpu_to_le32(bits);
2355 c.features.dword12 = cpu_to_le32(host_mem_size);
2356 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
2357 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
2358 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
2359
2360 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2361 if (ret) {
2362 dev_warn(dev->ctrl.device,
2363 "failed to set host mem (err %d, flags %#x).\n",
2364 ret, bits);
2365 } else
2366 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2367
2368 return ret;
2369 }
2370
nvme_free_host_mem_multi(struct nvme_dev * dev)2371 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2372 {
2373 int i;
2374
2375 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2376 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2377 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2378
2379 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2380 le64_to_cpu(desc->addr),
2381 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2382 }
2383
2384 kfree(dev->host_mem_desc_bufs);
2385 dev->host_mem_desc_bufs = NULL;
2386 }
2387
nvme_free_host_mem(struct nvme_dev * dev)2388 static void nvme_free_host_mem(struct nvme_dev *dev)
2389 {
2390 if (dev->hmb_sgt)
2391 dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2392 dev->hmb_sgt, DMA_BIDIRECTIONAL);
2393 else
2394 nvme_free_host_mem_multi(dev);
2395
2396 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2397 dev->host_mem_descs, dev->host_mem_descs_dma);
2398 dev->host_mem_descs = NULL;
2399 dev->host_mem_descs_size = 0;
2400 dev->nr_host_mem_descs = 0;
2401 }
2402
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2403 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2404 {
2405 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2406 DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2407 if (!dev->hmb_sgt)
2408 return -ENOMEM;
2409
2410 dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2411 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2412 GFP_KERNEL);
2413 if (!dev->host_mem_descs) {
2414 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2415 DMA_BIDIRECTIONAL);
2416 dev->hmb_sgt = NULL;
2417 return -ENOMEM;
2418 }
2419 dev->host_mem_size = size;
2420 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2421 dev->nr_host_mem_descs = 1;
2422
2423 dev->host_mem_descs[0].addr =
2424 cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2425 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2426 return 0;
2427 }
2428
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2429 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2430 u32 chunk_size)
2431 {
2432 struct nvme_host_mem_buf_desc *descs;
2433 u32 max_entries, len, descs_size;
2434 dma_addr_t descs_dma;
2435 int i = 0;
2436 void **bufs;
2437 u64 size, tmp;
2438
2439 tmp = (preferred + chunk_size - 1);
2440 do_div(tmp, chunk_size);
2441 max_entries = tmp;
2442
2443 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2444 max_entries = dev->ctrl.hmmaxd;
2445
2446 descs_size = max_entries * sizeof(*descs);
2447 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2448 GFP_KERNEL);
2449 if (!descs)
2450 goto out;
2451
2452 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2453 if (!bufs)
2454 goto out_free_descs;
2455
2456 for (size = 0; size < preferred && i < max_entries; size += len) {
2457 dma_addr_t dma_addr;
2458
2459 len = min_t(u64, chunk_size, preferred - size);
2460 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2461 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2462 if (!bufs[i])
2463 break;
2464
2465 descs[i].addr = cpu_to_le64(dma_addr);
2466 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2467 i++;
2468 }
2469
2470 if (!size)
2471 goto out_free_bufs;
2472
2473 dev->nr_host_mem_descs = i;
2474 dev->host_mem_size = size;
2475 dev->host_mem_descs = descs;
2476 dev->host_mem_descs_dma = descs_dma;
2477 dev->host_mem_descs_size = descs_size;
2478 dev->host_mem_desc_bufs = bufs;
2479 return 0;
2480
2481 out_free_bufs:
2482 kfree(bufs);
2483 out_free_descs:
2484 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2485 out:
2486 dev->host_mem_descs = NULL;
2487 return -ENOMEM;
2488 }
2489
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2490 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2491 {
2492 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2493 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2494 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2495 u64 chunk_size;
2496
2497 /*
2498 * If there is an IOMMU that can merge pages, try a virtually
2499 * non-contiguous allocation for a single segment first.
2500 */
2501 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2502 if (!nvme_alloc_host_mem_single(dev, preferred))
2503 return 0;
2504 }
2505
2506 /* start big and work our way down */
2507 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2508 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2509 if (!min || dev->host_mem_size >= min)
2510 return 0;
2511 nvme_free_host_mem(dev);
2512 }
2513 }
2514
2515 return -ENOMEM;
2516 }
2517
nvme_setup_host_mem(struct nvme_dev * dev)2518 static int nvme_setup_host_mem(struct nvme_dev *dev)
2519 {
2520 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2521 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2522 u64 min = (u64)dev->ctrl.hmmin * 4096;
2523 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2524 int ret;
2525
2526 if (!dev->ctrl.hmpre)
2527 return 0;
2528
2529 preferred = min(preferred, max);
2530 if (min > max) {
2531 dev_warn(dev->ctrl.device,
2532 "min host memory (%lld MiB) above limit (%d MiB).\n",
2533 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2534 nvme_free_host_mem(dev);
2535 return 0;
2536 }
2537
2538 /*
2539 * If we already have a buffer allocated check if we can reuse it.
2540 */
2541 if (dev->host_mem_descs) {
2542 if (dev->host_mem_size >= min)
2543 enable_bits |= NVME_HOST_MEM_RETURN;
2544 else
2545 nvme_free_host_mem(dev);
2546 }
2547
2548 if (!dev->host_mem_descs) {
2549 if (nvme_alloc_host_mem(dev, min, preferred)) {
2550 dev_warn(dev->ctrl.device,
2551 "failed to allocate host memory buffer.\n");
2552 return 0; /* controller must work without HMB */
2553 }
2554
2555 dev_info(dev->ctrl.device,
2556 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2557 dev->host_mem_size >> ilog2(SZ_1M),
2558 dev->nr_host_mem_descs,
2559 str_plural(dev->nr_host_mem_descs));
2560 }
2561
2562 ret = nvme_set_host_mem(dev, enable_bits);
2563 if (ret)
2564 nvme_free_host_mem(dev);
2565 return ret;
2566 }
2567
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2568 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2569 char *buf)
2570 {
2571 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2572
2573 return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz : 0x%08x\n",
2574 ndev->cmbloc, ndev->cmbsz);
2575 }
2576 static DEVICE_ATTR_RO(cmb);
2577
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2578 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2579 char *buf)
2580 {
2581 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2582
2583 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2584 }
2585 static DEVICE_ATTR_RO(cmbloc);
2586
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2587 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2588 char *buf)
2589 {
2590 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2591
2592 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2593 }
2594 static DEVICE_ATTR_RO(cmbsz);
2595
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2596 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2597 char *buf)
2598 {
2599 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2600
2601 return sysfs_emit(buf, "%d\n", ndev->hmb);
2602 }
2603
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2604 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2605 const char *buf, size_t count)
2606 {
2607 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2608 bool new;
2609 int ret;
2610
2611 if (kstrtobool(buf, &new) < 0)
2612 return -EINVAL;
2613
2614 if (new == ndev->hmb)
2615 return count;
2616
2617 if (new) {
2618 ret = nvme_setup_host_mem(ndev);
2619 } else {
2620 ret = nvme_set_host_mem(ndev, 0);
2621 if (!ret)
2622 nvme_free_host_mem(ndev);
2623 }
2624
2625 if (ret < 0)
2626 return ret;
2627
2628 return count;
2629 }
2630 static DEVICE_ATTR_RW(hmb);
2631
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2632 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2633 struct attribute *a, int n)
2634 {
2635 struct nvme_ctrl *ctrl =
2636 dev_get_drvdata(container_of(kobj, struct device, kobj));
2637 struct nvme_dev *dev = to_nvme_dev(ctrl);
2638
2639 if (a == &dev_attr_cmb.attr ||
2640 a == &dev_attr_cmbloc.attr ||
2641 a == &dev_attr_cmbsz.attr) {
2642 if (!dev->cmbsz)
2643 return 0;
2644 }
2645 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2646 return 0;
2647
2648 return a->mode;
2649 }
2650
2651 static struct attribute *nvme_pci_attrs[] = {
2652 &dev_attr_cmb.attr,
2653 &dev_attr_cmbloc.attr,
2654 &dev_attr_cmbsz.attr,
2655 &dev_attr_hmb.attr,
2656 NULL,
2657 };
2658
2659 static const struct attribute_group nvme_pci_dev_attrs_group = {
2660 .attrs = nvme_pci_attrs,
2661 .is_visible = nvme_pci_attrs_are_visible,
2662 };
2663
2664 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2665 &nvme_dev_attrs_group,
2666 &nvme_pci_dev_attrs_group,
2667 NULL,
2668 };
2669
nvme_update_attrs(struct nvme_dev * dev)2670 static void nvme_update_attrs(struct nvme_dev *dev)
2671 {
2672 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2673 }
2674
2675 /*
2676 * nirqs is the number of interrupts available for write and read
2677 * queues. The core already reserved an interrupt for the admin queue.
2678 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2679 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2680 {
2681 struct nvme_dev *dev = affd->priv;
2682 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2683
2684 /*
2685 * If there is no interrupt available for queues, ensure that
2686 * the default queue is set to 1. The affinity set size is
2687 * also set to one, but the irq core ignores it for this case.
2688 *
2689 * If only one interrupt is available or 'write_queue' == 0, combine
2690 * write and read queues.
2691 *
2692 * If 'write_queues' > 0, ensure it leaves room for at least one read
2693 * queue.
2694 */
2695 if (!nrirqs) {
2696 nrirqs = 1;
2697 nr_read_queues = 0;
2698 } else if (nrirqs == 1 || !nr_write_queues) {
2699 nr_read_queues = 0;
2700 } else if (nr_write_queues >= nrirqs) {
2701 nr_read_queues = 1;
2702 } else {
2703 nr_read_queues = nrirqs - nr_write_queues;
2704 }
2705
2706 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2707 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2708 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2709 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2710 affd->nr_sets = nr_read_queues ? 2 : 1;
2711 }
2712
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2713 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2714 {
2715 struct pci_dev *pdev = to_pci_dev(dev->dev);
2716 struct irq_affinity affd = {
2717 .pre_vectors = 1,
2718 .calc_sets = nvme_calc_irq_sets,
2719 .priv = dev,
2720 };
2721 unsigned int irq_queues, poll_queues;
2722 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2723
2724 /*
2725 * Poll queues don't need interrupts, but we need at least one I/O queue
2726 * left over for non-polled I/O.
2727 */
2728 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2729 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2730
2731 /*
2732 * Initialize for the single interrupt case, will be updated in
2733 * nvme_calc_irq_sets().
2734 */
2735 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2736 dev->io_queues[HCTX_TYPE_READ] = 0;
2737
2738 /*
2739 * We need interrupts for the admin queue and each non-polled I/O queue,
2740 * but some Apple controllers require all queues to use the first
2741 * vector.
2742 */
2743 irq_queues = 1;
2744 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2745 irq_queues += (nr_io_queues - poll_queues);
2746 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2747 flags &= ~PCI_IRQ_MSI;
2748 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2749 &affd);
2750 }
2751
nvme_max_io_queues(struct nvme_dev * dev)2752 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2753 {
2754 /*
2755 * If tags are shared with admin queue (Apple bug), then
2756 * make sure we only use one IO queue.
2757 */
2758 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2759 return 1;
2760 return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2761 dev->nr_poll_queues;
2762 }
2763
nvme_setup_io_queues(struct nvme_dev * dev)2764 static int nvme_setup_io_queues(struct nvme_dev *dev)
2765 {
2766 struct nvme_queue *adminq = &dev->queues[0];
2767 struct pci_dev *pdev = to_pci_dev(dev->dev);
2768 unsigned int nr_io_queues;
2769 unsigned long size;
2770 int result;
2771
2772 /*
2773 * Sample the module parameters once at reset time so that we have
2774 * stable values to work with.
2775 */
2776 dev->nr_write_queues = write_queues;
2777 dev->nr_poll_queues = poll_queues;
2778
2779 nr_io_queues = dev->nr_allocated_queues - 1;
2780 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2781 if (result < 0)
2782 return result;
2783
2784 if (nr_io_queues == 0)
2785 return 0;
2786
2787 /*
2788 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2789 * from set to unset. If there is a window to it is truely freed,
2790 * pci_free_irq_vectors() jumping into this window will crash.
2791 * And take lock to avoid racing with pci_free_irq_vectors() in
2792 * nvme_dev_disable() path.
2793 */
2794 result = nvme_setup_io_queues_trylock(dev);
2795 if (result)
2796 return result;
2797 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2798 pci_free_irq(pdev, 0, adminq);
2799
2800 if (dev->cmb_use_sqes) {
2801 result = nvme_cmb_qdepth(dev, nr_io_queues,
2802 sizeof(struct nvme_command));
2803 if (result > 0) {
2804 dev->q_depth = result;
2805 dev->ctrl.sqsize = result - 1;
2806 } else {
2807 dev->cmb_use_sqes = false;
2808 }
2809 }
2810
2811 do {
2812 size = db_bar_size(dev, nr_io_queues);
2813 result = nvme_remap_bar(dev, size);
2814 if (!result)
2815 break;
2816 if (!--nr_io_queues) {
2817 result = -ENOMEM;
2818 goto out_unlock;
2819 }
2820 } while (1);
2821 adminq->q_db = dev->dbs;
2822
2823 retry:
2824 /* Deregister the admin queue's interrupt */
2825 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2826 pci_free_irq(pdev, 0, adminq);
2827
2828 /*
2829 * If we enable msix early due to not intx, disable it again before
2830 * setting up the full range we need.
2831 */
2832 pci_free_irq_vectors(pdev);
2833
2834 result = nvme_setup_irqs(dev, nr_io_queues);
2835 if (result <= 0) {
2836 result = -EIO;
2837 goto out_unlock;
2838 }
2839
2840 dev->num_vecs = result;
2841 result = max(result - 1, 1);
2842 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2843
2844 /*
2845 * Should investigate if there's a performance win from allocating
2846 * more queues than interrupt vectors; it might allow the submission
2847 * path to scale better, even if the receive path is limited by the
2848 * number of interrupts.
2849 */
2850 result = queue_request_irq(adminq);
2851 if (result)
2852 goto out_unlock;
2853 set_bit(NVMEQ_ENABLED, &adminq->flags);
2854 mutex_unlock(&dev->shutdown_lock);
2855
2856 result = nvme_create_io_queues(dev);
2857 if (result || dev->online_queues < 2)
2858 return result;
2859
2860 if (dev->online_queues - 1 < dev->max_qid) {
2861 nr_io_queues = dev->online_queues - 1;
2862 nvme_delete_io_queues(dev);
2863 result = nvme_setup_io_queues_trylock(dev);
2864 if (result)
2865 return result;
2866 nvme_suspend_io_queues(dev);
2867 goto retry;
2868 }
2869 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2870 dev->io_queues[HCTX_TYPE_DEFAULT],
2871 dev->io_queues[HCTX_TYPE_READ],
2872 dev->io_queues[HCTX_TYPE_POLL]);
2873 return 0;
2874 out_unlock:
2875 mutex_unlock(&dev->shutdown_lock);
2876 return result;
2877 }
2878
nvme_del_queue_end(struct request * req,blk_status_t error)2879 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2880 blk_status_t error)
2881 {
2882 struct nvme_queue *nvmeq = req->end_io_data;
2883
2884 blk_mq_free_request(req);
2885 complete(&nvmeq->delete_done);
2886 return RQ_END_IO_NONE;
2887 }
2888
nvme_del_cq_end(struct request * req,blk_status_t error)2889 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2890 blk_status_t error)
2891 {
2892 struct nvme_queue *nvmeq = req->end_io_data;
2893
2894 if (error)
2895 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2896
2897 return nvme_del_queue_end(req, error);
2898 }
2899
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2900 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2901 {
2902 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2903 struct request *req;
2904 struct nvme_command cmd = { };
2905
2906 cmd.delete_queue.opcode = opcode;
2907 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2908
2909 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2910 if (IS_ERR(req))
2911 return PTR_ERR(req);
2912 nvme_init_request(req, &cmd);
2913
2914 if (opcode == nvme_admin_delete_cq)
2915 req->end_io = nvme_del_cq_end;
2916 else
2917 req->end_io = nvme_del_queue_end;
2918 req->end_io_data = nvmeq;
2919
2920 init_completion(&nvmeq->delete_done);
2921 blk_execute_rq_nowait(req, false);
2922 return 0;
2923 }
2924
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2925 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2926 {
2927 int nr_queues = dev->online_queues - 1, sent = 0;
2928 unsigned long timeout;
2929
2930 retry:
2931 timeout = NVME_ADMIN_TIMEOUT;
2932 while (nr_queues > 0) {
2933 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2934 break;
2935 nr_queues--;
2936 sent++;
2937 }
2938 while (sent) {
2939 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2940
2941 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2942 timeout);
2943 if (timeout == 0)
2944 return false;
2945
2946 sent--;
2947 if (nr_queues)
2948 goto retry;
2949 }
2950 return true;
2951 }
2952
nvme_delete_io_queues(struct nvme_dev * dev)2953 static void nvme_delete_io_queues(struct nvme_dev *dev)
2954 {
2955 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2956 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2957 }
2958
nvme_pci_nr_maps(struct nvme_dev * dev)2959 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2960 {
2961 if (dev->io_queues[HCTX_TYPE_POLL])
2962 return 3;
2963 if (dev->io_queues[HCTX_TYPE_READ])
2964 return 2;
2965 return 1;
2966 }
2967
nvme_pci_update_nr_queues(struct nvme_dev * dev)2968 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2969 {
2970 if (!dev->ctrl.tagset) {
2971 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2972 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2973 return true;
2974 }
2975
2976 /* Give up if we are racing with nvme_dev_disable() */
2977 if (!mutex_trylock(&dev->shutdown_lock))
2978 return false;
2979
2980 /* Check if nvme_dev_disable() has been executed already */
2981 if (!dev->online_queues) {
2982 mutex_unlock(&dev->shutdown_lock);
2983 return false;
2984 }
2985
2986 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2987 /* free previously allocated queues that are no longer usable */
2988 nvme_free_queues(dev, dev->online_queues);
2989 mutex_unlock(&dev->shutdown_lock);
2990 return true;
2991 }
2992
nvme_pci_enable(struct nvme_dev * dev)2993 static int nvme_pci_enable(struct nvme_dev *dev)
2994 {
2995 int result = -ENOMEM;
2996 struct pci_dev *pdev = to_pci_dev(dev->dev);
2997 unsigned int flags = PCI_IRQ_ALL_TYPES;
2998
2999 if (pci_enable_device_mem(pdev))
3000 return result;
3001
3002 pci_set_master(pdev);
3003
3004 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
3005 dev_dbg(dev->ctrl.device, "reading CSTS register failed\n");
3006 result = -ENODEV;
3007 goto disable;
3008 }
3009
3010 /*
3011 * Some devices and/or platforms don't advertise or work with INTx
3012 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
3013 * adjust this later.
3014 */
3015 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
3016 flags &= ~PCI_IRQ_MSI;
3017 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
3018 if (result < 0)
3019 goto disable;
3020
3021 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
3022
3023 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
3024 io_queue_depth);
3025 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
3026 dev->dbs = dev->bar + 4096;
3027
3028 /*
3029 * Some Apple controllers require a non-standard SQE size.
3030 * Interestingly they also seem to ignore the CC:IOSQES register
3031 * so we don't bother updating it here.
3032 */
3033 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
3034 dev->io_sqes = 7;
3035 else
3036 dev->io_sqes = NVME_NVM_IOSQES;
3037
3038 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
3039 dev->q_depth = 2;
3040 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
3041 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
3042 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
3043 dev->q_depth = 64;
3044 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
3045 "set queue depth=%u\n", dev->q_depth);
3046 }
3047
3048 /*
3049 * Controllers with the shared tags quirk need the IO queue to be
3050 * big enough so that we get 32 tags for the admin queue
3051 */
3052 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
3053 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
3054 dev->q_depth = NVME_AQ_DEPTH + 2;
3055 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
3056 dev->q_depth);
3057 }
3058 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
3059
3060 nvme_map_cmb(dev);
3061
3062 pci_save_state(pdev);
3063
3064 result = nvme_pci_configure_admin_queue(dev);
3065 if (result)
3066 goto free_irq;
3067 return result;
3068
3069 free_irq:
3070 pci_free_irq_vectors(pdev);
3071 disable:
3072 pci_disable_device(pdev);
3073 return result;
3074 }
3075
nvme_dev_unmap(struct nvme_dev * dev)3076 static void nvme_dev_unmap(struct nvme_dev *dev)
3077 {
3078 if (dev->bar)
3079 iounmap(dev->bar);
3080 pci_release_mem_regions(to_pci_dev(dev->dev));
3081 }
3082
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)3083 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
3084 {
3085 struct pci_dev *pdev = to_pci_dev(dev->dev);
3086 u32 csts;
3087
3088 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
3089 return true;
3090 if (pdev->error_state != pci_channel_io_normal)
3091 return true;
3092
3093 csts = readl(dev->bar + NVME_REG_CSTS);
3094 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
3095 }
3096
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)3097 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
3098 {
3099 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
3100 struct pci_dev *pdev = to_pci_dev(dev->dev);
3101 bool dead;
3102
3103 mutex_lock(&dev->shutdown_lock);
3104 dead = nvme_pci_ctrl_is_dead(dev);
3105 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
3106 if (pci_is_enabled(pdev))
3107 nvme_start_freeze(&dev->ctrl);
3108 /*
3109 * Give the controller a chance to complete all entered requests
3110 * if doing a safe shutdown.
3111 */
3112 if (!dead && shutdown)
3113 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3114 }
3115
3116 nvme_quiesce_io_queues(&dev->ctrl);
3117
3118 if (!dead && dev->ctrl.queue_count > 0) {
3119 nvme_delete_io_queues(dev);
3120 nvme_disable_ctrl(&dev->ctrl, shutdown);
3121 nvme_poll_irqdisable(&dev->queues[0]);
3122 }
3123 nvme_suspend_io_queues(dev);
3124 nvme_suspend_queue(dev, 0);
3125 pci_free_irq_vectors(pdev);
3126 if (pci_is_enabled(pdev))
3127 pci_disable_device(pdev);
3128 nvme_reap_pending_cqes(dev);
3129
3130 nvme_cancel_tagset(&dev->ctrl);
3131 nvme_cancel_admin_tagset(&dev->ctrl);
3132
3133 /*
3134 * The driver will not be starting up queues again if shutting down so
3135 * must flush all entered requests to their failed completion to avoid
3136 * deadlocking blk-mq hot-cpu notifier.
3137 */
3138 if (shutdown) {
3139 nvme_unquiesce_io_queues(&dev->ctrl);
3140 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3141 nvme_unquiesce_admin_queue(&dev->ctrl);
3142 }
3143 mutex_unlock(&dev->shutdown_lock);
3144 }
3145
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)3146 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3147 {
3148 if (!nvme_wait_reset(&dev->ctrl))
3149 return -EBUSY;
3150 nvme_dev_disable(dev, shutdown);
3151 return 0;
3152 }
3153
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)3154 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3155 {
3156 size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3157
3158 dev->dmavec_mempool = mempool_create_node(1,
3159 mempool_kmalloc, mempool_kfree,
3160 (void *)alloc_size, GFP_KERNEL,
3161 dev_to_node(dev->dev));
3162 if (!dev->dmavec_mempool)
3163 return -ENOMEM;
3164 return 0;
3165 }
3166
nvme_free_tagset(struct nvme_dev * dev)3167 static void nvme_free_tagset(struct nvme_dev *dev)
3168 {
3169 if (dev->tagset.tags)
3170 nvme_remove_io_tag_set(&dev->ctrl);
3171 dev->ctrl.tagset = NULL;
3172 }
3173
3174 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)3175 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3176 {
3177 struct nvme_dev *dev = to_nvme_dev(ctrl);
3178
3179 nvme_free_tagset(dev);
3180 put_device(dev->dev);
3181 kfree(dev->queues);
3182 kfree(dev);
3183 }
3184
nvme_reset_work(struct work_struct * work)3185 static void nvme_reset_work(struct work_struct *work)
3186 {
3187 struct nvme_dev *dev =
3188 container_of(work, struct nvme_dev, ctrl.reset_work);
3189 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3190 int result;
3191
3192 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3193 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3194 dev->ctrl.state);
3195 result = -ENODEV;
3196 goto out;
3197 }
3198
3199 /*
3200 * If we're called to reset a live controller first shut it down before
3201 * moving on.
3202 */
3203 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3204 nvme_dev_disable(dev, false);
3205 nvme_sync_queues(&dev->ctrl);
3206
3207 mutex_lock(&dev->shutdown_lock);
3208 result = nvme_pci_enable(dev);
3209 if (result)
3210 goto out_unlock;
3211 nvme_unquiesce_admin_queue(&dev->ctrl);
3212 mutex_unlock(&dev->shutdown_lock);
3213
3214 /*
3215 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3216 * initializing procedure here.
3217 */
3218 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3219 dev_warn(dev->ctrl.device,
3220 "failed to mark controller CONNECTING\n");
3221 result = -EBUSY;
3222 goto out;
3223 }
3224
3225 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3226 if (result)
3227 goto out;
3228
3229 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3230 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3231 else
3232 dev->ctrl.max_integrity_segments = 1;
3233
3234 nvme_dbbuf_dma_alloc(dev);
3235
3236 result = nvme_setup_host_mem(dev);
3237 if (result < 0)
3238 goto out;
3239
3240 nvme_update_attrs(dev);
3241
3242 result = nvme_setup_io_queues(dev);
3243 if (result)
3244 goto out;
3245
3246 /*
3247 * Freeze and update the number of I/O queues as those might have
3248 * changed. If there are no I/O queues left after this reset, keep the
3249 * controller around but remove all namespaces.
3250 */
3251 if (dev->online_queues > 1) {
3252 nvme_dbbuf_set(dev);
3253 nvme_unquiesce_io_queues(&dev->ctrl);
3254 nvme_wait_freeze(&dev->ctrl);
3255 if (!nvme_pci_update_nr_queues(dev))
3256 goto out;
3257 nvme_unfreeze(&dev->ctrl);
3258 } else {
3259 dev_warn(dev->ctrl.device, "IO queues lost\n");
3260 nvme_mark_namespaces_dead(&dev->ctrl);
3261 nvme_unquiesce_io_queues(&dev->ctrl);
3262 nvme_remove_namespaces(&dev->ctrl);
3263 nvme_free_tagset(dev);
3264 }
3265
3266 /*
3267 * If only admin queue live, keep it to do further investigation or
3268 * recovery.
3269 */
3270 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3271 dev_warn(dev->ctrl.device,
3272 "failed to mark controller live state\n");
3273 result = -ENODEV;
3274 goto out;
3275 }
3276
3277 nvme_start_ctrl(&dev->ctrl);
3278 return;
3279
3280 out_unlock:
3281 mutex_unlock(&dev->shutdown_lock);
3282 out:
3283 /*
3284 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3285 * may be holding this pci_dev's device lock.
3286 */
3287 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3288 result);
3289 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3290 nvme_dev_disable(dev, true);
3291 nvme_sync_queues(&dev->ctrl);
3292 nvme_mark_namespaces_dead(&dev->ctrl);
3293 nvme_unquiesce_io_queues(&dev->ctrl);
3294 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3295 }
3296
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3297 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3298 {
3299 *val = readl(to_nvme_dev(ctrl)->bar + off);
3300 return 0;
3301 }
3302
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3303 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3304 {
3305 writel(val, to_nvme_dev(ctrl)->bar + off);
3306 return 0;
3307 }
3308
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3309 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3310 {
3311 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3312 return 0;
3313 }
3314
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3315 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3316 {
3317 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3318
3319 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3320 }
3321
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3322 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3323 {
3324 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3325 struct nvme_subsystem *subsys = ctrl->subsys;
3326
3327 dev_err(ctrl->device,
3328 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3329 pdev->vendor, pdev->device,
3330 nvme_strlen(subsys->model, sizeof(subsys->model)),
3331 subsys->model, nvme_strlen(subsys->firmware_rev,
3332 sizeof(subsys->firmware_rev)),
3333 subsys->firmware_rev);
3334 }
3335
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3336 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3337 {
3338 struct nvme_dev *dev = to_nvme_dev(ctrl);
3339
3340 return dma_pci_p2pdma_supported(dev->dev);
3341 }
3342
nvme_pci_get_virt_boundary(struct nvme_ctrl * ctrl,bool is_admin)3343 static unsigned long nvme_pci_get_virt_boundary(struct nvme_ctrl *ctrl,
3344 bool is_admin)
3345 {
3346 if (!nvme_ctrl_sgl_supported(ctrl) || is_admin)
3347 return NVME_CTRL_PAGE_SIZE - 1;
3348 return 0;
3349 }
3350
3351 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3352 .name = "pcie",
3353 .module = THIS_MODULE,
3354 .flags = NVME_F_METADATA_SUPPORTED,
3355 .dev_attr_groups = nvme_pci_dev_attr_groups,
3356 .reg_read32 = nvme_pci_reg_read32,
3357 .reg_write32 = nvme_pci_reg_write32,
3358 .reg_read64 = nvme_pci_reg_read64,
3359 .free_ctrl = nvme_pci_free_ctrl,
3360 .submit_async_event = nvme_pci_submit_async_event,
3361 .subsystem_reset = nvme_pci_subsystem_reset,
3362 .get_address = nvme_pci_get_address,
3363 .print_device_info = nvme_pci_print_device_info,
3364 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3365 .get_virt_boundary = nvme_pci_get_virt_boundary,
3366 };
3367
nvme_dev_map(struct nvme_dev * dev)3368 static int nvme_dev_map(struct nvme_dev *dev)
3369 {
3370 struct pci_dev *pdev = to_pci_dev(dev->dev);
3371
3372 if (pci_request_mem_regions(pdev, "nvme"))
3373 return -ENODEV;
3374
3375 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3376 goto release;
3377
3378 return 0;
3379 release:
3380 pci_release_mem_regions(pdev);
3381 return -ENODEV;
3382 }
3383
check_vendor_combination_bug(struct pci_dev * pdev)3384 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3385 {
3386 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3387 /*
3388 * Several Samsung devices seem to drop off the PCIe bus
3389 * randomly when APST is on and uses the deepest sleep state.
3390 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3391 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3392 * 950 PRO 256GB", but it seems to be restricted to two Dell
3393 * laptops.
3394 */
3395 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3396 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3397 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3398 return NVME_QUIRK_NO_DEEPEST_PS;
3399 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3400 /*
3401 * Samsung SSD 960 EVO drops off the PCIe bus after system
3402 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3403 * within few minutes after bootup on a Coffee Lake board -
3404 * ASUS PRIME Z370-A
3405 */
3406 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3407 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3408 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3409 return NVME_QUIRK_NO_APST;
3410 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3411 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3412 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3413 /*
3414 * Forcing to use host managed nvme power settings for
3415 * lowest idle power with quick resume latency on
3416 * Samsung and Toshiba SSDs based on suspend behavior
3417 * on Coffee Lake board for LENOVO C640
3418 */
3419 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3420 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3421 return NVME_QUIRK_SIMPLE_SUSPEND;
3422 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3423 pdev->device == 0x500f)) {
3424 /*
3425 * Exclude some Kingston NV1 and A2000 devices from
3426 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3427 * lot of energy with s2idle sleep on some TUXEDO platforms.
3428 */
3429 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3430 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3431 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3432 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3433 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3434 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3435 /*
3436 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3437 * because of high power consumption (> 2 Watt) in s2idle
3438 * sleep. Only some boards with Intel CPU are affected.
3439 * (Note for testing: Samsung 990 Evo Plus has same PCI ID)
3440 */
3441 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3442 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3443 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3444 dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3445 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3446 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3447 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3448 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3449 }
3450
3451 /*
3452 * NVMe SSD drops off the PCIe bus after system idle
3453 * for 10 hours on a Lenovo N60z board.
3454 */
3455 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3456 return NVME_QUIRK_NO_APST;
3457
3458 return 0;
3459 }
3460
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3461 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3462 const struct pci_device_id *id)
3463 {
3464 unsigned long quirks = id->driver_data;
3465 int node = dev_to_node(&pdev->dev);
3466 struct nvme_dev *dev;
3467 int ret = -ENOMEM;
3468
3469 dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3470 GFP_KERNEL, node);
3471 if (!dev)
3472 return ERR_PTR(-ENOMEM);
3473 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3474 mutex_init(&dev->shutdown_lock);
3475
3476 dev->nr_write_queues = write_queues;
3477 dev->nr_poll_queues = poll_queues;
3478 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3479 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3480 sizeof(struct nvme_queue), GFP_KERNEL, node);
3481 if (!dev->queues)
3482 goto out_free_dev;
3483
3484 dev->dev = get_device(&pdev->dev);
3485
3486 quirks |= check_vendor_combination_bug(pdev);
3487 if (!noacpi &&
3488 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3489 acpi_storage_d3(&pdev->dev)) {
3490 /*
3491 * Some systems use a bios work around to ask for D3 on
3492 * platforms that support kernel managed suspend.
3493 */
3494 dev_info(&pdev->dev,
3495 "platform quirk: setting simple suspend\n");
3496 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3497 }
3498 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3499 quirks);
3500 if (ret)
3501 goto out_put_device;
3502
3503 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3504 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3505 else
3506 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3507 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3508 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3509
3510 /*
3511 * Limit the max command size to prevent iod->sg allocations going
3512 * over a single page.
3513 */
3514 dev->ctrl.max_hw_sectors = min_t(u32,
3515 NVME_MAX_BYTES >> SECTOR_SHIFT,
3516 dma_opt_mapping_size(&pdev->dev) >> 9);
3517 dev->ctrl.max_segments = NVME_MAX_SEGS;
3518 dev->ctrl.max_integrity_segments = 1;
3519 return dev;
3520
3521 out_put_device:
3522 put_device(dev->dev);
3523 kfree(dev->queues);
3524 out_free_dev:
3525 kfree(dev);
3526 return ERR_PTR(ret);
3527 }
3528
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3529 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3530 {
3531 struct nvme_dev *dev;
3532 int result = -ENOMEM;
3533
3534 dev = nvme_pci_alloc_dev(pdev, id);
3535 if (IS_ERR(dev))
3536 return PTR_ERR(dev);
3537
3538 result = nvme_add_ctrl(&dev->ctrl);
3539 if (result)
3540 goto out_put_ctrl;
3541
3542 result = nvme_dev_map(dev);
3543 if (result)
3544 goto out_uninit_ctrl;
3545
3546 result = nvme_pci_alloc_iod_mempool(dev);
3547 if (result)
3548 goto out_dev_unmap;
3549
3550 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3551
3552 result = nvme_pci_enable(dev);
3553 if (result)
3554 goto out_release_iod_mempool;
3555
3556 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3557 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3558 if (result)
3559 goto out_disable;
3560
3561 /*
3562 * Mark the controller as connecting before sending admin commands to
3563 * allow the timeout handler to do the right thing.
3564 */
3565 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3566 dev_warn(dev->ctrl.device,
3567 "failed to mark controller CONNECTING\n");
3568 result = -EBUSY;
3569 goto out_disable;
3570 }
3571
3572 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3573 if (result)
3574 goto out_disable;
3575
3576 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3577 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3578 else
3579 dev->ctrl.max_integrity_segments = 1;
3580
3581 nvme_dbbuf_dma_alloc(dev);
3582
3583 result = nvme_setup_host_mem(dev);
3584 if (result < 0)
3585 goto out_disable;
3586
3587 nvme_update_attrs(dev);
3588
3589 result = nvme_setup_io_queues(dev);
3590 if (result)
3591 goto out_disable;
3592
3593 if (dev->online_queues > 1) {
3594 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3595 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3596 nvme_dbbuf_set(dev);
3597 }
3598
3599 if (!dev->ctrl.tagset)
3600 dev_warn(dev->ctrl.device, "IO queues not created\n");
3601
3602 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3603 dev_warn(dev->ctrl.device,
3604 "failed to mark controller live state\n");
3605 result = -ENODEV;
3606 goto out_disable;
3607 }
3608
3609 pci_set_drvdata(pdev, dev);
3610
3611 nvme_start_ctrl(&dev->ctrl);
3612 nvme_put_ctrl(&dev->ctrl);
3613 flush_work(&dev->ctrl.scan_work);
3614 return 0;
3615
3616 out_disable:
3617 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3618 nvme_dev_disable(dev, true);
3619 nvme_free_host_mem(dev);
3620 nvme_dev_remove_admin(dev);
3621 nvme_dbbuf_dma_free(dev);
3622 nvme_free_queues(dev, 0);
3623 out_release_iod_mempool:
3624 mempool_destroy(dev->dmavec_mempool);
3625 out_dev_unmap:
3626 nvme_dev_unmap(dev);
3627 out_uninit_ctrl:
3628 nvme_uninit_ctrl(&dev->ctrl);
3629 out_put_ctrl:
3630 nvme_put_ctrl(&dev->ctrl);
3631 dev_err_probe(&pdev->dev, result, "probe failed\n");
3632 return result;
3633 }
3634
nvme_reset_prepare(struct pci_dev * pdev)3635 static void nvme_reset_prepare(struct pci_dev *pdev)
3636 {
3637 struct nvme_dev *dev = pci_get_drvdata(pdev);
3638
3639 /*
3640 * We don't need to check the return value from waiting for the reset
3641 * state as pci_dev device lock is held, making it impossible to race
3642 * with ->remove().
3643 */
3644 nvme_disable_prepare_reset(dev, false);
3645 nvme_sync_queues(&dev->ctrl);
3646 }
3647
nvme_reset_done(struct pci_dev * pdev)3648 static void nvme_reset_done(struct pci_dev *pdev)
3649 {
3650 struct nvme_dev *dev = pci_get_drvdata(pdev);
3651
3652 if (!nvme_try_sched_reset(&dev->ctrl))
3653 flush_work(&dev->ctrl.reset_work);
3654 }
3655
nvme_shutdown(struct pci_dev * pdev)3656 static void nvme_shutdown(struct pci_dev *pdev)
3657 {
3658 struct nvme_dev *dev = pci_get_drvdata(pdev);
3659
3660 nvme_disable_prepare_reset(dev, true);
3661 }
3662
3663 /*
3664 * The driver's remove may be called on a device in a partially initialized
3665 * state. This function must not have any dependencies on the device state in
3666 * order to proceed.
3667 */
nvme_remove(struct pci_dev * pdev)3668 static void nvme_remove(struct pci_dev *pdev)
3669 {
3670 struct nvme_dev *dev = pci_get_drvdata(pdev);
3671
3672 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3673 pci_set_drvdata(pdev, NULL);
3674
3675 if (!pci_device_is_present(pdev)) {
3676 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3677 nvme_dev_disable(dev, true);
3678 }
3679
3680 flush_work(&dev->ctrl.reset_work);
3681 nvme_stop_ctrl(&dev->ctrl);
3682 nvme_remove_namespaces(&dev->ctrl);
3683 nvme_dev_disable(dev, true);
3684 nvme_free_host_mem(dev);
3685 nvme_dev_remove_admin(dev);
3686 nvme_dbbuf_dma_free(dev);
3687 nvme_free_queues(dev, 0);
3688 mempool_destroy(dev->dmavec_mempool);
3689 nvme_release_descriptor_pools(dev);
3690 nvme_dev_unmap(dev);
3691 nvme_uninit_ctrl(&dev->ctrl);
3692 }
3693
3694 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3695 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3696 {
3697 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3698 }
3699
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3700 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3701 {
3702 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3703 }
3704
nvme_resume(struct device * dev)3705 static int nvme_resume(struct device *dev)
3706 {
3707 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3708 struct nvme_ctrl *ctrl = &ndev->ctrl;
3709
3710 if (ndev->last_ps == U32_MAX ||
3711 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3712 goto reset;
3713 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3714 goto reset;
3715
3716 return 0;
3717 reset:
3718 return nvme_try_sched_reset(ctrl);
3719 }
3720
nvme_suspend(struct device * dev)3721 static int nvme_suspend(struct device *dev)
3722 {
3723 struct pci_dev *pdev = to_pci_dev(dev);
3724 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3725 struct nvme_ctrl *ctrl = &ndev->ctrl;
3726 int ret = -EBUSY;
3727
3728 ndev->last_ps = U32_MAX;
3729
3730 /*
3731 * The platform does not remove power for a kernel managed suspend so
3732 * use host managed nvme power settings for lowest idle power if
3733 * possible. This should have quicker resume latency than a full device
3734 * shutdown. But if the firmware is involved after the suspend or the
3735 * device does not support any non-default power states, shut down the
3736 * device fully.
3737 *
3738 * If ASPM is not enabled for the device, shut down the device and allow
3739 * the PCI bus layer to put it into D3 in order to take the PCIe link
3740 * down, so as to allow the platform to achieve its minimum low-power
3741 * state (which may not be possible if the link is up).
3742 */
3743 if (pm_suspend_via_firmware() || !ctrl->npss ||
3744 !pcie_aspm_enabled(pdev) ||
3745 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3746 return nvme_disable_prepare_reset(ndev, true);
3747
3748 nvme_start_freeze(ctrl);
3749 nvme_wait_freeze(ctrl);
3750 nvme_sync_queues(ctrl);
3751
3752 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3753 goto unfreeze;
3754
3755 /*
3756 * Host memory access may not be successful in a system suspend state,
3757 * but the specification allows the controller to access memory in a
3758 * non-operational power state.
3759 */
3760 if (ndev->hmb) {
3761 ret = nvme_set_host_mem(ndev, 0);
3762 if (ret < 0)
3763 goto unfreeze;
3764 }
3765
3766 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3767 if (ret < 0)
3768 goto unfreeze;
3769
3770 /*
3771 * A saved state prevents pci pm from generically controlling the
3772 * device's power. If we're using protocol specific settings, we don't
3773 * want pci interfering.
3774 */
3775 pci_save_state(pdev);
3776
3777 ret = nvme_set_power_state(ctrl, ctrl->npss);
3778 if (ret < 0)
3779 goto unfreeze;
3780
3781 if (ret) {
3782 /* discard the saved state */
3783 pci_load_saved_state(pdev, NULL);
3784
3785 /*
3786 * Clearing npss forces a controller reset on resume. The
3787 * correct value will be rediscovered then.
3788 */
3789 ret = nvme_disable_prepare_reset(ndev, true);
3790 ctrl->npss = 0;
3791 }
3792 unfreeze:
3793 nvme_unfreeze(ctrl);
3794 return ret;
3795 }
3796
nvme_simple_suspend(struct device * dev)3797 static int nvme_simple_suspend(struct device *dev)
3798 {
3799 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3800
3801 return nvme_disable_prepare_reset(ndev, true);
3802 }
3803
nvme_simple_resume(struct device * dev)3804 static int nvme_simple_resume(struct device *dev)
3805 {
3806 struct pci_dev *pdev = to_pci_dev(dev);
3807 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3808
3809 return nvme_try_sched_reset(&ndev->ctrl);
3810 }
3811
3812 static const struct dev_pm_ops nvme_dev_pm_ops = {
3813 .suspend = nvme_suspend,
3814 .resume = nvme_resume,
3815 .freeze = nvme_simple_suspend,
3816 .thaw = nvme_simple_resume,
3817 .poweroff = nvme_simple_suspend,
3818 .restore = nvme_simple_resume,
3819 };
3820 #endif /* CONFIG_PM_SLEEP */
3821
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3822 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3823 pci_channel_state_t state)
3824 {
3825 struct nvme_dev *dev = pci_get_drvdata(pdev);
3826
3827 /*
3828 * A frozen channel requires a reset. When detected, this method will
3829 * shutdown the controller to quiesce. The controller will be restarted
3830 * after the slot reset through driver's slot_reset callback.
3831 */
3832 switch (state) {
3833 case pci_channel_io_normal:
3834 return PCI_ERS_RESULT_CAN_RECOVER;
3835 case pci_channel_io_frozen:
3836 dev_warn(dev->ctrl.device,
3837 "frozen state error detected, reset controller\n");
3838 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3839 nvme_dev_disable(dev, true);
3840 return PCI_ERS_RESULT_DISCONNECT;
3841 }
3842 nvme_dev_disable(dev, false);
3843 return PCI_ERS_RESULT_NEED_RESET;
3844 case pci_channel_io_perm_failure:
3845 dev_warn(dev->ctrl.device,
3846 "failure state error detected, request disconnect\n");
3847 return PCI_ERS_RESULT_DISCONNECT;
3848 }
3849 return PCI_ERS_RESULT_NEED_RESET;
3850 }
3851
nvme_slot_reset(struct pci_dev * pdev)3852 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3853 {
3854 struct nvme_dev *dev = pci_get_drvdata(pdev);
3855
3856 dev_info(dev->ctrl.device, "restart after slot reset\n");
3857 pci_restore_state(pdev);
3858 if (nvme_try_sched_reset(&dev->ctrl))
3859 nvme_unquiesce_io_queues(&dev->ctrl);
3860 return PCI_ERS_RESULT_RECOVERED;
3861 }
3862
nvme_error_resume(struct pci_dev * pdev)3863 static void nvme_error_resume(struct pci_dev *pdev)
3864 {
3865 struct nvme_dev *dev = pci_get_drvdata(pdev);
3866
3867 flush_work(&dev->ctrl.reset_work);
3868 }
3869
3870 static const struct pci_error_handlers nvme_err_handler = {
3871 .error_detected = nvme_error_detected,
3872 .slot_reset = nvme_slot_reset,
3873 .resume = nvme_error_resume,
3874 .reset_prepare = nvme_reset_prepare,
3875 .reset_done = nvme_reset_done,
3876 };
3877
3878 static const struct pci_device_id nvme_id_table[] = {
3879 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3880 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3881 NVME_QUIRK_DEALLOCATE_ZEROES, },
3882 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3883 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3884 NVME_QUIRK_DEALLOCATE_ZEROES, },
3885 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3886 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3887 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3888 NVME_QUIRK_BOGUS_NID, },
3889 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3890 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
3891 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3892 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3893 NVME_QUIRK_MEDIUM_PRIO_SQ |
3894 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3895 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3896 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3897 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3898 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3899 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3900 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3901 NVME_QUIRK_BOGUS_NID, },
3902 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3903 .driver_data = NVME_QUIRK_BOGUS_NID, },
3904 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3905 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3906 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */
3907 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3908 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3909 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3910 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3911 NVME_QUIRK_BOGUS_NID, },
3912 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3913 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3914 NVME_QUIRK_BOGUS_NID, },
3915 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3916 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3917 NVME_QUIRK_NO_NS_DESC_LIST, },
3918 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3919 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3920 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3921 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3922 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3923 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3924 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3925 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3926 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3927 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3928 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3929 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3930 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3931 .driver_data = NVME_QUIRK_BROKEN_MSI },
3932 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */
3933 .driver_data = NVME_QUIRK_BROKEN_MSI |
3934 NVME_QUIRK_NO_DEEPEST_PS },
3935 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3936 .driver_data = NVME_QUIRK_BOGUS_NID, },
3937 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3938 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3939 NVME_QUIRK_BOGUS_NID, },
3940 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3941 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3942 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3943 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3944 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3945 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3946 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3947 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3948 .driver_data = NVME_QUIRK_BOGUS_NID, },
3949 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3950 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3951 NVME_QUIRK_BOGUS_NID, },
3952 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3953 .driver_data = NVME_QUIRK_BOGUS_NID, },
3954 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3955 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3956 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3957 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3958 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3959 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3960 .driver_data = NVME_QUIRK_BOGUS_NID, },
3961 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3962 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3963 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3964 .driver_data = NVME_QUIRK_BOGUS_NID, },
3965 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3966 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3967 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3968 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3969 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3970 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3971 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3972 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3973 NVME_QUIRK_BOGUS_NID, },
3974 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3975 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3976 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3977 .driver_data = NVME_QUIRK_BOGUS_NID, },
3978 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3979 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3980 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3981 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3982 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3983 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3984 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3985 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3986 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3987 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3988 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3989 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3990 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3991 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3992 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3993 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3994 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3995 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3996 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3997 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3998 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3999 .driver_data = NVME_QUIRK_BOGUS_NID, },
4000 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
4001 .driver_data = NVME_QUIRK_BOGUS_NID, },
4002 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
4003 .driver_data = NVME_QUIRK_BOGUS_NID, },
4004 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
4005 .driver_data = NVME_QUIRK_BOGUS_NID, },
4006 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
4007 .driver_data = NVME_QUIRK_BOGUS_NID, },
4008 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
4009 .driver_data = NVME_QUIRK_BOGUS_NID, },
4010 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
4011 .driver_data = NVME_QUIRK_BOGUS_NID, },
4012 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
4013 .driver_data = NVME_QUIRK_BOGUS_NID, },
4014 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
4015 .driver_data = NVME_QUIRK_BOGUS_NID, },
4016 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
4017 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4018 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
4019 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4020 { PCI_DEVICE(0x1fa0, 0x2283), /* Wodposit WPBSNM8-256GTP */
4021 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
4022 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */
4023 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4024 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
4025 .driver_data = NVME_QUIRK_BOGUS_NID, },
4026 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
4027 .driver_data = NVME_QUIRK_BOGUS_NID, },
4028 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
4029 .driver_data = NVME_QUIRK_BOGUS_NID, },
4030 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
4031 .driver_data = NVME_QUIRK_BOGUS_NID |
4032 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
4033 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
4034 .driver_data = NVME_QUIRK_BOGUS_NID, },
4035 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
4036 .driver_data = NVME_QUIRK_BOGUS_NID, },
4037 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
4038 .driver_data = NVME_QUIRK_BOGUS_NID, },
4039 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
4040 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4041 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
4042 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4043 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
4044 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4045 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
4046 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4047 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
4048 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4049 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
4050 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4051 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
4052 /*
4053 * Fix for the Apple controller found in the MacBook8,1 and
4054 * some MacBook7,1 to avoid controller resets and data loss.
4055 */
4056 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
4057 NVME_QUIRK_QDEPTH_ONE },
4058 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
4059 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
4060 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
4061 NVME_QUIRK_128_BYTES_SQES |
4062 NVME_QUIRK_SHARED_TAGS |
4063 NVME_QUIRK_SKIP_CID_GEN |
4064 NVME_QUIRK_IDENTIFY_CNS },
4065 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
4066 { 0, }
4067 };
4068 MODULE_DEVICE_TABLE(pci, nvme_id_table);
4069
4070 static struct pci_driver nvme_driver = {
4071 .name = "nvme",
4072 .id_table = nvme_id_table,
4073 .probe = nvme_probe,
4074 .remove = nvme_remove,
4075 .shutdown = nvme_shutdown,
4076 .driver = {
4077 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
4078 #ifdef CONFIG_PM_SLEEP
4079 .pm = &nvme_dev_pm_ops,
4080 #endif
4081 },
4082 .sriov_configure = pci_sriov_configure_simple,
4083 .err_handler = &nvme_err_handler,
4084 };
4085
nvme_init(void)4086 static int __init nvme_init(void)
4087 {
4088 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
4089 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
4090 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
4091 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
4092
4093 return pci_register_driver(&nvme_driver);
4094 }
4095
nvme_exit(void)4096 static void __exit nvme_exit(void)
4097 {
4098 pci_unregister_driver(&nvme_driver);
4099 flush_workqueue(nvme_wq);
4100 }
4101
4102 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
4103 MODULE_LICENSE("GPL");
4104 MODULE_VERSION("1.0");
4105 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
4106 module_init(nvme_init);
4107 module_exit(nvme_exit);
4108