1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20 [NVME_IOPOLICY_QD] = "queue-depth",
21 };
22
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 if (!val)
28 return -EINVAL;
29 if (!strncmp(val, "numa", 4))
30 iopolicy = NVME_IOPOLICY_NUMA;
31 else if (!strncmp(val, "round-robin", 11))
32 iopolicy = NVME_IOPOLICY_RR;
33 else if (!strncmp(val, "queue-depth", 11))
34 iopolicy = NVME_IOPOLICY_QD;
35 else
36 return -EINVAL;
37
38 return 0;
39 }
40
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 &iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 "Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 subsys->iopolicy = iopolicy;
54 }
55
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 struct nvme_ns_head *h;
59
60 lockdep_assert_held(&subsys->lock);
61 list_for_each_entry(h, &subsys->nsheads, entry)
62 if (h->disk)
63 blk_mq_unfreeze_queue(h->disk->queue);
64 }
65
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 struct nvme_ns_head *h;
69
70 lockdep_assert_held(&subsys->lock);
71 list_for_each_entry(h, &subsys->nsheads, entry)
72 if (h->disk)
73 blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 struct nvme_ns_head *h;
79
80 lockdep_assert_held(&subsys->lock);
81 list_for_each_entry(h, &subsys->nsheads, entry)
82 if (h->disk)
83 blk_freeze_queue_start(h->disk->queue);
84 }
85
nvme_failover_req(struct request * req)86 void nvme_failover_req(struct request *req)
87 {
88 struct nvme_ns *ns = req->q->queuedata;
89 u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK;
90 unsigned long flags;
91 struct bio *bio;
92
93 nvme_mpath_clear_current_path(ns);
94
95 /*
96 * If we got back an ANA error, we know the controller is alive but not
97 * ready to serve this namespace. Kick of a re-read of the ANA
98 * information page, and just try any other available path for now.
99 */
100 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 queue_work(nvme_wq, &ns->ctrl->ana_work);
103 }
104
105 spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 for (bio = req->bio; bio; bio = bio->bi_next) {
107 bio_set_dev(bio, ns->head->disk->part0);
108 if (bio->bi_opf & REQ_POLLED) {
109 bio->bi_opf &= ~REQ_POLLED;
110 bio->bi_cookie = BLK_QC_T_NONE;
111 }
112 /*
113 * The alternate request queue that we may end up submitting
114 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 * will fail the I/O immediately with EAGAIN to the issuer.
116 * We are not in the issuer context which cannot block. Clear
117 * the flag to avoid spurious EAGAIN I/O failures.
118 */
119 bio->bi_opf &= ~REQ_NOWAIT;
120 }
121 blk_steal_bios(&ns->head->requeue_list, req);
122 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123
124 nvme_req(req)->status = 0;
125 nvme_end_req(req);
126 kblockd_schedule_work(&ns->head->requeue_work);
127 }
128
nvme_mpath_start_request(struct request * rq)129 void nvme_mpath_start_request(struct request *rq)
130 {
131 struct nvme_ns *ns = rq->q->queuedata;
132 struct gendisk *disk = ns->head->disk;
133
134 if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 atomic_inc(&ns->ctrl->nr_active);
136 nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 }
138
139 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 return;
141
142 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147
nvme_mpath_end_request(struct request * rq)148 void nvme_mpath_end_request(struct request *rq)
149 {
150 struct nvme_ns *ns = rq->q->queuedata;
151
152 if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 atomic_dec_if_positive(&ns->ctrl->nr_active);
154
155 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 return;
157 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 nvme_req(rq)->start_time);
160 }
161
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 struct nvme_ns *ns;
165 int srcu_idx;
166
167 srcu_idx = srcu_read_lock(&ctrl->srcu);
168 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
169 if (!ns->head->disk)
170 continue;
171 kblockd_schedule_work(&ns->head->requeue_work);
172 if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
173 disk_uevent(ns->head->disk, KOBJ_CHANGE);
174 }
175 srcu_read_unlock(&ctrl->srcu, srcu_idx);
176 }
177
178 static const char *nvme_ana_state_names[] = {
179 [0] = "invalid state",
180 [NVME_ANA_OPTIMIZED] = "optimized",
181 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
182 [NVME_ANA_INACCESSIBLE] = "inaccessible",
183 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
184 [NVME_ANA_CHANGE] = "change",
185 };
186
nvme_mpath_clear_current_path(struct nvme_ns * ns)187 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
188 {
189 struct nvme_ns_head *head = ns->head;
190 bool changed = false;
191 int node;
192
193 if (!head)
194 goto out;
195
196 for_each_node(node) {
197 if (ns == rcu_access_pointer(head->current_path[node])) {
198 rcu_assign_pointer(head->current_path[node], NULL);
199 changed = true;
200 }
201 }
202 out:
203 return changed;
204 }
205
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)206 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
207 {
208 struct nvme_ns *ns;
209 int srcu_idx;
210
211 srcu_idx = srcu_read_lock(&ctrl->srcu);
212 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
213 nvme_mpath_clear_current_path(ns);
214 kblockd_schedule_work(&ns->head->requeue_work);
215 }
216 srcu_read_unlock(&ctrl->srcu, srcu_idx);
217 }
218
nvme_mpath_revalidate_paths(struct nvme_ns * ns)219 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
220 {
221 struct nvme_ns_head *head = ns->head;
222 sector_t capacity = get_capacity(head->disk);
223 int node;
224 int srcu_idx;
225
226 srcu_idx = srcu_read_lock(&head->srcu);
227 list_for_each_entry_rcu(ns, &head->list, siblings) {
228 if (capacity != get_capacity(ns->disk))
229 clear_bit(NVME_NS_READY, &ns->flags);
230 }
231 srcu_read_unlock(&head->srcu, srcu_idx);
232
233 for_each_node(node)
234 rcu_assign_pointer(head->current_path[node], NULL);
235 kblockd_schedule_work(&head->requeue_work);
236 }
237
nvme_path_is_disabled(struct nvme_ns * ns)238 static bool nvme_path_is_disabled(struct nvme_ns *ns)
239 {
240 enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
241
242 /*
243 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
244 * still be able to complete assuming that the controller is connected.
245 * Otherwise it will fail immediately and return to the requeue list.
246 */
247 if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
248 return true;
249 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
250 !test_bit(NVME_NS_READY, &ns->flags))
251 return true;
252 return false;
253 }
254
__nvme_find_path(struct nvme_ns_head * head,int node)255 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
256 {
257 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
258 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
259
260 list_for_each_entry_rcu(ns, &head->list, siblings) {
261 if (nvme_path_is_disabled(ns))
262 continue;
263
264 if (ns->ctrl->numa_node != NUMA_NO_NODE &&
265 READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
266 distance = node_distance(node, ns->ctrl->numa_node);
267 else
268 distance = LOCAL_DISTANCE;
269
270 switch (ns->ana_state) {
271 case NVME_ANA_OPTIMIZED:
272 if (distance < found_distance) {
273 found_distance = distance;
274 found = ns;
275 }
276 break;
277 case NVME_ANA_NONOPTIMIZED:
278 if (distance < fallback_distance) {
279 fallback_distance = distance;
280 fallback = ns;
281 }
282 break;
283 default:
284 break;
285 }
286 }
287
288 if (!found)
289 found = fallback;
290 if (found)
291 rcu_assign_pointer(head->current_path[node], found);
292 return found;
293 }
294
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)295 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
296 struct nvme_ns *ns)
297 {
298 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
299 siblings);
300 if (ns)
301 return ns;
302 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
303 }
304
nvme_round_robin_path(struct nvme_ns_head * head)305 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
306 {
307 struct nvme_ns *ns, *found = NULL;
308 int node = numa_node_id();
309 struct nvme_ns *old = srcu_dereference(head->current_path[node],
310 &head->srcu);
311
312 if (unlikely(!old))
313 return __nvme_find_path(head, node);
314
315 if (list_is_singular(&head->list)) {
316 if (nvme_path_is_disabled(old))
317 return NULL;
318 return old;
319 }
320
321 for (ns = nvme_next_ns(head, old);
322 ns && ns != old;
323 ns = nvme_next_ns(head, ns)) {
324 if (nvme_path_is_disabled(ns))
325 continue;
326
327 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
328 found = ns;
329 goto out;
330 }
331 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
332 found = ns;
333 }
334
335 /*
336 * The loop above skips the current path for round-robin semantics.
337 * Fall back to the current path if either:
338 * - no other optimized path found and current is optimized,
339 * - no other usable path found and current is usable.
340 */
341 if (!nvme_path_is_disabled(old) &&
342 (old->ana_state == NVME_ANA_OPTIMIZED ||
343 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
344 return old;
345
346 if (!found)
347 return NULL;
348 out:
349 rcu_assign_pointer(head->current_path[node], found);
350 return found;
351 }
352
nvme_queue_depth_path(struct nvme_ns_head * head)353 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
354 {
355 struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
356 unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
357 unsigned int depth;
358
359 list_for_each_entry_rcu(ns, &head->list, siblings) {
360 if (nvme_path_is_disabled(ns))
361 continue;
362
363 depth = atomic_read(&ns->ctrl->nr_active);
364
365 switch (ns->ana_state) {
366 case NVME_ANA_OPTIMIZED:
367 if (depth < min_depth_opt) {
368 min_depth_opt = depth;
369 best_opt = ns;
370 }
371 break;
372 case NVME_ANA_NONOPTIMIZED:
373 if (depth < min_depth_nonopt) {
374 min_depth_nonopt = depth;
375 best_nonopt = ns;
376 }
377 break;
378 default:
379 break;
380 }
381
382 if (min_depth_opt == 0)
383 return best_opt;
384 }
385
386 return best_opt ? best_opt : best_nonopt;
387 }
388
nvme_path_is_optimized(struct nvme_ns * ns)389 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
390 {
391 return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
392 ns->ana_state == NVME_ANA_OPTIMIZED;
393 }
394
nvme_numa_path(struct nvme_ns_head * head)395 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
396 {
397 int node = numa_node_id();
398 struct nvme_ns *ns;
399
400 ns = srcu_dereference(head->current_path[node], &head->srcu);
401 if (unlikely(!ns))
402 return __nvme_find_path(head, node);
403 if (unlikely(!nvme_path_is_optimized(ns)))
404 return __nvme_find_path(head, node);
405 return ns;
406 }
407
nvme_find_path(struct nvme_ns_head * head)408 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
409 {
410 switch (READ_ONCE(head->subsys->iopolicy)) {
411 case NVME_IOPOLICY_QD:
412 return nvme_queue_depth_path(head);
413 case NVME_IOPOLICY_RR:
414 return nvme_round_robin_path(head);
415 default:
416 return nvme_numa_path(head);
417 }
418 }
419
nvme_available_path(struct nvme_ns_head * head)420 static bool nvme_available_path(struct nvme_ns_head *head)
421 {
422 struct nvme_ns *ns;
423
424 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
425 return NULL;
426
427 list_for_each_entry_rcu(ns, &head->list, siblings) {
428 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
429 continue;
430 switch (nvme_ctrl_state(ns->ctrl)) {
431 case NVME_CTRL_LIVE:
432 case NVME_CTRL_RESETTING:
433 case NVME_CTRL_CONNECTING:
434 return true;
435 default:
436 break;
437 }
438 }
439 return false;
440 }
441
nvme_ns_head_submit_bio(struct bio * bio)442 static void nvme_ns_head_submit_bio(struct bio *bio)
443 {
444 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
445 struct device *dev = disk_to_dev(head->disk);
446 struct nvme_ns *ns;
447 int srcu_idx;
448
449 /*
450 * The namespace might be going away and the bio might be moved to a
451 * different queue via blk_steal_bios(), so we need to use the bio_split
452 * pool from the original queue to allocate the bvecs from.
453 */
454 bio = bio_split_to_limits(bio);
455 if (!bio)
456 return;
457
458 srcu_idx = srcu_read_lock(&head->srcu);
459 ns = nvme_find_path(head);
460 if (likely(ns)) {
461 bio_set_dev(bio, ns->disk->part0);
462 bio->bi_opf |= REQ_NVME_MPATH;
463 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
464 bio->bi_iter.bi_sector);
465 submit_bio_noacct(bio);
466 } else if (nvme_available_path(head)) {
467 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
468
469 spin_lock_irq(&head->requeue_lock);
470 bio_list_add(&head->requeue_list, bio);
471 spin_unlock_irq(&head->requeue_lock);
472 } else {
473 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
474
475 bio_io_error(bio);
476 }
477
478 srcu_read_unlock(&head->srcu, srcu_idx);
479 }
480
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)481 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
482 {
483 if (!nvme_tryget_ns_head(disk->private_data))
484 return -ENXIO;
485 return 0;
486 }
487
nvme_ns_head_release(struct gendisk * disk)488 static void nvme_ns_head_release(struct gendisk *disk)
489 {
490 nvme_put_ns_head(disk->private_data);
491 }
492
nvme_ns_head_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)493 static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16],
494 enum blk_unique_id type)
495 {
496 struct nvme_ns_head *head = disk->private_data;
497 struct nvme_ns *ns;
498 int srcu_idx, ret = -EWOULDBLOCK;
499
500 srcu_idx = srcu_read_lock(&head->srcu);
501 ns = nvme_find_path(head);
502 if (ns)
503 ret = nvme_ns_get_unique_id(ns, id, type);
504 srcu_read_unlock(&head->srcu, srcu_idx);
505 return ret;
506 }
507
508 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)509 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
510 unsigned int nr_zones, report_zones_cb cb, void *data)
511 {
512 struct nvme_ns_head *head = disk->private_data;
513 struct nvme_ns *ns;
514 int srcu_idx, ret = -EWOULDBLOCK;
515
516 srcu_idx = srcu_read_lock(&head->srcu);
517 ns = nvme_find_path(head);
518 if (ns)
519 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
520 srcu_read_unlock(&head->srcu, srcu_idx);
521 return ret;
522 }
523 #else
524 #define nvme_ns_head_report_zones NULL
525 #endif /* CONFIG_BLK_DEV_ZONED */
526
527 const struct block_device_operations nvme_ns_head_ops = {
528 .owner = THIS_MODULE,
529 .submit_bio = nvme_ns_head_submit_bio,
530 .open = nvme_ns_head_open,
531 .release = nvme_ns_head_release,
532 .ioctl = nvme_ns_head_ioctl,
533 .compat_ioctl = blkdev_compat_ptr_ioctl,
534 .getgeo = nvme_getgeo,
535 .get_unique_id = nvme_ns_head_get_unique_id,
536 .report_zones = nvme_ns_head_report_zones,
537 .pr_ops = &nvme_pr_ops,
538 };
539
cdev_to_ns_head(struct cdev * cdev)540 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
541 {
542 return container_of(cdev, struct nvme_ns_head, cdev);
543 }
544
nvme_ns_head_chr_open(struct inode * inode,struct file * file)545 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
546 {
547 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
548 return -ENXIO;
549 return 0;
550 }
551
nvme_ns_head_chr_release(struct inode * inode,struct file * file)552 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
553 {
554 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
555 return 0;
556 }
557
558 static const struct file_operations nvme_ns_head_chr_fops = {
559 .owner = THIS_MODULE,
560 .open = nvme_ns_head_chr_open,
561 .release = nvme_ns_head_chr_release,
562 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
563 .compat_ioctl = compat_ptr_ioctl,
564 .uring_cmd = nvme_ns_head_chr_uring_cmd,
565 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
566 };
567
nvme_add_ns_head_cdev(struct nvme_ns_head * head)568 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
569 {
570 int ret;
571
572 head->cdev_device.parent = &head->subsys->dev;
573 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
574 head->subsys->instance, head->instance);
575 if (ret)
576 return ret;
577 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
578 &nvme_ns_head_chr_fops, THIS_MODULE);
579 return ret;
580 }
581
nvme_partition_scan_work(struct work_struct * work)582 static void nvme_partition_scan_work(struct work_struct *work)
583 {
584 struct nvme_ns_head *head =
585 container_of(work, struct nvme_ns_head, partition_scan_work);
586
587 if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN,
588 &head->disk->state)))
589 return;
590
591 mutex_lock(&head->disk->open_mutex);
592 bdev_disk_changed(head->disk, false);
593 mutex_unlock(&head->disk->open_mutex);
594 }
595
nvme_requeue_work(struct work_struct * work)596 static void nvme_requeue_work(struct work_struct *work)
597 {
598 struct nvme_ns_head *head =
599 container_of(work, struct nvme_ns_head, requeue_work);
600 struct bio *bio, *next;
601
602 spin_lock_irq(&head->requeue_lock);
603 next = bio_list_get(&head->requeue_list);
604 spin_unlock_irq(&head->requeue_lock);
605
606 while ((bio = next) != NULL) {
607 next = bio->bi_next;
608 bio->bi_next = NULL;
609
610 submit_bio_noacct(bio);
611 }
612 }
613
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)614 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
615 {
616 struct queue_limits lim;
617
618 mutex_init(&head->lock);
619 bio_list_init(&head->requeue_list);
620 spin_lock_init(&head->requeue_lock);
621 INIT_WORK(&head->requeue_work, nvme_requeue_work);
622 INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work);
623
624 /*
625 * Add a multipath node if the subsystems supports multiple controllers.
626 * We also do this for private namespaces as the namespace sharing flag
627 * could change after a rescan.
628 */
629 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
630 !nvme_is_unique_nsid(ctrl, head) || !multipath)
631 return 0;
632
633 blk_set_stacking_limits(&lim);
634 lim.dma_alignment = 3;
635 lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
636 if (head->ids.csi == NVME_CSI_ZNS)
637 lim.features |= BLK_FEAT_ZONED;
638 else
639 lim.max_zone_append_sectors = 0;
640
641 head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
642 if (IS_ERR(head->disk))
643 return PTR_ERR(head->disk);
644 head->disk->fops = &nvme_ns_head_ops;
645 head->disk->private_data = head;
646
647 /*
648 * We need to suppress the partition scan from occuring within the
649 * controller's scan_work context. If a path error occurs here, the IO
650 * will wait until a path becomes available or all paths are torn down,
651 * but that action also occurs within scan_work, so it would deadlock.
652 * Defer the partion scan to a different context that does not block
653 * scan_work.
654 */
655 set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state);
656 sprintf(head->disk->disk_name, "nvme%dn%d",
657 ctrl->subsys->instance, head->instance);
658 return 0;
659 }
660
nvme_mpath_set_live(struct nvme_ns * ns)661 static void nvme_mpath_set_live(struct nvme_ns *ns)
662 {
663 struct nvme_ns_head *head = ns->head;
664 int rc;
665
666 if (!head->disk)
667 return;
668
669 /*
670 * test_and_set_bit() is used because it is protecting against two nvme
671 * paths simultaneously calling device_add_disk() on the same namespace
672 * head.
673 */
674 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
675 rc = device_add_disk(&head->subsys->dev, head->disk,
676 nvme_ns_attr_groups);
677 if (rc) {
678 clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
679 return;
680 }
681 nvme_add_ns_head_cdev(head);
682 kblockd_schedule_work(&head->partition_scan_work);
683 }
684
685 mutex_lock(&head->lock);
686 if (nvme_path_is_optimized(ns)) {
687 int node, srcu_idx;
688
689 srcu_idx = srcu_read_lock(&head->srcu);
690 for_each_online_node(node)
691 __nvme_find_path(head, node);
692 srcu_read_unlock(&head->srcu, srcu_idx);
693 }
694 mutex_unlock(&head->lock);
695
696 synchronize_srcu(&head->srcu);
697 kblockd_schedule_work(&head->requeue_work);
698 }
699
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))700 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
701 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
702 void *))
703 {
704 void *base = ctrl->ana_log_buf;
705 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
706 int error, i;
707
708 lockdep_assert_held(&ctrl->ana_lock);
709
710 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
711 struct nvme_ana_group_desc *desc = base + offset;
712 u32 nr_nsids;
713 size_t nsid_buf_size;
714
715 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
716 return -EINVAL;
717
718 nr_nsids = le32_to_cpu(desc->nnsids);
719 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
720
721 if (WARN_ON_ONCE(desc->grpid == 0))
722 return -EINVAL;
723 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
724 return -EINVAL;
725 if (WARN_ON_ONCE(desc->state == 0))
726 return -EINVAL;
727 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
728 return -EINVAL;
729
730 offset += sizeof(*desc);
731 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
732 return -EINVAL;
733
734 error = cb(ctrl, desc, data);
735 if (error)
736 return error;
737
738 offset += nsid_buf_size;
739 }
740
741 return 0;
742 }
743
nvme_state_is_live(enum nvme_ana_state state)744 static inline bool nvme_state_is_live(enum nvme_ana_state state)
745 {
746 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
747 }
748
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)749 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
750 struct nvme_ns *ns)
751 {
752 ns->ana_grpid = le32_to_cpu(desc->grpid);
753 ns->ana_state = desc->state;
754 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
755 /*
756 * nvme_mpath_set_live() will trigger I/O to the multipath path device
757 * and in turn to this path device. However we cannot accept this I/O
758 * if the controller is not live. This may deadlock if called from
759 * nvme_mpath_init_identify() and the ctrl will never complete
760 * initialization, preventing I/O from completing. For this case we
761 * will reprocess the ANA log page in nvme_mpath_update() once the
762 * controller is ready.
763 */
764 if (nvme_state_is_live(ns->ana_state) &&
765 nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
766 nvme_mpath_set_live(ns);
767 }
768
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)769 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
770 struct nvme_ana_group_desc *desc, void *data)
771 {
772 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
773 unsigned *nr_change_groups = data;
774 struct nvme_ns *ns;
775 int srcu_idx;
776
777 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
778 le32_to_cpu(desc->grpid),
779 nvme_ana_state_names[desc->state]);
780
781 if (desc->state == NVME_ANA_CHANGE)
782 (*nr_change_groups)++;
783
784 if (!nr_nsids)
785 return 0;
786
787 srcu_idx = srcu_read_lock(&ctrl->srcu);
788 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
789 unsigned nsid;
790 again:
791 nsid = le32_to_cpu(desc->nsids[n]);
792 if (ns->head->ns_id < nsid)
793 continue;
794 if (ns->head->ns_id == nsid)
795 nvme_update_ns_ana_state(desc, ns);
796 if (++n == nr_nsids)
797 break;
798 if (ns->head->ns_id > nsid)
799 goto again;
800 }
801 srcu_read_unlock(&ctrl->srcu, srcu_idx);
802 return 0;
803 }
804
nvme_read_ana_log(struct nvme_ctrl * ctrl)805 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
806 {
807 u32 nr_change_groups = 0;
808 int error;
809
810 mutex_lock(&ctrl->ana_lock);
811 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
812 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
813 if (error) {
814 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
815 goto out_unlock;
816 }
817
818 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
819 nvme_update_ana_state);
820 if (error)
821 goto out_unlock;
822
823 /*
824 * In theory we should have an ANATT timer per group as they might enter
825 * the change state at different times. But that is a lot of overhead
826 * just to protect against a target that keeps entering new changes
827 * states while never finishing previous ones. But we'll still
828 * eventually time out once all groups are in change state, so this
829 * isn't a big deal.
830 *
831 * We also double the ANATT value to provide some slack for transports
832 * or AEN processing overhead.
833 */
834 if (nr_change_groups)
835 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
836 else
837 del_timer_sync(&ctrl->anatt_timer);
838 out_unlock:
839 mutex_unlock(&ctrl->ana_lock);
840 return error;
841 }
842
nvme_ana_work(struct work_struct * work)843 static void nvme_ana_work(struct work_struct *work)
844 {
845 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
846
847 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
848 return;
849
850 nvme_read_ana_log(ctrl);
851 }
852
nvme_mpath_update(struct nvme_ctrl * ctrl)853 void nvme_mpath_update(struct nvme_ctrl *ctrl)
854 {
855 u32 nr_change_groups = 0;
856
857 if (!ctrl->ana_log_buf)
858 return;
859
860 mutex_lock(&ctrl->ana_lock);
861 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
862 mutex_unlock(&ctrl->ana_lock);
863 }
864
nvme_anatt_timeout(struct timer_list * t)865 static void nvme_anatt_timeout(struct timer_list *t)
866 {
867 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
868
869 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
870 nvme_reset_ctrl(ctrl);
871 }
872
nvme_mpath_stop(struct nvme_ctrl * ctrl)873 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
874 {
875 if (!nvme_ctrl_use_ana(ctrl))
876 return;
877 del_timer_sync(&ctrl->anatt_timer);
878 cancel_work_sync(&ctrl->ana_work);
879 }
880
881 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
882 struct device_attribute subsys_attr_##_name = \
883 __ATTR(_name, _mode, _show, _store)
884
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)885 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
886 struct device_attribute *attr, char *buf)
887 {
888 struct nvme_subsystem *subsys =
889 container_of(dev, struct nvme_subsystem, dev);
890
891 return sysfs_emit(buf, "%s\n",
892 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
893 }
894
nvme_subsys_iopolicy_update(struct nvme_subsystem * subsys,int iopolicy)895 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
896 int iopolicy)
897 {
898 struct nvme_ctrl *ctrl;
899 int old_iopolicy = READ_ONCE(subsys->iopolicy);
900
901 if (old_iopolicy == iopolicy)
902 return;
903
904 WRITE_ONCE(subsys->iopolicy, iopolicy);
905
906 /* iopolicy changes clear the mpath by design */
907 mutex_lock(&nvme_subsystems_lock);
908 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
909 nvme_mpath_clear_ctrl_paths(ctrl);
910 mutex_unlock(&nvme_subsystems_lock);
911
912 pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
913 subsys->subnqn,
914 nvme_iopolicy_names[old_iopolicy],
915 nvme_iopolicy_names[iopolicy]);
916 }
917
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)918 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
919 struct device_attribute *attr, const char *buf, size_t count)
920 {
921 struct nvme_subsystem *subsys =
922 container_of(dev, struct nvme_subsystem, dev);
923 int i;
924
925 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
926 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
927 nvme_subsys_iopolicy_update(subsys, i);
928 return count;
929 }
930 }
931
932 return -EINVAL;
933 }
934 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
935 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
936
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)937 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
938 char *buf)
939 {
940 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
941 }
942 DEVICE_ATTR_RO(ana_grpid);
943
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)944 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
945 char *buf)
946 {
947 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
948
949 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
950 }
951 DEVICE_ATTR_RO(ana_state);
952
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)953 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
954 struct nvme_ana_group_desc *desc, void *data)
955 {
956 struct nvme_ana_group_desc *dst = data;
957
958 if (desc->grpid != dst->grpid)
959 return 0;
960
961 *dst = *desc;
962 return -ENXIO; /* just break out of the loop */
963 }
964
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)965 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
966 {
967 if (nvme_ctrl_use_ana(ns->ctrl)) {
968 struct nvme_ana_group_desc desc = {
969 .grpid = anagrpid,
970 .state = 0,
971 };
972
973 mutex_lock(&ns->ctrl->ana_lock);
974 ns->ana_grpid = le32_to_cpu(anagrpid);
975 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
976 mutex_unlock(&ns->ctrl->ana_lock);
977 if (desc.state) {
978 /* found the group desc: update */
979 nvme_update_ns_ana_state(&desc, ns);
980 } else {
981 /* group desc not found: trigger a re-read */
982 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
983 queue_work(nvme_wq, &ns->ctrl->ana_work);
984 }
985 } else {
986 ns->ana_state = NVME_ANA_OPTIMIZED;
987 nvme_mpath_set_live(ns);
988 }
989
990 #ifdef CONFIG_BLK_DEV_ZONED
991 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
992 ns->head->disk->nr_zones = ns->disk->nr_zones;
993 #endif
994 }
995
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)996 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
997 {
998 if (!head->disk)
999 return;
1000 if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
1001 nvme_cdev_del(&head->cdev, &head->cdev_device);
1002 /*
1003 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1004 * to allow multipath to fail all I/O.
1005 */
1006 synchronize_srcu(&head->srcu);
1007 kblockd_schedule_work(&head->requeue_work);
1008 del_gendisk(head->disk);
1009 }
1010 }
1011
nvme_mpath_remove_disk(struct nvme_ns_head * head)1012 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
1013 {
1014 if (!head->disk)
1015 return;
1016 /* make sure all pending bios are cleaned up */
1017 kblockd_schedule_work(&head->requeue_work);
1018 flush_work(&head->requeue_work);
1019 flush_work(&head->partition_scan_work);
1020 put_disk(head->disk);
1021 }
1022
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)1023 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
1024 {
1025 mutex_init(&ctrl->ana_lock);
1026 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
1027 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
1028 }
1029
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)1030 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1031 {
1032 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
1033 size_t ana_log_size;
1034 int error = 0;
1035
1036 /* check if multipath is enabled and we have the capability */
1037 if (!multipath || !ctrl->subsys ||
1038 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1039 return 0;
1040
1041 /* initialize this in the identify path to cover controller resets */
1042 atomic_set(&ctrl->nr_active, 0);
1043
1044 if (!ctrl->max_namespaces ||
1045 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1046 dev_err(ctrl->device,
1047 "Invalid MNAN value %u\n", ctrl->max_namespaces);
1048 return -EINVAL;
1049 }
1050
1051 ctrl->anacap = id->anacap;
1052 ctrl->anatt = id->anatt;
1053 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1054 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1055
1056 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1057 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1058 ctrl->max_namespaces * sizeof(__le32);
1059 if (ana_log_size > max_transfer_size) {
1060 dev_err(ctrl->device,
1061 "ANA log page size (%zd) larger than MDTS (%zd).\n",
1062 ana_log_size, max_transfer_size);
1063 dev_err(ctrl->device, "disabling ANA support.\n");
1064 goto out_uninit;
1065 }
1066 if (ana_log_size > ctrl->ana_log_size) {
1067 nvme_mpath_stop(ctrl);
1068 nvme_mpath_uninit(ctrl);
1069 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1070 if (!ctrl->ana_log_buf)
1071 return -ENOMEM;
1072 }
1073 ctrl->ana_log_size = ana_log_size;
1074 error = nvme_read_ana_log(ctrl);
1075 if (error)
1076 goto out_uninit;
1077 return 0;
1078
1079 out_uninit:
1080 nvme_mpath_uninit(ctrl);
1081 return error;
1082 }
1083
nvme_mpath_uninit(struct nvme_ctrl * ctrl)1084 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1085 {
1086 kvfree(ctrl->ana_log_buf);
1087 ctrl->ana_log_buf = NULL;
1088 ctrl->ana_log_size = 0;
1089 }
1090