xref: /linux/drivers/nvme/host/pci.c (revision 06bc4e26310f9f2c0dd2fbf4885483306c5235cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE	256
39 
40 /*
41  * Arbitrary upper bound.
42  */
43 #define NVME_MAX_BYTES		SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS	5
45 
46 /*
47  * For data SGLs we support a single descriptors worth of SGL entries.
48  * For PRPs, segments don't matter at all.
49  */
50 #define NVME_MAX_SEGS \
51 	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52 
53 /*
54  * For metadata SGLs, only the small descriptor is supported, and the first
55  * entry is the segment descriptor, which for the data pointer sits in the SQE.
56  */
57 #define NVME_MAX_META_SEGS \
58 	((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59 
60 /*
61  * The last entry is used to link to the next descriptor.
62  */
63 #define PRPS_PER_PAGE \
64 	(((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65 
66 /*
67  * I/O could be non-aligned both at the beginning and end.
68  */
69 #define MAX_PRP_RANGE \
70 	(NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71 
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 	(1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74 
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77 
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81 
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86 
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 		"Use SGLs when average request segment size is larger or equal to "
91 		"this size. Use 0 to disable SGLs.");
92 
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 	.set = io_queue_depth_set,
98 	.get = param_get_uint,
99 };
100 
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104 
105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 	unsigned int n;
108 	int ret;
109 
110 	ret = kstrtouint(val, 10, &n);
111 	if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 		return -EINVAL;
113 	return param_set_uint(val, kp);
114 }
115 
116 static const struct kernel_param_ops io_queue_count_ops = {
117 	.set = io_queue_count_set,
118 	.get = param_get_uint,
119 };
120 
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 	"Number of queues to use for writes. If not set, reads and writes "
125 	"will share a queue set.");
126 
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130 
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134 
135 struct nvme_dev;
136 struct nvme_queue;
137 
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141 
142 struct nvme_descriptor_pools {
143 	struct dma_pool *large;
144 	struct dma_pool *small;
145 };
146 
147 /*
148  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
149  */
150 struct nvme_dev {
151 	struct nvme_queue *queues;
152 	struct blk_mq_tag_set tagset;
153 	struct blk_mq_tag_set admin_tagset;
154 	u32 __iomem *dbs;
155 	struct device *dev;
156 	unsigned online_queues;
157 	unsigned max_qid;
158 	unsigned io_queues[HCTX_MAX_TYPES];
159 	unsigned int num_vecs;
160 	u32 q_depth;
161 	int io_sqes;
162 	u32 db_stride;
163 	void __iomem *bar;
164 	unsigned long bar_mapped_size;
165 	struct mutex shutdown_lock;
166 	bool subsystem;
167 	u64 cmb_size;
168 	bool cmb_use_sqes;
169 	u32 cmbsz;
170 	u32 cmbloc;
171 	struct nvme_ctrl ctrl;
172 	u32 last_ps;
173 	bool hmb;
174 	struct sg_table *hmb_sgt;
175 	mempool_t *dmavec_mempool;
176 
177 	/* shadow doorbell buffer support: */
178 	__le32 *dbbuf_dbs;
179 	dma_addr_t dbbuf_dbs_dma_addr;
180 	__le32 *dbbuf_eis;
181 	dma_addr_t dbbuf_eis_dma_addr;
182 
183 	/* host memory buffer support: */
184 	u64 host_mem_size;
185 	u32 nr_host_mem_descs;
186 	u32 host_mem_descs_size;
187 	dma_addr_t host_mem_descs_dma;
188 	struct nvme_host_mem_buf_desc *host_mem_descs;
189 	void **host_mem_desc_bufs;
190 	unsigned int nr_allocated_queues;
191 	unsigned int nr_write_queues;
192 	unsigned int nr_poll_queues;
193 	struct nvme_descriptor_pools descriptor_pools[];
194 };
195 
196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
197 {
198 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
199 			NVME_PCI_MAX_QUEUE_SIZE);
200 }
201 
202 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
203 {
204 	return qid * 2 * stride;
205 }
206 
207 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
208 {
209 	return (qid * 2 + 1) * stride;
210 }
211 
212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
213 {
214 	return container_of(ctrl, struct nvme_dev, ctrl);
215 }
216 
217 /*
218  * An NVM Express queue.  Each device has at least two (one for admin
219  * commands and one for I/O commands).
220  */
221 struct nvme_queue {
222 	struct nvme_dev *dev;
223 	struct nvme_descriptor_pools descriptor_pools;
224 	spinlock_t sq_lock;
225 	void *sq_cmds;
226 	 /* only used for poll queues: */
227 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
228 	struct nvme_completion *cqes;
229 	dma_addr_t sq_dma_addr;
230 	dma_addr_t cq_dma_addr;
231 	u32 __iomem *q_db;
232 	u32 q_depth;
233 	u16 cq_vector;
234 	u16 sq_tail;
235 	u16 last_sq_tail;
236 	u16 cq_head;
237 	u16 qid;
238 	u8 cq_phase;
239 	u8 sqes;
240 	unsigned long flags;
241 #define NVMEQ_ENABLED		0
242 #define NVMEQ_SQ_CMB		1
243 #define NVMEQ_DELETE_ERROR	2
244 #define NVMEQ_POLLED		3
245 	__le32 *dbbuf_sq_db;
246 	__le32 *dbbuf_cq_db;
247 	__le32 *dbbuf_sq_ei;
248 	__le32 *dbbuf_cq_ei;
249 	struct completion delete_done;
250 };
251 
252 /* bits for iod->flags */
253 enum nvme_iod_flags {
254 	/* this command has been aborted by the timeout handler */
255 	IOD_ABORTED		= 1U << 0,
256 
257 	/* uses the small descriptor pool */
258 	IOD_SMALL_DESCRIPTOR	= 1U << 1,
259 
260 	/* single segment dma mapping */
261 	IOD_SINGLE_SEGMENT	= 1U << 2,
262 
263 	/* Data payload contains p2p memory */
264 	IOD_DATA_P2P		= 1U << 3,
265 
266 	/* Metadata contains p2p memory */
267 	IOD_META_P2P		= 1U << 4,
268 
269 	/* Data payload contains MMIO memory */
270 	IOD_DATA_MMIO		= 1U << 5,
271 
272 	/* Metadata contains MMIO memory */
273 	IOD_META_MMIO		= 1U << 6,
274 
275 	/* Metadata using non-coalesced MPTR */
276 	IOD_SINGLE_META_SEGMENT	= 1U << 7,
277 };
278 
279 struct nvme_dma_vec {
280 	dma_addr_t addr;
281 	unsigned int len;
282 };
283 
284 /*
285  * The nvme_iod describes the data in an I/O.
286  */
287 struct nvme_iod {
288 	struct nvme_request req;
289 	struct nvme_command cmd;
290 	u8 flags;
291 	u8 nr_descriptors;
292 
293 	unsigned int total_len;
294 	struct dma_iova_state dma_state;
295 	void *descriptors[NVME_MAX_NR_DESCRIPTORS];
296 	struct nvme_dma_vec *dma_vecs;
297 	unsigned int nr_dma_vecs;
298 
299 	dma_addr_t meta_dma;
300 	unsigned int meta_total_len;
301 	struct dma_iova_state meta_dma_state;
302 	struct nvme_sgl_desc *meta_descriptor;
303 };
304 
305 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
306 {
307 	return dev->nr_allocated_queues * 8 * dev->db_stride;
308 }
309 
310 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
311 {
312 	unsigned int mem_size = nvme_dbbuf_size(dev);
313 
314 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
315 		return;
316 
317 	if (dev->dbbuf_dbs) {
318 		/*
319 		 * Clear the dbbuf memory so the driver doesn't observe stale
320 		 * values from the previous instantiation.
321 		 */
322 		memset(dev->dbbuf_dbs, 0, mem_size);
323 		memset(dev->dbbuf_eis, 0, mem_size);
324 		return;
325 	}
326 
327 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
328 					    &dev->dbbuf_dbs_dma_addr,
329 					    GFP_KERNEL);
330 	if (!dev->dbbuf_dbs)
331 		goto fail;
332 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
333 					    &dev->dbbuf_eis_dma_addr,
334 					    GFP_KERNEL);
335 	if (!dev->dbbuf_eis)
336 		goto fail_free_dbbuf_dbs;
337 	return;
338 
339 fail_free_dbbuf_dbs:
340 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
341 			  dev->dbbuf_dbs_dma_addr);
342 	dev->dbbuf_dbs = NULL;
343 fail:
344 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
345 }
346 
347 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
348 {
349 	unsigned int mem_size = nvme_dbbuf_size(dev);
350 
351 	if (dev->dbbuf_dbs) {
352 		dma_free_coherent(dev->dev, mem_size,
353 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
354 		dev->dbbuf_dbs = NULL;
355 	}
356 	if (dev->dbbuf_eis) {
357 		dma_free_coherent(dev->dev, mem_size,
358 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
359 		dev->dbbuf_eis = NULL;
360 	}
361 }
362 
363 static void nvme_dbbuf_init(struct nvme_dev *dev,
364 			    struct nvme_queue *nvmeq, int qid)
365 {
366 	if (!dev->dbbuf_dbs || !qid)
367 		return;
368 
369 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
370 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
371 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
372 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
373 }
374 
375 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
376 {
377 	if (!nvmeq->qid)
378 		return;
379 
380 	nvmeq->dbbuf_sq_db = NULL;
381 	nvmeq->dbbuf_cq_db = NULL;
382 	nvmeq->dbbuf_sq_ei = NULL;
383 	nvmeq->dbbuf_cq_ei = NULL;
384 }
385 
386 static void nvme_dbbuf_set(struct nvme_dev *dev)
387 {
388 	struct nvme_command c = { };
389 	unsigned int i;
390 
391 	if (!dev->dbbuf_dbs)
392 		return;
393 
394 	c.dbbuf.opcode = nvme_admin_dbbuf;
395 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
396 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
397 
398 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
399 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
400 		/* Free memory and continue on */
401 		nvme_dbbuf_dma_free(dev);
402 
403 		for (i = 1; i <= dev->online_queues; i++)
404 			nvme_dbbuf_free(&dev->queues[i]);
405 	}
406 }
407 
408 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
409 {
410 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
411 }
412 
413 /* Update dbbuf and return true if an MMIO is required */
414 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
415 					      volatile __le32 *dbbuf_ei)
416 {
417 	if (dbbuf_db) {
418 		u16 old_value, event_idx;
419 
420 		/*
421 		 * Ensure that the queue is written before updating
422 		 * the doorbell in memory
423 		 */
424 		wmb();
425 
426 		old_value = le32_to_cpu(*dbbuf_db);
427 		*dbbuf_db = cpu_to_le32(value);
428 
429 		/*
430 		 * Ensure that the doorbell is updated before reading the event
431 		 * index from memory.  The controller needs to provide similar
432 		 * ordering to ensure the event index is updated before reading
433 		 * the doorbell.
434 		 */
435 		mb();
436 
437 		event_idx = le32_to_cpu(*dbbuf_ei);
438 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
439 			return false;
440 	}
441 
442 	return true;
443 }
444 
445 static struct nvme_descriptor_pools *
446 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
447 {
448 	struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
449 	size_t small_align = NVME_SMALL_POOL_SIZE;
450 
451 	if (pools->small)
452 		return pools; /* already initialized */
453 
454 	pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
455 			NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
456 	if (!pools->large)
457 		return ERR_PTR(-ENOMEM);
458 
459 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
460 		small_align = 512;
461 
462 	pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
463 			NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
464 	if (!pools->small) {
465 		dma_pool_destroy(pools->large);
466 		pools->large = NULL;
467 		return ERR_PTR(-ENOMEM);
468 	}
469 
470 	return pools;
471 }
472 
473 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
474 {
475 	unsigned i;
476 
477 	for (i = 0; i < nr_node_ids; i++) {
478 		struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
479 
480 		dma_pool_destroy(pools->large);
481 		dma_pool_destroy(pools->small);
482 	}
483 }
484 
485 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
486 		unsigned qid)
487 {
488 	struct nvme_dev *dev = to_nvme_dev(data);
489 	struct nvme_queue *nvmeq = &dev->queues[qid];
490 	struct nvme_descriptor_pools *pools;
491 	struct blk_mq_tags *tags;
492 
493 	tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
494 	WARN_ON(tags != hctx->tags);
495 	pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
496 	if (IS_ERR(pools))
497 		return PTR_ERR(pools);
498 
499 	nvmeq->descriptor_pools = *pools;
500 	hctx->driver_data = nvmeq;
501 	return 0;
502 }
503 
504 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
505 				unsigned int hctx_idx)
506 {
507 	WARN_ON(hctx_idx != 0);
508 	return nvme_init_hctx_common(hctx, data, 0);
509 }
510 
511 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
512 			     unsigned int hctx_idx)
513 {
514 	return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
515 }
516 
517 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
518 		struct request *req, unsigned int hctx_idx,
519 		unsigned int numa_node)
520 {
521 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
522 
523 	nvme_req(req)->ctrl = set->driver_data;
524 	nvme_req(req)->cmd = &iod->cmd;
525 	return 0;
526 }
527 
528 static int queue_irq_offset(struct nvme_dev *dev)
529 {
530 	/* if we have more than 1 vec, admin queue offsets us by 1 */
531 	if (dev->num_vecs > 1)
532 		return 1;
533 
534 	return 0;
535 }
536 
537 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
538 {
539 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
540 	int i, qoff, offset;
541 
542 	offset = queue_irq_offset(dev);
543 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
544 		struct blk_mq_queue_map *map = &set->map[i];
545 
546 		map->nr_queues = dev->io_queues[i];
547 		if (!map->nr_queues) {
548 			BUG_ON(i == HCTX_TYPE_DEFAULT);
549 			continue;
550 		}
551 
552 		/*
553 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
554 		 * affinity), so use the regular blk-mq cpu mapping
555 		 */
556 		map->queue_offset = qoff;
557 		if (i != HCTX_TYPE_POLL && offset)
558 			blk_mq_map_hw_queues(map, dev->dev, offset);
559 		else
560 			blk_mq_map_queues(map);
561 		qoff += map->nr_queues;
562 		offset += map->nr_queues;
563 	}
564 }
565 
566 /*
567  * Write sq tail if we are asked to, or if the next command would wrap.
568  */
569 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
570 {
571 	if (!write_sq) {
572 		u16 next_tail = nvmeq->sq_tail + 1;
573 
574 		if (next_tail == nvmeq->q_depth)
575 			next_tail = 0;
576 		if (next_tail != nvmeq->last_sq_tail)
577 			return;
578 	}
579 
580 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
581 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
582 		writel(nvmeq->sq_tail, nvmeq->q_db);
583 	nvmeq->last_sq_tail = nvmeq->sq_tail;
584 }
585 
586 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
587 				    struct nvme_command *cmd)
588 {
589 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
590 		absolute_pointer(cmd), sizeof(*cmd));
591 	if (++nvmeq->sq_tail == nvmeq->q_depth)
592 		nvmeq->sq_tail = 0;
593 }
594 
595 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
596 {
597 	struct nvme_queue *nvmeq = hctx->driver_data;
598 
599 	spin_lock(&nvmeq->sq_lock);
600 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
601 		nvme_write_sq_db(nvmeq, true);
602 	spin_unlock(&nvmeq->sq_lock);
603 }
604 
605 enum nvme_use_sgl {
606 	SGL_UNSUPPORTED,
607 	SGL_SUPPORTED,
608 	SGL_FORCED,
609 };
610 
611 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
612 {
613 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
614 	struct nvme_dev *dev = nvmeq->dev;
615 
616 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
617 		return false;
618 	return req->nr_integrity_segments > 1 ||
619 		nvme_req(req)->flags & NVME_REQ_USERCMD;
620 }
621 
622 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
623 		struct request *req)
624 {
625 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
626 
627 	if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
628 		/*
629 		 * When the controller is capable of using SGL, there are
630 		 * several conditions that we force to use it:
631 		 *
632 		 * 1. A request containing page gaps within the controller's
633 		 *    mask can not use the PRP format.
634 		 *
635 		 * 2. User commands use SGL because that lets the device
636 		 *    validate the requested transfer lengths.
637 		 *
638 		 * 3. Multiple integrity segments must use SGL as that's the
639 		 *    only way to describe such a command in NVMe.
640 		 */
641 		if (req_phys_gap_mask(req) & (NVME_CTRL_PAGE_SIZE - 1) ||
642 		    nvme_req(req)->flags & NVME_REQ_USERCMD ||
643 		    req->nr_integrity_segments > 1)
644 			return SGL_FORCED;
645 		return SGL_SUPPORTED;
646 	}
647 
648 	return SGL_UNSUPPORTED;
649 }
650 
651 static unsigned int nvme_pci_avg_seg_size(struct request *req)
652 {
653 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
654 	unsigned int nseg;
655 
656 	if (blk_rq_dma_map_coalesce(&iod->dma_state))
657 		nseg = 1;
658 	else
659 		nseg = blk_rq_nr_phys_segments(req);
660 	return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
661 }
662 
663 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
664 		struct nvme_iod *iod)
665 {
666 	if (iod->flags & IOD_SMALL_DESCRIPTOR)
667 		return nvmeq->descriptor_pools.small;
668 	return nvmeq->descriptor_pools.large;
669 }
670 
671 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd)
672 {
673 	return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG;
674 }
675 
676 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
677 {
678 	return cmd->common.flags &
679 		(NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
680 }
681 
682 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
683 {
684 	if (nvme_pci_cmd_use_sgl(cmd))
685 		return le64_to_cpu(cmd->common.dptr.sgl.addr);
686 	return le64_to_cpu(cmd->common.dptr.prp2);
687 }
688 
689 static void nvme_free_descriptors(struct request *req)
690 {
691 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
692 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
693 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694 	dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
695 	int i;
696 
697 	if (iod->nr_descriptors == 1) {
698 		dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
699 				dma_addr);
700 		return;
701 	}
702 
703 	for (i = 0; i < iod->nr_descriptors; i++) {
704 		__le64 *prp_list = iod->descriptors[i];
705 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
706 
707 		dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
708 				dma_addr);
709 		dma_addr = next_dma_addr;
710 	}
711 }
712 
713 static void nvme_free_prps(struct request *req, unsigned int attrs)
714 {
715 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
716 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
717 	unsigned int i;
718 
719 	for (i = 0; i < iod->nr_dma_vecs; i++)
720 		dma_unmap_phys(nvmeq->dev->dev, iod->dma_vecs[i].addr,
721 			       iod->dma_vecs[i].len, rq_dma_dir(req), attrs);
722 	mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
723 }
724 
725 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge,
726 		struct nvme_sgl_desc *sg_list, unsigned int attrs)
727 {
728 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
729 	enum dma_data_direction dir = rq_dma_dir(req);
730 	unsigned int len = le32_to_cpu(sge->length);
731 	struct device *dma_dev = nvmeq->dev->dev;
732 	unsigned int i;
733 
734 	if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
735 		dma_unmap_phys(dma_dev, le64_to_cpu(sge->addr), len, dir,
736 			       attrs);
737 		return;
738 	}
739 
740 	for (i = 0; i < len / sizeof(*sg_list); i++)
741 		dma_unmap_phys(dma_dev, le64_to_cpu(sg_list[i].addr),
742 			le32_to_cpu(sg_list[i].length), dir, attrs);
743 }
744 
745 static void nvme_unmap_metadata(struct request *req)
746 {
747 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
748 	enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
749 	enum dma_data_direction dir = rq_dma_dir(req);
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	struct device *dma_dev = nvmeq->dev->dev;
752 	struct nvme_sgl_desc *sge = iod->meta_descriptor;
753 	unsigned int attrs = 0;
754 
755 	if (iod->flags & IOD_SINGLE_META_SEGMENT) {
756 		dma_unmap_page(dma_dev, iod->meta_dma,
757 			       rq_integrity_vec(req).bv_len,
758 			       rq_dma_dir(req));
759 		return;
760 	}
761 
762 	if (iod->flags & IOD_META_P2P)
763 		map = PCI_P2PDMA_MAP_BUS_ADDR;
764 	else if (iod->flags & IOD_META_MMIO) {
765 		map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
766 		attrs |= DMA_ATTR_MMIO;
767 	}
768 
769 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->meta_dma_state,
770 			      iod->meta_total_len, map)) {
771 		if (nvme_pci_cmd_use_meta_sgl(&iod->cmd))
772 			nvme_free_sgls(req, sge, &sge[1], attrs);
773 		else
774 			dma_unmap_phys(dma_dev, iod->meta_dma,
775 				       iod->meta_total_len, dir, attrs);
776 	}
777 
778 	if (iod->meta_descriptor)
779 		dma_pool_free(nvmeq->descriptor_pools.small,
780 			      iod->meta_descriptor, iod->meta_dma);
781 }
782 
783 static void nvme_unmap_data(struct request *req)
784 {
785 	enum pci_p2pdma_map_type map = PCI_P2PDMA_MAP_NONE;
786 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
787 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
788 	struct device *dma_dev = nvmeq->dev->dev;
789 	unsigned int attrs = 0;
790 
791 	if (iod->flags & IOD_SINGLE_SEGMENT) {
792 		static_assert(offsetof(union nvme_data_ptr, prp1) ==
793 				offsetof(union nvme_data_ptr, sgl.addr));
794 		dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
795 				iod->total_len, rq_dma_dir(req));
796 		return;
797 	}
798 
799 	if (iod->flags & IOD_DATA_P2P)
800 		map = PCI_P2PDMA_MAP_BUS_ADDR;
801 	else if (iod->flags & IOD_DATA_MMIO) {
802 		map = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
803 		attrs |= DMA_ATTR_MMIO;
804 	}
805 
806 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len,
807 			      map)) {
808 		if (nvme_pci_cmd_use_sgl(&iod->cmd))
809 			nvme_free_sgls(req, &iod->cmd.common.dptr.sgl,
810 			               iod->descriptors[0], attrs);
811 		else
812 			nvme_free_prps(req, attrs);
813 	}
814 
815 	if (iod->nr_descriptors)
816 		nvme_free_descriptors(req);
817 }
818 
819 static bool nvme_pci_prp_save_mapping(struct request *req,
820 				      struct device *dma_dev,
821 				      struct blk_dma_iter *iter)
822 {
823 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
824 
825 	if (dma_use_iova(&iod->dma_state) || !dma_need_unmap(dma_dev))
826 		return true;
827 
828 	if (!iod->nr_dma_vecs) {
829 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
830 
831 		iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
832 				GFP_ATOMIC);
833 		if (!iod->dma_vecs) {
834 			iter->status = BLK_STS_RESOURCE;
835 			return false;
836 		}
837 	}
838 
839 	iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
840 	iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
841 	iod->nr_dma_vecs++;
842 	return true;
843 }
844 
845 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
846 		struct blk_dma_iter *iter)
847 {
848 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
849 
850 	if (iter->len)
851 		return true;
852 	if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
853 		return false;
854 	return nvme_pci_prp_save_mapping(req, dma_dev, iter);
855 }
856 
857 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
858 		struct blk_dma_iter *iter)
859 {
860 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
861 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
862 	unsigned int length = blk_rq_payload_bytes(req);
863 	dma_addr_t prp1_dma, prp2_dma = 0;
864 	unsigned int prp_len, i;
865 	__le64 *prp_list;
866 
867 	if (!nvme_pci_prp_save_mapping(req, nvmeq->dev->dev, iter))
868 		return iter->status;
869 
870 	/*
871 	 * PRP1 always points to the start of the DMA transfers.
872 	 *
873 	 * This is the only PRP (except for the list entries) that could be
874 	 * non-aligned.
875 	 */
876 	prp1_dma = iter->addr;
877 	prp_len = min(length, NVME_CTRL_PAGE_SIZE -
878 			(iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
879 	iod->total_len += prp_len;
880 	iter->addr += prp_len;
881 	iter->len -= prp_len;
882 	length -= prp_len;
883 	if (!length)
884 		goto done;
885 
886 	if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
887 		if (WARN_ON_ONCE(!iter->status))
888 			goto bad_sgl;
889 		goto done;
890 	}
891 
892 	/*
893 	 * PRP2 is usually a list, but can point to data if all data to be
894 	 * transferred fits into PRP1 + PRP2:
895 	 */
896 	if (length <= NVME_CTRL_PAGE_SIZE) {
897 		prp2_dma = iter->addr;
898 		iod->total_len += length;
899 		goto done;
900 	}
901 
902 	if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
903 	    NVME_SMALL_POOL_SIZE / sizeof(__le64))
904 		iod->flags |= IOD_SMALL_DESCRIPTOR;
905 
906 	prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
907 			&prp2_dma);
908 	if (!prp_list) {
909 		iter->status = BLK_STS_RESOURCE;
910 		goto done;
911 	}
912 	iod->descriptors[iod->nr_descriptors++] = prp_list;
913 
914 	i = 0;
915 	for (;;) {
916 		prp_list[i++] = cpu_to_le64(iter->addr);
917 		prp_len = min(length, NVME_CTRL_PAGE_SIZE);
918 		if (WARN_ON_ONCE(iter->len < prp_len))
919 			goto bad_sgl;
920 
921 		iod->total_len += prp_len;
922 		iter->addr += prp_len;
923 		iter->len -= prp_len;
924 		length -= prp_len;
925 		if (!length)
926 			break;
927 
928 		if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
929 			if (WARN_ON_ONCE(!iter->status))
930 				goto bad_sgl;
931 			goto done;
932 		}
933 
934 		/*
935 		 * If we've filled the entire descriptor, allocate a new that is
936 		 * pointed to be the last entry in the previous PRP list.  To
937 		 * accommodate for that move the last actual entry to the new
938 		 * descriptor.
939 		 */
940 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
941 			__le64 *old_prp_list = prp_list;
942 			dma_addr_t prp_list_dma;
943 
944 			prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
945 					GFP_ATOMIC, &prp_list_dma);
946 			if (!prp_list) {
947 				iter->status = BLK_STS_RESOURCE;
948 				goto done;
949 			}
950 			iod->descriptors[iod->nr_descriptors++] = prp_list;
951 
952 			prp_list[0] = old_prp_list[i - 1];
953 			old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
954 			i = 1;
955 		}
956 	}
957 
958 done:
959 	/*
960 	 * nvme_unmap_data uses the DPT field in the SQE to tear down the
961 	 * mapping, so initialize it even for failures.
962 	 */
963 	iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
964 	iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
965 	if (unlikely(iter->status))
966 		nvme_unmap_data(req);
967 	return iter->status;
968 
969 bad_sgl:
970 	dev_err_once(nvmeq->dev->dev,
971 		"Incorrectly formed request for payload:%d nents:%d\n",
972 		blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
973 	return BLK_STS_IOERR;
974 }
975 
976 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
977 		struct blk_dma_iter *iter)
978 {
979 	sge->addr = cpu_to_le64(iter->addr);
980 	sge->length = cpu_to_le32(iter->len);
981 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
982 }
983 
984 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
985 		dma_addr_t dma_addr, int entries)
986 {
987 	sge->addr = cpu_to_le64(dma_addr);
988 	sge->length = cpu_to_le32(entries * sizeof(*sge));
989 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
990 }
991 
992 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
993 		struct blk_dma_iter *iter)
994 {
995 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
996 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
997 	unsigned int entries = blk_rq_nr_phys_segments(req);
998 	struct nvme_sgl_desc *sg_list;
999 	dma_addr_t sgl_dma;
1000 	unsigned int mapped = 0;
1001 
1002 	/* set the transfer type as SGL */
1003 	iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1004 
1005 	if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
1006 		nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
1007 		iod->total_len += iter->len;
1008 		return BLK_STS_OK;
1009 	}
1010 
1011 	if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
1012 		iod->flags |= IOD_SMALL_DESCRIPTOR;
1013 
1014 	sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
1015 			&sgl_dma);
1016 	if (!sg_list)
1017 		return BLK_STS_RESOURCE;
1018 	iod->descriptors[iod->nr_descriptors++] = sg_list;
1019 
1020 	do {
1021 		if (WARN_ON_ONCE(mapped == entries)) {
1022 			iter->status = BLK_STS_IOERR;
1023 			break;
1024 		}
1025 		nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
1026 		iod->total_len += iter->len;
1027 	} while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
1028 				iter));
1029 
1030 	nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
1031 	if (unlikely(iter->status))
1032 		nvme_unmap_data(req);
1033 	return iter->status;
1034 }
1035 
1036 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
1037 		enum nvme_use_sgl use_sgl)
1038 {
1039 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1040 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1041 	struct bio_vec bv = req_bvec(req);
1042 	unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
1043 	bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
1044 	dma_addr_t dma_addr;
1045 
1046 	if (!use_sgl && !prp_possible)
1047 		return BLK_STS_AGAIN;
1048 	if (is_pci_p2pdma_page(bv.bv_page))
1049 		return BLK_STS_AGAIN;
1050 
1051 	dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1052 	if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
1053 		return BLK_STS_RESOURCE;
1054 	iod->total_len = bv.bv_len;
1055 	iod->flags |= IOD_SINGLE_SEGMENT;
1056 
1057 	if (use_sgl == SGL_FORCED || !prp_possible) {
1058 		iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1059 		iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
1060 		iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
1061 		iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
1062 	} else {
1063 		unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
1064 
1065 		iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
1066 		iod->cmd.common.dptr.prp2 = 0;
1067 		if (bv.bv_len > first_prp_len)
1068 			iod->cmd.common.dptr.prp2 =
1069 				cpu_to_le64(dma_addr + first_prp_len);
1070 	}
1071 
1072 	return BLK_STS_OK;
1073 }
1074 
1075 static blk_status_t nvme_map_data(struct request *req)
1076 {
1077 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1078 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1079 	struct nvme_dev *dev = nvmeq->dev;
1080 	enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
1081 	struct blk_dma_iter iter;
1082 	blk_status_t ret;
1083 
1084 	/*
1085 	 * Try to skip the DMA iterator for single segment requests, as that
1086 	 * significantly improves performances for small I/O sizes.
1087 	 */
1088 	if (blk_rq_nr_phys_segments(req) == 1) {
1089 		ret = nvme_pci_setup_data_simple(req, use_sgl);
1090 		if (ret != BLK_STS_AGAIN)
1091 			return ret;
1092 	}
1093 
1094 	if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1095 		return iter.status;
1096 
1097 	switch (iter.p2pdma.map) {
1098 	case PCI_P2PDMA_MAP_BUS_ADDR:
1099 		iod->flags |= IOD_DATA_P2P;
1100 		break;
1101 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1102 		iod->flags |= IOD_DATA_MMIO;
1103 		break;
1104 	case PCI_P2PDMA_MAP_NONE:
1105 		break;
1106 	default:
1107 		return BLK_STS_RESOURCE;
1108 	}
1109 
1110 	if (use_sgl == SGL_FORCED ||
1111 	    (use_sgl == SGL_SUPPORTED &&
1112 	     (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1113 		return nvme_pci_setup_data_sgl(req, &iter);
1114 	return nvme_pci_setup_data_prp(req, &iter);
1115 }
1116 
1117 static blk_status_t nvme_pci_setup_meta_iter(struct request *req)
1118 {
1119 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1120 	unsigned int entries = req->nr_integrity_segments;
1121 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1122 	struct nvme_dev *dev = nvmeq->dev;
1123 	struct nvme_sgl_desc *sg_list;
1124 	struct blk_dma_iter iter;
1125 	dma_addr_t sgl_dma;
1126 	int i = 0;
1127 
1128 	if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev,
1129 						&iod->meta_dma_state, &iter))
1130 		return iter.status;
1131 
1132 	switch (iter.p2pdma.map) {
1133 	case PCI_P2PDMA_MAP_BUS_ADDR:
1134 		iod->flags |= IOD_META_P2P;
1135 		break;
1136 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1137 		iod->flags |= IOD_META_MMIO;
1138 		break;
1139 	case PCI_P2PDMA_MAP_NONE:
1140 		break;
1141 	default:
1142 		return BLK_STS_RESOURCE;
1143 	}
1144 
1145 	if (blk_rq_dma_map_coalesce(&iod->meta_dma_state))
1146 		entries = 1;
1147 
1148 	/*
1149 	 * The NVMe MPTR descriptor has an implicit length that the host and
1150 	 * device must agree on to avoid data/memory corruption. We trust the
1151 	 * kernel allocated correctly based on the format's parameters, so use
1152 	 * the more efficient MPTR to avoid extra dma pool allocations for the
1153 	 * SGL indirection.
1154 	 *
1155 	 * But for user commands, we don't necessarily know what they do, so
1156 	 * the driver can't validate the metadata buffer size. The SGL
1157 	 * descriptor provides an explicit length, so we're relying on that
1158 	 * mechanism to catch any misunderstandings between the application and
1159 	 * device.
1160 	 *
1161 	 * P2P DMA also needs to use the blk_dma_iter method, so mptr setup
1162 	 * leverages this routine when that happens.
1163 	 */
1164 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) ||
1165 	    (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) {
1166 		iod->cmd.common.metadata = cpu_to_le64(iter.addr);
1167 		iod->meta_total_len = iter.len;
1168 		iod->meta_dma = iter.addr;
1169 		iod->meta_descriptor = NULL;
1170 		return BLK_STS_OK;
1171 	}
1172 
1173 	sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1174 			&sgl_dma);
1175 	if (!sg_list)
1176 		return BLK_STS_RESOURCE;
1177 
1178 	iod->meta_descriptor = sg_list;
1179 	iod->meta_dma = sgl_dma;
1180 	iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1181 	iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1182 	if (entries == 1) {
1183 		iod->meta_total_len = iter.len;
1184 		nvme_pci_sgl_set_data(sg_list, &iter);
1185 		return BLK_STS_OK;
1186 	}
1187 
1188 	sgl_dma += sizeof(*sg_list);
1189 	do {
1190 		nvme_pci_sgl_set_data(&sg_list[++i], &iter);
1191 		iod->meta_total_len += iter.len;
1192 	} while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter));
1193 
1194 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, i);
1195 	if (unlikely(iter.status))
1196 		nvme_unmap_metadata(req);
1197 	return iter.status;
1198 }
1199 
1200 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1201 {
1202 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1203 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1204 	struct bio_vec bv = rq_integrity_vec(req);
1205 
1206 	if (is_pci_p2pdma_page(bv.bv_page))
1207 		return nvme_pci_setup_meta_iter(req);
1208 
1209 	iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1210 	if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1211 		return BLK_STS_IOERR;
1212 	iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1213 	iod->flags |= IOD_SINGLE_META_SEGMENT;
1214 	return BLK_STS_OK;
1215 }
1216 
1217 static blk_status_t nvme_map_metadata(struct request *req)
1218 {
1219 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1220 
1221 	if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1222 	    nvme_pci_metadata_use_sgls(req))
1223 		return nvme_pci_setup_meta_iter(req);
1224 	return nvme_pci_setup_meta_mptr(req);
1225 }
1226 
1227 static blk_status_t nvme_prep_rq(struct request *req)
1228 {
1229 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1230 	blk_status_t ret;
1231 
1232 	iod->flags = 0;
1233 	iod->nr_descriptors = 0;
1234 	iod->total_len = 0;
1235 	iod->meta_total_len = 0;
1236 	iod->nr_dma_vecs = 0;
1237 
1238 	ret = nvme_setup_cmd(req->q->queuedata, req);
1239 	if (ret)
1240 		return ret;
1241 
1242 	if (blk_rq_nr_phys_segments(req)) {
1243 		ret = nvme_map_data(req);
1244 		if (ret)
1245 			goto out_free_cmd;
1246 	}
1247 
1248 	if (blk_integrity_rq(req)) {
1249 		ret = nvme_map_metadata(req);
1250 		if (ret)
1251 			goto out_unmap_data;
1252 	}
1253 
1254 	nvme_start_request(req);
1255 	return BLK_STS_OK;
1256 out_unmap_data:
1257 	if (blk_rq_nr_phys_segments(req))
1258 		nvme_unmap_data(req);
1259 out_free_cmd:
1260 	nvme_cleanup_cmd(req);
1261 	return ret;
1262 }
1263 
1264 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1265 			 const struct blk_mq_queue_data *bd)
1266 {
1267 	struct nvme_queue *nvmeq = hctx->driver_data;
1268 	struct nvme_dev *dev = nvmeq->dev;
1269 	struct request *req = bd->rq;
1270 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1271 	blk_status_t ret;
1272 
1273 	/*
1274 	 * We should not need to do this, but we're still using this to
1275 	 * ensure we can drain requests on a dying queue.
1276 	 */
1277 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1278 		return BLK_STS_IOERR;
1279 
1280 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1281 		return nvme_fail_nonready_command(&dev->ctrl, req);
1282 
1283 	ret = nvme_prep_rq(req);
1284 	if (unlikely(ret))
1285 		return ret;
1286 	spin_lock(&nvmeq->sq_lock);
1287 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1288 	nvme_write_sq_db(nvmeq, bd->last);
1289 	spin_unlock(&nvmeq->sq_lock);
1290 	return BLK_STS_OK;
1291 }
1292 
1293 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1294 {
1295 	struct request *req;
1296 
1297 	if (rq_list_empty(rqlist))
1298 		return;
1299 
1300 	spin_lock(&nvmeq->sq_lock);
1301 	while ((req = rq_list_pop(rqlist))) {
1302 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1303 
1304 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1305 	}
1306 	nvme_write_sq_db(nvmeq, true);
1307 	spin_unlock(&nvmeq->sq_lock);
1308 }
1309 
1310 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1311 {
1312 	/*
1313 	 * We should not need to do this, but we're still using this to
1314 	 * ensure we can drain requests on a dying queue.
1315 	 */
1316 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1317 		return false;
1318 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1319 		return false;
1320 
1321 	return nvme_prep_rq(req) == BLK_STS_OK;
1322 }
1323 
1324 static void nvme_queue_rqs(struct rq_list *rqlist)
1325 {
1326 	struct rq_list submit_list = { };
1327 	struct rq_list requeue_list = { };
1328 	struct nvme_queue *nvmeq = NULL;
1329 	struct request *req;
1330 
1331 	while ((req = rq_list_pop(rqlist))) {
1332 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1333 			nvme_submit_cmds(nvmeq, &submit_list);
1334 		nvmeq = req->mq_hctx->driver_data;
1335 
1336 		if (nvme_prep_rq_batch(nvmeq, req))
1337 			rq_list_add_tail(&submit_list, req);
1338 		else
1339 			rq_list_add_tail(&requeue_list, req);
1340 	}
1341 
1342 	if (nvmeq)
1343 		nvme_submit_cmds(nvmeq, &submit_list);
1344 	*rqlist = requeue_list;
1345 }
1346 
1347 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1348 {
1349 	if (blk_integrity_rq(req))
1350 		nvme_unmap_metadata(req);
1351 	if (blk_rq_nr_phys_segments(req))
1352 		nvme_unmap_data(req);
1353 }
1354 
1355 static void nvme_pci_complete_rq(struct request *req)
1356 {
1357 	nvme_pci_unmap_rq(req);
1358 	nvme_complete_rq(req);
1359 }
1360 
1361 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1362 {
1363 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1364 }
1365 
1366 /* We read the CQE phase first to check if the rest of the entry is valid */
1367 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1368 {
1369 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1370 
1371 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1372 }
1373 
1374 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1375 {
1376 	u16 head = nvmeq->cq_head;
1377 
1378 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1379 					      nvmeq->dbbuf_cq_ei))
1380 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1381 }
1382 
1383 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1384 {
1385 	if (!nvmeq->qid)
1386 		return nvmeq->dev->admin_tagset.tags[0];
1387 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1388 }
1389 
1390 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1391 				   struct io_comp_batch *iob, u16 idx)
1392 {
1393 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1394 	__u16 command_id = READ_ONCE(cqe->command_id);
1395 	struct request *req;
1396 
1397 	/*
1398 	 * AEN requests are special as they don't time out and can
1399 	 * survive any kind of queue freeze and often don't respond to
1400 	 * aborts.  We don't even bother to allocate a struct request
1401 	 * for them but rather special case them here.
1402 	 */
1403 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1404 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1405 				cqe->status, &cqe->result);
1406 		return;
1407 	}
1408 
1409 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1410 	if (unlikely(!req)) {
1411 		dev_warn(nvmeq->dev->ctrl.device,
1412 			"invalid id %d completed on queue %d\n",
1413 			command_id, le16_to_cpu(cqe->sq_id));
1414 		return;
1415 	}
1416 
1417 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1418 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1419 	    !blk_mq_add_to_batch(req, iob,
1420 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1421 				 nvme_pci_complete_batch))
1422 		nvme_pci_complete_rq(req);
1423 }
1424 
1425 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1426 {
1427 	u32 tmp = nvmeq->cq_head + 1;
1428 
1429 	if (tmp == nvmeq->q_depth) {
1430 		nvmeq->cq_head = 0;
1431 		nvmeq->cq_phase ^= 1;
1432 	} else {
1433 		nvmeq->cq_head = tmp;
1434 	}
1435 }
1436 
1437 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1438 			        struct io_comp_batch *iob)
1439 {
1440 	bool found = false;
1441 
1442 	while (nvme_cqe_pending(nvmeq)) {
1443 		found = true;
1444 		/*
1445 		 * load-load control dependency between phase and the rest of
1446 		 * the cqe requires a full read memory barrier
1447 		 */
1448 		dma_rmb();
1449 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1450 		nvme_update_cq_head(nvmeq);
1451 	}
1452 
1453 	if (found)
1454 		nvme_ring_cq_doorbell(nvmeq);
1455 	return found;
1456 }
1457 
1458 static irqreturn_t nvme_irq(int irq, void *data)
1459 {
1460 	struct nvme_queue *nvmeq = data;
1461 	DEFINE_IO_COMP_BATCH(iob);
1462 
1463 	if (nvme_poll_cq(nvmeq, &iob)) {
1464 		if (!rq_list_empty(&iob.req_list))
1465 			nvme_pci_complete_batch(&iob);
1466 		return IRQ_HANDLED;
1467 	}
1468 	return IRQ_NONE;
1469 }
1470 
1471 static irqreturn_t nvme_irq_check(int irq, void *data)
1472 {
1473 	struct nvme_queue *nvmeq = data;
1474 
1475 	if (nvme_cqe_pending(nvmeq))
1476 		return IRQ_WAKE_THREAD;
1477 	return IRQ_NONE;
1478 }
1479 
1480 /*
1481  * Poll for completions for any interrupt driven queue
1482  * Can be called from any context.
1483  */
1484 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1485 {
1486 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1487 
1488 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1489 
1490 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1491 	spin_lock(&nvmeq->cq_poll_lock);
1492 	nvme_poll_cq(nvmeq, NULL);
1493 	spin_unlock(&nvmeq->cq_poll_lock);
1494 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1495 }
1496 
1497 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1498 {
1499 	struct nvme_queue *nvmeq = hctx->driver_data;
1500 	bool found;
1501 
1502 	if (!nvme_cqe_pending(nvmeq))
1503 		return 0;
1504 
1505 	spin_lock(&nvmeq->cq_poll_lock);
1506 	found = nvme_poll_cq(nvmeq, iob);
1507 	spin_unlock(&nvmeq->cq_poll_lock);
1508 
1509 	return found;
1510 }
1511 
1512 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1513 {
1514 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1515 	struct nvme_queue *nvmeq = &dev->queues[0];
1516 	struct nvme_command c = { };
1517 
1518 	c.common.opcode = nvme_admin_async_event;
1519 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1520 
1521 	spin_lock(&nvmeq->sq_lock);
1522 	nvme_sq_copy_cmd(nvmeq, &c);
1523 	nvme_write_sq_db(nvmeq, true);
1524 	spin_unlock(&nvmeq->sq_lock);
1525 }
1526 
1527 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1528 {
1529 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1530 	int ret = 0;
1531 
1532 	/*
1533 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1534 	 * altered by reset_work. Holding this lock before the RESETTING state
1535 	 * change, if successful, also ensures nvme_remove won't be able to
1536 	 * proceed to iounmap until we're done.
1537 	 */
1538 	mutex_lock(&dev->shutdown_lock);
1539 	if (!dev->bar_mapped_size) {
1540 		ret = -ENODEV;
1541 		goto unlock;
1542 	}
1543 
1544 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1545 		ret = -EBUSY;
1546 		goto unlock;
1547 	}
1548 
1549 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1550 
1551 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
1552 	    !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
1553 		goto unlock;
1554 
1555 	/*
1556 	 * Read controller status to flush the previous write and trigger a
1557 	 * pcie read error.
1558 	 */
1559 	readl(dev->bar + NVME_REG_CSTS);
1560 unlock:
1561 	mutex_unlock(&dev->shutdown_lock);
1562 	return ret;
1563 }
1564 
1565 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1566 {
1567 	struct nvme_command c = { };
1568 
1569 	c.delete_queue.opcode = opcode;
1570 	c.delete_queue.qid = cpu_to_le16(id);
1571 
1572 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1573 }
1574 
1575 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1576 		struct nvme_queue *nvmeq, s16 vector)
1577 {
1578 	struct nvme_command c = { };
1579 	int flags = NVME_QUEUE_PHYS_CONTIG;
1580 
1581 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1582 		flags |= NVME_CQ_IRQ_ENABLED;
1583 
1584 	/*
1585 	 * Note: we (ab)use the fact that the prp fields survive if no data
1586 	 * is attached to the request.
1587 	 */
1588 	c.create_cq.opcode = nvme_admin_create_cq;
1589 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1590 	c.create_cq.cqid = cpu_to_le16(qid);
1591 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1592 	c.create_cq.cq_flags = cpu_to_le16(flags);
1593 	c.create_cq.irq_vector = cpu_to_le16(vector);
1594 
1595 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1596 }
1597 
1598 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1599 						struct nvme_queue *nvmeq)
1600 {
1601 	struct nvme_ctrl *ctrl = &dev->ctrl;
1602 	struct nvme_command c = { };
1603 	int flags = NVME_QUEUE_PHYS_CONTIG;
1604 
1605 	/*
1606 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1607 	 * set. Since URGENT priority is zeroes, it makes all queues
1608 	 * URGENT.
1609 	 */
1610 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1611 		flags |= NVME_SQ_PRIO_MEDIUM;
1612 
1613 	/*
1614 	 * Note: we (ab)use the fact that the prp fields survive if no data
1615 	 * is attached to the request.
1616 	 */
1617 	c.create_sq.opcode = nvme_admin_create_sq;
1618 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1619 	c.create_sq.sqid = cpu_to_le16(qid);
1620 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1621 	c.create_sq.sq_flags = cpu_to_le16(flags);
1622 	c.create_sq.cqid = cpu_to_le16(qid);
1623 
1624 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1625 }
1626 
1627 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1628 {
1629 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1630 }
1631 
1632 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1633 {
1634 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1635 }
1636 
1637 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1638 {
1639 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1640 
1641 	dev_warn(nvmeq->dev->ctrl.device,
1642 		 "Abort status: 0x%x", nvme_req(req)->status);
1643 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1644 	blk_mq_free_request(req);
1645 	return RQ_END_IO_NONE;
1646 }
1647 
1648 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1649 {
1650 	/* If true, indicates loss of adapter communication, possibly by a
1651 	 * NVMe Subsystem reset.
1652 	 */
1653 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1654 
1655 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1656 	switch (nvme_ctrl_state(&dev->ctrl)) {
1657 	case NVME_CTRL_RESETTING:
1658 	case NVME_CTRL_CONNECTING:
1659 		return false;
1660 	default:
1661 		break;
1662 	}
1663 
1664 	/* We shouldn't reset unless the controller is on fatal error state
1665 	 * _or_ if we lost the communication with it.
1666 	 */
1667 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1668 		return false;
1669 
1670 	return true;
1671 }
1672 
1673 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1674 {
1675 	/* Read a config register to help see what died. */
1676 	u16 pci_status;
1677 	int result;
1678 
1679 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1680 				      &pci_status);
1681 	if (result == PCIBIOS_SUCCESSFUL)
1682 		dev_warn(dev->ctrl.device,
1683 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1684 			 csts, pci_status);
1685 	else
1686 		dev_warn(dev->ctrl.device,
1687 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1688 			 csts, result);
1689 
1690 	if (csts != ~0)
1691 		return;
1692 
1693 	dev_warn(dev->ctrl.device,
1694 		 "Does your device have a faulty power saving mode enabled?\n");
1695 	dev_warn(dev->ctrl.device,
1696 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1697 }
1698 
1699 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1700 {
1701 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1702 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1703 	struct nvme_dev *dev = nvmeq->dev;
1704 	struct request *abort_req;
1705 	struct nvme_command cmd = { };
1706 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1707 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1708 	u8 opcode;
1709 
1710 	/*
1711 	 * Shutdown the device immediately if we see it is disconnected. This
1712 	 * unblocks PCIe error handling if the nvme driver is waiting in
1713 	 * error_resume for a device that has been removed. We can't unbind the
1714 	 * driver while the driver's error callback is waiting to complete, so
1715 	 * we're relying on a timeout to break that deadlock if a removal
1716 	 * occurs while reset work is running.
1717 	 */
1718 	if (pci_dev_is_disconnected(pdev))
1719 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1720 	if (nvme_state_terminal(&dev->ctrl))
1721 		goto disable;
1722 
1723 	/* If PCI error recovery process is happening, we cannot reset or
1724 	 * the recovery mechanism will surely fail.
1725 	 */
1726 	mb();
1727 	if (pci_channel_offline(pdev))
1728 		return BLK_EH_RESET_TIMER;
1729 
1730 	/*
1731 	 * Reset immediately if the controller is failed
1732 	 */
1733 	if (nvme_should_reset(dev, csts)) {
1734 		nvme_warn_reset(dev, csts);
1735 		goto disable;
1736 	}
1737 
1738 	/*
1739 	 * Did we miss an interrupt?
1740 	 */
1741 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1742 		nvme_poll(req->mq_hctx, NULL);
1743 	else
1744 		nvme_poll_irqdisable(nvmeq);
1745 
1746 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1747 		dev_warn(dev->ctrl.device,
1748 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1749 			 req->tag, nvme_cid(req), nvmeq->qid);
1750 		return BLK_EH_DONE;
1751 	}
1752 
1753 	/*
1754 	 * Shutdown immediately if controller times out while starting. The
1755 	 * reset work will see the pci device disabled when it gets the forced
1756 	 * cancellation error. All outstanding requests are completed on
1757 	 * shutdown, so we return BLK_EH_DONE.
1758 	 */
1759 	switch (nvme_ctrl_state(&dev->ctrl)) {
1760 	case NVME_CTRL_CONNECTING:
1761 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1762 		fallthrough;
1763 	case NVME_CTRL_DELETING:
1764 		dev_warn_ratelimited(dev->ctrl.device,
1765 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1766 			 req->tag, nvme_cid(req), nvmeq->qid);
1767 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1768 		nvme_dev_disable(dev, true);
1769 		return BLK_EH_DONE;
1770 	case NVME_CTRL_RESETTING:
1771 		return BLK_EH_RESET_TIMER;
1772 	default:
1773 		break;
1774 	}
1775 
1776 	/*
1777 	 * Shutdown the controller immediately and schedule a reset if the
1778 	 * command was already aborted once before and still hasn't been
1779 	 * returned to the driver, or if this is the admin queue.
1780 	 */
1781 	opcode = nvme_req(req)->cmd->common.opcode;
1782 	if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1783 		dev_warn(dev->ctrl.device,
1784 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1785 			 req->tag, nvme_cid(req), opcode,
1786 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1787 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1788 		goto disable;
1789 	}
1790 
1791 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1792 		atomic_inc(&dev->ctrl.abort_limit);
1793 		return BLK_EH_RESET_TIMER;
1794 	}
1795 	iod->flags |= IOD_ABORTED;
1796 
1797 	cmd.abort.opcode = nvme_admin_abort_cmd;
1798 	cmd.abort.cid = nvme_cid(req);
1799 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1800 
1801 	dev_warn(nvmeq->dev->ctrl.device,
1802 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1803 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1804 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1805 		 blk_rq_bytes(req));
1806 
1807 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1808 					 BLK_MQ_REQ_NOWAIT);
1809 	if (IS_ERR(abort_req)) {
1810 		atomic_inc(&dev->ctrl.abort_limit);
1811 		return BLK_EH_RESET_TIMER;
1812 	}
1813 	nvme_init_request(abort_req, &cmd);
1814 
1815 	abort_req->end_io = abort_endio;
1816 	abort_req->end_io_data = NULL;
1817 	blk_execute_rq_nowait(abort_req, false);
1818 
1819 	/*
1820 	 * The aborted req will be completed on receiving the abort req.
1821 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1822 	 * as the device then is in a faulty state.
1823 	 */
1824 	return BLK_EH_RESET_TIMER;
1825 
1826 disable:
1827 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1828 		if (nvme_state_terminal(&dev->ctrl))
1829 			nvme_dev_disable(dev, true);
1830 		return BLK_EH_DONE;
1831 	}
1832 
1833 	nvme_dev_disable(dev, false);
1834 	if (nvme_try_sched_reset(&dev->ctrl))
1835 		nvme_unquiesce_io_queues(&dev->ctrl);
1836 	return BLK_EH_DONE;
1837 }
1838 
1839 static void nvme_free_queue(struct nvme_queue *nvmeq)
1840 {
1841 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1842 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1843 	if (!nvmeq->sq_cmds)
1844 		return;
1845 
1846 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1847 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1848 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1849 	} else {
1850 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1851 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1852 	}
1853 }
1854 
1855 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1856 {
1857 	int i;
1858 
1859 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1860 		dev->ctrl.queue_count--;
1861 		nvme_free_queue(&dev->queues[i]);
1862 	}
1863 }
1864 
1865 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1866 {
1867 	struct nvme_queue *nvmeq = &dev->queues[qid];
1868 
1869 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1870 		return;
1871 
1872 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1873 	mb();
1874 
1875 	nvmeq->dev->online_queues--;
1876 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1877 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1878 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1879 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1880 }
1881 
1882 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1883 {
1884 	int i;
1885 
1886 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1887 		nvme_suspend_queue(dev, i);
1888 }
1889 
1890 /*
1891  * Called only on a device that has been disabled and after all other threads
1892  * that can check this device's completion queues have synced, except
1893  * nvme_poll(). This is the last chance for the driver to see a natural
1894  * completion before nvme_cancel_request() terminates all incomplete requests.
1895  */
1896 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1897 {
1898 	int i;
1899 
1900 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1901 		spin_lock(&dev->queues[i].cq_poll_lock);
1902 		nvme_poll_cq(&dev->queues[i], NULL);
1903 		spin_unlock(&dev->queues[i].cq_poll_lock);
1904 	}
1905 }
1906 
1907 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1908 				int entry_size)
1909 {
1910 	int q_depth = dev->q_depth;
1911 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1912 					  NVME_CTRL_PAGE_SIZE);
1913 
1914 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1915 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1916 
1917 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1918 		q_depth = div_u64(mem_per_q, entry_size);
1919 
1920 		/*
1921 		 * Ensure the reduced q_depth is above some threshold where it
1922 		 * would be better to map queues in system memory with the
1923 		 * original depth
1924 		 */
1925 		if (q_depth < 64)
1926 			return -ENOMEM;
1927 	}
1928 
1929 	return q_depth;
1930 }
1931 
1932 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1933 				int qid)
1934 {
1935 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1936 
1937 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1938 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1939 		if (nvmeq->sq_cmds) {
1940 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1941 							nvmeq->sq_cmds);
1942 			if (nvmeq->sq_dma_addr) {
1943 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1944 				return 0;
1945 			}
1946 
1947 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1948 		}
1949 	}
1950 
1951 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1952 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1953 	if (!nvmeq->sq_cmds)
1954 		return -ENOMEM;
1955 	return 0;
1956 }
1957 
1958 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1959 {
1960 	struct nvme_queue *nvmeq = &dev->queues[qid];
1961 
1962 	if (dev->ctrl.queue_count > qid)
1963 		return 0;
1964 
1965 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1966 	nvmeq->q_depth = depth;
1967 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1968 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1969 	if (!nvmeq->cqes)
1970 		goto free_nvmeq;
1971 
1972 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1973 		goto free_cqdma;
1974 
1975 	nvmeq->dev = dev;
1976 	spin_lock_init(&nvmeq->sq_lock);
1977 	spin_lock_init(&nvmeq->cq_poll_lock);
1978 	nvmeq->cq_head = 0;
1979 	nvmeq->cq_phase = 1;
1980 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1981 	nvmeq->qid = qid;
1982 	dev->ctrl.queue_count++;
1983 
1984 	return 0;
1985 
1986  free_cqdma:
1987 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1988 			  nvmeq->cq_dma_addr);
1989  free_nvmeq:
1990 	return -ENOMEM;
1991 }
1992 
1993 static int queue_request_irq(struct nvme_queue *nvmeq)
1994 {
1995 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1996 	int nr = nvmeq->dev->ctrl.instance;
1997 
1998 	if (use_threaded_interrupts) {
1999 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
2000 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
2001 	} else {
2002 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
2003 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
2004 	}
2005 }
2006 
2007 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
2008 {
2009 	struct nvme_dev *dev = nvmeq->dev;
2010 
2011 	nvmeq->sq_tail = 0;
2012 	nvmeq->last_sq_tail = 0;
2013 	nvmeq->cq_head = 0;
2014 	nvmeq->cq_phase = 1;
2015 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
2016 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
2017 	nvme_dbbuf_init(dev, nvmeq, qid);
2018 	dev->online_queues++;
2019 	wmb(); /* ensure the first interrupt sees the initialization */
2020 }
2021 
2022 /*
2023  * Try getting shutdown_lock while setting up IO queues.
2024  */
2025 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
2026 {
2027 	/*
2028 	 * Give up if the lock is being held by nvme_dev_disable.
2029 	 */
2030 	if (!mutex_trylock(&dev->shutdown_lock))
2031 		return -ENODEV;
2032 
2033 	/*
2034 	 * Controller is in wrong state, fail early.
2035 	 */
2036 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
2037 		mutex_unlock(&dev->shutdown_lock);
2038 		return -ENODEV;
2039 	}
2040 
2041 	return 0;
2042 }
2043 
2044 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
2045 {
2046 	struct nvme_dev *dev = nvmeq->dev;
2047 	int result;
2048 	u16 vector = 0;
2049 
2050 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2051 
2052 	/*
2053 	 * A queue's vector matches the queue identifier unless the controller
2054 	 * has only one vector available.
2055 	 */
2056 	if (!polled)
2057 		vector = dev->num_vecs == 1 ? 0 : qid;
2058 	else
2059 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
2060 
2061 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
2062 	if (result)
2063 		return result;
2064 
2065 	result = adapter_alloc_sq(dev, qid, nvmeq);
2066 	if (result < 0)
2067 		return result;
2068 	if (result)
2069 		goto release_cq;
2070 
2071 	nvmeq->cq_vector = vector;
2072 
2073 	result = nvme_setup_io_queues_trylock(dev);
2074 	if (result)
2075 		return result;
2076 	nvme_init_queue(nvmeq, qid);
2077 	if (!polled) {
2078 		result = queue_request_irq(nvmeq);
2079 		if (result < 0)
2080 			goto release_sq;
2081 	}
2082 
2083 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2084 	mutex_unlock(&dev->shutdown_lock);
2085 	return result;
2086 
2087 release_sq:
2088 	dev->online_queues--;
2089 	mutex_unlock(&dev->shutdown_lock);
2090 	adapter_delete_sq(dev, qid);
2091 release_cq:
2092 	adapter_delete_cq(dev, qid);
2093 	return result;
2094 }
2095 
2096 static const struct blk_mq_ops nvme_mq_admin_ops = {
2097 	.queue_rq	= nvme_queue_rq,
2098 	.complete	= nvme_pci_complete_rq,
2099 	.init_hctx	= nvme_admin_init_hctx,
2100 	.init_request	= nvme_pci_init_request,
2101 	.timeout	= nvme_timeout,
2102 };
2103 
2104 static const struct blk_mq_ops nvme_mq_ops = {
2105 	.queue_rq	= nvme_queue_rq,
2106 	.queue_rqs	= nvme_queue_rqs,
2107 	.complete	= nvme_pci_complete_rq,
2108 	.commit_rqs	= nvme_commit_rqs,
2109 	.init_hctx	= nvme_init_hctx,
2110 	.init_request	= nvme_pci_init_request,
2111 	.map_queues	= nvme_pci_map_queues,
2112 	.timeout	= nvme_timeout,
2113 	.poll		= nvme_poll,
2114 };
2115 
2116 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2117 {
2118 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2119 		/*
2120 		 * If the controller was reset during removal, it's possible
2121 		 * user requests may be waiting on a stopped queue. Start the
2122 		 * queue to flush these to completion.
2123 		 */
2124 		nvme_unquiesce_admin_queue(&dev->ctrl);
2125 		nvme_remove_admin_tag_set(&dev->ctrl);
2126 	}
2127 }
2128 
2129 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2130 {
2131 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2132 }
2133 
2134 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2135 {
2136 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2137 
2138 	if (size <= dev->bar_mapped_size)
2139 		return 0;
2140 	if (size > pci_resource_len(pdev, 0))
2141 		return -ENOMEM;
2142 	if (dev->bar)
2143 		iounmap(dev->bar);
2144 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2145 	if (!dev->bar) {
2146 		dev->bar_mapped_size = 0;
2147 		return -ENOMEM;
2148 	}
2149 	dev->bar_mapped_size = size;
2150 	dev->dbs = dev->bar + NVME_REG_DBS;
2151 
2152 	return 0;
2153 }
2154 
2155 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2156 {
2157 	int result;
2158 	u32 aqa;
2159 	struct nvme_queue *nvmeq;
2160 
2161 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2162 	if (result < 0)
2163 		return result;
2164 
2165 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2166 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2167 
2168 	if (dev->subsystem &&
2169 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2170 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2171 
2172 	/*
2173 	 * If the device has been passed off to us in an enabled state, just
2174 	 * clear the enabled bit.  The spec says we should set the 'shutdown
2175 	 * notification bits', but doing so may cause the device to complete
2176 	 * commands to the admin queue ... and we don't know what memory that
2177 	 * might be pointing at!
2178 	 */
2179 	result = nvme_disable_ctrl(&dev->ctrl, false);
2180 	if (result < 0) {
2181 		struct pci_dev *pdev = to_pci_dev(dev->dev);
2182 
2183 		/*
2184 		 * The NVMe Controller Reset method did not get an expected
2185 		 * CSTS.RDY transition, so something with the device appears to
2186 		 * be stuck. Use the lower level and bigger hammer PCIe
2187 		 * Function Level Reset to attempt restoring the device to its
2188 		 * initial state, and try again.
2189 		 */
2190 		result = pcie_reset_flr(pdev, false);
2191 		if (result < 0)
2192 			return result;
2193 
2194 		pci_restore_state(pdev);
2195 		result = nvme_disable_ctrl(&dev->ctrl, false);
2196 		if (result < 0)
2197 			return result;
2198 
2199 		dev_info(dev->ctrl.device,
2200 			"controller reset completed after pcie flr\n");
2201 	}
2202 
2203 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2204 	if (result)
2205 		return result;
2206 
2207 	dev->ctrl.numa_node = dev_to_node(dev->dev);
2208 
2209 	nvmeq = &dev->queues[0];
2210 	aqa = nvmeq->q_depth - 1;
2211 	aqa |= aqa << 16;
2212 
2213 	writel(aqa, dev->bar + NVME_REG_AQA);
2214 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2215 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2216 
2217 	result = nvme_enable_ctrl(&dev->ctrl);
2218 	if (result)
2219 		return result;
2220 
2221 	nvmeq->cq_vector = 0;
2222 	nvme_init_queue(nvmeq, 0);
2223 	result = queue_request_irq(nvmeq);
2224 	if (result) {
2225 		dev->online_queues--;
2226 		return result;
2227 	}
2228 
2229 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2230 	return result;
2231 }
2232 
2233 static int nvme_create_io_queues(struct nvme_dev *dev)
2234 {
2235 	unsigned i, max, rw_queues;
2236 	int ret = 0;
2237 
2238 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2239 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2240 			ret = -ENOMEM;
2241 			break;
2242 		}
2243 	}
2244 
2245 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2246 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2247 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2248 				dev->io_queues[HCTX_TYPE_READ];
2249 	} else {
2250 		rw_queues = max;
2251 	}
2252 
2253 	for (i = dev->online_queues; i <= max; i++) {
2254 		bool polled = i > rw_queues;
2255 
2256 		ret = nvme_create_queue(&dev->queues[i], i, polled);
2257 		if (ret)
2258 			break;
2259 	}
2260 
2261 	/*
2262 	 * Ignore failing Create SQ/CQ commands, we can continue with less
2263 	 * than the desired amount of queues, and even a controller without
2264 	 * I/O queues can still be used to issue admin commands.  This might
2265 	 * be useful to upgrade a buggy firmware for example.
2266 	 */
2267 	return ret >= 0 ? 0 : ret;
2268 }
2269 
2270 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2271 {
2272 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2273 
2274 	return 1ULL << (12 + 4 * szu);
2275 }
2276 
2277 static u32 nvme_cmb_size(struct nvme_dev *dev)
2278 {
2279 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2280 }
2281 
2282 static void nvme_map_cmb(struct nvme_dev *dev)
2283 {
2284 	u64 size, offset;
2285 	resource_size_t bar_size;
2286 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2287 	int bar;
2288 
2289 	if (dev->cmb_size)
2290 		return;
2291 
2292 	if (NVME_CAP_CMBS(dev->ctrl.cap))
2293 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2294 
2295 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2296 	if (!dev->cmbsz)
2297 		return;
2298 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2299 
2300 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2301 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2302 	bar = NVME_CMB_BIR(dev->cmbloc);
2303 	bar_size = pci_resource_len(pdev, bar);
2304 
2305 	if (offset > bar_size)
2306 		return;
2307 
2308 	/*
2309 	 * Controllers may support a CMB size larger than their BAR, for
2310 	 * example, due to being behind a bridge. Reduce the CMB to the
2311 	 * reported size of the BAR
2312 	 */
2313 	size = min(size, bar_size - offset);
2314 
2315 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2316 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2317 			memremap_compat_align()))
2318 		return;
2319 
2320 	/*
2321 	 * Tell the controller about the host side address mapping the CMB,
2322 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2323 	 */
2324 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2325 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2326 			     (pci_bus_address(pdev, bar) + offset),
2327 			     dev->bar + NVME_REG_CMBMSC);
2328 	}
2329 
2330 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2331 		dev_warn(dev->ctrl.device,
2332 			 "failed to register the CMB\n");
2333 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2334 		return;
2335 	}
2336 
2337 	dev->cmb_size = size;
2338 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2339 
2340 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2341 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2342 		pci_p2pmem_publish(pdev, true);
2343 }
2344 
2345 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2346 {
2347 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2348 	u64 dma_addr = dev->host_mem_descs_dma;
2349 	struct nvme_command c = { };
2350 	int ret;
2351 
2352 	c.features.opcode	= nvme_admin_set_features;
2353 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2354 	c.features.dword11	= cpu_to_le32(bits);
2355 	c.features.dword12	= cpu_to_le32(host_mem_size);
2356 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2357 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2358 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2359 
2360 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2361 	if (ret) {
2362 		dev_warn(dev->ctrl.device,
2363 			 "failed to set host mem (err %d, flags %#x).\n",
2364 			 ret, bits);
2365 	} else
2366 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2367 
2368 	return ret;
2369 }
2370 
2371 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2372 {
2373 	int i;
2374 
2375 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2376 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2377 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2378 
2379 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2380 			       le64_to_cpu(desc->addr),
2381 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2382 	}
2383 
2384 	kfree(dev->host_mem_desc_bufs);
2385 	dev->host_mem_desc_bufs = NULL;
2386 }
2387 
2388 static void nvme_free_host_mem(struct nvme_dev *dev)
2389 {
2390 	if (dev->hmb_sgt)
2391 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2392 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2393 	else
2394 		nvme_free_host_mem_multi(dev);
2395 
2396 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2397 			dev->host_mem_descs, dev->host_mem_descs_dma);
2398 	dev->host_mem_descs = NULL;
2399 	dev->host_mem_descs_size = 0;
2400 	dev->nr_host_mem_descs = 0;
2401 }
2402 
2403 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2404 {
2405 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2406 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2407 	if (!dev->hmb_sgt)
2408 		return -ENOMEM;
2409 
2410 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2411 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2412 			GFP_KERNEL);
2413 	if (!dev->host_mem_descs) {
2414 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2415 				DMA_BIDIRECTIONAL);
2416 		dev->hmb_sgt = NULL;
2417 		return -ENOMEM;
2418 	}
2419 	dev->host_mem_size = size;
2420 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2421 	dev->nr_host_mem_descs = 1;
2422 
2423 	dev->host_mem_descs[0].addr =
2424 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2425 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2426 	return 0;
2427 }
2428 
2429 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2430 		u32 chunk_size)
2431 {
2432 	struct nvme_host_mem_buf_desc *descs;
2433 	u32 max_entries, len, descs_size;
2434 	dma_addr_t descs_dma;
2435 	int i = 0;
2436 	void **bufs;
2437 	u64 size, tmp;
2438 
2439 	tmp = (preferred + chunk_size - 1);
2440 	do_div(tmp, chunk_size);
2441 	max_entries = tmp;
2442 
2443 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2444 		max_entries = dev->ctrl.hmmaxd;
2445 
2446 	descs_size = max_entries * sizeof(*descs);
2447 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2448 			GFP_KERNEL);
2449 	if (!descs)
2450 		goto out;
2451 
2452 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2453 	if (!bufs)
2454 		goto out_free_descs;
2455 
2456 	for (size = 0; size < preferred && i < max_entries; size += len) {
2457 		dma_addr_t dma_addr;
2458 
2459 		len = min_t(u64, chunk_size, preferred - size);
2460 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2461 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2462 		if (!bufs[i])
2463 			break;
2464 
2465 		descs[i].addr = cpu_to_le64(dma_addr);
2466 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2467 		i++;
2468 	}
2469 
2470 	if (!size)
2471 		goto out_free_bufs;
2472 
2473 	dev->nr_host_mem_descs = i;
2474 	dev->host_mem_size = size;
2475 	dev->host_mem_descs = descs;
2476 	dev->host_mem_descs_dma = descs_dma;
2477 	dev->host_mem_descs_size = descs_size;
2478 	dev->host_mem_desc_bufs = bufs;
2479 	return 0;
2480 
2481 out_free_bufs:
2482 	kfree(bufs);
2483 out_free_descs:
2484 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2485 out:
2486 	dev->host_mem_descs = NULL;
2487 	return -ENOMEM;
2488 }
2489 
2490 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2491 {
2492 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2493 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2494 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2495 	u64 chunk_size;
2496 
2497 	/*
2498 	 * If there is an IOMMU that can merge pages, try a virtually
2499 	 * non-contiguous allocation for a single segment first.
2500 	 */
2501 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2502 		if (!nvme_alloc_host_mem_single(dev, preferred))
2503 			return 0;
2504 	}
2505 
2506 	/* start big and work our way down */
2507 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2508 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2509 			if (!min || dev->host_mem_size >= min)
2510 				return 0;
2511 			nvme_free_host_mem(dev);
2512 		}
2513 	}
2514 
2515 	return -ENOMEM;
2516 }
2517 
2518 static int nvme_setup_host_mem(struct nvme_dev *dev)
2519 {
2520 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2521 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2522 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2523 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2524 	int ret;
2525 
2526 	if (!dev->ctrl.hmpre)
2527 		return 0;
2528 
2529 	preferred = min(preferred, max);
2530 	if (min > max) {
2531 		dev_warn(dev->ctrl.device,
2532 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2533 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2534 		nvme_free_host_mem(dev);
2535 		return 0;
2536 	}
2537 
2538 	/*
2539 	 * If we already have a buffer allocated check if we can reuse it.
2540 	 */
2541 	if (dev->host_mem_descs) {
2542 		if (dev->host_mem_size >= min)
2543 			enable_bits |= NVME_HOST_MEM_RETURN;
2544 		else
2545 			nvme_free_host_mem(dev);
2546 	}
2547 
2548 	if (!dev->host_mem_descs) {
2549 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2550 			dev_warn(dev->ctrl.device,
2551 				"failed to allocate host memory buffer.\n");
2552 			return 0; /* controller must work without HMB */
2553 		}
2554 
2555 		dev_info(dev->ctrl.device,
2556 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2557 			dev->host_mem_size >> ilog2(SZ_1M),
2558 			dev->nr_host_mem_descs,
2559 			str_plural(dev->nr_host_mem_descs));
2560 	}
2561 
2562 	ret = nvme_set_host_mem(dev, enable_bits);
2563 	if (ret)
2564 		nvme_free_host_mem(dev);
2565 	return ret;
2566 }
2567 
2568 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2569 		char *buf)
2570 {
2571 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2572 
2573 	return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz  : 0x%08x\n",
2574 		       ndev->cmbloc, ndev->cmbsz);
2575 }
2576 static DEVICE_ATTR_RO(cmb);
2577 
2578 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2579 		char *buf)
2580 {
2581 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2582 
2583 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2584 }
2585 static DEVICE_ATTR_RO(cmbloc);
2586 
2587 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2588 		char *buf)
2589 {
2590 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2591 
2592 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2593 }
2594 static DEVICE_ATTR_RO(cmbsz);
2595 
2596 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2597 			char *buf)
2598 {
2599 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2600 
2601 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2602 }
2603 
2604 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2605 			 const char *buf, size_t count)
2606 {
2607 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2608 	bool new;
2609 	int ret;
2610 
2611 	if (kstrtobool(buf, &new) < 0)
2612 		return -EINVAL;
2613 
2614 	if (new == ndev->hmb)
2615 		return count;
2616 
2617 	if (new) {
2618 		ret = nvme_setup_host_mem(ndev);
2619 	} else {
2620 		ret = nvme_set_host_mem(ndev, 0);
2621 		if (!ret)
2622 			nvme_free_host_mem(ndev);
2623 	}
2624 
2625 	if (ret < 0)
2626 		return ret;
2627 
2628 	return count;
2629 }
2630 static DEVICE_ATTR_RW(hmb);
2631 
2632 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2633 		struct attribute *a, int n)
2634 {
2635 	struct nvme_ctrl *ctrl =
2636 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2637 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2638 
2639 	if (a == &dev_attr_cmb.attr ||
2640 	    a == &dev_attr_cmbloc.attr ||
2641 	    a == &dev_attr_cmbsz.attr) {
2642 	    	if (!dev->cmbsz)
2643 			return 0;
2644 	}
2645 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2646 		return 0;
2647 
2648 	return a->mode;
2649 }
2650 
2651 static struct attribute *nvme_pci_attrs[] = {
2652 	&dev_attr_cmb.attr,
2653 	&dev_attr_cmbloc.attr,
2654 	&dev_attr_cmbsz.attr,
2655 	&dev_attr_hmb.attr,
2656 	NULL,
2657 };
2658 
2659 static const struct attribute_group nvme_pci_dev_attrs_group = {
2660 	.attrs		= nvme_pci_attrs,
2661 	.is_visible	= nvme_pci_attrs_are_visible,
2662 };
2663 
2664 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2665 	&nvme_dev_attrs_group,
2666 	&nvme_pci_dev_attrs_group,
2667 	NULL,
2668 };
2669 
2670 static void nvme_update_attrs(struct nvme_dev *dev)
2671 {
2672 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2673 }
2674 
2675 /*
2676  * nirqs is the number of interrupts available for write and read
2677  * queues. The core already reserved an interrupt for the admin queue.
2678  */
2679 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2680 {
2681 	struct nvme_dev *dev = affd->priv;
2682 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2683 
2684 	/*
2685 	 * If there is no interrupt available for queues, ensure that
2686 	 * the default queue is set to 1. The affinity set size is
2687 	 * also set to one, but the irq core ignores it for this case.
2688 	 *
2689 	 * If only one interrupt is available or 'write_queue' == 0, combine
2690 	 * write and read queues.
2691 	 *
2692 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2693 	 * queue.
2694 	 */
2695 	if (!nrirqs) {
2696 		nrirqs = 1;
2697 		nr_read_queues = 0;
2698 	} else if (nrirqs == 1 || !nr_write_queues) {
2699 		nr_read_queues = 0;
2700 	} else if (nr_write_queues >= nrirqs) {
2701 		nr_read_queues = 1;
2702 	} else {
2703 		nr_read_queues = nrirqs - nr_write_queues;
2704 	}
2705 
2706 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2707 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2708 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2709 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2710 	affd->nr_sets = nr_read_queues ? 2 : 1;
2711 }
2712 
2713 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2714 {
2715 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2716 	struct irq_affinity affd = {
2717 		.pre_vectors	= 1,
2718 		.calc_sets	= nvme_calc_irq_sets,
2719 		.priv		= dev,
2720 	};
2721 	unsigned int irq_queues, poll_queues;
2722 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2723 
2724 	/*
2725 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2726 	 * left over for non-polled I/O.
2727 	 */
2728 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2729 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2730 
2731 	/*
2732 	 * Initialize for the single interrupt case, will be updated in
2733 	 * nvme_calc_irq_sets().
2734 	 */
2735 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2736 	dev->io_queues[HCTX_TYPE_READ] = 0;
2737 
2738 	/*
2739 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2740 	 * but some Apple controllers require all queues to use the first
2741 	 * vector.
2742 	 */
2743 	irq_queues = 1;
2744 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2745 		irq_queues += (nr_io_queues - poll_queues);
2746 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2747 		flags &= ~PCI_IRQ_MSI;
2748 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2749 					      &affd);
2750 }
2751 
2752 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2753 {
2754 	/*
2755 	 * If tags are shared with admin queue (Apple bug), then
2756 	 * make sure we only use one IO queue.
2757 	 */
2758 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2759 		return 1;
2760 	return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2761 		dev->nr_poll_queues;
2762 }
2763 
2764 static int nvme_setup_io_queues(struct nvme_dev *dev)
2765 {
2766 	struct nvme_queue *adminq = &dev->queues[0];
2767 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2768 	unsigned int nr_io_queues;
2769 	unsigned long size;
2770 	int result;
2771 
2772 	/*
2773 	 * Sample the module parameters once at reset time so that we have
2774 	 * stable values to work with.
2775 	 */
2776 	dev->nr_write_queues = write_queues;
2777 	dev->nr_poll_queues = poll_queues;
2778 
2779 	nr_io_queues = dev->nr_allocated_queues - 1;
2780 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2781 	if (result < 0)
2782 		return result;
2783 
2784 	if (nr_io_queues == 0)
2785 		return 0;
2786 
2787 	/*
2788 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2789 	 * from set to unset. If there is a window to it is truely freed,
2790 	 * pci_free_irq_vectors() jumping into this window will crash.
2791 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2792 	 * nvme_dev_disable() path.
2793 	 */
2794 	result = nvme_setup_io_queues_trylock(dev);
2795 	if (result)
2796 		return result;
2797 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2798 		pci_free_irq(pdev, 0, adminq);
2799 
2800 	if (dev->cmb_use_sqes) {
2801 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2802 				sizeof(struct nvme_command));
2803 		if (result > 0) {
2804 			dev->q_depth = result;
2805 			dev->ctrl.sqsize = result - 1;
2806 		} else {
2807 			dev->cmb_use_sqes = false;
2808 		}
2809 	}
2810 
2811 	do {
2812 		size = db_bar_size(dev, nr_io_queues);
2813 		result = nvme_remap_bar(dev, size);
2814 		if (!result)
2815 			break;
2816 		if (!--nr_io_queues) {
2817 			result = -ENOMEM;
2818 			goto out_unlock;
2819 		}
2820 	} while (1);
2821 	adminq->q_db = dev->dbs;
2822 
2823  retry:
2824 	/* Deregister the admin queue's interrupt */
2825 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2826 		pci_free_irq(pdev, 0, adminq);
2827 
2828 	/*
2829 	 * If we enable msix early due to not intx, disable it again before
2830 	 * setting up the full range we need.
2831 	 */
2832 	pci_free_irq_vectors(pdev);
2833 
2834 	result = nvme_setup_irqs(dev, nr_io_queues);
2835 	if (result <= 0) {
2836 		result = -EIO;
2837 		goto out_unlock;
2838 	}
2839 
2840 	dev->num_vecs = result;
2841 	result = max(result - 1, 1);
2842 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2843 
2844 	/*
2845 	 * Should investigate if there's a performance win from allocating
2846 	 * more queues than interrupt vectors; it might allow the submission
2847 	 * path to scale better, even if the receive path is limited by the
2848 	 * number of interrupts.
2849 	 */
2850 	result = queue_request_irq(adminq);
2851 	if (result)
2852 		goto out_unlock;
2853 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2854 	mutex_unlock(&dev->shutdown_lock);
2855 
2856 	result = nvme_create_io_queues(dev);
2857 	if (result || dev->online_queues < 2)
2858 		return result;
2859 
2860 	if (dev->online_queues - 1 < dev->max_qid) {
2861 		nr_io_queues = dev->online_queues - 1;
2862 		nvme_delete_io_queues(dev);
2863 		result = nvme_setup_io_queues_trylock(dev);
2864 		if (result)
2865 			return result;
2866 		nvme_suspend_io_queues(dev);
2867 		goto retry;
2868 	}
2869 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2870 					dev->io_queues[HCTX_TYPE_DEFAULT],
2871 					dev->io_queues[HCTX_TYPE_READ],
2872 					dev->io_queues[HCTX_TYPE_POLL]);
2873 	return 0;
2874 out_unlock:
2875 	mutex_unlock(&dev->shutdown_lock);
2876 	return result;
2877 }
2878 
2879 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2880 					     blk_status_t error)
2881 {
2882 	struct nvme_queue *nvmeq = req->end_io_data;
2883 
2884 	blk_mq_free_request(req);
2885 	complete(&nvmeq->delete_done);
2886 	return RQ_END_IO_NONE;
2887 }
2888 
2889 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2890 					  blk_status_t error)
2891 {
2892 	struct nvme_queue *nvmeq = req->end_io_data;
2893 
2894 	if (error)
2895 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2896 
2897 	return nvme_del_queue_end(req, error);
2898 }
2899 
2900 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2901 {
2902 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2903 	struct request *req;
2904 	struct nvme_command cmd = { };
2905 
2906 	cmd.delete_queue.opcode = opcode;
2907 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2908 
2909 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2910 	if (IS_ERR(req))
2911 		return PTR_ERR(req);
2912 	nvme_init_request(req, &cmd);
2913 
2914 	if (opcode == nvme_admin_delete_cq)
2915 		req->end_io = nvme_del_cq_end;
2916 	else
2917 		req->end_io = nvme_del_queue_end;
2918 	req->end_io_data = nvmeq;
2919 
2920 	init_completion(&nvmeq->delete_done);
2921 	blk_execute_rq_nowait(req, false);
2922 	return 0;
2923 }
2924 
2925 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2926 {
2927 	int nr_queues = dev->online_queues - 1, sent = 0;
2928 	unsigned long timeout;
2929 
2930  retry:
2931 	timeout = NVME_ADMIN_TIMEOUT;
2932 	while (nr_queues > 0) {
2933 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2934 			break;
2935 		nr_queues--;
2936 		sent++;
2937 	}
2938 	while (sent) {
2939 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2940 
2941 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2942 				timeout);
2943 		if (timeout == 0)
2944 			return false;
2945 
2946 		sent--;
2947 		if (nr_queues)
2948 			goto retry;
2949 	}
2950 	return true;
2951 }
2952 
2953 static void nvme_delete_io_queues(struct nvme_dev *dev)
2954 {
2955 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2956 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2957 }
2958 
2959 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2960 {
2961 	if (dev->io_queues[HCTX_TYPE_POLL])
2962 		return 3;
2963 	if (dev->io_queues[HCTX_TYPE_READ])
2964 		return 2;
2965 	return 1;
2966 }
2967 
2968 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2969 {
2970 	if (!dev->ctrl.tagset) {
2971 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2972 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2973 		return true;
2974 	}
2975 
2976 	/* Give up if we are racing with nvme_dev_disable() */
2977 	if (!mutex_trylock(&dev->shutdown_lock))
2978 		return false;
2979 
2980 	/* Check if nvme_dev_disable() has been executed already */
2981 	if (!dev->online_queues) {
2982 		mutex_unlock(&dev->shutdown_lock);
2983 		return false;
2984 	}
2985 
2986 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2987 	/* free previously allocated queues that are no longer usable */
2988 	nvme_free_queues(dev, dev->online_queues);
2989 	mutex_unlock(&dev->shutdown_lock);
2990 	return true;
2991 }
2992 
2993 static int nvme_pci_enable(struct nvme_dev *dev)
2994 {
2995 	int result = -ENOMEM;
2996 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2997 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2998 
2999 	if (pci_enable_device_mem(pdev))
3000 		return result;
3001 
3002 	pci_set_master(pdev);
3003 
3004 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
3005 		dev_dbg(dev->ctrl.device, "reading CSTS register failed\n");
3006 		result = -ENODEV;
3007 		goto disable;
3008 	}
3009 
3010 	/*
3011 	 * Some devices and/or platforms don't advertise or work with INTx
3012 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
3013 	 * adjust this later.
3014 	 */
3015 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
3016 		flags &= ~PCI_IRQ_MSI;
3017 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
3018 	if (result < 0)
3019 		goto disable;
3020 
3021 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
3022 
3023 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
3024 				io_queue_depth);
3025 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
3026 	dev->dbs = dev->bar + 4096;
3027 
3028 	/*
3029 	 * Some Apple controllers require a non-standard SQE size.
3030 	 * Interestingly they also seem to ignore the CC:IOSQES register
3031 	 * so we don't bother updating it here.
3032 	 */
3033 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
3034 		dev->io_sqes = 7;
3035 	else
3036 		dev->io_sqes = NVME_NVM_IOSQES;
3037 
3038 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
3039 		dev->q_depth = 2;
3040 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
3041 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
3042 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
3043 		dev->q_depth = 64;
3044 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
3045                         "set queue depth=%u\n", dev->q_depth);
3046 	}
3047 
3048 	/*
3049 	 * Controllers with the shared tags quirk need the IO queue to be
3050 	 * big enough so that we get 32 tags for the admin queue
3051 	 */
3052 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
3053 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
3054 		dev->q_depth = NVME_AQ_DEPTH + 2;
3055 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
3056 			 dev->q_depth);
3057 	}
3058 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
3059 
3060 	nvme_map_cmb(dev);
3061 
3062 	pci_save_state(pdev);
3063 
3064 	result = nvme_pci_configure_admin_queue(dev);
3065 	if (result)
3066 		goto free_irq;
3067 	return result;
3068 
3069  free_irq:
3070 	pci_free_irq_vectors(pdev);
3071  disable:
3072 	pci_disable_device(pdev);
3073 	return result;
3074 }
3075 
3076 static void nvme_dev_unmap(struct nvme_dev *dev)
3077 {
3078 	if (dev->bar)
3079 		iounmap(dev->bar);
3080 	pci_release_mem_regions(to_pci_dev(dev->dev));
3081 }
3082 
3083 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
3084 {
3085 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3086 	u32 csts;
3087 
3088 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
3089 		return true;
3090 	if (pdev->error_state != pci_channel_io_normal)
3091 		return true;
3092 
3093 	csts = readl(dev->bar + NVME_REG_CSTS);
3094 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
3095 }
3096 
3097 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
3098 {
3099 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
3100 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3101 	bool dead;
3102 
3103 	mutex_lock(&dev->shutdown_lock);
3104 	dead = nvme_pci_ctrl_is_dead(dev);
3105 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
3106 		if (pci_is_enabled(pdev))
3107 			nvme_start_freeze(&dev->ctrl);
3108 		/*
3109 		 * Give the controller a chance to complete all entered requests
3110 		 * if doing a safe shutdown.
3111 		 */
3112 		if (!dead && shutdown)
3113 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3114 	}
3115 
3116 	nvme_quiesce_io_queues(&dev->ctrl);
3117 
3118 	if (!dead && dev->ctrl.queue_count > 0) {
3119 		nvme_delete_io_queues(dev);
3120 		nvme_disable_ctrl(&dev->ctrl, shutdown);
3121 		nvme_poll_irqdisable(&dev->queues[0]);
3122 	}
3123 	nvme_suspend_io_queues(dev);
3124 	nvme_suspend_queue(dev, 0);
3125 	pci_free_irq_vectors(pdev);
3126 	if (pci_is_enabled(pdev))
3127 		pci_disable_device(pdev);
3128 	nvme_reap_pending_cqes(dev);
3129 
3130 	nvme_cancel_tagset(&dev->ctrl);
3131 	nvme_cancel_admin_tagset(&dev->ctrl);
3132 
3133 	/*
3134 	 * The driver will not be starting up queues again if shutting down so
3135 	 * must flush all entered requests to their failed completion to avoid
3136 	 * deadlocking blk-mq hot-cpu notifier.
3137 	 */
3138 	if (shutdown) {
3139 		nvme_unquiesce_io_queues(&dev->ctrl);
3140 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3141 			nvme_unquiesce_admin_queue(&dev->ctrl);
3142 	}
3143 	mutex_unlock(&dev->shutdown_lock);
3144 }
3145 
3146 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3147 {
3148 	if (!nvme_wait_reset(&dev->ctrl))
3149 		return -EBUSY;
3150 	nvme_dev_disable(dev, shutdown);
3151 	return 0;
3152 }
3153 
3154 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3155 {
3156 	size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3157 
3158 	dev->dmavec_mempool = mempool_create_node(1,
3159 			mempool_kmalloc, mempool_kfree,
3160 			(void *)alloc_size, GFP_KERNEL,
3161 			dev_to_node(dev->dev));
3162 	if (!dev->dmavec_mempool)
3163 		return -ENOMEM;
3164 	return 0;
3165 }
3166 
3167 static void nvme_free_tagset(struct nvme_dev *dev)
3168 {
3169 	if (dev->tagset.tags)
3170 		nvme_remove_io_tag_set(&dev->ctrl);
3171 	dev->ctrl.tagset = NULL;
3172 }
3173 
3174 /* pairs with nvme_pci_alloc_dev */
3175 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3176 {
3177 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3178 
3179 	nvme_free_tagset(dev);
3180 	put_device(dev->dev);
3181 	kfree(dev->queues);
3182 	kfree(dev);
3183 }
3184 
3185 static void nvme_reset_work(struct work_struct *work)
3186 {
3187 	struct nvme_dev *dev =
3188 		container_of(work, struct nvme_dev, ctrl.reset_work);
3189 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3190 	int result;
3191 
3192 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3193 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3194 			 dev->ctrl.state);
3195 		result = -ENODEV;
3196 		goto out;
3197 	}
3198 
3199 	/*
3200 	 * If we're called to reset a live controller first shut it down before
3201 	 * moving on.
3202 	 */
3203 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3204 		nvme_dev_disable(dev, false);
3205 	nvme_sync_queues(&dev->ctrl);
3206 
3207 	mutex_lock(&dev->shutdown_lock);
3208 	result = nvme_pci_enable(dev);
3209 	if (result)
3210 		goto out_unlock;
3211 	nvme_unquiesce_admin_queue(&dev->ctrl);
3212 	mutex_unlock(&dev->shutdown_lock);
3213 
3214 	/*
3215 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3216 	 * initializing procedure here.
3217 	 */
3218 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3219 		dev_warn(dev->ctrl.device,
3220 			"failed to mark controller CONNECTING\n");
3221 		result = -EBUSY;
3222 		goto out;
3223 	}
3224 
3225 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3226 	if (result)
3227 		goto out;
3228 
3229 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3230 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3231 	else
3232 		dev->ctrl.max_integrity_segments = 1;
3233 
3234 	nvme_dbbuf_dma_alloc(dev);
3235 
3236 	result = nvme_setup_host_mem(dev);
3237 	if (result < 0)
3238 		goto out;
3239 
3240 	nvme_update_attrs(dev);
3241 
3242 	result = nvme_setup_io_queues(dev);
3243 	if (result)
3244 		goto out;
3245 
3246 	/*
3247 	 * Freeze and update the number of I/O queues as those might have
3248 	 * changed.  If there are no I/O queues left after this reset, keep the
3249 	 * controller around but remove all namespaces.
3250 	 */
3251 	if (dev->online_queues > 1) {
3252 		nvme_dbbuf_set(dev);
3253 		nvme_unquiesce_io_queues(&dev->ctrl);
3254 		nvme_wait_freeze(&dev->ctrl);
3255 		if (!nvme_pci_update_nr_queues(dev))
3256 			goto out;
3257 		nvme_unfreeze(&dev->ctrl);
3258 	} else {
3259 		dev_warn(dev->ctrl.device, "IO queues lost\n");
3260 		nvme_mark_namespaces_dead(&dev->ctrl);
3261 		nvme_unquiesce_io_queues(&dev->ctrl);
3262 		nvme_remove_namespaces(&dev->ctrl);
3263 		nvme_free_tagset(dev);
3264 	}
3265 
3266 	/*
3267 	 * If only admin queue live, keep it to do further investigation or
3268 	 * recovery.
3269 	 */
3270 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3271 		dev_warn(dev->ctrl.device,
3272 			"failed to mark controller live state\n");
3273 		result = -ENODEV;
3274 		goto out;
3275 	}
3276 
3277 	nvme_start_ctrl(&dev->ctrl);
3278 	return;
3279 
3280  out_unlock:
3281 	mutex_unlock(&dev->shutdown_lock);
3282  out:
3283 	/*
3284 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3285 	 * may be holding this pci_dev's device lock.
3286 	 */
3287 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3288 		 result);
3289 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3290 	nvme_dev_disable(dev, true);
3291 	nvme_sync_queues(&dev->ctrl);
3292 	nvme_mark_namespaces_dead(&dev->ctrl);
3293 	nvme_unquiesce_io_queues(&dev->ctrl);
3294 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3295 }
3296 
3297 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3298 {
3299 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3300 	return 0;
3301 }
3302 
3303 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3304 {
3305 	writel(val, to_nvme_dev(ctrl)->bar + off);
3306 	return 0;
3307 }
3308 
3309 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3310 {
3311 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3312 	return 0;
3313 }
3314 
3315 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3316 {
3317 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3318 
3319 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3320 }
3321 
3322 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3323 {
3324 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3325 	struct nvme_subsystem *subsys = ctrl->subsys;
3326 
3327 	dev_err(ctrl->device,
3328 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3329 		pdev->vendor, pdev->device,
3330 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3331 		subsys->model, nvme_strlen(subsys->firmware_rev,
3332 					   sizeof(subsys->firmware_rev)),
3333 		subsys->firmware_rev);
3334 }
3335 
3336 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3337 {
3338 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3339 
3340 	return dma_pci_p2pdma_supported(dev->dev);
3341 }
3342 
3343 static unsigned long nvme_pci_get_virt_boundary(struct nvme_ctrl *ctrl,
3344 						bool is_admin)
3345 {
3346 	if (!nvme_ctrl_sgl_supported(ctrl) || is_admin)
3347 		return NVME_CTRL_PAGE_SIZE - 1;
3348 	return 0;
3349 }
3350 
3351 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3352 	.name			= "pcie",
3353 	.module			= THIS_MODULE,
3354 	.flags			= NVME_F_METADATA_SUPPORTED,
3355 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3356 	.reg_read32		= nvme_pci_reg_read32,
3357 	.reg_write32		= nvme_pci_reg_write32,
3358 	.reg_read64		= nvme_pci_reg_read64,
3359 	.free_ctrl		= nvme_pci_free_ctrl,
3360 	.submit_async_event	= nvme_pci_submit_async_event,
3361 	.subsystem_reset	= nvme_pci_subsystem_reset,
3362 	.get_address		= nvme_pci_get_address,
3363 	.print_device_info	= nvme_pci_print_device_info,
3364 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3365 	.get_virt_boundary	= nvme_pci_get_virt_boundary,
3366 };
3367 
3368 static int nvme_dev_map(struct nvme_dev *dev)
3369 {
3370 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3371 
3372 	if (pci_request_mem_regions(pdev, "nvme"))
3373 		return -ENODEV;
3374 
3375 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3376 		goto release;
3377 
3378 	return 0;
3379   release:
3380 	pci_release_mem_regions(pdev);
3381 	return -ENODEV;
3382 }
3383 
3384 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3385 {
3386 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3387 		/*
3388 		 * Several Samsung devices seem to drop off the PCIe bus
3389 		 * randomly when APST is on and uses the deepest sleep state.
3390 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3391 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3392 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3393 		 * laptops.
3394 		 */
3395 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3396 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3397 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3398 			return NVME_QUIRK_NO_DEEPEST_PS;
3399 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3400 		/*
3401 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3402 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3403 		 * within few minutes after bootup on a Coffee Lake board -
3404 		 * ASUS PRIME Z370-A
3405 		 */
3406 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3407 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3408 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3409 			return NVME_QUIRK_NO_APST;
3410 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3411 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3412 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3413 		/*
3414 		 * Forcing to use host managed nvme power settings for
3415 		 * lowest idle power with quick resume latency on
3416 		 * Samsung and Toshiba SSDs based on suspend behavior
3417 		 * on Coffee Lake board for LENOVO C640
3418 		 */
3419 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3420 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3421 			return NVME_QUIRK_SIMPLE_SUSPEND;
3422 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3423 		   pdev->device == 0x500f)) {
3424 		/*
3425 		 * Exclude some Kingston NV1 and A2000 devices from
3426 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3427 		 * lot of energy with s2idle sleep on some TUXEDO platforms.
3428 		 */
3429 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3430 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3431 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3432 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3433 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3434 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3435 		/*
3436 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3437 		 * because of high power consumption (> 2 Watt) in s2idle
3438 		 * sleep. Only some boards with Intel CPU are affected.
3439 		 * (Note for testing: Samsung 990 Evo Plus has same PCI ID)
3440 		 */
3441 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3442 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3443 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3444 		    dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3445 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3446 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3447 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3448 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3449 	}
3450 
3451 	/*
3452 	 * NVMe SSD drops off the PCIe bus after system idle
3453 	 * for 10 hours on a Lenovo N60z board.
3454 	 */
3455 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3456 		return NVME_QUIRK_NO_APST;
3457 
3458 	return 0;
3459 }
3460 
3461 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3462 		const struct pci_device_id *id)
3463 {
3464 	unsigned long quirks = id->driver_data;
3465 	int node = dev_to_node(&pdev->dev);
3466 	struct nvme_dev *dev;
3467 	int ret = -ENOMEM;
3468 
3469 	dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3470 			GFP_KERNEL, node);
3471 	if (!dev)
3472 		return ERR_PTR(-ENOMEM);
3473 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3474 	mutex_init(&dev->shutdown_lock);
3475 
3476 	dev->nr_write_queues = write_queues;
3477 	dev->nr_poll_queues = poll_queues;
3478 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3479 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3480 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3481 	if (!dev->queues)
3482 		goto out_free_dev;
3483 
3484 	dev->dev = get_device(&pdev->dev);
3485 
3486 	quirks |= check_vendor_combination_bug(pdev);
3487 	if (!noacpi &&
3488 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3489 	    acpi_storage_d3(&pdev->dev)) {
3490 		/*
3491 		 * Some systems use a bios work around to ask for D3 on
3492 		 * platforms that support kernel managed suspend.
3493 		 */
3494 		dev_info(&pdev->dev,
3495 			 "platform quirk: setting simple suspend\n");
3496 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3497 	}
3498 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3499 			     quirks);
3500 	if (ret)
3501 		goto out_put_device;
3502 
3503 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3504 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3505 	else
3506 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3507 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3508 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3509 
3510 	/*
3511 	 * Limit the max command size to prevent iod->sg allocations going
3512 	 * over a single page.
3513 	 */
3514 	dev->ctrl.max_hw_sectors = min_t(u32,
3515 			NVME_MAX_BYTES >> SECTOR_SHIFT,
3516 			dma_opt_mapping_size(&pdev->dev) >> 9);
3517 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3518 	dev->ctrl.max_integrity_segments = 1;
3519 	return dev;
3520 
3521 out_put_device:
3522 	put_device(dev->dev);
3523 	kfree(dev->queues);
3524 out_free_dev:
3525 	kfree(dev);
3526 	return ERR_PTR(ret);
3527 }
3528 
3529 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3530 {
3531 	struct nvme_dev *dev;
3532 	int result = -ENOMEM;
3533 
3534 	dev = nvme_pci_alloc_dev(pdev, id);
3535 	if (IS_ERR(dev))
3536 		return PTR_ERR(dev);
3537 
3538 	result = nvme_add_ctrl(&dev->ctrl);
3539 	if (result)
3540 		goto out_put_ctrl;
3541 
3542 	result = nvme_dev_map(dev);
3543 	if (result)
3544 		goto out_uninit_ctrl;
3545 
3546 	result = nvme_pci_alloc_iod_mempool(dev);
3547 	if (result)
3548 		goto out_dev_unmap;
3549 
3550 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3551 
3552 	result = nvme_pci_enable(dev);
3553 	if (result)
3554 		goto out_release_iod_mempool;
3555 
3556 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3557 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3558 	if (result)
3559 		goto out_disable;
3560 
3561 	/*
3562 	 * Mark the controller as connecting before sending admin commands to
3563 	 * allow the timeout handler to do the right thing.
3564 	 */
3565 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3566 		dev_warn(dev->ctrl.device,
3567 			"failed to mark controller CONNECTING\n");
3568 		result = -EBUSY;
3569 		goto out_disable;
3570 	}
3571 
3572 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3573 	if (result)
3574 		goto out_disable;
3575 
3576 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3577 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3578 	else
3579 		dev->ctrl.max_integrity_segments = 1;
3580 
3581 	nvme_dbbuf_dma_alloc(dev);
3582 
3583 	result = nvme_setup_host_mem(dev);
3584 	if (result < 0)
3585 		goto out_disable;
3586 
3587 	nvme_update_attrs(dev);
3588 
3589 	result = nvme_setup_io_queues(dev);
3590 	if (result)
3591 		goto out_disable;
3592 
3593 	if (dev->online_queues > 1) {
3594 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3595 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3596 		nvme_dbbuf_set(dev);
3597 	}
3598 
3599 	if (!dev->ctrl.tagset)
3600 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3601 
3602 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3603 		dev_warn(dev->ctrl.device,
3604 			"failed to mark controller live state\n");
3605 		result = -ENODEV;
3606 		goto out_disable;
3607 	}
3608 
3609 	pci_set_drvdata(pdev, dev);
3610 
3611 	nvme_start_ctrl(&dev->ctrl);
3612 	nvme_put_ctrl(&dev->ctrl);
3613 	flush_work(&dev->ctrl.scan_work);
3614 	return 0;
3615 
3616 out_disable:
3617 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3618 	nvme_dev_disable(dev, true);
3619 	nvme_free_host_mem(dev);
3620 	nvme_dev_remove_admin(dev);
3621 	nvme_dbbuf_dma_free(dev);
3622 	nvme_free_queues(dev, 0);
3623 out_release_iod_mempool:
3624 	mempool_destroy(dev->dmavec_mempool);
3625 out_dev_unmap:
3626 	nvme_dev_unmap(dev);
3627 out_uninit_ctrl:
3628 	nvme_uninit_ctrl(&dev->ctrl);
3629 out_put_ctrl:
3630 	nvme_put_ctrl(&dev->ctrl);
3631 	dev_err_probe(&pdev->dev, result, "probe failed\n");
3632 	return result;
3633 }
3634 
3635 static void nvme_reset_prepare(struct pci_dev *pdev)
3636 {
3637 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3638 
3639 	/*
3640 	 * We don't need to check the return value from waiting for the reset
3641 	 * state as pci_dev device lock is held, making it impossible to race
3642 	 * with ->remove().
3643 	 */
3644 	nvme_disable_prepare_reset(dev, false);
3645 	nvme_sync_queues(&dev->ctrl);
3646 }
3647 
3648 static void nvme_reset_done(struct pci_dev *pdev)
3649 {
3650 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3651 
3652 	if (!nvme_try_sched_reset(&dev->ctrl))
3653 		flush_work(&dev->ctrl.reset_work);
3654 }
3655 
3656 static void nvme_shutdown(struct pci_dev *pdev)
3657 {
3658 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3659 
3660 	nvme_disable_prepare_reset(dev, true);
3661 }
3662 
3663 /*
3664  * The driver's remove may be called on a device in a partially initialized
3665  * state. This function must not have any dependencies on the device state in
3666  * order to proceed.
3667  */
3668 static void nvme_remove(struct pci_dev *pdev)
3669 {
3670 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3671 
3672 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3673 	pci_set_drvdata(pdev, NULL);
3674 
3675 	if (!pci_device_is_present(pdev)) {
3676 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3677 		nvme_dev_disable(dev, true);
3678 	}
3679 
3680 	flush_work(&dev->ctrl.reset_work);
3681 	nvme_stop_ctrl(&dev->ctrl);
3682 	nvme_remove_namespaces(&dev->ctrl);
3683 	nvme_dev_disable(dev, true);
3684 	nvme_free_host_mem(dev);
3685 	nvme_dev_remove_admin(dev);
3686 	nvme_dbbuf_dma_free(dev);
3687 	nvme_free_queues(dev, 0);
3688 	mempool_destroy(dev->dmavec_mempool);
3689 	nvme_release_descriptor_pools(dev);
3690 	nvme_dev_unmap(dev);
3691 	nvme_uninit_ctrl(&dev->ctrl);
3692 }
3693 
3694 #ifdef CONFIG_PM_SLEEP
3695 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3696 {
3697 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3698 }
3699 
3700 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3701 {
3702 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3703 }
3704 
3705 static int nvme_resume(struct device *dev)
3706 {
3707 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3708 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3709 
3710 	if (ndev->last_ps == U32_MAX ||
3711 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3712 		goto reset;
3713 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3714 		goto reset;
3715 
3716 	return 0;
3717 reset:
3718 	return nvme_try_sched_reset(ctrl);
3719 }
3720 
3721 static int nvme_suspend(struct device *dev)
3722 {
3723 	struct pci_dev *pdev = to_pci_dev(dev);
3724 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3725 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3726 	int ret = -EBUSY;
3727 
3728 	ndev->last_ps = U32_MAX;
3729 
3730 	/*
3731 	 * The platform does not remove power for a kernel managed suspend so
3732 	 * use host managed nvme power settings for lowest idle power if
3733 	 * possible. This should have quicker resume latency than a full device
3734 	 * shutdown.  But if the firmware is involved after the suspend or the
3735 	 * device does not support any non-default power states, shut down the
3736 	 * device fully.
3737 	 *
3738 	 * If ASPM is not enabled for the device, shut down the device and allow
3739 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3740 	 * down, so as to allow the platform to achieve its minimum low-power
3741 	 * state (which may not be possible if the link is up).
3742 	 */
3743 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3744 	    !pcie_aspm_enabled(pdev) ||
3745 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3746 		return nvme_disable_prepare_reset(ndev, true);
3747 
3748 	nvme_start_freeze(ctrl);
3749 	nvme_wait_freeze(ctrl);
3750 	nvme_sync_queues(ctrl);
3751 
3752 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3753 		goto unfreeze;
3754 
3755 	/*
3756 	 * Host memory access may not be successful in a system suspend state,
3757 	 * but the specification allows the controller to access memory in a
3758 	 * non-operational power state.
3759 	 */
3760 	if (ndev->hmb) {
3761 		ret = nvme_set_host_mem(ndev, 0);
3762 		if (ret < 0)
3763 			goto unfreeze;
3764 	}
3765 
3766 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3767 	if (ret < 0)
3768 		goto unfreeze;
3769 
3770 	/*
3771 	 * A saved state prevents pci pm from generically controlling the
3772 	 * device's power. If we're using protocol specific settings, we don't
3773 	 * want pci interfering.
3774 	 */
3775 	pci_save_state(pdev);
3776 
3777 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3778 	if (ret < 0)
3779 		goto unfreeze;
3780 
3781 	if (ret) {
3782 		/* discard the saved state */
3783 		pci_load_saved_state(pdev, NULL);
3784 
3785 		/*
3786 		 * Clearing npss forces a controller reset on resume. The
3787 		 * correct value will be rediscovered then.
3788 		 */
3789 		ret = nvme_disable_prepare_reset(ndev, true);
3790 		ctrl->npss = 0;
3791 	}
3792 unfreeze:
3793 	nvme_unfreeze(ctrl);
3794 	return ret;
3795 }
3796 
3797 static int nvme_simple_suspend(struct device *dev)
3798 {
3799 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3800 
3801 	return nvme_disable_prepare_reset(ndev, true);
3802 }
3803 
3804 static int nvme_simple_resume(struct device *dev)
3805 {
3806 	struct pci_dev *pdev = to_pci_dev(dev);
3807 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3808 
3809 	return nvme_try_sched_reset(&ndev->ctrl);
3810 }
3811 
3812 static const struct dev_pm_ops nvme_dev_pm_ops = {
3813 	.suspend	= nvme_suspend,
3814 	.resume		= nvme_resume,
3815 	.freeze		= nvme_simple_suspend,
3816 	.thaw		= nvme_simple_resume,
3817 	.poweroff	= nvme_simple_suspend,
3818 	.restore	= nvme_simple_resume,
3819 };
3820 #endif /* CONFIG_PM_SLEEP */
3821 
3822 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3823 						pci_channel_state_t state)
3824 {
3825 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3826 
3827 	/*
3828 	 * A frozen channel requires a reset. When detected, this method will
3829 	 * shutdown the controller to quiesce. The controller will be restarted
3830 	 * after the slot reset through driver's slot_reset callback.
3831 	 */
3832 	switch (state) {
3833 	case pci_channel_io_normal:
3834 		return PCI_ERS_RESULT_CAN_RECOVER;
3835 	case pci_channel_io_frozen:
3836 		dev_warn(dev->ctrl.device,
3837 			"frozen state error detected, reset controller\n");
3838 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3839 			nvme_dev_disable(dev, true);
3840 			return PCI_ERS_RESULT_DISCONNECT;
3841 		}
3842 		nvme_dev_disable(dev, false);
3843 		return PCI_ERS_RESULT_NEED_RESET;
3844 	case pci_channel_io_perm_failure:
3845 		dev_warn(dev->ctrl.device,
3846 			"failure state error detected, request disconnect\n");
3847 		return PCI_ERS_RESULT_DISCONNECT;
3848 	}
3849 	return PCI_ERS_RESULT_NEED_RESET;
3850 }
3851 
3852 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3853 {
3854 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3855 
3856 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3857 	pci_restore_state(pdev);
3858 	if (nvme_try_sched_reset(&dev->ctrl))
3859 		nvme_unquiesce_io_queues(&dev->ctrl);
3860 	return PCI_ERS_RESULT_RECOVERED;
3861 }
3862 
3863 static void nvme_error_resume(struct pci_dev *pdev)
3864 {
3865 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3866 
3867 	flush_work(&dev->ctrl.reset_work);
3868 }
3869 
3870 static const struct pci_error_handlers nvme_err_handler = {
3871 	.error_detected	= nvme_error_detected,
3872 	.slot_reset	= nvme_slot_reset,
3873 	.resume		= nvme_error_resume,
3874 	.reset_prepare	= nvme_reset_prepare,
3875 	.reset_done	= nvme_reset_done,
3876 };
3877 
3878 static const struct pci_device_id nvme_id_table[] = {
3879 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3880 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3881 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3882 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3883 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3884 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3885 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3886 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3887 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3888 				NVME_QUIRK_BOGUS_NID, },
3889 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3890 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3891 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3892 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3893 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3894 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3895 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3896 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3897 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3898 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3899 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3900 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3901 				NVME_QUIRK_BOGUS_NID, },
3902 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3903 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3904 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3905 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3906 	{ PCI_DEVICE(0x126f, 0x1001),	/* Silicon Motion generic */
3907 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3908 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3909 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3910 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3911 				NVME_QUIRK_BOGUS_NID, },
3912 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3913 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3914 				NVME_QUIRK_BOGUS_NID, },
3915 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3916 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3917 				NVME_QUIRK_NO_NS_DESC_LIST, },
3918 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3919 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3920 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3921 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3922 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3923 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3924 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3925 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3926 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3927 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3928 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3929 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3930 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3931 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3932 	{ PCI_DEVICE(0x15b7, 0x5009),   /* Sandisk SN550 */
3933 		.driver_data = NVME_QUIRK_BROKEN_MSI |
3934 				NVME_QUIRK_NO_DEEPEST_PS },
3935 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3936 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3937 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3938 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3939 				NVME_QUIRK_BOGUS_NID, },
3940 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3941 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3942 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3943 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3944 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3945 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3946 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3947 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3948 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3949 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3950 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3951 				NVME_QUIRK_BOGUS_NID, },
3952 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3953 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3954 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3955 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3956 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3957 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3958 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3959 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3960 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3961 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3962 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3963 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3964 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3965 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3966 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3967 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3968 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3969 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3970 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3971 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3972 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3973 				NVME_QUIRK_BOGUS_NID, },
3974 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3975 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3976 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3977 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3978 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3979 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3980 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3981 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3982 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3983 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3984 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3985 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3986 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3987 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3988 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3989 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3990 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3991 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3992 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3993 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3994 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3995 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3996 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3997 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3998 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3999 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4000 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
4001 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4002 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
4003 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4004 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
4005 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4006 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
4007 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4008 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
4009 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4010 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
4011 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4012 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
4013 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4014 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
4015 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4016 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
4017 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4018 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
4019 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4020 	{ PCI_DEVICE(0x1fa0, 0x2283),   /* Wodposit WPBSNM8-256GTP */
4021 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
4022 	{ PCI_DEVICE(0x025e, 0xf1ac),   /* SOLIDIGM  P44 pro SSDPFKKW020X7  */
4023 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
4024 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
4025 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4026 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
4027 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4028 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
4029 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4030 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
4031 		.driver_data = NVME_QUIRK_BOGUS_NID |
4032 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
4033 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
4034 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4035 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
4036 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4037 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
4038 		.driver_data = NVME_QUIRK_BOGUS_NID, },
4039 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
4040 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4041 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
4042 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4043 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
4044 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4045 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
4046 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4047 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
4048 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4049 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
4050 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
4051 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
4052 		/*
4053 		 * Fix for the Apple controller found in the MacBook8,1 and
4054 		 * some MacBook7,1 to avoid controller resets and data loss.
4055 		 */
4056 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
4057 				NVME_QUIRK_QDEPTH_ONE },
4058 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
4059 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
4060 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
4061 				NVME_QUIRK_128_BYTES_SQES |
4062 				NVME_QUIRK_SHARED_TAGS |
4063 				NVME_QUIRK_SKIP_CID_GEN |
4064 				NVME_QUIRK_IDENTIFY_CNS },
4065 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
4066 	{ 0, }
4067 };
4068 MODULE_DEVICE_TABLE(pci, nvme_id_table);
4069 
4070 static struct pci_driver nvme_driver = {
4071 	.name		= "nvme",
4072 	.id_table	= nvme_id_table,
4073 	.probe		= nvme_probe,
4074 	.remove		= nvme_remove,
4075 	.shutdown	= nvme_shutdown,
4076 	.driver		= {
4077 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4078 #ifdef CONFIG_PM_SLEEP
4079 		.pm		= &nvme_dev_pm_ops,
4080 #endif
4081 	},
4082 	.sriov_configure = pci_sriov_configure_simple,
4083 	.err_handler	= &nvme_err_handler,
4084 };
4085 
4086 static int __init nvme_init(void)
4087 {
4088 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
4089 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
4090 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
4091 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
4092 
4093 	return pci_register_driver(&nvme_driver);
4094 }
4095 
4096 static void __exit nvme_exit(void)
4097 {
4098 	pci_unregister_driver(&nvme_driver);
4099 	flush_workqueue(nvme_wq);
4100 }
4101 
4102 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
4103 MODULE_LICENSE("GPL");
4104 MODULE_VERSION("1.0");
4105 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
4106 module_init(nvme_init);
4107 module_exit(nvme_exit);
4108