1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 struct nvme_ns_info {
37 struct nvme_ns_ids ids;
38 u32 nsid;
39 __le32 anagrpid;
40 u8 pi_offset;
41 bool is_shared;
42 bool is_readonly;
43 bool is_ready;
44 bool is_removed;
45 };
46
47 unsigned int admin_timeout = 60;
48 module_param(admin_timeout, uint, 0644);
49 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
50 EXPORT_SYMBOL_GPL(admin_timeout);
51
52 unsigned int nvme_io_timeout = 30;
53 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
54 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
55 EXPORT_SYMBOL_GPL(nvme_io_timeout);
56
57 static unsigned char shutdown_timeout = 5;
58 module_param(shutdown_timeout, byte, 0644);
59 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
60
61 static u8 nvme_max_retries = 5;
62 module_param_named(max_retries, nvme_max_retries, byte, 0644);
63 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
64
65 static unsigned long default_ps_max_latency_us = 100000;
66 module_param(default_ps_max_latency_us, ulong, 0644);
67 MODULE_PARM_DESC(default_ps_max_latency_us,
68 "max power saving latency for new devices; use PM QOS to change per device");
69
70 static bool force_apst;
71 module_param(force_apst, bool, 0644);
72 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
73
74 static unsigned long apst_primary_timeout_ms = 100;
75 module_param(apst_primary_timeout_ms, ulong, 0644);
76 MODULE_PARM_DESC(apst_primary_timeout_ms,
77 "primary APST timeout in ms");
78
79 static unsigned long apst_secondary_timeout_ms = 2000;
80 module_param(apst_secondary_timeout_ms, ulong, 0644);
81 MODULE_PARM_DESC(apst_secondary_timeout_ms,
82 "secondary APST timeout in ms");
83
84 static unsigned long apst_primary_latency_tol_us = 15000;
85 module_param(apst_primary_latency_tol_us, ulong, 0644);
86 MODULE_PARM_DESC(apst_primary_latency_tol_us,
87 "primary APST latency tolerance in us");
88
89 static unsigned long apst_secondary_latency_tol_us = 100000;
90 module_param(apst_secondary_latency_tol_us, ulong, 0644);
91 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
92 "secondary APST latency tolerance in us");
93
94 /*
95 * Older kernels didn't enable protection information if it was at an offset.
96 * Newer kernels do, so it breaks reads on the upgrade if such formats were
97 * used in prior kernels since the metadata written did not contain a valid
98 * checksum.
99 */
100 static bool disable_pi_offsets = false;
101 module_param(disable_pi_offsets, bool, 0444);
102 MODULE_PARM_DESC(disable_pi_offsets,
103 "disable protection information if it has an offset");
104
105 /*
106 * nvme_wq - hosts nvme related works that are not reset or delete
107 * nvme_reset_wq - hosts nvme reset works
108 * nvme_delete_wq - hosts nvme delete works
109 *
110 * nvme_wq will host works such as scan, aen handling, fw activation,
111 * keep-alive, periodic reconnects etc. nvme_reset_wq
112 * runs reset works which also flush works hosted on nvme_wq for
113 * serialization purposes. nvme_delete_wq host controller deletion
114 * works which flush reset works for serialization.
115 */
116 struct workqueue_struct *nvme_wq;
117 EXPORT_SYMBOL_GPL(nvme_wq);
118
119 struct workqueue_struct *nvme_reset_wq;
120 EXPORT_SYMBOL_GPL(nvme_reset_wq);
121
122 struct workqueue_struct *nvme_delete_wq;
123 EXPORT_SYMBOL_GPL(nvme_delete_wq);
124
125 static LIST_HEAD(nvme_subsystems);
126 DEFINE_MUTEX(nvme_subsystems_lock);
127
128 static DEFINE_IDA(nvme_instance_ida);
129 static dev_t nvme_ctrl_base_chr_devt;
130 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
131 static const struct class nvme_class = {
132 .name = "nvme",
133 .dev_uevent = nvme_class_uevent,
134 };
135
136 static const struct class nvme_subsys_class = {
137 .name = "nvme-subsystem",
138 };
139
140 static DEFINE_IDA(nvme_ns_chr_minor_ida);
141 static dev_t nvme_ns_chr_devt;
142 static const struct class nvme_ns_chr_class = {
143 .name = "nvme-generic",
144 };
145
146 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
147 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
148 unsigned nsid);
149 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
150 struct nvme_command *cmd);
151
nvme_queue_scan(struct nvme_ctrl * ctrl)152 void nvme_queue_scan(struct nvme_ctrl *ctrl)
153 {
154 /*
155 * Only new queue scan work when admin and IO queues are both alive
156 */
157 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
158 queue_work(nvme_wq, &ctrl->scan_work);
159 }
160
161 /*
162 * Use this function to proceed with scheduling reset_work for a controller
163 * that had previously been set to the resetting state. This is intended for
164 * code paths that can't be interrupted by other reset attempts. A hot removal
165 * may prevent this from succeeding.
166 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)167 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
168 {
169 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
170 return -EBUSY;
171 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
172 return -EBUSY;
173 return 0;
174 }
175 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
176
nvme_failfast_work(struct work_struct * work)177 static void nvme_failfast_work(struct work_struct *work)
178 {
179 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
180 struct nvme_ctrl, failfast_work);
181
182 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
183 return;
184
185 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
186 dev_info(ctrl->device, "failfast expired\n");
187 nvme_kick_requeue_lists(ctrl);
188 }
189
nvme_start_failfast_work(struct nvme_ctrl * ctrl)190 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
191 {
192 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
193 return;
194
195 schedule_delayed_work(&ctrl->failfast_work,
196 ctrl->opts->fast_io_fail_tmo * HZ);
197 }
198
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)199 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
200 {
201 if (!ctrl->opts)
202 return;
203
204 cancel_delayed_work_sync(&ctrl->failfast_work);
205 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
206 }
207
208
nvme_reset_ctrl(struct nvme_ctrl * ctrl)209 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
210 {
211 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
212 return -EBUSY;
213 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
214 return -EBUSY;
215 return 0;
216 }
217 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
218
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)219 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
220 {
221 int ret;
222
223 ret = nvme_reset_ctrl(ctrl);
224 if (!ret) {
225 flush_work(&ctrl->reset_work);
226 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
227 ret = -ENETRESET;
228 }
229
230 return ret;
231 }
232
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)233 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
234 {
235 dev_info(ctrl->device,
236 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
237
238 flush_work(&ctrl->reset_work);
239 nvme_stop_ctrl(ctrl);
240 nvme_remove_namespaces(ctrl);
241 ctrl->ops->delete_ctrl(ctrl);
242 nvme_uninit_ctrl(ctrl);
243 }
244
nvme_delete_ctrl_work(struct work_struct * work)245 static void nvme_delete_ctrl_work(struct work_struct *work)
246 {
247 struct nvme_ctrl *ctrl =
248 container_of(work, struct nvme_ctrl, delete_work);
249
250 nvme_do_delete_ctrl(ctrl);
251 }
252
nvme_delete_ctrl(struct nvme_ctrl * ctrl)253 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
254 {
255 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
256 return -EBUSY;
257 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
258 return -EBUSY;
259 return 0;
260 }
261 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
262
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)263 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
264 {
265 /*
266 * Keep a reference until nvme_do_delete_ctrl() complete,
267 * since ->delete_ctrl can free the controller.
268 */
269 nvme_get_ctrl(ctrl);
270 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
271 nvme_do_delete_ctrl(ctrl);
272 nvme_put_ctrl(ctrl);
273 }
274
nvme_error_status(u16 status)275 static blk_status_t nvme_error_status(u16 status)
276 {
277 switch (status & NVME_SCT_SC_MASK) {
278 case NVME_SC_SUCCESS:
279 return BLK_STS_OK;
280 case NVME_SC_CAP_EXCEEDED:
281 return BLK_STS_NOSPC;
282 case NVME_SC_LBA_RANGE:
283 case NVME_SC_CMD_INTERRUPTED:
284 case NVME_SC_NS_NOT_READY:
285 return BLK_STS_TARGET;
286 case NVME_SC_BAD_ATTRIBUTES:
287 case NVME_SC_ONCS_NOT_SUPPORTED:
288 case NVME_SC_INVALID_OPCODE:
289 case NVME_SC_INVALID_FIELD:
290 case NVME_SC_INVALID_NS:
291 return BLK_STS_NOTSUPP;
292 case NVME_SC_WRITE_FAULT:
293 case NVME_SC_READ_ERROR:
294 case NVME_SC_UNWRITTEN_BLOCK:
295 case NVME_SC_ACCESS_DENIED:
296 case NVME_SC_READ_ONLY:
297 case NVME_SC_COMPARE_FAILED:
298 return BLK_STS_MEDIUM;
299 case NVME_SC_GUARD_CHECK:
300 case NVME_SC_APPTAG_CHECK:
301 case NVME_SC_REFTAG_CHECK:
302 case NVME_SC_INVALID_PI:
303 return BLK_STS_PROTECTION;
304 case NVME_SC_RESERVATION_CONFLICT:
305 return BLK_STS_RESV_CONFLICT;
306 case NVME_SC_HOST_PATH_ERROR:
307 return BLK_STS_TRANSPORT;
308 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
309 return BLK_STS_ZONE_ACTIVE_RESOURCE;
310 case NVME_SC_ZONE_TOO_MANY_OPEN:
311 return BLK_STS_ZONE_OPEN_RESOURCE;
312 default:
313 return BLK_STS_IOERR;
314 }
315 }
316
nvme_retry_req(struct request * req)317 static void nvme_retry_req(struct request *req)
318 {
319 unsigned long delay = 0;
320 u16 crd;
321
322 /* The mask and shift result must be <= 3 */
323 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
324 if (crd)
325 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
326
327 nvme_req(req)->retries++;
328 blk_mq_requeue_request(req, false);
329 blk_mq_delay_kick_requeue_list(req->q, delay);
330 }
331
nvme_log_error(struct request * req)332 static void nvme_log_error(struct request *req)
333 {
334 struct nvme_ns *ns = req->q->queuedata;
335 struct nvme_request *nr = nvme_req(req);
336
337 if (ns) {
338 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
339 ns->disk ? ns->disk->disk_name : "?",
340 nvme_get_opcode_str(nr->cmd->common.opcode),
341 nr->cmd->common.opcode,
342 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
343 blk_rq_bytes(req) >> ns->head->lba_shift,
344 nvme_get_error_status_str(nr->status),
345 NVME_SCT(nr->status), /* Status Code Type */
346 nr->status & NVME_SC_MASK, /* Status Code */
347 nr->status & NVME_STATUS_MORE ? "MORE " : "",
348 nr->status & NVME_STATUS_DNR ? "DNR " : "");
349 return;
350 }
351
352 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
353 dev_name(nr->ctrl->device),
354 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
355 nr->cmd->common.opcode,
356 nvme_get_error_status_str(nr->status),
357 NVME_SCT(nr->status), /* Status Code Type */
358 nr->status & NVME_SC_MASK, /* Status Code */
359 nr->status & NVME_STATUS_MORE ? "MORE " : "",
360 nr->status & NVME_STATUS_DNR ? "DNR " : "");
361 }
362
nvme_log_err_passthru(struct request * req)363 static void nvme_log_err_passthru(struct request *req)
364 {
365 struct nvme_ns *ns = req->q->queuedata;
366 struct nvme_request *nr = nvme_req(req);
367
368 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
369 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
370 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
371 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
372 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
373 nr->cmd->common.opcode,
374 nvme_get_error_status_str(nr->status),
375 NVME_SCT(nr->status), /* Status Code Type */
376 nr->status & NVME_SC_MASK, /* Status Code */
377 nr->status & NVME_STATUS_MORE ? "MORE " : "",
378 nr->status & NVME_STATUS_DNR ? "DNR " : "",
379 nr->cmd->common.cdw10,
380 nr->cmd->common.cdw11,
381 nr->cmd->common.cdw12,
382 nr->cmd->common.cdw13,
383 nr->cmd->common.cdw14,
384 nr->cmd->common.cdw14);
385 }
386
387 enum nvme_disposition {
388 COMPLETE,
389 RETRY,
390 FAILOVER,
391 AUTHENTICATE,
392 };
393
nvme_decide_disposition(struct request * req)394 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
395 {
396 if (likely(nvme_req(req)->status == 0))
397 return COMPLETE;
398
399 if (blk_noretry_request(req) ||
400 (nvme_req(req)->status & NVME_STATUS_DNR) ||
401 nvme_req(req)->retries >= nvme_max_retries)
402 return COMPLETE;
403
404 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
405 return AUTHENTICATE;
406
407 if (req->cmd_flags & REQ_NVME_MPATH) {
408 if (nvme_is_path_error(nvme_req(req)->status) ||
409 blk_queue_dying(req->q))
410 return FAILOVER;
411 } else {
412 if (blk_queue_dying(req->q))
413 return COMPLETE;
414 }
415
416 return RETRY;
417 }
418
nvme_end_req_zoned(struct request * req)419 static inline void nvme_end_req_zoned(struct request *req)
420 {
421 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
422 req_op(req) == REQ_OP_ZONE_APPEND) {
423 struct nvme_ns *ns = req->q->queuedata;
424
425 req->__sector = nvme_lba_to_sect(ns->head,
426 le64_to_cpu(nvme_req(req)->result.u64));
427 }
428 }
429
__nvme_end_req(struct request * req)430 static inline void __nvme_end_req(struct request *req)
431 {
432 nvme_end_req_zoned(req);
433 nvme_trace_bio_complete(req);
434 if (req->cmd_flags & REQ_NVME_MPATH)
435 nvme_mpath_end_request(req);
436 }
437
nvme_end_req(struct request * req)438 void nvme_end_req(struct request *req)
439 {
440 blk_status_t status = nvme_error_status(nvme_req(req)->status);
441
442 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
443 if (blk_rq_is_passthrough(req))
444 nvme_log_err_passthru(req);
445 else
446 nvme_log_error(req);
447 }
448 __nvme_end_req(req);
449 blk_mq_end_request(req, status);
450 }
451
nvme_complete_rq(struct request * req)452 void nvme_complete_rq(struct request *req)
453 {
454 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
455
456 trace_nvme_complete_rq(req);
457 nvme_cleanup_cmd(req);
458
459 /*
460 * Completions of long-running commands should not be able to
461 * defer sending of periodic keep alives, since the controller
462 * may have completed processing such commands a long time ago
463 * (arbitrarily close to command submission time).
464 * req->deadline - req->timeout is the command submission time
465 * in jiffies.
466 */
467 if (ctrl->kas &&
468 req->deadline - req->timeout >= ctrl->ka_last_check_time)
469 ctrl->comp_seen = true;
470
471 switch (nvme_decide_disposition(req)) {
472 case COMPLETE:
473 nvme_end_req(req);
474 return;
475 case RETRY:
476 nvme_retry_req(req);
477 return;
478 case FAILOVER:
479 nvme_failover_req(req);
480 return;
481 case AUTHENTICATE:
482 #ifdef CONFIG_NVME_HOST_AUTH
483 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
484 nvme_retry_req(req);
485 #else
486 nvme_end_req(req);
487 #endif
488 return;
489 }
490 }
491 EXPORT_SYMBOL_GPL(nvme_complete_rq);
492
nvme_complete_batch_req(struct request * req)493 void nvme_complete_batch_req(struct request *req)
494 {
495 trace_nvme_complete_rq(req);
496 nvme_cleanup_cmd(req);
497 __nvme_end_req(req);
498 }
499 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
500
501 /*
502 * Called to unwind from ->queue_rq on a failed command submission so that the
503 * multipathing code gets called to potentially failover to another path.
504 * The caller needs to unwind all transport specific resource allocations and
505 * must return propagate the return value.
506 */
nvme_host_path_error(struct request * req)507 blk_status_t nvme_host_path_error(struct request *req)
508 {
509 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
510 blk_mq_set_request_complete(req);
511 nvme_complete_rq(req);
512 return BLK_STS_OK;
513 }
514 EXPORT_SYMBOL_GPL(nvme_host_path_error);
515
nvme_cancel_request(struct request * req,void * data)516 bool nvme_cancel_request(struct request *req, void *data)
517 {
518 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
519 "Cancelling I/O %d", req->tag);
520
521 /* don't abort one completed or idle request */
522 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
523 return true;
524
525 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
526 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
527 blk_mq_complete_request(req);
528 return true;
529 }
530 EXPORT_SYMBOL_GPL(nvme_cancel_request);
531
nvme_cancel_tagset(struct nvme_ctrl * ctrl)532 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
533 {
534 if (ctrl->tagset) {
535 blk_mq_tagset_busy_iter(ctrl->tagset,
536 nvme_cancel_request, ctrl);
537 blk_mq_tagset_wait_completed_request(ctrl->tagset);
538 }
539 }
540 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
541
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)542 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
543 {
544 if (ctrl->admin_tagset) {
545 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
546 nvme_cancel_request, ctrl);
547 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
548 }
549 }
550 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
551
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)552 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
553 enum nvme_ctrl_state new_state)
554 {
555 enum nvme_ctrl_state old_state;
556 unsigned long flags;
557 bool changed = false;
558
559 spin_lock_irqsave(&ctrl->lock, flags);
560
561 old_state = nvme_ctrl_state(ctrl);
562 switch (new_state) {
563 case NVME_CTRL_LIVE:
564 switch (old_state) {
565 case NVME_CTRL_NEW:
566 case NVME_CTRL_RESETTING:
567 case NVME_CTRL_CONNECTING:
568 changed = true;
569 fallthrough;
570 default:
571 break;
572 }
573 break;
574 case NVME_CTRL_RESETTING:
575 switch (old_state) {
576 case NVME_CTRL_NEW:
577 case NVME_CTRL_LIVE:
578 changed = true;
579 fallthrough;
580 default:
581 break;
582 }
583 break;
584 case NVME_CTRL_CONNECTING:
585 switch (old_state) {
586 case NVME_CTRL_NEW:
587 case NVME_CTRL_RESETTING:
588 changed = true;
589 fallthrough;
590 default:
591 break;
592 }
593 break;
594 case NVME_CTRL_DELETING:
595 switch (old_state) {
596 case NVME_CTRL_LIVE:
597 case NVME_CTRL_RESETTING:
598 case NVME_CTRL_CONNECTING:
599 changed = true;
600 fallthrough;
601 default:
602 break;
603 }
604 break;
605 case NVME_CTRL_DELETING_NOIO:
606 switch (old_state) {
607 case NVME_CTRL_DELETING:
608 case NVME_CTRL_DEAD:
609 changed = true;
610 fallthrough;
611 default:
612 break;
613 }
614 break;
615 case NVME_CTRL_DEAD:
616 switch (old_state) {
617 case NVME_CTRL_DELETING:
618 changed = true;
619 fallthrough;
620 default:
621 break;
622 }
623 break;
624 default:
625 break;
626 }
627
628 if (changed) {
629 WRITE_ONCE(ctrl->state, new_state);
630 wake_up_all(&ctrl->state_wq);
631 }
632
633 spin_unlock_irqrestore(&ctrl->lock, flags);
634 if (!changed)
635 return false;
636
637 if (new_state == NVME_CTRL_LIVE) {
638 if (old_state == NVME_CTRL_CONNECTING)
639 nvme_stop_failfast_work(ctrl);
640 nvme_kick_requeue_lists(ctrl);
641 } else if (new_state == NVME_CTRL_CONNECTING &&
642 old_state == NVME_CTRL_RESETTING) {
643 nvme_start_failfast_work(ctrl);
644 }
645 return changed;
646 }
647 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
648
649 /*
650 * Waits for the controller state to be resetting, or returns false if it is
651 * not possible to ever transition to that state.
652 */
nvme_wait_reset(struct nvme_ctrl * ctrl)653 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
654 {
655 wait_event(ctrl->state_wq,
656 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
657 nvme_state_terminal(ctrl));
658 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
659 }
660 EXPORT_SYMBOL_GPL(nvme_wait_reset);
661
nvme_free_ns_head(struct kref * ref)662 static void nvme_free_ns_head(struct kref *ref)
663 {
664 struct nvme_ns_head *head =
665 container_of(ref, struct nvme_ns_head, ref);
666
667 nvme_mpath_remove_disk(head);
668 ida_free(&head->subsys->ns_ida, head->instance);
669 cleanup_srcu_struct(&head->srcu);
670 nvme_put_subsystem(head->subsys);
671 kfree(head);
672 }
673
nvme_tryget_ns_head(struct nvme_ns_head * head)674 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
675 {
676 return kref_get_unless_zero(&head->ref);
677 }
678
nvme_put_ns_head(struct nvme_ns_head * head)679 void nvme_put_ns_head(struct nvme_ns_head *head)
680 {
681 kref_put(&head->ref, nvme_free_ns_head);
682 }
683
nvme_free_ns(struct kref * kref)684 static void nvme_free_ns(struct kref *kref)
685 {
686 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
687
688 put_disk(ns->disk);
689 nvme_put_ns_head(ns->head);
690 nvme_put_ctrl(ns->ctrl);
691 kfree(ns);
692 }
693
nvme_get_ns(struct nvme_ns * ns)694 bool nvme_get_ns(struct nvme_ns *ns)
695 {
696 return kref_get_unless_zero(&ns->kref);
697 }
698
nvme_put_ns(struct nvme_ns * ns)699 void nvme_put_ns(struct nvme_ns *ns)
700 {
701 kref_put(&ns->kref, nvme_free_ns);
702 }
703 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
704
nvme_clear_nvme_request(struct request * req)705 static inline void nvme_clear_nvme_request(struct request *req)
706 {
707 nvme_req(req)->status = 0;
708 nvme_req(req)->retries = 0;
709 nvme_req(req)->flags = 0;
710 req->rq_flags |= RQF_DONTPREP;
711 }
712
713 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)714 void nvme_init_request(struct request *req, struct nvme_command *cmd)
715 {
716 struct nvme_request *nr = nvme_req(req);
717 bool logging_enabled;
718
719 if (req->q->queuedata) {
720 struct nvme_ns *ns = req->q->disk->private_data;
721
722 logging_enabled = ns->head->passthru_err_log_enabled;
723 req->timeout = NVME_IO_TIMEOUT;
724 } else { /* no queuedata implies admin queue */
725 logging_enabled = nr->ctrl->passthru_err_log_enabled;
726 req->timeout = NVME_ADMIN_TIMEOUT;
727 }
728
729 if (!logging_enabled)
730 req->rq_flags |= RQF_QUIET;
731
732 /* passthru commands should let the driver set the SGL flags */
733 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
734
735 req->cmd_flags |= REQ_FAILFAST_DRIVER;
736 if (req->mq_hctx->type == HCTX_TYPE_POLL)
737 req->cmd_flags |= REQ_POLLED;
738 nvme_clear_nvme_request(req);
739 memcpy(nr->cmd, cmd, sizeof(*cmd));
740 }
741 EXPORT_SYMBOL_GPL(nvme_init_request);
742
743 /*
744 * For something we're not in a state to send to the device the default action
745 * is to busy it and retry it after the controller state is recovered. However,
746 * if the controller is deleting or if anything is marked for failfast or
747 * nvme multipath it is immediately failed.
748 *
749 * Note: commands used to initialize the controller will be marked for failfast.
750 * Note: nvme cli/ioctl commands are marked for failfast.
751 */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)752 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
753 struct request *rq)
754 {
755 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
756
757 if (state != NVME_CTRL_DELETING_NOIO &&
758 state != NVME_CTRL_DELETING &&
759 state != NVME_CTRL_DEAD &&
760 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
761 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
762 return BLK_STS_RESOURCE;
763 return nvme_host_path_error(rq);
764 }
765 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
766
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)767 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
768 bool queue_live, enum nvme_ctrl_state state)
769 {
770 struct nvme_request *req = nvme_req(rq);
771
772 /*
773 * currently we have a problem sending passthru commands
774 * on the admin_q if the controller is not LIVE because we can't
775 * make sure that they are going out after the admin connect,
776 * controller enable and/or other commands in the initialization
777 * sequence. until the controller will be LIVE, fail with
778 * BLK_STS_RESOURCE so that they will be rescheduled.
779 */
780 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
781 return false;
782
783 if (ctrl->ops->flags & NVME_F_FABRICS) {
784 /*
785 * Only allow commands on a live queue, except for the connect
786 * command, which is require to set the queue live in the
787 * appropinquate states.
788 */
789 switch (state) {
790 case NVME_CTRL_CONNECTING:
791 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
792 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
793 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
794 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
795 return true;
796 break;
797 default:
798 break;
799 case NVME_CTRL_DEAD:
800 return false;
801 }
802 }
803
804 return queue_live;
805 }
806 EXPORT_SYMBOL_GPL(__nvme_check_ready);
807
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)808 static inline void nvme_setup_flush(struct nvme_ns *ns,
809 struct nvme_command *cmnd)
810 {
811 memset(cmnd, 0, sizeof(*cmnd));
812 cmnd->common.opcode = nvme_cmd_flush;
813 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
814 }
815
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)816 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
817 struct nvme_command *cmnd)
818 {
819 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
820 struct nvme_dsm_range *range;
821 struct bio *bio;
822
823 /*
824 * Some devices do not consider the DSM 'Number of Ranges' field when
825 * determining how much data to DMA. Always allocate memory for maximum
826 * number of segments to prevent device reading beyond end of buffer.
827 */
828 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
829
830 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
831 if (!range) {
832 /*
833 * If we fail allocation our range, fallback to the controller
834 * discard page. If that's also busy, it's safe to return
835 * busy, as we know we can make progress once that's freed.
836 */
837 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
838 return BLK_STS_RESOURCE;
839
840 range = page_address(ns->ctrl->discard_page);
841 }
842
843 if (queue_max_discard_segments(req->q) == 1) {
844 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
845 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
846
847 range[0].cattr = cpu_to_le32(0);
848 range[0].nlb = cpu_to_le32(nlb);
849 range[0].slba = cpu_to_le64(slba);
850 n = 1;
851 } else {
852 __rq_for_each_bio(bio, req) {
853 u64 slba = nvme_sect_to_lba(ns->head,
854 bio->bi_iter.bi_sector);
855 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
856
857 if (n < segments) {
858 range[n].cattr = cpu_to_le32(0);
859 range[n].nlb = cpu_to_le32(nlb);
860 range[n].slba = cpu_to_le64(slba);
861 }
862 n++;
863 }
864 }
865
866 if (WARN_ON_ONCE(n != segments)) {
867 if (virt_to_page(range) == ns->ctrl->discard_page)
868 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
869 else
870 kfree(range);
871 return BLK_STS_IOERR;
872 }
873
874 memset(cmnd, 0, sizeof(*cmnd));
875 cmnd->dsm.opcode = nvme_cmd_dsm;
876 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
877 cmnd->dsm.nr = cpu_to_le32(segments - 1);
878 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
879
880 bvec_set_virt(&req->special_vec, range, alloc_size);
881 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
882
883 return BLK_STS_OK;
884 }
885
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)886 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
887 struct request *req)
888 {
889 u32 upper, lower;
890 u64 ref48;
891
892 /* both rw and write zeroes share the same reftag format */
893 switch (ns->head->guard_type) {
894 case NVME_NVM_NS_16B_GUARD:
895 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
896 break;
897 case NVME_NVM_NS_64B_GUARD:
898 ref48 = ext_pi_ref_tag(req);
899 lower = lower_32_bits(ref48);
900 upper = upper_32_bits(ref48);
901
902 cmnd->rw.reftag = cpu_to_le32(lower);
903 cmnd->rw.cdw3 = cpu_to_le32(upper);
904 break;
905 default:
906 break;
907 }
908 }
909
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)910 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
911 struct request *req, struct nvme_command *cmnd)
912 {
913 memset(cmnd, 0, sizeof(*cmnd));
914
915 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
916 return nvme_setup_discard(ns, req, cmnd);
917
918 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
919 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
920 cmnd->write_zeroes.slba =
921 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
922 cmnd->write_zeroes.length =
923 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
924
925 if (!(req->cmd_flags & REQ_NOUNMAP) &&
926 (ns->head->features & NVME_NS_DEAC))
927 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
928
929 if (nvme_ns_has_pi(ns->head)) {
930 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
931
932 switch (ns->head->pi_type) {
933 case NVME_NS_DPS_PI_TYPE1:
934 case NVME_NS_DPS_PI_TYPE2:
935 nvme_set_ref_tag(ns, cmnd, req);
936 break;
937 }
938 }
939
940 return BLK_STS_OK;
941 }
942
943 /*
944 * NVMe does not support a dedicated command to issue an atomic write. A write
945 * which does adhere to the device atomic limits will silently be executed
946 * non-atomically. The request issuer should ensure that the write is within
947 * the queue atomic writes limits, but just validate this in case it is not.
948 */
nvme_valid_atomic_write(struct request * req)949 static bool nvme_valid_atomic_write(struct request *req)
950 {
951 struct request_queue *q = req->q;
952 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
953
954 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
955 return false;
956
957 if (boundary_bytes) {
958 u64 mask = boundary_bytes - 1, imask = ~mask;
959 u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
960 u64 end = start + blk_rq_bytes(req) - 1;
961
962 /* If greater then must be crossing a boundary */
963 if (blk_rq_bytes(req) > boundary_bytes)
964 return false;
965
966 if ((start & imask) != (end & imask))
967 return false;
968 }
969
970 return true;
971 }
972
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)973 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
974 struct request *req, struct nvme_command *cmnd,
975 enum nvme_opcode op)
976 {
977 u16 control = 0;
978 u32 dsmgmt = 0;
979
980 if (req->cmd_flags & REQ_FUA)
981 control |= NVME_RW_FUA;
982 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
983 control |= NVME_RW_LR;
984
985 if (req->cmd_flags & REQ_RAHEAD)
986 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
987
988 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
989 return BLK_STS_INVAL;
990
991 cmnd->rw.opcode = op;
992 cmnd->rw.flags = 0;
993 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
994 cmnd->rw.cdw2 = 0;
995 cmnd->rw.cdw3 = 0;
996 cmnd->rw.metadata = 0;
997 cmnd->rw.slba =
998 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
999 cmnd->rw.length =
1000 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1001 cmnd->rw.reftag = 0;
1002 cmnd->rw.lbat = 0;
1003 cmnd->rw.lbatm = 0;
1004
1005 if (ns->head->ms) {
1006 /*
1007 * If formated with metadata, the block layer always provides a
1008 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
1009 * we enable the PRACT bit for protection information or set the
1010 * namespace capacity to zero to prevent any I/O.
1011 */
1012 if (!blk_integrity_rq(req)) {
1013 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1014 return BLK_STS_NOTSUPP;
1015 control |= NVME_RW_PRINFO_PRACT;
1016 }
1017
1018 switch (ns->head->pi_type) {
1019 case NVME_NS_DPS_PI_TYPE3:
1020 control |= NVME_RW_PRINFO_PRCHK_GUARD;
1021 break;
1022 case NVME_NS_DPS_PI_TYPE1:
1023 case NVME_NS_DPS_PI_TYPE2:
1024 control |= NVME_RW_PRINFO_PRCHK_GUARD |
1025 NVME_RW_PRINFO_PRCHK_REF;
1026 if (op == nvme_cmd_zone_append)
1027 control |= NVME_RW_APPEND_PIREMAP;
1028 nvme_set_ref_tag(ns, cmnd, req);
1029 break;
1030 }
1031 }
1032
1033 cmnd->rw.control = cpu_to_le16(control);
1034 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1035 return 0;
1036 }
1037
nvme_cleanup_cmd(struct request * req)1038 void nvme_cleanup_cmd(struct request *req)
1039 {
1040 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1041 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1042
1043 if (req->special_vec.bv_page == ctrl->discard_page)
1044 clear_bit_unlock(0, &ctrl->discard_page_busy);
1045 else
1046 kfree(bvec_virt(&req->special_vec));
1047 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1048 }
1049 }
1050 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1051
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1052 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1053 {
1054 struct nvme_command *cmd = nvme_req(req)->cmd;
1055 blk_status_t ret = BLK_STS_OK;
1056
1057 if (!(req->rq_flags & RQF_DONTPREP))
1058 nvme_clear_nvme_request(req);
1059
1060 switch (req_op(req)) {
1061 case REQ_OP_DRV_IN:
1062 case REQ_OP_DRV_OUT:
1063 /* these are setup prior to execution in nvme_init_request() */
1064 break;
1065 case REQ_OP_FLUSH:
1066 nvme_setup_flush(ns, cmd);
1067 break;
1068 case REQ_OP_ZONE_RESET_ALL:
1069 case REQ_OP_ZONE_RESET:
1070 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1071 break;
1072 case REQ_OP_ZONE_OPEN:
1073 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1074 break;
1075 case REQ_OP_ZONE_CLOSE:
1076 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1077 break;
1078 case REQ_OP_ZONE_FINISH:
1079 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1080 break;
1081 case REQ_OP_WRITE_ZEROES:
1082 ret = nvme_setup_write_zeroes(ns, req, cmd);
1083 break;
1084 case REQ_OP_DISCARD:
1085 ret = nvme_setup_discard(ns, req, cmd);
1086 break;
1087 case REQ_OP_READ:
1088 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1089 break;
1090 case REQ_OP_WRITE:
1091 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1092 break;
1093 case REQ_OP_ZONE_APPEND:
1094 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1095 break;
1096 default:
1097 WARN_ON_ONCE(1);
1098 return BLK_STS_IOERR;
1099 }
1100
1101 cmd->common.command_id = nvme_cid(req);
1102 trace_nvme_setup_cmd(req, cmd);
1103 return ret;
1104 }
1105 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1106
1107 /*
1108 * Return values:
1109 * 0: success
1110 * >0: nvme controller's cqe status response
1111 * <0: kernel error in lieu of controller response
1112 */
nvme_execute_rq(struct request * rq,bool at_head)1113 int nvme_execute_rq(struct request *rq, bool at_head)
1114 {
1115 blk_status_t status;
1116
1117 status = blk_execute_rq(rq, at_head);
1118 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1119 return -EINTR;
1120 if (nvme_req(rq)->status)
1121 return nvme_req(rq)->status;
1122 return blk_status_to_errno(status);
1123 }
1124 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1125
1126 /*
1127 * Returns 0 on success. If the result is negative, it's a Linux error code;
1128 * if the result is positive, it's an NVM Express status code
1129 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1130 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1131 union nvme_result *result, void *buffer, unsigned bufflen,
1132 int qid, nvme_submit_flags_t flags)
1133 {
1134 struct request *req;
1135 int ret;
1136 blk_mq_req_flags_t blk_flags = 0;
1137
1138 if (flags & NVME_SUBMIT_NOWAIT)
1139 blk_flags |= BLK_MQ_REQ_NOWAIT;
1140 if (flags & NVME_SUBMIT_RESERVED)
1141 blk_flags |= BLK_MQ_REQ_RESERVED;
1142 if (qid == NVME_QID_ANY)
1143 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1144 else
1145 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1146 qid - 1);
1147
1148 if (IS_ERR(req))
1149 return PTR_ERR(req);
1150 nvme_init_request(req, cmd);
1151 if (flags & NVME_SUBMIT_RETRY)
1152 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1153
1154 if (buffer && bufflen) {
1155 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1156 if (ret)
1157 goto out;
1158 }
1159
1160 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1161 if (result && ret >= 0)
1162 *result = nvme_req(req)->result;
1163 out:
1164 blk_mq_free_request(req);
1165 return ret;
1166 }
1167 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1168
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1169 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1170 void *buffer, unsigned bufflen)
1171 {
1172 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1173 NVME_QID_ANY, 0);
1174 }
1175 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1176
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1177 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1178 {
1179 u32 effects = 0;
1180
1181 if (ns) {
1182 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1183 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1184 dev_warn_once(ctrl->device,
1185 "IO command:%02x has unusual effects:%08x\n",
1186 opcode, effects);
1187
1188 /*
1189 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1190 * which would deadlock when done on an I/O command. Note that
1191 * We already warn about an unusual effect above.
1192 */
1193 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1194 } else {
1195 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1196
1197 /* Ignore execution restrictions if any relaxation bits are set */
1198 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1199 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1200 }
1201
1202 return effects;
1203 }
1204 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1205
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1206 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1207 {
1208 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1209
1210 /*
1211 * For simplicity, IO to all namespaces is quiesced even if the command
1212 * effects say only one namespace is affected.
1213 */
1214 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1215 mutex_lock(&ctrl->scan_lock);
1216 mutex_lock(&ctrl->subsys->lock);
1217 nvme_mpath_start_freeze(ctrl->subsys);
1218 nvme_mpath_wait_freeze(ctrl->subsys);
1219 nvme_start_freeze(ctrl);
1220 nvme_wait_freeze(ctrl);
1221 }
1222 return effects;
1223 }
1224 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1225
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1226 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1227 struct nvme_command *cmd, int status)
1228 {
1229 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1230 nvme_unfreeze(ctrl);
1231 nvme_mpath_unfreeze(ctrl->subsys);
1232 mutex_unlock(&ctrl->subsys->lock);
1233 mutex_unlock(&ctrl->scan_lock);
1234 }
1235 if (effects & NVME_CMD_EFFECTS_CCC) {
1236 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1237 &ctrl->flags)) {
1238 dev_info(ctrl->device,
1239 "controller capabilities changed, reset may be required to take effect.\n");
1240 }
1241 }
1242 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1243 nvme_queue_scan(ctrl);
1244 flush_work(&ctrl->scan_work);
1245 }
1246 if (ns)
1247 return;
1248
1249 switch (cmd->common.opcode) {
1250 case nvme_admin_set_features:
1251 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1252 case NVME_FEAT_KATO:
1253 /*
1254 * Keep alive commands interval on the host should be
1255 * updated when KATO is modified by Set Features
1256 * commands.
1257 */
1258 if (!status)
1259 nvme_update_keep_alive(ctrl, cmd);
1260 break;
1261 default:
1262 break;
1263 }
1264 break;
1265 default:
1266 break;
1267 }
1268 }
1269 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1270
1271 /*
1272 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1273 *
1274 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1275 * accounting for transport roundtrip times [..].
1276 */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1277 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1278 {
1279 unsigned long delay = ctrl->kato * HZ / 2;
1280
1281 /*
1282 * When using Traffic Based Keep Alive, we need to run
1283 * nvme_keep_alive_work at twice the normal frequency, as one
1284 * command completion can postpone sending a keep alive command
1285 * by up to twice the delay between runs.
1286 */
1287 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1288 delay /= 2;
1289 return delay;
1290 }
1291
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1292 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1293 {
1294 unsigned long now = jiffies;
1295 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1296 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1297
1298 if (time_after(now, ka_next_check_tm))
1299 delay = 0;
1300 else
1301 delay = ka_next_check_tm - now;
1302
1303 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1304 }
1305
nvme_keep_alive_finish(struct request * rq,blk_status_t status,struct nvme_ctrl * ctrl)1306 static void nvme_keep_alive_finish(struct request *rq,
1307 blk_status_t status, struct nvme_ctrl *ctrl)
1308 {
1309 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1310 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1311 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1312
1313 /*
1314 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1315 * at the desired frequency.
1316 */
1317 if (rtt <= delay) {
1318 delay -= rtt;
1319 } else {
1320 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1321 jiffies_to_msecs(rtt));
1322 delay = 0;
1323 }
1324
1325 if (status) {
1326 dev_err(ctrl->device,
1327 "failed nvme_keep_alive_end_io error=%d\n",
1328 status);
1329 return;
1330 }
1331
1332 ctrl->ka_last_check_time = jiffies;
1333 ctrl->comp_seen = false;
1334 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1335 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1336 }
1337
nvme_keep_alive_work(struct work_struct * work)1338 static void nvme_keep_alive_work(struct work_struct *work)
1339 {
1340 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1341 struct nvme_ctrl, ka_work);
1342 bool comp_seen = ctrl->comp_seen;
1343 struct request *rq;
1344 blk_status_t status;
1345
1346 ctrl->ka_last_check_time = jiffies;
1347
1348 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1349 dev_dbg(ctrl->device,
1350 "reschedule traffic based keep-alive timer\n");
1351 ctrl->comp_seen = false;
1352 nvme_queue_keep_alive_work(ctrl);
1353 return;
1354 }
1355
1356 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1357 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1358 if (IS_ERR(rq)) {
1359 /* allocation failure, reset the controller */
1360 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1361 nvme_reset_ctrl(ctrl);
1362 return;
1363 }
1364 nvme_init_request(rq, &ctrl->ka_cmd);
1365
1366 rq->timeout = ctrl->kato * HZ;
1367 status = blk_execute_rq(rq, false);
1368 nvme_keep_alive_finish(rq, status, ctrl);
1369 blk_mq_free_request(rq);
1370 }
1371
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1372 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1373 {
1374 if (unlikely(ctrl->kato == 0))
1375 return;
1376
1377 nvme_queue_keep_alive_work(ctrl);
1378 }
1379
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1380 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1381 {
1382 if (unlikely(ctrl->kato == 0))
1383 return;
1384
1385 cancel_delayed_work_sync(&ctrl->ka_work);
1386 }
1387 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1388
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1389 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1390 struct nvme_command *cmd)
1391 {
1392 unsigned int new_kato =
1393 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1394
1395 dev_info(ctrl->device,
1396 "keep alive interval updated from %u ms to %u ms\n",
1397 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1398
1399 nvme_stop_keep_alive(ctrl);
1400 ctrl->kato = new_kato;
1401 nvme_start_keep_alive(ctrl);
1402 }
1403
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1404 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1405 {
1406 /*
1407 * The CNS field occupies a full byte starting with NVMe 1.2
1408 */
1409 if (ctrl->vs >= NVME_VS(1, 2, 0))
1410 return true;
1411
1412 /*
1413 * NVMe 1.1 expanded the CNS value to two bits, which means values
1414 * larger than that could get truncated and treated as an incorrect
1415 * value.
1416 *
1417 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1418 * compliance, so they need to be quirked here.
1419 */
1420 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1421 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1422 return cns <= 3;
1423
1424 /*
1425 * NVMe 1.0 used a single bit for the CNS value.
1426 */
1427 return cns <= 1;
1428 }
1429
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1430 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1431 {
1432 struct nvme_command c = { };
1433 int error;
1434
1435 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1436 c.identify.opcode = nvme_admin_identify;
1437 c.identify.cns = NVME_ID_CNS_CTRL;
1438
1439 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1440 if (!*id)
1441 return -ENOMEM;
1442
1443 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1444 sizeof(struct nvme_id_ctrl));
1445 if (error) {
1446 kfree(*id);
1447 *id = NULL;
1448 }
1449 return error;
1450 }
1451
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1452 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1453 struct nvme_ns_id_desc *cur, bool *csi_seen)
1454 {
1455 const char *warn_str = "ctrl returned bogus length:";
1456 void *data = cur;
1457
1458 switch (cur->nidt) {
1459 case NVME_NIDT_EUI64:
1460 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1461 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1462 warn_str, cur->nidl);
1463 return -1;
1464 }
1465 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1466 return NVME_NIDT_EUI64_LEN;
1467 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1468 return NVME_NIDT_EUI64_LEN;
1469 case NVME_NIDT_NGUID:
1470 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1471 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1472 warn_str, cur->nidl);
1473 return -1;
1474 }
1475 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1476 return NVME_NIDT_NGUID_LEN;
1477 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1478 return NVME_NIDT_NGUID_LEN;
1479 case NVME_NIDT_UUID:
1480 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1481 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1482 warn_str, cur->nidl);
1483 return -1;
1484 }
1485 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1486 return NVME_NIDT_UUID_LEN;
1487 uuid_copy(&ids->uuid, data + sizeof(*cur));
1488 return NVME_NIDT_UUID_LEN;
1489 case NVME_NIDT_CSI:
1490 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1491 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1492 warn_str, cur->nidl);
1493 return -1;
1494 }
1495 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1496 *csi_seen = true;
1497 return NVME_NIDT_CSI_LEN;
1498 default:
1499 /* Skip unknown types */
1500 return cur->nidl;
1501 }
1502 }
1503
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1504 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1505 struct nvme_ns_info *info)
1506 {
1507 struct nvme_command c = { };
1508 bool csi_seen = false;
1509 int status, pos, len;
1510 void *data;
1511
1512 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1513 return 0;
1514 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1515 return 0;
1516
1517 c.identify.opcode = nvme_admin_identify;
1518 c.identify.nsid = cpu_to_le32(info->nsid);
1519 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1520
1521 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1522 if (!data)
1523 return -ENOMEM;
1524
1525 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1526 NVME_IDENTIFY_DATA_SIZE);
1527 if (status) {
1528 dev_warn(ctrl->device,
1529 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1530 info->nsid, status);
1531 goto free_data;
1532 }
1533
1534 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1535 struct nvme_ns_id_desc *cur = data + pos;
1536
1537 if (cur->nidl == 0)
1538 break;
1539
1540 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1541 if (len < 0)
1542 break;
1543
1544 len += sizeof(*cur);
1545 }
1546
1547 if (nvme_multi_css(ctrl) && !csi_seen) {
1548 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1549 info->nsid);
1550 status = -EINVAL;
1551 }
1552
1553 free_data:
1554 kfree(data);
1555 return status;
1556 }
1557
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1558 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1559 struct nvme_id_ns **id)
1560 {
1561 struct nvme_command c = { };
1562 int error;
1563
1564 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1565 c.identify.opcode = nvme_admin_identify;
1566 c.identify.nsid = cpu_to_le32(nsid);
1567 c.identify.cns = NVME_ID_CNS_NS;
1568
1569 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1570 if (!*id)
1571 return -ENOMEM;
1572
1573 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1574 if (error) {
1575 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1576 kfree(*id);
1577 *id = NULL;
1578 }
1579 return error;
1580 }
1581
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1582 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1583 struct nvme_ns_info *info)
1584 {
1585 struct nvme_ns_ids *ids = &info->ids;
1586 struct nvme_id_ns *id;
1587 int ret;
1588
1589 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1590 if (ret)
1591 return ret;
1592
1593 if (id->ncap == 0) {
1594 /* namespace not allocated or attached */
1595 info->is_removed = true;
1596 ret = -ENODEV;
1597 goto error;
1598 }
1599
1600 info->anagrpid = id->anagrpid;
1601 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1602 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1603 info->is_ready = true;
1604 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1605 dev_info(ctrl->device,
1606 "Ignoring bogus Namespace Identifiers\n");
1607 } else {
1608 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1609 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1610 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1611 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1612 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1613 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1614 }
1615
1616 error:
1617 kfree(id);
1618 return ret;
1619 }
1620
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1621 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1622 struct nvme_ns_info *info)
1623 {
1624 struct nvme_id_ns_cs_indep *id;
1625 struct nvme_command c = {
1626 .identify.opcode = nvme_admin_identify,
1627 .identify.nsid = cpu_to_le32(info->nsid),
1628 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1629 };
1630 int ret;
1631
1632 id = kmalloc(sizeof(*id), GFP_KERNEL);
1633 if (!id)
1634 return -ENOMEM;
1635
1636 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1637 if (!ret) {
1638 info->anagrpid = id->anagrpid;
1639 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1640 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1641 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1642 }
1643 kfree(id);
1644 return ret;
1645 }
1646
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1647 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1648 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1649 {
1650 union nvme_result res = { 0 };
1651 struct nvme_command c = { };
1652 int ret;
1653
1654 c.features.opcode = op;
1655 c.features.fid = cpu_to_le32(fid);
1656 c.features.dword11 = cpu_to_le32(dword11);
1657
1658 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1659 buffer, buflen, NVME_QID_ANY, 0);
1660 if (ret >= 0 && result)
1661 *result = le32_to_cpu(res.u32);
1662 return ret;
1663 }
1664
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1665 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1666 unsigned int dword11, void *buffer, size_t buflen,
1667 u32 *result)
1668 {
1669 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1670 buflen, result);
1671 }
1672 EXPORT_SYMBOL_GPL(nvme_set_features);
1673
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1674 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1675 unsigned int dword11, void *buffer, size_t buflen,
1676 u32 *result)
1677 {
1678 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1679 buflen, result);
1680 }
1681 EXPORT_SYMBOL_GPL(nvme_get_features);
1682
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1683 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1684 {
1685 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1686 u32 result;
1687 int status, nr_io_queues;
1688
1689 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1690 &result);
1691 if (status < 0)
1692 return status;
1693
1694 /*
1695 * Degraded controllers might return an error when setting the queue
1696 * count. We still want to be able to bring them online and offer
1697 * access to the admin queue, as that might be only way to fix them up.
1698 */
1699 if (status > 0) {
1700 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1701 *count = 0;
1702 } else {
1703 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1704 *count = min(*count, nr_io_queues);
1705 }
1706
1707 return 0;
1708 }
1709 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1710
1711 #define NVME_AEN_SUPPORTED \
1712 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1713 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1714
nvme_enable_aen(struct nvme_ctrl * ctrl)1715 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1716 {
1717 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1718 int status;
1719
1720 if (!supported_aens)
1721 return;
1722
1723 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1724 NULL, 0, &result);
1725 if (status)
1726 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1727 supported_aens);
1728
1729 queue_work(nvme_wq, &ctrl->async_event_work);
1730 }
1731
nvme_ns_open(struct nvme_ns * ns)1732 static int nvme_ns_open(struct nvme_ns *ns)
1733 {
1734
1735 /* should never be called due to GENHD_FL_HIDDEN */
1736 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1737 goto fail;
1738 if (!nvme_get_ns(ns))
1739 goto fail;
1740 if (!try_module_get(ns->ctrl->ops->module))
1741 goto fail_put_ns;
1742
1743 return 0;
1744
1745 fail_put_ns:
1746 nvme_put_ns(ns);
1747 fail:
1748 return -ENXIO;
1749 }
1750
nvme_ns_release(struct nvme_ns * ns)1751 static void nvme_ns_release(struct nvme_ns *ns)
1752 {
1753
1754 module_put(ns->ctrl->ops->module);
1755 nvme_put_ns(ns);
1756 }
1757
nvme_open(struct gendisk * disk,blk_mode_t mode)1758 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1759 {
1760 return nvme_ns_open(disk->private_data);
1761 }
1762
nvme_release(struct gendisk * disk)1763 static void nvme_release(struct gendisk *disk)
1764 {
1765 nvme_ns_release(disk->private_data);
1766 }
1767
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1768 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1769 {
1770 /* some standard values */
1771 geo->heads = 1 << 6;
1772 geo->sectors = 1 << 5;
1773 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1774 return 0;
1775 }
1776
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1777 static bool nvme_init_integrity(struct nvme_ns_head *head,
1778 struct queue_limits *lim, struct nvme_ns_info *info)
1779 {
1780 struct blk_integrity *bi = &lim->integrity;
1781
1782 memset(bi, 0, sizeof(*bi));
1783
1784 if (!head->ms)
1785 return true;
1786
1787 /*
1788 * PI can always be supported as we can ask the controller to simply
1789 * insert/strip it, which is not possible for other kinds of metadata.
1790 */
1791 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1792 !(head->features & NVME_NS_METADATA_SUPPORTED))
1793 return nvme_ns_has_pi(head);
1794
1795 switch (head->pi_type) {
1796 case NVME_NS_DPS_PI_TYPE3:
1797 switch (head->guard_type) {
1798 case NVME_NVM_NS_16B_GUARD:
1799 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1800 bi->tag_size = sizeof(u16) + sizeof(u32);
1801 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1802 break;
1803 case NVME_NVM_NS_64B_GUARD:
1804 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1805 bi->tag_size = sizeof(u16) + 6;
1806 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1807 break;
1808 default:
1809 break;
1810 }
1811 break;
1812 case NVME_NS_DPS_PI_TYPE1:
1813 case NVME_NS_DPS_PI_TYPE2:
1814 switch (head->guard_type) {
1815 case NVME_NVM_NS_16B_GUARD:
1816 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1817 bi->tag_size = sizeof(u16);
1818 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1819 BLK_INTEGRITY_REF_TAG;
1820 break;
1821 case NVME_NVM_NS_64B_GUARD:
1822 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1823 bi->tag_size = sizeof(u16);
1824 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1825 BLK_INTEGRITY_REF_TAG;
1826 break;
1827 default:
1828 break;
1829 }
1830 break;
1831 default:
1832 break;
1833 }
1834
1835 bi->tuple_size = head->ms;
1836 bi->pi_offset = info->pi_offset;
1837 return true;
1838 }
1839
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1840 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1841 {
1842 struct nvme_ctrl *ctrl = ns->ctrl;
1843
1844 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1845 lim->max_hw_discard_sectors =
1846 nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1847 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1848 lim->max_hw_discard_sectors = UINT_MAX;
1849 else
1850 lim->max_hw_discard_sectors = 0;
1851
1852 lim->discard_granularity = lim->logical_block_size;
1853
1854 if (ctrl->dmrl)
1855 lim->max_discard_segments = ctrl->dmrl;
1856 else
1857 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1858 }
1859
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1860 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1861 {
1862 return uuid_equal(&a->uuid, &b->uuid) &&
1863 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1864 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1865 a->csi == b->csi;
1866 }
1867
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1868 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1869 struct nvme_id_ns_nvm **nvmp)
1870 {
1871 struct nvme_command c = {
1872 .identify.opcode = nvme_admin_identify,
1873 .identify.nsid = cpu_to_le32(nsid),
1874 .identify.cns = NVME_ID_CNS_CS_NS,
1875 .identify.csi = NVME_CSI_NVM,
1876 };
1877 struct nvme_id_ns_nvm *nvm;
1878 int ret;
1879
1880 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1881 if (!nvm)
1882 return -ENOMEM;
1883
1884 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1885 if (ret)
1886 kfree(nvm);
1887 else
1888 *nvmp = nvm;
1889 return ret;
1890 }
1891
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1892 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1893 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1894 {
1895 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1896 u8 guard_type;
1897
1898 /* no support for storage tag formats right now */
1899 if (nvme_elbaf_sts(elbaf))
1900 return;
1901
1902 guard_type = nvme_elbaf_guard_type(elbaf);
1903 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1904 guard_type == NVME_NVM_NS_QTYPE_GUARD)
1905 guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1906
1907 head->guard_type = guard_type;
1908 switch (head->guard_type) {
1909 case NVME_NVM_NS_64B_GUARD:
1910 head->pi_size = sizeof(struct crc64_pi_tuple);
1911 break;
1912 case NVME_NVM_NS_16B_GUARD:
1913 head->pi_size = sizeof(struct t10_pi_tuple);
1914 break;
1915 default:
1916 break;
1917 }
1918 }
1919
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1920 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1921 struct nvme_ns_head *head, struct nvme_id_ns *id,
1922 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1923 {
1924 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1925 head->pi_type = 0;
1926 head->pi_size = 0;
1927 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1928 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1929 return;
1930
1931 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1932 nvme_configure_pi_elbas(head, id, nvm);
1933 } else {
1934 head->pi_size = sizeof(struct t10_pi_tuple);
1935 head->guard_type = NVME_NVM_NS_16B_GUARD;
1936 }
1937
1938 if (head->pi_size && head->ms >= head->pi_size)
1939 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1940 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1941 if (disable_pi_offsets)
1942 head->pi_type = 0;
1943 else
1944 info->pi_offset = head->ms - head->pi_size;
1945 }
1946
1947 if (ctrl->ops->flags & NVME_F_FABRICS) {
1948 /*
1949 * The NVMe over Fabrics specification only supports metadata as
1950 * part of the extended data LBA. We rely on HCA/HBA support to
1951 * remap the separate metadata buffer from the block layer.
1952 */
1953 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1954 return;
1955
1956 head->features |= NVME_NS_EXT_LBAS;
1957
1958 /*
1959 * The current fabrics transport drivers support namespace
1960 * metadata formats only if nvme_ns_has_pi() returns true.
1961 * Suppress support for all other formats so the namespace will
1962 * have a 0 capacity and not be usable through the block stack.
1963 *
1964 * Note, this check will need to be modified if any drivers
1965 * gain the ability to use other metadata formats.
1966 */
1967 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1968 head->features |= NVME_NS_METADATA_SUPPORTED;
1969 } else {
1970 /*
1971 * For PCIe controllers, we can't easily remap the separate
1972 * metadata buffer from the block layer and thus require a
1973 * separate metadata buffer for block layer metadata/PI support.
1974 * We allow extended LBAs for the passthrough interface, though.
1975 */
1976 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1977 head->features |= NVME_NS_EXT_LBAS;
1978 else
1979 head->features |= NVME_NS_METADATA_SUPPORTED;
1980 }
1981 }
1982
1983
nvme_update_atomic_write_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs,u32 atomic_bs)1984 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1985 struct nvme_id_ns *id, struct queue_limits *lim,
1986 u32 bs, u32 atomic_bs)
1987 {
1988 unsigned int boundary = 0;
1989
1990 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1991 if (le16_to_cpu(id->nabspf))
1992 boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1993 }
1994 lim->atomic_write_hw_max = atomic_bs;
1995 lim->atomic_write_hw_boundary = boundary;
1996 lim->atomic_write_hw_unit_min = bs;
1997 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
1998 }
1999
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2000 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2001 {
2002 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2003 }
2004
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2005 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2006 struct queue_limits *lim)
2007 {
2008 lim->max_hw_sectors = ctrl->max_hw_sectors;
2009 lim->max_segments = min_t(u32, USHRT_MAX,
2010 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2011 lim->max_integrity_segments = ctrl->max_integrity_segments;
2012 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2013 lim->max_segment_size = UINT_MAX;
2014 lim->dma_alignment = 3;
2015 }
2016
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2017 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2018 struct queue_limits *lim)
2019 {
2020 struct nvme_ns_head *head = ns->head;
2021 u32 bs = 1U << head->lba_shift;
2022 u32 atomic_bs, phys_bs, io_opt = 0;
2023 bool valid = true;
2024
2025 /*
2026 * The block layer can't support LBA sizes larger than the page size
2027 * or smaller than a sector size yet, so catch this early and don't
2028 * allow block I/O.
2029 */
2030 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2031 bs = (1 << 9);
2032 valid = false;
2033 }
2034
2035 atomic_bs = phys_bs = bs;
2036 if (id->nabo == 0) {
2037 /*
2038 * Bit 1 indicates whether NAWUPF is defined for this namespace
2039 * and whether it should be used instead of AWUPF. If NAWUPF ==
2040 * 0 then AWUPF must be used instead.
2041 */
2042 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2043 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2044 else
2045 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2046
2047 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2048 }
2049
2050 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2051 /* NPWG = Namespace Preferred Write Granularity */
2052 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2053 /* NOWS = Namespace Optimal Write Size */
2054 if (id->nows)
2055 io_opt = bs * (1 + le16_to_cpu(id->nows));
2056 }
2057
2058 /*
2059 * Linux filesystems assume writing a single physical block is
2060 * an atomic operation. Hence limit the physical block size to the
2061 * value of the Atomic Write Unit Power Fail parameter.
2062 */
2063 lim->logical_block_size = bs;
2064 lim->physical_block_size = min(phys_bs, atomic_bs);
2065 lim->io_min = phys_bs;
2066 lim->io_opt = io_opt;
2067 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2068 lim->max_write_zeroes_sectors = UINT_MAX;
2069 else
2070 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2071 return valid;
2072 }
2073
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2074 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2075 {
2076 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2077 }
2078
nvme_first_scan(struct gendisk * disk)2079 static inline bool nvme_first_scan(struct gendisk *disk)
2080 {
2081 /* nvme_alloc_ns() scans the disk prior to adding it */
2082 return !disk_live(disk);
2083 }
2084
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2085 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2086 struct queue_limits *lim)
2087 {
2088 struct nvme_ctrl *ctrl = ns->ctrl;
2089 u32 iob;
2090
2091 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2092 is_power_of_2(ctrl->max_hw_sectors))
2093 iob = ctrl->max_hw_sectors;
2094 else
2095 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2096
2097 if (!iob)
2098 return;
2099
2100 if (!is_power_of_2(iob)) {
2101 if (nvme_first_scan(ns->disk))
2102 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2103 ns->disk->disk_name, iob);
2104 return;
2105 }
2106
2107 if (blk_queue_is_zoned(ns->disk->queue)) {
2108 if (nvme_first_scan(ns->disk))
2109 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2110 ns->disk->disk_name);
2111 return;
2112 }
2113
2114 lim->chunk_sectors = iob;
2115 }
2116
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2117 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2118 struct nvme_ns_info *info)
2119 {
2120 struct queue_limits lim;
2121 int ret;
2122
2123 blk_mq_freeze_queue(ns->disk->queue);
2124 lim = queue_limits_start_update(ns->disk->queue);
2125 nvme_set_ctrl_limits(ns->ctrl, &lim);
2126 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2127 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2128 blk_mq_unfreeze_queue(ns->disk->queue);
2129
2130 /* Hide the block-interface for these devices */
2131 if (!ret)
2132 ret = -ENODEV;
2133 return ret;
2134 }
2135
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2136 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2137 struct nvme_ns_info *info)
2138 {
2139 struct queue_limits lim;
2140 struct nvme_id_ns_nvm *nvm = NULL;
2141 struct nvme_zone_info zi = {};
2142 struct nvme_id_ns *id;
2143 sector_t capacity;
2144 unsigned lbaf;
2145 int ret;
2146
2147 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2148 if (ret)
2149 return ret;
2150
2151 if (id->ncap == 0) {
2152 /* namespace not allocated or attached */
2153 info->is_removed = true;
2154 ret = -ENXIO;
2155 goto out;
2156 }
2157 lbaf = nvme_lbaf_index(id->flbas);
2158
2159 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2160 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2161 if (ret < 0)
2162 goto out;
2163 }
2164
2165 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2166 ns->head->ids.csi == NVME_CSI_ZNS) {
2167 ret = nvme_query_zone_info(ns, lbaf, &zi);
2168 if (ret < 0)
2169 goto out;
2170 }
2171
2172 blk_mq_freeze_queue(ns->disk->queue);
2173 ns->head->lba_shift = id->lbaf[lbaf].ds;
2174 ns->head->nuse = le64_to_cpu(id->nuse);
2175 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2176
2177 lim = queue_limits_start_update(ns->disk->queue);
2178 nvme_set_ctrl_limits(ns->ctrl, &lim);
2179 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2180 nvme_set_chunk_sectors(ns, id, &lim);
2181 if (!nvme_update_disk_info(ns, id, &lim))
2182 capacity = 0;
2183 nvme_config_discard(ns, &lim);
2184 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2185 ns->head->ids.csi == NVME_CSI_ZNS)
2186 nvme_update_zone_info(ns, &lim, &zi);
2187
2188 if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2189 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2190 else
2191 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2192
2193 /*
2194 * Register a metadata profile for PI, or the plain non-integrity NVMe
2195 * metadata masquerading as Type 0 if supported, otherwise reject block
2196 * I/O to namespaces with metadata except when the namespace supports
2197 * PI, as it can strip/insert in that case.
2198 */
2199 if (!nvme_init_integrity(ns->head, &lim, info))
2200 capacity = 0;
2201
2202 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2203 if (ret) {
2204 blk_mq_unfreeze_queue(ns->disk->queue);
2205 goto out;
2206 }
2207
2208 set_capacity_and_notify(ns->disk, capacity);
2209
2210 /*
2211 * Only set the DEAC bit if the device guarantees that reads from
2212 * deallocated data return zeroes. While the DEAC bit does not
2213 * require that, it must be a no-op if reads from deallocated data
2214 * do not return zeroes.
2215 */
2216 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2217 ns->head->features |= NVME_NS_DEAC;
2218 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2219 set_bit(NVME_NS_READY, &ns->flags);
2220 blk_mq_unfreeze_queue(ns->disk->queue);
2221
2222 if (blk_queue_is_zoned(ns->queue)) {
2223 ret = blk_revalidate_disk_zones(ns->disk);
2224 if (ret && !nvme_first_scan(ns->disk))
2225 goto out;
2226 }
2227
2228 ret = 0;
2229 out:
2230 kfree(nvm);
2231 kfree(id);
2232 return ret;
2233 }
2234
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2235 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2236 {
2237 bool unsupported = false;
2238 int ret;
2239
2240 switch (info->ids.csi) {
2241 case NVME_CSI_ZNS:
2242 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2243 dev_info(ns->ctrl->device,
2244 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2245 info->nsid);
2246 ret = nvme_update_ns_info_generic(ns, info);
2247 break;
2248 }
2249 ret = nvme_update_ns_info_block(ns, info);
2250 break;
2251 case NVME_CSI_NVM:
2252 ret = nvme_update_ns_info_block(ns, info);
2253 break;
2254 default:
2255 dev_info(ns->ctrl->device,
2256 "block device for nsid %u not supported (csi %u)\n",
2257 info->nsid, info->ids.csi);
2258 ret = nvme_update_ns_info_generic(ns, info);
2259 break;
2260 }
2261
2262 /*
2263 * If probing fails due an unsupported feature, hide the block device,
2264 * but still allow other access.
2265 */
2266 if (ret == -ENODEV) {
2267 ns->disk->flags |= GENHD_FL_HIDDEN;
2268 set_bit(NVME_NS_READY, &ns->flags);
2269 unsupported = true;
2270 ret = 0;
2271 }
2272
2273 if (!ret && nvme_ns_head_multipath(ns->head)) {
2274 struct queue_limits *ns_lim = &ns->disk->queue->limits;
2275 struct queue_limits lim;
2276
2277 blk_mq_freeze_queue(ns->head->disk->queue);
2278 /*
2279 * queue_limits mixes values that are the hardware limitations
2280 * for bio splitting with what is the device configuration.
2281 *
2282 * For NVMe the device configuration can change after e.g. a
2283 * Format command, and we really want to pick up the new format
2284 * value here. But we must still stack the queue limits to the
2285 * least common denominator for multipathing to split the bios
2286 * properly.
2287 *
2288 * To work around this, we explicitly set the device
2289 * configuration to those that we just queried, but only stack
2290 * the splitting limits in to make sure we still obey possibly
2291 * lower limitations of other controllers.
2292 */
2293 lim = queue_limits_start_update(ns->head->disk->queue);
2294 lim.logical_block_size = ns_lim->logical_block_size;
2295 lim.physical_block_size = ns_lim->physical_block_size;
2296 lim.io_min = ns_lim->io_min;
2297 lim.io_opt = ns_lim->io_opt;
2298 queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2299 ns->head->disk->disk_name);
2300 if (unsupported)
2301 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2302 else
2303 nvme_init_integrity(ns->head, &lim, info);
2304 ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2305
2306 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2307 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2308 nvme_mpath_revalidate_paths(ns);
2309
2310 blk_mq_unfreeze_queue(ns->head->disk->queue);
2311 }
2312
2313 return ret;
2314 }
2315
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2316 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2317 enum blk_unique_id type)
2318 {
2319 struct nvme_ns_ids *ids = &ns->head->ids;
2320
2321 if (type != BLK_UID_EUI64)
2322 return -EINVAL;
2323
2324 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2325 memcpy(id, &ids->nguid, sizeof(ids->nguid));
2326 return sizeof(ids->nguid);
2327 }
2328 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2329 memcpy(id, &ids->eui64, sizeof(ids->eui64));
2330 return sizeof(ids->eui64);
2331 }
2332
2333 return -EINVAL;
2334 }
2335
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2336 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2337 enum blk_unique_id type)
2338 {
2339 return nvme_ns_get_unique_id(disk->private_data, id, type);
2340 }
2341
2342 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2343 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2344 bool send)
2345 {
2346 struct nvme_ctrl *ctrl = data;
2347 struct nvme_command cmd = { };
2348
2349 if (send)
2350 cmd.common.opcode = nvme_admin_security_send;
2351 else
2352 cmd.common.opcode = nvme_admin_security_recv;
2353 cmd.common.nsid = 0;
2354 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2355 cmd.common.cdw11 = cpu_to_le32(len);
2356
2357 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2358 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2359 }
2360
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2361 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2362 {
2363 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2364 if (!ctrl->opal_dev)
2365 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2366 else if (was_suspended)
2367 opal_unlock_from_suspend(ctrl->opal_dev);
2368 } else {
2369 free_opal_dev(ctrl->opal_dev);
2370 ctrl->opal_dev = NULL;
2371 }
2372 }
2373 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2374 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2375 {
2376 }
2377 #endif /* CONFIG_BLK_SED_OPAL */
2378
2379 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2380 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2381 unsigned int nr_zones, report_zones_cb cb, void *data)
2382 {
2383 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2384 data);
2385 }
2386 #else
2387 #define nvme_report_zones NULL
2388 #endif /* CONFIG_BLK_DEV_ZONED */
2389
2390 const struct block_device_operations nvme_bdev_ops = {
2391 .owner = THIS_MODULE,
2392 .ioctl = nvme_ioctl,
2393 .compat_ioctl = blkdev_compat_ptr_ioctl,
2394 .open = nvme_open,
2395 .release = nvme_release,
2396 .getgeo = nvme_getgeo,
2397 .get_unique_id = nvme_get_unique_id,
2398 .report_zones = nvme_report_zones,
2399 .pr_ops = &nvme_pr_ops,
2400 };
2401
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2402 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2403 u32 timeout, const char *op)
2404 {
2405 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2406 u32 csts;
2407 int ret;
2408
2409 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2410 if (csts == ~0)
2411 return -ENODEV;
2412 if ((csts & mask) == val)
2413 break;
2414
2415 usleep_range(1000, 2000);
2416 if (fatal_signal_pending(current))
2417 return -EINTR;
2418 if (time_after(jiffies, timeout_jiffies)) {
2419 dev_err(ctrl->device,
2420 "Device not ready; aborting %s, CSTS=0x%x\n",
2421 op, csts);
2422 return -ENODEV;
2423 }
2424 }
2425
2426 return ret;
2427 }
2428
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2429 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2430 {
2431 int ret;
2432
2433 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2434 if (shutdown)
2435 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2436 else
2437 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2438
2439 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2440 if (ret)
2441 return ret;
2442
2443 if (shutdown) {
2444 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2445 NVME_CSTS_SHST_CMPLT,
2446 ctrl->shutdown_timeout, "shutdown");
2447 }
2448 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2449 msleep(NVME_QUIRK_DELAY_AMOUNT);
2450 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2451 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2452 }
2453 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2454
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2455 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2456 {
2457 unsigned dev_page_min;
2458 u32 timeout;
2459 int ret;
2460
2461 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2462 if (ret) {
2463 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2464 return ret;
2465 }
2466 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2467
2468 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2469 dev_err(ctrl->device,
2470 "Minimum device page size %u too large for host (%u)\n",
2471 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2472 return -ENODEV;
2473 }
2474
2475 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2476 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2477 else
2478 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2479
2480 /*
2481 * Setting CRIME results in CSTS.RDY before the media is ready. This
2482 * makes it possible for media related commands to return the error
2483 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2484 * restructured to handle retries, disable CC.CRIME.
2485 */
2486 ctrl->ctrl_config &= ~NVME_CC_CRIME;
2487
2488 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2489 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2490 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2491 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2492 if (ret)
2493 return ret;
2494
2495 /* CAP value may change after initial CC write */
2496 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2497 if (ret)
2498 return ret;
2499
2500 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2501 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2502 u32 crto, ready_timeout;
2503
2504 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2505 if (ret) {
2506 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2507 ret);
2508 return ret;
2509 }
2510
2511 /*
2512 * CRTO should always be greater or equal to CAP.TO, but some
2513 * devices are known to get this wrong. Use the larger of the
2514 * two values.
2515 */
2516 ready_timeout = NVME_CRTO_CRWMT(crto);
2517
2518 if (ready_timeout < timeout)
2519 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2520 crto, ctrl->cap);
2521 else
2522 timeout = ready_timeout;
2523 }
2524
2525 ctrl->ctrl_config |= NVME_CC_ENABLE;
2526 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2527 if (ret)
2528 return ret;
2529 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2530 (timeout + 1) / 2, "initialisation");
2531 }
2532 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2533
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2534 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2535 {
2536 __le64 ts;
2537 int ret;
2538
2539 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2540 return 0;
2541
2542 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2543 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2544 NULL);
2545 if (ret)
2546 dev_warn_once(ctrl->device,
2547 "could not set timestamp (%d)\n", ret);
2548 return ret;
2549 }
2550
nvme_configure_host_options(struct nvme_ctrl * ctrl)2551 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2552 {
2553 struct nvme_feat_host_behavior *host;
2554 u8 acre = 0, lbafee = 0;
2555 int ret;
2556
2557 /* Don't bother enabling the feature if retry delay is not reported */
2558 if (ctrl->crdt[0])
2559 acre = NVME_ENABLE_ACRE;
2560 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2561 lbafee = NVME_ENABLE_LBAFEE;
2562
2563 if (!acre && !lbafee)
2564 return 0;
2565
2566 host = kzalloc(sizeof(*host), GFP_KERNEL);
2567 if (!host)
2568 return 0;
2569
2570 host->acre = acre;
2571 host->lbafee = lbafee;
2572 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2573 host, sizeof(*host), NULL);
2574 kfree(host);
2575 return ret;
2576 }
2577
2578 /*
2579 * The function checks whether the given total (exlat + enlat) latency of
2580 * a power state allows the latter to be used as an APST transition target.
2581 * It does so by comparing the latency to the primary and secondary latency
2582 * tolerances defined by module params. If there's a match, the corresponding
2583 * timeout value is returned and the matching tolerance index (1 or 2) is
2584 * reported.
2585 */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2586 static bool nvme_apst_get_transition_time(u64 total_latency,
2587 u64 *transition_time, unsigned *last_index)
2588 {
2589 if (total_latency <= apst_primary_latency_tol_us) {
2590 if (*last_index == 1)
2591 return false;
2592 *last_index = 1;
2593 *transition_time = apst_primary_timeout_ms;
2594 return true;
2595 }
2596 if (apst_secondary_timeout_ms &&
2597 total_latency <= apst_secondary_latency_tol_us) {
2598 if (*last_index <= 2)
2599 return false;
2600 *last_index = 2;
2601 *transition_time = apst_secondary_timeout_ms;
2602 return true;
2603 }
2604 return false;
2605 }
2606
2607 /*
2608 * APST (Autonomous Power State Transition) lets us program a table of power
2609 * state transitions that the controller will perform automatically.
2610 *
2611 * Depending on module params, one of the two supported techniques will be used:
2612 *
2613 * - If the parameters provide explicit timeouts and tolerances, they will be
2614 * used to build a table with up to 2 non-operational states to transition to.
2615 * The default parameter values were selected based on the values used by
2616 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2617 * regeneration of the APST table in the event of switching between external
2618 * and battery power, the timeouts and tolerances reflect a compromise
2619 * between values used by Microsoft for AC and battery scenarios.
2620 * - If not, we'll configure the table with a simple heuristic: we are willing
2621 * to spend at most 2% of the time transitioning between power states.
2622 * Therefore, when running in any given state, we will enter the next
2623 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2624 * microseconds, as long as that state's exit latency is under the requested
2625 * maximum latency.
2626 *
2627 * We will not autonomously enter any non-operational state for which the total
2628 * latency exceeds ps_max_latency_us.
2629 *
2630 * Users can set ps_max_latency_us to zero to turn off APST.
2631 */
nvme_configure_apst(struct nvme_ctrl * ctrl)2632 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2633 {
2634 struct nvme_feat_auto_pst *table;
2635 unsigned apste = 0;
2636 u64 max_lat_us = 0;
2637 __le64 target = 0;
2638 int max_ps = -1;
2639 int state;
2640 int ret;
2641 unsigned last_lt_index = UINT_MAX;
2642
2643 /*
2644 * If APST isn't supported or if we haven't been initialized yet,
2645 * then don't do anything.
2646 */
2647 if (!ctrl->apsta)
2648 return 0;
2649
2650 if (ctrl->npss > 31) {
2651 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2652 return 0;
2653 }
2654
2655 table = kzalloc(sizeof(*table), GFP_KERNEL);
2656 if (!table)
2657 return 0;
2658
2659 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2660 /* Turn off APST. */
2661 dev_dbg(ctrl->device, "APST disabled\n");
2662 goto done;
2663 }
2664
2665 /*
2666 * Walk through all states from lowest- to highest-power.
2667 * According to the spec, lower-numbered states use more power. NPSS,
2668 * despite the name, is the index of the lowest-power state, not the
2669 * number of states.
2670 */
2671 for (state = (int)ctrl->npss; state >= 0; state--) {
2672 u64 total_latency_us, exit_latency_us, transition_ms;
2673
2674 if (target)
2675 table->entries[state] = target;
2676
2677 /*
2678 * Don't allow transitions to the deepest state if it's quirked
2679 * off.
2680 */
2681 if (state == ctrl->npss &&
2682 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2683 continue;
2684
2685 /*
2686 * Is this state a useful non-operational state for higher-power
2687 * states to autonomously transition to?
2688 */
2689 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2690 continue;
2691
2692 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2693 if (exit_latency_us > ctrl->ps_max_latency_us)
2694 continue;
2695
2696 total_latency_us = exit_latency_us +
2697 le32_to_cpu(ctrl->psd[state].entry_lat);
2698
2699 /*
2700 * This state is good. It can be used as the APST idle target
2701 * for higher power states.
2702 */
2703 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2704 if (!nvme_apst_get_transition_time(total_latency_us,
2705 &transition_ms, &last_lt_index))
2706 continue;
2707 } else {
2708 transition_ms = total_latency_us + 19;
2709 do_div(transition_ms, 20);
2710 if (transition_ms > (1 << 24) - 1)
2711 transition_ms = (1 << 24) - 1;
2712 }
2713
2714 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2715 if (max_ps == -1)
2716 max_ps = state;
2717 if (total_latency_us > max_lat_us)
2718 max_lat_us = total_latency_us;
2719 }
2720
2721 if (max_ps == -1)
2722 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2723 else
2724 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2725 max_ps, max_lat_us, (int)sizeof(*table), table);
2726 apste = 1;
2727
2728 done:
2729 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2730 table, sizeof(*table), NULL);
2731 if (ret)
2732 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2733 kfree(table);
2734 return ret;
2735 }
2736
nvme_set_latency_tolerance(struct device * dev,s32 val)2737 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2738 {
2739 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2740 u64 latency;
2741
2742 switch (val) {
2743 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2744 case PM_QOS_LATENCY_ANY:
2745 latency = U64_MAX;
2746 break;
2747
2748 default:
2749 latency = val;
2750 }
2751
2752 if (ctrl->ps_max_latency_us != latency) {
2753 ctrl->ps_max_latency_us = latency;
2754 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2755 nvme_configure_apst(ctrl);
2756 }
2757 }
2758
2759 struct nvme_core_quirk_entry {
2760 /*
2761 * NVMe model and firmware strings are padded with spaces. For
2762 * simplicity, strings in the quirk table are padded with NULLs
2763 * instead.
2764 */
2765 u16 vid;
2766 const char *mn;
2767 const char *fr;
2768 unsigned long quirks;
2769 };
2770
2771 static const struct nvme_core_quirk_entry core_quirks[] = {
2772 {
2773 /*
2774 * This Toshiba device seems to die using any APST states. See:
2775 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2776 */
2777 .vid = 0x1179,
2778 .mn = "THNSF5256GPUK TOSHIBA",
2779 .quirks = NVME_QUIRK_NO_APST,
2780 },
2781 {
2782 /*
2783 * This LiteON CL1-3D*-Q11 firmware version has a race
2784 * condition associated with actions related to suspend to idle
2785 * LiteON has resolved the problem in future firmware
2786 */
2787 .vid = 0x14a4,
2788 .fr = "22301111",
2789 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2790 },
2791 {
2792 /*
2793 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2794 * aborts I/O during any load, but more easily reproducible
2795 * with discards (fstrim).
2796 *
2797 * The device is left in a state where it is also not possible
2798 * to use "nvme set-feature" to disable APST, but booting with
2799 * nvme_core.default_ps_max_latency=0 works.
2800 */
2801 .vid = 0x1e0f,
2802 .mn = "KCD6XVUL6T40",
2803 .quirks = NVME_QUIRK_NO_APST,
2804 },
2805 {
2806 /*
2807 * The external Samsung X5 SSD fails initialization without a
2808 * delay before checking if it is ready and has a whole set of
2809 * other problems. To make this even more interesting, it
2810 * shares the PCI ID with internal Samsung 970 Evo Plus that
2811 * does not need or want these quirks.
2812 */
2813 .vid = 0x144d,
2814 .mn = "Samsung Portable SSD X5",
2815 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2816 NVME_QUIRK_NO_DEEPEST_PS |
2817 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2818 }
2819 };
2820
2821 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2822 static bool string_matches(const char *idstr, const char *match, size_t len)
2823 {
2824 size_t matchlen;
2825
2826 if (!match)
2827 return true;
2828
2829 matchlen = strlen(match);
2830 WARN_ON_ONCE(matchlen > len);
2831
2832 if (memcmp(idstr, match, matchlen))
2833 return false;
2834
2835 for (; matchlen < len; matchlen++)
2836 if (idstr[matchlen] != ' ')
2837 return false;
2838
2839 return true;
2840 }
2841
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2842 static bool quirk_matches(const struct nvme_id_ctrl *id,
2843 const struct nvme_core_quirk_entry *q)
2844 {
2845 return q->vid == le16_to_cpu(id->vid) &&
2846 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2847 string_matches(id->fr, q->fr, sizeof(id->fr));
2848 }
2849
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2850 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2851 struct nvme_id_ctrl *id)
2852 {
2853 size_t nqnlen;
2854 int off;
2855
2856 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2857 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2858 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2859 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2860 return;
2861 }
2862
2863 if (ctrl->vs >= NVME_VS(1, 2, 1))
2864 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2865 }
2866
2867 /*
2868 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2869 * Base Specification 2.0. It is slightly different from the format
2870 * specified there due to historic reasons, and we can't change it now.
2871 */
2872 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2873 "nqn.2014.08.org.nvmexpress:%04x%04x",
2874 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2875 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2876 off += sizeof(id->sn);
2877 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2878 off += sizeof(id->mn);
2879 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2880 }
2881
nvme_release_subsystem(struct device * dev)2882 static void nvme_release_subsystem(struct device *dev)
2883 {
2884 struct nvme_subsystem *subsys =
2885 container_of(dev, struct nvme_subsystem, dev);
2886
2887 if (subsys->instance >= 0)
2888 ida_free(&nvme_instance_ida, subsys->instance);
2889 kfree(subsys);
2890 }
2891
nvme_destroy_subsystem(struct kref * ref)2892 static void nvme_destroy_subsystem(struct kref *ref)
2893 {
2894 struct nvme_subsystem *subsys =
2895 container_of(ref, struct nvme_subsystem, ref);
2896
2897 mutex_lock(&nvme_subsystems_lock);
2898 list_del(&subsys->entry);
2899 mutex_unlock(&nvme_subsystems_lock);
2900
2901 ida_destroy(&subsys->ns_ida);
2902 device_del(&subsys->dev);
2903 put_device(&subsys->dev);
2904 }
2905
nvme_put_subsystem(struct nvme_subsystem * subsys)2906 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2907 {
2908 kref_put(&subsys->ref, nvme_destroy_subsystem);
2909 }
2910
__nvme_find_get_subsystem(const char * subsysnqn)2911 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2912 {
2913 struct nvme_subsystem *subsys;
2914
2915 lockdep_assert_held(&nvme_subsystems_lock);
2916
2917 /*
2918 * Fail matches for discovery subsystems. This results
2919 * in each discovery controller bound to a unique subsystem.
2920 * This avoids issues with validating controller values
2921 * that can only be true when there is a single unique subsystem.
2922 * There may be multiple and completely independent entities
2923 * that provide discovery controllers.
2924 */
2925 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2926 return NULL;
2927
2928 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2929 if (strcmp(subsys->subnqn, subsysnqn))
2930 continue;
2931 if (!kref_get_unless_zero(&subsys->ref))
2932 continue;
2933 return subsys;
2934 }
2935
2936 return NULL;
2937 }
2938
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2939 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2940 {
2941 return ctrl->opts && ctrl->opts->discovery_nqn;
2942 }
2943
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2944 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2945 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2946 {
2947 struct nvme_ctrl *tmp;
2948
2949 lockdep_assert_held(&nvme_subsystems_lock);
2950
2951 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2952 if (nvme_state_terminal(tmp))
2953 continue;
2954
2955 if (tmp->cntlid == ctrl->cntlid) {
2956 dev_err(ctrl->device,
2957 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2958 ctrl->cntlid, dev_name(tmp->device),
2959 subsys->subnqn);
2960 return false;
2961 }
2962
2963 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2964 nvme_discovery_ctrl(ctrl))
2965 continue;
2966
2967 dev_err(ctrl->device,
2968 "Subsystem does not support multiple controllers\n");
2969 return false;
2970 }
2971
2972 return true;
2973 }
2974
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2975 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2976 {
2977 struct nvme_subsystem *subsys, *found;
2978 int ret;
2979
2980 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2981 if (!subsys)
2982 return -ENOMEM;
2983
2984 subsys->instance = -1;
2985 mutex_init(&subsys->lock);
2986 kref_init(&subsys->ref);
2987 INIT_LIST_HEAD(&subsys->ctrls);
2988 INIT_LIST_HEAD(&subsys->nsheads);
2989 nvme_init_subnqn(subsys, ctrl, id);
2990 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2991 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2992 subsys->vendor_id = le16_to_cpu(id->vid);
2993 subsys->cmic = id->cmic;
2994
2995 /* Versions prior to 1.4 don't necessarily report a valid type */
2996 if (id->cntrltype == NVME_CTRL_DISC ||
2997 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2998 subsys->subtype = NVME_NQN_DISC;
2999 else
3000 subsys->subtype = NVME_NQN_NVME;
3001
3002 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3003 dev_err(ctrl->device,
3004 "Subsystem %s is not a discovery controller",
3005 subsys->subnqn);
3006 kfree(subsys);
3007 return -EINVAL;
3008 }
3009 subsys->awupf = le16_to_cpu(id->awupf);
3010 nvme_mpath_default_iopolicy(subsys);
3011
3012 subsys->dev.class = &nvme_subsys_class;
3013 subsys->dev.release = nvme_release_subsystem;
3014 subsys->dev.groups = nvme_subsys_attrs_groups;
3015 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3016 device_initialize(&subsys->dev);
3017
3018 mutex_lock(&nvme_subsystems_lock);
3019 found = __nvme_find_get_subsystem(subsys->subnqn);
3020 if (found) {
3021 put_device(&subsys->dev);
3022 subsys = found;
3023
3024 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3025 ret = -EINVAL;
3026 goto out_put_subsystem;
3027 }
3028 } else {
3029 ret = device_add(&subsys->dev);
3030 if (ret) {
3031 dev_err(ctrl->device,
3032 "failed to register subsystem device.\n");
3033 put_device(&subsys->dev);
3034 goto out_unlock;
3035 }
3036 ida_init(&subsys->ns_ida);
3037 list_add_tail(&subsys->entry, &nvme_subsystems);
3038 }
3039
3040 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3041 dev_name(ctrl->device));
3042 if (ret) {
3043 dev_err(ctrl->device,
3044 "failed to create sysfs link from subsystem.\n");
3045 goto out_put_subsystem;
3046 }
3047
3048 if (!found)
3049 subsys->instance = ctrl->instance;
3050 ctrl->subsys = subsys;
3051 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3052 mutex_unlock(&nvme_subsystems_lock);
3053 return 0;
3054
3055 out_put_subsystem:
3056 nvme_put_subsystem(subsys);
3057 out_unlock:
3058 mutex_unlock(&nvme_subsystems_lock);
3059 return ret;
3060 }
3061
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3062 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3063 void *log, size_t size, u64 offset)
3064 {
3065 struct nvme_command c = { };
3066 u32 dwlen = nvme_bytes_to_numd(size);
3067
3068 c.get_log_page.opcode = nvme_admin_get_log_page;
3069 c.get_log_page.nsid = cpu_to_le32(nsid);
3070 c.get_log_page.lid = log_page;
3071 c.get_log_page.lsp = lsp;
3072 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3073 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3074 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3075 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3076 c.get_log_page.csi = csi;
3077
3078 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3079 }
3080
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3081 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3082 struct nvme_effects_log **log)
3083 {
3084 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3085 int ret;
3086
3087 if (cel)
3088 goto out;
3089
3090 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3091 if (!cel)
3092 return -ENOMEM;
3093
3094 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3095 cel, sizeof(*cel), 0);
3096 if (ret) {
3097 kfree(cel);
3098 return ret;
3099 }
3100
3101 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3102 out:
3103 *log = cel;
3104 return 0;
3105 }
3106
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3107 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3108 {
3109 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3110
3111 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3112 return UINT_MAX;
3113 return val;
3114 }
3115
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3116 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3117 {
3118 struct nvme_command c = { };
3119 struct nvme_id_ctrl_nvm *id;
3120 int ret;
3121
3122 /*
3123 * Even though NVMe spec explicitly states that MDTS is not applicable
3124 * to the write-zeroes, we are cautious and limit the size to the
3125 * controllers max_hw_sectors value, which is based on the MDTS field
3126 * and possibly other limiting factors.
3127 */
3128 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3129 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3130 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3131 else
3132 ctrl->max_zeroes_sectors = 0;
3133
3134 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3135 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3136 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3137 return 0;
3138
3139 id = kzalloc(sizeof(*id), GFP_KERNEL);
3140 if (!id)
3141 return -ENOMEM;
3142
3143 c.identify.opcode = nvme_admin_identify;
3144 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3145 c.identify.csi = NVME_CSI_NVM;
3146
3147 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3148 if (ret)
3149 goto free_data;
3150
3151 ctrl->dmrl = id->dmrl;
3152 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3153 if (id->wzsl)
3154 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3155
3156 free_data:
3157 if (ret > 0)
3158 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3159 kfree(id);
3160 return ret;
3161 }
3162
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3163 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3164 {
3165 struct nvme_effects_log *log = ctrl->effects;
3166
3167 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3168 NVME_CMD_EFFECTS_NCC |
3169 NVME_CMD_EFFECTS_CSE_MASK);
3170 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3171 NVME_CMD_EFFECTS_CSE_MASK);
3172
3173 /*
3174 * The spec says the result of a security receive command depends on
3175 * the previous security send command. As such, many vendors log this
3176 * command as one to submitted only when no other commands to the same
3177 * namespace are outstanding. The intention is to tell the host to
3178 * prevent mixing security send and receive.
3179 *
3180 * This driver can only enforce such exclusive access against IO
3181 * queues, though. We are not readily able to enforce such a rule for
3182 * two commands to the admin queue, which is the only queue that
3183 * matters for this command.
3184 *
3185 * Rather than blindly freezing the IO queues for this effect that
3186 * doesn't even apply to IO, mask it off.
3187 */
3188 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3189
3190 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3191 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3192 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3193 }
3194
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3195 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3196 {
3197 int ret = 0;
3198
3199 if (ctrl->effects)
3200 return 0;
3201
3202 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3203 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3204 if (ret < 0)
3205 return ret;
3206 }
3207
3208 if (!ctrl->effects) {
3209 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3210 if (!ctrl->effects)
3211 return -ENOMEM;
3212 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3213 }
3214
3215 nvme_init_known_nvm_effects(ctrl);
3216 return 0;
3217 }
3218
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3219 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3220 {
3221 /*
3222 * In fabrics we need to verify the cntlid matches the
3223 * admin connect
3224 */
3225 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3226 dev_err(ctrl->device,
3227 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3228 ctrl->cntlid, le16_to_cpu(id->cntlid));
3229 return -EINVAL;
3230 }
3231
3232 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3233 dev_err(ctrl->device,
3234 "keep-alive support is mandatory for fabrics\n");
3235 return -EINVAL;
3236 }
3237
3238 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3239 dev_err(ctrl->device,
3240 "I/O queue command capsule supported size %d < 4\n",
3241 ctrl->ioccsz);
3242 return -EINVAL;
3243 }
3244
3245 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3246 dev_err(ctrl->device,
3247 "I/O queue response capsule supported size %d < 1\n",
3248 ctrl->iorcsz);
3249 return -EINVAL;
3250 }
3251
3252 if (!ctrl->maxcmd) {
3253 dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3254 return -EINVAL;
3255 }
3256
3257 return 0;
3258 }
3259
nvme_init_identify(struct nvme_ctrl * ctrl)3260 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3261 {
3262 struct queue_limits lim;
3263 struct nvme_id_ctrl *id;
3264 u32 max_hw_sectors;
3265 bool prev_apst_enabled;
3266 int ret;
3267
3268 ret = nvme_identify_ctrl(ctrl, &id);
3269 if (ret) {
3270 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3271 return -EIO;
3272 }
3273
3274 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3275 ctrl->cntlid = le16_to_cpu(id->cntlid);
3276
3277 if (!ctrl->identified) {
3278 unsigned int i;
3279
3280 /*
3281 * Check for quirks. Quirk can depend on firmware version,
3282 * so, in principle, the set of quirks present can change
3283 * across a reset. As a possible future enhancement, we
3284 * could re-scan for quirks every time we reinitialize
3285 * the device, but we'd have to make sure that the driver
3286 * behaves intelligently if the quirks change.
3287 */
3288 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3289 if (quirk_matches(id, &core_quirks[i]))
3290 ctrl->quirks |= core_quirks[i].quirks;
3291 }
3292
3293 ret = nvme_init_subsystem(ctrl, id);
3294 if (ret)
3295 goto out_free;
3296
3297 ret = nvme_init_effects(ctrl, id);
3298 if (ret)
3299 goto out_free;
3300 }
3301 memcpy(ctrl->subsys->firmware_rev, id->fr,
3302 sizeof(ctrl->subsys->firmware_rev));
3303
3304 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3305 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3306 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3307 }
3308
3309 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3310 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3311 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3312
3313 ctrl->oacs = le16_to_cpu(id->oacs);
3314 ctrl->oncs = le16_to_cpu(id->oncs);
3315 ctrl->mtfa = le16_to_cpu(id->mtfa);
3316 ctrl->oaes = le32_to_cpu(id->oaes);
3317 ctrl->wctemp = le16_to_cpu(id->wctemp);
3318 ctrl->cctemp = le16_to_cpu(id->cctemp);
3319
3320 atomic_set(&ctrl->abort_limit, id->acl + 1);
3321 ctrl->vwc = id->vwc;
3322 if (id->mdts)
3323 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3324 else
3325 max_hw_sectors = UINT_MAX;
3326 ctrl->max_hw_sectors =
3327 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3328
3329 lim = queue_limits_start_update(ctrl->admin_q);
3330 nvme_set_ctrl_limits(ctrl, &lim);
3331 ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3332 if (ret)
3333 goto out_free;
3334
3335 ctrl->sgls = le32_to_cpu(id->sgls);
3336 ctrl->kas = le16_to_cpu(id->kas);
3337 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3338 ctrl->ctratt = le32_to_cpu(id->ctratt);
3339
3340 ctrl->cntrltype = id->cntrltype;
3341 ctrl->dctype = id->dctype;
3342
3343 if (id->rtd3e) {
3344 /* us -> s */
3345 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3346
3347 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3348 shutdown_timeout, 60);
3349
3350 if (ctrl->shutdown_timeout != shutdown_timeout)
3351 dev_info(ctrl->device,
3352 "D3 entry latency set to %u seconds\n",
3353 ctrl->shutdown_timeout);
3354 } else
3355 ctrl->shutdown_timeout = shutdown_timeout;
3356
3357 ctrl->npss = id->npss;
3358 ctrl->apsta = id->apsta;
3359 prev_apst_enabled = ctrl->apst_enabled;
3360 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3361 if (force_apst && id->apsta) {
3362 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3363 ctrl->apst_enabled = true;
3364 } else {
3365 ctrl->apst_enabled = false;
3366 }
3367 } else {
3368 ctrl->apst_enabled = id->apsta;
3369 }
3370 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3371
3372 if (ctrl->ops->flags & NVME_F_FABRICS) {
3373 ctrl->icdoff = le16_to_cpu(id->icdoff);
3374 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3375 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3376 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3377
3378 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3379 if (ret)
3380 goto out_free;
3381 } else {
3382 ctrl->hmpre = le32_to_cpu(id->hmpre);
3383 ctrl->hmmin = le32_to_cpu(id->hmmin);
3384 ctrl->hmminds = le32_to_cpu(id->hmminds);
3385 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3386 }
3387
3388 ret = nvme_mpath_init_identify(ctrl, id);
3389 if (ret < 0)
3390 goto out_free;
3391
3392 if (ctrl->apst_enabled && !prev_apst_enabled)
3393 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3394 else if (!ctrl->apst_enabled && prev_apst_enabled)
3395 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3396
3397 out_free:
3398 kfree(id);
3399 return ret;
3400 }
3401
3402 /*
3403 * Initialize the cached copies of the Identify data and various controller
3404 * register in our nvme_ctrl structure. This should be called as soon as
3405 * the admin queue is fully up and running.
3406 */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3407 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3408 {
3409 int ret;
3410
3411 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3412 if (ret) {
3413 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3414 return ret;
3415 }
3416
3417 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3418
3419 if (ctrl->vs >= NVME_VS(1, 1, 0))
3420 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3421
3422 ret = nvme_init_identify(ctrl);
3423 if (ret)
3424 return ret;
3425
3426 ret = nvme_configure_apst(ctrl);
3427 if (ret < 0)
3428 return ret;
3429
3430 ret = nvme_configure_timestamp(ctrl);
3431 if (ret < 0)
3432 return ret;
3433
3434 ret = nvme_configure_host_options(ctrl);
3435 if (ret < 0)
3436 return ret;
3437
3438 nvme_configure_opal(ctrl, was_suspended);
3439
3440 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3441 /*
3442 * Do not return errors unless we are in a controller reset,
3443 * the controller works perfectly fine without hwmon.
3444 */
3445 ret = nvme_hwmon_init(ctrl);
3446 if (ret == -EINTR)
3447 return ret;
3448 }
3449
3450 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3451 ctrl->identified = true;
3452
3453 nvme_start_keep_alive(ctrl);
3454
3455 return 0;
3456 }
3457 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3458
nvme_dev_open(struct inode * inode,struct file * file)3459 static int nvme_dev_open(struct inode *inode, struct file *file)
3460 {
3461 struct nvme_ctrl *ctrl =
3462 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3463
3464 switch (nvme_ctrl_state(ctrl)) {
3465 case NVME_CTRL_LIVE:
3466 break;
3467 default:
3468 return -EWOULDBLOCK;
3469 }
3470
3471 nvme_get_ctrl(ctrl);
3472 if (!try_module_get(ctrl->ops->module)) {
3473 nvme_put_ctrl(ctrl);
3474 return -EINVAL;
3475 }
3476
3477 file->private_data = ctrl;
3478 return 0;
3479 }
3480
nvme_dev_release(struct inode * inode,struct file * file)3481 static int nvme_dev_release(struct inode *inode, struct file *file)
3482 {
3483 struct nvme_ctrl *ctrl =
3484 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3485
3486 module_put(ctrl->ops->module);
3487 nvme_put_ctrl(ctrl);
3488 return 0;
3489 }
3490
3491 static const struct file_operations nvme_dev_fops = {
3492 .owner = THIS_MODULE,
3493 .open = nvme_dev_open,
3494 .release = nvme_dev_release,
3495 .unlocked_ioctl = nvme_dev_ioctl,
3496 .compat_ioctl = compat_ptr_ioctl,
3497 .uring_cmd = nvme_dev_uring_cmd,
3498 };
3499
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3500 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3501 unsigned nsid)
3502 {
3503 struct nvme_ns_head *h;
3504
3505 lockdep_assert_held(&ctrl->subsys->lock);
3506
3507 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3508 /*
3509 * Private namespaces can share NSIDs under some conditions.
3510 * In that case we can't use the same ns_head for namespaces
3511 * with the same NSID.
3512 */
3513 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3514 continue;
3515 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3516 return h;
3517 }
3518
3519 return NULL;
3520 }
3521
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3522 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3523 struct nvme_ns_ids *ids)
3524 {
3525 bool has_uuid = !uuid_is_null(&ids->uuid);
3526 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3527 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3528 struct nvme_ns_head *h;
3529
3530 lockdep_assert_held(&subsys->lock);
3531
3532 list_for_each_entry(h, &subsys->nsheads, entry) {
3533 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3534 return -EINVAL;
3535 if (has_nguid &&
3536 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3537 return -EINVAL;
3538 if (has_eui64 &&
3539 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3540 return -EINVAL;
3541 }
3542
3543 return 0;
3544 }
3545
nvme_cdev_rel(struct device * dev)3546 static void nvme_cdev_rel(struct device *dev)
3547 {
3548 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3549 }
3550
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3551 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3552 {
3553 cdev_device_del(cdev, cdev_device);
3554 put_device(cdev_device);
3555 }
3556
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3557 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3558 const struct file_operations *fops, struct module *owner)
3559 {
3560 int minor, ret;
3561
3562 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3563 if (minor < 0)
3564 return minor;
3565 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3566 cdev_device->class = &nvme_ns_chr_class;
3567 cdev_device->release = nvme_cdev_rel;
3568 device_initialize(cdev_device);
3569 cdev_init(cdev, fops);
3570 cdev->owner = owner;
3571 ret = cdev_device_add(cdev, cdev_device);
3572 if (ret)
3573 put_device(cdev_device);
3574
3575 return ret;
3576 }
3577
nvme_ns_chr_open(struct inode * inode,struct file * file)3578 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3579 {
3580 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3581 }
3582
nvme_ns_chr_release(struct inode * inode,struct file * file)3583 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3584 {
3585 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3586 return 0;
3587 }
3588
3589 static const struct file_operations nvme_ns_chr_fops = {
3590 .owner = THIS_MODULE,
3591 .open = nvme_ns_chr_open,
3592 .release = nvme_ns_chr_release,
3593 .unlocked_ioctl = nvme_ns_chr_ioctl,
3594 .compat_ioctl = compat_ptr_ioctl,
3595 .uring_cmd = nvme_ns_chr_uring_cmd,
3596 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3597 };
3598
nvme_add_ns_cdev(struct nvme_ns * ns)3599 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3600 {
3601 int ret;
3602
3603 ns->cdev_device.parent = ns->ctrl->device;
3604 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3605 ns->ctrl->instance, ns->head->instance);
3606 if (ret)
3607 return ret;
3608
3609 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3610 ns->ctrl->ops->module);
3611 }
3612
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3613 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3614 struct nvme_ns_info *info)
3615 {
3616 struct nvme_ns_head *head;
3617 size_t size = sizeof(*head);
3618 int ret = -ENOMEM;
3619
3620 #ifdef CONFIG_NVME_MULTIPATH
3621 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3622 #endif
3623
3624 head = kzalloc(size, GFP_KERNEL);
3625 if (!head)
3626 goto out;
3627 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3628 if (ret < 0)
3629 goto out_free_head;
3630 head->instance = ret;
3631 INIT_LIST_HEAD(&head->list);
3632 ret = init_srcu_struct(&head->srcu);
3633 if (ret)
3634 goto out_ida_remove;
3635 head->subsys = ctrl->subsys;
3636 head->ns_id = info->nsid;
3637 head->ids = info->ids;
3638 head->shared = info->is_shared;
3639 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3640 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3641 kref_init(&head->ref);
3642
3643 if (head->ids.csi) {
3644 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3645 if (ret)
3646 goto out_cleanup_srcu;
3647 } else
3648 head->effects = ctrl->effects;
3649
3650 ret = nvme_mpath_alloc_disk(ctrl, head);
3651 if (ret)
3652 goto out_cleanup_srcu;
3653
3654 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3655
3656 kref_get(&ctrl->subsys->ref);
3657
3658 return head;
3659 out_cleanup_srcu:
3660 cleanup_srcu_struct(&head->srcu);
3661 out_ida_remove:
3662 ida_free(&ctrl->subsys->ns_ida, head->instance);
3663 out_free_head:
3664 kfree(head);
3665 out:
3666 if (ret > 0)
3667 ret = blk_status_to_errno(nvme_error_status(ret));
3668 return ERR_PTR(ret);
3669 }
3670
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3671 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3672 struct nvme_ns_ids *ids)
3673 {
3674 struct nvme_subsystem *s;
3675 int ret = 0;
3676
3677 /*
3678 * Note that this check is racy as we try to avoid holding the global
3679 * lock over the whole ns_head creation. But it is only intended as
3680 * a sanity check anyway.
3681 */
3682 mutex_lock(&nvme_subsystems_lock);
3683 list_for_each_entry(s, &nvme_subsystems, entry) {
3684 if (s == this)
3685 continue;
3686 mutex_lock(&s->lock);
3687 ret = nvme_subsys_check_duplicate_ids(s, ids);
3688 mutex_unlock(&s->lock);
3689 if (ret)
3690 break;
3691 }
3692 mutex_unlock(&nvme_subsystems_lock);
3693
3694 return ret;
3695 }
3696
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3697 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3698 {
3699 struct nvme_ctrl *ctrl = ns->ctrl;
3700 struct nvme_ns_head *head = NULL;
3701 int ret;
3702
3703 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3704 if (ret) {
3705 /*
3706 * We've found two different namespaces on two different
3707 * subsystems that report the same ID. This is pretty nasty
3708 * for anything that actually requires unique device
3709 * identification. In the kernel we need this for multipathing,
3710 * and in user space the /dev/disk/by-id/ links rely on it.
3711 *
3712 * If the device also claims to be multi-path capable back off
3713 * here now and refuse the probe the second device as this is a
3714 * recipe for data corruption. If not this is probably a
3715 * cheap consumer device if on the PCIe bus, so let the user
3716 * proceed and use the shiny toy, but warn that with changing
3717 * probing order (which due to our async probing could just be
3718 * device taking longer to startup) the other device could show
3719 * up at any time.
3720 */
3721 nvme_print_device_info(ctrl);
3722 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3723 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3724 info->is_shared)) {
3725 dev_err(ctrl->device,
3726 "ignoring nsid %d because of duplicate IDs\n",
3727 info->nsid);
3728 return ret;
3729 }
3730
3731 dev_err(ctrl->device,
3732 "clearing duplicate IDs for nsid %d\n", info->nsid);
3733 dev_err(ctrl->device,
3734 "use of /dev/disk/by-id/ may cause data corruption\n");
3735 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3736 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3737 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3738 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3739 }
3740
3741 mutex_lock(&ctrl->subsys->lock);
3742 head = nvme_find_ns_head(ctrl, info->nsid);
3743 if (!head) {
3744 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3745 if (ret) {
3746 dev_err(ctrl->device,
3747 "duplicate IDs in subsystem for nsid %d\n",
3748 info->nsid);
3749 goto out_unlock;
3750 }
3751 head = nvme_alloc_ns_head(ctrl, info);
3752 if (IS_ERR(head)) {
3753 ret = PTR_ERR(head);
3754 goto out_unlock;
3755 }
3756 } else {
3757 ret = -EINVAL;
3758 if (!info->is_shared || !head->shared) {
3759 dev_err(ctrl->device,
3760 "Duplicate unshared namespace %d\n",
3761 info->nsid);
3762 goto out_put_ns_head;
3763 }
3764 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3765 dev_err(ctrl->device,
3766 "IDs don't match for shared namespace %d\n",
3767 info->nsid);
3768 goto out_put_ns_head;
3769 }
3770
3771 if (!multipath) {
3772 dev_warn(ctrl->device,
3773 "Found shared namespace %d, but multipathing not supported.\n",
3774 info->nsid);
3775 dev_warn_once(ctrl->device,
3776 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3777 }
3778 }
3779
3780 list_add_tail_rcu(&ns->siblings, &head->list);
3781 ns->head = head;
3782 mutex_unlock(&ctrl->subsys->lock);
3783 return 0;
3784
3785 out_put_ns_head:
3786 nvme_put_ns_head(head);
3787 out_unlock:
3788 mutex_unlock(&ctrl->subsys->lock);
3789 return ret;
3790 }
3791
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3792 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3793 {
3794 struct nvme_ns *ns, *ret = NULL;
3795 int srcu_idx;
3796
3797 srcu_idx = srcu_read_lock(&ctrl->srcu);
3798 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
3799 if (ns->head->ns_id == nsid) {
3800 if (!nvme_get_ns(ns))
3801 continue;
3802 ret = ns;
3803 break;
3804 }
3805 if (ns->head->ns_id > nsid)
3806 break;
3807 }
3808 srcu_read_unlock(&ctrl->srcu, srcu_idx);
3809 return ret;
3810 }
3811 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3812
3813 /*
3814 * Add the namespace to the controller list while keeping the list ordered.
3815 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3816 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3817 {
3818 struct nvme_ns *tmp;
3819
3820 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3821 if (tmp->head->ns_id < ns->head->ns_id) {
3822 list_add_rcu(&ns->list, &tmp->list);
3823 return;
3824 }
3825 }
3826 list_add(&ns->list, &ns->ctrl->namespaces);
3827 }
3828
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3829 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3830 {
3831 struct queue_limits lim = { };
3832 struct nvme_ns *ns;
3833 struct gendisk *disk;
3834 int node = ctrl->numa_node;
3835
3836 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3837 if (!ns)
3838 return;
3839
3840 if (ctrl->opts && ctrl->opts->data_digest)
3841 lim.features |= BLK_FEAT_STABLE_WRITES;
3842 if (ctrl->ops->supports_pci_p2pdma &&
3843 ctrl->ops->supports_pci_p2pdma(ctrl))
3844 lim.features |= BLK_FEAT_PCI_P2PDMA;
3845
3846 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3847 if (IS_ERR(disk))
3848 goto out_free_ns;
3849 disk->fops = &nvme_bdev_ops;
3850 disk->private_data = ns;
3851
3852 ns->disk = disk;
3853 ns->queue = disk->queue;
3854 ns->ctrl = ctrl;
3855 kref_init(&ns->kref);
3856
3857 if (nvme_init_ns_head(ns, info))
3858 goto out_cleanup_disk;
3859
3860 /*
3861 * If multipathing is enabled, the device name for all disks and not
3862 * just those that represent shared namespaces needs to be based on the
3863 * subsystem instance. Using the controller instance for private
3864 * namespaces could lead to naming collisions between shared and private
3865 * namespaces if they don't use a common numbering scheme.
3866 *
3867 * If multipathing is not enabled, disk names must use the controller
3868 * instance as shared namespaces will show up as multiple block
3869 * devices.
3870 */
3871 if (nvme_ns_head_multipath(ns->head)) {
3872 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3873 ctrl->instance, ns->head->instance);
3874 disk->flags |= GENHD_FL_HIDDEN;
3875 } else if (multipath) {
3876 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3877 ns->head->instance);
3878 } else {
3879 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3880 ns->head->instance);
3881 }
3882
3883 if (nvme_update_ns_info(ns, info))
3884 goto out_unlink_ns;
3885
3886 mutex_lock(&ctrl->namespaces_lock);
3887 /*
3888 * Ensure that no namespaces are added to the ctrl list after the queues
3889 * are frozen, thereby avoiding a deadlock between scan and reset.
3890 */
3891 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3892 mutex_unlock(&ctrl->namespaces_lock);
3893 goto out_unlink_ns;
3894 }
3895 nvme_ns_add_to_ctrl_list(ns);
3896 mutex_unlock(&ctrl->namespaces_lock);
3897 synchronize_srcu(&ctrl->srcu);
3898 nvme_get_ctrl(ctrl);
3899
3900 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3901 goto out_cleanup_ns_from_list;
3902
3903 if (!nvme_ns_head_multipath(ns->head))
3904 nvme_add_ns_cdev(ns);
3905
3906 nvme_mpath_add_disk(ns, info->anagrpid);
3907 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3908
3909 /*
3910 * Set ns->disk->device->driver_data to ns so we can access
3911 * ns->head->passthru_err_log_enabled in
3912 * nvme_io_passthru_err_log_enabled_[store | show]().
3913 */
3914 dev_set_drvdata(disk_to_dev(ns->disk), ns);
3915
3916 return;
3917
3918 out_cleanup_ns_from_list:
3919 nvme_put_ctrl(ctrl);
3920 mutex_lock(&ctrl->namespaces_lock);
3921 list_del_rcu(&ns->list);
3922 mutex_unlock(&ctrl->namespaces_lock);
3923 synchronize_srcu(&ctrl->srcu);
3924 out_unlink_ns:
3925 mutex_lock(&ctrl->subsys->lock);
3926 list_del_rcu(&ns->siblings);
3927 if (list_empty(&ns->head->list))
3928 list_del_init(&ns->head->entry);
3929 mutex_unlock(&ctrl->subsys->lock);
3930 nvme_put_ns_head(ns->head);
3931 out_cleanup_disk:
3932 put_disk(disk);
3933 out_free_ns:
3934 kfree(ns);
3935 }
3936
nvme_ns_remove(struct nvme_ns * ns)3937 static void nvme_ns_remove(struct nvme_ns *ns)
3938 {
3939 bool last_path = false;
3940
3941 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3942 return;
3943
3944 clear_bit(NVME_NS_READY, &ns->flags);
3945 set_capacity(ns->disk, 0);
3946 nvme_fault_inject_fini(&ns->fault_inject);
3947
3948 /*
3949 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3950 * this ns going back into current_path.
3951 */
3952 synchronize_srcu(&ns->head->srcu);
3953
3954 /* wait for concurrent submissions */
3955 if (nvme_mpath_clear_current_path(ns))
3956 synchronize_srcu(&ns->head->srcu);
3957
3958 mutex_lock(&ns->ctrl->subsys->lock);
3959 list_del_rcu(&ns->siblings);
3960 if (list_empty(&ns->head->list)) {
3961 list_del_init(&ns->head->entry);
3962 last_path = true;
3963 }
3964 mutex_unlock(&ns->ctrl->subsys->lock);
3965
3966 /* guarantee not available in head->list */
3967 synchronize_srcu(&ns->head->srcu);
3968
3969 if (!nvme_ns_head_multipath(ns->head))
3970 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3971 del_gendisk(ns->disk);
3972
3973 mutex_lock(&ns->ctrl->namespaces_lock);
3974 list_del_rcu(&ns->list);
3975 mutex_unlock(&ns->ctrl->namespaces_lock);
3976 synchronize_srcu(&ns->ctrl->srcu);
3977
3978 if (last_path)
3979 nvme_mpath_shutdown_disk(ns->head);
3980 nvme_put_ns(ns);
3981 }
3982
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)3983 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3984 {
3985 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3986
3987 if (ns) {
3988 nvme_ns_remove(ns);
3989 nvme_put_ns(ns);
3990 }
3991 }
3992
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)3993 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3994 {
3995 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
3996
3997 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3998 dev_err(ns->ctrl->device,
3999 "identifiers changed for nsid %d\n", ns->head->ns_id);
4000 goto out;
4001 }
4002
4003 ret = nvme_update_ns_info(ns, info);
4004 out:
4005 /*
4006 * Only remove the namespace if we got a fatal error back from the
4007 * device, otherwise ignore the error and just move on.
4008 *
4009 * TODO: we should probably schedule a delayed retry here.
4010 */
4011 if (ret > 0 && (ret & NVME_STATUS_DNR))
4012 nvme_ns_remove(ns);
4013 }
4014
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4015 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4016 {
4017 struct nvme_ns_info info = { .nsid = nsid };
4018 struct nvme_ns *ns;
4019 int ret;
4020
4021 if (nvme_identify_ns_descs(ctrl, &info))
4022 return;
4023
4024 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4025 dev_warn(ctrl->device,
4026 "command set not reported for nsid: %d\n", nsid);
4027 return;
4028 }
4029
4030 /*
4031 * If available try to use the Command Set Idependent Identify Namespace
4032 * data structure to find all the generic information that is needed to
4033 * set up a namespace. If not fall back to the legacy version.
4034 */
4035 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4036 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
4037 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4038 else
4039 ret = nvme_ns_info_from_identify(ctrl, &info);
4040
4041 if (info.is_removed)
4042 nvme_ns_remove_by_nsid(ctrl, nsid);
4043
4044 /*
4045 * Ignore the namespace if it is not ready. We will get an AEN once it
4046 * becomes ready and restart the scan.
4047 */
4048 if (ret || !info.is_ready)
4049 return;
4050
4051 ns = nvme_find_get_ns(ctrl, nsid);
4052 if (ns) {
4053 nvme_validate_ns(ns, &info);
4054 nvme_put_ns(ns);
4055 } else {
4056 nvme_alloc_ns(ctrl, &info);
4057 }
4058 }
4059
4060 /**
4061 * struct async_scan_info - keeps track of controller & NSIDs to scan
4062 * @ctrl: Controller on which namespaces are being scanned
4063 * @next_nsid: Index of next NSID to scan in ns_list
4064 * @ns_list: Pointer to list of NSIDs to scan
4065 *
4066 * Note: There is a single async_scan_info structure shared by all instances
4067 * of nvme_scan_ns_async() scanning a given controller, so the atomic
4068 * operations on next_nsid are critical to ensure each instance scans a unique
4069 * NSID.
4070 */
4071 struct async_scan_info {
4072 struct nvme_ctrl *ctrl;
4073 atomic_t next_nsid;
4074 __le32 *ns_list;
4075 };
4076
nvme_scan_ns_async(void * data,async_cookie_t cookie)4077 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4078 {
4079 struct async_scan_info *scan_info = data;
4080 int idx;
4081 u32 nsid;
4082
4083 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4084 nsid = le32_to_cpu(scan_info->ns_list[idx]);
4085
4086 nvme_scan_ns(scan_info->ctrl, nsid);
4087 }
4088
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4089 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4090 unsigned nsid)
4091 {
4092 struct nvme_ns *ns, *next;
4093 LIST_HEAD(rm_list);
4094
4095 mutex_lock(&ctrl->namespaces_lock);
4096 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4097 if (ns->head->ns_id > nsid) {
4098 list_del_rcu(&ns->list);
4099 synchronize_srcu(&ctrl->srcu);
4100 list_add_tail_rcu(&ns->list, &rm_list);
4101 }
4102 }
4103 mutex_unlock(&ctrl->namespaces_lock);
4104
4105 list_for_each_entry_safe(ns, next, &rm_list, list)
4106 nvme_ns_remove(ns);
4107 }
4108
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4109 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4110 {
4111 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4112 __le32 *ns_list;
4113 u32 prev = 0;
4114 int ret = 0, i;
4115 ASYNC_DOMAIN(domain);
4116 struct async_scan_info scan_info;
4117
4118 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4119 if (!ns_list)
4120 return -ENOMEM;
4121
4122 scan_info.ctrl = ctrl;
4123 scan_info.ns_list = ns_list;
4124 for (;;) {
4125 struct nvme_command cmd = {
4126 .identify.opcode = nvme_admin_identify,
4127 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4128 .identify.nsid = cpu_to_le32(prev),
4129 };
4130
4131 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4132 NVME_IDENTIFY_DATA_SIZE);
4133 if (ret) {
4134 dev_warn(ctrl->device,
4135 "Identify NS List failed (status=0x%x)\n", ret);
4136 goto free;
4137 }
4138
4139 atomic_set(&scan_info.next_nsid, 0);
4140 for (i = 0; i < nr_entries; i++) {
4141 u32 nsid = le32_to_cpu(ns_list[i]);
4142
4143 if (!nsid) /* end of the list? */
4144 goto out;
4145 async_schedule_domain(nvme_scan_ns_async, &scan_info,
4146 &domain);
4147 while (++prev < nsid)
4148 nvme_ns_remove_by_nsid(ctrl, prev);
4149 }
4150 async_synchronize_full_domain(&domain);
4151 }
4152 out:
4153 nvme_remove_invalid_namespaces(ctrl, prev);
4154 free:
4155 async_synchronize_full_domain(&domain);
4156 kfree(ns_list);
4157 return ret;
4158 }
4159
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4160 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4161 {
4162 struct nvme_id_ctrl *id;
4163 u32 nn, i;
4164
4165 if (nvme_identify_ctrl(ctrl, &id))
4166 return;
4167 nn = le32_to_cpu(id->nn);
4168 kfree(id);
4169
4170 for (i = 1; i <= nn; i++)
4171 nvme_scan_ns(ctrl, i);
4172
4173 nvme_remove_invalid_namespaces(ctrl, nn);
4174 }
4175
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4176 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4177 {
4178 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4179 __le32 *log;
4180 int error;
4181
4182 log = kzalloc(log_size, GFP_KERNEL);
4183 if (!log)
4184 return;
4185
4186 /*
4187 * We need to read the log to clear the AEN, but we don't want to rely
4188 * on it for the changed namespace information as userspace could have
4189 * raced with us in reading the log page, which could cause us to miss
4190 * updates.
4191 */
4192 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4193 NVME_CSI_NVM, log, log_size, 0);
4194 if (error)
4195 dev_warn(ctrl->device,
4196 "reading changed ns log failed: %d\n", error);
4197
4198 kfree(log);
4199 }
4200
nvme_scan_work(struct work_struct * work)4201 static void nvme_scan_work(struct work_struct *work)
4202 {
4203 struct nvme_ctrl *ctrl =
4204 container_of(work, struct nvme_ctrl, scan_work);
4205 int ret;
4206
4207 /* No tagset on a live ctrl means IO queues could not created */
4208 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4209 return;
4210
4211 /*
4212 * Identify controller limits can change at controller reset due to
4213 * new firmware download, even though it is not common we cannot ignore
4214 * such scenario. Controller's non-mdts limits are reported in the unit
4215 * of logical blocks that is dependent on the format of attached
4216 * namespace. Hence re-read the limits at the time of ns allocation.
4217 */
4218 ret = nvme_init_non_mdts_limits(ctrl);
4219 if (ret < 0) {
4220 dev_warn(ctrl->device,
4221 "reading non-mdts-limits failed: %d\n", ret);
4222 return;
4223 }
4224
4225 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4226 dev_info(ctrl->device, "rescanning namespaces.\n");
4227 nvme_clear_changed_ns_log(ctrl);
4228 }
4229
4230 mutex_lock(&ctrl->scan_lock);
4231 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4232 nvme_scan_ns_sequential(ctrl);
4233 } else {
4234 /*
4235 * Fall back to sequential scan if DNR is set to handle broken
4236 * devices which should support Identify NS List (as per the VS
4237 * they report) but don't actually support it.
4238 */
4239 ret = nvme_scan_ns_list(ctrl);
4240 if (ret > 0 && ret & NVME_STATUS_DNR)
4241 nvme_scan_ns_sequential(ctrl);
4242 }
4243 mutex_unlock(&ctrl->scan_lock);
4244 }
4245
4246 /*
4247 * This function iterates the namespace list unlocked to allow recovery from
4248 * controller failure. It is up to the caller to ensure the namespace list is
4249 * not modified by scan work while this function is executing.
4250 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4251 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4252 {
4253 struct nvme_ns *ns, *next;
4254 LIST_HEAD(ns_list);
4255
4256 /*
4257 * make sure to requeue I/O to all namespaces as these
4258 * might result from the scan itself and must complete
4259 * for the scan_work to make progress
4260 */
4261 nvme_mpath_clear_ctrl_paths(ctrl);
4262
4263 /*
4264 * Unquiesce io queues so any pending IO won't hang, especially
4265 * those submitted from scan work
4266 */
4267 nvme_unquiesce_io_queues(ctrl);
4268
4269 /* prevent racing with ns scanning */
4270 flush_work(&ctrl->scan_work);
4271
4272 /*
4273 * The dead states indicates the controller was not gracefully
4274 * disconnected. In that case, we won't be able to flush any data while
4275 * removing the namespaces' disks; fail all the queues now to avoid
4276 * potentially having to clean up the failed sync later.
4277 */
4278 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4279 nvme_mark_namespaces_dead(ctrl);
4280
4281 /* this is a no-op when called from the controller reset handler */
4282 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4283
4284 mutex_lock(&ctrl->namespaces_lock);
4285 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4286 mutex_unlock(&ctrl->namespaces_lock);
4287 synchronize_srcu(&ctrl->srcu);
4288
4289 list_for_each_entry_safe(ns, next, &ns_list, list)
4290 nvme_ns_remove(ns);
4291 }
4292 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4293
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4294 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4295 {
4296 const struct nvme_ctrl *ctrl =
4297 container_of(dev, struct nvme_ctrl, ctrl_device);
4298 struct nvmf_ctrl_options *opts = ctrl->opts;
4299 int ret;
4300
4301 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4302 if (ret)
4303 return ret;
4304
4305 if (opts) {
4306 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4307 if (ret)
4308 return ret;
4309
4310 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4311 opts->trsvcid ?: "none");
4312 if (ret)
4313 return ret;
4314
4315 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4316 opts->host_traddr ?: "none");
4317 if (ret)
4318 return ret;
4319
4320 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4321 opts->host_iface ?: "none");
4322 }
4323 return ret;
4324 }
4325
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4326 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4327 {
4328 char *envp[2] = { envdata, NULL };
4329
4330 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4331 }
4332
nvme_aen_uevent(struct nvme_ctrl * ctrl)4333 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4334 {
4335 char *envp[2] = { NULL, NULL };
4336 u32 aen_result = ctrl->aen_result;
4337
4338 ctrl->aen_result = 0;
4339 if (!aen_result)
4340 return;
4341
4342 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4343 if (!envp[0])
4344 return;
4345 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4346 kfree(envp[0]);
4347 }
4348
nvme_async_event_work(struct work_struct * work)4349 static void nvme_async_event_work(struct work_struct *work)
4350 {
4351 struct nvme_ctrl *ctrl =
4352 container_of(work, struct nvme_ctrl, async_event_work);
4353
4354 nvme_aen_uevent(ctrl);
4355
4356 /*
4357 * The transport drivers must guarantee AER submission here is safe by
4358 * flushing ctrl async_event_work after changing the controller state
4359 * from LIVE and before freeing the admin queue.
4360 */
4361 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4362 ctrl->ops->submit_async_event(ctrl);
4363 }
4364
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4365 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4366 {
4367
4368 u32 csts;
4369
4370 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4371 return false;
4372
4373 if (csts == ~0)
4374 return false;
4375
4376 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4377 }
4378
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4379 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4380 {
4381 struct nvme_fw_slot_info_log *log;
4382 u8 next_fw_slot, cur_fw_slot;
4383
4384 log = kmalloc(sizeof(*log), GFP_KERNEL);
4385 if (!log)
4386 return;
4387
4388 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4389 log, sizeof(*log), 0)) {
4390 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4391 goto out_free_log;
4392 }
4393
4394 cur_fw_slot = log->afi & 0x7;
4395 next_fw_slot = (log->afi & 0x70) >> 4;
4396 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4397 dev_info(ctrl->device,
4398 "Firmware is activated after next Controller Level Reset\n");
4399 goto out_free_log;
4400 }
4401
4402 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4403 sizeof(ctrl->subsys->firmware_rev));
4404
4405 out_free_log:
4406 kfree(log);
4407 }
4408
nvme_fw_act_work(struct work_struct * work)4409 static void nvme_fw_act_work(struct work_struct *work)
4410 {
4411 struct nvme_ctrl *ctrl = container_of(work,
4412 struct nvme_ctrl, fw_act_work);
4413 unsigned long fw_act_timeout;
4414
4415 nvme_auth_stop(ctrl);
4416
4417 if (ctrl->mtfa)
4418 fw_act_timeout = jiffies +
4419 msecs_to_jiffies(ctrl->mtfa * 100);
4420 else
4421 fw_act_timeout = jiffies +
4422 msecs_to_jiffies(admin_timeout * 1000);
4423
4424 nvme_quiesce_io_queues(ctrl);
4425 while (nvme_ctrl_pp_status(ctrl)) {
4426 if (time_after(jiffies, fw_act_timeout)) {
4427 dev_warn(ctrl->device,
4428 "Fw activation timeout, reset controller\n");
4429 nvme_try_sched_reset(ctrl);
4430 return;
4431 }
4432 msleep(100);
4433 }
4434
4435 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4436 return;
4437
4438 nvme_unquiesce_io_queues(ctrl);
4439 /* read FW slot information to clear the AER */
4440 nvme_get_fw_slot_info(ctrl);
4441
4442 queue_work(nvme_wq, &ctrl->async_event_work);
4443 }
4444
nvme_aer_type(u32 result)4445 static u32 nvme_aer_type(u32 result)
4446 {
4447 return result & 0x7;
4448 }
4449
nvme_aer_subtype(u32 result)4450 static u32 nvme_aer_subtype(u32 result)
4451 {
4452 return (result & 0xff00) >> 8;
4453 }
4454
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4455 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4456 {
4457 u32 aer_notice_type = nvme_aer_subtype(result);
4458 bool requeue = true;
4459
4460 switch (aer_notice_type) {
4461 case NVME_AER_NOTICE_NS_CHANGED:
4462 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4463 nvme_queue_scan(ctrl);
4464 break;
4465 case NVME_AER_NOTICE_FW_ACT_STARTING:
4466 /*
4467 * We are (ab)using the RESETTING state to prevent subsequent
4468 * recovery actions from interfering with the controller's
4469 * firmware activation.
4470 */
4471 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4472 requeue = false;
4473 queue_work(nvme_wq, &ctrl->fw_act_work);
4474 }
4475 break;
4476 #ifdef CONFIG_NVME_MULTIPATH
4477 case NVME_AER_NOTICE_ANA:
4478 if (!ctrl->ana_log_buf)
4479 break;
4480 queue_work(nvme_wq, &ctrl->ana_work);
4481 break;
4482 #endif
4483 case NVME_AER_NOTICE_DISC_CHANGED:
4484 ctrl->aen_result = result;
4485 break;
4486 default:
4487 dev_warn(ctrl->device, "async event result %08x\n", result);
4488 }
4489 return requeue;
4490 }
4491
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4492 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4493 {
4494 dev_warn(ctrl->device,
4495 "resetting controller due to persistent internal error\n");
4496 nvme_reset_ctrl(ctrl);
4497 }
4498
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4499 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4500 volatile union nvme_result *res)
4501 {
4502 u32 result = le32_to_cpu(res->u32);
4503 u32 aer_type = nvme_aer_type(result);
4504 u32 aer_subtype = nvme_aer_subtype(result);
4505 bool requeue = true;
4506
4507 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4508 return;
4509
4510 trace_nvme_async_event(ctrl, result);
4511 switch (aer_type) {
4512 case NVME_AER_NOTICE:
4513 requeue = nvme_handle_aen_notice(ctrl, result);
4514 break;
4515 case NVME_AER_ERROR:
4516 /*
4517 * For a persistent internal error, don't run async_event_work
4518 * to submit a new AER. The controller reset will do it.
4519 */
4520 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4521 nvme_handle_aer_persistent_error(ctrl);
4522 return;
4523 }
4524 fallthrough;
4525 case NVME_AER_SMART:
4526 case NVME_AER_CSS:
4527 case NVME_AER_VS:
4528 ctrl->aen_result = result;
4529 break;
4530 default:
4531 break;
4532 }
4533
4534 if (requeue)
4535 queue_work(nvme_wq, &ctrl->async_event_work);
4536 }
4537 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4538
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4539 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4540 const struct blk_mq_ops *ops, unsigned int cmd_size)
4541 {
4542 struct queue_limits lim = {};
4543 int ret;
4544
4545 memset(set, 0, sizeof(*set));
4546 set->ops = ops;
4547 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4548 if (ctrl->ops->flags & NVME_F_FABRICS)
4549 /* Reserved for fabric connect and keep alive */
4550 set->reserved_tags = 2;
4551 set->numa_node = ctrl->numa_node;
4552 set->flags = BLK_MQ_F_NO_SCHED;
4553 if (ctrl->ops->flags & NVME_F_BLOCKING)
4554 set->flags |= BLK_MQ_F_BLOCKING;
4555 set->cmd_size = cmd_size;
4556 set->driver_data = ctrl;
4557 set->nr_hw_queues = 1;
4558 set->timeout = NVME_ADMIN_TIMEOUT;
4559 ret = blk_mq_alloc_tag_set(set);
4560 if (ret)
4561 return ret;
4562
4563 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4564 if (IS_ERR(ctrl->admin_q)) {
4565 ret = PTR_ERR(ctrl->admin_q);
4566 goto out_free_tagset;
4567 }
4568
4569 if (ctrl->ops->flags & NVME_F_FABRICS) {
4570 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4571 if (IS_ERR(ctrl->fabrics_q)) {
4572 ret = PTR_ERR(ctrl->fabrics_q);
4573 goto out_cleanup_admin_q;
4574 }
4575 }
4576
4577 ctrl->admin_tagset = set;
4578 return 0;
4579
4580 out_cleanup_admin_q:
4581 blk_mq_destroy_queue(ctrl->admin_q);
4582 blk_put_queue(ctrl->admin_q);
4583 out_free_tagset:
4584 blk_mq_free_tag_set(set);
4585 ctrl->admin_q = NULL;
4586 ctrl->fabrics_q = NULL;
4587 return ret;
4588 }
4589 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4590
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4591 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4592 {
4593 blk_mq_destroy_queue(ctrl->admin_q);
4594 blk_put_queue(ctrl->admin_q);
4595 if (ctrl->ops->flags & NVME_F_FABRICS) {
4596 blk_mq_destroy_queue(ctrl->fabrics_q);
4597 blk_put_queue(ctrl->fabrics_q);
4598 }
4599 blk_mq_free_tag_set(ctrl->admin_tagset);
4600 }
4601 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4602
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4603 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4604 const struct blk_mq_ops *ops, unsigned int nr_maps,
4605 unsigned int cmd_size)
4606 {
4607 int ret;
4608
4609 memset(set, 0, sizeof(*set));
4610 set->ops = ops;
4611 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4612 /*
4613 * Some Apple controllers requires tags to be unique across admin and
4614 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4615 */
4616 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4617 set->reserved_tags = NVME_AQ_DEPTH;
4618 else if (ctrl->ops->flags & NVME_F_FABRICS)
4619 /* Reserved for fabric connect */
4620 set->reserved_tags = 1;
4621 set->numa_node = ctrl->numa_node;
4622 set->flags = BLK_MQ_F_SHOULD_MERGE;
4623 if (ctrl->ops->flags & NVME_F_BLOCKING)
4624 set->flags |= BLK_MQ_F_BLOCKING;
4625 set->cmd_size = cmd_size;
4626 set->driver_data = ctrl;
4627 set->nr_hw_queues = ctrl->queue_count - 1;
4628 set->timeout = NVME_IO_TIMEOUT;
4629 set->nr_maps = nr_maps;
4630 ret = blk_mq_alloc_tag_set(set);
4631 if (ret)
4632 return ret;
4633
4634 if (ctrl->ops->flags & NVME_F_FABRICS) {
4635 struct queue_limits lim = {
4636 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE,
4637 };
4638
4639 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4640 if (IS_ERR(ctrl->connect_q)) {
4641 ret = PTR_ERR(ctrl->connect_q);
4642 goto out_free_tag_set;
4643 }
4644 }
4645
4646 ctrl->tagset = set;
4647 return 0;
4648
4649 out_free_tag_set:
4650 blk_mq_free_tag_set(set);
4651 ctrl->connect_q = NULL;
4652 return ret;
4653 }
4654 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4655
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4656 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4657 {
4658 if (ctrl->ops->flags & NVME_F_FABRICS) {
4659 blk_mq_destroy_queue(ctrl->connect_q);
4660 blk_put_queue(ctrl->connect_q);
4661 }
4662 blk_mq_free_tag_set(ctrl->tagset);
4663 }
4664 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4665
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4666 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4667 {
4668 nvme_mpath_stop(ctrl);
4669 nvme_auth_stop(ctrl);
4670 nvme_stop_failfast_work(ctrl);
4671 flush_work(&ctrl->async_event_work);
4672 cancel_work_sync(&ctrl->fw_act_work);
4673 if (ctrl->ops->stop_ctrl)
4674 ctrl->ops->stop_ctrl(ctrl);
4675 }
4676 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4677
nvme_start_ctrl(struct nvme_ctrl * ctrl)4678 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4679 {
4680 nvme_enable_aen(ctrl);
4681
4682 /*
4683 * persistent discovery controllers need to send indication to userspace
4684 * to re-read the discovery log page to learn about possible changes
4685 * that were missed. We identify persistent discovery controllers by
4686 * checking that they started once before, hence are reconnecting back.
4687 */
4688 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4689 nvme_discovery_ctrl(ctrl))
4690 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4691
4692 if (ctrl->queue_count > 1) {
4693 nvme_queue_scan(ctrl);
4694 nvme_unquiesce_io_queues(ctrl);
4695 nvme_mpath_update(ctrl);
4696 }
4697
4698 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4699 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4700 }
4701 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4702
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4703 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4704 {
4705 nvme_stop_keep_alive(ctrl);
4706 nvme_hwmon_exit(ctrl);
4707 nvme_fault_inject_fini(&ctrl->fault_inject);
4708 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4709 cdev_device_del(&ctrl->cdev, ctrl->device);
4710 nvme_put_ctrl(ctrl);
4711 }
4712 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4713
nvme_free_cels(struct nvme_ctrl * ctrl)4714 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4715 {
4716 struct nvme_effects_log *cel;
4717 unsigned long i;
4718
4719 xa_for_each(&ctrl->cels, i, cel) {
4720 xa_erase(&ctrl->cels, i);
4721 kfree(cel);
4722 }
4723
4724 xa_destroy(&ctrl->cels);
4725 }
4726
nvme_free_ctrl(struct device * dev)4727 static void nvme_free_ctrl(struct device *dev)
4728 {
4729 struct nvme_ctrl *ctrl =
4730 container_of(dev, struct nvme_ctrl, ctrl_device);
4731 struct nvme_subsystem *subsys = ctrl->subsys;
4732
4733 if (!subsys || ctrl->instance != subsys->instance)
4734 ida_free(&nvme_instance_ida, ctrl->instance);
4735 nvme_free_cels(ctrl);
4736 nvme_mpath_uninit(ctrl);
4737 cleanup_srcu_struct(&ctrl->srcu);
4738 nvme_auth_stop(ctrl);
4739 nvme_auth_free(ctrl);
4740 __free_page(ctrl->discard_page);
4741 free_opal_dev(ctrl->opal_dev);
4742
4743 if (subsys) {
4744 mutex_lock(&nvme_subsystems_lock);
4745 list_del(&ctrl->subsys_entry);
4746 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4747 mutex_unlock(&nvme_subsystems_lock);
4748 }
4749
4750 ctrl->ops->free_ctrl(ctrl);
4751
4752 if (subsys)
4753 nvme_put_subsystem(subsys);
4754 }
4755
4756 /*
4757 * Initialize a NVMe controller structures. This needs to be called during
4758 * earliest initialization so that we have the initialized structured around
4759 * during probing.
4760 *
4761 * On success, the caller must use the nvme_put_ctrl() to release this when
4762 * needed, which also invokes the ops->free_ctrl() callback.
4763 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4764 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4765 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4766 {
4767 int ret;
4768
4769 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4770 ctrl->passthru_err_log_enabled = false;
4771 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4772 spin_lock_init(&ctrl->lock);
4773 mutex_init(&ctrl->namespaces_lock);
4774
4775 ret = init_srcu_struct(&ctrl->srcu);
4776 if (ret)
4777 return ret;
4778
4779 mutex_init(&ctrl->scan_lock);
4780 INIT_LIST_HEAD(&ctrl->namespaces);
4781 xa_init(&ctrl->cels);
4782 ctrl->dev = dev;
4783 ctrl->ops = ops;
4784 ctrl->quirks = quirks;
4785 ctrl->numa_node = NUMA_NO_NODE;
4786 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4787 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4788 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4789 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4790 init_waitqueue_head(&ctrl->state_wq);
4791
4792 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4793 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4794 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4795 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4796 ctrl->ka_last_check_time = jiffies;
4797
4798 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4799 PAGE_SIZE);
4800 ctrl->discard_page = alloc_page(GFP_KERNEL);
4801 if (!ctrl->discard_page) {
4802 ret = -ENOMEM;
4803 goto out;
4804 }
4805
4806 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4807 if (ret < 0)
4808 goto out;
4809 ctrl->instance = ret;
4810
4811 ret = nvme_auth_init_ctrl(ctrl);
4812 if (ret)
4813 goto out_release_instance;
4814
4815 nvme_mpath_init_ctrl(ctrl);
4816
4817 device_initialize(&ctrl->ctrl_device);
4818 ctrl->device = &ctrl->ctrl_device;
4819 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4820 ctrl->instance);
4821 ctrl->device->class = &nvme_class;
4822 ctrl->device->parent = ctrl->dev;
4823 if (ops->dev_attr_groups)
4824 ctrl->device->groups = ops->dev_attr_groups;
4825 else
4826 ctrl->device->groups = nvme_dev_attr_groups;
4827 ctrl->device->release = nvme_free_ctrl;
4828 dev_set_drvdata(ctrl->device, ctrl);
4829
4830 return ret;
4831
4832 out_release_instance:
4833 ida_free(&nvme_instance_ida, ctrl->instance);
4834 out:
4835 if (ctrl->discard_page)
4836 __free_page(ctrl->discard_page);
4837 cleanup_srcu_struct(&ctrl->srcu);
4838 return ret;
4839 }
4840 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4841
4842 /*
4843 * On success, returns with an elevated controller reference and caller must
4844 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4845 */
nvme_add_ctrl(struct nvme_ctrl * ctrl)4846 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4847 {
4848 int ret;
4849
4850 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4851 if (ret)
4852 return ret;
4853
4854 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4855 ctrl->cdev.owner = ctrl->ops->module;
4856 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4857 if (ret)
4858 return ret;
4859
4860 /*
4861 * Initialize latency tolerance controls. The sysfs files won't
4862 * be visible to userspace unless the device actually supports APST.
4863 */
4864 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4865 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4866 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4867
4868 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4869 nvme_get_ctrl(ctrl);
4870
4871 return 0;
4872 }
4873 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4874
4875 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)4876 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4877 {
4878 struct nvme_ns *ns;
4879 int srcu_idx;
4880
4881 srcu_idx = srcu_read_lock(&ctrl->srcu);
4882 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4883 blk_mark_disk_dead(ns->disk);
4884 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4885 }
4886 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4887
nvme_unfreeze(struct nvme_ctrl * ctrl)4888 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4889 {
4890 struct nvme_ns *ns;
4891 int srcu_idx;
4892
4893 srcu_idx = srcu_read_lock(&ctrl->srcu);
4894 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4895 blk_mq_unfreeze_queue(ns->queue);
4896 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4897 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4898 }
4899 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4900
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4901 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4902 {
4903 struct nvme_ns *ns;
4904 int srcu_idx;
4905
4906 srcu_idx = srcu_read_lock(&ctrl->srcu);
4907 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
4908 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4909 if (timeout <= 0)
4910 break;
4911 }
4912 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4913 return timeout;
4914 }
4915 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4916
nvme_wait_freeze(struct nvme_ctrl * ctrl)4917 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4918 {
4919 struct nvme_ns *ns;
4920 int srcu_idx;
4921
4922 srcu_idx = srcu_read_lock(&ctrl->srcu);
4923 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4924 blk_mq_freeze_queue_wait(ns->queue);
4925 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4926 }
4927 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4928
nvme_start_freeze(struct nvme_ctrl * ctrl)4929 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4930 {
4931 struct nvme_ns *ns;
4932 int srcu_idx;
4933
4934 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4935 srcu_idx = srcu_read_lock(&ctrl->srcu);
4936 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4937 blk_freeze_queue_start(ns->queue);
4938 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4939 }
4940 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4941
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)4942 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4943 {
4944 if (!ctrl->tagset)
4945 return;
4946 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4947 blk_mq_quiesce_tagset(ctrl->tagset);
4948 else
4949 blk_mq_wait_quiesce_done(ctrl->tagset);
4950 }
4951 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4952
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)4953 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4954 {
4955 if (!ctrl->tagset)
4956 return;
4957 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4958 blk_mq_unquiesce_tagset(ctrl->tagset);
4959 }
4960 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4961
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)4962 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4963 {
4964 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4965 blk_mq_quiesce_queue(ctrl->admin_q);
4966 else
4967 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4968 }
4969 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4970
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)4971 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4972 {
4973 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4974 blk_mq_unquiesce_queue(ctrl->admin_q);
4975 }
4976 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4977
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4978 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4979 {
4980 struct nvme_ns *ns;
4981 int srcu_idx;
4982
4983 srcu_idx = srcu_read_lock(&ctrl->srcu);
4984 list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4985 blk_sync_queue(ns->queue);
4986 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4987 }
4988 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4989
nvme_sync_queues(struct nvme_ctrl * ctrl)4990 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4991 {
4992 nvme_sync_io_queues(ctrl);
4993 if (ctrl->admin_q)
4994 blk_sync_queue(ctrl->admin_q);
4995 }
4996 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4997
nvme_ctrl_from_file(struct file * file)4998 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4999 {
5000 if (file->f_op != &nvme_dev_fops)
5001 return NULL;
5002 return file->private_data;
5003 }
5004 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5005
5006 /*
5007 * Check we didn't inadvertently grow the command structure sizes:
5008 */
_nvme_check_size(void)5009 static inline void _nvme_check_size(void)
5010 {
5011 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5012 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5013 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5014 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5015 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5016 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5017 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5018 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5019 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5020 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5021 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5022 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5023 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5024 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5025 NVME_IDENTIFY_DATA_SIZE);
5026 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5027 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5028 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5029 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5030 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5031 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5032 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5033 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5034 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5035 }
5036
5037
nvme_core_init(void)5038 static int __init nvme_core_init(void)
5039 {
5040 int result = -ENOMEM;
5041
5042 _nvme_check_size();
5043
5044 nvme_wq = alloc_workqueue("nvme-wq",
5045 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5046 if (!nvme_wq)
5047 goto out;
5048
5049 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5050 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5051 if (!nvme_reset_wq)
5052 goto destroy_wq;
5053
5054 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5055 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5056 if (!nvme_delete_wq)
5057 goto destroy_reset_wq;
5058
5059 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5060 NVME_MINORS, "nvme");
5061 if (result < 0)
5062 goto destroy_delete_wq;
5063
5064 result = class_register(&nvme_class);
5065 if (result)
5066 goto unregister_chrdev;
5067
5068 result = class_register(&nvme_subsys_class);
5069 if (result)
5070 goto destroy_class;
5071
5072 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5073 "nvme-generic");
5074 if (result < 0)
5075 goto destroy_subsys_class;
5076
5077 result = class_register(&nvme_ns_chr_class);
5078 if (result)
5079 goto unregister_generic_ns;
5080
5081 result = nvme_init_auth();
5082 if (result)
5083 goto destroy_ns_chr;
5084 return 0;
5085
5086 destroy_ns_chr:
5087 class_unregister(&nvme_ns_chr_class);
5088 unregister_generic_ns:
5089 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5090 destroy_subsys_class:
5091 class_unregister(&nvme_subsys_class);
5092 destroy_class:
5093 class_unregister(&nvme_class);
5094 unregister_chrdev:
5095 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5096 destroy_delete_wq:
5097 destroy_workqueue(nvme_delete_wq);
5098 destroy_reset_wq:
5099 destroy_workqueue(nvme_reset_wq);
5100 destroy_wq:
5101 destroy_workqueue(nvme_wq);
5102 out:
5103 return result;
5104 }
5105
nvme_core_exit(void)5106 static void __exit nvme_core_exit(void)
5107 {
5108 nvme_exit_auth();
5109 class_unregister(&nvme_ns_chr_class);
5110 class_unregister(&nvme_subsys_class);
5111 class_unregister(&nvme_class);
5112 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5113 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5114 destroy_workqueue(nvme_delete_wq);
5115 destroy_workqueue(nvme_reset_wq);
5116 destroy_workqueue(nvme_wq);
5117 ida_destroy(&nvme_ns_chr_minor_ida);
5118 ida_destroy(&nvme_instance_ida);
5119 }
5120
5121 MODULE_LICENSE("GPL");
5122 MODULE_VERSION("1.0");
5123 MODULE_DESCRIPTION("NVMe host core framework");
5124 module_init(nvme_core_init);
5125 module_exit(nvme_core_exit);
5126