1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 struct nvme_ns_info {
37 struct nvme_ns_ids ids;
38 u32 nsid;
39 __le32 anagrpid;
40 u8 pi_offset;
41 bool is_shared;
42 bool is_readonly;
43 bool is_ready;
44 bool is_removed;
45 bool is_rotational;
46 bool no_vwc;
47 };
48
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 "max power saving latency for new devices; use PM QOS to change per device");
71
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 "primary APST timeout in ms");
80
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 "secondary APST timeout in ms");
85
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 "primary APST latency tolerance in us");
90
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 "secondary APST latency tolerance in us");
95
96 /*
97 * Older kernels didn't enable protection information if it was at an offset.
98 * Newer kernels do, so it breaks reads on the upgrade if such formats were
99 * used in prior kernels since the metadata written did not contain a valid
100 * checksum.
101 */
102 static bool disable_pi_offsets = false;
103 module_param(disable_pi_offsets, bool, 0444);
104 MODULE_PARM_DESC(disable_pi_offsets,
105 "disable protection information if it has an offset");
106
107 /*
108 * nvme_wq - hosts nvme related works that are not reset or delete
109 * nvme_reset_wq - hosts nvme reset works
110 * nvme_delete_wq - hosts nvme delete works
111 *
112 * nvme_wq will host works such as scan, aen handling, fw activation,
113 * keep-alive, periodic reconnects etc. nvme_reset_wq
114 * runs reset works which also flush works hosted on nvme_wq for
115 * serialization purposes. nvme_delete_wq host controller deletion
116 * works which flush reset works for serialization.
117 */
118 struct workqueue_struct *nvme_wq;
119 EXPORT_SYMBOL_GPL(nvme_wq);
120
121 struct workqueue_struct *nvme_reset_wq;
122 EXPORT_SYMBOL_GPL(nvme_reset_wq);
123
124 struct workqueue_struct *nvme_delete_wq;
125 EXPORT_SYMBOL_GPL(nvme_delete_wq);
126
127 static LIST_HEAD(nvme_subsystems);
128 DEFINE_MUTEX(nvme_subsystems_lock);
129
130 static DEFINE_IDA(nvme_instance_ida);
131 static dev_t nvme_ctrl_base_chr_devt;
132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
133 static const struct class nvme_class = {
134 .name = "nvme",
135 .dev_uevent = nvme_class_uevent,
136 };
137
138 static const struct class nvme_subsys_class = {
139 .name = "nvme-subsystem",
140 };
141
142 static DEFINE_IDA(nvme_ns_chr_minor_ida);
143 static dev_t nvme_ns_chr_devt;
144 static const struct class nvme_ns_chr_class = {
145 .name = "nvme-generic",
146 };
147
148 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
150 unsigned nsid);
151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
152 struct nvme_command *cmd);
153
nvme_queue_scan(struct nvme_ctrl * ctrl)154 void nvme_queue_scan(struct nvme_ctrl *ctrl)
155 {
156 /*
157 * Only new queue scan work when admin and IO queues are both alive
158 */
159 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
160 queue_work(nvme_wq, &ctrl->scan_work);
161 }
162
163 /*
164 * Use this function to proceed with scheduling reset_work for a controller
165 * that had previously been set to the resetting state. This is intended for
166 * code paths that can't be interrupted by other reset attempts. A hot removal
167 * may prevent this from succeeding.
168 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
170 {
171 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
172 return -EBUSY;
173 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
174 return -EBUSY;
175 return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
178
nvme_failfast_work(struct work_struct * work)179 static void nvme_failfast_work(struct work_struct *work)
180 {
181 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
182 struct nvme_ctrl, failfast_work);
183
184 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
185 return;
186
187 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
188 dev_info(ctrl->device, "failfast expired\n");
189 nvme_kick_requeue_lists(ctrl);
190 }
191
nvme_start_failfast_work(struct nvme_ctrl * ctrl)192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
193 {
194 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
195 return;
196
197 schedule_delayed_work(&ctrl->failfast_work,
198 ctrl->opts->fast_io_fail_tmo * HZ);
199 }
200
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
202 {
203 if (!ctrl->opts)
204 return;
205
206 cancel_delayed_work_sync(&ctrl->failfast_work);
207 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
208 }
209
210
nvme_reset_ctrl(struct nvme_ctrl * ctrl)211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
212 {
213 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
214 return -EBUSY;
215 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
216 return -EBUSY;
217 return 0;
218 }
219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
220
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
222 {
223 int ret;
224
225 ret = nvme_reset_ctrl(ctrl);
226 if (!ret) {
227 flush_work(&ctrl->reset_work);
228 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
229 ret = -ENETRESET;
230 }
231
232 return ret;
233 }
234
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
236 {
237 dev_info(ctrl->device,
238 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
239
240 flush_work(&ctrl->reset_work);
241 nvme_stop_ctrl(ctrl);
242 nvme_remove_namespaces(ctrl);
243 ctrl->ops->delete_ctrl(ctrl);
244 nvme_uninit_ctrl(ctrl);
245 }
246
nvme_delete_ctrl_work(struct work_struct * work)247 static void nvme_delete_ctrl_work(struct work_struct *work)
248 {
249 struct nvme_ctrl *ctrl =
250 container_of(work, struct nvme_ctrl, delete_work);
251
252 nvme_do_delete_ctrl(ctrl);
253 }
254
nvme_delete_ctrl(struct nvme_ctrl * ctrl)255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
256 {
257 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 return -EBUSY;
259 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
260 return -EBUSY;
261 return 0;
262 }
263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
264
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
266 {
267 /*
268 * Keep a reference until nvme_do_delete_ctrl() complete,
269 * since ->delete_ctrl can free the controller.
270 */
271 nvme_get_ctrl(ctrl);
272 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
273 nvme_do_delete_ctrl(ctrl);
274 nvme_put_ctrl(ctrl);
275 }
276
nvme_error_status(u16 status)277 static blk_status_t nvme_error_status(u16 status)
278 {
279 switch (status & NVME_SCT_SC_MASK) {
280 case NVME_SC_SUCCESS:
281 return BLK_STS_OK;
282 case NVME_SC_CAP_EXCEEDED:
283 return BLK_STS_NOSPC;
284 case NVME_SC_LBA_RANGE:
285 case NVME_SC_CMD_INTERRUPTED:
286 case NVME_SC_NS_NOT_READY:
287 return BLK_STS_TARGET;
288 case NVME_SC_BAD_ATTRIBUTES:
289 case NVME_SC_ONCS_NOT_SUPPORTED:
290 case NVME_SC_INVALID_OPCODE:
291 case NVME_SC_INVALID_FIELD:
292 case NVME_SC_INVALID_NS:
293 return BLK_STS_NOTSUPP;
294 case NVME_SC_WRITE_FAULT:
295 case NVME_SC_READ_ERROR:
296 case NVME_SC_UNWRITTEN_BLOCK:
297 case NVME_SC_ACCESS_DENIED:
298 case NVME_SC_READ_ONLY:
299 case NVME_SC_COMPARE_FAILED:
300 return BLK_STS_MEDIUM;
301 case NVME_SC_GUARD_CHECK:
302 case NVME_SC_APPTAG_CHECK:
303 case NVME_SC_REFTAG_CHECK:
304 case NVME_SC_INVALID_PI:
305 return BLK_STS_PROTECTION;
306 case NVME_SC_RESERVATION_CONFLICT:
307 return BLK_STS_RESV_CONFLICT;
308 case NVME_SC_HOST_PATH_ERROR:
309 return BLK_STS_TRANSPORT;
310 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
311 return BLK_STS_ZONE_ACTIVE_RESOURCE;
312 case NVME_SC_ZONE_TOO_MANY_OPEN:
313 return BLK_STS_ZONE_OPEN_RESOURCE;
314 default:
315 return BLK_STS_IOERR;
316 }
317 }
318
nvme_retry_req(struct request * req)319 static void nvme_retry_req(struct request *req)
320 {
321 unsigned long delay = 0;
322 u16 crd;
323
324 /* The mask and shift result must be <= 3 */
325 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
326 if (crd)
327 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
328
329 nvme_req(req)->retries++;
330 blk_mq_requeue_request(req, false);
331 blk_mq_delay_kick_requeue_list(req->q, delay);
332 }
333
nvme_log_error(struct request * req)334 static void nvme_log_error(struct request *req)
335 {
336 struct nvme_ns *ns = req->q->queuedata;
337 struct nvme_request *nr = nvme_req(req);
338
339 if (ns) {
340 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
341 ns->disk ? ns->disk->disk_name : "?",
342 nvme_get_opcode_str(nr->cmd->common.opcode),
343 nr->cmd->common.opcode,
344 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
345 blk_rq_bytes(req) >> ns->head->lba_shift,
346 nvme_get_error_status_str(nr->status),
347 NVME_SCT(nr->status), /* Status Code Type */
348 nr->status & NVME_SC_MASK, /* Status Code */
349 nr->status & NVME_STATUS_MORE ? "MORE " : "",
350 nr->status & NVME_STATUS_DNR ? "DNR " : "");
351 return;
352 }
353
354 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
355 dev_name(nr->ctrl->device),
356 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
357 nr->cmd->common.opcode,
358 nvme_get_error_status_str(nr->status),
359 NVME_SCT(nr->status), /* Status Code Type */
360 nr->status & NVME_SC_MASK, /* Status Code */
361 nr->status & NVME_STATUS_MORE ? "MORE " : "",
362 nr->status & NVME_STATUS_DNR ? "DNR " : "");
363 }
364
nvme_log_err_passthru(struct request * req)365 static void nvme_log_err_passthru(struct request *req)
366 {
367 struct nvme_ns *ns = req->q->queuedata;
368 struct nvme_request *nr = nvme_req(req);
369
370 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
371 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
372 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
373 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
374 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
375 nr->cmd->common.opcode,
376 nvme_get_error_status_str(nr->status),
377 NVME_SCT(nr->status), /* Status Code Type */
378 nr->status & NVME_SC_MASK, /* Status Code */
379 nr->status & NVME_STATUS_MORE ? "MORE " : "",
380 nr->status & NVME_STATUS_DNR ? "DNR " : "",
381 nr->cmd->common.cdw10,
382 nr->cmd->common.cdw11,
383 nr->cmd->common.cdw12,
384 nr->cmd->common.cdw13,
385 nr->cmd->common.cdw14,
386 nr->cmd->common.cdw14);
387 }
388
389 enum nvme_disposition {
390 COMPLETE,
391 RETRY,
392 FAILOVER,
393 AUTHENTICATE,
394 };
395
nvme_decide_disposition(struct request * req)396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
397 {
398 if (likely(nvme_req(req)->status == 0))
399 return COMPLETE;
400
401 if (blk_noretry_request(req) ||
402 (nvme_req(req)->status & NVME_STATUS_DNR) ||
403 nvme_req(req)->retries >= nvme_max_retries)
404 return COMPLETE;
405
406 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
407 return AUTHENTICATE;
408
409 if (req->cmd_flags & REQ_NVME_MPATH) {
410 if (nvme_is_path_error(nvme_req(req)->status) ||
411 blk_queue_dying(req->q))
412 return FAILOVER;
413 } else {
414 if (blk_queue_dying(req->q))
415 return COMPLETE;
416 }
417
418 return RETRY;
419 }
420
nvme_end_req_zoned(struct request * req)421 static inline void nvme_end_req_zoned(struct request *req)
422 {
423 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
424 req_op(req) == REQ_OP_ZONE_APPEND) {
425 struct nvme_ns *ns = req->q->queuedata;
426
427 req->__sector = nvme_lba_to_sect(ns->head,
428 le64_to_cpu(nvme_req(req)->result.u64));
429 }
430 }
431
__nvme_end_req(struct request * req)432 static inline void __nvme_end_req(struct request *req)
433 {
434 nvme_end_req_zoned(req);
435 nvme_trace_bio_complete(req);
436 if (req->cmd_flags & REQ_NVME_MPATH)
437 nvme_mpath_end_request(req);
438 }
439
nvme_end_req(struct request * req)440 void nvme_end_req(struct request *req)
441 {
442 blk_status_t status = nvme_error_status(nvme_req(req)->status);
443
444 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
445 if (blk_rq_is_passthrough(req))
446 nvme_log_err_passthru(req);
447 else
448 nvme_log_error(req);
449 }
450 __nvme_end_req(req);
451 blk_mq_end_request(req, status);
452 }
453
nvme_complete_rq(struct request * req)454 void nvme_complete_rq(struct request *req)
455 {
456 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
457
458 trace_nvme_complete_rq(req);
459 nvme_cleanup_cmd(req);
460
461 /*
462 * Completions of long-running commands should not be able to
463 * defer sending of periodic keep alives, since the controller
464 * may have completed processing such commands a long time ago
465 * (arbitrarily close to command submission time).
466 * req->deadline - req->timeout is the command submission time
467 * in jiffies.
468 */
469 if (ctrl->kas &&
470 req->deadline - req->timeout >= ctrl->ka_last_check_time)
471 ctrl->comp_seen = true;
472
473 switch (nvme_decide_disposition(req)) {
474 case COMPLETE:
475 nvme_end_req(req);
476 return;
477 case RETRY:
478 nvme_retry_req(req);
479 return;
480 case FAILOVER:
481 nvme_failover_req(req);
482 return;
483 case AUTHENTICATE:
484 #ifdef CONFIG_NVME_HOST_AUTH
485 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
486 nvme_retry_req(req);
487 #else
488 nvme_end_req(req);
489 #endif
490 return;
491 }
492 }
493 EXPORT_SYMBOL_GPL(nvme_complete_rq);
494
nvme_complete_batch_req(struct request * req)495 void nvme_complete_batch_req(struct request *req)
496 {
497 trace_nvme_complete_rq(req);
498 nvme_cleanup_cmd(req);
499 __nvme_end_req(req);
500 }
501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
502
503 /*
504 * Called to unwind from ->queue_rq on a failed command submission so that the
505 * multipathing code gets called to potentially failover to another path.
506 * The caller needs to unwind all transport specific resource allocations and
507 * must return propagate the return value.
508 */
nvme_host_path_error(struct request * req)509 blk_status_t nvme_host_path_error(struct request *req)
510 {
511 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
512 blk_mq_set_request_complete(req);
513 nvme_complete_rq(req);
514 return BLK_STS_OK;
515 }
516 EXPORT_SYMBOL_GPL(nvme_host_path_error);
517
nvme_cancel_request(struct request * req,void * data)518 bool nvme_cancel_request(struct request *req, void *data)
519 {
520 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
521 "Cancelling I/O %d", req->tag);
522
523 /* don't abort one completed or idle request */
524 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
525 return true;
526
527 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
528 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
529 blk_mq_complete_request(req);
530 return true;
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_request);
533
nvme_cancel_tagset(struct nvme_ctrl * ctrl)534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
535 {
536 if (ctrl->tagset) {
537 blk_mq_tagset_busy_iter(ctrl->tagset,
538 nvme_cancel_request, ctrl);
539 blk_mq_tagset_wait_completed_request(ctrl->tagset);
540 }
541 }
542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
543
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
545 {
546 if (ctrl->admin_tagset) {
547 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
548 nvme_cancel_request, ctrl);
549 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
550 }
551 }
552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
553
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
555 enum nvme_ctrl_state new_state)
556 {
557 enum nvme_ctrl_state old_state;
558 unsigned long flags;
559 bool changed = false;
560
561 spin_lock_irqsave(&ctrl->lock, flags);
562
563 old_state = nvme_ctrl_state(ctrl);
564 switch (new_state) {
565 case NVME_CTRL_LIVE:
566 switch (old_state) {
567 case NVME_CTRL_NEW:
568 case NVME_CTRL_RESETTING:
569 case NVME_CTRL_CONNECTING:
570 changed = true;
571 fallthrough;
572 default:
573 break;
574 }
575 break;
576 case NVME_CTRL_RESETTING:
577 switch (old_state) {
578 case NVME_CTRL_NEW:
579 case NVME_CTRL_LIVE:
580 changed = true;
581 fallthrough;
582 default:
583 break;
584 }
585 break;
586 case NVME_CTRL_CONNECTING:
587 switch (old_state) {
588 case NVME_CTRL_NEW:
589 case NVME_CTRL_RESETTING:
590 changed = true;
591 fallthrough;
592 default:
593 break;
594 }
595 break;
596 case NVME_CTRL_DELETING:
597 switch (old_state) {
598 case NVME_CTRL_LIVE:
599 case NVME_CTRL_RESETTING:
600 case NVME_CTRL_CONNECTING:
601 changed = true;
602 fallthrough;
603 default:
604 break;
605 }
606 break;
607 case NVME_CTRL_DELETING_NOIO:
608 switch (old_state) {
609 case NVME_CTRL_DELETING:
610 case NVME_CTRL_DEAD:
611 changed = true;
612 fallthrough;
613 default:
614 break;
615 }
616 break;
617 case NVME_CTRL_DEAD:
618 switch (old_state) {
619 case NVME_CTRL_DELETING:
620 changed = true;
621 fallthrough;
622 default:
623 break;
624 }
625 break;
626 default:
627 break;
628 }
629
630 if (changed) {
631 WRITE_ONCE(ctrl->state, new_state);
632 wake_up_all(&ctrl->state_wq);
633 }
634
635 spin_unlock_irqrestore(&ctrl->lock, flags);
636 if (!changed)
637 return false;
638
639 if (new_state == NVME_CTRL_LIVE) {
640 if (old_state == NVME_CTRL_CONNECTING)
641 nvme_stop_failfast_work(ctrl);
642 nvme_kick_requeue_lists(ctrl);
643 } else if (new_state == NVME_CTRL_CONNECTING &&
644 old_state == NVME_CTRL_RESETTING) {
645 nvme_start_failfast_work(ctrl);
646 }
647 return changed;
648 }
649 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
650
651 /*
652 * Waits for the controller state to be resetting, or returns false if it is
653 * not possible to ever transition to that state.
654 */
nvme_wait_reset(struct nvme_ctrl * ctrl)655 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
656 {
657 wait_event(ctrl->state_wq,
658 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
659 nvme_state_terminal(ctrl));
660 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
661 }
662 EXPORT_SYMBOL_GPL(nvme_wait_reset);
663
nvme_free_ns_head(struct kref * ref)664 static void nvme_free_ns_head(struct kref *ref)
665 {
666 struct nvme_ns_head *head =
667 container_of(ref, struct nvme_ns_head, ref);
668
669 nvme_mpath_remove_disk(head);
670 ida_free(&head->subsys->ns_ida, head->instance);
671 cleanup_srcu_struct(&head->srcu);
672 nvme_put_subsystem(head->subsys);
673 kfree(head);
674 }
675
nvme_tryget_ns_head(struct nvme_ns_head * head)676 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
677 {
678 return kref_get_unless_zero(&head->ref);
679 }
680
nvme_put_ns_head(struct nvme_ns_head * head)681 void nvme_put_ns_head(struct nvme_ns_head *head)
682 {
683 kref_put(&head->ref, nvme_free_ns_head);
684 }
685
nvme_free_ns(struct kref * kref)686 static void nvme_free_ns(struct kref *kref)
687 {
688 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
689
690 put_disk(ns->disk);
691 nvme_put_ns_head(ns->head);
692 nvme_put_ctrl(ns->ctrl);
693 kfree(ns);
694 }
695
nvme_get_ns(struct nvme_ns * ns)696 bool nvme_get_ns(struct nvme_ns *ns)
697 {
698 return kref_get_unless_zero(&ns->kref);
699 }
700
nvme_put_ns(struct nvme_ns * ns)701 void nvme_put_ns(struct nvme_ns *ns)
702 {
703 kref_put(&ns->kref, nvme_free_ns);
704 }
705 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
706
nvme_clear_nvme_request(struct request * req)707 static inline void nvme_clear_nvme_request(struct request *req)
708 {
709 nvme_req(req)->status = 0;
710 nvme_req(req)->retries = 0;
711 nvme_req(req)->flags = 0;
712 req->rq_flags |= RQF_DONTPREP;
713 }
714
715 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)716 void nvme_init_request(struct request *req, struct nvme_command *cmd)
717 {
718 struct nvme_request *nr = nvme_req(req);
719 bool logging_enabled;
720
721 if (req->q->queuedata) {
722 struct nvme_ns *ns = req->q->disk->private_data;
723
724 logging_enabled = ns->head->passthru_err_log_enabled;
725 req->timeout = NVME_IO_TIMEOUT;
726 } else { /* no queuedata implies admin queue */
727 logging_enabled = nr->ctrl->passthru_err_log_enabled;
728 req->timeout = NVME_ADMIN_TIMEOUT;
729 }
730
731 if (!logging_enabled)
732 req->rq_flags |= RQF_QUIET;
733
734 /* passthru commands should let the driver set the SGL flags */
735 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
736
737 req->cmd_flags |= REQ_FAILFAST_DRIVER;
738 if (req->mq_hctx->type == HCTX_TYPE_POLL)
739 req->cmd_flags |= REQ_POLLED;
740 nvme_clear_nvme_request(req);
741 memcpy(nr->cmd, cmd, sizeof(*cmd));
742 }
743 EXPORT_SYMBOL_GPL(nvme_init_request);
744
745 /*
746 * For something we're not in a state to send to the device the default action
747 * is to busy it and retry it after the controller state is recovered. However,
748 * if the controller is deleting or if anything is marked for failfast or
749 * nvme multipath it is immediately failed.
750 *
751 * Note: commands used to initialize the controller will be marked for failfast.
752 * Note: nvme cli/ioctl commands are marked for failfast.
753 */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)754 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
755 struct request *rq)
756 {
757 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
758
759 if (state != NVME_CTRL_DELETING_NOIO &&
760 state != NVME_CTRL_DELETING &&
761 state != NVME_CTRL_DEAD &&
762 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
763 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
764 return BLK_STS_RESOURCE;
765 return nvme_host_path_error(rq);
766 }
767 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
768
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)769 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
770 bool queue_live, enum nvme_ctrl_state state)
771 {
772 struct nvme_request *req = nvme_req(rq);
773
774 /*
775 * currently we have a problem sending passthru commands
776 * on the admin_q if the controller is not LIVE because we can't
777 * make sure that they are going out after the admin connect,
778 * controller enable and/or other commands in the initialization
779 * sequence. until the controller will be LIVE, fail with
780 * BLK_STS_RESOURCE so that they will be rescheduled.
781 */
782 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
783 return false;
784
785 if (ctrl->ops->flags & NVME_F_FABRICS) {
786 /*
787 * Only allow commands on a live queue, except for the connect
788 * command, which is require to set the queue live in the
789 * appropinquate states.
790 */
791 switch (state) {
792 case NVME_CTRL_CONNECTING:
793 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
794 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
795 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
796 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
797 return true;
798 break;
799 default:
800 break;
801 case NVME_CTRL_DEAD:
802 return false;
803 }
804 }
805
806 return queue_live;
807 }
808 EXPORT_SYMBOL_GPL(__nvme_check_ready);
809
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)810 static inline void nvme_setup_flush(struct nvme_ns *ns,
811 struct nvme_command *cmnd)
812 {
813 memset(cmnd, 0, sizeof(*cmnd));
814 cmnd->common.opcode = nvme_cmd_flush;
815 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
816 }
817
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)818 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
819 struct nvme_command *cmnd)
820 {
821 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
822 struct nvme_dsm_range *range;
823 struct bio *bio;
824
825 /*
826 * Some devices do not consider the DSM 'Number of Ranges' field when
827 * determining how much data to DMA. Always allocate memory for maximum
828 * number of segments to prevent device reading beyond end of buffer.
829 */
830 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
831
832 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
833 if (!range) {
834 /*
835 * If we fail allocation our range, fallback to the controller
836 * discard page. If that's also busy, it's safe to return
837 * busy, as we know we can make progress once that's freed.
838 */
839 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
840 return BLK_STS_RESOURCE;
841
842 range = page_address(ns->ctrl->discard_page);
843 }
844
845 if (queue_max_discard_segments(req->q) == 1) {
846 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
847 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
848
849 range[0].cattr = cpu_to_le32(0);
850 range[0].nlb = cpu_to_le32(nlb);
851 range[0].slba = cpu_to_le64(slba);
852 n = 1;
853 } else {
854 __rq_for_each_bio(bio, req) {
855 u64 slba = nvme_sect_to_lba(ns->head,
856 bio->bi_iter.bi_sector);
857 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
858
859 if (n < segments) {
860 range[n].cattr = cpu_to_le32(0);
861 range[n].nlb = cpu_to_le32(nlb);
862 range[n].slba = cpu_to_le64(slba);
863 }
864 n++;
865 }
866 }
867
868 if (WARN_ON_ONCE(n != segments)) {
869 if (virt_to_page(range) == ns->ctrl->discard_page)
870 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871 else
872 kfree(range);
873 return BLK_STS_IOERR;
874 }
875
876 memset(cmnd, 0, sizeof(*cmnd));
877 cmnd->dsm.opcode = nvme_cmd_dsm;
878 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
879 cmnd->dsm.nr = cpu_to_le32(segments - 1);
880 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
881
882 bvec_set_virt(&req->special_vec, range, alloc_size);
883 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
884
885 return BLK_STS_OK;
886 }
887
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)888 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
889 struct request *req)
890 {
891 u32 upper, lower;
892 u64 ref48;
893
894 /* both rw and write zeroes share the same reftag format */
895 switch (ns->head->guard_type) {
896 case NVME_NVM_NS_16B_GUARD:
897 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
898 break;
899 case NVME_NVM_NS_64B_GUARD:
900 ref48 = ext_pi_ref_tag(req);
901 lower = lower_32_bits(ref48);
902 upper = upper_32_bits(ref48);
903
904 cmnd->rw.reftag = cpu_to_le32(lower);
905 cmnd->rw.cdw3 = cpu_to_le32(upper);
906 break;
907 default:
908 break;
909 }
910 }
911
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)912 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
913 struct request *req, struct nvme_command *cmnd)
914 {
915 memset(cmnd, 0, sizeof(*cmnd));
916
917 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
918 return nvme_setup_discard(ns, req, cmnd);
919
920 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
921 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
922 cmnd->write_zeroes.slba =
923 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
924 cmnd->write_zeroes.length =
925 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
926
927 if (!(req->cmd_flags & REQ_NOUNMAP) &&
928 (ns->head->features & NVME_NS_DEAC))
929 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
930
931 if (nvme_ns_has_pi(ns->head)) {
932 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
933
934 switch (ns->head->pi_type) {
935 case NVME_NS_DPS_PI_TYPE1:
936 case NVME_NS_DPS_PI_TYPE2:
937 nvme_set_ref_tag(ns, cmnd, req);
938 break;
939 }
940 }
941
942 return BLK_STS_OK;
943 }
944
945 /*
946 * NVMe does not support a dedicated command to issue an atomic write. A write
947 * which does adhere to the device atomic limits will silently be executed
948 * non-atomically. The request issuer should ensure that the write is within
949 * the queue atomic writes limits, but just validate this in case it is not.
950 */
nvme_valid_atomic_write(struct request * req)951 static bool nvme_valid_atomic_write(struct request *req)
952 {
953 struct request_queue *q = req->q;
954 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
955
956 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
957 return false;
958
959 if (boundary_bytes) {
960 u64 mask = boundary_bytes - 1, imask = ~mask;
961 u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
962 u64 end = start + blk_rq_bytes(req) - 1;
963
964 /* If greater then must be crossing a boundary */
965 if (blk_rq_bytes(req) > boundary_bytes)
966 return false;
967
968 if ((start & imask) != (end & imask))
969 return false;
970 }
971
972 return true;
973 }
974
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)975 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
976 struct request *req, struct nvme_command *cmnd,
977 enum nvme_opcode op)
978 {
979 u16 control = 0;
980 u32 dsmgmt = 0;
981
982 if (req->cmd_flags & REQ_FUA)
983 control |= NVME_RW_FUA;
984 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
985 control |= NVME_RW_LR;
986
987 if (req->cmd_flags & REQ_RAHEAD)
988 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
989
990 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
991 return BLK_STS_INVAL;
992
993 cmnd->rw.opcode = op;
994 cmnd->rw.flags = 0;
995 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
996 cmnd->rw.cdw2 = 0;
997 cmnd->rw.cdw3 = 0;
998 cmnd->rw.metadata = 0;
999 cmnd->rw.slba =
1000 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1001 cmnd->rw.length =
1002 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1003 cmnd->rw.reftag = 0;
1004 cmnd->rw.lbat = 0;
1005 cmnd->rw.lbatm = 0;
1006
1007 if (ns->head->ms) {
1008 /*
1009 * If formated with metadata, the block layer always provides a
1010 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
1011 * we enable the PRACT bit for protection information or set the
1012 * namespace capacity to zero to prevent any I/O.
1013 */
1014 if (!blk_integrity_rq(req)) {
1015 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1016 return BLK_STS_NOTSUPP;
1017 control |= NVME_RW_PRINFO_PRACT;
1018 }
1019
1020 switch (ns->head->pi_type) {
1021 case NVME_NS_DPS_PI_TYPE3:
1022 control |= NVME_RW_PRINFO_PRCHK_GUARD;
1023 break;
1024 case NVME_NS_DPS_PI_TYPE1:
1025 case NVME_NS_DPS_PI_TYPE2:
1026 control |= NVME_RW_PRINFO_PRCHK_GUARD |
1027 NVME_RW_PRINFO_PRCHK_REF;
1028 if (op == nvme_cmd_zone_append)
1029 control |= NVME_RW_APPEND_PIREMAP;
1030 nvme_set_ref_tag(ns, cmnd, req);
1031 break;
1032 }
1033 }
1034
1035 cmnd->rw.control = cpu_to_le16(control);
1036 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1037 return 0;
1038 }
1039
nvme_cleanup_cmd(struct request * req)1040 void nvme_cleanup_cmd(struct request *req)
1041 {
1042 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1043 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1044
1045 if (req->special_vec.bv_page == ctrl->discard_page)
1046 clear_bit_unlock(0, &ctrl->discard_page_busy);
1047 else
1048 kfree(bvec_virt(&req->special_vec));
1049 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1050 }
1051 }
1052 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1053
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1054 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1055 {
1056 struct nvme_command *cmd = nvme_req(req)->cmd;
1057 blk_status_t ret = BLK_STS_OK;
1058
1059 if (!(req->rq_flags & RQF_DONTPREP))
1060 nvme_clear_nvme_request(req);
1061
1062 switch (req_op(req)) {
1063 case REQ_OP_DRV_IN:
1064 case REQ_OP_DRV_OUT:
1065 /* these are setup prior to execution in nvme_init_request() */
1066 break;
1067 case REQ_OP_FLUSH:
1068 nvme_setup_flush(ns, cmd);
1069 break;
1070 case REQ_OP_ZONE_RESET_ALL:
1071 case REQ_OP_ZONE_RESET:
1072 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1073 break;
1074 case REQ_OP_ZONE_OPEN:
1075 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1076 break;
1077 case REQ_OP_ZONE_CLOSE:
1078 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1079 break;
1080 case REQ_OP_ZONE_FINISH:
1081 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1082 break;
1083 case REQ_OP_WRITE_ZEROES:
1084 ret = nvme_setup_write_zeroes(ns, req, cmd);
1085 break;
1086 case REQ_OP_DISCARD:
1087 ret = nvme_setup_discard(ns, req, cmd);
1088 break;
1089 case REQ_OP_READ:
1090 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1091 break;
1092 case REQ_OP_WRITE:
1093 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1094 break;
1095 case REQ_OP_ZONE_APPEND:
1096 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1097 break;
1098 default:
1099 WARN_ON_ONCE(1);
1100 return BLK_STS_IOERR;
1101 }
1102
1103 cmd->common.command_id = nvme_cid(req);
1104 trace_nvme_setup_cmd(req, cmd);
1105 return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1108
1109 /*
1110 * Return values:
1111 * 0: success
1112 * >0: nvme controller's cqe status response
1113 * <0: kernel error in lieu of controller response
1114 */
nvme_execute_rq(struct request * rq,bool at_head)1115 int nvme_execute_rq(struct request *rq, bool at_head)
1116 {
1117 blk_status_t status;
1118
1119 status = blk_execute_rq(rq, at_head);
1120 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1121 return -EINTR;
1122 if (nvme_req(rq)->status)
1123 return nvme_req(rq)->status;
1124 return blk_status_to_errno(status);
1125 }
1126 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1127
1128 /*
1129 * Returns 0 on success. If the result is negative, it's a Linux error code;
1130 * if the result is positive, it's an NVM Express status code
1131 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1132 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1133 union nvme_result *result, void *buffer, unsigned bufflen,
1134 int qid, nvme_submit_flags_t flags)
1135 {
1136 struct request *req;
1137 int ret;
1138 blk_mq_req_flags_t blk_flags = 0;
1139
1140 if (flags & NVME_SUBMIT_NOWAIT)
1141 blk_flags |= BLK_MQ_REQ_NOWAIT;
1142 if (flags & NVME_SUBMIT_RESERVED)
1143 blk_flags |= BLK_MQ_REQ_RESERVED;
1144 if (qid == NVME_QID_ANY)
1145 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1146 else
1147 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1148 qid - 1);
1149
1150 if (IS_ERR(req))
1151 return PTR_ERR(req);
1152 nvme_init_request(req, cmd);
1153 if (flags & NVME_SUBMIT_RETRY)
1154 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1155
1156 if (buffer && bufflen) {
1157 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1158 if (ret)
1159 goto out;
1160 }
1161
1162 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1163 if (result && ret >= 0)
1164 *result = nvme_req(req)->result;
1165 out:
1166 blk_mq_free_request(req);
1167 return ret;
1168 }
1169 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1170
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1171 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1172 void *buffer, unsigned bufflen)
1173 {
1174 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1175 NVME_QID_ANY, 0);
1176 }
1177 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1178
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1179 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1180 {
1181 u32 effects = 0;
1182
1183 if (ns) {
1184 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1185 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1186 dev_warn_once(ctrl->device,
1187 "IO command:%02x has unusual effects:%08x\n",
1188 opcode, effects);
1189
1190 /*
1191 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1192 * which would deadlock when done on an I/O command. Note that
1193 * We already warn about an unusual effect above.
1194 */
1195 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1196 } else {
1197 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1198
1199 /* Ignore execution restrictions if any relaxation bits are set */
1200 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1201 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1202 }
1203
1204 return effects;
1205 }
1206 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1207
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1208 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1209 {
1210 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1211
1212 /*
1213 * For simplicity, IO to all namespaces is quiesced even if the command
1214 * effects say only one namespace is affected.
1215 */
1216 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1217 mutex_lock(&ctrl->scan_lock);
1218 mutex_lock(&ctrl->subsys->lock);
1219 nvme_mpath_start_freeze(ctrl->subsys);
1220 nvme_mpath_wait_freeze(ctrl->subsys);
1221 nvme_start_freeze(ctrl);
1222 nvme_wait_freeze(ctrl);
1223 }
1224 return effects;
1225 }
1226 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1227
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1228 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1229 struct nvme_command *cmd, int status)
1230 {
1231 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1232 nvme_unfreeze(ctrl);
1233 nvme_mpath_unfreeze(ctrl->subsys);
1234 mutex_unlock(&ctrl->subsys->lock);
1235 mutex_unlock(&ctrl->scan_lock);
1236 }
1237 if (effects & NVME_CMD_EFFECTS_CCC) {
1238 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1239 &ctrl->flags)) {
1240 dev_info(ctrl->device,
1241 "controller capabilities changed, reset may be required to take effect.\n");
1242 }
1243 }
1244 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1245 nvme_queue_scan(ctrl);
1246 flush_work(&ctrl->scan_work);
1247 }
1248 if (ns)
1249 return;
1250
1251 switch (cmd->common.opcode) {
1252 case nvme_admin_set_features:
1253 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1254 case NVME_FEAT_KATO:
1255 /*
1256 * Keep alive commands interval on the host should be
1257 * updated when KATO is modified by Set Features
1258 * commands.
1259 */
1260 if (!status)
1261 nvme_update_keep_alive(ctrl, cmd);
1262 break;
1263 default:
1264 break;
1265 }
1266 break;
1267 default:
1268 break;
1269 }
1270 }
1271 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1272
1273 /*
1274 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1275 *
1276 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1277 * accounting for transport roundtrip times [..].
1278 */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1279 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1280 {
1281 unsigned long delay = ctrl->kato * HZ / 2;
1282
1283 /*
1284 * When using Traffic Based Keep Alive, we need to run
1285 * nvme_keep_alive_work at twice the normal frequency, as one
1286 * command completion can postpone sending a keep alive command
1287 * by up to twice the delay between runs.
1288 */
1289 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1290 delay /= 2;
1291 return delay;
1292 }
1293
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1294 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1295 {
1296 unsigned long now = jiffies;
1297 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1298 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1299
1300 if (time_after(now, ka_next_check_tm))
1301 delay = 0;
1302 else
1303 delay = ka_next_check_tm - now;
1304
1305 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1306 }
1307
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1308 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1309 blk_status_t status)
1310 {
1311 struct nvme_ctrl *ctrl = rq->end_io_data;
1312 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1313 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1314 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1315
1316 /*
1317 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1318 * at the desired frequency.
1319 */
1320 if (rtt <= delay) {
1321 delay -= rtt;
1322 } else {
1323 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1324 jiffies_to_msecs(rtt));
1325 delay = 0;
1326 }
1327
1328 blk_mq_free_request(rq);
1329
1330 if (status) {
1331 dev_err(ctrl->device,
1332 "failed nvme_keep_alive_end_io error=%d\n",
1333 status);
1334 return RQ_END_IO_NONE;
1335 }
1336
1337 ctrl->ka_last_check_time = jiffies;
1338 ctrl->comp_seen = false;
1339 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1340 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1341 return RQ_END_IO_NONE;
1342 }
1343
nvme_keep_alive_work(struct work_struct * work)1344 static void nvme_keep_alive_work(struct work_struct *work)
1345 {
1346 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1347 struct nvme_ctrl, ka_work);
1348 bool comp_seen = ctrl->comp_seen;
1349 struct request *rq;
1350
1351 ctrl->ka_last_check_time = jiffies;
1352
1353 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1354 dev_dbg(ctrl->device,
1355 "reschedule traffic based keep-alive timer\n");
1356 ctrl->comp_seen = false;
1357 nvme_queue_keep_alive_work(ctrl);
1358 return;
1359 }
1360
1361 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1362 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1363 if (IS_ERR(rq)) {
1364 /* allocation failure, reset the controller */
1365 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1366 nvme_reset_ctrl(ctrl);
1367 return;
1368 }
1369 nvme_init_request(rq, &ctrl->ka_cmd);
1370
1371 rq->timeout = ctrl->kato * HZ;
1372 rq->end_io = nvme_keep_alive_end_io;
1373 rq->end_io_data = ctrl;
1374 blk_execute_rq_nowait(rq, false);
1375 }
1376
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1377 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1378 {
1379 if (unlikely(ctrl->kato == 0))
1380 return;
1381
1382 nvme_queue_keep_alive_work(ctrl);
1383 }
1384
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1385 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1386 {
1387 if (unlikely(ctrl->kato == 0))
1388 return;
1389
1390 cancel_delayed_work_sync(&ctrl->ka_work);
1391 }
1392 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1393
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1394 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1395 struct nvme_command *cmd)
1396 {
1397 unsigned int new_kato =
1398 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1399
1400 dev_info(ctrl->device,
1401 "keep alive interval updated from %u ms to %u ms\n",
1402 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1403
1404 nvme_stop_keep_alive(ctrl);
1405 ctrl->kato = new_kato;
1406 nvme_start_keep_alive(ctrl);
1407 }
1408
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1409 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1410 {
1411 /*
1412 * The CNS field occupies a full byte starting with NVMe 1.2
1413 */
1414 if (ctrl->vs >= NVME_VS(1, 2, 0))
1415 return true;
1416
1417 /*
1418 * NVMe 1.1 expanded the CNS value to two bits, which means values
1419 * larger than that could get truncated and treated as an incorrect
1420 * value.
1421 *
1422 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1423 * compliance, so they need to be quirked here.
1424 */
1425 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1426 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1427 return cns <= 3;
1428
1429 /*
1430 * NVMe 1.0 used a single bit for the CNS value.
1431 */
1432 return cns <= 1;
1433 }
1434
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1435 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1436 {
1437 struct nvme_command c = { };
1438 int error;
1439
1440 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1441 c.identify.opcode = nvme_admin_identify;
1442 c.identify.cns = NVME_ID_CNS_CTRL;
1443
1444 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1445 if (!*id)
1446 return -ENOMEM;
1447
1448 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1449 sizeof(struct nvme_id_ctrl));
1450 if (error) {
1451 kfree(*id);
1452 *id = NULL;
1453 }
1454 return error;
1455 }
1456
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1457 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1458 struct nvme_ns_id_desc *cur, bool *csi_seen)
1459 {
1460 const char *warn_str = "ctrl returned bogus length:";
1461 void *data = cur;
1462
1463 switch (cur->nidt) {
1464 case NVME_NIDT_EUI64:
1465 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1466 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1467 warn_str, cur->nidl);
1468 return -1;
1469 }
1470 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1471 return NVME_NIDT_EUI64_LEN;
1472 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1473 return NVME_NIDT_EUI64_LEN;
1474 case NVME_NIDT_NGUID:
1475 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1476 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1477 warn_str, cur->nidl);
1478 return -1;
1479 }
1480 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1481 return NVME_NIDT_NGUID_LEN;
1482 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1483 return NVME_NIDT_NGUID_LEN;
1484 case NVME_NIDT_UUID:
1485 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1486 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1487 warn_str, cur->nidl);
1488 return -1;
1489 }
1490 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1491 return NVME_NIDT_UUID_LEN;
1492 uuid_copy(&ids->uuid, data + sizeof(*cur));
1493 return NVME_NIDT_UUID_LEN;
1494 case NVME_NIDT_CSI:
1495 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1496 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1497 warn_str, cur->nidl);
1498 return -1;
1499 }
1500 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1501 *csi_seen = true;
1502 return NVME_NIDT_CSI_LEN;
1503 default:
1504 /* Skip unknown types */
1505 return cur->nidl;
1506 }
1507 }
1508
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1509 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1510 struct nvme_ns_info *info)
1511 {
1512 struct nvme_command c = { };
1513 bool csi_seen = false;
1514 int status, pos, len;
1515 void *data;
1516
1517 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1518 return 0;
1519 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1520 return 0;
1521
1522 c.identify.opcode = nvme_admin_identify;
1523 c.identify.nsid = cpu_to_le32(info->nsid);
1524 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1525
1526 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1527 if (!data)
1528 return -ENOMEM;
1529
1530 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1531 NVME_IDENTIFY_DATA_SIZE);
1532 if (status) {
1533 dev_warn(ctrl->device,
1534 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1535 info->nsid, status);
1536 goto free_data;
1537 }
1538
1539 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1540 struct nvme_ns_id_desc *cur = data + pos;
1541
1542 if (cur->nidl == 0)
1543 break;
1544
1545 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1546 if (len < 0)
1547 break;
1548
1549 len += sizeof(*cur);
1550 }
1551
1552 if (nvme_multi_css(ctrl) && !csi_seen) {
1553 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1554 info->nsid);
1555 status = -EINVAL;
1556 }
1557
1558 free_data:
1559 kfree(data);
1560 return status;
1561 }
1562
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1563 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1564 struct nvme_id_ns **id)
1565 {
1566 struct nvme_command c = { };
1567 int error;
1568
1569 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1570 c.identify.opcode = nvme_admin_identify;
1571 c.identify.nsid = cpu_to_le32(nsid);
1572 c.identify.cns = NVME_ID_CNS_NS;
1573
1574 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1575 if (!*id)
1576 return -ENOMEM;
1577
1578 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1579 if (error) {
1580 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1581 kfree(*id);
1582 *id = NULL;
1583 }
1584 return error;
1585 }
1586
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1587 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1588 struct nvme_ns_info *info)
1589 {
1590 struct nvme_ns_ids *ids = &info->ids;
1591 struct nvme_id_ns *id;
1592 int ret;
1593
1594 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1595 if (ret)
1596 return ret;
1597
1598 if (id->ncap == 0) {
1599 /* namespace not allocated or attached */
1600 info->is_removed = true;
1601 ret = -ENODEV;
1602 goto error;
1603 }
1604
1605 info->anagrpid = id->anagrpid;
1606 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1607 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1608 info->is_ready = true;
1609 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1610 dev_info(ctrl->device,
1611 "Ignoring bogus Namespace Identifiers\n");
1612 } else {
1613 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1614 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1615 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1616 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1617 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1618 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1619 }
1620
1621 error:
1622 kfree(id);
1623 return ret;
1624 }
1625
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1626 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1627 struct nvme_ns_info *info)
1628 {
1629 struct nvme_id_ns_cs_indep *id;
1630 struct nvme_command c = {
1631 .identify.opcode = nvme_admin_identify,
1632 .identify.nsid = cpu_to_le32(info->nsid),
1633 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1634 };
1635 int ret;
1636
1637 id = kmalloc(sizeof(*id), GFP_KERNEL);
1638 if (!id)
1639 return -ENOMEM;
1640
1641 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1642 if (!ret) {
1643 info->anagrpid = id->anagrpid;
1644 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1645 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1646 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1647 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1648 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1649 }
1650 kfree(id);
1651 return ret;
1652 }
1653
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1654 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1655 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1656 {
1657 union nvme_result res = { 0 };
1658 struct nvme_command c = { };
1659 int ret;
1660
1661 c.features.opcode = op;
1662 c.features.fid = cpu_to_le32(fid);
1663 c.features.dword11 = cpu_to_le32(dword11);
1664
1665 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1666 buffer, buflen, NVME_QID_ANY, 0);
1667 if (ret >= 0 && result)
1668 *result = le32_to_cpu(res.u32);
1669 return ret;
1670 }
1671
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1672 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1673 unsigned int dword11, void *buffer, size_t buflen,
1674 u32 *result)
1675 {
1676 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1677 buflen, result);
1678 }
1679 EXPORT_SYMBOL_GPL(nvme_set_features);
1680
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1681 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1682 unsigned int dword11, void *buffer, size_t buflen,
1683 u32 *result)
1684 {
1685 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1686 buflen, result);
1687 }
1688 EXPORT_SYMBOL_GPL(nvme_get_features);
1689
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1690 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1691 {
1692 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1693 u32 result;
1694 int status, nr_io_queues;
1695
1696 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1697 &result);
1698 if (status < 0)
1699 return status;
1700
1701 /*
1702 * Degraded controllers might return an error when setting the queue
1703 * count. We still want to be able to bring them online and offer
1704 * access to the admin queue, as that might be only way to fix them up.
1705 */
1706 if (status > 0) {
1707 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1708 *count = 0;
1709 } else {
1710 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1711 *count = min(*count, nr_io_queues);
1712 }
1713
1714 return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1717
1718 #define NVME_AEN_SUPPORTED \
1719 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1720 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1721
nvme_enable_aen(struct nvme_ctrl * ctrl)1722 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1723 {
1724 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1725 int status;
1726
1727 if (!supported_aens)
1728 return;
1729
1730 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1731 NULL, 0, &result);
1732 if (status)
1733 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1734 supported_aens);
1735
1736 queue_work(nvme_wq, &ctrl->async_event_work);
1737 }
1738
nvme_ns_open(struct nvme_ns * ns)1739 static int nvme_ns_open(struct nvme_ns *ns)
1740 {
1741
1742 /* should never be called due to GENHD_FL_HIDDEN */
1743 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1744 goto fail;
1745 if (!nvme_get_ns(ns))
1746 goto fail;
1747 if (!try_module_get(ns->ctrl->ops->module))
1748 goto fail_put_ns;
1749
1750 return 0;
1751
1752 fail_put_ns:
1753 nvme_put_ns(ns);
1754 fail:
1755 return -ENXIO;
1756 }
1757
nvme_ns_release(struct nvme_ns * ns)1758 static void nvme_ns_release(struct nvme_ns *ns)
1759 {
1760
1761 module_put(ns->ctrl->ops->module);
1762 nvme_put_ns(ns);
1763 }
1764
nvme_open(struct gendisk * disk,blk_mode_t mode)1765 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1766 {
1767 return nvme_ns_open(disk->private_data);
1768 }
1769
nvme_release(struct gendisk * disk)1770 static void nvme_release(struct gendisk *disk)
1771 {
1772 nvme_ns_release(disk->private_data);
1773 }
1774
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1775 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1776 {
1777 /* some standard values */
1778 geo->heads = 1 << 6;
1779 geo->sectors = 1 << 5;
1780 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1781 return 0;
1782 }
1783
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1784 static bool nvme_init_integrity(struct nvme_ns_head *head,
1785 struct queue_limits *lim, struct nvme_ns_info *info)
1786 {
1787 struct blk_integrity *bi = &lim->integrity;
1788
1789 memset(bi, 0, sizeof(*bi));
1790
1791 if (!head->ms)
1792 return true;
1793
1794 /*
1795 * PI can always be supported as we can ask the controller to simply
1796 * insert/strip it, which is not possible for other kinds of metadata.
1797 */
1798 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1799 !(head->features & NVME_NS_METADATA_SUPPORTED))
1800 return nvme_ns_has_pi(head);
1801
1802 switch (head->pi_type) {
1803 case NVME_NS_DPS_PI_TYPE3:
1804 switch (head->guard_type) {
1805 case NVME_NVM_NS_16B_GUARD:
1806 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1807 bi->tag_size = sizeof(u16) + sizeof(u32);
1808 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1809 break;
1810 case NVME_NVM_NS_64B_GUARD:
1811 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1812 bi->tag_size = sizeof(u16) + 6;
1813 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1814 break;
1815 default:
1816 break;
1817 }
1818 break;
1819 case NVME_NS_DPS_PI_TYPE1:
1820 case NVME_NS_DPS_PI_TYPE2:
1821 switch (head->guard_type) {
1822 case NVME_NVM_NS_16B_GUARD:
1823 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1824 bi->tag_size = sizeof(u16);
1825 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1826 BLK_INTEGRITY_REF_TAG;
1827 break;
1828 case NVME_NVM_NS_64B_GUARD:
1829 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1830 bi->tag_size = sizeof(u16);
1831 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1832 BLK_INTEGRITY_REF_TAG;
1833 break;
1834 default:
1835 break;
1836 }
1837 break;
1838 default:
1839 break;
1840 }
1841
1842 bi->tuple_size = head->ms;
1843 bi->pi_offset = info->pi_offset;
1844 return true;
1845 }
1846
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1847 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1848 {
1849 struct nvme_ctrl *ctrl = ns->ctrl;
1850
1851 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1852 lim->max_hw_discard_sectors =
1853 nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1854 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1855 lim->max_hw_discard_sectors = UINT_MAX;
1856 else
1857 lim->max_hw_discard_sectors = 0;
1858
1859 lim->discard_granularity = lim->logical_block_size;
1860
1861 if (ctrl->dmrl)
1862 lim->max_discard_segments = ctrl->dmrl;
1863 else
1864 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1865 }
1866
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1867 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1868 {
1869 return uuid_equal(&a->uuid, &b->uuid) &&
1870 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1871 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1872 a->csi == b->csi;
1873 }
1874
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1875 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1876 struct nvme_id_ns_nvm **nvmp)
1877 {
1878 struct nvme_command c = {
1879 .identify.opcode = nvme_admin_identify,
1880 .identify.nsid = cpu_to_le32(nsid),
1881 .identify.cns = NVME_ID_CNS_CS_NS,
1882 .identify.csi = NVME_CSI_NVM,
1883 };
1884 struct nvme_id_ns_nvm *nvm;
1885 int ret;
1886
1887 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1888 if (!nvm)
1889 return -ENOMEM;
1890
1891 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1892 if (ret)
1893 kfree(nvm);
1894 else
1895 *nvmp = nvm;
1896 return ret;
1897 }
1898
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1899 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1900 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1901 {
1902 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1903 u8 guard_type;
1904
1905 /* no support for storage tag formats right now */
1906 if (nvme_elbaf_sts(elbaf))
1907 return;
1908
1909 guard_type = nvme_elbaf_guard_type(elbaf);
1910 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1911 guard_type == NVME_NVM_NS_QTYPE_GUARD)
1912 guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1913
1914 head->guard_type = guard_type;
1915 switch (head->guard_type) {
1916 case NVME_NVM_NS_64B_GUARD:
1917 head->pi_size = sizeof(struct crc64_pi_tuple);
1918 break;
1919 case NVME_NVM_NS_16B_GUARD:
1920 head->pi_size = sizeof(struct t10_pi_tuple);
1921 break;
1922 default:
1923 break;
1924 }
1925 }
1926
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1927 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1928 struct nvme_ns_head *head, struct nvme_id_ns *id,
1929 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1930 {
1931 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1932 head->pi_type = 0;
1933 head->pi_size = 0;
1934 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1935 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1936 return;
1937
1938 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1939 nvme_configure_pi_elbas(head, id, nvm);
1940 } else {
1941 head->pi_size = sizeof(struct t10_pi_tuple);
1942 head->guard_type = NVME_NVM_NS_16B_GUARD;
1943 }
1944
1945 if (head->pi_size && head->ms >= head->pi_size)
1946 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1947 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1948 if (disable_pi_offsets)
1949 head->pi_type = 0;
1950 else
1951 info->pi_offset = head->ms - head->pi_size;
1952 }
1953
1954 if (ctrl->ops->flags & NVME_F_FABRICS) {
1955 /*
1956 * The NVMe over Fabrics specification only supports metadata as
1957 * part of the extended data LBA. We rely on HCA/HBA support to
1958 * remap the separate metadata buffer from the block layer.
1959 */
1960 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1961 return;
1962
1963 head->features |= NVME_NS_EXT_LBAS;
1964
1965 /*
1966 * The current fabrics transport drivers support namespace
1967 * metadata formats only if nvme_ns_has_pi() returns true.
1968 * Suppress support for all other formats so the namespace will
1969 * have a 0 capacity and not be usable through the block stack.
1970 *
1971 * Note, this check will need to be modified if any drivers
1972 * gain the ability to use other metadata formats.
1973 */
1974 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1975 head->features |= NVME_NS_METADATA_SUPPORTED;
1976 } else {
1977 /*
1978 * For PCIe controllers, we can't easily remap the separate
1979 * metadata buffer from the block layer and thus require a
1980 * separate metadata buffer for block layer metadata/PI support.
1981 * We allow extended LBAs for the passthrough interface, though.
1982 */
1983 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1984 head->features |= NVME_NS_EXT_LBAS;
1985 else
1986 head->features |= NVME_NS_METADATA_SUPPORTED;
1987 }
1988 }
1989
1990
nvme_update_atomic_write_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs,u32 atomic_bs)1991 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1992 struct nvme_id_ns *id, struct queue_limits *lim,
1993 u32 bs, u32 atomic_bs)
1994 {
1995 unsigned int boundary = 0;
1996
1997 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1998 if (le16_to_cpu(id->nabspf))
1999 boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2000 }
2001 lim->atomic_write_hw_max = atomic_bs;
2002 lim->atomic_write_hw_boundary = boundary;
2003 lim->atomic_write_hw_unit_min = bs;
2004 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2005 }
2006
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2007 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2008 {
2009 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2010 }
2011
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2012 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2013 struct queue_limits *lim)
2014 {
2015 lim->max_hw_sectors = ctrl->max_hw_sectors;
2016 lim->max_segments = min_t(u32, USHRT_MAX,
2017 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2018 lim->max_integrity_segments = ctrl->max_integrity_segments;
2019 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2020 lim->max_segment_size = UINT_MAX;
2021 lim->dma_alignment = 3;
2022 }
2023
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2024 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2025 struct queue_limits *lim)
2026 {
2027 struct nvme_ns_head *head = ns->head;
2028 u32 bs = 1U << head->lba_shift;
2029 u32 atomic_bs, phys_bs, io_opt = 0;
2030 bool valid = true;
2031
2032 /*
2033 * The block layer can't support LBA sizes larger than the page size
2034 * or smaller than a sector size yet, so catch this early and don't
2035 * allow block I/O.
2036 */
2037 if (blk_validate_block_size(bs)) {
2038 bs = (1 << 9);
2039 valid = false;
2040 }
2041
2042 atomic_bs = phys_bs = bs;
2043 if (id->nabo == 0) {
2044 /*
2045 * Bit 1 indicates whether NAWUPF is defined for this namespace
2046 * and whether it should be used instead of AWUPF. If NAWUPF ==
2047 * 0 then AWUPF must be used instead.
2048 */
2049 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2050 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2051 else
2052 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2053
2054 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2055 }
2056
2057 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2058 /* NPWG = Namespace Preferred Write Granularity */
2059 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2060 /* NOWS = Namespace Optimal Write Size */
2061 if (id->nows)
2062 io_opt = bs * (1 + le16_to_cpu(id->nows));
2063 }
2064
2065 /*
2066 * Linux filesystems assume writing a single physical block is
2067 * an atomic operation. Hence limit the physical block size to the
2068 * value of the Atomic Write Unit Power Fail parameter.
2069 */
2070 lim->logical_block_size = bs;
2071 lim->physical_block_size = min(phys_bs, atomic_bs);
2072 lim->io_min = phys_bs;
2073 lim->io_opt = io_opt;
2074 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2075 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2076 lim->max_write_zeroes_sectors = UINT_MAX;
2077 else
2078 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2079 return valid;
2080 }
2081
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2082 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2083 {
2084 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2085 }
2086
nvme_first_scan(struct gendisk * disk)2087 static inline bool nvme_first_scan(struct gendisk *disk)
2088 {
2089 /* nvme_alloc_ns() scans the disk prior to adding it */
2090 return !disk_live(disk);
2091 }
2092
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2093 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2094 struct queue_limits *lim)
2095 {
2096 struct nvme_ctrl *ctrl = ns->ctrl;
2097 u32 iob;
2098
2099 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2100 is_power_of_2(ctrl->max_hw_sectors))
2101 iob = ctrl->max_hw_sectors;
2102 else
2103 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2104
2105 if (!iob)
2106 return;
2107
2108 if (!is_power_of_2(iob)) {
2109 if (nvme_first_scan(ns->disk))
2110 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2111 ns->disk->disk_name, iob);
2112 return;
2113 }
2114
2115 if (blk_queue_is_zoned(ns->disk->queue)) {
2116 if (nvme_first_scan(ns->disk))
2117 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2118 ns->disk->disk_name);
2119 return;
2120 }
2121
2122 lim->chunk_sectors = iob;
2123 }
2124
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2125 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2126 struct nvme_ns_info *info)
2127 {
2128 struct queue_limits lim;
2129 int ret;
2130
2131 blk_mq_freeze_queue(ns->disk->queue);
2132 lim = queue_limits_start_update(ns->disk->queue);
2133 nvme_set_ctrl_limits(ns->ctrl, &lim);
2134 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2135 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2136 blk_mq_unfreeze_queue(ns->disk->queue);
2137
2138 /* Hide the block-interface for these devices */
2139 if (!ret)
2140 ret = -ENODEV;
2141 return ret;
2142 }
2143
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2144 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2145 struct nvme_ns_info *info)
2146 {
2147 struct queue_limits lim;
2148 struct nvme_id_ns_nvm *nvm = NULL;
2149 struct nvme_zone_info zi = {};
2150 struct nvme_id_ns *id;
2151 sector_t capacity;
2152 unsigned lbaf;
2153 int ret;
2154
2155 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2156 if (ret)
2157 return ret;
2158
2159 if (id->ncap == 0) {
2160 /* namespace not allocated or attached */
2161 info->is_removed = true;
2162 ret = -ENXIO;
2163 goto out;
2164 }
2165 lbaf = nvme_lbaf_index(id->flbas);
2166
2167 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2168 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2169 if (ret < 0)
2170 goto out;
2171 }
2172
2173 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2174 ns->head->ids.csi == NVME_CSI_ZNS) {
2175 ret = nvme_query_zone_info(ns, lbaf, &zi);
2176 if (ret < 0)
2177 goto out;
2178 }
2179
2180 blk_mq_freeze_queue(ns->disk->queue);
2181 ns->head->lba_shift = id->lbaf[lbaf].ds;
2182 ns->head->nuse = le64_to_cpu(id->nuse);
2183 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2184
2185 lim = queue_limits_start_update(ns->disk->queue);
2186 nvme_set_ctrl_limits(ns->ctrl, &lim);
2187 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2188 nvme_set_chunk_sectors(ns, id, &lim);
2189 if (!nvme_update_disk_info(ns, id, &lim))
2190 capacity = 0;
2191 nvme_config_discard(ns, &lim);
2192 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2193 ns->head->ids.csi == NVME_CSI_ZNS)
2194 nvme_update_zone_info(ns, &lim, &zi);
2195
2196 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2197 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2198 else
2199 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2200
2201 if (info->is_rotational)
2202 lim.features |= BLK_FEAT_ROTATIONAL;
2203
2204 /*
2205 * Register a metadata profile for PI, or the plain non-integrity NVMe
2206 * metadata masquerading as Type 0 if supported, otherwise reject block
2207 * I/O to namespaces with metadata except when the namespace supports
2208 * PI, as it can strip/insert in that case.
2209 */
2210 if (!nvme_init_integrity(ns->head, &lim, info))
2211 capacity = 0;
2212
2213 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2214 if (ret) {
2215 blk_mq_unfreeze_queue(ns->disk->queue);
2216 goto out;
2217 }
2218
2219 set_capacity_and_notify(ns->disk, capacity);
2220
2221 /*
2222 * Only set the DEAC bit if the device guarantees that reads from
2223 * deallocated data return zeroes. While the DEAC bit does not
2224 * require that, it must be a no-op if reads from deallocated data
2225 * do not return zeroes.
2226 */
2227 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2228 ns->head->features |= NVME_NS_DEAC;
2229 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2230 set_bit(NVME_NS_READY, &ns->flags);
2231 blk_mq_unfreeze_queue(ns->disk->queue);
2232
2233 if (blk_queue_is_zoned(ns->queue)) {
2234 ret = blk_revalidate_disk_zones(ns->disk);
2235 if (ret && !nvme_first_scan(ns->disk))
2236 goto out;
2237 }
2238
2239 ret = 0;
2240 out:
2241 kfree(nvm);
2242 kfree(id);
2243 return ret;
2244 }
2245
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2246 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2247 {
2248 bool unsupported = false;
2249 int ret;
2250
2251 switch (info->ids.csi) {
2252 case NVME_CSI_ZNS:
2253 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2254 dev_info(ns->ctrl->device,
2255 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2256 info->nsid);
2257 ret = nvme_update_ns_info_generic(ns, info);
2258 break;
2259 }
2260 ret = nvme_update_ns_info_block(ns, info);
2261 break;
2262 case NVME_CSI_NVM:
2263 ret = nvme_update_ns_info_block(ns, info);
2264 break;
2265 default:
2266 dev_info(ns->ctrl->device,
2267 "block device for nsid %u not supported (csi %u)\n",
2268 info->nsid, info->ids.csi);
2269 ret = nvme_update_ns_info_generic(ns, info);
2270 break;
2271 }
2272
2273 /*
2274 * If probing fails due an unsupported feature, hide the block device,
2275 * but still allow other access.
2276 */
2277 if (ret == -ENODEV) {
2278 ns->disk->flags |= GENHD_FL_HIDDEN;
2279 set_bit(NVME_NS_READY, &ns->flags);
2280 unsupported = true;
2281 ret = 0;
2282 }
2283
2284 if (!ret && nvme_ns_head_multipath(ns->head)) {
2285 struct queue_limits *ns_lim = &ns->disk->queue->limits;
2286 struct queue_limits lim;
2287
2288 blk_mq_freeze_queue(ns->head->disk->queue);
2289 /*
2290 * queue_limits mixes values that are the hardware limitations
2291 * for bio splitting with what is the device configuration.
2292 *
2293 * For NVMe the device configuration can change after e.g. a
2294 * Format command, and we really want to pick up the new format
2295 * value here. But we must still stack the queue limits to the
2296 * least common denominator for multipathing to split the bios
2297 * properly.
2298 *
2299 * To work around this, we explicitly set the device
2300 * configuration to those that we just queried, but only stack
2301 * the splitting limits in to make sure we still obey possibly
2302 * lower limitations of other controllers.
2303 */
2304 lim = queue_limits_start_update(ns->head->disk->queue);
2305 lim.logical_block_size = ns_lim->logical_block_size;
2306 lim.physical_block_size = ns_lim->physical_block_size;
2307 lim.io_min = ns_lim->io_min;
2308 lim.io_opt = ns_lim->io_opt;
2309 queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2310 ns->head->disk->disk_name);
2311 if (unsupported)
2312 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2313 else
2314 nvme_init_integrity(ns->head, &lim, info);
2315 ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2316
2317 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2318 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2319 nvme_mpath_revalidate_paths(ns);
2320
2321 blk_mq_unfreeze_queue(ns->head->disk->queue);
2322 }
2323
2324 return ret;
2325 }
2326
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2327 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2328 enum blk_unique_id type)
2329 {
2330 struct nvme_ns_ids *ids = &ns->head->ids;
2331
2332 if (type != BLK_UID_EUI64)
2333 return -EINVAL;
2334
2335 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2336 memcpy(id, &ids->nguid, sizeof(ids->nguid));
2337 return sizeof(ids->nguid);
2338 }
2339 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2340 memcpy(id, &ids->eui64, sizeof(ids->eui64));
2341 return sizeof(ids->eui64);
2342 }
2343
2344 return -EINVAL;
2345 }
2346
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2347 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2348 enum blk_unique_id type)
2349 {
2350 return nvme_ns_get_unique_id(disk->private_data, id, type);
2351 }
2352
2353 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2354 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2355 bool send)
2356 {
2357 struct nvme_ctrl *ctrl = data;
2358 struct nvme_command cmd = { };
2359
2360 if (send)
2361 cmd.common.opcode = nvme_admin_security_send;
2362 else
2363 cmd.common.opcode = nvme_admin_security_recv;
2364 cmd.common.nsid = 0;
2365 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2366 cmd.common.cdw11 = cpu_to_le32(len);
2367
2368 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2369 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2370 }
2371
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2372 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2373 {
2374 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2375 if (!ctrl->opal_dev)
2376 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2377 else if (was_suspended)
2378 opal_unlock_from_suspend(ctrl->opal_dev);
2379 } else {
2380 free_opal_dev(ctrl->opal_dev);
2381 ctrl->opal_dev = NULL;
2382 }
2383 }
2384 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2385 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2386 {
2387 }
2388 #endif /* CONFIG_BLK_SED_OPAL */
2389
2390 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2391 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2392 unsigned int nr_zones, report_zones_cb cb, void *data)
2393 {
2394 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2395 data);
2396 }
2397 #else
2398 #define nvme_report_zones NULL
2399 #endif /* CONFIG_BLK_DEV_ZONED */
2400
2401 const struct block_device_operations nvme_bdev_ops = {
2402 .owner = THIS_MODULE,
2403 .ioctl = nvme_ioctl,
2404 .compat_ioctl = blkdev_compat_ptr_ioctl,
2405 .open = nvme_open,
2406 .release = nvme_release,
2407 .getgeo = nvme_getgeo,
2408 .get_unique_id = nvme_get_unique_id,
2409 .report_zones = nvme_report_zones,
2410 .pr_ops = &nvme_pr_ops,
2411 };
2412
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2413 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2414 u32 timeout, const char *op)
2415 {
2416 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2417 u32 csts;
2418 int ret;
2419
2420 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2421 if (csts == ~0)
2422 return -ENODEV;
2423 if ((csts & mask) == val)
2424 break;
2425
2426 usleep_range(1000, 2000);
2427 if (fatal_signal_pending(current))
2428 return -EINTR;
2429 if (time_after(jiffies, timeout_jiffies)) {
2430 dev_err(ctrl->device,
2431 "Device not ready; aborting %s, CSTS=0x%x\n",
2432 op, csts);
2433 return -ENODEV;
2434 }
2435 }
2436
2437 return ret;
2438 }
2439
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2440 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2441 {
2442 int ret;
2443
2444 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2445 if (shutdown)
2446 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2447 else
2448 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2449
2450 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2451 if (ret)
2452 return ret;
2453
2454 if (shutdown) {
2455 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2456 NVME_CSTS_SHST_CMPLT,
2457 ctrl->shutdown_timeout, "shutdown");
2458 }
2459 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2460 msleep(NVME_QUIRK_DELAY_AMOUNT);
2461 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2462 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2463 }
2464 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2465
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2466 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2467 {
2468 unsigned dev_page_min;
2469 u32 timeout;
2470 int ret;
2471
2472 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2473 if (ret) {
2474 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2475 return ret;
2476 }
2477 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2478
2479 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2480 dev_err(ctrl->device,
2481 "Minimum device page size %u too large for host (%u)\n",
2482 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2483 return -ENODEV;
2484 }
2485
2486 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2487 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2488 else
2489 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2490
2491 /*
2492 * Setting CRIME results in CSTS.RDY before the media is ready. This
2493 * makes it possible for media related commands to return the error
2494 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2495 * restructured to handle retries, disable CC.CRIME.
2496 */
2497 ctrl->ctrl_config &= ~NVME_CC_CRIME;
2498
2499 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2500 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2501 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2502 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2503 if (ret)
2504 return ret;
2505
2506 /* CAP value may change after initial CC write */
2507 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2508 if (ret)
2509 return ret;
2510
2511 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2512 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2513 u32 crto, ready_timeout;
2514
2515 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2516 if (ret) {
2517 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2518 ret);
2519 return ret;
2520 }
2521
2522 /*
2523 * CRTO should always be greater or equal to CAP.TO, but some
2524 * devices are known to get this wrong. Use the larger of the
2525 * two values.
2526 */
2527 ready_timeout = NVME_CRTO_CRWMT(crto);
2528
2529 if (ready_timeout < timeout)
2530 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2531 crto, ctrl->cap);
2532 else
2533 timeout = ready_timeout;
2534 }
2535
2536 ctrl->ctrl_config |= NVME_CC_ENABLE;
2537 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2538 if (ret)
2539 return ret;
2540 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2541 (timeout + 1) / 2, "initialisation");
2542 }
2543 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2544
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2545 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2546 {
2547 __le64 ts;
2548 int ret;
2549
2550 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2551 return 0;
2552
2553 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2554 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2555 NULL);
2556 if (ret)
2557 dev_warn_once(ctrl->device,
2558 "could not set timestamp (%d)\n", ret);
2559 return ret;
2560 }
2561
nvme_configure_host_options(struct nvme_ctrl * ctrl)2562 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2563 {
2564 struct nvme_feat_host_behavior *host;
2565 u8 acre = 0, lbafee = 0;
2566 int ret;
2567
2568 /* Don't bother enabling the feature if retry delay is not reported */
2569 if (ctrl->crdt[0])
2570 acre = NVME_ENABLE_ACRE;
2571 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2572 lbafee = NVME_ENABLE_LBAFEE;
2573
2574 if (!acre && !lbafee)
2575 return 0;
2576
2577 host = kzalloc(sizeof(*host), GFP_KERNEL);
2578 if (!host)
2579 return 0;
2580
2581 host->acre = acre;
2582 host->lbafee = lbafee;
2583 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2584 host, sizeof(*host), NULL);
2585 kfree(host);
2586 return ret;
2587 }
2588
2589 /*
2590 * The function checks whether the given total (exlat + enlat) latency of
2591 * a power state allows the latter to be used as an APST transition target.
2592 * It does so by comparing the latency to the primary and secondary latency
2593 * tolerances defined by module params. If there's a match, the corresponding
2594 * timeout value is returned and the matching tolerance index (1 or 2) is
2595 * reported.
2596 */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2597 static bool nvme_apst_get_transition_time(u64 total_latency,
2598 u64 *transition_time, unsigned *last_index)
2599 {
2600 if (total_latency <= apst_primary_latency_tol_us) {
2601 if (*last_index == 1)
2602 return false;
2603 *last_index = 1;
2604 *transition_time = apst_primary_timeout_ms;
2605 return true;
2606 }
2607 if (apst_secondary_timeout_ms &&
2608 total_latency <= apst_secondary_latency_tol_us) {
2609 if (*last_index <= 2)
2610 return false;
2611 *last_index = 2;
2612 *transition_time = apst_secondary_timeout_ms;
2613 return true;
2614 }
2615 return false;
2616 }
2617
2618 /*
2619 * APST (Autonomous Power State Transition) lets us program a table of power
2620 * state transitions that the controller will perform automatically.
2621 *
2622 * Depending on module params, one of the two supported techniques will be used:
2623 *
2624 * - If the parameters provide explicit timeouts and tolerances, they will be
2625 * used to build a table with up to 2 non-operational states to transition to.
2626 * The default parameter values were selected based on the values used by
2627 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2628 * regeneration of the APST table in the event of switching between external
2629 * and battery power, the timeouts and tolerances reflect a compromise
2630 * between values used by Microsoft for AC and battery scenarios.
2631 * - If not, we'll configure the table with a simple heuristic: we are willing
2632 * to spend at most 2% of the time transitioning between power states.
2633 * Therefore, when running in any given state, we will enter the next
2634 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2635 * microseconds, as long as that state's exit latency is under the requested
2636 * maximum latency.
2637 *
2638 * We will not autonomously enter any non-operational state for which the total
2639 * latency exceeds ps_max_latency_us.
2640 *
2641 * Users can set ps_max_latency_us to zero to turn off APST.
2642 */
nvme_configure_apst(struct nvme_ctrl * ctrl)2643 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2644 {
2645 struct nvme_feat_auto_pst *table;
2646 unsigned apste = 0;
2647 u64 max_lat_us = 0;
2648 __le64 target = 0;
2649 int max_ps = -1;
2650 int state;
2651 int ret;
2652 unsigned last_lt_index = UINT_MAX;
2653
2654 /*
2655 * If APST isn't supported or if we haven't been initialized yet,
2656 * then don't do anything.
2657 */
2658 if (!ctrl->apsta)
2659 return 0;
2660
2661 if (ctrl->npss > 31) {
2662 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2663 return 0;
2664 }
2665
2666 table = kzalloc(sizeof(*table), GFP_KERNEL);
2667 if (!table)
2668 return 0;
2669
2670 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2671 /* Turn off APST. */
2672 dev_dbg(ctrl->device, "APST disabled\n");
2673 goto done;
2674 }
2675
2676 /*
2677 * Walk through all states from lowest- to highest-power.
2678 * According to the spec, lower-numbered states use more power. NPSS,
2679 * despite the name, is the index of the lowest-power state, not the
2680 * number of states.
2681 */
2682 for (state = (int)ctrl->npss; state >= 0; state--) {
2683 u64 total_latency_us, exit_latency_us, transition_ms;
2684
2685 if (target)
2686 table->entries[state] = target;
2687
2688 /*
2689 * Don't allow transitions to the deepest state if it's quirked
2690 * off.
2691 */
2692 if (state == ctrl->npss &&
2693 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2694 continue;
2695
2696 /*
2697 * Is this state a useful non-operational state for higher-power
2698 * states to autonomously transition to?
2699 */
2700 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2701 continue;
2702
2703 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2704 if (exit_latency_us > ctrl->ps_max_latency_us)
2705 continue;
2706
2707 total_latency_us = exit_latency_us +
2708 le32_to_cpu(ctrl->psd[state].entry_lat);
2709
2710 /*
2711 * This state is good. It can be used as the APST idle target
2712 * for higher power states.
2713 */
2714 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2715 if (!nvme_apst_get_transition_time(total_latency_us,
2716 &transition_ms, &last_lt_index))
2717 continue;
2718 } else {
2719 transition_ms = total_latency_us + 19;
2720 do_div(transition_ms, 20);
2721 if (transition_ms > (1 << 24) - 1)
2722 transition_ms = (1 << 24) - 1;
2723 }
2724
2725 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2726 if (max_ps == -1)
2727 max_ps = state;
2728 if (total_latency_us > max_lat_us)
2729 max_lat_us = total_latency_us;
2730 }
2731
2732 if (max_ps == -1)
2733 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2734 else
2735 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2736 max_ps, max_lat_us, (int)sizeof(*table), table);
2737 apste = 1;
2738
2739 done:
2740 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2741 table, sizeof(*table), NULL);
2742 if (ret)
2743 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2744 kfree(table);
2745 return ret;
2746 }
2747
nvme_set_latency_tolerance(struct device * dev,s32 val)2748 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2749 {
2750 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2751 u64 latency;
2752
2753 switch (val) {
2754 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2755 case PM_QOS_LATENCY_ANY:
2756 latency = U64_MAX;
2757 break;
2758
2759 default:
2760 latency = val;
2761 }
2762
2763 if (ctrl->ps_max_latency_us != latency) {
2764 ctrl->ps_max_latency_us = latency;
2765 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2766 nvme_configure_apst(ctrl);
2767 }
2768 }
2769
2770 struct nvme_core_quirk_entry {
2771 /*
2772 * NVMe model and firmware strings are padded with spaces. For
2773 * simplicity, strings in the quirk table are padded with NULLs
2774 * instead.
2775 */
2776 u16 vid;
2777 const char *mn;
2778 const char *fr;
2779 unsigned long quirks;
2780 };
2781
2782 static const struct nvme_core_quirk_entry core_quirks[] = {
2783 {
2784 /*
2785 * This Toshiba device seems to die using any APST states. See:
2786 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2787 */
2788 .vid = 0x1179,
2789 .mn = "THNSF5256GPUK TOSHIBA",
2790 .quirks = NVME_QUIRK_NO_APST,
2791 },
2792 {
2793 /*
2794 * This LiteON CL1-3D*-Q11 firmware version has a race
2795 * condition associated with actions related to suspend to idle
2796 * LiteON has resolved the problem in future firmware
2797 */
2798 .vid = 0x14a4,
2799 .fr = "22301111",
2800 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2801 },
2802 {
2803 /*
2804 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2805 * aborts I/O during any load, but more easily reproducible
2806 * with discards (fstrim).
2807 *
2808 * The device is left in a state where it is also not possible
2809 * to use "nvme set-feature" to disable APST, but booting with
2810 * nvme_core.default_ps_max_latency=0 works.
2811 */
2812 .vid = 0x1e0f,
2813 .mn = "KCD6XVUL6T40",
2814 .quirks = NVME_QUIRK_NO_APST,
2815 },
2816 {
2817 /*
2818 * The external Samsung X5 SSD fails initialization without a
2819 * delay before checking if it is ready and has a whole set of
2820 * other problems. To make this even more interesting, it
2821 * shares the PCI ID with internal Samsung 970 Evo Plus that
2822 * does not need or want these quirks.
2823 */
2824 .vid = 0x144d,
2825 .mn = "Samsung Portable SSD X5",
2826 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2827 NVME_QUIRK_NO_DEEPEST_PS |
2828 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2829 }
2830 };
2831
2832 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2833 static bool string_matches(const char *idstr, const char *match, size_t len)
2834 {
2835 size_t matchlen;
2836
2837 if (!match)
2838 return true;
2839
2840 matchlen = strlen(match);
2841 WARN_ON_ONCE(matchlen > len);
2842
2843 if (memcmp(idstr, match, matchlen))
2844 return false;
2845
2846 for (; matchlen < len; matchlen++)
2847 if (idstr[matchlen] != ' ')
2848 return false;
2849
2850 return true;
2851 }
2852
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2853 static bool quirk_matches(const struct nvme_id_ctrl *id,
2854 const struct nvme_core_quirk_entry *q)
2855 {
2856 return q->vid == le16_to_cpu(id->vid) &&
2857 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2858 string_matches(id->fr, q->fr, sizeof(id->fr));
2859 }
2860
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2861 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2862 struct nvme_id_ctrl *id)
2863 {
2864 size_t nqnlen;
2865 int off;
2866
2867 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2868 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2869 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2870 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2871 return;
2872 }
2873
2874 if (ctrl->vs >= NVME_VS(1, 2, 1))
2875 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2876 }
2877
2878 /*
2879 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2880 * Base Specification 2.0. It is slightly different from the format
2881 * specified there due to historic reasons, and we can't change it now.
2882 */
2883 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2884 "nqn.2014.08.org.nvmexpress:%04x%04x",
2885 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2886 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2887 off += sizeof(id->sn);
2888 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2889 off += sizeof(id->mn);
2890 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2891 }
2892
nvme_release_subsystem(struct device * dev)2893 static void nvme_release_subsystem(struct device *dev)
2894 {
2895 struct nvme_subsystem *subsys =
2896 container_of(dev, struct nvme_subsystem, dev);
2897
2898 if (subsys->instance >= 0)
2899 ida_free(&nvme_instance_ida, subsys->instance);
2900 kfree(subsys);
2901 }
2902
nvme_destroy_subsystem(struct kref * ref)2903 static void nvme_destroy_subsystem(struct kref *ref)
2904 {
2905 struct nvme_subsystem *subsys =
2906 container_of(ref, struct nvme_subsystem, ref);
2907
2908 mutex_lock(&nvme_subsystems_lock);
2909 list_del(&subsys->entry);
2910 mutex_unlock(&nvme_subsystems_lock);
2911
2912 ida_destroy(&subsys->ns_ida);
2913 device_del(&subsys->dev);
2914 put_device(&subsys->dev);
2915 }
2916
nvme_put_subsystem(struct nvme_subsystem * subsys)2917 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2918 {
2919 kref_put(&subsys->ref, nvme_destroy_subsystem);
2920 }
2921
__nvme_find_get_subsystem(const char * subsysnqn)2922 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2923 {
2924 struct nvme_subsystem *subsys;
2925
2926 lockdep_assert_held(&nvme_subsystems_lock);
2927
2928 /*
2929 * Fail matches for discovery subsystems. This results
2930 * in each discovery controller bound to a unique subsystem.
2931 * This avoids issues with validating controller values
2932 * that can only be true when there is a single unique subsystem.
2933 * There may be multiple and completely independent entities
2934 * that provide discovery controllers.
2935 */
2936 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2937 return NULL;
2938
2939 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2940 if (strcmp(subsys->subnqn, subsysnqn))
2941 continue;
2942 if (!kref_get_unless_zero(&subsys->ref))
2943 continue;
2944 return subsys;
2945 }
2946
2947 return NULL;
2948 }
2949
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2950 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2951 {
2952 return ctrl->opts && ctrl->opts->discovery_nqn;
2953 }
2954
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2955 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2956 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2957 {
2958 struct nvme_ctrl *tmp;
2959
2960 lockdep_assert_held(&nvme_subsystems_lock);
2961
2962 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2963 if (nvme_state_terminal(tmp))
2964 continue;
2965
2966 if (tmp->cntlid == ctrl->cntlid) {
2967 dev_err(ctrl->device,
2968 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2969 ctrl->cntlid, dev_name(tmp->device),
2970 subsys->subnqn);
2971 return false;
2972 }
2973
2974 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2975 nvme_discovery_ctrl(ctrl))
2976 continue;
2977
2978 dev_err(ctrl->device,
2979 "Subsystem does not support multiple controllers\n");
2980 return false;
2981 }
2982
2983 return true;
2984 }
2985
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2986 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2987 {
2988 struct nvme_subsystem *subsys, *found;
2989 int ret;
2990
2991 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2992 if (!subsys)
2993 return -ENOMEM;
2994
2995 subsys->instance = -1;
2996 mutex_init(&subsys->lock);
2997 kref_init(&subsys->ref);
2998 INIT_LIST_HEAD(&subsys->ctrls);
2999 INIT_LIST_HEAD(&subsys->nsheads);
3000 nvme_init_subnqn(subsys, ctrl, id);
3001 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3002 memcpy(subsys->model, id->mn, sizeof(subsys->model));
3003 subsys->vendor_id = le16_to_cpu(id->vid);
3004 subsys->cmic = id->cmic;
3005
3006 /* Versions prior to 1.4 don't necessarily report a valid type */
3007 if (id->cntrltype == NVME_CTRL_DISC ||
3008 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3009 subsys->subtype = NVME_NQN_DISC;
3010 else
3011 subsys->subtype = NVME_NQN_NVME;
3012
3013 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3014 dev_err(ctrl->device,
3015 "Subsystem %s is not a discovery controller",
3016 subsys->subnqn);
3017 kfree(subsys);
3018 return -EINVAL;
3019 }
3020 subsys->awupf = le16_to_cpu(id->awupf);
3021 nvme_mpath_default_iopolicy(subsys);
3022
3023 subsys->dev.class = &nvme_subsys_class;
3024 subsys->dev.release = nvme_release_subsystem;
3025 subsys->dev.groups = nvme_subsys_attrs_groups;
3026 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3027 device_initialize(&subsys->dev);
3028
3029 mutex_lock(&nvme_subsystems_lock);
3030 found = __nvme_find_get_subsystem(subsys->subnqn);
3031 if (found) {
3032 put_device(&subsys->dev);
3033 subsys = found;
3034
3035 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3036 ret = -EINVAL;
3037 goto out_put_subsystem;
3038 }
3039 } else {
3040 ret = device_add(&subsys->dev);
3041 if (ret) {
3042 dev_err(ctrl->device,
3043 "failed to register subsystem device.\n");
3044 put_device(&subsys->dev);
3045 goto out_unlock;
3046 }
3047 ida_init(&subsys->ns_ida);
3048 list_add_tail(&subsys->entry, &nvme_subsystems);
3049 }
3050
3051 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3052 dev_name(ctrl->device));
3053 if (ret) {
3054 dev_err(ctrl->device,
3055 "failed to create sysfs link from subsystem.\n");
3056 goto out_put_subsystem;
3057 }
3058
3059 if (!found)
3060 subsys->instance = ctrl->instance;
3061 ctrl->subsys = subsys;
3062 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3063 mutex_unlock(&nvme_subsystems_lock);
3064 return 0;
3065
3066 out_put_subsystem:
3067 nvme_put_subsystem(subsys);
3068 out_unlock:
3069 mutex_unlock(&nvme_subsystems_lock);
3070 return ret;
3071 }
3072
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3073 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3074 void *log, size_t size, u64 offset)
3075 {
3076 struct nvme_command c = { };
3077 u32 dwlen = nvme_bytes_to_numd(size);
3078
3079 c.get_log_page.opcode = nvme_admin_get_log_page;
3080 c.get_log_page.nsid = cpu_to_le32(nsid);
3081 c.get_log_page.lid = log_page;
3082 c.get_log_page.lsp = lsp;
3083 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3084 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3085 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3086 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3087 c.get_log_page.csi = csi;
3088
3089 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3090 }
3091
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3092 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3093 struct nvme_effects_log **log)
3094 {
3095 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3096 int ret;
3097
3098 if (cel)
3099 goto out;
3100
3101 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3102 if (!cel)
3103 return -ENOMEM;
3104
3105 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3106 cel, sizeof(*cel), 0);
3107 if (ret) {
3108 kfree(cel);
3109 return ret;
3110 }
3111
3112 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3113 out:
3114 *log = cel;
3115 return 0;
3116 }
3117
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3118 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3119 {
3120 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3121
3122 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3123 return UINT_MAX;
3124 return val;
3125 }
3126
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3127 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3128 {
3129 struct nvme_command c = { };
3130 struct nvme_id_ctrl_nvm *id;
3131 int ret;
3132
3133 /*
3134 * Even though NVMe spec explicitly states that MDTS is not applicable
3135 * to the write-zeroes, we are cautious and limit the size to the
3136 * controllers max_hw_sectors value, which is based on the MDTS field
3137 * and possibly other limiting factors.
3138 */
3139 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3140 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3141 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3142 else
3143 ctrl->max_zeroes_sectors = 0;
3144
3145 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3146 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3147 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3148 return 0;
3149
3150 id = kzalloc(sizeof(*id), GFP_KERNEL);
3151 if (!id)
3152 return -ENOMEM;
3153
3154 c.identify.opcode = nvme_admin_identify;
3155 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3156 c.identify.csi = NVME_CSI_NVM;
3157
3158 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3159 if (ret)
3160 goto free_data;
3161
3162 ctrl->dmrl = id->dmrl;
3163 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3164 if (id->wzsl)
3165 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3166
3167 free_data:
3168 if (ret > 0)
3169 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3170 kfree(id);
3171 return ret;
3172 }
3173
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3174 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3175 {
3176 struct nvme_effects_log *log = ctrl->effects;
3177
3178 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3179 NVME_CMD_EFFECTS_NCC |
3180 NVME_CMD_EFFECTS_CSE_MASK);
3181 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3182 NVME_CMD_EFFECTS_CSE_MASK);
3183
3184 /*
3185 * The spec says the result of a security receive command depends on
3186 * the previous security send command. As such, many vendors log this
3187 * command as one to submitted only when no other commands to the same
3188 * namespace are outstanding. The intention is to tell the host to
3189 * prevent mixing security send and receive.
3190 *
3191 * This driver can only enforce such exclusive access against IO
3192 * queues, though. We are not readily able to enforce such a rule for
3193 * two commands to the admin queue, which is the only queue that
3194 * matters for this command.
3195 *
3196 * Rather than blindly freezing the IO queues for this effect that
3197 * doesn't even apply to IO, mask it off.
3198 */
3199 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3200
3201 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3202 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3203 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3204 }
3205
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3206 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3207 {
3208 int ret = 0;
3209
3210 if (ctrl->effects)
3211 return 0;
3212
3213 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3214 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3215 if (ret < 0)
3216 return ret;
3217 }
3218
3219 if (!ctrl->effects) {
3220 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3221 if (!ctrl->effects)
3222 return -ENOMEM;
3223 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3224 }
3225
3226 nvme_init_known_nvm_effects(ctrl);
3227 return 0;
3228 }
3229
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3230 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3231 {
3232 /*
3233 * In fabrics we need to verify the cntlid matches the
3234 * admin connect
3235 */
3236 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3237 dev_err(ctrl->device,
3238 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3239 ctrl->cntlid, le16_to_cpu(id->cntlid));
3240 return -EINVAL;
3241 }
3242
3243 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3244 dev_err(ctrl->device,
3245 "keep-alive support is mandatory for fabrics\n");
3246 return -EINVAL;
3247 }
3248
3249 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3250 dev_err(ctrl->device,
3251 "I/O queue command capsule supported size %d < 4\n",
3252 ctrl->ioccsz);
3253 return -EINVAL;
3254 }
3255
3256 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3257 dev_err(ctrl->device,
3258 "I/O queue response capsule supported size %d < 1\n",
3259 ctrl->iorcsz);
3260 return -EINVAL;
3261 }
3262
3263 if (!ctrl->maxcmd) {
3264 dev_warn(ctrl->device,
3265 "Firmware bug: maximum outstanding commands is 0\n");
3266 ctrl->maxcmd = ctrl->sqsize + 1;
3267 }
3268
3269 return 0;
3270 }
3271
nvme_init_identify(struct nvme_ctrl * ctrl)3272 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3273 {
3274 struct queue_limits lim;
3275 struct nvme_id_ctrl *id;
3276 u32 max_hw_sectors;
3277 bool prev_apst_enabled;
3278 int ret;
3279
3280 ret = nvme_identify_ctrl(ctrl, &id);
3281 if (ret) {
3282 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3283 return -EIO;
3284 }
3285
3286 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3287 ctrl->cntlid = le16_to_cpu(id->cntlid);
3288
3289 if (!ctrl->identified) {
3290 unsigned int i;
3291
3292 /*
3293 * Check for quirks. Quirk can depend on firmware version,
3294 * so, in principle, the set of quirks present can change
3295 * across a reset. As a possible future enhancement, we
3296 * could re-scan for quirks every time we reinitialize
3297 * the device, but we'd have to make sure that the driver
3298 * behaves intelligently if the quirks change.
3299 */
3300 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3301 if (quirk_matches(id, &core_quirks[i]))
3302 ctrl->quirks |= core_quirks[i].quirks;
3303 }
3304
3305 ret = nvme_init_subsystem(ctrl, id);
3306 if (ret)
3307 goto out_free;
3308
3309 ret = nvme_init_effects(ctrl, id);
3310 if (ret)
3311 goto out_free;
3312 }
3313 memcpy(ctrl->subsys->firmware_rev, id->fr,
3314 sizeof(ctrl->subsys->firmware_rev));
3315
3316 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3317 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3318 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3319 }
3320
3321 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3322 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3323 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3324
3325 ctrl->oacs = le16_to_cpu(id->oacs);
3326 ctrl->oncs = le16_to_cpu(id->oncs);
3327 ctrl->mtfa = le16_to_cpu(id->mtfa);
3328 ctrl->oaes = le32_to_cpu(id->oaes);
3329 ctrl->wctemp = le16_to_cpu(id->wctemp);
3330 ctrl->cctemp = le16_to_cpu(id->cctemp);
3331
3332 atomic_set(&ctrl->abort_limit, id->acl + 1);
3333 ctrl->vwc = id->vwc;
3334 if (id->mdts)
3335 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3336 else
3337 max_hw_sectors = UINT_MAX;
3338 ctrl->max_hw_sectors =
3339 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3340
3341 lim = queue_limits_start_update(ctrl->admin_q);
3342 nvme_set_ctrl_limits(ctrl, &lim);
3343 ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3344 if (ret)
3345 goto out_free;
3346
3347 ctrl->sgls = le32_to_cpu(id->sgls);
3348 ctrl->kas = le16_to_cpu(id->kas);
3349 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3350 ctrl->ctratt = le32_to_cpu(id->ctratt);
3351
3352 ctrl->cntrltype = id->cntrltype;
3353 ctrl->dctype = id->dctype;
3354
3355 if (id->rtd3e) {
3356 /* us -> s */
3357 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3358
3359 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3360 shutdown_timeout, 60);
3361
3362 if (ctrl->shutdown_timeout != shutdown_timeout)
3363 dev_info(ctrl->device,
3364 "D3 entry latency set to %u seconds\n",
3365 ctrl->shutdown_timeout);
3366 } else
3367 ctrl->shutdown_timeout = shutdown_timeout;
3368
3369 ctrl->npss = id->npss;
3370 ctrl->apsta = id->apsta;
3371 prev_apst_enabled = ctrl->apst_enabled;
3372 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3373 if (force_apst && id->apsta) {
3374 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3375 ctrl->apst_enabled = true;
3376 } else {
3377 ctrl->apst_enabled = false;
3378 }
3379 } else {
3380 ctrl->apst_enabled = id->apsta;
3381 }
3382 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3383
3384 if (ctrl->ops->flags & NVME_F_FABRICS) {
3385 ctrl->icdoff = le16_to_cpu(id->icdoff);
3386 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3387 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3388 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3389
3390 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3391 if (ret)
3392 goto out_free;
3393 } else {
3394 ctrl->hmpre = le32_to_cpu(id->hmpre);
3395 ctrl->hmmin = le32_to_cpu(id->hmmin);
3396 ctrl->hmminds = le32_to_cpu(id->hmminds);
3397 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3398 }
3399
3400 ret = nvme_mpath_init_identify(ctrl, id);
3401 if (ret < 0)
3402 goto out_free;
3403
3404 if (ctrl->apst_enabled && !prev_apst_enabled)
3405 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3406 else if (!ctrl->apst_enabled && prev_apst_enabled)
3407 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3408
3409 out_free:
3410 kfree(id);
3411 return ret;
3412 }
3413
3414 /*
3415 * Initialize the cached copies of the Identify data and various controller
3416 * register in our nvme_ctrl structure. This should be called as soon as
3417 * the admin queue is fully up and running.
3418 */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3419 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3420 {
3421 int ret;
3422
3423 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3424 if (ret) {
3425 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3426 return ret;
3427 }
3428
3429 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3430
3431 if (ctrl->vs >= NVME_VS(1, 1, 0))
3432 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3433
3434 ret = nvme_init_identify(ctrl);
3435 if (ret)
3436 return ret;
3437
3438 ret = nvme_configure_apst(ctrl);
3439 if (ret < 0)
3440 return ret;
3441
3442 ret = nvme_configure_timestamp(ctrl);
3443 if (ret < 0)
3444 return ret;
3445
3446 ret = nvme_configure_host_options(ctrl);
3447 if (ret < 0)
3448 return ret;
3449
3450 nvme_configure_opal(ctrl, was_suspended);
3451
3452 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3453 /*
3454 * Do not return errors unless we are in a controller reset,
3455 * the controller works perfectly fine without hwmon.
3456 */
3457 ret = nvme_hwmon_init(ctrl);
3458 if (ret == -EINTR)
3459 return ret;
3460 }
3461
3462 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3463 ctrl->identified = true;
3464
3465 nvme_start_keep_alive(ctrl);
3466
3467 return 0;
3468 }
3469 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3470
nvme_dev_open(struct inode * inode,struct file * file)3471 static int nvme_dev_open(struct inode *inode, struct file *file)
3472 {
3473 struct nvme_ctrl *ctrl =
3474 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3475
3476 switch (nvme_ctrl_state(ctrl)) {
3477 case NVME_CTRL_LIVE:
3478 break;
3479 default:
3480 return -EWOULDBLOCK;
3481 }
3482
3483 nvme_get_ctrl(ctrl);
3484 if (!try_module_get(ctrl->ops->module)) {
3485 nvme_put_ctrl(ctrl);
3486 return -EINVAL;
3487 }
3488
3489 file->private_data = ctrl;
3490 return 0;
3491 }
3492
nvme_dev_release(struct inode * inode,struct file * file)3493 static int nvme_dev_release(struct inode *inode, struct file *file)
3494 {
3495 struct nvme_ctrl *ctrl =
3496 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3497
3498 module_put(ctrl->ops->module);
3499 nvme_put_ctrl(ctrl);
3500 return 0;
3501 }
3502
3503 static const struct file_operations nvme_dev_fops = {
3504 .owner = THIS_MODULE,
3505 .open = nvme_dev_open,
3506 .release = nvme_dev_release,
3507 .unlocked_ioctl = nvme_dev_ioctl,
3508 .compat_ioctl = compat_ptr_ioctl,
3509 .uring_cmd = nvme_dev_uring_cmd,
3510 };
3511
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3512 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3513 unsigned nsid)
3514 {
3515 struct nvme_ns_head *h;
3516
3517 lockdep_assert_held(&ctrl->subsys->lock);
3518
3519 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3520 /*
3521 * Private namespaces can share NSIDs under some conditions.
3522 * In that case we can't use the same ns_head for namespaces
3523 * with the same NSID.
3524 */
3525 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3526 continue;
3527 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3528 return h;
3529 }
3530
3531 return NULL;
3532 }
3533
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3534 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3535 struct nvme_ns_ids *ids)
3536 {
3537 bool has_uuid = !uuid_is_null(&ids->uuid);
3538 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3539 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3540 struct nvme_ns_head *h;
3541
3542 lockdep_assert_held(&subsys->lock);
3543
3544 list_for_each_entry(h, &subsys->nsheads, entry) {
3545 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3546 return -EINVAL;
3547 if (has_nguid &&
3548 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3549 return -EINVAL;
3550 if (has_eui64 &&
3551 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3552 return -EINVAL;
3553 }
3554
3555 return 0;
3556 }
3557
nvme_cdev_rel(struct device * dev)3558 static void nvme_cdev_rel(struct device *dev)
3559 {
3560 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3561 }
3562
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3563 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3564 {
3565 cdev_device_del(cdev, cdev_device);
3566 put_device(cdev_device);
3567 }
3568
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3569 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3570 const struct file_operations *fops, struct module *owner)
3571 {
3572 int minor, ret;
3573
3574 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3575 if (minor < 0)
3576 return minor;
3577 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3578 cdev_device->class = &nvme_ns_chr_class;
3579 cdev_device->release = nvme_cdev_rel;
3580 device_initialize(cdev_device);
3581 cdev_init(cdev, fops);
3582 cdev->owner = owner;
3583 ret = cdev_device_add(cdev, cdev_device);
3584 if (ret)
3585 put_device(cdev_device);
3586
3587 return ret;
3588 }
3589
nvme_ns_chr_open(struct inode * inode,struct file * file)3590 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3591 {
3592 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3593 }
3594
nvme_ns_chr_release(struct inode * inode,struct file * file)3595 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3596 {
3597 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3598 return 0;
3599 }
3600
3601 static const struct file_operations nvme_ns_chr_fops = {
3602 .owner = THIS_MODULE,
3603 .open = nvme_ns_chr_open,
3604 .release = nvme_ns_chr_release,
3605 .unlocked_ioctl = nvme_ns_chr_ioctl,
3606 .compat_ioctl = compat_ptr_ioctl,
3607 .uring_cmd = nvme_ns_chr_uring_cmd,
3608 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3609 };
3610
nvme_add_ns_cdev(struct nvme_ns * ns)3611 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3612 {
3613 int ret;
3614
3615 ns->cdev_device.parent = ns->ctrl->device;
3616 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3617 ns->ctrl->instance, ns->head->instance);
3618 if (ret)
3619 return ret;
3620
3621 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3622 ns->ctrl->ops->module);
3623 }
3624
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3625 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3626 struct nvme_ns_info *info)
3627 {
3628 struct nvme_ns_head *head;
3629 size_t size = sizeof(*head);
3630 int ret = -ENOMEM;
3631
3632 #ifdef CONFIG_NVME_MULTIPATH
3633 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3634 #endif
3635
3636 head = kzalloc(size, GFP_KERNEL);
3637 if (!head)
3638 goto out;
3639 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3640 if (ret < 0)
3641 goto out_free_head;
3642 head->instance = ret;
3643 INIT_LIST_HEAD(&head->list);
3644 ret = init_srcu_struct(&head->srcu);
3645 if (ret)
3646 goto out_ida_remove;
3647 head->subsys = ctrl->subsys;
3648 head->ns_id = info->nsid;
3649 head->ids = info->ids;
3650 head->shared = info->is_shared;
3651 head->rotational = info->is_rotational;
3652 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3653 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3654 kref_init(&head->ref);
3655
3656 if (head->ids.csi) {
3657 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3658 if (ret)
3659 goto out_cleanup_srcu;
3660 } else
3661 head->effects = ctrl->effects;
3662
3663 ret = nvme_mpath_alloc_disk(ctrl, head);
3664 if (ret)
3665 goto out_cleanup_srcu;
3666
3667 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3668
3669 kref_get(&ctrl->subsys->ref);
3670
3671 return head;
3672 out_cleanup_srcu:
3673 cleanup_srcu_struct(&head->srcu);
3674 out_ida_remove:
3675 ida_free(&ctrl->subsys->ns_ida, head->instance);
3676 out_free_head:
3677 kfree(head);
3678 out:
3679 if (ret > 0)
3680 ret = blk_status_to_errno(nvme_error_status(ret));
3681 return ERR_PTR(ret);
3682 }
3683
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3684 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3685 struct nvme_ns_ids *ids)
3686 {
3687 struct nvme_subsystem *s;
3688 int ret = 0;
3689
3690 /*
3691 * Note that this check is racy as we try to avoid holding the global
3692 * lock over the whole ns_head creation. But it is only intended as
3693 * a sanity check anyway.
3694 */
3695 mutex_lock(&nvme_subsystems_lock);
3696 list_for_each_entry(s, &nvme_subsystems, entry) {
3697 if (s == this)
3698 continue;
3699 mutex_lock(&s->lock);
3700 ret = nvme_subsys_check_duplicate_ids(s, ids);
3701 mutex_unlock(&s->lock);
3702 if (ret)
3703 break;
3704 }
3705 mutex_unlock(&nvme_subsystems_lock);
3706
3707 return ret;
3708 }
3709
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3710 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3711 {
3712 struct nvme_ctrl *ctrl = ns->ctrl;
3713 struct nvme_ns_head *head = NULL;
3714 int ret;
3715
3716 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3717 if (ret) {
3718 /*
3719 * We've found two different namespaces on two different
3720 * subsystems that report the same ID. This is pretty nasty
3721 * for anything that actually requires unique device
3722 * identification. In the kernel we need this for multipathing,
3723 * and in user space the /dev/disk/by-id/ links rely on it.
3724 *
3725 * If the device also claims to be multi-path capable back off
3726 * here now and refuse the probe the second device as this is a
3727 * recipe for data corruption. If not this is probably a
3728 * cheap consumer device if on the PCIe bus, so let the user
3729 * proceed and use the shiny toy, but warn that with changing
3730 * probing order (which due to our async probing could just be
3731 * device taking longer to startup) the other device could show
3732 * up at any time.
3733 */
3734 nvme_print_device_info(ctrl);
3735 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3736 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3737 info->is_shared)) {
3738 dev_err(ctrl->device,
3739 "ignoring nsid %d because of duplicate IDs\n",
3740 info->nsid);
3741 return ret;
3742 }
3743
3744 dev_err(ctrl->device,
3745 "clearing duplicate IDs for nsid %d\n", info->nsid);
3746 dev_err(ctrl->device,
3747 "use of /dev/disk/by-id/ may cause data corruption\n");
3748 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3749 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3750 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3751 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3752 }
3753
3754 mutex_lock(&ctrl->subsys->lock);
3755 head = nvme_find_ns_head(ctrl, info->nsid);
3756 if (!head) {
3757 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3758 if (ret) {
3759 dev_err(ctrl->device,
3760 "duplicate IDs in subsystem for nsid %d\n",
3761 info->nsid);
3762 goto out_unlock;
3763 }
3764 head = nvme_alloc_ns_head(ctrl, info);
3765 if (IS_ERR(head)) {
3766 ret = PTR_ERR(head);
3767 goto out_unlock;
3768 }
3769 } else {
3770 ret = -EINVAL;
3771 if (!info->is_shared || !head->shared) {
3772 dev_err(ctrl->device,
3773 "Duplicate unshared namespace %d\n",
3774 info->nsid);
3775 goto out_put_ns_head;
3776 }
3777 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3778 dev_err(ctrl->device,
3779 "IDs don't match for shared namespace %d\n",
3780 info->nsid);
3781 goto out_put_ns_head;
3782 }
3783
3784 if (!multipath) {
3785 dev_warn(ctrl->device,
3786 "Found shared namespace %d, but multipathing not supported.\n",
3787 info->nsid);
3788 dev_warn_once(ctrl->device,
3789 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3790 }
3791 }
3792
3793 list_add_tail_rcu(&ns->siblings, &head->list);
3794 ns->head = head;
3795 mutex_unlock(&ctrl->subsys->lock);
3796 return 0;
3797
3798 out_put_ns_head:
3799 nvme_put_ns_head(head);
3800 out_unlock:
3801 mutex_unlock(&ctrl->subsys->lock);
3802 return ret;
3803 }
3804
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3805 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3806 {
3807 struct nvme_ns *ns, *ret = NULL;
3808 int srcu_idx;
3809
3810 srcu_idx = srcu_read_lock(&ctrl->srcu);
3811 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3812 srcu_read_lock_held(&ctrl->srcu)) {
3813 if (ns->head->ns_id == nsid) {
3814 if (!nvme_get_ns(ns))
3815 continue;
3816 ret = ns;
3817 break;
3818 }
3819 if (ns->head->ns_id > nsid)
3820 break;
3821 }
3822 srcu_read_unlock(&ctrl->srcu, srcu_idx);
3823 return ret;
3824 }
3825 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
3826
3827 /*
3828 * Add the namespace to the controller list while keeping the list ordered.
3829 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3830 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3831 {
3832 struct nvme_ns *tmp;
3833
3834 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3835 if (tmp->head->ns_id < ns->head->ns_id) {
3836 list_add_rcu(&ns->list, &tmp->list);
3837 return;
3838 }
3839 }
3840 list_add(&ns->list, &ns->ctrl->namespaces);
3841 }
3842
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3843 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3844 {
3845 struct queue_limits lim = { };
3846 struct nvme_ns *ns;
3847 struct gendisk *disk;
3848 int node = ctrl->numa_node;
3849
3850 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3851 if (!ns)
3852 return;
3853
3854 if (ctrl->opts && ctrl->opts->data_digest)
3855 lim.features |= BLK_FEAT_STABLE_WRITES;
3856 if (ctrl->ops->supports_pci_p2pdma &&
3857 ctrl->ops->supports_pci_p2pdma(ctrl))
3858 lim.features |= BLK_FEAT_PCI_P2PDMA;
3859
3860 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3861 if (IS_ERR(disk))
3862 goto out_free_ns;
3863 disk->fops = &nvme_bdev_ops;
3864 disk->private_data = ns;
3865
3866 ns->disk = disk;
3867 ns->queue = disk->queue;
3868 ns->ctrl = ctrl;
3869 kref_init(&ns->kref);
3870
3871 if (nvme_init_ns_head(ns, info))
3872 goto out_cleanup_disk;
3873
3874 /*
3875 * If multipathing is enabled, the device name for all disks and not
3876 * just those that represent shared namespaces needs to be based on the
3877 * subsystem instance. Using the controller instance for private
3878 * namespaces could lead to naming collisions between shared and private
3879 * namespaces if they don't use a common numbering scheme.
3880 *
3881 * If multipathing is not enabled, disk names must use the controller
3882 * instance as shared namespaces will show up as multiple block
3883 * devices.
3884 */
3885 if (nvme_ns_head_multipath(ns->head)) {
3886 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3887 ctrl->instance, ns->head->instance);
3888 disk->flags |= GENHD_FL_HIDDEN;
3889 } else if (multipath) {
3890 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3891 ns->head->instance);
3892 } else {
3893 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3894 ns->head->instance);
3895 }
3896
3897 if (nvme_update_ns_info(ns, info))
3898 goto out_unlink_ns;
3899
3900 mutex_lock(&ctrl->namespaces_lock);
3901 /*
3902 * Ensure that no namespaces are added to the ctrl list after the queues
3903 * are frozen, thereby avoiding a deadlock between scan and reset.
3904 */
3905 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3906 mutex_unlock(&ctrl->namespaces_lock);
3907 goto out_unlink_ns;
3908 }
3909 nvme_ns_add_to_ctrl_list(ns);
3910 mutex_unlock(&ctrl->namespaces_lock);
3911 synchronize_srcu(&ctrl->srcu);
3912 nvme_get_ctrl(ctrl);
3913
3914 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3915 goto out_cleanup_ns_from_list;
3916
3917 if (!nvme_ns_head_multipath(ns->head))
3918 nvme_add_ns_cdev(ns);
3919
3920 nvme_mpath_add_disk(ns, info->anagrpid);
3921 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3922
3923 /*
3924 * Set ns->disk->device->driver_data to ns so we can access
3925 * ns->head->passthru_err_log_enabled in
3926 * nvme_io_passthru_err_log_enabled_[store | show]().
3927 */
3928 dev_set_drvdata(disk_to_dev(ns->disk), ns);
3929
3930 return;
3931
3932 out_cleanup_ns_from_list:
3933 nvme_put_ctrl(ctrl);
3934 mutex_lock(&ctrl->namespaces_lock);
3935 list_del_rcu(&ns->list);
3936 mutex_unlock(&ctrl->namespaces_lock);
3937 synchronize_srcu(&ctrl->srcu);
3938 out_unlink_ns:
3939 mutex_lock(&ctrl->subsys->lock);
3940 list_del_rcu(&ns->siblings);
3941 if (list_empty(&ns->head->list))
3942 list_del_init(&ns->head->entry);
3943 mutex_unlock(&ctrl->subsys->lock);
3944 nvme_put_ns_head(ns->head);
3945 out_cleanup_disk:
3946 put_disk(disk);
3947 out_free_ns:
3948 kfree(ns);
3949 }
3950
nvme_ns_remove(struct nvme_ns * ns)3951 static void nvme_ns_remove(struct nvme_ns *ns)
3952 {
3953 bool last_path = false;
3954
3955 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3956 return;
3957
3958 clear_bit(NVME_NS_READY, &ns->flags);
3959 set_capacity(ns->disk, 0);
3960 nvme_fault_inject_fini(&ns->fault_inject);
3961
3962 /*
3963 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3964 * this ns going back into current_path.
3965 */
3966 synchronize_srcu(&ns->head->srcu);
3967
3968 /* wait for concurrent submissions */
3969 if (nvme_mpath_clear_current_path(ns))
3970 synchronize_srcu(&ns->head->srcu);
3971
3972 mutex_lock(&ns->ctrl->subsys->lock);
3973 list_del_rcu(&ns->siblings);
3974 if (list_empty(&ns->head->list)) {
3975 list_del_init(&ns->head->entry);
3976 last_path = true;
3977 }
3978 mutex_unlock(&ns->ctrl->subsys->lock);
3979
3980 /* guarantee not available in head->list */
3981 synchronize_srcu(&ns->head->srcu);
3982
3983 if (!nvme_ns_head_multipath(ns->head))
3984 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3985 del_gendisk(ns->disk);
3986
3987 mutex_lock(&ns->ctrl->namespaces_lock);
3988 list_del_rcu(&ns->list);
3989 mutex_unlock(&ns->ctrl->namespaces_lock);
3990 synchronize_srcu(&ns->ctrl->srcu);
3991
3992 if (last_path)
3993 nvme_mpath_shutdown_disk(ns->head);
3994 nvme_put_ns(ns);
3995 }
3996
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)3997 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3998 {
3999 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4000
4001 if (ns) {
4002 nvme_ns_remove(ns);
4003 nvme_put_ns(ns);
4004 }
4005 }
4006
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4007 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4008 {
4009 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4010
4011 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4012 dev_err(ns->ctrl->device,
4013 "identifiers changed for nsid %d\n", ns->head->ns_id);
4014 goto out;
4015 }
4016
4017 ret = nvme_update_ns_info(ns, info);
4018 out:
4019 /*
4020 * Only remove the namespace if we got a fatal error back from the
4021 * device, otherwise ignore the error and just move on.
4022 *
4023 * TODO: we should probably schedule a delayed retry here.
4024 */
4025 if (ret > 0 && (ret & NVME_STATUS_DNR))
4026 nvme_ns_remove(ns);
4027 }
4028
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4029 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4030 {
4031 struct nvme_ns_info info = { .nsid = nsid };
4032 struct nvme_ns *ns;
4033 int ret = 1;
4034
4035 if (nvme_identify_ns_descs(ctrl, &info))
4036 return;
4037
4038 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4039 dev_warn(ctrl->device,
4040 "command set not reported for nsid: %d\n", nsid);
4041 return;
4042 }
4043
4044 /*
4045 * If available try to use the Command Set Idependent Identify Namespace
4046 * data structure to find all the generic information that is needed to
4047 * set up a namespace. If not fall back to the legacy version.
4048 */
4049 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4050 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4051 ctrl->vs >= NVME_VS(2, 0, 0))
4052 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4053 if (ret > 0)
4054 ret = nvme_ns_info_from_identify(ctrl, &info);
4055
4056 if (info.is_removed)
4057 nvme_ns_remove_by_nsid(ctrl, nsid);
4058
4059 /*
4060 * Ignore the namespace if it is not ready. We will get an AEN once it
4061 * becomes ready and restart the scan.
4062 */
4063 if (ret || !info.is_ready)
4064 return;
4065
4066 ns = nvme_find_get_ns(ctrl, nsid);
4067 if (ns) {
4068 nvme_validate_ns(ns, &info);
4069 nvme_put_ns(ns);
4070 } else {
4071 nvme_alloc_ns(ctrl, &info);
4072 }
4073 }
4074
4075 /**
4076 * struct async_scan_info - keeps track of controller & NSIDs to scan
4077 * @ctrl: Controller on which namespaces are being scanned
4078 * @next_nsid: Index of next NSID to scan in ns_list
4079 * @ns_list: Pointer to list of NSIDs to scan
4080 *
4081 * Note: There is a single async_scan_info structure shared by all instances
4082 * of nvme_scan_ns_async() scanning a given controller, so the atomic
4083 * operations on next_nsid are critical to ensure each instance scans a unique
4084 * NSID.
4085 */
4086 struct async_scan_info {
4087 struct nvme_ctrl *ctrl;
4088 atomic_t next_nsid;
4089 __le32 *ns_list;
4090 };
4091
nvme_scan_ns_async(void * data,async_cookie_t cookie)4092 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4093 {
4094 struct async_scan_info *scan_info = data;
4095 int idx;
4096 u32 nsid;
4097
4098 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4099 nsid = le32_to_cpu(scan_info->ns_list[idx]);
4100
4101 nvme_scan_ns(scan_info->ctrl, nsid);
4102 }
4103
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4104 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4105 unsigned nsid)
4106 {
4107 struct nvme_ns *ns, *next;
4108 LIST_HEAD(rm_list);
4109
4110 mutex_lock(&ctrl->namespaces_lock);
4111 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4112 if (ns->head->ns_id > nsid) {
4113 list_del_rcu(&ns->list);
4114 synchronize_srcu(&ctrl->srcu);
4115 list_add_tail_rcu(&ns->list, &rm_list);
4116 }
4117 }
4118 mutex_unlock(&ctrl->namespaces_lock);
4119
4120 list_for_each_entry_safe(ns, next, &rm_list, list)
4121 nvme_ns_remove(ns);
4122 }
4123
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4124 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4125 {
4126 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4127 __le32 *ns_list;
4128 u32 prev = 0;
4129 int ret = 0, i;
4130 ASYNC_DOMAIN(domain);
4131 struct async_scan_info scan_info;
4132
4133 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4134 if (!ns_list)
4135 return -ENOMEM;
4136
4137 scan_info.ctrl = ctrl;
4138 scan_info.ns_list = ns_list;
4139 for (;;) {
4140 struct nvme_command cmd = {
4141 .identify.opcode = nvme_admin_identify,
4142 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4143 .identify.nsid = cpu_to_le32(prev),
4144 };
4145
4146 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4147 NVME_IDENTIFY_DATA_SIZE);
4148 if (ret) {
4149 dev_warn(ctrl->device,
4150 "Identify NS List failed (status=0x%x)\n", ret);
4151 goto free;
4152 }
4153
4154 atomic_set(&scan_info.next_nsid, 0);
4155 for (i = 0; i < nr_entries; i++) {
4156 u32 nsid = le32_to_cpu(ns_list[i]);
4157
4158 if (!nsid) /* end of the list? */
4159 goto out;
4160 async_schedule_domain(nvme_scan_ns_async, &scan_info,
4161 &domain);
4162 while (++prev < nsid)
4163 nvme_ns_remove_by_nsid(ctrl, prev);
4164 }
4165 async_synchronize_full_domain(&domain);
4166 }
4167 out:
4168 nvme_remove_invalid_namespaces(ctrl, prev);
4169 free:
4170 async_synchronize_full_domain(&domain);
4171 kfree(ns_list);
4172 return ret;
4173 }
4174
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4175 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4176 {
4177 struct nvme_id_ctrl *id;
4178 u32 nn, i;
4179
4180 if (nvme_identify_ctrl(ctrl, &id))
4181 return;
4182 nn = le32_to_cpu(id->nn);
4183 kfree(id);
4184
4185 for (i = 1; i <= nn; i++)
4186 nvme_scan_ns(ctrl, i);
4187
4188 nvme_remove_invalid_namespaces(ctrl, nn);
4189 }
4190
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4191 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4192 {
4193 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4194 __le32 *log;
4195 int error;
4196
4197 log = kzalloc(log_size, GFP_KERNEL);
4198 if (!log)
4199 return;
4200
4201 /*
4202 * We need to read the log to clear the AEN, but we don't want to rely
4203 * on it for the changed namespace information as userspace could have
4204 * raced with us in reading the log page, which could cause us to miss
4205 * updates.
4206 */
4207 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4208 NVME_CSI_NVM, log, log_size, 0);
4209 if (error)
4210 dev_warn(ctrl->device,
4211 "reading changed ns log failed: %d\n", error);
4212
4213 kfree(log);
4214 }
4215
nvme_scan_work(struct work_struct * work)4216 static void nvme_scan_work(struct work_struct *work)
4217 {
4218 struct nvme_ctrl *ctrl =
4219 container_of(work, struct nvme_ctrl, scan_work);
4220 int ret;
4221
4222 /* No tagset on a live ctrl means IO queues could not created */
4223 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4224 return;
4225
4226 /*
4227 * Identify controller limits can change at controller reset due to
4228 * new firmware download, even though it is not common we cannot ignore
4229 * such scenario. Controller's non-mdts limits are reported in the unit
4230 * of logical blocks that is dependent on the format of attached
4231 * namespace. Hence re-read the limits at the time of ns allocation.
4232 */
4233 ret = nvme_init_non_mdts_limits(ctrl);
4234 if (ret < 0) {
4235 dev_warn(ctrl->device,
4236 "reading non-mdts-limits failed: %d\n", ret);
4237 return;
4238 }
4239
4240 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4241 dev_info(ctrl->device, "rescanning namespaces.\n");
4242 nvme_clear_changed_ns_log(ctrl);
4243 }
4244
4245 mutex_lock(&ctrl->scan_lock);
4246 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4247 nvme_scan_ns_sequential(ctrl);
4248 } else {
4249 /*
4250 * Fall back to sequential scan if DNR is set to handle broken
4251 * devices which should support Identify NS List (as per the VS
4252 * they report) but don't actually support it.
4253 */
4254 ret = nvme_scan_ns_list(ctrl);
4255 if (ret > 0 && ret & NVME_STATUS_DNR)
4256 nvme_scan_ns_sequential(ctrl);
4257 }
4258 mutex_unlock(&ctrl->scan_lock);
4259 }
4260
4261 /*
4262 * This function iterates the namespace list unlocked to allow recovery from
4263 * controller failure. It is up to the caller to ensure the namespace list is
4264 * not modified by scan work while this function is executing.
4265 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4266 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4267 {
4268 struct nvme_ns *ns, *next;
4269 LIST_HEAD(ns_list);
4270
4271 /*
4272 * make sure to requeue I/O to all namespaces as these
4273 * might result from the scan itself and must complete
4274 * for the scan_work to make progress
4275 */
4276 nvme_mpath_clear_ctrl_paths(ctrl);
4277
4278 /*
4279 * Unquiesce io queues so any pending IO won't hang, especially
4280 * those submitted from scan work
4281 */
4282 nvme_unquiesce_io_queues(ctrl);
4283
4284 /* prevent racing with ns scanning */
4285 flush_work(&ctrl->scan_work);
4286
4287 /*
4288 * The dead states indicates the controller was not gracefully
4289 * disconnected. In that case, we won't be able to flush any data while
4290 * removing the namespaces' disks; fail all the queues now to avoid
4291 * potentially having to clean up the failed sync later.
4292 */
4293 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4294 nvme_mark_namespaces_dead(ctrl);
4295
4296 /* this is a no-op when called from the controller reset handler */
4297 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4298
4299 mutex_lock(&ctrl->namespaces_lock);
4300 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4301 mutex_unlock(&ctrl->namespaces_lock);
4302 synchronize_srcu(&ctrl->srcu);
4303
4304 list_for_each_entry_safe(ns, next, &ns_list, list)
4305 nvme_ns_remove(ns);
4306 }
4307 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4308
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4309 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4310 {
4311 const struct nvme_ctrl *ctrl =
4312 container_of(dev, struct nvme_ctrl, ctrl_device);
4313 struct nvmf_ctrl_options *opts = ctrl->opts;
4314 int ret;
4315
4316 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4317 if (ret)
4318 return ret;
4319
4320 if (opts) {
4321 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4322 if (ret)
4323 return ret;
4324
4325 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4326 opts->trsvcid ?: "none");
4327 if (ret)
4328 return ret;
4329
4330 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4331 opts->host_traddr ?: "none");
4332 if (ret)
4333 return ret;
4334
4335 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4336 opts->host_iface ?: "none");
4337 }
4338 return ret;
4339 }
4340
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4341 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4342 {
4343 char *envp[2] = { envdata, NULL };
4344
4345 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4346 }
4347
nvme_aen_uevent(struct nvme_ctrl * ctrl)4348 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4349 {
4350 char *envp[2] = { NULL, NULL };
4351 u32 aen_result = ctrl->aen_result;
4352
4353 ctrl->aen_result = 0;
4354 if (!aen_result)
4355 return;
4356
4357 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4358 if (!envp[0])
4359 return;
4360 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4361 kfree(envp[0]);
4362 }
4363
nvme_async_event_work(struct work_struct * work)4364 static void nvme_async_event_work(struct work_struct *work)
4365 {
4366 struct nvme_ctrl *ctrl =
4367 container_of(work, struct nvme_ctrl, async_event_work);
4368
4369 nvme_aen_uevent(ctrl);
4370
4371 /*
4372 * The transport drivers must guarantee AER submission here is safe by
4373 * flushing ctrl async_event_work after changing the controller state
4374 * from LIVE and before freeing the admin queue.
4375 */
4376 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4377 ctrl->ops->submit_async_event(ctrl);
4378 }
4379
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4380 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4381 {
4382
4383 u32 csts;
4384
4385 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4386 return false;
4387
4388 if (csts == ~0)
4389 return false;
4390
4391 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4392 }
4393
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4394 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4395 {
4396 struct nvme_fw_slot_info_log *log;
4397 u8 next_fw_slot, cur_fw_slot;
4398
4399 log = kmalloc(sizeof(*log), GFP_KERNEL);
4400 if (!log)
4401 return;
4402
4403 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4404 log, sizeof(*log), 0)) {
4405 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4406 goto out_free_log;
4407 }
4408
4409 cur_fw_slot = log->afi & 0x7;
4410 next_fw_slot = (log->afi & 0x70) >> 4;
4411 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4412 dev_info(ctrl->device,
4413 "Firmware is activated after next Controller Level Reset\n");
4414 goto out_free_log;
4415 }
4416
4417 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4418 sizeof(ctrl->subsys->firmware_rev));
4419
4420 out_free_log:
4421 kfree(log);
4422 }
4423
nvme_fw_act_work(struct work_struct * work)4424 static void nvme_fw_act_work(struct work_struct *work)
4425 {
4426 struct nvme_ctrl *ctrl = container_of(work,
4427 struct nvme_ctrl, fw_act_work);
4428 unsigned long fw_act_timeout;
4429
4430 nvme_auth_stop(ctrl);
4431
4432 if (ctrl->mtfa)
4433 fw_act_timeout = jiffies +
4434 msecs_to_jiffies(ctrl->mtfa * 100);
4435 else
4436 fw_act_timeout = jiffies +
4437 msecs_to_jiffies(admin_timeout * 1000);
4438
4439 nvme_quiesce_io_queues(ctrl);
4440 while (nvme_ctrl_pp_status(ctrl)) {
4441 if (time_after(jiffies, fw_act_timeout)) {
4442 dev_warn(ctrl->device,
4443 "Fw activation timeout, reset controller\n");
4444 nvme_try_sched_reset(ctrl);
4445 return;
4446 }
4447 msleep(100);
4448 }
4449
4450 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4451 return;
4452
4453 nvme_unquiesce_io_queues(ctrl);
4454 /* read FW slot information to clear the AER */
4455 nvme_get_fw_slot_info(ctrl);
4456
4457 queue_work(nvme_wq, &ctrl->async_event_work);
4458 }
4459
nvme_aer_type(u32 result)4460 static u32 nvme_aer_type(u32 result)
4461 {
4462 return result & 0x7;
4463 }
4464
nvme_aer_subtype(u32 result)4465 static u32 nvme_aer_subtype(u32 result)
4466 {
4467 return (result & 0xff00) >> 8;
4468 }
4469
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4470 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4471 {
4472 u32 aer_notice_type = nvme_aer_subtype(result);
4473 bool requeue = true;
4474
4475 switch (aer_notice_type) {
4476 case NVME_AER_NOTICE_NS_CHANGED:
4477 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4478 nvme_queue_scan(ctrl);
4479 break;
4480 case NVME_AER_NOTICE_FW_ACT_STARTING:
4481 /*
4482 * We are (ab)using the RESETTING state to prevent subsequent
4483 * recovery actions from interfering with the controller's
4484 * firmware activation.
4485 */
4486 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4487 requeue = false;
4488 queue_work(nvme_wq, &ctrl->fw_act_work);
4489 }
4490 break;
4491 #ifdef CONFIG_NVME_MULTIPATH
4492 case NVME_AER_NOTICE_ANA:
4493 if (!ctrl->ana_log_buf)
4494 break;
4495 queue_work(nvme_wq, &ctrl->ana_work);
4496 break;
4497 #endif
4498 case NVME_AER_NOTICE_DISC_CHANGED:
4499 ctrl->aen_result = result;
4500 break;
4501 default:
4502 dev_warn(ctrl->device, "async event result %08x\n", result);
4503 }
4504 return requeue;
4505 }
4506
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4507 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4508 {
4509 dev_warn(ctrl->device,
4510 "resetting controller due to persistent internal error\n");
4511 nvme_reset_ctrl(ctrl);
4512 }
4513
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4514 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4515 volatile union nvme_result *res)
4516 {
4517 u32 result = le32_to_cpu(res->u32);
4518 u32 aer_type = nvme_aer_type(result);
4519 u32 aer_subtype = nvme_aer_subtype(result);
4520 bool requeue = true;
4521
4522 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4523 return;
4524
4525 trace_nvme_async_event(ctrl, result);
4526 switch (aer_type) {
4527 case NVME_AER_NOTICE:
4528 requeue = nvme_handle_aen_notice(ctrl, result);
4529 break;
4530 case NVME_AER_ERROR:
4531 /*
4532 * For a persistent internal error, don't run async_event_work
4533 * to submit a new AER. The controller reset will do it.
4534 */
4535 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4536 nvme_handle_aer_persistent_error(ctrl);
4537 return;
4538 }
4539 fallthrough;
4540 case NVME_AER_SMART:
4541 case NVME_AER_CSS:
4542 case NVME_AER_VS:
4543 ctrl->aen_result = result;
4544 break;
4545 default:
4546 break;
4547 }
4548
4549 if (requeue)
4550 queue_work(nvme_wq, &ctrl->async_event_work);
4551 }
4552 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4553
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4554 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4555 const struct blk_mq_ops *ops, unsigned int cmd_size)
4556 {
4557 struct queue_limits lim = {};
4558 int ret;
4559
4560 memset(set, 0, sizeof(*set));
4561 set->ops = ops;
4562 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4563 if (ctrl->ops->flags & NVME_F_FABRICS)
4564 /* Reserved for fabric connect and keep alive */
4565 set->reserved_tags = 2;
4566 set->numa_node = ctrl->numa_node;
4567 set->flags = BLK_MQ_F_NO_SCHED;
4568 if (ctrl->ops->flags & NVME_F_BLOCKING)
4569 set->flags |= BLK_MQ_F_BLOCKING;
4570 set->cmd_size = cmd_size;
4571 set->driver_data = ctrl;
4572 set->nr_hw_queues = 1;
4573 set->timeout = NVME_ADMIN_TIMEOUT;
4574 ret = blk_mq_alloc_tag_set(set);
4575 if (ret)
4576 return ret;
4577
4578 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4579 if (IS_ERR(ctrl->admin_q)) {
4580 ret = PTR_ERR(ctrl->admin_q);
4581 goto out_free_tagset;
4582 }
4583
4584 if (ctrl->ops->flags & NVME_F_FABRICS) {
4585 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4586 if (IS_ERR(ctrl->fabrics_q)) {
4587 ret = PTR_ERR(ctrl->fabrics_q);
4588 goto out_cleanup_admin_q;
4589 }
4590 }
4591
4592 ctrl->admin_tagset = set;
4593 return 0;
4594
4595 out_cleanup_admin_q:
4596 blk_mq_destroy_queue(ctrl->admin_q);
4597 blk_put_queue(ctrl->admin_q);
4598 out_free_tagset:
4599 blk_mq_free_tag_set(set);
4600 ctrl->admin_q = NULL;
4601 ctrl->fabrics_q = NULL;
4602 return ret;
4603 }
4604 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4605
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4606 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4607 {
4608 /*
4609 * As we're about to destroy the queue and free tagset
4610 * we can not have keep-alive work running.
4611 */
4612 nvme_stop_keep_alive(ctrl);
4613 blk_mq_destroy_queue(ctrl->admin_q);
4614 blk_put_queue(ctrl->admin_q);
4615 if (ctrl->ops->flags & NVME_F_FABRICS) {
4616 blk_mq_destroy_queue(ctrl->fabrics_q);
4617 blk_put_queue(ctrl->fabrics_q);
4618 }
4619 blk_mq_free_tag_set(ctrl->admin_tagset);
4620 }
4621 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4622
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4623 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4624 const struct blk_mq_ops *ops, unsigned int nr_maps,
4625 unsigned int cmd_size)
4626 {
4627 int ret;
4628
4629 memset(set, 0, sizeof(*set));
4630 set->ops = ops;
4631 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4632 /*
4633 * Some Apple controllers requires tags to be unique across admin and
4634 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4635 */
4636 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4637 set->reserved_tags = NVME_AQ_DEPTH;
4638 else if (ctrl->ops->flags & NVME_F_FABRICS)
4639 /* Reserved for fabric connect */
4640 set->reserved_tags = 1;
4641 set->numa_node = ctrl->numa_node;
4642 set->flags = BLK_MQ_F_SHOULD_MERGE;
4643 if (ctrl->ops->flags & NVME_F_BLOCKING)
4644 set->flags |= BLK_MQ_F_BLOCKING;
4645 set->cmd_size = cmd_size;
4646 set->driver_data = ctrl;
4647 set->nr_hw_queues = ctrl->queue_count - 1;
4648 set->timeout = NVME_IO_TIMEOUT;
4649 set->nr_maps = nr_maps;
4650 ret = blk_mq_alloc_tag_set(set);
4651 if (ret)
4652 return ret;
4653
4654 if (ctrl->ops->flags & NVME_F_FABRICS) {
4655 struct queue_limits lim = {
4656 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE,
4657 };
4658
4659 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4660 if (IS_ERR(ctrl->connect_q)) {
4661 ret = PTR_ERR(ctrl->connect_q);
4662 goto out_free_tag_set;
4663 }
4664 }
4665
4666 ctrl->tagset = set;
4667 return 0;
4668
4669 out_free_tag_set:
4670 blk_mq_free_tag_set(set);
4671 ctrl->connect_q = NULL;
4672 return ret;
4673 }
4674 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4675
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4676 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4677 {
4678 if (ctrl->ops->flags & NVME_F_FABRICS) {
4679 blk_mq_destroy_queue(ctrl->connect_q);
4680 blk_put_queue(ctrl->connect_q);
4681 }
4682 blk_mq_free_tag_set(ctrl->tagset);
4683 }
4684 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4685
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4686 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4687 {
4688 nvme_mpath_stop(ctrl);
4689 nvme_auth_stop(ctrl);
4690 nvme_stop_failfast_work(ctrl);
4691 flush_work(&ctrl->async_event_work);
4692 cancel_work_sync(&ctrl->fw_act_work);
4693 if (ctrl->ops->stop_ctrl)
4694 ctrl->ops->stop_ctrl(ctrl);
4695 }
4696 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4697
nvme_start_ctrl(struct nvme_ctrl * ctrl)4698 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4699 {
4700 nvme_enable_aen(ctrl);
4701
4702 /*
4703 * persistent discovery controllers need to send indication to userspace
4704 * to re-read the discovery log page to learn about possible changes
4705 * that were missed. We identify persistent discovery controllers by
4706 * checking that they started once before, hence are reconnecting back.
4707 */
4708 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4709 nvme_discovery_ctrl(ctrl))
4710 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4711
4712 if (ctrl->queue_count > 1) {
4713 nvme_queue_scan(ctrl);
4714 nvme_unquiesce_io_queues(ctrl);
4715 nvme_mpath_update(ctrl);
4716 }
4717
4718 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4719 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4720 }
4721 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4722
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4723 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4724 {
4725 nvme_stop_keep_alive(ctrl);
4726 nvme_hwmon_exit(ctrl);
4727 nvme_fault_inject_fini(&ctrl->fault_inject);
4728 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4729 cdev_device_del(&ctrl->cdev, ctrl->device);
4730 nvme_put_ctrl(ctrl);
4731 }
4732 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4733
nvme_free_cels(struct nvme_ctrl * ctrl)4734 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4735 {
4736 struct nvme_effects_log *cel;
4737 unsigned long i;
4738
4739 xa_for_each(&ctrl->cels, i, cel) {
4740 xa_erase(&ctrl->cels, i);
4741 kfree(cel);
4742 }
4743
4744 xa_destroy(&ctrl->cels);
4745 }
4746
nvme_free_ctrl(struct device * dev)4747 static void nvme_free_ctrl(struct device *dev)
4748 {
4749 struct nvme_ctrl *ctrl =
4750 container_of(dev, struct nvme_ctrl, ctrl_device);
4751 struct nvme_subsystem *subsys = ctrl->subsys;
4752
4753 if (!subsys || ctrl->instance != subsys->instance)
4754 ida_free(&nvme_instance_ida, ctrl->instance);
4755 nvme_free_cels(ctrl);
4756 nvme_mpath_uninit(ctrl);
4757 cleanup_srcu_struct(&ctrl->srcu);
4758 nvme_auth_stop(ctrl);
4759 nvme_auth_free(ctrl);
4760 __free_page(ctrl->discard_page);
4761 free_opal_dev(ctrl->opal_dev);
4762
4763 if (subsys) {
4764 mutex_lock(&nvme_subsystems_lock);
4765 list_del(&ctrl->subsys_entry);
4766 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4767 mutex_unlock(&nvme_subsystems_lock);
4768 }
4769
4770 ctrl->ops->free_ctrl(ctrl);
4771
4772 if (subsys)
4773 nvme_put_subsystem(subsys);
4774 }
4775
4776 /*
4777 * Initialize a NVMe controller structures. This needs to be called during
4778 * earliest initialization so that we have the initialized structured around
4779 * during probing.
4780 *
4781 * On success, the caller must use the nvme_put_ctrl() to release this when
4782 * needed, which also invokes the ops->free_ctrl() callback.
4783 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4784 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4785 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4786 {
4787 int ret;
4788
4789 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4790 ctrl->passthru_err_log_enabled = false;
4791 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4792 spin_lock_init(&ctrl->lock);
4793 mutex_init(&ctrl->namespaces_lock);
4794
4795 ret = init_srcu_struct(&ctrl->srcu);
4796 if (ret)
4797 return ret;
4798
4799 mutex_init(&ctrl->scan_lock);
4800 INIT_LIST_HEAD(&ctrl->namespaces);
4801 xa_init(&ctrl->cels);
4802 ctrl->dev = dev;
4803 ctrl->ops = ops;
4804 ctrl->quirks = quirks;
4805 ctrl->numa_node = NUMA_NO_NODE;
4806 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4807 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4808 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4809 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4810 init_waitqueue_head(&ctrl->state_wq);
4811
4812 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4813 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4814 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4815 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4816 ctrl->ka_last_check_time = jiffies;
4817
4818 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4819 PAGE_SIZE);
4820 ctrl->discard_page = alloc_page(GFP_KERNEL);
4821 if (!ctrl->discard_page) {
4822 ret = -ENOMEM;
4823 goto out;
4824 }
4825
4826 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4827 if (ret < 0)
4828 goto out;
4829 ctrl->instance = ret;
4830
4831 ret = nvme_auth_init_ctrl(ctrl);
4832 if (ret)
4833 goto out_release_instance;
4834
4835 nvme_mpath_init_ctrl(ctrl);
4836
4837 device_initialize(&ctrl->ctrl_device);
4838 ctrl->device = &ctrl->ctrl_device;
4839 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4840 ctrl->instance);
4841 ctrl->device->class = &nvme_class;
4842 ctrl->device->parent = ctrl->dev;
4843 if (ops->dev_attr_groups)
4844 ctrl->device->groups = ops->dev_attr_groups;
4845 else
4846 ctrl->device->groups = nvme_dev_attr_groups;
4847 ctrl->device->release = nvme_free_ctrl;
4848 dev_set_drvdata(ctrl->device, ctrl);
4849
4850 return ret;
4851
4852 out_release_instance:
4853 ida_free(&nvme_instance_ida, ctrl->instance);
4854 out:
4855 if (ctrl->discard_page)
4856 __free_page(ctrl->discard_page);
4857 cleanup_srcu_struct(&ctrl->srcu);
4858 return ret;
4859 }
4860 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4861
4862 /*
4863 * On success, returns with an elevated controller reference and caller must
4864 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4865 */
nvme_add_ctrl(struct nvme_ctrl * ctrl)4866 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4867 {
4868 int ret;
4869
4870 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4871 if (ret)
4872 return ret;
4873
4874 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4875 ctrl->cdev.owner = ctrl->ops->module;
4876 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4877 if (ret)
4878 return ret;
4879
4880 /*
4881 * Initialize latency tolerance controls. The sysfs files won't
4882 * be visible to userspace unless the device actually supports APST.
4883 */
4884 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4885 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4886 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4887
4888 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4889 nvme_get_ctrl(ctrl);
4890
4891 return 0;
4892 }
4893 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4894
4895 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)4896 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4897 {
4898 struct nvme_ns *ns;
4899 int srcu_idx;
4900
4901 srcu_idx = srcu_read_lock(&ctrl->srcu);
4902 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4903 srcu_read_lock_held(&ctrl->srcu))
4904 blk_mark_disk_dead(ns->disk);
4905 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4906 }
4907 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4908
nvme_unfreeze(struct nvme_ctrl * ctrl)4909 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4910 {
4911 struct nvme_ns *ns;
4912 int srcu_idx;
4913
4914 srcu_idx = srcu_read_lock(&ctrl->srcu);
4915 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4916 srcu_read_lock_held(&ctrl->srcu))
4917 blk_mq_unfreeze_queue_non_owner(ns->queue);
4918 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4919 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4920 }
4921 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4922
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4923 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4924 {
4925 struct nvme_ns *ns;
4926 int srcu_idx;
4927
4928 srcu_idx = srcu_read_lock(&ctrl->srcu);
4929 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4930 srcu_read_lock_held(&ctrl->srcu)) {
4931 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4932 if (timeout <= 0)
4933 break;
4934 }
4935 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4936 return timeout;
4937 }
4938 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4939
nvme_wait_freeze(struct nvme_ctrl * ctrl)4940 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4941 {
4942 struct nvme_ns *ns;
4943 int srcu_idx;
4944
4945 srcu_idx = srcu_read_lock(&ctrl->srcu);
4946 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4947 srcu_read_lock_held(&ctrl->srcu))
4948 blk_mq_freeze_queue_wait(ns->queue);
4949 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4950 }
4951 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4952
nvme_start_freeze(struct nvme_ctrl * ctrl)4953 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4954 {
4955 struct nvme_ns *ns;
4956 int srcu_idx;
4957
4958 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4959 srcu_idx = srcu_read_lock(&ctrl->srcu);
4960 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4961 srcu_read_lock_held(&ctrl->srcu))
4962 /*
4963 * Typical non_owner use case is from pci driver, in which
4964 * start_freeze is called from timeout work function, but
4965 * unfreeze is done in reset work context
4966 */
4967 blk_freeze_queue_start_non_owner(ns->queue);
4968 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4969 }
4970 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4971
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)4972 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4973 {
4974 if (!ctrl->tagset)
4975 return;
4976 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4977 blk_mq_quiesce_tagset(ctrl->tagset);
4978 else
4979 blk_mq_wait_quiesce_done(ctrl->tagset);
4980 }
4981 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4982
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)4983 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4984 {
4985 if (!ctrl->tagset)
4986 return;
4987 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4988 blk_mq_unquiesce_tagset(ctrl->tagset);
4989 }
4990 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4991
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)4992 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4993 {
4994 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4995 blk_mq_quiesce_queue(ctrl->admin_q);
4996 else
4997 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4998 }
4999 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5000
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)5001 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5002 {
5003 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5004 blk_mq_unquiesce_queue(ctrl->admin_q);
5005 }
5006 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5007
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5008 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5009 {
5010 struct nvme_ns *ns;
5011 int srcu_idx;
5012
5013 srcu_idx = srcu_read_lock(&ctrl->srcu);
5014 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5015 srcu_read_lock_held(&ctrl->srcu))
5016 blk_sync_queue(ns->queue);
5017 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5018 }
5019 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5020
nvme_sync_queues(struct nvme_ctrl * ctrl)5021 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5022 {
5023 nvme_sync_io_queues(ctrl);
5024 if (ctrl->admin_q)
5025 blk_sync_queue(ctrl->admin_q);
5026 }
5027 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5028
nvme_ctrl_from_file(struct file * file)5029 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5030 {
5031 if (file->f_op != &nvme_dev_fops)
5032 return NULL;
5033 return file->private_data;
5034 }
5035 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5036
5037 /*
5038 * Check we didn't inadvertently grow the command structure sizes:
5039 */
_nvme_check_size(void)5040 static inline void _nvme_check_size(void)
5041 {
5042 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5043 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5044 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5045 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5046 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5047 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5048 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5049 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5050 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5051 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5052 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5053 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5054 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5055 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5056 NVME_IDENTIFY_DATA_SIZE);
5057 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5058 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5059 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5060 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5061 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5062 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5063 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5064 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5065 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5066 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5067 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5068 }
5069
5070
nvme_core_init(void)5071 static int __init nvme_core_init(void)
5072 {
5073 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5074 int result = -ENOMEM;
5075
5076 _nvme_check_size();
5077
5078 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5079 if (!nvme_wq)
5080 goto out;
5081
5082 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5083 if (!nvme_reset_wq)
5084 goto destroy_wq;
5085
5086 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5087 if (!nvme_delete_wq)
5088 goto destroy_reset_wq;
5089
5090 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5091 NVME_MINORS, "nvme");
5092 if (result < 0)
5093 goto destroy_delete_wq;
5094
5095 result = class_register(&nvme_class);
5096 if (result)
5097 goto unregister_chrdev;
5098
5099 result = class_register(&nvme_subsys_class);
5100 if (result)
5101 goto destroy_class;
5102
5103 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5104 "nvme-generic");
5105 if (result < 0)
5106 goto destroy_subsys_class;
5107
5108 result = class_register(&nvme_ns_chr_class);
5109 if (result)
5110 goto unregister_generic_ns;
5111
5112 result = nvme_init_auth();
5113 if (result)
5114 goto destroy_ns_chr;
5115 return 0;
5116
5117 destroy_ns_chr:
5118 class_unregister(&nvme_ns_chr_class);
5119 unregister_generic_ns:
5120 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5121 destroy_subsys_class:
5122 class_unregister(&nvme_subsys_class);
5123 destroy_class:
5124 class_unregister(&nvme_class);
5125 unregister_chrdev:
5126 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5127 destroy_delete_wq:
5128 destroy_workqueue(nvme_delete_wq);
5129 destroy_reset_wq:
5130 destroy_workqueue(nvme_reset_wq);
5131 destroy_wq:
5132 destroy_workqueue(nvme_wq);
5133 out:
5134 return result;
5135 }
5136
nvme_core_exit(void)5137 static void __exit nvme_core_exit(void)
5138 {
5139 nvme_exit_auth();
5140 class_unregister(&nvme_ns_chr_class);
5141 class_unregister(&nvme_subsys_class);
5142 class_unregister(&nvme_class);
5143 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5144 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5145 destroy_workqueue(nvme_delete_wq);
5146 destroy_workqueue(nvme_reset_wq);
5147 destroy_workqueue(nvme_wq);
5148 ida_destroy(&nvme_ns_chr_minor_ida);
5149 ida_destroy(&nvme_instance_ida);
5150 }
5151
5152 MODULE_LICENSE("GPL");
5153 MODULE_VERSION("1.0");
5154 MODULE_DESCRIPTION("NVMe host core framework");
5155 module_init(nvme_core_init);
5156 module_exit(nvme_core_exit);
5157