xref: /linux/drivers/nvme/host/fc.c (revision 4482ebb2970efa58173075c101426b2f3af40b41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 enum nvme_fc_queue_flags {
24 	NVME_FC_Q_CONNECTED = 0,
25 	NVME_FC_Q_LIVE,
26 };
27 
28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
29 #define NVME_FC_DEFAULT_RECONNECT_TMO	2	/* delay between reconnects
30 						 * when connected and a
31 						 * connection failure.
32 						 */
33 
34 struct nvme_fc_queue {
35 	struct nvme_fc_ctrl	*ctrl;
36 	struct device		*dev;
37 	struct blk_mq_hw_ctx	*hctx;
38 	void			*lldd_handle;
39 	size_t			cmnd_capsule_len;
40 	u32			qnum;
41 	u32			rqcnt;
42 	u32			seqno;
43 
44 	u64			connection_id;
45 	atomic_t		csn;
46 
47 	unsigned long		flags;
48 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
49 
50 enum nvme_fcop_flags {
51 	FCOP_FLAGS_TERMIO	= (1 << 0),
52 	FCOP_FLAGS_AEN		= (1 << 1),
53 };
54 
55 struct nvmefc_ls_req_op {
56 	struct nvmefc_ls_req	ls_req;
57 
58 	struct nvme_fc_rport	*rport;
59 	struct nvme_fc_queue	*queue;
60 	struct request		*rq;
61 	u32			flags;
62 
63 	int			ls_error;
64 	struct completion	ls_done;
65 	struct list_head	lsreq_list;	/* rport->ls_req_list */
66 	bool			req_queued;
67 };
68 
69 struct nvmefc_ls_rcv_op {
70 	struct nvme_fc_rport		*rport;
71 	struct nvmefc_ls_rsp		*lsrsp;
72 	union nvmefc_ls_requests	*rqstbuf;
73 	union nvmefc_ls_responses	*rspbuf;
74 	u16				rqstdatalen;
75 	bool				handled;
76 	dma_addr_t			rspdma;
77 	struct list_head		lsrcv_list;	/* rport->ls_rcv_list */
78 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
79 
80 enum nvme_fcpop_state {
81 	FCPOP_STATE_UNINIT	= 0,
82 	FCPOP_STATE_IDLE	= 1,
83 	FCPOP_STATE_ACTIVE	= 2,
84 	FCPOP_STATE_ABORTED	= 3,
85 	FCPOP_STATE_COMPLETE	= 4,
86 };
87 
88 struct nvme_fc_fcp_op {
89 	struct nvme_request	nreq;		/*
90 						 * nvme/host/core.c
91 						 * requires this to be
92 						 * the 1st element in the
93 						 * private structure
94 						 * associated with the
95 						 * request.
96 						 */
97 	struct nvmefc_fcp_req	fcp_req;
98 
99 	struct nvme_fc_ctrl	*ctrl;
100 	struct nvme_fc_queue	*queue;
101 	struct request		*rq;
102 
103 	atomic_t		state;
104 	u32			flags;
105 	u32			rqno;
106 	u32			nents;
107 
108 	struct nvme_fc_cmd_iu	cmd_iu;
109 	struct nvme_fc_ersp_iu	rsp_iu;
110 };
111 
112 struct nvme_fcp_op_w_sgl {
113 	struct nvme_fc_fcp_op	op;
114 	struct scatterlist	sgl[NVME_INLINE_SG_CNT];
115 	uint8_t			priv[];
116 };
117 
118 struct nvme_fc_lport {
119 	struct nvme_fc_local_port	localport;
120 
121 	struct ida			endp_cnt;
122 	struct list_head		port_list;	/* nvme_fc_port_list */
123 	struct list_head		endp_list;
124 	struct device			*dev;	/* physical device for dma */
125 	struct nvme_fc_port_template	*ops;
126 	struct kref			ref;
127 	atomic_t                        act_rport_cnt;
128 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
129 
130 struct nvme_fc_rport {
131 	struct nvme_fc_remote_port	remoteport;
132 
133 	struct list_head		endp_list; /* for lport->endp_list */
134 	struct list_head		ctrl_list;
135 	struct list_head		ls_req_list;
136 	struct list_head		ls_rcv_list;
137 	struct list_head		disc_list;
138 	struct device			*dev;	/* physical device for dma */
139 	struct nvme_fc_lport		*lport;
140 	spinlock_t			lock;
141 	struct kref			ref;
142 	atomic_t                        act_ctrl_cnt;
143 	unsigned long			dev_loss_end;
144 	struct work_struct		lsrcv_work;
145 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
146 
147 /* fc_ctrl flags values - specified as bit positions */
148 #define ASSOC_ACTIVE		0
149 #define ASSOC_FAILED		1
150 #define FCCTRL_TERMIO		2
151 
152 struct nvme_fc_ctrl {
153 	spinlock_t		lock;
154 	struct nvme_fc_queue	*queues;
155 	struct device		*dev;
156 	struct nvme_fc_lport	*lport;
157 	struct nvme_fc_rport	*rport;
158 	u32			cnum;
159 
160 	bool			ioq_live;
161 	u64			association_id;
162 	struct nvmefc_ls_rcv_op	*rcv_disconn;
163 
164 	struct list_head	ctrl_list;	/* rport->ctrl_list */
165 
166 	struct blk_mq_tag_set	admin_tag_set;
167 	struct blk_mq_tag_set	tag_set;
168 
169 	struct work_struct	ioerr_work;
170 	struct delayed_work	connect_work;
171 
172 	struct kref		ref;
173 	unsigned long		flags;
174 	u32			iocnt;
175 	wait_queue_head_t	ioabort_wait;
176 
177 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
178 
179 	struct nvme_ctrl	ctrl;
180 };
181 
182 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)183 to_fc_ctrl(struct nvme_ctrl *ctrl)
184 {
185 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
186 }
187 
188 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)189 localport_to_lport(struct nvme_fc_local_port *portptr)
190 {
191 	return container_of(portptr, struct nvme_fc_lport, localport);
192 }
193 
194 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)195 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
196 {
197 	return container_of(portptr, struct nvme_fc_rport, remoteport);
198 }
199 
200 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
202 {
203 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
204 }
205 
206 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
208 {
209 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
210 }
211 
212 
213 
214 /* *************************** Globals **************************** */
215 
216 
217 static DEFINE_SPINLOCK(nvme_fc_lock);
218 
219 static LIST_HEAD(nvme_fc_lport_list);
220 static DEFINE_IDA(nvme_fc_local_port_cnt);
221 static DEFINE_IDA(nvme_fc_ctrl_cnt);
222 
223 /*
224  * These items are short-term. They will eventually be moved into
225  * a generic FC class. See comments in module init.
226  */
227 static struct device *fc_udev_device;
228 
229 static void nvme_fc_complete_rq(struct request *rq);
230 
231 /* *********************** FC-NVME Port Management ************************ */
232 
233 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
234 			struct nvme_fc_queue *, unsigned int);
235 
236 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
237 
238 
239 static void
nvme_fc_free_lport(struct kref * ref)240 nvme_fc_free_lport(struct kref *ref)
241 {
242 	struct nvme_fc_lport *lport =
243 		container_of(ref, struct nvme_fc_lport, ref);
244 	unsigned long flags;
245 
246 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
247 	WARN_ON(!list_empty(&lport->endp_list));
248 
249 	/* remove from transport list */
250 	spin_lock_irqsave(&nvme_fc_lock, flags);
251 	list_del(&lport->port_list);
252 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
253 
254 	ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
255 	ida_destroy(&lport->endp_cnt);
256 
257 	put_device(lport->dev);
258 
259 	kfree(lport);
260 }
261 
262 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)263 nvme_fc_lport_put(struct nvme_fc_lport *lport)
264 {
265 	kref_put(&lport->ref, nvme_fc_free_lport);
266 }
267 
268 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)269 nvme_fc_lport_get(struct nvme_fc_lport *lport)
270 {
271 	return kref_get_unless_zero(&lport->ref);
272 }
273 
274 
275 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)276 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
277 			struct nvme_fc_port_template *ops,
278 			struct device *dev)
279 {
280 	struct nvme_fc_lport *lport;
281 	unsigned long flags;
282 
283 	spin_lock_irqsave(&nvme_fc_lock, flags);
284 
285 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
286 		if (lport->localport.node_name != pinfo->node_name ||
287 		    lport->localport.port_name != pinfo->port_name)
288 			continue;
289 
290 		if (lport->dev != dev) {
291 			lport = ERR_PTR(-EXDEV);
292 			goto out_done;
293 		}
294 
295 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
296 			lport = ERR_PTR(-EEXIST);
297 			goto out_done;
298 		}
299 
300 		if (!nvme_fc_lport_get(lport)) {
301 			/*
302 			 * fails if ref cnt already 0. If so,
303 			 * act as if lport already deleted
304 			 */
305 			lport = NULL;
306 			goto out_done;
307 		}
308 
309 		/* resume the lport */
310 
311 		lport->ops = ops;
312 		lport->localport.port_role = pinfo->port_role;
313 		lport->localport.port_id = pinfo->port_id;
314 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
315 
316 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
317 
318 		return lport;
319 	}
320 
321 	lport = NULL;
322 
323 out_done:
324 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
325 
326 	return lport;
327 }
328 
329 /**
330  * nvme_fc_register_localport - transport entry point called by an
331  *                              LLDD to register the existence of a NVME
332  *                              host FC port.
333  * @pinfo:     pointer to information about the port to be registered
334  * @template:  LLDD entrypoints and operational parameters for the port
335  * @dev:       physical hardware device node port corresponds to. Will be
336  *             used for DMA mappings
337  * @portptr:   pointer to a local port pointer. Upon success, the routine
338  *             will allocate a nvme_fc_local_port structure and place its
339  *             address in the local port pointer. Upon failure, local port
340  *             pointer will be set to 0.
341  *
342  * Returns:
343  * a completion status. Must be 0 upon success; a negative errno
344  * (ex: -ENXIO) upon failure.
345  */
346 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)347 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
348 			struct nvme_fc_port_template *template,
349 			struct device *dev,
350 			struct nvme_fc_local_port **portptr)
351 {
352 	struct nvme_fc_lport *newrec;
353 	unsigned long flags;
354 	int ret, idx;
355 
356 	if (!template->localport_delete || !template->remoteport_delete ||
357 	    !template->ls_req || !template->fcp_io ||
358 	    !template->ls_abort || !template->fcp_abort ||
359 	    !template->max_hw_queues || !template->max_sgl_segments ||
360 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
361 		ret = -EINVAL;
362 		goto out_reghost_failed;
363 	}
364 
365 	/*
366 	 * look to see if there is already a localport that had been
367 	 * deregistered and in the process of waiting for all the
368 	 * references to fully be removed.  If the references haven't
369 	 * expired, we can simply re-enable the localport. Remoteports
370 	 * and controller reconnections should resume naturally.
371 	 */
372 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
373 
374 	/* found an lport, but something about its state is bad */
375 	if (IS_ERR(newrec)) {
376 		ret = PTR_ERR(newrec);
377 		goto out_reghost_failed;
378 
379 	/* found existing lport, which was resumed */
380 	} else if (newrec) {
381 		*portptr = &newrec->localport;
382 		return 0;
383 	}
384 
385 	/* nothing found - allocate a new localport struct */
386 
387 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
388 			 GFP_KERNEL);
389 	if (!newrec) {
390 		ret = -ENOMEM;
391 		goto out_reghost_failed;
392 	}
393 
394 	idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
395 	if (idx < 0) {
396 		ret = -ENOSPC;
397 		goto out_fail_kfree;
398 	}
399 
400 	if (!get_device(dev) && dev) {
401 		ret = -ENODEV;
402 		goto out_ida_put;
403 	}
404 
405 	INIT_LIST_HEAD(&newrec->port_list);
406 	INIT_LIST_HEAD(&newrec->endp_list);
407 	kref_init(&newrec->ref);
408 	atomic_set(&newrec->act_rport_cnt, 0);
409 	newrec->ops = template;
410 	newrec->dev = dev;
411 	ida_init(&newrec->endp_cnt);
412 	if (template->local_priv_sz)
413 		newrec->localport.private = &newrec[1];
414 	else
415 		newrec->localport.private = NULL;
416 	newrec->localport.node_name = pinfo->node_name;
417 	newrec->localport.port_name = pinfo->port_name;
418 	newrec->localport.port_role = pinfo->port_role;
419 	newrec->localport.port_id = pinfo->port_id;
420 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
421 	newrec->localport.port_num = idx;
422 
423 	spin_lock_irqsave(&nvme_fc_lock, flags);
424 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
425 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
426 
427 	if (dev)
428 		dma_set_seg_boundary(dev, template->dma_boundary);
429 
430 	*portptr = &newrec->localport;
431 	return 0;
432 
433 out_ida_put:
434 	ida_free(&nvme_fc_local_port_cnt, idx);
435 out_fail_kfree:
436 	kfree(newrec);
437 out_reghost_failed:
438 	*portptr = NULL;
439 
440 	return ret;
441 }
442 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
443 
444 /**
445  * nvme_fc_unregister_localport - transport entry point called by an
446  *                              LLDD to deregister/remove a previously
447  *                              registered a NVME host FC port.
448  * @portptr: pointer to the (registered) local port that is to be deregistered.
449  *
450  * Returns:
451  * a completion status. Must be 0 upon success; a negative errno
452  * (ex: -ENXIO) upon failure.
453  */
454 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)455 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
456 {
457 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
458 	unsigned long flags;
459 
460 	if (!portptr)
461 		return -EINVAL;
462 
463 	spin_lock_irqsave(&nvme_fc_lock, flags);
464 
465 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
466 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
467 		return -EINVAL;
468 	}
469 	portptr->port_state = FC_OBJSTATE_DELETED;
470 
471 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
472 
473 	if (atomic_read(&lport->act_rport_cnt) == 0)
474 		lport->ops->localport_delete(&lport->localport);
475 
476 	nvme_fc_lport_put(lport);
477 
478 	return 0;
479 }
480 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
481 
482 /*
483  * TRADDR strings, per FC-NVME are fixed format:
484  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
485  * udev event will only differ by prefix of what field is
486  * being specified:
487  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
488  *  19 + 43 + null_fudge = 64 characters
489  */
490 #define FCNVME_TRADDR_LENGTH		64
491 
492 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)493 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
494 		struct nvme_fc_rport *rport)
495 {
496 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
497 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
498 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
499 
500 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
501 		return;
502 
503 	snprintf(hostaddr, sizeof(hostaddr),
504 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
505 		lport->localport.node_name, lport->localport.port_name);
506 	snprintf(tgtaddr, sizeof(tgtaddr),
507 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
508 		rport->remoteport.node_name, rport->remoteport.port_name);
509 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
510 }
511 
512 static void
nvme_fc_free_rport(struct kref * ref)513 nvme_fc_free_rport(struct kref *ref)
514 {
515 	struct nvme_fc_rport *rport =
516 		container_of(ref, struct nvme_fc_rport, ref);
517 	struct nvme_fc_lport *lport =
518 			localport_to_lport(rport->remoteport.localport);
519 	unsigned long flags;
520 
521 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
522 	WARN_ON(!list_empty(&rport->ctrl_list));
523 	WARN_ON(!list_empty(&rport->ls_req_list));
524 	WARN_ON(!list_empty(&rport->ls_rcv_list));
525 
526 	/* remove from lport list */
527 	spin_lock_irqsave(&nvme_fc_lock, flags);
528 	list_del(&rport->endp_list);
529 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
530 
531 	WARN_ON(!list_empty(&rport->disc_list));
532 	ida_free(&lport->endp_cnt, rport->remoteport.port_num);
533 
534 	kfree(rport);
535 
536 	nvme_fc_lport_put(lport);
537 }
538 
539 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)540 nvme_fc_rport_put(struct nvme_fc_rport *rport)
541 {
542 	kref_put(&rport->ref, nvme_fc_free_rport);
543 }
544 
545 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)546 nvme_fc_rport_get(struct nvme_fc_rport *rport)
547 {
548 	return kref_get_unless_zero(&rport->ref);
549 }
550 
551 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)552 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
553 {
554 	switch (nvme_ctrl_state(&ctrl->ctrl)) {
555 	case NVME_CTRL_NEW:
556 	case NVME_CTRL_CONNECTING:
557 		/*
558 		 * As all reconnects were suppressed, schedule a
559 		 * connect.
560 		 */
561 		dev_info(ctrl->ctrl.device,
562 			"NVME-FC{%d}: connectivity re-established. "
563 			"Attempting reconnect\n", ctrl->cnum);
564 
565 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
566 		break;
567 
568 	case NVME_CTRL_RESETTING:
569 		/*
570 		 * Controller is already in the process of terminating the
571 		 * association. No need to do anything further. The reconnect
572 		 * step will naturally occur after the reset completes.
573 		 */
574 		break;
575 
576 	default:
577 		/* no action to take - let it delete */
578 		break;
579 	}
580 }
581 
582 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)583 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
584 				struct nvme_fc_port_info *pinfo)
585 {
586 	struct nvme_fc_rport *rport;
587 	struct nvme_fc_ctrl *ctrl;
588 	unsigned long flags;
589 
590 	spin_lock_irqsave(&nvme_fc_lock, flags);
591 
592 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
593 		if (rport->remoteport.node_name != pinfo->node_name ||
594 		    rport->remoteport.port_name != pinfo->port_name)
595 			continue;
596 
597 		if (!nvme_fc_rport_get(rport)) {
598 			rport = ERR_PTR(-ENOLCK);
599 			goto out_done;
600 		}
601 
602 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
603 
604 		spin_lock_irqsave(&rport->lock, flags);
605 
606 		/* has it been unregistered */
607 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
608 			/* means lldd called us twice */
609 			spin_unlock_irqrestore(&rport->lock, flags);
610 			nvme_fc_rport_put(rport);
611 			return ERR_PTR(-ESTALE);
612 		}
613 
614 		rport->remoteport.port_role = pinfo->port_role;
615 		rport->remoteport.port_id = pinfo->port_id;
616 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
617 		rport->dev_loss_end = 0;
618 
619 		/*
620 		 * kick off a reconnect attempt on all associations to the
621 		 * remote port. A successful reconnects will resume i/o.
622 		 */
623 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
624 			nvme_fc_resume_controller(ctrl);
625 
626 		spin_unlock_irqrestore(&rport->lock, flags);
627 
628 		return rport;
629 	}
630 
631 	rport = NULL;
632 
633 out_done:
634 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
635 
636 	return rport;
637 }
638 
639 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)640 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
641 			struct nvme_fc_port_info *pinfo)
642 {
643 	if (pinfo->dev_loss_tmo)
644 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
645 	else
646 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
647 }
648 
649 /**
650  * nvme_fc_register_remoteport - transport entry point called by an
651  *                              LLDD to register the existence of a NVME
652  *                              subsystem FC port on its fabric.
653  * @localport: pointer to the (registered) local port that the remote
654  *             subsystem port is connected to.
655  * @pinfo:     pointer to information about the port to be registered
656  * @portptr:   pointer to a remote port pointer. Upon success, the routine
657  *             will allocate a nvme_fc_remote_port structure and place its
658  *             address in the remote port pointer. Upon failure, remote port
659  *             pointer will be set to 0.
660  *
661  * Returns:
662  * a completion status. Must be 0 upon success; a negative errno
663  * (ex: -ENXIO) upon failure.
664  */
665 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)666 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
667 				struct nvme_fc_port_info *pinfo,
668 				struct nvme_fc_remote_port **portptr)
669 {
670 	struct nvme_fc_lport *lport = localport_to_lport(localport);
671 	struct nvme_fc_rport *newrec;
672 	unsigned long flags;
673 	int ret, idx;
674 
675 	if (!nvme_fc_lport_get(lport)) {
676 		ret = -ESHUTDOWN;
677 		goto out_reghost_failed;
678 	}
679 
680 	/*
681 	 * look to see if there is already a remoteport that is waiting
682 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
683 	 * If so, transition to it and reconnect.
684 	 */
685 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
686 
687 	/* found an rport, but something about its state is bad */
688 	if (IS_ERR(newrec)) {
689 		ret = PTR_ERR(newrec);
690 		goto out_lport_put;
691 
692 	/* found existing rport, which was resumed */
693 	} else if (newrec) {
694 		nvme_fc_lport_put(lport);
695 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
696 		nvme_fc_signal_discovery_scan(lport, newrec);
697 		*portptr = &newrec->remoteport;
698 		return 0;
699 	}
700 
701 	/* nothing found - allocate a new remoteport struct */
702 
703 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
704 			 GFP_KERNEL);
705 	if (!newrec) {
706 		ret = -ENOMEM;
707 		goto out_lport_put;
708 	}
709 
710 	idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
711 	if (idx < 0) {
712 		ret = -ENOSPC;
713 		goto out_kfree_rport;
714 	}
715 
716 	INIT_LIST_HEAD(&newrec->endp_list);
717 	INIT_LIST_HEAD(&newrec->ctrl_list);
718 	INIT_LIST_HEAD(&newrec->ls_req_list);
719 	INIT_LIST_HEAD(&newrec->disc_list);
720 	kref_init(&newrec->ref);
721 	atomic_set(&newrec->act_ctrl_cnt, 0);
722 	spin_lock_init(&newrec->lock);
723 	newrec->remoteport.localport = &lport->localport;
724 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
725 	newrec->dev = lport->dev;
726 	newrec->lport = lport;
727 	if (lport->ops->remote_priv_sz)
728 		newrec->remoteport.private = &newrec[1];
729 	else
730 		newrec->remoteport.private = NULL;
731 	newrec->remoteport.port_role = pinfo->port_role;
732 	newrec->remoteport.node_name = pinfo->node_name;
733 	newrec->remoteport.port_name = pinfo->port_name;
734 	newrec->remoteport.port_id = pinfo->port_id;
735 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
736 	newrec->remoteport.port_num = idx;
737 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
738 	INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
739 
740 	spin_lock_irqsave(&nvme_fc_lock, flags);
741 	list_add_tail(&newrec->endp_list, &lport->endp_list);
742 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
743 
744 	nvme_fc_signal_discovery_scan(lport, newrec);
745 
746 	*portptr = &newrec->remoteport;
747 	return 0;
748 
749 out_kfree_rport:
750 	kfree(newrec);
751 out_lport_put:
752 	nvme_fc_lport_put(lport);
753 out_reghost_failed:
754 	*portptr = NULL;
755 	return ret;
756 }
757 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
758 
759 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)760 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
761 {
762 	struct nvmefc_ls_req_op *lsop;
763 	unsigned long flags;
764 
765 restart:
766 	spin_lock_irqsave(&rport->lock, flags);
767 
768 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
769 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
770 			lsop->flags |= FCOP_FLAGS_TERMIO;
771 			spin_unlock_irqrestore(&rport->lock, flags);
772 			rport->lport->ops->ls_abort(&rport->lport->localport,
773 						&rport->remoteport,
774 						&lsop->ls_req);
775 			goto restart;
776 		}
777 	}
778 	spin_unlock_irqrestore(&rport->lock, flags);
779 
780 	return 0;
781 }
782 
783 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)784 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
785 {
786 	dev_info(ctrl->ctrl.device,
787 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
788 		"Reconnect", ctrl->cnum);
789 
790 	set_bit(ASSOC_FAILED, &ctrl->flags);
791 	nvme_reset_ctrl(&ctrl->ctrl);
792 }
793 
794 /**
795  * nvme_fc_unregister_remoteport - transport entry point called by an
796  *                              LLDD to deregister/remove a previously
797  *                              registered a NVME subsystem FC port.
798  * @portptr: pointer to the (registered) remote port that is to be
799  *           deregistered.
800  *
801  * Returns:
802  * a completion status. Must be 0 upon success; a negative errno
803  * (ex: -ENXIO) upon failure.
804  */
805 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)806 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
807 {
808 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
809 	struct nvme_fc_ctrl *ctrl;
810 	unsigned long flags;
811 
812 	if (!portptr)
813 		return -EINVAL;
814 
815 	spin_lock_irqsave(&rport->lock, flags);
816 
817 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
818 		spin_unlock_irqrestore(&rport->lock, flags);
819 		return -EINVAL;
820 	}
821 	portptr->port_state = FC_OBJSTATE_DELETED;
822 
823 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
824 
825 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
826 		/* if dev_loss_tmo==0, dev loss is immediate */
827 		if (!portptr->dev_loss_tmo) {
828 			dev_warn(ctrl->ctrl.device,
829 				"NVME-FC{%d}: controller connectivity lost.\n",
830 				ctrl->cnum);
831 			nvme_delete_ctrl(&ctrl->ctrl);
832 		} else
833 			nvme_fc_ctrl_connectivity_loss(ctrl);
834 	}
835 
836 	spin_unlock_irqrestore(&rport->lock, flags);
837 
838 	nvme_fc_abort_lsops(rport);
839 
840 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
841 		rport->lport->ops->remoteport_delete(portptr);
842 
843 	/*
844 	 * release the reference, which will allow, if all controllers
845 	 * go away, which should only occur after dev_loss_tmo occurs,
846 	 * for the rport to be torn down.
847 	 */
848 	nvme_fc_rport_put(rport);
849 
850 	return 0;
851 }
852 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
853 
854 /**
855  * nvme_fc_rescan_remoteport - transport entry point called by an
856  *                              LLDD to request a nvme device rescan.
857  * @remoteport: pointer to the (registered) remote port that is to be
858  *              rescanned.
859  *
860  * Returns: N/A
861  */
862 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)863 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
864 {
865 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
866 
867 	nvme_fc_signal_discovery_scan(rport->lport, rport);
868 }
869 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
870 
871 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)872 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
873 			u32 dev_loss_tmo)
874 {
875 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
876 	unsigned long flags;
877 
878 	spin_lock_irqsave(&rport->lock, flags);
879 
880 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
881 		spin_unlock_irqrestore(&rport->lock, flags);
882 		return -EINVAL;
883 	}
884 
885 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
886 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
887 
888 	spin_unlock_irqrestore(&rport->lock, flags);
889 
890 	return 0;
891 }
892 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
893 
894 
895 /* *********************** FC-NVME DMA Handling **************************** */
896 
897 /*
898  * The fcloop device passes in a NULL device pointer. Real LLD's will
899  * pass in a valid device pointer. If NULL is passed to the dma mapping
900  * routines, depending on the platform, it may or may not succeed, and
901  * may crash.
902  *
903  * As such:
904  * Wrap all the dma routines and check the dev pointer.
905  *
906  * If simple mappings (return just a dma address, we'll noop them,
907  * returning a dma address of 0.
908  *
909  * On more complex mappings (dma_map_sg), a pseudo routine fills
910  * in the scatter list, setting all dma addresses to 0.
911  */
912 
913 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)914 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
915 		enum dma_data_direction dir)
916 {
917 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
918 }
919 
920 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)921 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
922 {
923 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
924 }
925 
926 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)927 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
928 	enum dma_data_direction dir)
929 {
930 	if (dev)
931 		dma_unmap_single(dev, addr, size, dir);
932 }
933 
934 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)935 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
936 		enum dma_data_direction dir)
937 {
938 	if (dev)
939 		dma_sync_single_for_cpu(dev, addr, size, dir);
940 }
941 
942 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)943 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
944 		enum dma_data_direction dir)
945 {
946 	if (dev)
947 		dma_sync_single_for_device(dev, addr, size, dir);
948 }
949 
950 /* pseudo dma_map_sg call */
951 static int
fc_map_sg(struct scatterlist * sg,int nents)952 fc_map_sg(struct scatterlist *sg, int nents)
953 {
954 	struct scatterlist *s;
955 	int i;
956 
957 	WARN_ON(nents == 0 || sg[0].length == 0);
958 
959 	for_each_sg(sg, s, nents, i) {
960 		s->dma_address = 0L;
961 #ifdef CONFIG_NEED_SG_DMA_LENGTH
962 		s->dma_length = s->length;
963 #endif
964 	}
965 	return nents;
966 }
967 
968 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)969 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
970 		enum dma_data_direction dir)
971 {
972 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
973 }
974 
975 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)976 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
977 		enum dma_data_direction dir)
978 {
979 	if (dev)
980 		dma_unmap_sg(dev, sg, nents, dir);
981 }
982 
983 /* *********************** FC-NVME LS Handling **************************** */
984 
985 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
986 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
987 
988 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
989 
990 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)991 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
992 {
993 	struct nvme_fc_rport *rport = lsop->rport;
994 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
995 	unsigned long flags;
996 
997 	spin_lock_irqsave(&rport->lock, flags);
998 
999 	if (!lsop->req_queued) {
1000 		spin_unlock_irqrestore(&rport->lock, flags);
1001 		return;
1002 	}
1003 
1004 	list_del(&lsop->lsreq_list);
1005 
1006 	lsop->req_queued = false;
1007 
1008 	spin_unlock_irqrestore(&rport->lock, flags);
1009 
1010 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1011 				  (lsreq->rqstlen + lsreq->rsplen),
1012 				  DMA_BIDIRECTIONAL);
1013 
1014 	nvme_fc_rport_put(rport);
1015 }
1016 
1017 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1018 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1019 		struct nvmefc_ls_req_op *lsop,
1020 		void (*done)(struct nvmefc_ls_req *req, int status))
1021 {
1022 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1023 	unsigned long flags;
1024 	int ret = 0;
1025 
1026 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1027 		return -ECONNREFUSED;
1028 
1029 	if (!nvme_fc_rport_get(rport))
1030 		return -ESHUTDOWN;
1031 
1032 	lsreq->done = done;
1033 	lsop->rport = rport;
1034 	lsop->req_queued = false;
1035 	INIT_LIST_HEAD(&lsop->lsreq_list);
1036 	init_completion(&lsop->ls_done);
1037 
1038 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1039 				  lsreq->rqstlen + lsreq->rsplen,
1040 				  DMA_BIDIRECTIONAL);
1041 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1042 		ret = -EFAULT;
1043 		goto out_putrport;
1044 	}
1045 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1046 
1047 	spin_lock_irqsave(&rport->lock, flags);
1048 
1049 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1050 
1051 	lsop->req_queued = true;
1052 
1053 	spin_unlock_irqrestore(&rport->lock, flags);
1054 
1055 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1056 					&rport->remoteport, lsreq);
1057 	if (ret)
1058 		goto out_unlink;
1059 
1060 	return 0;
1061 
1062 out_unlink:
1063 	lsop->ls_error = ret;
1064 	spin_lock_irqsave(&rport->lock, flags);
1065 	lsop->req_queued = false;
1066 	list_del(&lsop->lsreq_list);
1067 	spin_unlock_irqrestore(&rport->lock, flags);
1068 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1069 				  (lsreq->rqstlen + lsreq->rsplen),
1070 				  DMA_BIDIRECTIONAL);
1071 out_putrport:
1072 	nvme_fc_rport_put(rport);
1073 
1074 	return ret;
1075 }
1076 
1077 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1078 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1079 {
1080 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1081 
1082 	lsop->ls_error = status;
1083 	complete(&lsop->ls_done);
1084 }
1085 
1086 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1087 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1088 {
1089 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1090 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1091 	int ret;
1092 
1093 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1094 
1095 	if (!ret) {
1096 		/*
1097 		 * No timeout/not interruptible as we need the struct
1098 		 * to exist until the lldd calls us back. Thus mandate
1099 		 * wait until driver calls back. lldd responsible for
1100 		 * the timeout action
1101 		 */
1102 		wait_for_completion(&lsop->ls_done);
1103 
1104 		__nvme_fc_finish_ls_req(lsop);
1105 
1106 		ret = lsop->ls_error;
1107 	}
1108 
1109 	if (ret)
1110 		return ret;
1111 
1112 	/* ACC or RJT payload ? */
1113 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1114 		return -ENXIO;
1115 
1116 	return 0;
1117 }
1118 
1119 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1120 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1121 		struct nvmefc_ls_req_op *lsop,
1122 		void (*done)(struct nvmefc_ls_req *req, int status))
1123 {
1124 	/* don't wait for completion */
1125 
1126 	return __nvme_fc_send_ls_req(rport, lsop, done);
1127 }
1128 
1129 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1130 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1131 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1132 {
1133 	struct nvmefc_ls_req_op *lsop;
1134 	struct nvmefc_ls_req *lsreq;
1135 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1136 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1137 	unsigned long flags;
1138 	int ret, fcret = 0;
1139 
1140 	lsop = kzalloc((sizeof(*lsop) +
1141 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1142 			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1143 	if (!lsop) {
1144 		dev_info(ctrl->ctrl.device,
1145 			"NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1146 			ctrl->cnum);
1147 		ret = -ENOMEM;
1148 		goto out_no_memory;
1149 	}
1150 
1151 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1152 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1153 	lsreq = &lsop->ls_req;
1154 	if (ctrl->lport->ops->lsrqst_priv_sz)
1155 		lsreq->private = &assoc_acc[1];
1156 	else
1157 		lsreq->private = NULL;
1158 
1159 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1160 	assoc_rqst->desc_list_len =
1161 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1162 
1163 	assoc_rqst->assoc_cmd.desc_tag =
1164 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1165 	assoc_rqst->assoc_cmd.desc_len =
1166 			fcnvme_lsdesc_len(
1167 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1168 
1169 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1170 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1171 	/* Linux supports only Dynamic controllers */
1172 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1173 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1174 	strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1175 		sizeof(assoc_rqst->assoc_cmd.hostnqn));
1176 	strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1177 		sizeof(assoc_rqst->assoc_cmd.subnqn));
1178 
1179 	lsop->queue = queue;
1180 	lsreq->rqstaddr = assoc_rqst;
1181 	lsreq->rqstlen = sizeof(*assoc_rqst);
1182 	lsreq->rspaddr = assoc_acc;
1183 	lsreq->rsplen = sizeof(*assoc_acc);
1184 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1185 
1186 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1187 	if (ret)
1188 		goto out_free_buffer;
1189 
1190 	/* process connect LS completion */
1191 
1192 	/* validate the ACC response */
1193 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1194 		fcret = VERR_LSACC;
1195 	else if (assoc_acc->hdr.desc_list_len !=
1196 			fcnvme_lsdesc_len(
1197 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1198 		fcret = VERR_CR_ASSOC_ACC_LEN;
1199 	else if (assoc_acc->hdr.rqst.desc_tag !=
1200 			cpu_to_be32(FCNVME_LSDESC_RQST))
1201 		fcret = VERR_LSDESC_RQST;
1202 	else if (assoc_acc->hdr.rqst.desc_len !=
1203 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1204 		fcret = VERR_LSDESC_RQST_LEN;
1205 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1206 		fcret = VERR_CR_ASSOC;
1207 	else if (assoc_acc->associd.desc_tag !=
1208 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1209 		fcret = VERR_ASSOC_ID;
1210 	else if (assoc_acc->associd.desc_len !=
1211 			fcnvme_lsdesc_len(
1212 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1213 		fcret = VERR_ASSOC_ID_LEN;
1214 	else if (assoc_acc->connectid.desc_tag !=
1215 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1216 		fcret = VERR_CONN_ID;
1217 	else if (assoc_acc->connectid.desc_len !=
1218 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1219 		fcret = VERR_CONN_ID_LEN;
1220 
1221 	if (fcret) {
1222 		ret = -EBADF;
1223 		dev_err(ctrl->dev,
1224 			"q %d Create Association LS failed: %s\n",
1225 			queue->qnum, validation_errors[fcret]);
1226 	} else {
1227 		spin_lock_irqsave(&ctrl->lock, flags);
1228 		ctrl->association_id =
1229 			be64_to_cpu(assoc_acc->associd.association_id);
1230 		queue->connection_id =
1231 			be64_to_cpu(assoc_acc->connectid.connection_id);
1232 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1233 		spin_unlock_irqrestore(&ctrl->lock, flags);
1234 	}
1235 
1236 out_free_buffer:
1237 	kfree(lsop);
1238 out_no_memory:
1239 	if (ret)
1240 		dev_err(ctrl->dev,
1241 			"queue %d connect admin queue failed (%d).\n",
1242 			queue->qnum, ret);
1243 	return ret;
1244 }
1245 
1246 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1247 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1248 			u16 qsize, u16 ersp_ratio)
1249 {
1250 	struct nvmefc_ls_req_op *lsop;
1251 	struct nvmefc_ls_req *lsreq;
1252 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1253 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1254 	int ret, fcret = 0;
1255 
1256 	lsop = kzalloc((sizeof(*lsop) +
1257 			 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1258 			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1259 	if (!lsop) {
1260 		dev_info(ctrl->ctrl.device,
1261 			"NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1262 			ctrl->cnum);
1263 		ret = -ENOMEM;
1264 		goto out_no_memory;
1265 	}
1266 
1267 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1268 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1269 	lsreq = &lsop->ls_req;
1270 	if (ctrl->lport->ops->lsrqst_priv_sz)
1271 		lsreq->private = (void *)&conn_acc[1];
1272 	else
1273 		lsreq->private = NULL;
1274 
1275 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1276 	conn_rqst->desc_list_len = cpu_to_be32(
1277 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1278 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1279 
1280 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1281 	conn_rqst->associd.desc_len =
1282 			fcnvme_lsdesc_len(
1283 				sizeof(struct fcnvme_lsdesc_assoc_id));
1284 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1285 	conn_rqst->connect_cmd.desc_tag =
1286 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1287 	conn_rqst->connect_cmd.desc_len =
1288 			fcnvme_lsdesc_len(
1289 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1290 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1291 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1292 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1293 
1294 	lsop->queue = queue;
1295 	lsreq->rqstaddr = conn_rqst;
1296 	lsreq->rqstlen = sizeof(*conn_rqst);
1297 	lsreq->rspaddr = conn_acc;
1298 	lsreq->rsplen = sizeof(*conn_acc);
1299 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1300 
1301 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1302 	if (ret)
1303 		goto out_free_buffer;
1304 
1305 	/* process connect LS completion */
1306 
1307 	/* validate the ACC response */
1308 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1309 		fcret = VERR_LSACC;
1310 	else if (conn_acc->hdr.desc_list_len !=
1311 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1312 		fcret = VERR_CR_CONN_ACC_LEN;
1313 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1314 		fcret = VERR_LSDESC_RQST;
1315 	else if (conn_acc->hdr.rqst.desc_len !=
1316 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1317 		fcret = VERR_LSDESC_RQST_LEN;
1318 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1319 		fcret = VERR_CR_CONN;
1320 	else if (conn_acc->connectid.desc_tag !=
1321 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1322 		fcret = VERR_CONN_ID;
1323 	else if (conn_acc->connectid.desc_len !=
1324 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1325 		fcret = VERR_CONN_ID_LEN;
1326 
1327 	if (fcret) {
1328 		ret = -EBADF;
1329 		dev_err(ctrl->dev,
1330 			"q %d Create I/O Connection LS failed: %s\n",
1331 			queue->qnum, validation_errors[fcret]);
1332 	} else {
1333 		queue->connection_id =
1334 			be64_to_cpu(conn_acc->connectid.connection_id);
1335 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1336 	}
1337 
1338 out_free_buffer:
1339 	kfree(lsop);
1340 out_no_memory:
1341 	if (ret)
1342 		dev_err(ctrl->dev,
1343 			"queue %d connect I/O queue failed (%d).\n",
1344 			queue->qnum, ret);
1345 	return ret;
1346 }
1347 
1348 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1349 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1350 {
1351 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1352 
1353 	__nvme_fc_finish_ls_req(lsop);
1354 
1355 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1356 
1357 	kfree(lsop);
1358 }
1359 
1360 /*
1361  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1362  * the FC-NVME Association.  Terminating the association also
1363  * terminates the FC-NVME connections (per queue, both admin and io
1364  * queues) that are part of the association. E.g. things are torn
1365  * down, and the related FC-NVME Association ID and Connection IDs
1366  * become invalid.
1367  *
1368  * The behavior of the fc-nvme initiator is such that its
1369  * understanding of the association and connections will implicitly
1370  * be torn down. The action is implicit as it may be due to a loss of
1371  * connectivity with the fc-nvme target, so you may never get a
1372  * response even if you tried.  As such, the action of this routine
1373  * is to asynchronously send the LS, ignore any results of the LS, and
1374  * continue on with terminating the association. If the fc-nvme target
1375  * is present and receives the LS, it too can tear down.
1376  */
1377 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1378 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1379 {
1380 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1381 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1382 	struct nvmefc_ls_req_op *lsop;
1383 	struct nvmefc_ls_req *lsreq;
1384 	int ret;
1385 
1386 	lsop = kzalloc((sizeof(*lsop) +
1387 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
1388 			ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1389 	if (!lsop) {
1390 		dev_info(ctrl->ctrl.device,
1391 			"NVME-FC{%d}: send Disconnect Association "
1392 			"failed: ENOMEM\n",
1393 			ctrl->cnum);
1394 		return;
1395 	}
1396 
1397 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1398 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1399 	lsreq = &lsop->ls_req;
1400 	if (ctrl->lport->ops->lsrqst_priv_sz)
1401 		lsreq->private = (void *)&discon_acc[1];
1402 	else
1403 		lsreq->private = NULL;
1404 
1405 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1406 				ctrl->association_id);
1407 
1408 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1409 				nvme_fc_disconnect_assoc_done);
1410 	if (ret)
1411 		kfree(lsop);
1412 }
1413 
1414 static void
nvme_fc_xmt_ls_rsp_free(struct nvmefc_ls_rcv_op * lsop)1415 nvme_fc_xmt_ls_rsp_free(struct nvmefc_ls_rcv_op *lsop)
1416 {
1417 	struct nvme_fc_rport *rport = lsop->rport;
1418 	struct nvme_fc_lport *lport = rport->lport;
1419 	unsigned long flags;
1420 
1421 	spin_lock_irqsave(&rport->lock, flags);
1422 	list_del(&lsop->lsrcv_list);
1423 	spin_unlock_irqrestore(&rport->lock, flags);
1424 
1425 	fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1426 				sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1427 	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1428 			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1429 
1430 	kfree(lsop->rspbuf);
1431 	kfree(lsop->rqstbuf);
1432 	kfree(lsop);
1433 
1434 	nvme_fc_rport_put(rport);
1435 }
1436 
1437 static void
nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1438 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1439 {
1440 	struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1441 
1442 	nvme_fc_xmt_ls_rsp_free(lsop);
1443 }
1444 
1445 static void
nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op * lsop)1446 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1447 {
1448 	struct nvme_fc_rport *rport = lsop->rport;
1449 	struct nvme_fc_lport *lport = rport->lport;
1450 	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1451 	int ret;
1452 
1453 	fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1454 				  sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1455 
1456 	ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1457 				     lsop->lsrsp);
1458 	if (ret) {
1459 		dev_warn(lport->dev,
1460 			"LLDD rejected LS RSP xmt: LS %d status %d\n",
1461 			w0->ls_cmd, ret);
1462 		nvme_fc_xmt_ls_rsp_free(lsop);
1463 		return;
1464 	}
1465 }
1466 
1467 static struct nvme_fc_ctrl *
nvme_fc_match_disconn_ls(struct nvme_fc_rport * rport,struct nvmefc_ls_rcv_op * lsop)1468 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1469 		      struct nvmefc_ls_rcv_op *lsop)
1470 {
1471 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1472 					&lsop->rqstbuf->rq_dis_assoc;
1473 	struct nvme_fc_ctrl *ctrl, *tmp, *ret = NULL;
1474 	struct nvmefc_ls_rcv_op *oldls = NULL;
1475 	u64 association_id = be64_to_cpu(rqst->associd.association_id);
1476 	unsigned long flags;
1477 
1478 	spin_lock_irqsave(&rport->lock, flags);
1479 
1480 	list_for_each_entry_safe(ctrl, tmp, &rport->ctrl_list, ctrl_list) {
1481 		if (!nvme_fc_ctrl_get(ctrl))
1482 			continue;
1483 		spin_lock(&ctrl->lock);
1484 		if (association_id == ctrl->association_id) {
1485 			oldls = ctrl->rcv_disconn;
1486 			ctrl->rcv_disconn = lsop;
1487 			ret = ctrl;
1488 		}
1489 		spin_unlock(&ctrl->lock);
1490 		if (ret)
1491 			/* leave the ctrl get reference */
1492 			break;
1493 		spin_unlock_irqrestore(&rport->lock, flags);
1494 		nvme_fc_ctrl_put(ctrl);
1495 		spin_lock_irqsave(&rport->lock, flags);
1496 	}
1497 
1498 	spin_unlock_irqrestore(&rport->lock, flags);
1499 
1500 	/* transmit a response for anything that was pending */
1501 	if (oldls) {
1502 		dev_info(rport->lport->dev,
1503 			"NVME-FC{%d}: Multiple Disconnect Association "
1504 			"LS's received\n", ctrl->cnum);
1505 		/* overwrite good response with bogus failure */
1506 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1507 						sizeof(*oldls->rspbuf),
1508 						rqst->w0.ls_cmd,
1509 						FCNVME_RJT_RC_UNAB,
1510 						FCNVME_RJT_EXP_NONE, 0);
1511 		nvme_fc_xmt_ls_rsp(oldls);
1512 	}
1513 
1514 	return ret;
1515 }
1516 
1517 /*
1518  * returns true to mean LS handled and ls_rsp can be sent
1519  * returns false to defer ls_rsp xmt (will be done as part of
1520  *     association termination)
1521  */
1522 static bool
nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op * lsop)1523 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1524 {
1525 	struct nvme_fc_rport *rport = lsop->rport;
1526 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1527 					&lsop->rqstbuf->rq_dis_assoc;
1528 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1529 					&lsop->rspbuf->rsp_dis_assoc;
1530 	struct nvme_fc_ctrl *ctrl = NULL;
1531 	int ret = 0;
1532 
1533 	memset(acc, 0, sizeof(*acc));
1534 
1535 	ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1536 	if (!ret) {
1537 		/* match an active association */
1538 		ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1539 		if (!ctrl)
1540 			ret = VERR_NO_ASSOC;
1541 	}
1542 
1543 	if (ret) {
1544 		dev_info(rport->lport->dev,
1545 			"Disconnect LS failed: %s\n",
1546 			validation_errors[ret]);
1547 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1548 					sizeof(*acc), rqst->w0.ls_cmd,
1549 					(ret == VERR_NO_ASSOC) ?
1550 						FCNVME_RJT_RC_INV_ASSOC :
1551 						FCNVME_RJT_RC_LOGIC,
1552 					FCNVME_RJT_EXP_NONE, 0);
1553 		return true;
1554 	}
1555 
1556 	/* format an ACCept response */
1557 
1558 	lsop->lsrsp->rsplen = sizeof(*acc);
1559 
1560 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1561 			fcnvme_lsdesc_len(
1562 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1563 			FCNVME_LS_DISCONNECT_ASSOC);
1564 
1565 	/*
1566 	 * the transmit of the response will occur after the exchanges
1567 	 * for the association have been ABTS'd by
1568 	 * nvme_fc_delete_association().
1569 	 */
1570 
1571 	/* fail the association */
1572 	nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1573 
1574 	/* release the reference taken by nvme_fc_match_disconn_ls() */
1575 	nvme_fc_ctrl_put(ctrl);
1576 
1577 	return false;
1578 }
1579 
1580 /*
1581  * Actual Processing routine for received FC-NVME LS Requests from the LLD
1582  * returns true if a response should be sent afterward, false if rsp will
1583  * be sent asynchronously.
1584  */
1585 static bool
nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op * lsop)1586 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1587 {
1588 	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1589 	bool ret = true;
1590 
1591 	lsop->lsrsp->nvme_fc_private = lsop;
1592 	lsop->lsrsp->rspbuf = lsop->rspbuf;
1593 	lsop->lsrsp->rspdma = lsop->rspdma;
1594 	lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1595 	/* Be preventative. handlers will later set to valid length */
1596 	lsop->lsrsp->rsplen = 0;
1597 
1598 	/*
1599 	 * handlers:
1600 	 *   parse request input, execute the request, and format the
1601 	 *   LS response
1602 	 */
1603 	switch (w0->ls_cmd) {
1604 	case FCNVME_LS_DISCONNECT_ASSOC:
1605 		ret = nvme_fc_ls_disconnect_assoc(lsop);
1606 		break;
1607 	case FCNVME_LS_DISCONNECT_CONN:
1608 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1609 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1610 				FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1611 		break;
1612 	case FCNVME_LS_CREATE_ASSOCIATION:
1613 	case FCNVME_LS_CREATE_CONNECTION:
1614 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1615 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1616 				FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1617 		break;
1618 	default:
1619 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1620 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1621 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1622 		break;
1623 	}
1624 
1625 	return(ret);
1626 }
1627 
1628 static void
nvme_fc_handle_ls_rqst_work(struct work_struct * work)1629 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1630 {
1631 	struct nvme_fc_rport *rport =
1632 		container_of(work, struct nvme_fc_rport, lsrcv_work);
1633 	struct fcnvme_ls_rqst_w0 *w0;
1634 	struct nvmefc_ls_rcv_op *lsop;
1635 	unsigned long flags;
1636 	bool sendrsp;
1637 
1638 restart:
1639 	sendrsp = true;
1640 	spin_lock_irqsave(&rport->lock, flags);
1641 	list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1642 		if (lsop->handled)
1643 			continue;
1644 
1645 		lsop->handled = true;
1646 		if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1647 			spin_unlock_irqrestore(&rport->lock, flags);
1648 			sendrsp = nvme_fc_handle_ls_rqst(lsop);
1649 		} else {
1650 			spin_unlock_irqrestore(&rport->lock, flags);
1651 			w0 = &lsop->rqstbuf->w0;
1652 			lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1653 						lsop->rspbuf,
1654 						sizeof(*lsop->rspbuf),
1655 						w0->ls_cmd,
1656 						FCNVME_RJT_RC_UNAB,
1657 						FCNVME_RJT_EXP_NONE, 0);
1658 		}
1659 		if (sendrsp)
1660 			nvme_fc_xmt_ls_rsp(lsop);
1661 		goto restart;
1662 	}
1663 	spin_unlock_irqrestore(&rport->lock, flags);
1664 }
1665 
1666 static
nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport * lport,struct fcnvme_ls_rqst_w0 * w0)1667 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport,
1668 				struct fcnvme_ls_rqst_w0 *w0)
1669 {
1670 	dev_info(lport->dev, "RCV %s LS failed: No memory\n",
1671 		(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1672 			nvmefc_ls_names[w0->ls_cmd] : "");
1673 }
1674 
1675 /**
1676  * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1677  *                       upon the reception of a NVME LS request.
1678  *
1679  * The nvme-fc layer will copy payload to an internal structure for
1680  * processing.  As such, upon completion of the routine, the LLDD may
1681  * immediately free/reuse the LS request buffer passed in the call.
1682  *
1683  * If this routine returns error, the LLDD should abort the exchange.
1684  *
1685  * @portptr:    pointer to the (registered) remote port that the LS
1686  *              was received from. The remoteport is associated with
1687  *              a specific localport.
1688  * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1689  *              used to reference the exchange corresponding to the LS
1690  *              when issuing an ls response.
1691  * @lsreqbuf:   pointer to the buffer containing the LS Request
1692  * @lsreqbuf_len: length, in bytes, of the received LS request
1693  */
1694 int
nvme_fc_rcv_ls_req(struct nvme_fc_remote_port * portptr,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)1695 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1696 			struct nvmefc_ls_rsp *lsrsp,
1697 			void *lsreqbuf, u32 lsreqbuf_len)
1698 {
1699 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1700 	struct nvme_fc_lport *lport = rport->lport;
1701 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1702 	struct nvmefc_ls_rcv_op *lsop;
1703 	unsigned long flags;
1704 	int ret;
1705 
1706 	nvme_fc_rport_get(rport);
1707 
1708 	/* validate there's a routine to transmit a response */
1709 	if (!lport->ops->xmt_ls_rsp) {
1710 		dev_info(lport->dev,
1711 			"RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1712 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1713 				nvmefc_ls_names[w0->ls_cmd] : "");
1714 		ret = -EINVAL;
1715 		goto out_put;
1716 	}
1717 
1718 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1719 		dev_info(lport->dev,
1720 			"RCV %s LS failed: payload too large\n",
1721 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1722 				nvmefc_ls_names[w0->ls_cmd] : "");
1723 		ret = -E2BIG;
1724 		goto out_put;
1725 	}
1726 
1727 	lsop = kzalloc(sizeof(*lsop), GFP_KERNEL);
1728 	if (!lsop) {
1729 		nvme_fc_rcv_ls_req_err_msg(lport, w0);
1730 		ret = -ENOMEM;
1731 		goto out_put;
1732 	}
1733 
1734 	lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL);
1735 	lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL);
1736 	if (!lsop->rqstbuf || !lsop->rspbuf) {
1737 		nvme_fc_rcv_ls_req_err_msg(lport, w0);
1738 		ret = -ENOMEM;
1739 		goto out_free;
1740 	}
1741 
1742 	lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1743 					sizeof(*lsop->rspbuf),
1744 					DMA_TO_DEVICE);
1745 	if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1746 		dev_info(lport->dev,
1747 			"RCV %s LS failed: DMA mapping failure\n",
1748 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1749 				nvmefc_ls_names[w0->ls_cmd] : "");
1750 		ret = -EFAULT;
1751 		goto out_free;
1752 	}
1753 
1754 	lsop->rport = rport;
1755 	lsop->lsrsp = lsrsp;
1756 
1757 	memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1758 	lsop->rqstdatalen = lsreqbuf_len;
1759 
1760 	spin_lock_irqsave(&rport->lock, flags);
1761 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1762 		spin_unlock_irqrestore(&rport->lock, flags);
1763 		ret = -ENOTCONN;
1764 		goto out_unmap;
1765 	}
1766 	list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1767 	spin_unlock_irqrestore(&rport->lock, flags);
1768 
1769 	schedule_work(&rport->lsrcv_work);
1770 
1771 	return 0;
1772 
1773 out_unmap:
1774 	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1775 			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1776 out_free:
1777 	kfree(lsop->rspbuf);
1778 	kfree(lsop->rqstbuf);
1779 	kfree(lsop);
1780 out_put:
1781 	nvme_fc_rport_put(rport);
1782 	return ret;
1783 }
1784 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1785 
1786 
1787 /* *********************** NVME Ctrl Routines **************************** */
1788 
1789 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1790 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1791 		struct nvme_fc_fcp_op *op)
1792 {
1793 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1794 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1795 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1796 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1797 
1798 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1799 }
1800 
1801 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1802 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1803 		unsigned int hctx_idx)
1804 {
1805 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1806 
1807 	return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
1808 }
1809 
1810 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1811 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1812 {
1813 	unsigned long flags;
1814 	int opstate;
1815 
1816 	spin_lock_irqsave(&ctrl->lock, flags);
1817 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1818 	if (opstate != FCPOP_STATE_ACTIVE)
1819 		atomic_set(&op->state, opstate);
1820 	else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1821 		op->flags |= FCOP_FLAGS_TERMIO;
1822 		ctrl->iocnt++;
1823 	}
1824 	spin_unlock_irqrestore(&ctrl->lock, flags);
1825 
1826 	if (opstate != FCPOP_STATE_ACTIVE)
1827 		return -ECANCELED;
1828 
1829 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1830 					&ctrl->rport->remoteport,
1831 					op->queue->lldd_handle,
1832 					&op->fcp_req);
1833 
1834 	return 0;
1835 }
1836 
1837 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1838 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1839 {
1840 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1841 	int i;
1842 
1843 	/* ensure we've initialized the ops once */
1844 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1845 		return;
1846 
1847 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1848 		__nvme_fc_abort_op(ctrl, aen_op);
1849 }
1850 
1851 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1852 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1853 		struct nvme_fc_fcp_op *op, int opstate)
1854 {
1855 	unsigned long flags;
1856 
1857 	if (opstate == FCPOP_STATE_ABORTED) {
1858 		spin_lock_irqsave(&ctrl->lock, flags);
1859 		if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1860 		    op->flags & FCOP_FLAGS_TERMIO) {
1861 			if (!--ctrl->iocnt)
1862 				wake_up(&ctrl->ioabort_wait);
1863 		}
1864 		spin_unlock_irqrestore(&ctrl->lock, flags);
1865 	}
1866 }
1867 
1868 static void
nvme_fc_ctrl_ioerr_work(struct work_struct * work)1869 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1870 {
1871 	struct nvme_fc_ctrl *ctrl =
1872 			container_of(work, struct nvme_fc_ctrl, ioerr_work);
1873 
1874 	nvme_fc_error_recovery(ctrl, "transport detected io error");
1875 }
1876 
1877 /*
1878  * nvme_fc_io_getuuid - Routine called to get the appid field
1879  * associated with request by the lldd
1880  * @req:IO request from nvme fc to driver
1881  * Returns: UUID if there is an appid associated with VM or
1882  * NULL if the user/libvirt has not set the appid to VM
1883  */
nvme_fc_io_getuuid(struct nvmefc_fcp_req * req)1884 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1885 {
1886 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1887 	struct request *rq = op->rq;
1888 
1889 	if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio)
1890 		return NULL;
1891 	return blkcg_get_fc_appid(rq->bio);
1892 }
1893 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1894 
1895 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1896 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1897 {
1898 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1899 	struct request *rq = op->rq;
1900 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1901 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1902 	struct nvme_fc_queue *queue = op->queue;
1903 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1904 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1905 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1906 	union nvme_result result;
1907 	bool terminate_assoc = true;
1908 	int opstate;
1909 
1910 	/*
1911 	 * WARNING:
1912 	 * The current linux implementation of a nvme controller
1913 	 * allocates a single tag set for all io queues and sizes
1914 	 * the io queues to fully hold all possible tags. Thus, the
1915 	 * implementation does not reference or care about the sqhd
1916 	 * value as it never needs to use the sqhd/sqtail pointers
1917 	 * for submission pacing.
1918 	 *
1919 	 * This affects the FC-NVME implementation in two ways:
1920 	 * 1) As the value doesn't matter, we don't need to waste
1921 	 *    cycles extracting it from ERSPs and stamping it in the
1922 	 *    cases where the transport fabricates CQEs on successful
1923 	 *    completions.
1924 	 * 2) The FC-NVME implementation requires that delivery of
1925 	 *    ERSP completions are to go back to the nvme layer in order
1926 	 *    relative to the rsn, such that the sqhd value will always
1927 	 *    be "in order" for the nvme layer. As the nvme layer in
1928 	 *    linux doesn't care about sqhd, there's no need to return
1929 	 *    them in order.
1930 	 *
1931 	 * Additionally:
1932 	 * As the core nvme layer in linux currently does not look at
1933 	 * every field in the cqe - in cases where the FC transport must
1934 	 * fabricate a CQE, the following fields will not be set as they
1935 	 * are not referenced:
1936 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1937 	 *
1938 	 * Failure or error of an individual i/o, in a transport
1939 	 * detected fashion unrelated to the nvme completion status,
1940 	 * potentially cause the initiator and target sides to get out
1941 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1942 	 * Per FC-NVME spec, failure of an individual command requires
1943 	 * the connection to be terminated, which in turn requires the
1944 	 * association to be terminated.
1945 	 */
1946 
1947 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1948 
1949 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1950 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1951 
1952 	if (opstate == FCPOP_STATE_ABORTED)
1953 		status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1954 	else if (freq->status) {
1955 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1956 		dev_info(ctrl->ctrl.device,
1957 			"NVME-FC{%d}: io failed due to lldd error %d\n",
1958 			ctrl->cnum, freq->status);
1959 	}
1960 
1961 	/*
1962 	 * For the linux implementation, if we have an unsuccessful
1963 	 * status, the blk-mq layer can typically be called with the
1964 	 * non-zero status and the content of the cqe isn't important.
1965 	 */
1966 	if (status)
1967 		goto done;
1968 
1969 	/*
1970 	 * command completed successfully relative to the wire
1971 	 * protocol. However, validate anything received and
1972 	 * extract the status and result from the cqe (create it
1973 	 * where necessary).
1974 	 */
1975 
1976 	switch (freq->rcv_rsplen) {
1977 
1978 	case 0:
1979 	case NVME_FC_SIZEOF_ZEROS_RSP:
1980 		/*
1981 		 * No response payload or 12 bytes of payload (which
1982 		 * should all be zeros) are considered successful and
1983 		 * no payload in the CQE by the transport.
1984 		 */
1985 		if (freq->transferred_length !=
1986 		    be32_to_cpu(op->cmd_iu.data_len)) {
1987 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1988 			dev_info(ctrl->ctrl.device,
1989 				"NVME-FC{%d}: io failed due to bad transfer "
1990 				"length: %d vs expected %d\n",
1991 				ctrl->cnum, freq->transferred_length,
1992 				be32_to_cpu(op->cmd_iu.data_len));
1993 			goto done;
1994 		}
1995 		result.u64 = 0;
1996 		break;
1997 
1998 	case sizeof(struct nvme_fc_ersp_iu):
1999 		/*
2000 		 * The ERSP IU contains a full completion with CQE.
2001 		 * Validate ERSP IU and look at cqe.
2002 		 */
2003 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2004 					(freq->rcv_rsplen / 4) ||
2005 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
2006 					freq->transferred_length ||
2007 			     op->rsp_iu.ersp_result ||
2008 			     sqe->common.command_id != cqe->command_id)) {
2009 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2010 			dev_info(ctrl->ctrl.device,
2011 				"NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2012 				"iu len %d, xfr len %d vs %d, status code "
2013 				"%d, cmdid %d vs %d\n",
2014 				ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2015 				be32_to_cpu(op->rsp_iu.xfrd_len),
2016 				freq->transferred_length,
2017 				op->rsp_iu.ersp_result,
2018 				sqe->common.command_id,
2019 				cqe->command_id);
2020 			goto done;
2021 		}
2022 		result = cqe->result;
2023 		status = cqe->status;
2024 		break;
2025 
2026 	default:
2027 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2028 		dev_info(ctrl->ctrl.device,
2029 			"NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2030 			"len %d\n",
2031 			ctrl->cnum, freq->rcv_rsplen);
2032 		goto done;
2033 	}
2034 
2035 	terminate_assoc = false;
2036 
2037 done:
2038 	if (op->flags & FCOP_FLAGS_AEN) {
2039 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2040 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2041 		atomic_set(&op->state, FCPOP_STATE_IDLE);
2042 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
2043 		nvme_fc_ctrl_put(ctrl);
2044 		goto check_error;
2045 	}
2046 
2047 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2048 	if (!nvme_try_complete_req(rq, status, result))
2049 		nvme_fc_complete_rq(rq);
2050 
2051 check_error:
2052 	if (terminate_assoc &&
2053 	    nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_RESETTING)
2054 		queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2055 }
2056 
2057 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)2058 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2059 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2060 		struct request *rq, u32 rqno)
2061 {
2062 	struct nvme_fcp_op_w_sgl *op_w_sgl =
2063 		container_of(op, typeof(*op_w_sgl), op);
2064 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2065 	int ret = 0;
2066 
2067 	memset(op, 0, sizeof(*op));
2068 	op->fcp_req.cmdaddr = &op->cmd_iu;
2069 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2070 	op->fcp_req.rspaddr = &op->rsp_iu;
2071 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
2072 	op->fcp_req.done = nvme_fc_fcpio_done;
2073 	op->ctrl = ctrl;
2074 	op->queue = queue;
2075 	op->rq = rq;
2076 	op->rqno = rqno;
2077 
2078 	cmdiu->format_id = NVME_CMD_FORMAT_ID;
2079 	cmdiu->fc_id = NVME_CMD_FC_ID;
2080 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2081 	if (queue->qnum)
2082 		cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2083 					(NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2084 	else
2085 		cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2086 
2087 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2088 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2089 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2090 		dev_err(ctrl->dev,
2091 			"FCP Op failed - cmdiu dma mapping failed.\n");
2092 		ret = -EFAULT;
2093 		goto out_on_error;
2094 	}
2095 
2096 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2097 				&op->rsp_iu, sizeof(op->rsp_iu),
2098 				DMA_FROM_DEVICE);
2099 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2100 		dev_err(ctrl->dev,
2101 			"FCP Op failed - rspiu dma mapping failed.\n");
2102 		ret = -EFAULT;
2103 	}
2104 
2105 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2106 out_on_error:
2107 	return ret;
2108 }
2109 
2110 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2111 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2112 		unsigned int hctx_idx, unsigned int numa_node)
2113 {
2114 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2115 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2116 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2117 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2118 	int res;
2119 
2120 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2121 	if (res)
2122 		return res;
2123 	op->op.fcp_req.first_sgl = op->sgl;
2124 	op->op.fcp_req.private = &op->priv[0];
2125 	nvme_req(rq)->ctrl = &ctrl->ctrl;
2126 	nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2127 	return res;
2128 }
2129 
2130 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)2131 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2132 {
2133 	struct nvme_fc_fcp_op *aen_op;
2134 	struct nvme_fc_cmd_iu *cmdiu;
2135 	struct nvme_command *sqe;
2136 	void *private = NULL;
2137 	int i, ret;
2138 
2139 	aen_op = ctrl->aen_ops;
2140 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2141 		if (ctrl->lport->ops->fcprqst_priv_sz) {
2142 			private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2143 						GFP_KERNEL);
2144 			if (!private)
2145 				return -ENOMEM;
2146 		}
2147 
2148 		cmdiu = &aen_op->cmd_iu;
2149 		sqe = &cmdiu->sqe;
2150 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2151 				aen_op, (struct request *)NULL,
2152 				(NVME_AQ_BLK_MQ_DEPTH + i));
2153 		if (ret) {
2154 			kfree(private);
2155 			return ret;
2156 		}
2157 
2158 		aen_op->flags = FCOP_FLAGS_AEN;
2159 		aen_op->fcp_req.private = private;
2160 
2161 		memset(sqe, 0, sizeof(*sqe));
2162 		sqe->common.opcode = nvme_admin_async_event;
2163 		/* Note: core layer may overwrite the sqe.command_id value */
2164 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2165 	}
2166 	return 0;
2167 }
2168 
2169 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)2170 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2171 {
2172 	struct nvme_fc_fcp_op *aen_op;
2173 	int i;
2174 
2175 	cancel_work_sync(&ctrl->ctrl.async_event_work);
2176 	aen_op = ctrl->aen_ops;
2177 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2178 		__nvme_fc_exit_request(ctrl, aen_op);
2179 
2180 		kfree(aen_op->fcp_req.private);
2181 		aen_op->fcp_req.private = NULL;
2182 	}
2183 }
2184 
2185 static inline int
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int qidx)2186 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
2187 {
2188 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
2189 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2190 
2191 	hctx->driver_data = queue;
2192 	queue->hctx = hctx;
2193 	return 0;
2194 }
2195 
2196 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2197 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
2198 {
2199 	return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
2200 }
2201 
2202 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2203 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2204 		unsigned int hctx_idx)
2205 {
2206 	return __nvme_fc_init_hctx(hctx, data, hctx_idx);
2207 }
2208 
2209 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)2210 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2211 {
2212 	struct nvme_fc_queue *queue;
2213 
2214 	queue = &ctrl->queues[idx];
2215 	memset(queue, 0, sizeof(*queue));
2216 	queue->ctrl = ctrl;
2217 	queue->qnum = idx;
2218 	atomic_set(&queue->csn, 0);
2219 	queue->dev = ctrl->dev;
2220 
2221 	if (idx > 0)
2222 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2223 	else
2224 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
2225 
2226 	/*
2227 	 * Considered whether we should allocate buffers for all SQEs
2228 	 * and CQEs and dma map them - mapping their respective entries
2229 	 * into the request structures (kernel vm addr and dma address)
2230 	 * thus the driver could use the buffers/mappings directly.
2231 	 * It only makes sense if the LLDD would use them for its
2232 	 * messaging api. It's very unlikely most adapter api's would use
2233 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2234 	 * structures were used instead.
2235 	 */
2236 }
2237 
2238 /*
2239  * This routine terminates a queue at the transport level.
2240  * The transport has already ensured that all outstanding ios on
2241  * the queue have been terminated.
2242  * The transport will send a Disconnect LS request to terminate
2243  * the queue's connection. Termination of the admin queue will also
2244  * terminate the association at the target.
2245  */
2246 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)2247 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2248 {
2249 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2250 		return;
2251 
2252 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2253 	/*
2254 	 * Current implementation never disconnects a single queue.
2255 	 * It always terminates a whole association. So there is never
2256 	 * a disconnect(queue) LS sent to the target.
2257 	 */
2258 
2259 	queue->connection_id = 0;
2260 	atomic_set(&queue->csn, 0);
2261 }
2262 
2263 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)2264 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2265 	struct nvme_fc_queue *queue, unsigned int qidx)
2266 {
2267 	if (ctrl->lport->ops->delete_queue)
2268 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2269 				queue->lldd_handle);
2270 	queue->lldd_handle = NULL;
2271 }
2272 
2273 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)2274 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2275 {
2276 	int i;
2277 
2278 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2279 		nvme_fc_free_queue(&ctrl->queues[i]);
2280 }
2281 
2282 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)2283 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2284 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2285 {
2286 	int ret = 0;
2287 
2288 	queue->lldd_handle = NULL;
2289 	if (ctrl->lport->ops->create_queue)
2290 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2291 				qidx, qsize, &queue->lldd_handle);
2292 
2293 	return ret;
2294 }
2295 
2296 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)2297 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2298 {
2299 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2300 	int i;
2301 
2302 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2303 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
2304 }
2305 
2306 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2307 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2308 {
2309 	struct nvme_fc_queue *queue = &ctrl->queues[1];
2310 	int i, ret;
2311 
2312 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2313 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2314 		if (ret)
2315 			goto delete_queues;
2316 	}
2317 
2318 	return 0;
2319 
2320 delete_queues:
2321 	for (; i > 0; i--)
2322 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2323 	return ret;
2324 }
2325 
2326 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2327 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2328 {
2329 	int i, ret = 0;
2330 
2331 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2332 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2333 					(qsize / 5));
2334 		if (ret)
2335 			break;
2336 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2337 		if (ret)
2338 			break;
2339 
2340 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2341 	}
2342 
2343 	return ret;
2344 }
2345 
2346 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)2347 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2348 {
2349 	int i;
2350 
2351 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2352 		nvme_fc_init_queue(ctrl, i);
2353 }
2354 
2355 static void
nvme_fc_ctrl_free(struct kref * ref)2356 nvme_fc_ctrl_free(struct kref *ref)
2357 {
2358 	struct nvme_fc_ctrl *ctrl =
2359 		container_of(ref, struct nvme_fc_ctrl, ref);
2360 	unsigned long flags;
2361 
2362 	/* remove from rport list */
2363 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2364 	list_del(&ctrl->ctrl_list);
2365 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2366 
2367 	kfree(ctrl->queues);
2368 
2369 	put_device(ctrl->dev);
2370 	nvme_fc_rport_put(ctrl->rport);
2371 
2372 	ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2373 	if (ctrl->ctrl.opts)
2374 		nvmf_free_options(ctrl->ctrl.opts);
2375 	kfree(ctrl);
2376 }
2377 
2378 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2379 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2380 {
2381 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2382 }
2383 
2384 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2385 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2386 {
2387 	return kref_get_unless_zero(&ctrl->ref);
2388 }
2389 
2390 /*
2391  * All accesses from nvme core layer done - can now free the
2392  * controller. Called after last nvme_put_ctrl() call
2393  */
2394 static void
nvme_fc_free_ctrl(struct nvme_ctrl * nctrl)2395 nvme_fc_free_ctrl(struct nvme_ctrl *nctrl)
2396 {
2397 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2398 
2399 	WARN_ON(nctrl != &ctrl->ctrl);
2400 
2401 	nvme_fc_ctrl_put(ctrl);
2402 }
2403 
2404 /*
2405  * This routine is used by the transport when it needs to find active
2406  * io on a queue that is to be terminated. The transport uses
2407  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2408  * this routine to kill them on a 1 by 1 basis.
2409  *
2410  * As FC allocates FC exchange for each io, the transport must contact
2411  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2412  * After terminating the exchange the LLDD will call the transport's
2413  * normal io done path for the request, but it will have an aborted
2414  * status. The done path will return the io request back to the block
2415  * layer with an error status.
2416  */
nvme_fc_terminate_exchange(struct request * req,void * data)2417 static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2418 {
2419 	struct nvme_ctrl *nctrl = data;
2420 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2421 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2422 
2423 	op->nreq.flags |= NVME_REQ_CANCELLED;
2424 	__nvme_fc_abort_op(ctrl, op);
2425 	return true;
2426 }
2427 
2428 /*
2429  * This routine runs through all outstanding commands on the association
2430  * and aborts them.  This routine is typically called by the
2431  * delete_association routine. It is also called due to an error during
2432  * reconnect. In that scenario, it is most likely a command that initializes
2433  * the controller, including fabric Connect commands on io queues, that
2434  * may have timed out or failed thus the io must be killed for the connect
2435  * thread to see the error.
2436  */
2437 static void
__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl * ctrl,bool start_queues)2438 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2439 {
2440 	int q;
2441 
2442 	/*
2443 	 * if aborting io, the queues are no longer good, mark them
2444 	 * all as not live.
2445 	 */
2446 	if (ctrl->ctrl.queue_count > 1) {
2447 		for (q = 1; q < ctrl->ctrl.queue_count; q++)
2448 			clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2449 	}
2450 	clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2451 
2452 	/*
2453 	 * If io queues are present, stop them and terminate all outstanding
2454 	 * ios on them. As FC allocates FC exchange for each io, the
2455 	 * transport must contact the LLDD to terminate the exchange,
2456 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2457 	 * to tell us what io's are busy and invoke a transport routine
2458 	 * to kill them with the LLDD.  After terminating the exchange
2459 	 * the LLDD will call the transport's normal io done path, but it
2460 	 * will have an aborted status. The done path will return the
2461 	 * io requests back to the block layer as part of normal completions
2462 	 * (but with error status).
2463 	 */
2464 	if (ctrl->ctrl.queue_count > 1) {
2465 		nvme_quiesce_io_queues(&ctrl->ctrl);
2466 		nvme_sync_io_queues(&ctrl->ctrl);
2467 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2468 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2469 		blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2470 		if (start_queues)
2471 			nvme_unquiesce_io_queues(&ctrl->ctrl);
2472 	}
2473 
2474 	/*
2475 	 * Other transports, which don't have link-level contexts bound
2476 	 * to sqe's, would try to gracefully shutdown the controller by
2477 	 * writing the registers for shutdown and polling (call
2478 	 * nvme_disable_ctrl()). Given a bunch of i/o was potentially
2479 	 * just aborted and we will wait on those contexts, and given
2480 	 * there was no indication of how live the controller is on the
2481 	 * link, don't send more io to create more contexts for the
2482 	 * shutdown. Let the controller fail via keepalive failure if
2483 	 * its still present.
2484 	 */
2485 
2486 	/*
2487 	 * clean up the admin queue. Same thing as above.
2488 	 */
2489 	nvme_quiesce_admin_queue(&ctrl->ctrl);
2490 	blk_sync_queue(ctrl->ctrl.admin_q);
2491 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2492 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2493 	blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2494 	if (start_queues)
2495 		nvme_unquiesce_admin_queue(&ctrl->ctrl);
2496 }
2497 
2498 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2499 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2500 {
2501 	enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
2502 
2503 	/*
2504 	 * if an error (io timeout, etc) while (re)connecting, the remote
2505 	 * port requested terminating of the association (disconnect_ls)
2506 	 * or an error (timeout or abort) occurred on an io while creating
2507 	 * the controller.  Abort any ios on the association and let the
2508 	 * create_association error path resolve things.
2509 	 */
2510 	if (state == NVME_CTRL_CONNECTING) {
2511 		__nvme_fc_abort_outstanding_ios(ctrl, true);
2512 		dev_warn(ctrl->ctrl.device,
2513 			"NVME-FC{%d}: transport error during (re)connect\n",
2514 			ctrl->cnum);
2515 		return;
2516 	}
2517 
2518 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2519 	if (state != NVME_CTRL_LIVE)
2520 		return;
2521 
2522 	dev_warn(ctrl->ctrl.device,
2523 		"NVME-FC{%d}: transport association event: %s\n",
2524 		ctrl->cnum, errmsg);
2525 	dev_warn(ctrl->ctrl.device,
2526 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2527 
2528 	nvme_reset_ctrl(&ctrl->ctrl);
2529 }
2530 
nvme_fc_timeout(struct request * rq)2531 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2532 {
2533 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2534 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2535 	u16 qnum = op->queue->qnum;
2536 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2537 	struct nvme_command *sqe = &cmdiu->sqe;
2538 
2539 	/*
2540 	 * Attempt to abort the offending command. Command completion
2541 	 * will detect the aborted io and will fail the connection.
2542 	 */
2543 	dev_info(ctrl->ctrl.device,
2544 		"NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: "
2545 		"x%08x/x%08x\n",
2546 		ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype,
2547 		nvme_fabrics_opcode_str(qnum, sqe),
2548 		sqe->common.cdw10, sqe->common.cdw11);
2549 	if (__nvme_fc_abort_op(ctrl, op))
2550 		nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2551 
2552 	/*
2553 	 * the io abort has been initiated. Have the reset timer
2554 	 * restarted and the abort completion will complete the io
2555 	 * shortly. Avoids a synchronous wait while the abort finishes.
2556 	 */
2557 	return BLK_EH_RESET_TIMER;
2558 }
2559 
2560 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2561 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2562 		struct nvme_fc_fcp_op *op)
2563 {
2564 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2565 	int ret;
2566 
2567 	freq->sg_cnt = 0;
2568 
2569 	if (!blk_rq_nr_phys_segments(rq))
2570 		return 0;
2571 
2572 	freq->sg_table.sgl = freq->first_sgl;
2573 	ret = sg_alloc_table_chained(&freq->sg_table,
2574 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2575 			NVME_INLINE_SG_CNT);
2576 	if (ret)
2577 		return -ENOMEM;
2578 
2579 	op->nents = blk_rq_map_sg(rq, freq->sg_table.sgl);
2580 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2581 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2582 				op->nents, rq_dma_dir(rq));
2583 	if (unlikely(freq->sg_cnt <= 0)) {
2584 		sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2585 		freq->sg_cnt = 0;
2586 		return -EFAULT;
2587 	}
2588 
2589 	/*
2590 	 * TODO: blk_integrity_rq(rq)  for DIF
2591 	 */
2592 	return 0;
2593 }
2594 
2595 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2596 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2597 		struct nvme_fc_fcp_op *op)
2598 {
2599 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2600 
2601 	if (!freq->sg_cnt)
2602 		return;
2603 
2604 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2605 			rq_dma_dir(rq));
2606 
2607 	sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2608 
2609 	freq->sg_cnt = 0;
2610 }
2611 
2612 /*
2613  * In FC, the queue is a logical thing. At transport connect, the target
2614  * creates its "queue" and returns a handle that is to be given to the
2615  * target whenever it posts something to the corresponding SQ.  When an
2616  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2617  * command contained within the SQE, an io, and assigns a FC exchange
2618  * to it. The SQE and the associated SQ handle are sent in the initial
2619  * CMD IU sents on the exchange. All transfers relative to the io occur
2620  * as part of the exchange.  The CQE is the last thing for the io,
2621  * which is transferred (explicitly or implicitly) with the RSP IU
2622  * sent on the exchange. After the CQE is received, the FC exchange is
2623  * terminated and the Exchange may be used on a different io.
2624  *
2625  * The transport to LLDD api has the transport making a request for a
2626  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2627  * resource and transfers the command. The LLDD will then process all
2628  * steps to complete the io. Upon completion, the transport done routine
2629  * is called.
2630  *
2631  * So - while the operation is outstanding to the LLDD, there is a link
2632  * level FC exchange resource that is also outstanding. This must be
2633  * considered in all cleanup operations.
2634  */
2635 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2636 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2637 	struct nvme_fc_fcp_op *op, u32 data_len,
2638 	enum nvmefc_fcp_datadir	io_dir)
2639 {
2640 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2641 	struct nvme_command *sqe = &cmdiu->sqe;
2642 	int ret, opstate;
2643 
2644 	/*
2645 	 * before attempting to send the io, check to see if we believe
2646 	 * the target device is present
2647 	 */
2648 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2649 		return BLK_STS_RESOURCE;
2650 
2651 	if (!nvme_fc_ctrl_get(ctrl))
2652 		return BLK_STS_IOERR;
2653 
2654 	/* format the FC-NVME CMD IU and fcp_req */
2655 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2656 	cmdiu->data_len = cpu_to_be32(data_len);
2657 	switch (io_dir) {
2658 	case NVMEFC_FCP_WRITE:
2659 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2660 		break;
2661 	case NVMEFC_FCP_READ:
2662 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2663 		break;
2664 	case NVMEFC_FCP_NODATA:
2665 		cmdiu->flags = 0;
2666 		break;
2667 	}
2668 	op->fcp_req.payload_length = data_len;
2669 	op->fcp_req.io_dir = io_dir;
2670 	op->fcp_req.transferred_length = 0;
2671 	op->fcp_req.rcv_rsplen = 0;
2672 	op->fcp_req.status = NVME_SC_SUCCESS;
2673 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2674 
2675 	/*
2676 	 * validate per fabric rules, set fields mandated by fabric spec
2677 	 * as well as those by FC-NVME spec.
2678 	 */
2679 	WARN_ON_ONCE(sqe->common.metadata);
2680 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2681 
2682 	/*
2683 	 * format SQE DPTR field per FC-NVME rules:
2684 	 *    type=0x5     Transport SGL Data Block Descriptor
2685 	 *    subtype=0xA  Transport-specific value
2686 	 *    address=0
2687 	 *    length=length of the data series
2688 	 */
2689 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2690 					NVME_SGL_FMT_TRANSPORT_A;
2691 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2692 	sqe->rw.dptr.sgl.addr = 0;
2693 
2694 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2695 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2696 		if (ret < 0) {
2697 			nvme_cleanup_cmd(op->rq);
2698 			nvme_fc_ctrl_put(ctrl);
2699 			if (ret == -ENOMEM || ret == -EAGAIN)
2700 				return BLK_STS_RESOURCE;
2701 			return BLK_STS_IOERR;
2702 		}
2703 	}
2704 
2705 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2706 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2707 
2708 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2709 
2710 	if (!(op->flags & FCOP_FLAGS_AEN))
2711 		nvme_start_request(op->rq);
2712 
2713 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2714 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2715 					&ctrl->rport->remoteport,
2716 					queue->lldd_handle, &op->fcp_req);
2717 
2718 	if (ret) {
2719 		/*
2720 		 * If the lld fails to send the command is there an issue with
2721 		 * the csn value?  If the command that fails is the Connect,
2722 		 * no - as the connection won't be live.  If it is a command
2723 		 * post-connect, it's possible a gap in csn may be created.
2724 		 * Does this matter?  As Linux initiators don't send fused
2725 		 * commands, no.  The gap would exist, but as there's nothing
2726 		 * that depends on csn order to be delivered on the target
2727 		 * side, it shouldn't hurt.  It would be difficult for a
2728 		 * target to even detect the csn gap as it has no idea when the
2729 		 * cmd with the csn was supposed to arrive.
2730 		 */
2731 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2732 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2733 
2734 		if (!(op->flags & FCOP_FLAGS_AEN)) {
2735 			nvme_fc_unmap_data(ctrl, op->rq, op);
2736 			nvme_cleanup_cmd(op->rq);
2737 		}
2738 
2739 		nvme_fc_ctrl_put(ctrl);
2740 
2741 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2742 				ret != -EBUSY)
2743 			return BLK_STS_IOERR;
2744 
2745 		return BLK_STS_RESOURCE;
2746 	}
2747 
2748 	return BLK_STS_OK;
2749 }
2750 
2751 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2752 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2753 			const struct blk_mq_queue_data *bd)
2754 {
2755 	struct nvme_ns *ns = hctx->queue->queuedata;
2756 	struct nvme_fc_queue *queue = hctx->driver_data;
2757 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2758 	struct request *rq = bd->rq;
2759 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2760 	enum nvmefc_fcp_datadir	io_dir;
2761 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2762 	u32 data_len;
2763 	blk_status_t ret;
2764 
2765 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2766 	    !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2767 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2768 
2769 	ret = nvme_setup_cmd(ns, rq);
2770 	if (ret)
2771 		return ret;
2772 
2773 	/*
2774 	 * nvme core doesn't quite treat the rq opaquely. Commands such
2775 	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2776 	 * there is no actual payload to be transferred.
2777 	 * To get it right, key data transmission on there being 1 or
2778 	 * more physical segments in the sg list. If there are no
2779 	 * physical segments, there is no payload.
2780 	 */
2781 	if (blk_rq_nr_phys_segments(rq)) {
2782 		data_len = blk_rq_payload_bytes(rq);
2783 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2784 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2785 	} else {
2786 		data_len = 0;
2787 		io_dir = NVMEFC_FCP_NODATA;
2788 	}
2789 
2790 
2791 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2792 }
2793 
2794 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2795 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2796 {
2797 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2798 	struct nvme_fc_fcp_op *aen_op;
2799 	blk_status_t ret;
2800 
2801 	if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2802 		return;
2803 
2804 	aen_op = &ctrl->aen_ops[0];
2805 
2806 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2807 					NVMEFC_FCP_NODATA);
2808 	if (ret)
2809 		dev_err(ctrl->ctrl.device,
2810 			"failed async event work\n");
2811 }
2812 
2813 static void
nvme_fc_complete_rq(struct request * rq)2814 nvme_fc_complete_rq(struct request *rq)
2815 {
2816 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2817 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2818 
2819 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2820 	op->flags &= ~FCOP_FLAGS_TERMIO;
2821 
2822 	nvme_fc_unmap_data(ctrl, rq, op);
2823 	nvme_complete_rq(rq);
2824 	nvme_fc_ctrl_put(ctrl);
2825 }
2826 
nvme_fc_map_queues(struct blk_mq_tag_set * set)2827 static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2828 {
2829 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2830 	int i;
2831 
2832 	for (i = 0; i < set->nr_maps; i++) {
2833 		struct blk_mq_queue_map *map = &set->map[i];
2834 
2835 		if (!map->nr_queues) {
2836 			WARN_ON(i == HCTX_TYPE_DEFAULT);
2837 			continue;
2838 		}
2839 
2840 		/* Call LLDD map queue functionality if defined */
2841 		if (ctrl->lport->ops->map_queues)
2842 			ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2843 						     map);
2844 		else
2845 			blk_mq_map_queues(map);
2846 	}
2847 }
2848 
2849 static const struct blk_mq_ops nvme_fc_mq_ops = {
2850 	.queue_rq	= nvme_fc_queue_rq,
2851 	.complete	= nvme_fc_complete_rq,
2852 	.init_request	= nvme_fc_init_request,
2853 	.exit_request	= nvme_fc_exit_request,
2854 	.init_hctx	= nvme_fc_init_hctx,
2855 	.timeout	= nvme_fc_timeout,
2856 	.map_queues	= nvme_fc_map_queues,
2857 };
2858 
2859 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2860 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2861 {
2862 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2863 	unsigned int nr_io_queues;
2864 	int ret;
2865 
2866 	nr_io_queues = min3(opts->nr_io_queues, num_online_cpus(),
2867 				ctrl->lport->ops->max_hw_queues);
2868 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2869 	if (ret) {
2870 		dev_info(ctrl->ctrl.device,
2871 			"set_queue_count failed: %d\n", ret);
2872 		return ret;
2873 	}
2874 
2875 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2876 	if (!nr_io_queues)
2877 		return 0;
2878 
2879 	nvme_fc_init_io_queues(ctrl);
2880 
2881 	ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
2882 			&nvme_fc_mq_ops, 1,
2883 			struct_size_t(struct nvme_fcp_op_w_sgl, priv,
2884 				      ctrl->lport->ops->fcprqst_priv_sz));
2885 	if (ret)
2886 		return ret;
2887 
2888 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2889 	if (ret)
2890 		goto out_cleanup_tagset;
2891 
2892 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2893 	if (ret)
2894 		goto out_delete_hw_queues;
2895 
2896 	ctrl->ioq_live = true;
2897 
2898 	return 0;
2899 
2900 out_delete_hw_queues:
2901 	nvme_fc_delete_hw_io_queues(ctrl);
2902 out_cleanup_tagset:
2903 	nvme_remove_io_tag_set(&ctrl->ctrl);
2904 	nvme_fc_free_io_queues(ctrl);
2905 
2906 	/* force put free routine to ignore io queues */
2907 	ctrl->ctrl.tagset = NULL;
2908 
2909 	return ret;
2910 }
2911 
2912 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2913 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2914 {
2915 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2916 	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2917 	unsigned int nr_io_queues;
2918 	int ret;
2919 
2920 	nr_io_queues = min3(opts->nr_io_queues, num_online_cpus(),
2921 				ctrl->lport->ops->max_hw_queues);
2922 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2923 	if (ret) {
2924 		dev_info(ctrl->ctrl.device,
2925 			"set_queue_count failed: %d\n", ret);
2926 		return ret;
2927 	}
2928 
2929 	if (!nr_io_queues && prior_ioq_cnt) {
2930 		dev_info(ctrl->ctrl.device,
2931 			"Fail Reconnect: At least 1 io queue "
2932 			"required (was %d)\n", prior_ioq_cnt);
2933 		return -ENOSPC;
2934 	}
2935 
2936 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2937 	/* check for io queues existing */
2938 	if (ctrl->ctrl.queue_count == 1)
2939 		return 0;
2940 
2941 	if (prior_ioq_cnt != nr_io_queues) {
2942 		dev_info(ctrl->ctrl.device,
2943 			"reconnect: revising io queue count from %d to %d\n",
2944 			prior_ioq_cnt, nr_io_queues);
2945 		blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2946 	}
2947 
2948 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2949 	if (ret)
2950 		goto out_free_io_queues;
2951 
2952 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2953 	if (ret)
2954 		goto out_delete_hw_queues;
2955 
2956 	return 0;
2957 
2958 out_delete_hw_queues:
2959 	nvme_fc_delete_hw_io_queues(ctrl);
2960 out_free_io_queues:
2961 	nvme_fc_free_io_queues(ctrl);
2962 	return ret;
2963 }
2964 
2965 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)2966 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2967 {
2968 	struct nvme_fc_lport *lport = rport->lport;
2969 
2970 	atomic_inc(&lport->act_rport_cnt);
2971 }
2972 
2973 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)2974 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2975 {
2976 	struct nvme_fc_lport *lport = rport->lport;
2977 	u32 cnt;
2978 
2979 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2980 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2981 		lport->ops->localport_delete(&lport->localport);
2982 }
2983 
2984 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)2985 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2986 {
2987 	struct nvme_fc_rport *rport = ctrl->rport;
2988 	u32 cnt;
2989 
2990 	if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
2991 		return 1;
2992 
2993 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2994 	if (cnt == 1)
2995 		nvme_fc_rport_active_on_lport(rport);
2996 
2997 	return 0;
2998 }
2999 
3000 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)3001 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3002 {
3003 	struct nvme_fc_rport *rport = ctrl->rport;
3004 	struct nvme_fc_lport *lport = rport->lport;
3005 	u32 cnt;
3006 
3007 	/* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3008 
3009 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3010 	if (cnt == 0) {
3011 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3012 			lport->ops->remoteport_delete(&rport->remoteport);
3013 		nvme_fc_rport_inactive_on_lport(rport);
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 /*
3020  * This routine restarts the controller on the host side, and
3021  * on the link side, recreates the controller association.
3022  */
3023 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)3024 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3025 {
3026 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3027 	struct nvmefc_ls_rcv_op *disls = NULL;
3028 	unsigned long flags;
3029 	int ret;
3030 
3031 	++ctrl->ctrl.nr_reconnects;
3032 
3033 	spin_lock_irqsave(&ctrl->rport->lock, flags);
3034 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
3035 		spin_unlock_irqrestore(&ctrl->rport->lock, flags);
3036 		return -ENODEV;
3037 	}
3038 
3039 	if (nvme_fc_ctlr_active_on_rport(ctrl)) {
3040 		spin_unlock_irqrestore(&ctrl->rport->lock, flags);
3041 		return -ENOTUNIQ;
3042 	}
3043 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
3044 
3045 	dev_info(ctrl->ctrl.device,
3046 		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
3047 		" rport wwpn 0x%016llx: NQN \"%s\"\n",
3048 		ctrl->cnum, ctrl->lport->localport.port_name,
3049 		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3050 
3051 	clear_bit(ASSOC_FAILED, &ctrl->flags);
3052 
3053 	/*
3054 	 * Create the admin queue
3055 	 */
3056 
3057 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3058 				NVME_AQ_DEPTH);
3059 	if (ret)
3060 		goto out_free_queue;
3061 
3062 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3063 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3064 	if (ret)
3065 		goto out_delete_hw_queue;
3066 
3067 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3068 	if (ret)
3069 		goto out_disconnect_admin_queue;
3070 
3071 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3072 
3073 	/*
3074 	 * Check controller capabilities
3075 	 *
3076 	 * todo:- add code to check if ctrl attributes changed from
3077 	 * prior connection values
3078 	 */
3079 
3080 	ret = nvme_enable_ctrl(&ctrl->ctrl);
3081 	if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3082 		ret = -EIO;
3083 	if (ret)
3084 		goto out_disconnect_admin_queue;
3085 
3086 	ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3087 	ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3088 						(ilog2(SZ_4K) - 9);
3089 
3090 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
3091 
3092 	ret = nvme_init_ctrl_finish(&ctrl->ctrl, false);
3093 	if (ret)
3094 		goto out_disconnect_admin_queue;
3095 	if (test_bit(ASSOC_FAILED, &ctrl->flags)) {
3096 		ret = -EIO;
3097 		goto out_stop_keep_alive;
3098 	}
3099 	/* sanity checks */
3100 
3101 	/* FC-NVME does not have other data in the capsule */
3102 	if (ctrl->ctrl.icdoff) {
3103 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3104 				ctrl->ctrl.icdoff);
3105 		ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
3106 		goto out_stop_keep_alive;
3107 	}
3108 
3109 	/* FC-NVME supports normal SGL Data Block Descriptors */
3110 	if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3111 		dev_err(ctrl->ctrl.device,
3112 			"Mandatory sgls are not supported!\n");
3113 		ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
3114 		goto out_stop_keep_alive;
3115 	}
3116 
3117 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
3118 		/* warn if maxcmd is lower than queue_size */
3119 		dev_warn(ctrl->ctrl.device,
3120 			"queue_size %zu > ctrl maxcmd %u, reducing "
3121 			"to maxcmd\n",
3122 			opts->queue_size, ctrl->ctrl.maxcmd);
3123 		opts->queue_size = ctrl->ctrl.maxcmd;
3124 		ctrl->ctrl.sqsize = opts->queue_size - 1;
3125 	}
3126 
3127 	ret = nvme_fc_init_aen_ops(ctrl);
3128 	if (ret)
3129 		goto out_term_aen_ops;
3130 
3131 	/*
3132 	 * Create the io queues
3133 	 */
3134 
3135 	if (ctrl->ctrl.queue_count > 1) {
3136 		if (!ctrl->ioq_live)
3137 			ret = nvme_fc_create_io_queues(ctrl);
3138 		else
3139 			ret = nvme_fc_recreate_io_queues(ctrl);
3140 	}
3141 	if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3142 		ret = -EIO;
3143 	if (ret)
3144 		goto out_term_aen_ops;
3145 
3146 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) {
3147 		ret = -EIO;
3148 		goto out_term_aen_ops;
3149 	}
3150 
3151 	ctrl->ctrl.nr_reconnects = 0;
3152 	nvme_start_ctrl(&ctrl->ctrl);
3153 
3154 	return 0;	/* Success */
3155 
3156 out_term_aen_ops:
3157 	nvme_fc_term_aen_ops(ctrl);
3158 out_stop_keep_alive:
3159 	nvme_stop_keep_alive(&ctrl->ctrl);
3160 out_disconnect_admin_queue:
3161 	dev_warn(ctrl->ctrl.device,
3162 		"NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n",
3163 		ctrl->cnum, ctrl->association_id, ret);
3164 	/* send a Disconnect(association) LS to fc-nvme target */
3165 	nvme_fc_xmt_disconnect_assoc(ctrl);
3166 	spin_lock_irqsave(&ctrl->lock, flags);
3167 	ctrl->association_id = 0;
3168 	disls = ctrl->rcv_disconn;
3169 	ctrl->rcv_disconn = NULL;
3170 	spin_unlock_irqrestore(&ctrl->lock, flags);
3171 	if (disls)
3172 		nvme_fc_xmt_ls_rsp(disls);
3173 out_delete_hw_queue:
3174 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3175 out_free_queue:
3176 	nvme_fc_free_queue(&ctrl->queues[0]);
3177 	clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3178 	nvme_fc_ctlr_inactive_on_rport(ctrl);
3179 
3180 	return ret;
3181 }
3182 
3183 
3184 /*
3185  * This routine stops operation of the controller on the host side.
3186  * On the host os stack side: Admin and IO queues are stopped,
3187  *   outstanding ios on them terminated via FC ABTS.
3188  * On the link side: the association is terminated.
3189  */
3190 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)3191 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3192 {
3193 	struct nvmefc_ls_rcv_op *disls = NULL;
3194 	unsigned long flags;
3195 
3196 	if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3197 		return;
3198 
3199 	spin_lock_irqsave(&ctrl->lock, flags);
3200 	set_bit(FCCTRL_TERMIO, &ctrl->flags);
3201 	ctrl->iocnt = 0;
3202 	spin_unlock_irqrestore(&ctrl->lock, flags);
3203 
3204 	__nvme_fc_abort_outstanding_ios(ctrl, false);
3205 
3206 	/* kill the aens as they are a separate path */
3207 	nvme_fc_abort_aen_ops(ctrl);
3208 
3209 	/* wait for all io that had to be aborted */
3210 	spin_lock_irq(&ctrl->lock);
3211 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3212 	clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3213 	spin_unlock_irq(&ctrl->lock);
3214 
3215 	nvme_fc_term_aen_ops(ctrl);
3216 
3217 	/*
3218 	 * send a Disconnect(association) LS to fc-nvme target
3219 	 * Note: could have been sent at top of process, but
3220 	 * cleaner on link traffic if after the aborts complete.
3221 	 * Note: if association doesn't exist, association_id will be 0
3222 	 */
3223 	if (ctrl->association_id)
3224 		nvme_fc_xmt_disconnect_assoc(ctrl);
3225 
3226 	spin_lock_irqsave(&ctrl->lock, flags);
3227 	ctrl->association_id = 0;
3228 	disls = ctrl->rcv_disconn;
3229 	ctrl->rcv_disconn = NULL;
3230 	spin_unlock_irqrestore(&ctrl->lock, flags);
3231 	if (disls)
3232 		/*
3233 		 * if a Disconnect Request was waiting for a response, send
3234 		 * now that all ABTS's have been issued (and are complete).
3235 		 */
3236 		nvme_fc_xmt_ls_rsp(disls);
3237 
3238 	if (ctrl->ctrl.tagset) {
3239 		nvme_fc_delete_hw_io_queues(ctrl);
3240 		nvme_fc_free_io_queues(ctrl);
3241 	}
3242 
3243 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3244 	nvme_fc_free_queue(&ctrl->queues[0]);
3245 
3246 	/* re-enable the admin_q so anything new can fast fail */
3247 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
3248 
3249 	/* resume the io queues so that things will fast fail */
3250 	nvme_unquiesce_io_queues(&ctrl->ctrl);
3251 
3252 	nvme_fc_ctlr_inactive_on_rport(ctrl);
3253 }
3254 
3255 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)3256 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3257 {
3258 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3259 
3260 	cancel_delayed_work_sync(&ctrl->connect_work);
3261 
3262 	/*
3263 	 * kill the association on the link side.  this will block
3264 	 * waiting for io to terminate
3265 	 */
3266 	nvme_fc_delete_association(ctrl);
3267 	cancel_work_sync(&ctrl->ioerr_work);
3268 
3269 	if (ctrl->ctrl.tagset)
3270 		nvme_remove_io_tag_set(&ctrl->ctrl);
3271 
3272 	nvme_unquiesce_admin_queue(&ctrl->ctrl);
3273 	nvme_remove_admin_tag_set(&ctrl->ctrl);
3274 }
3275 
3276 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)3277 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3278 {
3279 	struct nvme_fc_rport *rport = ctrl->rport;
3280 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
3281 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3282 	bool recon = true;
3283 
3284 	if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING)
3285 		return;
3286 
3287 	if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3288 		dev_info(ctrl->ctrl.device,
3289 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3290 			ctrl->cnum, status);
3291 	} else if (time_after_eq(jiffies, rport->dev_loss_end))
3292 		recon = false;
3293 
3294 	if (recon && nvmf_should_reconnect(&ctrl->ctrl, status)) {
3295 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
3296 			dev_info(ctrl->ctrl.device,
3297 				"NVME-FC{%d}: Reconnect attempt in %ld "
3298 				"seconds\n",
3299 				ctrl->cnum, recon_delay / HZ);
3300 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3301 			recon_delay = rport->dev_loss_end - jiffies;
3302 
3303 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3304 	} else {
3305 		if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3306 			if (status > 0 && (status & NVME_STATUS_DNR))
3307 				dev_warn(ctrl->ctrl.device,
3308 					 "NVME-FC{%d}: reconnect failure\n",
3309 					 ctrl->cnum);
3310 			else
3311 				dev_warn(ctrl->ctrl.device,
3312 					 "NVME-FC{%d}: Max reconnect attempts "
3313 					 "(%d) reached.\n",
3314 					 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3315 		} else
3316 			dev_warn(ctrl->ctrl.device,
3317 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
3318 				"while waiting for remoteport connectivity.\n",
3319 				ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3320 					(ctrl->ctrl.opts->max_reconnects *
3321 					 ctrl->ctrl.opts->reconnect_delay)));
3322 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3323 	}
3324 }
3325 
3326 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)3327 nvme_fc_reset_ctrl_work(struct work_struct *work)
3328 {
3329 	struct nvme_fc_ctrl *ctrl =
3330 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3331 
3332 	nvme_stop_ctrl(&ctrl->ctrl);
3333 
3334 	/* will block will waiting for io to terminate */
3335 	nvme_fc_delete_association(ctrl);
3336 
3337 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3338 		dev_err(ctrl->ctrl.device,
3339 			"NVME-FC{%d}: error_recovery: Couldn't change state "
3340 			"to CONNECTING\n", ctrl->cnum);
3341 
3342 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3343 		if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3344 			dev_err(ctrl->ctrl.device,
3345 				"NVME-FC{%d}: failed to schedule connect "
3346 				"after reset\n", ctrl->cnum);
3347 		} else {
3348 			flush_delayed_work(&ctrl->connect_work);
3349 		}
3350 	} else {
3351 		nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3352 	}
3353 }
3354 
3355 
3356 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3357 	.name			= "fc",
3358 	.module			= THIS_MODULE,
3359 	.flags			= NVME_F_FABRICS,
3360 	.reg_read32		= nvmf_reg_read32,
3361 	.reg_read64		= nvmf_reg_read64,
3362 	.reg_write32		= nvmf_reg_write32,
3363 	.subsystem_reset	= nvmf_subsystem_reset,
3364 	.free_ctrl		= nvme_fc_free_ctrl,
3365 	.submit_async_event	= nvme_fc_submit_async_event,
3366 	.delete_ctrl		= nvme_fc_delete_ctrl,
3367 	.get_address		= nvmf_get_address,
3368 	.get_virt_boundary	= nvmf_get_virt_boundary,
3369 };
3370 
3371 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)3372 nvme_fc_connect_ctrl_work(struct work_struct *work)
3373 {
3374 	int ret;
3375 
3376 	struct nvme_fc_ctrl *ctrl =
3377 			container_of(to_delayed_work(work),
3378 				struct nvme_fc_ctrl, connect_work);
3379 
3380 	ret = nvme_fc_create_association(ctrl);
3381 	if (ret)
3382 		nvme_fc_reconnect_or_delete(ctrl, ret);
3383 	else
3384 		dev_info(ctrl->ctrl.device,
3385 			"NVME-FC{%d}: controller connect complete\n",
3386 			ctrl->cnum);
3387 }
3388 
3389 
3390 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3391 	.queue_rq	= nvme_fc_queue_rq,
3392 	.complete	= nvme_fc_complete_rq,
3393 	.init_request	= nvme_fc_init_request,
3394 	.exit_request	= nvme_fc_exit_request,
3395 	.init_hctx	= nvme_fc_init_admin_hctx,
3396 	.timeout	= nvme_fc_timeout,
3397 };
3398 
3399 
3400 /*
3401  * Fails a controller request if it matches an existing controller
3402  * (association) with the same tuple:
3403  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3404  *
3405  * The ports don't need to be compared as they are intrinsically
3406  * already matched by the port pointers supplied.
3407  */
3408 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3409 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3410 		struct nvmf_ctrl_options *opts)
3411 {
3412 	struct nvme_fc_ctrl *ctrl;
3413 	unsigned long flags;
3414 	bool found = false;
3415 
3416 	spin_lock_irqsave(&rport->lock, flags);
3417 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3418 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3419 		if (found)
3420 			break;
3421 	}
3422 	spin_unlock_irqrestore(&rport->lock, flags);
3423 
3424 	return found;
3425 }
3426 
3427 static struct nvme_fc_ctrl *
nvme_fc_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3428 nvme_fc_alloc_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3429 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3430 {
3431 	struct nvme_fc_ctrl *ctrl;
3432 	int ret, idx, ctrl_loss_tmo;
3433 
3434 	if (!(rport->remoteport.port_role &
3435 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3436 		ret = -EBADR;
3437 		goto out_fail;
3438 	}
3439 
3440 	if (!opts->duplicate_connect &&
3441 	    nvme_fc_existing_controller(rport, opts)) {
3442 		ret = -EALREADY;
3443 		goto out_fail;
3444 	}
3445 
3446 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3447 	if (!ctrl) {
3448 		ret = -ENOMEM;
3449 		goto out_fail;
3450 	}
3451 
3452 	idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3453 	if (idx < 0) {
3454 		ret = -ENOSPC;
3455 		goto out_free_ctrl;
3456 	}
3457 
3458 	/*
3459 	 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3460 	 * is being used, change to a shorter reconnect delay for FC.
3461 	 */
3462 	if (opts->max_reconnects != -1 &&
3463 	    opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3464 	    opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3465 		ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3466 		opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3467 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3468 						opts->reconnect_delay);
3469 	}
3470 
3471 	ctrl->ctrl.opts = opts;
3472 	ctrl->ctrl.nr_reconnects = 0;
3473 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3474 	ctrl->lport = lport;
3475 	ctrl->rport = rport;
3476 	ctrl->dev = lport->dev;
3477 	ctrl->cnum = idx;
3478 	ctrl->ioq_live = false;
3479 	init_waitqueue_head(&ctrl->ioabort_wait);
3480 
3481 	get_device(ctrl->dev);
3482 	kref_init(&ctrl->ref);
3483 
3484 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3485 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3486 	INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3487 	spin_lock_init(&ctrl->lock);
3488 
3489 	/* io queue count */
3490 	ctrl->ctrl.queue_count = min_t(unsigned int,
3491 				opts->nr_io_queues,
3492 				lport->ops->max_hw_queues);
3493 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3494 
3495 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3496 	ctrl->ctrl.kato = opts->kato;
3497 	ctrl->ctrl.cntlid = 0xffff;
3498 
3499 	ret = -ENOMEM;
3500 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3501 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3502 	if (!ctrl->queues)
3503 		goto out_free_ida;
3504 
3505 	nvme_fc_init_queue(ctrl, 0);
3506 
3507 	/*
3508 	 * Would have been nice to init io queues tag set as well.
3509 	 * However, we require interaction from the controller
3510 	 * for max io queue count before we can do so.
3511 	 * Defer this to the connect path.
3512 	 */
3513 
3514 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3515 	if (ret)
3516 		goto out_free_queues;
3517 	if (lport->dev)
3518 		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3519 
3520 	return ctrl;
3521 
3522 out_free_queues:
3523 	kfree(ctrl->queues);
3524 out_free_ida:
3525 	put_device(ctrl->dev);
3526 	ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3527 out_free_ctrl:
3528 	kfree(ctrl);
3529 out_fail:
3530 	/* exit via here doesn't follow ctlr ref points */
3531 	return ERR_PTR(ret);
3532 }
3533 
3534 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3535 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3536 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3537 {
3538 	struct nvme_fc_ctrl *ctrl;
3539 	unsigned long flags;
3540 	int ret;
3541 
3542 	ctrl = nvme_fc_alloc_ctrl(dev, opts, lport, rport);
3543 	if (IS_ERR(ctrl))
3544 		return ERR_CAST(ctrl);
3545 
3546 	ret = nvme_add_ctrl(&ctrl->ctrl);
3547 	if (ret)
3548 		goto out_put_ctrl;
3549 
3550 	ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
3551 			&nvme_fc_admin_mq_ops,
3552 			struct_size_t(struct nvme_fcp_op_w_sgl, priv,
3553 				      ctrl->lport->ops->fcprqst_priv_sz));
3554 	if (ret)
3555 		goto fail_ctrl;
3556 
3557 	spin_lock_irqsave(&rport->lock, flags);
3558 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3559 	spin_unlock_irqrestore(&rport->lock, flags);
3560 
3561 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3562 		dev_err(ctrl->ctrl.device,
3563 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3564 		goto fail_ctrl;
3565 	}
3566 
3567 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3568 		dev_err(ctrl->ctrl.device,
3569 			"NVME-FC{%d}: failed to schedule initial connect\n",
3570 			ctrl->cnum);
3571 		goto fail_ctrl;
3572 	}
3573 
3574 	flush_delayed_work(&ctrl->connect_work);
3575 
3576 	dev_info(ctrl->ctrl.device,
3577 		"NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n",
3578 		ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn);
3579 
3580 	return &ctrl->ctrl;
3581 
3582 fail_ctrl:
3583 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3584 	cancel_work_sync(&ctrl->ioerr_work);
3585 	cancel_work_sync(&ctrl->ctrl.reset_work);
3586 	cancel_delayed_work_sync(&ctrl->connect_work);
3587 
3588 	ctrl->ctrl.opts = NULL;
3589 
3590 	/* initiate nvme ctrl ref counting teardown */
3591 	nvme_uninit_ctrl(&ctrl->ctrl);
3592 
3593 out_put_ctrl:
3594 	/* Remove core ctrl ref. */
3595 	nvme_put_ctrl(&ctrl->ctrl);
3596 
3597 	/* as we're past the point where we transition to the ref
3598 	 * counting teardown path, if we return a bad pointer here,
3599 	 * the calling routine, thinking it's prior to the
3600 	 * transition, will do an rport put. Since the teardown
3601 	 * path also does a rport put, we do an extra get here to
3602 	 * so proper order/teardown happens.
3603 	 */
3604 	nvme_fc_rport_get(rport);
3605 
3606 	return ERR_PTR(-EIO);
3607 }
3608 
3609 struct nvmet_fc_traddr {
3610 	u64	nn;
3611 	u64	pn;
3612 };
3613 
3614 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3615 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3616 {
3617 	u64 token64;
3618 
3619 	if (match_u64(sstr, &token64))
3620 		return -EINVAL;
3621 	*val = token64;
3622 
3623 	return 0;
3624 }
3625 
3626 /*
3627  * This routine validates and extracts the WWN's from the TRADDR string.
3628  * As kernel parsers need the 0x to determine number base, universally
3629  * build string to parse with 0x prefix before parsing name strings.
3630  */
3631 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3632 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3633 {
3634 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3635 	substring_t wwn = { name, &name[sizeof(name)-1] };
3636 	int nnoffset, pnoffset;
3637 
3638 	/* validate if string is one of the 2 allowed formats */
3639 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3640 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3641 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3642 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3643 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3644 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3645 						NVME_FC_TRADDR_OXNNLEN;
3646 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3647 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3648 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3649 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3650 		nnoffset = NVME_FC_TRADDR_NNLEN;
3651 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3652 	} else
3653 		goto out_einval;
3654 
3655 	name[0] = '0';
3656 	name[1] = 'x';
3657 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3658 
3659 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3660 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3661 		goto out_einval;
3662 
3663 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3664 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3665 		goto out_einval;
3666 
3667 	return 0;
3668 
3669 out_einval:
3670 	pr_warn("%s: bad traddr string\n", __func__);
3671 	return -EINVAL;
3672 }
3673 
3674 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3675 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3676 {
3677 	struct nvme_fc_lport *lport;
3678 	struct nvme_fc_rport *rport;
3679 	struct nvme_ctrl *ctrl;
3680 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3681 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3682 	unsigned long flags;
3683 	int ret;
3684 
3685 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3686 	if (ret || !raddr.nn || !raddr.pn)
3687 		return ERR_PTR(-EINVAL);
3688 
3689 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3690 	if (ret || !laddr.nn || !laddr.pn)
3691 		return ERR_PTR(-EINVAL);
3692 
3693 	/* find the host and remote ports to connect together */
3694 	spin_lock_irqsave(&nvme_fc_lock, flags);
3695 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3696 		if (lport->localport.node_name != laddr.nn ||
3697 		    lport->localport.port_name != laddr.pn ||
3698 		    lport->localport.port_state != FC_OBJSTATE_ONLINE)
3699 			continue;
3700 
3701 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3702 			if (rport->remoteport.node_name != raddr.nn ||
3703 			    rport->remoteport.port_name != raddr.pn ||
3704 			    rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3705 				continue;
3706 
3707 			/* if fail to get reference fall through. Will error */
3708 			if (!nvme_fc_rport_get(rport))
3709 				break;
3710 
3711 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3712 
3713 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3714 			if (IS_ERR(ctrl))
3715 				nvme_fc_rport_put(rport);
3716 			return ctrl;
3717 		}
3718 	}
3719 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3720 
3721 	pr_warn("%s: %s - %s combination not found\n",
3722 		__func__, opts->traddr, opts->host_traddr);
3723 	return ERR_PTR(-ENOENT);
3724 }
3725 
3726 
3727 static struct nvmf_transport_ops nvme_fc_transport = {
3728 	.name		= "fc",
3729 	.module		= THIS_MODULE,
3730 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3731 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3732 	.create_ctrl	= nvme_fc_create_ctrl,
3733 };
3734 
3735 /* Arbitrary successive failures max. With lots of subsystems could be high */
3736 #define DISCOVERY_MAX_FAIL	20
3737 
nvme_fc_nvme_discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3738 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3739 		struct device_attribute *attr, const char *buf, size_t count)
3740 {
3741 	unsigned long flags;
3742 	LIST_HEAD(local_disc_list);
3743 	struct nvme_fc_lport *lport;
3744 	struct nvme_fc_rport *rport;
3745 	int failcnt = 0;
3746 
3747 	spin_lock_irqsave(&nvme_fc_lock, flags);
3748 restart:
3749 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3750 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3751 			if (!nvme_fc_lport_get(lport))
3752 				continue;
3753 			if (!nvme_fc_rport_get(rport)) {
3754 				/*
3755 				 * This is a temporary condition. Upon restart
3756 				 * this rport will be gone from the list.
3757 				 *
3758 				 * Revert the lport put and retry.  Anything
3759 				 * added to the list already will be skipped (as
3760 				 * they are no longer list_empty).  Loops should
3761 				 * resume at rports that were not yet seen.
3762 				 */
3763 				nvme_fc_lport_put(lport);
3764 
3765 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3766 					goto restart;
3767 
3768 				pr_err("nvme_discovery: too many reference "
3769 				       "failures\n");
3770 				goto process_local_list;
3771 			}
3772 			if (list_empty(&rport->disc_list))
3773 				list_add_tail(&rport->disc_list,
3774 					      &local_disc_list);
3775 		}
3776 	}
3777 
3778 process_local_list:
3779 	while (!list_empty(&local_disc_list)) {
3780 		rport = list_first_entry(&local_disc_list,
3781 					 struct nvme_fc_rport, disc_list);
3782 		list_del_init(&rport->disc_list);
3783 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3784 
3785 		lport = rport->lport;
3786 		/* signal discovery. Won't hurt if it repeats */
3787 		nvme_fc_signal_discovery_scan(lport, rport);
3788 		nvme_fc_rport_put(rport);
3789 		nvme_fc_lport_put(lport);
3790 
3791 		spin_lock_irqsave(&nvme_fc_lock, flags);
3792 	}
3793 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3794 
3795 	return count;
3796 }
3797 
3798 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3799 
3800 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3801 /* Parse the cgroup id from a buf and return the length of cgrpid */
fc_parse_cgrpid(const char * buf,u64 * id)3802 static int fc_parse_cgrpid(const char *buf, u64 *id)
3803 {
3804 	char cgrp_id[16+1];
3805 	int cgrpid_len, j;
3806 
3807 	memset(cgrp_id, 0x0, sizeof(cgrp_id));
3808 	for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3809 		if (buf[cgrpid_len] != ':')
3810 			cgrp_id[cgrpid_len] = buf[cgrpid_len];
3811 		else {
3812 			j = 1;
3813 			break;
3814 		}
3815 	}
3816 	if (!j)
3817 		return -EINVAL;
3818 	if (kstrtou64(cgrp_id, 16, id) < 0)
3819 		return -EINVAL;
3820 	return cgrpid_len;
3821 }
3822 
3823 /*
3824  * Parse and update the appid in the blkcg associated with the cgroupid.
3825  */
fc_appid_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3826 static ssize_t fc_appid_store(struct device *dev,
3827 		struct device_attribute *attr, const char *buf, size_t count)
3828 {
3829 	size_t orig_count = count;
3830 	u64 cgrp_id;
3831 	int appid_len = 0;
3832 	int cgrpid_len = 0;
3833 	char app_id[FC_APPID_LEN];
3834 	int ret = 0;
3835 
3836 	if (buf[count-1] == '\n')
3837 		count--;
3838 
3839 	if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3840 		return -EINVAL;
3841 
3842 	cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3843 	if (cgrpid_len < 0)
3844 		return -EINVAL;
3845 	appid_len = count - cgrpid_len - 1;
3846 	if (appid_len > FC_APPID_LEN)
3847 		return -EINVAL;
3848 
3849 	memset(app_id, 0x0, sizeof(app_id));
3850 	memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3851 	ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3852 	if (ret < 0)
3853 		return ret;
3854 	return orig_count;
3855 }
3856 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3857 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3858 
3859 static struct attribute *nvme_fc_attrs[] = {
3860 	&dev_attr_nvme_discovery.attr,
3861 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3862 	&dev_attr_appid_store.attr,
3863 #endif
3864 	NULL
3865 };
3866 
3867 static const struct attribute_group nvme_fc_attr_group = {
3868 	.attrs = nvme_fc_attrs,
3869 };
3870 
3871 static const struct attribute_group *nvme_fc_attr_groups[] = {
3872 	&nvme_fc_attr_group,
3873 	NULL
3874 };
3875 
3876 static struct class fc_class = {
3877 	.name = "fc",
3878 	.dev_groups = nvme_fc_attr_groups,
3879 };
3880 
nvme_fc_init_module(void)3881 static int __init nvme_fc_init_module(void)
3882 {
3883 	int ret;
3884 
3885 	/*
3886 	 * NOTE:
3887 	 * It is expected that in the future the kernel will combine
3888 	 * the FC-isms that are currently under scsi and now being
3889 	 * added to by NVME into a new standalone FC class. The SCSI
3890 	 * and NVME protocols and their devices would be under this
3891 	 * new FC class.
3892 	 *
3893 	 * As we need something to post FC-specific udev events to,
3894 	 * specifically for nvme probe events, start by creating the
3895 	 * new device class.  When the new standalone FC class is
3896 	 * put in place, this code will move to a more generic
3897 	 * location for the class.
3898 	 */
3899 	ret = class_register(&fc_class);
3900 	if (ret) {
3901 		pr_err("couldn't register class fc\n");
3902 		return ret;
3903 	}
3904 
3905 	/*
3906 	 * Create a device for the FC-centric udev events
3907 	 */
3908 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3909 				"fc_udev_device");
3910 	if (IS_ERR(fc_udev_device)) {
3911 		pr_err("couldn't create fc_udev device!\n");
3912 		ret = PTR_ERR(fc_udev_device);
3913 		goto out_destroy_class;
3914 	}
3915 
3916 	ret = nvmf_register_transport(&nvme_fc_transport);
3917 	if (ret)
3918 		goto out_destroy_device;
3919 
3920 	return 0;
3921 
3922 out_destroy_device:
3923 	device_destroy(&fc_class, MKDEV(0, 0));
3924 out_destroy_class:
3925 	class_unregister(&fc_class);
3926 
3927 	return ret;
3928 }
3929 
3930 static void
nvme_fc_delete_controllers(struct nvme_fc_rport * rport)3931 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3932 {
3933 	struct nvme_fc_ctrl *ctrl;
3934 
3935 	spin_lock(&rport->lock);
3936 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3937 		dev_warn(ctrl->ctrl.device,
3938 			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3939 			ctrl->cnum);
3940 		nvme_delete_ctrl(&ctrl->ctrl);
3941 	}
3942 	spin_unlock(&rport->lock);
3943 }
3944 
nvme_fc_exit_module(void)3945 static void __exit nvme_fc_exit_module(void)
3946 {
3947 	struct nvme_fc_lport *lport;
3948 	struct nvme_fc_rport *rport;
3949 	unsigned long flags;
3950 
3951 	spin_lock_irqsave(&nvme_fc_lock, flags);
3952 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list)
3953 		list_for_each_entry(rport, &lport->endp_list, endp_list)
3954 			nvme_fc_delete_controllers(rport);
3955 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3956 	flush_workqueue(nvme_delete_wq);
3957 
3958 	nvmf_unregister_transport(&nvme_fc_transport);
3959 
3960 	device_destroy(&fc_class, MKDEV(0, 0));
3961 	class_unregister(&fc_class);
3962 }
3963 
3964 module_init(nvme_fc_init_module);
3965 module_exit(nvme_fc_exit_module);
3966 
3967 MODULE_DESCRIPTION("NVMe host FC transport driver");
3968 MODULE_LICENSE("GPL v2");
3969